1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "VirtRegMap.h" 18 #include "llvm/CodeGen/CalcSpillWeights.h" 19 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 static cl::opt<bool> 32 AllowSplit("spiller-splits-edges", 33 cl::desc("Allow critical edge splitting during spilling")); 34 35 //===----------------------------------------------------------------------===// 36 // Split Analysis 37 //===----------------------------------------------------------------------===// 38 39 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 40 const LiveIntervals &lis, 41 const MachineLoopInfo &mli) 42 : mf_(mf), 43 lis_(lis), 44 loops_(mli), 45 tii_(*mf.getTarget().getInstrInfo()), 46 curli_(0) {} 47 48 void SplitAnalysis::clear() { 49 usingInstrs_.clear(); 50 usingBlocks_.clear(); 51 usingLoops_.clear(); 52 curli_ = 0; 53 } 54 55 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 56 MachineBasicBlock *T, *F; 57 SmallVector<MachineOperand, 4> Cond; 58 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 59 } 60 61 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 62 void SplitAnalysis::analyzeUses() { 63 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 64 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 65 MachineInstr *MI = I.skipInstruction();) { 66 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 67 continue; 68 MachineBasicBlock *MBB = MI->getParent(); 69 if (usingBlocks_[MBB]++) 70 continue; 71 if (MachineLoop *Loop = loops_.getLoopFor(MBB)) 72 usingLoops_[Loop]++; 73 } 74 DEBUG(dbgs() << " counted " 75 << usingInstrs_.size() << " instrs, " 76 << usingBlocks_.size() << " blocks, " 77 << usingLoops_.size() << " loops.\n"); 78 } 79 80 /// removeUse - Update statistics by noting that MI no longer uses curli. 81 void SplitAnalysis::removeUse(const MachineInstr *MI) { 82 if (!usingInstrs_.erase(MI)) 83 return; 84 85 // Decrement MBB count. 86 const MachineBasicBlock *MBB = MI->getParent(); 87 BlockCountMap::iterator bi = usingBlocks_.find(MBB); 88 assert(bi != usingBlocks_.end() && "MBB missing"); 89 assert(bi->second && "0 count in map"); 90 if (--bi->second) 91 return; 92 // No more uses in MBB. 93 usingBlocks_.erase(bi); 94 95 // Decrement loop count. 96 MachineLoop *Loop = loops_.getLoopFor(MBB); 97 if (!Loop) 98 return; 99 LoopCountMap::iterator li = usingLoops_.find(Loop); 100 assert(li != usingLoops_.end() && "Loop missing"); 101 assert(li->second && "0 count in map"); 102 if (--li->second) 103 return; 104 // No more blocks in Loop. 105 usingLoops_.erase(li); 106 } 107 108 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 109 // predecessor blocks, and exit blocks. 110 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 111 Blocks.clear(); 112 113 // Blocks in the loop. 114 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 115 116 // Predecessor blocks. 117 const MachineBasicBlock *Header = Loop->getHeader(); 118 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 119 E = Header->pred_end(); I != E; ++I) 120 if (!Blocks.Loop.count(*I)) 121 Blocks.Preds.insert(*I); 122 123 // Exit blocks. 124 for (MachineLoop::block_iterator I = Loop->block_begin(), 125 E = Loop->block_end(); I != E; ++I) { 126 const MachineBasicBlock *MBB = *I; 127 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 128 SE = MBB->succ_end(); SI != SE; ++SI) 129 if (!Blocks.Loop.count(*SI)) 130 Blocks.Exits.insert(*SI); 131 } 132 } 133 134 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 135 /// and around the Loop. 136 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 137 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 138 LoopPeripheralUse use = ContainedInLoop; 139 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 140 I != E; ++I) { 141 const MachineBasicBlock *MBB = I->first; 142 // Is this a peripheral block? 143 if (use < MultiPeripheral && 144 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 145 if (I->second > 1) use = MultiPeripheral; 146 else use = SinglePeripheral; 147 continue; 148 } 149 // Is it a loop block? 150 if (Blocks.Loop.count(MBB)) 151 continue; 152 // It must be an unrelated block. 153 return OutsideLoop; 154 } 155 return use; 156 } 157 158 /// getCriticalExits - It may be necessary to partially break critical edges 159 /// leaving the loop if an exit block has phi uses of curli. Collect the exit 160 /// blocks that need special treatment into CriticalExits. 161 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 162 BlockPtrSet &CriticalExits) { 163 CriticalExits.clear(); 164 165 // A critical exit block contains a phi def of curli, and has a predecessor 166 // that is not in the loop nor a loop predecessor. 167 // For such an exit block, the edges carrying the new variable must be moved 168 // to a new pre-exit block. 169 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 170 I != E; ++I) { 171 const MachineBasicBlock *Succ = *I; 172 SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); 173 VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); 174 // This exit may not have curli live in at all. No need to split. 175 if (!SuccVNI) 176 continue; 177 // If this is not a PHI def, it is either using a value from before the 178 // loop, or a value defined inside the loop. Both are safe. 179 if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) 180 continue; 181 // This exit block does have a PHI. Does it also have a predecessor that is 182 // not a loop block or loop predecessor? 183 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 184 PE = Succ->pred_end(); PI != PE; ++PI) { 185 const MachineBasicBlock *Pred = *PI; 186 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 187 continue; 188 // This is a critical exit block, and we need to split the exit edge. 189 CriticalExits.insert(Succ); 190 break; 191 } 192 } 193 } 194 195 /// canSplitCriticalExits - Return true if it is possible to insert new exit 196 /// blocks before the blocks in CriticalExits. 197 bool 198 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 199 BlockPtrSet &CriticalExits) { 200 // If we don't allow critical edge splitting, require no critical exits. 201 if (!AllowSplit) 202 return CriticalExits.empty(); 203 204 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 205 I != E; ++I) { 206 const MachineBasicBlock *Succ = *I; 207 // We want to insert a new pre-exit MBB before Succ, and change all the 208 // in-loop blocks to branch to the pre-exit instead of Succ. 209 // Check that all the in-loop predecessors can be changed. 210 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 211 PE = Succ->pred_end(); PI != PE; ++PI) { 212 const MachineBasicBlock *Pred = *PI; 213 // The external predecessors won't be altered. 214 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 215 continue; 216 if (!canAnalyzeBranch(Pred)) 217 return false; 218 } 219 220 // If Succ's layout predecessor falls through, that too must be analyzable. 221 // We need to insert the pre-exit block in the gap. 222 MachineFunction::const_iterator MFI = Succ; 223 if (MFI == mf_.begin()) 224 continue; 225 if (!canAnalyzeBranch(--MFI)) 226 return false; 227 } 228 // No problems found. 229 return true; 230 } 231 232 void SplitAnalysis::analyze(const LiveInterval *li) { 233 clear(); 234 curli_ = li; 235 analyzeUses(); 236 } 237 238 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 239 assert(curli_ && "Call analyze() before getBestSplitLoop"); 240 if (usingLoops_.empty()) 241 return 0; 242 243 LoopPtrSet Loops, SecondLoops; 244 LoopBlocks Blocks; 245 BlockPtrSet CriticalExits; 246 247 // Find first-class and second class candidate loops. 248 // We prefer to split around loops where curli is used outside the periphery. 249 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 250 E = usingLoops_.end(); I != E; ++I) { 251 const MachineLoop *Loop = I->first; 252 getLoopBlocks(Loop, Blocks); 253 254 // FIXME: We need an SSA updater to properly handle multiple exit blocks. 255 if (Blocks.Exits.size() > 1) { 256 DEBUG(dbgs() << " multiple exits from " << *Loop); 257 continue; 258 } 259 260 LoopPtrSet *LPS = 0; 261 switch(analyzeLoopPeripheralUse(Blocks)) { 262 case OutsideLoop: 263 LPS = &Loops; 264 break; 265 case MultiPeripheral: 266 LPS = &SecondLoops; 267 break; 268 case ContainedInLoop: 269 DEBUG(dbgs() << " contained in " << *Loop); 270 continue; 271 case SinglePeripheral: 272 DEBUG(dbgs() << " single peripheral use in " << *Loop); 273 continue; 274 } 275 // Will it be possible to split around this loop? 276 getCriticalExits(Blocks, CriticalExits); 277 DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " 278 << *Loop); 279 if (!canSplitCriticalExits(Blocks, CriticalExits)) 280 continue; 281 // This is a possible split. 282 assert(LPS); 283 LPS->insert(Loop); 284 } 285 286 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + " 287 << SecondLoops.size() << " candidate loops.\n"); 288 289 // If there are no first class loops available, look at second class loops. 290 if (Loops.empty()) 291 Loops = SecondLoops; 292 293 if (Loops.empty()) 294 return 0; 295 296 // Pick the earliest loop. 297 // FIXME: Are there other heuristics to consider? 298 const MachineLoop *Best = 0; 299 SlotIndex BestIdx; 300 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 301 ++I) { 302 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 303 if (!Best || Idx < BestIdx) 304 Best = *I, BestIdx = Idx; 305 } 306 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 307 return Best; 308 } 309 310 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 311 /// may be an advantage to split curli for the duration of the block. 312 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 313 // If curli is local to one block, there is no point to splitting it. 314 if (usingBlocks_.size() <= 1) 315 return false; 316 // Add blocks with multiple uses. 317 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 318 I != E; ++I) 319 switch (I->second) { 320 case 0: 321 case 1: 322 continue; 323 case 2: { 324 // It doesn't pay to split a 2-instr block if it redefines curli. 325 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 326 VNInfo *VN2 = 327 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 328 // live-in and live-out with a different value. 329 if (VN1 && VN2 && VN1 != VN2) 330 continue; 331 } // Fall through. 332 default: 333 Blocks.insert(I->first); 334 } 335 return !Blocks.empty(); 336 } 337 338 //===----------------------------------------------------------------------===// 339 // LiveIntervalMap 340 //===----------------------------------------------------------------------===// 341 342 // Work around the fact that the std::pair constructors are broken for pointer 343 // pairs in some implementations. makeVV(x, 0) works. 344 static inline std::pair<const VNInfo*, VNInfo*> 345 makeVV(const VNInfo *a, VNInfo *b) { 346 return std::make_pair(a, b); 347 } 348 349 void LiveIntervalMap::reset(LiveInterval *li) { 350 li_ = li; 351 valueMap_.clear(); 352 } 353 354 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 355 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 356 return i != valueMap_.end() && i->second == 0; 357 } 358 359 // defValue - Introduce a li_ def for ParentVNI that could be later than 360 // ParentVNI->def. 361 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 362 assert(li_ && "call reset first"); 363 assert(ParentVNI && "Mapping NULL value"); 364 assert(Idx.isValid() && "Invalid SlotIndex"); 365 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 366 367 // Create a new value. 368 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 369 370 // Use insert for lookup, so we can add missing values with a second lookup. 371 std::pair<ValueMap::iterator,bool> InsP = 372 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 373 374 // This is now a complex def. Mark with a NULL in valueMap. 375 if (!InsP.second) 376 InsP.first->second = 0; 377 378 return VNI; 379 } 380 381 382 // mapValue - Find the mapped value for ParentVNI at Idx. 383 // Potentially create phi-def values. 384 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 385 bool *simple) { 386 assert(li_ && "call reset first"); 387 assert(ParentVNI && "Mapping NULL value"); 388 assert(Idx.isValid() && "Invalid SlotIndex"); 389 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 390 391 // Use insert for lookup, so we can add missing values with a second lookup. 392 std::pair<ValueMap::iterator,bool> InsP = 393 valueMap_.insert(makeVV(ParentVNI, 0)); 394 395 // This was an unknown value. Create a simple mapping. 396 if (InsP.second) { 397 if (simple) *simple = true; 398 return InsP.first->second = li_->createValueCopy(ParentVNI, 399 lis_.getVNInfoAllocator()); 400 } 401 402 // This was a simple mapped value. 403 if (InsP.first->second) { 404 if (simple) *simple = true; 405 return InsP.first->second; 406 } 407 408 // This is a complex mapped value. There may be multiple defs, and we may need 409 // to create phi-defs. 410 if (simple) *simple = false; 411 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 412 assert(IdxMBB && "No MBB at Idx"); 413 414 // Is there a def in the same MBB we can extend? 415 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 416 return VNI; 417 418 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 419 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 420 // Perform a depth-first search for predecessor blocks where we know the 421 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 422 423 // Track MBBs where we have created or learned the dominating value. 424 // This may change during the DFS as we create new phi-defs. 425 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 426 MBBValueMap DomValue; 427 428 for (idf_iterator<MachineBasicBlock*> 429 IDFI = idf_begin(IdxMBB), 430 IDFE = idf_end(IdxMBB); IDFI != IDFE;) { 431 MachineBasicBlock *MBB = *IDFI; 432 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 433 434 // We are operating on the restricted CFG where ParentVNI is live. 435 if (parentli_.getVNInfoAt(End) != ParentVNI) { 436 IDFI.skipChildren(); 437 continue; 438 } 439 440 // Do we have a dominating value in this block? 441 VNInfo *VNI = extendTo(MBB, End); 442 if (!VNI) { 443 ++IDFI; 444 continue; 445 } 446 447 // Yes, VNI dominates MBB. Track the path back to IdxMBB, creating phi-defs 448 // as needed along the way. 449 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 450 // Start from MBB's immediate successor. End at IdxMBB. 451 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 452 std::pair<MBBValueMap::iterator, bool> InsP = 453 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 454 455 // This is the first time we backtrack to Succ. 456 if (InsP.second) 457 continue; 458 459 // We reached Succ again with the same VNI. Nothing is going to change. 460 VNInfo *OVNI = InsP.first->second; 461 if (OVNI == VNI) 462 break; 463 464 // Succ already has a phi-def. No need to continue. 465 SlotIndex Start = lis_.getMBBStartIdx(Succ); 466 if (OVNI->def == Start) 467 break; 468 469 // We have a collision between the old and new VNI at Succ. That means 470 // neither dominates and we need a new phi-def. 471 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 472 VNI->setIsPHIDef(true); 473 InsP.first->second = VNI; 474 475 // Replace OVNI with VNI in the remaining path. 476 for (; PI > 1 ; --PI) { 477 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 478 if (I == DomValue.end() || I->second != OVNI) 479 break; 480 I->second = VNI; 481 } 482 } 483 484 // No need to search the children, we found a dominating value. 485 IDFI.skipChildren(); 486 } 487 488 // The search should at least find a dominating value for IdxMBB. 489 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 490 491 // Since we went through the trouble of a full DFS visiting all reaching defs, 492 // the values in DomValue are now accurate. No more phi-defs are needed for 493 // these blocks, so we can color the live ranges. 494 // This makes the next mapValue call much faster. 495 VNInfo *IdxVNI = 0; 496 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 497 ++I) { 498 MachineBasicBlock *MBB = I->first; 499 VNInfo *VNI = I->second; 500 SlotIndex Start = lis_.getMBBStartIdx(MBB); 501 if (MBB == IdxMBB) { 502 // Don't add full liveness to IdxMBB, stop at Idx. 503 if (Start != Idx) 504 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 505 // The caller had better add some liveness to IdxVNI, or it leaks. 506 IdxVNI = VNI; 507 } else 508 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 509 } 510 511 assert(IdxVNI && "Didn't find value for Idx"); 512 return IdxVNI; 513 } 514 515 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 516 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 517 // Return the found VNInfo, or NULL. 518 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 519 assert(li_ && "call reset first"); 520 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 521 if (I == li_->begin()) 522 return 0; 523 --I; 524 if (I->start < lis_.getMBBStartIdx(MBB)) 525 return 0; 526 if (I->end <= Idx) 527 I->end = Idx.getNextSlot(); 528 return I->valno; 529 } 530 531 // addSimpleRange - Add a simple range from parentli_ to li_. 532 // ParentVNI must be live in the [Start;End) interval. 533 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 534 const VNInfo *ParentVNI) { 535 assert(li_ && "call reset first"); 536 bool simple; 537 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 538 // A simple mapping is easy. 539 if (simple) { 540 li_->addRange(LiveRange(Start, End, VNI)); 541 return; 542 } 543 544 // ParentVNI is a complex value. We must map per MBB. 545 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 546 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End); 547 548 if (MBB == MBBE) { 549 li_->addRange(LiveRange(Start, End, VNI)); 550 return; 551 } 552 553 // First block. 554 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 555 556 // Run sequence of full blocks. 557 for (++MBB; MBB != MBBE; ++MBB) { 558 Start = lis_.getMBBStartIdx(MBB); 559 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 560 mapValue(ParentVNI, Start))); 561 } 562 563 // Final block. 564 Start = lis_.getMBBStartIdx(MBB); 565 if (Start != End) 566 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 567 } 568 569 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 570 /// All needed values whose def is not inside [Start;End) must be defined 571 /// beforehand so mapValue will work. 572 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 573 assert(li_ && "call reset first"); 574 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 575 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 576 577 // Check if --I begins before Start and overlaps. 578 if (I != B) { 579 --I; 580 if (I->end > Start) 581 addSimpleRange(Start, std::min(End, I->end), I->valno); 582 ++I; 583 } 584 585 // The remaining ranges begin after Start. 586 for (;I != E && I->start < End; ++I) 587 addSimpleRange(I->start, std::min(End, I->end), I->valno); 588 } 589 590 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 591 const VNInfo *ParentVNI, 592 MachineBasicBlock &MBB, 593 MachineBasicBlock::iterator I) { 594 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 595 get(TargetOpcode::COPY); 596 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 597 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 598 VNInfo *VNI = defValue(ParentVNI, DefIdx); 599 VNI->setCopy(MI); 600 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 601 return VNI; 602 } 603 604 //===----------------------------------------------------------------------===// 605 // Split Editor 606 //===----------------------------------------------------------------------===// 607 608 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 609 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 610 SmallVectorImpl<LiveInterval*> &intervals) 611 : sa_(sa), lis_(lis), vrm_(vrm), 612 mri_(vrm.getMachineFunction().getRegInfo()), 613 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 614 curli_(sa_.getCurLI()), 615 dupli_(lis_, *curli_), 616 openli_(lis_, *curli_), 617 intervals_(intervals), 618 firstInterval(intervals_.size()) 619 { 620 assert(curli_ && "SplitEditor created from empty SplitAnalysis"); 621 622 // Make sure curli_ is assigned a stack slot, so all our intervals get the 623 // same slot as curli_. 624 if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) 625 vrm_.assignVirt2StackSlot(curli_->reg); 626 627 } 628 629 LiveInterval *SplitEditor::createInterval() { 630 unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg)); 631 LiveInterval &Intv = lis_.getOrCreateInterval(Reg); 632 vrm_.grow(); 633 vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg)); 634 return &Intv; 635 } 636 637 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 638 for (int i = firstInterval, e = intervals_.size(); i != e; ++i) 639 if (intervals_[i]->liveAt(Idx)) 640 return true; 641 return false; 642 } 643 644 /// Create a new virtual register and live interval. 645 void SplitEditor::openIntv() { 646 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 647 648 if (!dupli_.getLI()) 649 dupli_.reset(createInterval()); 650 651 openli_.reset(createInterval()); 652 intervals_.push_back(openli_.getLI()); 653 } 654 655 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 656 /// not live before Idx, a COPY is not inserted. 657 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 658 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 659 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex()); 660 if (!ParentVNI) { 661 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": not live\n"); 662 return; 663 } 664 truncatedValues.insert(ParentVNI); 665 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 666 assert(MI && "enterIntvBefore called with invalid index"); 667 openli_.defByCopyFrom(curli_->reg, ParentVNI, *MI->getParent(), MI); 668 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_.getLI() 669 << '\n'); 670 } 671 672 /// enterIntvAtEnd - Enter openli at the end of MBB. 673 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 674 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 675 SlotIndex End = lis_.getMBBEndIdx(&MBB); 676 VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot()); 677 if (!ParentVNI) { 678 DEBUG(dbgs() << " enterIntvAtEnd " << End << ": not live\n"); 679 return; 680 } 681 truncatedValues.insert(ParentVNI); 682 VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, 683 MBB, MBB.getFirstTerminator()); 684 // Make sure openli is live out of MBB. 685 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 686 DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_.getLI() << '\n'); 687 } 688 689 /// useIntv - indicate that all instructions in MBB should use openli. 690 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 691 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 692 } 693 694 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 695 assert(openli_.getLI() && "openIntv not called before useIntv"); 696 openli_.addRange(Start, End); 697 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 698 << *openli_.getLI() << '\n'); 699 } 700 701 /// leaveIntvAfter - Leave openli after the instruction at Idx. 702 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 703 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 704 705 // The interval must be live beyond the instruction at Idx. 706 SlotIndex EndIdx = Idx.getNextIndex().getBaseIndex(); 707 VNInfo *ParentVNI = curli_->getVNInfoAt(EndIdx); 708 if (!ParentVNI) { 709 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n"); 710 return; 711 } 712 713 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 714 assert(MI && "leaveIntvAfter called with invalid index"); 715 716 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 717 *MI->getParent(), MI); 718 719 // Finally we must make sure that openli is properly extended from Idx to the 720 // new copy. 721 openli_.mapValue(ParentVNI, VNI->def.getUseIndex()); 722 723 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_.getLI() 724 << '\n'); 725 } 726 727 /// leaveIntvAtTop - Leave the interval at the top of MBB. 728 /// Currently, only one value can leave the interval. 729 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 730 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 731 732 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 733 VNInfo *ParentVNI = curli_->getVNInfoAt(Start); 734 735 // Is curli even live-in to MBB? 736 if (!ParentVNI) { 737 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n"); 738 return; 739 } 740 741 // We are going to insert a back copy, so we must have a dupli_. 742 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 743 MBB, MBB.begin()); 744 745 // Finally we must make sure that openli is properly extended from Start to 746 // the new copy. 747 openli_.mapValue(ParentVNI, VNI->def.getUseIndex()); 748 749 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": " << *openli_.getLI() 750 << '\n'); 751 } 752 753 /// closeIntv - Indicate that we are done editing the currently open 754 /// LiveInterval, and ranges can be trimmed. 755 void SplitEditor::closeIntv() { 756 assert(openli_.getLI() && "openIntv not called before closeIntv"); 757 758 DEBUG(dbgs() << " closeIntv cleaning up\n"); 759 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 760 openli_.reset(0); 761 } 762 763 void 764 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 765 SlotIndex sidx = Start; 766 767 // Break [Start;End) into segments that don't overlap any intervals. 768 for (;;) { 769 SlotIndex next = sidx, eidx = End; 770 // Find overlapping intervals. 771 for (int i = firstInterval, e = intervals_.size(); i != e && sidx < eidx; 772 ++i) { 773 LiveInterval::const_iterator I = intervals_[i]->find(sidx); 774 LiveInterval::const_iterator E = intervals_[i]->end(); 775 if (I == E) 776 continue; 777 // Interval I is overlapping [sidx;eidx). Trim sidx. 778 if (I->start <= sidx) { 779 sidx = I->end; 780 if (++I == E) 781 continue; 782 } 783 // Trim eidx too if needed. 784 if (I->start >= eidx) 785 continue; 786 eidx = I->start; 787 if (I->end > next) 788 next = I->end; 789 } 790 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 791 if (sidx < eidx) 792 dupli_.addSimpleRange(sidx, eidx, VNI); 793 // If the interval end was truncated, we can try again from next. 794 if (next <= sidx) 795 break; 796 sidx = next; 797 } 798 } 799 800 /// rewrite - after all the new live ranges have been created, rewrite 801 /// instructions using curli to use the new intervals. 802 bool SplitEditor::rewrite() { 803 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 804 805 // First we need to fill in the live ranges in dupli. 806 // If values were redefined, we need a full recoloring with SSA update. 807 // If values were truncated, we only need to truncate the ranges. 808 // If values were partially rematted, we should shrink to uses. 809 // If values were fully rematted, they should be omitted. 810 // FIXME: If a single value is redefined, just move the def and truncate. 811 812 // Values that are fully contained in the split intervals. 813 SmallPtrSet<const VNInfo*, 8> deadValues; 814 815 // Map all curli values that should have live defs in dupli. 816 for (LiveInterval::const_vni_iterator I = curli_->vni_begin(), 817 E = curli_->vni_end(); I != E; ++I) { 818 const VNInfo *VNI = *I; 819 // Original def is contained in the split intervals. 820 if (intervalsLiveAt(VNI->def)) { 821 // Did this value escape? 822 if (dupli_.isMapped(VNI)) 823 truncatedValues.insert(VNI); 824 else 825 deadValues.insert(VNI); 826 continue; 827 } 828 // Add minimal live range at the definition. 829 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 830 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 831 } 832 833 // Add all ranges to dupli. 834 for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end(); 835 I != E; ++I) { 836 const LiveRange &LR = *I; 837 if (truncatedValues.count(LR.valno)) { 838 // recolor after removing intervals_. 839 addTruncSimpleRange(LR.start, LR.end, LR.valno); 840 } else if (!deadValues.count(LR.valno)) { 841 // recolor without truncation. 842 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 843 } 844 } 845 846 847 const LiveInterval *curli = sa_.getCurLI(); 848 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), 849 RE = mri_.reg_end(); RI != RE;) { 850 MachineOperand &MO = RI.getOperand(); 851 MachineInstr *MI = MO.getParent(); 852 ++RI; 853 if (MI->isDebugValue()) { 854 DEBUG(dbgs() << "Zapping " << *MI); 855 // FIXME: We can do much better with debug values. 856 MO.setReg(0); 857 continue; 858 } 859 SlotIndex Idx = lis_.getInstructionIndex(MI); 860 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 861 LiveInterval *LI = dupli_.getLI(); 862 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 863 LiveInterval *testli = intervals_[i]; 864 if (testli->liveAt(Idx)) { 865 LI = testli; 866 break; 867 } 868 } 869 if (LI) { 870 MO.setReg(LI->reg); 871 sa_.removeUse(MI); 872 DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI); 873 } 874 } 875 876 // dupli_ goes in last, after rewriting. 877 if (dupli_.getLI()) { 878 if (dupli_.getLI()->empty()) { 879 DEBUG(dbgs() << " dupli became empty?\n"); 880 lis_.removeInterval(dupli_.getLI()->reg); 881 dupli_.reset(0); 882 } else { 883 dupli_.getLI()->RenumberValues(lis_); 884 intervals_.push_back(dupli_.getLI()); 885 } 886 } 887 888 // Calculate spill weight and allocation hints for new intervals. 889 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 890 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 891 LiveInterval &li = *intervals_[i]; 892 vrai.CalculateRegClass(li.reg); 893 vrai.CalculateWeightAndHint(li); 894 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 895 << ":" << li << '\n'); 896 } 897 return dupli_.getLI(); 898 } 899 900 901 //===----------------------------------------------------------------------===// 902 // Loop Splitting 903 //===----------------------------------------------------------------------===// 904 905 bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 906 SplitAnalysis::LoopBlocks Blocks; 907 sa_.getLoopBlocks(Loop, Blocks); 908 909 // Break critical edges as needed. 910 SplitAnalysis::BlockPtrSet CriticalExits; 911 sa_.getCriticalExits(Blocks, CriticalExits); 912 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 913 914 // Create new live interval for the loop. 915 openIntv(); 916 917 // Insert copies in the predecessors. 918 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 919 E = Blocks.Preds.end(); I != E; ++I) { 920 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 921 enterIntvAtEnd(MBB); 922 } 923 924 // Switch all loop blocks. 925 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 926 E = Blocks.Loop.end(); I != E; ++I) 927 useIntv(**I); 928 929 // Insert back copies in the exit blocks. 930 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 931 E = Blocks.Exits.end(); I != E; ++I) { 932 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 933 leaveIntvAtTop(MBB); 934 } 935 936 // Done. 937 closeIntv(); 938 return rewrite(); 939 } 940 941 942 //===----------------------------------------------------------------------===// 943 // Single Block Splitting 944 //===----------------------------------------------------------------------===// 945 946 /// splitSingleBlocks - Split curli into a separate live interval inside each 947 /// basic block in Blocks. Return true if curli has been completely replaced, 948 /// false if curli is still intact, and needs to be spilled or split further. 949 bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 950 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 951 // Determine the first and last instruction using curli in each block. 952 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 953 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 954 IndexPairMap MBBRange; 955 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 956 E = sa_.usingInstrs_.end(); I != E; ++I) { 957 const MachineBasicBlock *MBB = (*I)->getParent(); 958 if (!Blocks.count(MBB)) 959 continue; 960 SlotIndex Idx = lis_.getInstructionIndex(*I); 961 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 962 IndexPair &IP = MBBRange[MBB]; 963 if (!IP.first.isValid() || Idx < IP.first) 964 IP.first = Idx; 965 if (!IP.second.isValid() || Idx > IP.second) 966 IP.second = Idx; 967 } 968 969 // Create a new interval for each block. 970 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 971 E = Blocks.end(); I != E; ++I) { 972 IndexPair &IP = MBBRange[*I]; 973 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 974 << IP.first << ';' << IP.second << ")\n"); 975 assert(IP.first.isValid() && IP.second.isValid()); 976 977 openIntv(); 978 enterIntvBefore(IP.first); 979 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 980 leaveIntvAfter(IP.second); 981 closeIntv(); 982 } 983 return rewrite(); 984 } 985 986 987 //===----------------------------------------------------------------------===// 988 // Sub Block Splitting 989 //===----------------------------------------------------------------------===// 990 991 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 992 /// and it wou pay to subdivide the interval inside that block, return it. 993 /// Otherwise return NULL. The returned block can be passed to 994 /// SplitEditor::splitInsideBlock. 995 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 996 // The interval must be exclusive to one block. 997 if (usingBlocks_.size() != 1) 998 return 0; 999 // Don't to this for less than 4 instructions. We want to be sure that 1000 // splitting actually reduces the instruction count per interval. 1001 if (usingInstrs_.size() < 4) 1002 return 0; 1003 return usingBlocks_.begin()->first; 1004 } 1005 1006 /// splitInsideBlock - Split curli into multiple intervals inside MBB. Return 1007 /// true if curli has been completely replaced, false if curli is still 1008 /// intact, and needs to be spilled or split further. 1009 bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1010 SmallVector<SlotIndex, 32> Uses; 1011 Uses.reserve(sa_.usingInstrs_.size()); 1012 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1013 E = sa_.usingInstrs_.end(); I != E; ++I) 1014 if ((*I)->getParent() == MBB) 1015 Uses.push_back(lis_.getInstructionIndex(*I)); 1016 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1017 << Uses.size() << " instructions.\n"); 1018 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1019 array_pod_sort(Uses.begin(), Uses.end()); 1020 1021 // Simple algorithm: Find the largest gap between uses as determined by slot 1022 // indices. Create new intervals for instructions before the gap and after the 1023 // gap. 1024 unsigned bestPos = 0; 1025 int bestGap = 0; 1026 DEBUG(dbgs() << " dist (" << Uses[0]); 1027 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1028 int g = Uses[i-1].distance(Uses[i]); 1029 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1030 if (g > bestGap) 1031 bestPos = i, bestGap = g; 1032 } 1033 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1034 1035 // bestPos points to the first use after the best gap. 1036 assert(bestPos > 0 && "Invalid gap"); 1037 1038 // FIXME: Don't create intervals for low densities. 1039 1040 // First interval before the gap. Don't create single-instr intervals. 1041 if (bestPos > 1) { 1042 openIntv(); 1043 enterIntvBefore(Uses.front()); 1044 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1045 leaveIntvAfter(Uses[bestPos-1]); 1046 closeIntv(); 1047 } 1048 1049 // Second interval after the gap. 1050 if (bestPos < Uses.size()-1) { 1051 openIntv(); 1052 enterIntvBefore(Uses[bestPos]); 1053 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1054 leaveIntvAfter(Uses.back()); 1055 closeIntv(); 1056 } 1057 1058 return rewrite(); 1059 } 1060