1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/VirtRegMap.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "regalloc" 33 34 STATISTIC(NumFinished, "Number of splits finished"); 35 STATISTIC(NumSimple, "Number of splits that were simple"); 36 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 37 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 38 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 39 40 //===----------------------------------------------------------------------===// 41 // Split Analysis 42 //===----------------------------------------------------------------------===// 43 44 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 45 const MachineLoopInfo &mli) 46 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 47 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr), 48 LastSplitPoint(MF.getNumBlockIDs()) {} 49 50 void SplitAnalysis::clear() { 51 UseSlots.clear(); 52 UseBlocks.clear(); 53 ThroughBlocks.clear(); 54 CurLI = nullptr; 55 DidRepairRange = false; 56 } 57 58 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 59 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 60 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 61 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 62 63 SmallVector<const MachineBasicBlock *, 1> EHPadSucessors; 64 for (const MachineBasicBlock *SMBB : MBB->successors()) 65 if (SMBB->isEHPad()) 66 EHPadSucessors.push_back(SMBB); 67 68 // Compute split points on the first call. The pair is independent of the 69 // current live interval. 70 if (!LSP.first.isValid()) { 71 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 72 if (FirstTerm == MBB->end()) 73 LSP.first = MBBEnd; 74 else 75 LSP.first = LIS.getInstructionIndex(*FirstTerm); 76 77 // If there is a landing pad successor, also find the call instruction. 78 if (EHPadSucessors.empty()) 79 return LSP.first; 80 // There may not be a call instruction (?) in which case we ignore LPad. 81 LSP.second = LSP.first; 82 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 83 I != E;) { 84 --I; 85 if (I->isCall()) { 86 LSP.second = LIS.getInstructionIndex(*I); 87 break; 88 } 89 } 90 } 91 92 // If CurLI is live into a landing pad successor, move the last split point 93 // back to the call that may throw. 94 if (!LSP.second) 95 return LSP.first; 96 97 if (none_of(EHPadSucessors, [&](const MachineBasicBlock *EHPad) { 98 return LIS.isLiveInToMBB(*CurLI, EHPad); 99 })) 100 return LSP.first; 101 102 // Find the value leaving MBB. 103 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd); 104 if (!VNI) 105 return LSP.first; 106 107 // If the value leaving MBB was defined after the call in MBB, it can't 108 // really be live-in to the landing pad. This can happen if the landing pad 109 // has a PHI, and this register is undef on the exceptional edge. 110 // <rdar://problem/10664933> 111 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd) 112 return LSP.first; 113 114 // Value is properly live-in to the landing pad. 115 // Only allow splits before the call. 116 return LSP.second; 117 } 118 119 MachineBasicBlock::iterator 120 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 121 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 122 if (LSP == LIS.getMBBEndIdx(MBB)) 123 return MBB->end(); 124 return LIS.getInstructionFromIndex(LSP); 125 } 126 127 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 128 void SplitAnalysis::analyzeUses() { 129 assert(UseSlots.empty() && "Call clear first"); 130 131 // First get all the defs from the interval values. This provides the correct 132 // slots for early clobbers. 133 for (const VNInfo *VNI : CurLI->valnos) 134 if (!VNI->isPHIDef() && !VNI->isUnused()) 135 UseSlots.push_back(VNI->def); 136 137 // Get use slots form the use-def chain. 138 const MachineRegisterInfo &MRI = MF.getRegInfo(); 139 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 140 if (!MO.isUndef()) 141 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 142 143 array_pod_sort(UseSlots.begin(), UseSlots.end()); 144 145 // Remove duplicates, keeping the smaller slot for each instruction. 146 // That is what we want for early clobbers. 147 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 148 SlotIndex::isSameInstr), 149 UseSlots.end()); 150 151 // Compute per-live block info. 152 if (!calcLiveBlockInfo()) { 153 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 154 // I am looking at you, RegisterCoalescer! 155 DidRepairRange = true; 156 ++NumRepairs; 157 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 158 const_cast<LiveIntervals&>(LIS) 159 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 160 UseBlocks.clear(); 161 ThroughBlocks.clear(); 162 bool fixed = calcLiveBlockInfo(); 163 (void)fixed; 164 assert(fixed && "Couldn't fix broken live interval"); 165 } 166 167 DEBUG(dbgs() << "Analyze counted " 168 << UseSlots.size() << " instrs in " 169 << UseBlocks.size() << " blocks, through " 170 << NumThroughBlocks << " blocks.\n"); 171 } 172 173 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 174 /// where CurLI is live. 175 bool SplitAnalysis::calcLiveBlockInfo() { 176 ThroughBlocks.resize(MF.getNumBlockIDs()); 177 NumThroughBlocks = NumGapBlocks = 0; 178 if (CurLI->empty()) 179 return true; 180 181 LiveInterval::const_iterator LVI = CurLI->begin(); 182 LiveInterval::const_iterator LVE = CurLI->end(); 183 184 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 185 UseI = UseSlots.begin(); 186 UseE = UseSlots.end(); 187 188 // Loop over basic blocks where CurLI is live. 189 MachineFunction::iterator MFI = 190 LIS.getMBBFromIndex(LVI->start)->getIterator(); 191 for (;;) { 192 BlockInfo BI; 193 BI.MBB = &*MFI; 194 SlotIndex Start, Stop; 195 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 196 197 // If the block contains no uses, the range must be live through. At one 198 // point, RegisterCoalescer could create dangling ranges that ended 199 // mid-block. 200 if (UseI == UseE || *UseI >= Stop) { 201 ++NumThroughBlocks; 202 ThroughBlocks.set(BI.MBB->getNumber()); 203 // The range shouldn't end mid-block if there are no uses. This shouldn't 204 // happen. 205 if (LVI->end < Stop) 206 return false; 207 } else { 208 // This block has uses. Find the first and last uses in the block. 209 BI.FirstInstr = *UseI; 210 assert(BI.FirstInstr >= Start); 211 do ++UseI; 212 while (UseI != UseE && *UseI < Stop); 213 BI.LastInstr = UseI[-1]; 214 assert(BI.LastInstr < Stop); 215 216 // LVI is the first live segment overlapping MBB. 217 BI.LiveIn = LVI->start <= Start; 218 219 // When not live in, the first use should be a def. 220 if (!BI.LiveIn) { 221 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 222 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 223 BI.FirstDef = BI.FirstInstr; 224 } 225 226 // Look for gaps in the live range. 227 BI.LiveOut = true; 228 while (LVI->end < Stop) { 229 SlotIndex LastStop = LVI->end; 230 if (++LVI == LVE || LVI->start >= Stop) { 231 BI.LiveOut = false; 232 BI.LastInstr = LastStop; 233 break; 234 } 235 236 if (LastStop < LVI->start) { 237 // There is a gap in the live range. Create duplicate entries for the 238 // live-in snippet and the live-out snippet. 239 ++NumGapBlocks; 240 241 // Push the Live-in part. 242 BI.LiveOut = false; 243 UseBlocks.push_back(BI); 244 UseBlocks.back().LastInstr = LastStop; 245 246 // Set up BI for the live-out part. 247 BI.LiveIn = false; 248 BI.LiveOut = true; 249 BI.FirstInstr = BI.FirstDef = LVI->start; 250 } 251 252 // A Segment that starts in the middle of the block must be a def. 253 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 254 if (!BI.FirstDef) 255 BI.FirstDef = LVI->start; 256 } 257 258 UseBlocks.push_back(BI); 259 260 // LVI is now at LVE or LVI->end >= Stop. 261 if (LVI == LVE) 262 break; 263 } 264 265 // Live segment ends exactly at Stop. Move to the next segment. 266 if (LVI->end == Stop && ++LVI == LVE) 267 break; 268 269 // Pick the next basic block. 270 if (LVI->start < Stop) 271 ++MFI; 272 else 273 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 274 } 275 276 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 277 return true; 278 } 279 280 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 281 if (cli->empty()) 282 return 0; 283 LiveInterval *li = const_cast<LiveInterval*>(cli); 284 LiveInterval::iterator LVI = li->begin(); 285 LiveInterval::iterator LVE = li->end(); 286 unsigned Count = 0; 287 288 // Loop over basic blocks where li is live. 289 MachineFunction::const_iterator MFI = 290 LIS.getMBBFromIndex(LVI->start)->getIterator(); 291 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 292 for (;;) { 293 ++Count; 294 LVI = li->advanceTo(LVI, Stop); 295 if (LVI == LVE) 296 return Count; 297 do { 298 ++MFI; 299 Stop = LIS.getMBBEndIdx(&*MFI); 300 } while (Stop <= LVI->start); 301 } 302 } 303 304 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 305 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 306 const LiveInterval &Orig = LIS.getInterval(OrigReg); 307 assert(!Orig.empty() && "Splitting empty interval?"); 308 LiveInterval::const_iterator I = Orig.find(Idx); 309 310 // Range containing Idx should begin at Idx. 311 if (I != Orig.end() && I->start <= Idx) 312 return I->start == Idx; 313 314 // Range does not contain Idx, previous must end at Idx. 315 return I != Orig.begin() && (--I)->end == Idx; 316 } 317 318 void SplitAnalysis::analyze(const LiveInterval *li) { 319 clear(); 320 CurLI = li; 321 analyzeUses(); 322 } 323 324 325 //===----------------------------------------------------------------------===// 326 // Split Editor 327 //===----------------------------------------------------------------------===// 328 329 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 330 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 331 MachineDominatorTree &mdt, 332 MachineBlockFrequencyInfo &mbfi) 333 : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()), 334 MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 335 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 336 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition), 337 RegAssign(Allocator) {} 338 339 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 340 Edit = &LRE; 341 SpillMode = SM; 342 OpenIdx = 0; 343 RegAssign.clear(); 344 Values.clear(); 345 346 // Reset the LiveRangeCalc instances needed for this spill mode. 347 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 348 &LIS.getVNInfoAllocator()); 349 if (SpillMode) 350 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 351 &LIS.getVNInfoAllocator()); 352 353 // We don't need an AliasAnalysis since we will only be performing 354 // cheap-as-a-copy remats anyway. 355 Edit->anyRematerializable(nullptr); 356 } 357 358 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 359 LLVM_DUMP_METHOD void SplitEditor::dump() const { 360 if (RegAssign.empty()) { 361 dbgs() << " empty\n"; 362 return; 363 } 364 365 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 366 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 367 dbgs() << '\n'; 368 } 369 #endif 370 371 VNInfo *SplitEditor::defValue(unsigned RegIdx, 372 const VNInfo *ParentVNI, 373 SlotIndex Idx) { 374 assert(ParentVNI && "Mapping NULL value"); 375 assert(Idx.isValid() && "Invalid SlotIndex"); 376 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 377 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 378 379 // Create a new value. 380 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 381 382 // Use insert for lookup, so we can add missing values with a second lookup. 383 std::pair<ValueMap::iterator, bool> InsP = 384 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 385 ValueForcePair(VNI, false))); 386 387 // This was the first time (RegIdx, ParentVNI) was mapped. 388 // Keep it as a simple def without any liveness. 389 if (InsP.second) 390 return VNI; 391 392 // If the previous value was a simple mapping, add liveness for it now. 393 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 394 SlotIndex Def = OldVNI->def; 395 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI)); 396 // No longer a simple mapping. Switch to a complex, non-forced mapping. 397 InsP.first->second = ValueForcePair(); 398 } 399 400 // This is a complex mapping, add liveness for VNI 401 SlotIndex Def = VNI->def; 402 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 403 404 return VNI; 405 } 406 407 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 408 assert(ParentVNI && "Mapping NULL value"); 409 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 410 VNInfo *VNI = VFP.getPointer(); 411 412 // ParentVNI was either unmapped or already complex mapped. Either way, just 413 // set the force bit. 414 if (!VNI) { 415 VFP.setInt(true); 416 return; 417 } 418 419 // This was previously a single mapping. Make sure the old def is represented 420 // by a trivial live range. 421 SlotIndex Def = VNI->def; 422 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 423 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 424 // Mark as complex mapped, forced. 425 VFP = ValueForcePair(nullptr, true); 426 } 427 428 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 429 VNInfo *ParentVNI, 430 SlotIndex UseIdx, 431 MachineBasicBlock &MBB, 432 MachineBasicBlock::iterator I) { 433 MachineInstr *CopyMI = nullptr; 434 SlotIndex Def; 435 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 436 437 // We may be trying to avoid interference that ends at a deleted instruction, 438 // so always begin RegIdx 0 early and all others late. 439 bool Late = RegIdx != 0; 440 441 // Attempt cheap-as-a-copy rematerialization. 442 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 443 LiveInterval &OrigLI = LIS.getInterval(Original); 444 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 445 LiveRangeEdit::Remat RM(ParentVNI); 446 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 447 448 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 449 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 450 ++NumRemats; 451 } else { 452 // Can't remat, just insert a copy from parent. 453 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 454 .addReg(Edit->getReg()); 455 Def = LIS.getSlotIndexes() 456 ->insertMachineInstrInMaps(*CopyMI, Late) 457 .getRegSlot(); 458 ++NumCopies; 459 } 460 461 // Define the value in Reg. 462 return defValue(RegIdx, ParentVNI, Def); 463 } 464 465 /// Create a new virtual register and live interval. 466 unsigned SplitEditor::openIntv() { 467 // Create the complement as index 0. 468 if (Edit->empty()) 469 Edit->createEmptyInterval(); 470 471 // Create the open interval. 472 OpenIdx = Edit->size(); 473 Edit->createEmptyInterval(); 474 return OpenIdx; 475 } 476 477 void SplitEditor::selectIntv(unsigned Idx) { 478 assert(Idx != 0 && "Cannot select the complement interval"); 479 assert(Idx < Edit->size() && "Can only select previously opened interval"); 480 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 481 OpenIdx = Idx; 482 } 483 484 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 485 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 486 DEBUG(dbgs() << " enterIntvBefore " << Idx); 487 Idx = Idx.getBaseIndex(); 488 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 489 if (!ParentVNI) { 490 DEBUG(dbgs() << ": not live\n"); 491 return Idx; 492 } 493 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 494 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 495 assert(MI && "enterIntvBefore called with invalid index"); 496 497 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 498 return VNI->def; 499 } 500 501 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 502 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 503 DEBUG(dbgs() << " enterIntvAfter " << Idx); 504 Idx = Idx.getBoundaryIndex(); 505 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 506 if (!ParentVNI) { 507 DEBUG(dbgs() << ": not live\n"); 508 return Idx; 509 } 510 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 511 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 512 assert(MI && "enterIntvAfter called with invalid index"); 513 514 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 515 std::next(MachineBasicBlock::iterator(MI))); 516 return VNI->def; 517 } 518 519 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 520 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 521 SlotIndex End = LIS.getMBBEndIdx(&MBB); 522 SlotIndex Last = End.getPrevSlot(); 523 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 524 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 525 if (!ParentVNI) { 526 DEBUG(dbgs() << ": not live\n"); 527 return End; 528 } 529 DEBUG(dbgs() << ": valno " << ParentVNI->id); 530 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 531 SA.getLastSplitPointIter(&MBB)); 532 RegAssign.insert(VNI->def, End, OpenIdx); 533 DEBUG(dump()); 534 return VNI->def; 535 } 536 537 /// useIntv - indicate that all instructions in MBB should use OpenLI. 538 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 539 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 540 } 541 542 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 543 assert(OpenIdx && "openIntv not called before useIntv"); 544 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 545 RegAssign.insert(Start, End, OpenIdx); 546 DEBUG(dump()); 547 } 548 549 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 550 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 551 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 552 553 // The interval must be live beyond the instruction at Idx. 554 SlotIndex Boundary = Idx.getBoundaryIndex(); 555 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 556 if (!ParentVNI) { 557 DEBUG(dbgs() << ": not live\n"); 558 return Boundary.getNextSlot(); 559 } 560 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 561 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 562 assert(MI && "No instruction at index"); 563 564 // In spill mode, make live ranges as short as possible by inserting the copy 565 // before MI. This is only possible if that instruction doesn't redefine the 566 // value. The inserted COPY is not a kill, and we don't need to recompute 567 // the source live range. The spiller also won't try to hoist this copy. 568 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 569 MI->readsVirtualRegister(Edit->getReg())) { 570 forceRecompute(0, ParentVNI); 571 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 572 return Idx; 573 } 574 575 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 576 std::next(MachineBasicBlock::iterator(MI))); 577 return VNI->def; 578 } 579 580 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 581 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 582 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 583 584 // The interval must be live into the instruction at Idx. 585 Idx = Idx.getBaseIndex(); 586 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 587 if (!ParentVNI) { 588 DEBUG(dbgs() << ": not live\n"); 589 return Idx.getNextSlot(); 590 } 591 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 592 593 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 594 assert(MI && "No instruction at index"); 595 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 596 return VNI->def; 597 } 598 599 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 600 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 601 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 602 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 603 604 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 605 if (!ParentVNI) { 606 DEBUG(dbgs() << ": not live\n"); 607 return Start; 608 } 609 610 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 611 MBB.SkipPHIsAndLabels(MBB.begin())); 612 RegAssign.insert(Start, VNI->def, OpenIdx); 613 DEBUG(dump()); 614 return VNI->def; 615 } 616 617 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 618 assert(OpenIdx && "openIntv not called before overlapIntv"); 619 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 620 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 621 "Parent changes value in extended range"); 622 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 623 "Range cannot span basic blocks"); 624 625 // The complement interval will be extended as needed by LRCalc.extend(). 626 if (ParentVNI) 627 forceRecompute(0, ParentVNI); 628 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 629 RegAssign.insert(Start, End, OpenIdx); 630 DEBUG(dump()); 631 } 632 633 //===----------------------------------------------------------------------===// 634 // Spill modes 635 //===----------------------------------------------------------------------===// 636 637 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 638 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 639 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 640 RegAssignMap::iterator AssignI; 641 AssignI.setMap(RegAssign); 642 643 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 644 SlotIndex Def = Copies[i]->def; 645 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 646 assert(MI && "No instruction for back-copy"); 647 648 MachineBasicBlock *MBB = MI->getParent(); 649 MachineBasicBlock::iterator MBBI(MI); 650 bool AtBegin; 651 do AtBegin = MBBI == MBB->begin(); 652 while (!AtBegin && (--MBBI)->isDebugValue()); 653 654 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 655 LIS.removeVRegDefAt(*LI, Def); 656 LIS.RemoveMachineInstrFromMaps(*MI); 657 MI->eraseFromParent(); 658 659 // Adjust RegAssign if a register assignment is killed at Def. We want to 660 // avoid calculating the live range of the source register if possible. 661 AssignI.find(Def.getPrevSlot()); 662 if (!AssignI.valid() || AssignI.start() >= Def) 663 continue; 664 // If MI doesn't kill the assigned register, just leave it. 665 if (AssignI.stop() != Def) 666 continue; 667 unsigned RegIdx = AssignI.value(); 668 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 669 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 670 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 671 } else { 672 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 673 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 674 AssignI.setStop(Kill); 675 } 676 } 677 } 678 679 MachineBasicBlock* 680 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 681 MachineBasicBlock *DefMBB) { 682 if (MBB == DefMBB) 683 return MBB; 684 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 685 686 const MachineLoopInfo &Loops = SA.Loops; 687 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 688 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 689 690 // Best candidate so far. 691 MachineBasicBlock *BestMBB = MBB; 692 unsigned BestDepth = UINT_MAX; 693 694 for (;;) { 695 const MachineLoop *Loop = Loops.getLoopFor(MBB); 696 697 // MBB isn't in a loop, it doesn't get any better. All dominators have a 698 // higher frequency by definition. 699 if (!Loop) { 700 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 701 << MBB->getNumber() << " at depth 0\n"); 702 return MBB; 703 } 704 705 // We'll never be able to exit the DefLoop. 706 if (Loop == DefLoop) { 707 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 708 << MBB->getNumber() << " in the same loop\n"); 709 return MBB; 710 } 711 712 // Least busy dominator seen so far. 713 unsigned Depth = Loop->getLoopDepth(); 714 if (Depth < BestDepth) { 715 BestMBB = MBB; 716 BestDepth = Depth; 717 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 718 << MBB->getNumber() << " at depth " << Depth << '\n'); 719 } 720 721 // Leave loop by going to the immediate dominator of the loop header. 722 // This is a bigger stride than simply walking up the dominator tree. 723 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 724 725 // Too far up the dominator tree? 726 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 727 return BestMBB; 728 729 MBB = IDom->getBlock(); 730 } 731 } 732 733 void SplitEditor::computeRedundantBackCopies( 734 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 735 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 736 LiveInterval *Parent = &Edit->getParent(); 737 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 738 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 739 740 // Aggregate VNIs having the same value as ParentVNI. 741 for (VNInfo *VNI : LI->valnos) { 742 if (VNI->isUnused()) 743 continue; 744 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 745 EqualVNs[ParentVNI->id].insert(VNI); 746 } 747 748 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 749 // redundant VNIs to BackCopies. 750 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 751 VNInfo *ParentVNI = Parent->getValNumInfo(i); 752 if (!NotToHoistSet.count(ParentVNI->id)) 753 continue; 754 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 755 SmallPtrSetIterator<VNInfo *> It2 = It1; 756 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 757 It2 = It1; 758 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 759 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 760 continue; 761 762 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 763 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 764 if (MBB1 == MBB2) { 765 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 766 } else if (MDT.dominates(MBB1, MBB2)) { 767 DominatedVNIs.insert(*It2); 768 } else if (MDT.dominates(MBB2, MBB1)) { 769 DominatedVNIs.insert(*It1); 770 } 771 } 772 } 773 if (!DominatedVNIs.empty()) { 774 forceRecompute(0, ParentVNI); 775 for (auto VNI : DominatedVNIs) { 776 BackCopies.push_back(VNI); 777 } 778 DominatedVNIs.clear(); 779 } 780 } 781 } 782 783 /// For SM_Size mode, find a common dominator for all the back-copies for 784 /// the same ParentVNI and hoist the backcopies to the dominator BB. 785 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 786 /// to do the hoisting, simply remove the dominated backcopies for the same 787 /// ParentVNI. 788 void SplitEditor::hoistCopies() { 789 // Get the complement interval, always RegIdx 0. 790 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 791 LiveInterval *Parent = &Edit->getParent(); 792 793 // Track the nearest common dominator for all back-copies for each ParentVNI, 794 // indexed by ParentVNI->id. 795 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 796 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 797 // The total cost of all the back-copies for each ParentVNI. 798 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 799 // The ParentVNI->id set for which hoisting back-copies are not beneficial 800 // for Speed. 801 DenseSet<unsigned> NotToHoistSet; 802 803 // Find the nearest common dominator for parent values with multiple 804 // back-copies. If a single back-copy dominates, put it in DomPair.second. 805 for (VNInfo *VNI : LI->valnos) { 806 if (VNI->isUnused()) 807 continue; 808 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 809 assert(ParentVNI && "Parent not live at complement def"); 810 811 // Don't hoist remats. The complement is probably going to disappear 812 // completely anyway. 813 if (Edit->didRematerialize(ParentVNI)) 814 continue; 815 816 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 817 818 DomPair &Dom = NearestDom[ParentVNI->id]; 819 820 // Keep directly defined parent values. This is either a PHI or an 821 // instruction in the complement range. All other copies of ParentVNI 822 // should be eliminated. 823 if (VNI->def == ParentVNI->def) { 824 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 825 Dom = DomPair(ValMBB, VNI->def); 826 continue; 827 } 828 // Skip the singly mapped values. There is nothing to gain from hoisting a 829 // single back-copy. 830 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 831 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 832 continue; 833 } 834 835 if (!Dom.first) { 836 // First time we see ParentVNI. VNI dominates itself. 837 Dom = DomPair(ValMBB, VNI->def); 838 } else if (Dom.first == ValMBB) { 839 // Two defs in the same block. Pick the earlier def. 840 if (!Dom.second.isValid() || VNI->def < Dom.second) 841 Dom.second = VNI->def; 842 } else { 843 // Different basic blocks. Check if one dominates. 844 MachineBasicBlock *Near = 845 MDT.findNearestCommonDominator(Dom.first, ValMBB); 846 if (Near == ValMBB) 847 // Def ValMBB dominates. 848 Dom = DomPair(ValMBB, VNI->def); 849 else if (Near != Dom.first) 850 // None dominate. Hoist to common dominator, need new def. 851 Dom = DomPair(Near, SlotIndex()); 852 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 853 } 854 855 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 856 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 857 << " hoist to BB#" << Dom.first->getNumber() << ' ' 858 << Dom.second << '\n'); 859 } 860 861 // Insert the hoisted copies. 862 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 863 DomPair &Dom = NearestDom[i]; 864 if (!Dom.first || Dom.second.isValid()) 865 continue; 866 // This value needs a hoisted copy inserted at the end of Dom.first. 867 VNInfo *ParentVNI = Parent->getValNumInfo(i); 868 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 869 // Get a less loopy dominator than Dom.first. 870 Dom.first = findShallowDominator(Dom.first, DefMBB); 871 if (SpillMode == SM_Speed && 872 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 873 NotToHoistSet.insert(ParentVNI->id); 874 continue; 875 } 876 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 877 Dom.second = 878 defFromParent(0, ParentVNI, Last, *Dom.first, 879 SA.getLastSplitPointIter(Dom.first))->def; 880 } 881 882 // Remove redundant back-copies that are now known to be dominated by another 883 // def with the same value. 884 SmallVector<VNInfo*, 8> BackCopies; 885 for (VNInfo *VNI : LI->valnos) { 886 if (VNI->isUnused()) 887 continue; 888 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 889 const DomPair &Dom = NearestDom[ParentVNI->id]; 890 if (!Dom.first || Dom.second == VNI->def || 891 NotToHoistSet.count(ParentVNI->id)) 892 continue; 893 BackCopies.push_back(VNI); 894 forceRecompute(0, ParentVNI); 895 } 896 897 // If it is not beneficial to hoist all the BackCopies, simply remove 898 // redundant BackCopies in speed mode. 899 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 900 computeRedundantBackCopies(NotToHoistSet, BackCopies); 901 902 removeBackCopies(BackCopies); 903 } 904 905 906 /// transferValues - Transfer all possible values to the new live ranges. 907 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 908 bool SplitEditor::transferValues() { 909 bool Skipped = false; 910 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 911 for (const LiveRange::Segment &S : Edit->getParent()) { 912 DEBUG(dbgs() << " blit " << S << ':'); 913 VNInfo *ParentVNI = S.valno; 914 // RegAssign has holes where RegIdx 0 should be used. 915 SlotIndex Start = S.start; 916 AssignI.advanceTo(Start); 917 do { 918 unsigned RegIdx; 919 SlotIndex End = S.end; 920 if (!AssignI.valid()) { 921 RegIdx = 0; 922 } else if (AssignI.start() <= Start) { 923 RegIdx = AssignI.value(); 924 if (AssignI.stop() < End) { 925 End = AssignI.stop(); 926 ++AssignI; 927 } 928 } else { 929 RegIdx = 0; 930 End = std::min(End, AssignI.start()); 931 } 932 933 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 934 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 935 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 936 937 // Check for a simply defined value that can be blitted directly. 938 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 939 if (VNInfo *VNI = VFP.getPointer()) { 940 DEBUG(dbgs() << ':' << VNI->id); 941 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 942 Start = End; 943 continue; 944 } 945 946 // Skip values with forced recomputation. 947 if (VFP.getInt()) { 948 DEBUG(dbgs() << "(recalc)"); 949 Skipped = true; 950 Start = End; 951 continue; 952 } 953 954 LiveRangeCalc &LRC = getLRCalc(RegIdx); 955 956 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 957 // so the live range is accurate. Add live-in blocks in [Start;End) to the 958 // LiveInBlocks. 959 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 960 SlotIndex BlockStart, BlockEnd; 961 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 962 963 // The first block may be live-in, or it may have its own def. 964 if (Start != BlockStart) { 965 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 966 assert(VNI && "Missing def for complex mapped value"); 967 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 968 // MBB has its own def. Is it also live-out? 969 if (BlockEnd <= End) 970 LRC.setLiveOutValue(&*MBB, VNI); 971 972 // Skip to the next block for live-in. 973 ++MBB; 974 BlockStart = BlockEnd; 975 } 976 977 // Handle the live-in blocks covered by [Start;End). 978 assert(Start <= BlockStart && "Expected live-in block"); 979 while (BlockStart < End) { 980 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 981 BlockEnd = LIS.getMBBEndIdx(&*MBB); 982 if (BlockStart == ParentVNI->def) { 983 // This block has the def of a parent PHI, so it isn't live-in. 984 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 985 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 986 assert(VNI && "Missing def for complex mapped parent PHI"); 987 if (End >= BlockEnd) 988 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 989 } else { 990 // This block needs a live-in value. The last block covered may not 991 // be live-out. 992 if (End < BlockEnd) 993 LRC.addLiveInBlock(LR, MDT[&*MBB], End); 994 else { 995 // Live-through, and we don't know the value. 996 LRC.addLiveInBlock(LR, MDT[&*MBB]); 997 LRC.setLiveOutValue(&*MBB, nullptr); 998 } 999 } 1000 BlockStart = BlockEnd; 1001 ++MBB; 1002 } 1003 Start = End; 1004 } while (Start != S.end); 1005 DEBUG(dbgs() << '\n'); 1006 } 1007 1008 LRCalc[0].calculateValues(); 1009 if (SpillMode) 1010 LRCalc[1].calculateValues(); 1011 1012 return Skipped; 1013 } 1014 1015 void SplitEditor::extendPHIKillRanges() { 1016 // Extend live ranges to be live-out for successor PHI values. 1017 for (const VNInfo *PHIVNI : Edit->getParent().valnos) { 1018 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 1019 continue; 1020 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 1021 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 1022 1023 // Check whether PHI is dead. 1024 const LiveRange::Segment *Segment = LR.getSegmentContaining(PHIVNI->def); 1025 assert(Segment != nullptr && "Missing segment for VNI"); 1026 if (Segment->end == PHIVNI->def.getDeadSlot()) { 1027 // This is a dead PHI. Remove it. 1028 LR.removeSegment(*Segment, true); 1029 continue; 1030 } 1031 1032 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1033 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 1034 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 1035 PE = MBB->pred_end(); PI != PE; ++PI) { 1036 SlotIndex End = LIS.getMBBEndIdx(*PI); 1037 SlotIndex LastUse = End.getPrevSlot(); 1038 // The predecessor may not have a live-out value. That is OK, like an 1039 // undef PHI operand. 1040 if (Edit->getParent().liveAt(LastUse)) { 1041 assert(RegAssign.lookup(LastUse) == RegIdx && 1042 "Different register assignment in phi predecessor"); 1043 LRC.extend(LR, End); 1044 } 1045 } 1046 } 1047 } 1048 1049 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1050 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1051 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 1052 RE = MRI.reg_end(); RI != RE;) { 1053 MachineOperand &MO = *RI; 1054 MachineInstr *MI = MO.getParent(); 1055 ++RI; 1056 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1057 if (MI->isDebugValue()) { 1058 DEBUG(dbgs() << "Zapping " << *MI); 1059 MO.setReg(0); 1060 continue; 1061 } 1062 1063 // <undef> operands don't really read the register, so it doesn't matter 1064 // which register we choose. When the use operand is tied to a def, we must 1065 // use the same register as the def, so just do that always. 1066 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1067 if (MO.isDef() || MO.isUndef()) 1068 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1069 1070 // Rewrite to the mapped register at Idx. 1071 unsigned RegIdx = RegAssign.lookup(Idx); 1072 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 1073 MO.setReg(LI->reg); 1074 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 1075 << Idx << ':' << RegIdx << '\t' << *MI); 1076 1077 // Extend liveness to Idx if the instruction reads reg. 1078 if (!ExtendRanges || MO.isUndef()) 1079 continue; 1080 1081 // Skip instructions that don't read Reg. 1082 if (MO.isDef()) { 1083 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1084 continue; 1085 // We may wan't to extend a live range for a partial redef, or for a use 1086 // tied to an early clobber. 1087 Idx = Idx.getPrevSlot(); 1088 if (!Edit->getParent().liveAt(Idx)) 1089 continue; 1090 } else 1091 Idx = Idx.getRegSlot(true); 1092 1093 getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot()); 1094 } 1095 } 1096 1097 void SplitEditor::deleteRematVictims() { 1098 SmallVector<MachineInstr*, 8> Dead; 1099 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1100 LiveInterval *LI = &LIS.getInterval(*I); 1101 for (const LiveRange::Segment &S : LI->segments) { 1102 // Dead defs end at the dead slot. 1103 if (S.end != S.valno->def.getDeadSlot()) 1104 continue; 1105 if (S.valno->isPHIDef()) 1106 continue; 1107 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1108 assert(MI && "Missing instruction for dead def"); 1109 MI->addRegisterDead(LI->reg, &TRI); 1110 1111 if (!MI->allDefsAreDead()) 1112 continue; 1113 1114 DEBUG(dbgs() << "All defs dead: " << *MI); 1115 Dead.push_back(MI); 1116 } 1117 } 1118 1119 if (Dead.empty()) 1120 return; 1121 1122 Edit->eliminateDeadDefs(Dead); 1123 } 1124 1125 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1126 ++NumFinished; 1127 1128 // At this point, the live intervals in Edit contain VNInfos corresponding to 1129 // the inserted copies. 1130 1131 // Add the original defs from the parent interval. 1132 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1133 if (ParentVNI->isUnused()) 1134 continue; 1135 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1136 defValue(RegIdx, ParentVNI, ParentVNI->def); 1137 1138 // Force rematted values to be recomputed everywhere. 1139 // The new live ranges may be truncated. 1140 if (Edit->didRematerialize(ParentVNI)) 1141 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1142 forceRecompute(i, ParentVNI); 1143 } 1144 1145 // Hoist back-copies to the complement interval when in spill mode. 1146 switch (SpillMode) { 1147 case SM_Partition: 1148 // Leave all back-copies as is. 1149 break; 1150 case SM_Size: 1151 case SM_Speed: 1152 // hoistCopies will behave differently between size and speed. 1153 hoistCopies(); 1154 } 1155 1156 // Transfer the simply mapped values, check if any are skipped. 1157 bool Skipped = transferValues(); 1158 1159 // Rewrite virtual registers, possibly extending ranges. 1160 rewriteAssigned(Skipped); 1161 1162 if (Skipped) 1163 extendPHIKillRanges(); 1164 else 1165 ++NumSimple; 1166 1167 // Delete defs that were rematted everywhere. 1168 if (Skipped) 1169 deleteRematVictims(); 1170 1171 // Get rid of unused values and set phi-kill flags. 1172 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) { 1173 LiveInterval &LI = LIS.getInterval(*I); 1174 LI.RenumberValues(); 1175 } 1176 1177 // Provide a reverse mapping from original indices to Edit ranges. 1178 if (LRMap) { 1179 LRMap->clear(); 1180 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1181 LRMap->push_back(i); 1182 } 1183 1184 // Now check if any registers were separated into multiple components. 1185 ConnectedVNInfoEqClasses ConEQ(LIS); 1186 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1187 // Don't use iterators, they are invalidated by create() below. 1188 unsigned VReg = Edit->get(i); 1189 LiveInterval &LI = LIS.getInterval(VReg); 1190 SmallVector<LiveInterval*, 8> SplitLIs; 1191 LIS.splitSeparateComponents(LI, SplitLIs); 1192 unsigned Original = VRM.getOriginal(VReg); 1193 for (LiveInterval *SplitLI : SplitLIs) 1194 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1195 1196 // The new intervals all map back to i. 1197 if (LRMap) 1198 LRMap->resize(Edit->size(), i); 1199 } 1200 1201 // Calculate spill weight and allocation hints for new intervals. 1202 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1203 1204 assert(!LRMap || LRMap->size() == Edit->size()); 1205 } 1206 1207 1208 //===----------------------------------------------------------------------===// 1209 // Single Block Splitting 1210 //===----------------------------------------------------------------------===// 1211 1212 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1213 bool SingleInstrs) const { 1214 // Always split for multiple instructions. 1215 if (!BI.isOneInstr()) 1216 return true; 1217 // Don't split for single instructions unless explicitly requested. 1218 if (!SingleInstrs) 1219 return false; 1220 // Splitting a live-through range always makes progress. 1221 if (BI.LiveIn && BI.LiveOut) 1222 return true; 1223 // No point in isolating a copy. It has no register class constraints. 1224 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1225 return false; 1226 // Finally, don't isolate an end point that was created by earlier splits. 1227 return isOriginalEndpoint(BI.FirstInstr); 1228 } 1229 1230 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1231 openIntv(); 1232 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1233 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1234 LastSplitPoint)); 1235 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1236 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1237 } else { 1238 // The last use is after the last valid split point. 1239 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1240 useIntv(SegStart, SegStop); 1241 overlapIntv(SegStop, BI.LastInstr); 1242 } 1243 } 1244 1245 1246 //===----------------------------------------------------------------------===// 1247 // Global Live Range Splitting Support 1248 //===----------------------------------------------------------------------===// 1249 1250 // These methods support a method of global live range splitting that uses a 1251 // global algorithm to decide intervals for CFG edges. They will insert split 1252 // points and color intervals in basic blocks while avoiding interference. 1253 // 1254 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1255 // are on the stack. 1256 1257 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1258 unsigned IntvIn, SlotIndex LeaveBefore, 1259 unsigned IntvOut, SlotIndex EnterAfter){ 1260 SlotIndex Start, Stop; 1261 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1262 1263 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1264 << ") intf " << LeaveBefore << '-' << EnterAfter 1265 << ", live-through " << IntvIn << " -> " << IntvOut); 1266 1267 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1268 1269 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1270 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1271 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1272 1273 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1274 1275 if (!IntvOut) { 1276 DEBUG(dbgs() << ", spill on entry.\n"); 1277 // 1278 // <<<<<<<<< Possible LeaveBefore interference. 1279 // |-----------| Live through. 1280 // -____________ Spill on entry. 1281 // 1282 selectIntv(IntvIn); 1283 SlotIndex Idx = leaveIntvAtTop(*MBB); 1284 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1285 (void)Idx; 1286 return; 1287 } 1288 1289 if (!IntvIn) { 1290 DEBUG(dbgs() << ", reload on exit.\n"); 1291 // 1292 // >>>>>>> Possible EnterAfter interference. 1293 // |-----------| Live through. 1294 // ___________-- Reload on exit. 1295 // 1296 selectIntv(IntvOut); 1297 SlotIndex Idx = enterIntvAtEnd(*MBB); 1298 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1299 (void)Idx; 1300 return; 1301 } 1302 1303 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1304 DEBUG(dbgs() << ", straight through.\n"); 1305 // 1306 // |-----------| Live through. 1307 // ------------- Straight through, same intv, no interference. 1308 // 1309 selectIntv(IntvOut); 1310 useIntv(Start, Stop); 1311 return; 1312 } 1313 1314 // We cannot legally insert splits after LSP. 1315 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1316 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1317 1318 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1319 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1320 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1321 // 1322 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1323 // |-----------| Live through. 1324 // ------======= Switch intervals between interference. 1325 // 1326 selectIntv(IntvOut); 1327 SlotIndex Idx; 1328 if (LeaveBefore && LeaveBefore < LSP) { 1329 Idx = enterIntvBefore(LeaveBefore); 1330 useIntv(Idx, Stop); 1331 } else { 1332 Idx = enterIntvAtEnd(*MBB); 1333 } 1334 selectIntv(IntvIn); 1335 useIntv(Start, Idx); 1336 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1337 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1338 return; 1339 } 1340 1341 DEBUG(dbgs() << ", create local intv for interference.\n"); 1342 // 1343 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1344 // |-----------| Live through. 1345 // ==---------== Switch intervals before/after interference. 1346 // 1347 assert(LeaveBefore <= EnterAfter && "Missed case"); 1348 1349 selectIntv(IntvOut); 1350 SlotIndex Idx = enterIntvAfter(EnterAfter); 1351 useIntv(Idx, Stop); 1352 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1353 1354 selectIntv(IntvIn); 1355 Idx = leaveIntvBefore(LeaveBefore); 1356 useIntv(Start, Idx); 1357 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1358 } 1359 1360 1361 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1362 unsigned IntvIn, SlotIndex LeaveBefore) { 1363 SlotIndex Start, Stop; 1364 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1365 1366 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1367 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1368 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1369 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1370 1371 assert(IntvIn && "Must have register in"); 1372 assert(BI.LiveIn && "Must be live-in"); 1373 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1374 1375 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1376 DEBUG(dbgs() << " before interference.\n"); 1377 // 1378 // <<< Interference after kill. 1379 // |---o---x | Killed in block. 1380 // ========= Use IntvIn everywhere. 1381 // 1382 selectIntv(IntvIn); 1383 useIntv(Start, BI.LastInstr); 1384 return; 1385 } 1386 1387 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1388 1389 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1390 // 1391 // <<< Possible interference after last use. 1392 // |---o---o---| Live-out on stack. 1393 // =========____ Leave IntvIn after last use. 1394 // 1395 // < Interference after last use. 1396 // |---o---o--o| Live-out on stack, late last use. 1397 // ============ Copy to stack after LSP, overlap IntvIn. 1398 // \_____ Stack interval is live-out. 1399 // 1400 if (BI.LastInstr < LSP) { 1401 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1402 selectIntv(IntvIn); 1403 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1404 useIntv(Start, Idx); 1405 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1406 } else { 1407 DEBUG(dbgs() << ", spill before last split point.\n"); 1408 selectIntv(IntvIn); 1409 SlotIndex Idx = leaveIntvBefore(LSP); 1410 overlapIntv(Idx, BI.LastInstr); 1411 useIntv(Start, Idx); 1412 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1413 } 1414 return; 1415 } 1416 1417 // The interference is overlapping somewhere we wanted to use IntvIn. That 1418 // means we need to create a local interval that can be allocated a 1419 // different register. 1420 unsigned LocalIntv = openIntv(); 1421 (void)LocalIntv; 1422 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1423 1424 if (!BI.LiveOut || BI.LastInstr < LSP) { 1425 // 1426 // <<<<<<< Interference overlapping uses. 1427 // |---o---o---| Live-out on stack. 1428 // =====----____ Leave IntvIn before interference, then spill. 1429 // 1430 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1431 SlotIndex From = enterIntvBefore(LeaveBefore); 1432 useIntv(From, To); 1433 selectIntv(IntvIn); 1434 useIntv(Start, From); 1435 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1436 return; 1437 } 1438 1439 // <<<<<<< Interference overlapping uses. 1440 // |---o---o--o| Live-out on stack, late last use. 1441 // =====------- Copy to stack before LSP, overlap LocalIntv. 1442 // \_____ Stack interval is live-out. 1443 // 1444 SlotIndex To = leaveIntvBefore(LSP); 1445 overlapIntv(To, BI.LastInstr); 1446 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1447 useIntv(From, To); 1448 selectIntv(IntvIn); 1449 useIntv(Start, From); 1450 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1451 } 1452 1453 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1454 unsigned IntvOut, SlotIndex EnterAfter) { 1455 SlotIndex Start, Stop; 1456 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1457 1458 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1459 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1460 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1461 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1462 1463 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1464 1465 assert(IntvOut && "Must have register out"); 1466 assert(BI.LiveOut && "Must be live-out"); 1467 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1468 1469 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1470 DEBUG(dbgs() << " after interference.\n"); 1471 // 1472 // >>>> Interference before def. 1473 // | o---o---| Defined in block. 1474 // ========= Use IntvOut everywhere. 1475 // 1476 selectIntv(IntvOut); 1477 useIntv(BI.FirstInstr, Stop); 1478 return; 1479 } 1480 1481 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1482 DEBUG(dbgs() << ", reload after interference.\n"); 1483 // 1484 // >>>> Interference before def. 1485 // |---o---o---| Live-through, stack-in. 1486 // ____========= Enter IntvOut before first use. 1487 // 1488 selectIntv(IntvOut); 1489 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1490 useIntv(Idx, Stop); 1491 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1492 return; 1493 } 1494 1495 // The interference is overlapping somewhere we wanted to use IntvOut. That 1496 // means we need to create a local interval that can be allocated a 1497 // different register. 1498 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1499 // 1500 // >>>>>>> Interference overlapping uses. 1501 // |---o---o---| Live-through, stack-in. 1502 // ____---====== Create local interval for interference range. 1503 // 1504 selectIntv(IntvOut); 1505 SlotIndex Idx = enterIntvAfter(EnterAfter); 1506 useIntv(Idx, Stop); 1507 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1508 1509 openIntv(); 1510 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1511 useIntv(From, Idx); 1512 } 1513