1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumFinished, "Number of splits finished"); 32 STATISTIC(NumSimple, "Number of splits that were simple"); 33 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 34 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 35 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(vrm.getMachineFunction()), 45 VRM(vrm), 46 LIS(lis), 47 Loops(mli), 48 TII(*MF.getTarget().getInstrInfo()), 49 CurLI(0), 50 LastSplitPoint(MF.getNumBlockIDs()) {} 51 52 void SplitAnalysis::clear() { 53 UseSlots.clear(); 54 UseBlocks.clear(); 55 ThroughBlocks.clear(); 56 CurLI = 0; 57 DidRepairRange = false; 58 } 59 60 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 61 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 62 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 63 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 64 65 // Compute split points on the first call. The pair is independent of the 66 // current live interval. 67 if (!LSP.first.isValid()) { 68 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 69 if (FirstTerm == MBB->end()) 70 LSP.first = LIS.getMBBEndIdx(MBB); 71 else 72 LSP.first = LIS.getInstructionIndex(FirstTerm); 73 74 // If there is a landing pad successor, also find the call instruction. 75 if (!LPad) 76 return LSP.first; 77 // There may not be a call instruction (?) in which case we ignore LPad. 78 LSP.second = LSP.first; 79 for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin(); 80 I != E; --I) 81 if (I->getDesc().isCall()) { 82 LSP.second = LIS.getInstructionIndex(I); 83 break; 84 } 85 } 86 87 // If CurLI is live into a landing pad successor, move the last split point 88 // back to the call that may throw. 89 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 90 return LSP.second; 91 else 92 return LSP.first; 93 } 94 95 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 96 void SplitAnalysis::analyzeUses() { 97 assert(UseSlots.empty() && "Call clear first"); 98 99 // First get all the defs from the interval values. This provides the correct 100 // slots for early clobbers. 101 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 102 E = CurLI->vni_end(); I != E; ++I) 103 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 104 UseSlots.push_back((*I)->def); 105 106 // Get use slots form the use-def chain. 107 const MachineRegisterInfo &MRI = MF.getRegInfo(); 108 for (MachineRegisterInfo::use_nodbg_iterator 109 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 110 ++I) 111 if (!I.getOperand().isUndef()) 112 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 113 114 array_pod_sort(UseSlots.begin(), UseSlots.end()); 115 116 // Remove duplicates, keeping the smaller slot for each instruction. 117 // That is what we want for early clobbers. 118 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 119 SlotIndex::isSameInstr), 120 UseSlots.end()); 121 122 // Compute per-live block info. 123 if (!calcLiveBlockInfo()) { 124 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 125 // I am looking at you, SimpleRegisterCoalescing! 126 DidRepairRange = true; 127 ++NumRepairs; 128 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 129 const_cast<LiveIntervals&>(LIS) 130 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 131 UseBlocks.clear(); 132 ThroughBlocks.clear(); 133 bool fixed = calcLiveBlockInfo(); 134 (void)fixed; 135 assert(fixed && "Couldn't fix broken live interval"); 136 } 137 138 DEBUG(dbgs() << "Analyze counted " 139 << UseSlots.size() << " instrs in " 140 << UseBlocks.size() << " blocks, through " 141 << NumThroughBlocks << " blocks.\n"); 142 } 143 144 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 145 /// where CurLI is live. 146 bool SplitAnalysis::calcLiveBlockInfo() { 147 ThroughBlocks.resize(MF.getNumBlockIDs()); 148 NumThroughBlocks = 0; 149 if (CurLI->empty()) 150 return true; 151 152 LiveInterval::const_iterator LVI = CurLI->begin(); 153 LiveInterval::const_iterator LVE = CurLI->end(); 154 155 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 156 UseI = UseSlots.begin(); 157 UseE = UseSlots.end(); 158 159 // Loop over basic blocks where CurLI is live. 160 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 161 for (;;) { 162 BlockInfo BI; 163 BI.MBB = MFI; 164 SlotIndex Start, Stop; 165 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 166 167 // LVI is the first live segment overlapping MBB. 168 BI.LiveIn = LVI->start <= Start; 169 if (!BI.LiveIn) 170 BI.Def = LVI->start; 171 172 // Find the first and last uses in the block. 173 bool Uses = UseI != UseE && *UseI < Stop; 174 if (Uses) { 175 BI.FirstUse = *UseI; 176 assert(BI.FirstUse >= Start); 177 do ++UseI; 178 while (UseI != UseE && *UseI < Stop); 179 BI.LastUse = UseI[-1]; 180 assert(BI.LastUse < Stop); 181 } 182 183 // Look for gaps in the live range. 184 bool hasGap = false; 185 BI.LiveOut = true; 186 while (LVI->end < Stop) { 187 SlotIndex LastStop = LVI->end; 188 if (++LVI == LVE || LVI->start >= Stop) { 189 BI.Kill = LastStop; 190 BI.LiveOut = false; 191 break; 192 } 193 if (LastStop < LVI->start) { 194 hasGap = true; 195 BI.Kill = LastStop; 196 BI.Def = LVI->start; 197 } 198 } 199 200 // Don't set LiveThrough when the block has a gap. 201 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 202 if (Uses) 203 UseBlocks.push_back(BI); 204 else { 205 ++NumThroughBlocks; 206 ThroughBlocks.set(BI.MBB->getNumber()); 207 } 208 // FIXME: This should never happen. The live range stops or starts without a 209 // corresponding use. An earlier pass did something wrong. 210 if (!BI.LiveThrough && !Uses) 211 return false; 212 213 // LVI is now at LVE or LVI->end >= Stop. 214 if (LVI == LVE) 215 break; 216 217 // Live segment ends exactly at Stop. Move to the next segment. 218 if (LVI->end == Stop && ++LVI == LVE) 219 break; 220 221 // Pick the next basic block. 222 if (LVI->start < Stop) 223 ++MFI; 224 else 225 MFI = LIS.getMBBFromIndex(LVI->start); 226 } 227 return true; 228 } 229 230 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 231 if (cli->empty()) 232 return 0; 233 LiveInterval *li = const_cast<LiveInterval*>(cli); 234 LiveInterval::iterator LVI = li->begin(); 235 LiveInterval::iterator LVE = li->end(); 236 unsigned Count = 0; 237 238 // Loop over basic blocks where li is live. 239 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 240 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 241 for (;;) { 242 ++Count; 243 LVI = li->advanceTo(LVI, Stop); 244 if (LVI == LVE) 245 return Count; 246 do { 247 ++MFI; 248 Stop = LIS.getMBBEndIdx(MFI); 249 } while (Stop <= LVI->start); 250 } 251 } 252 253 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 254 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 255 const LiveInterval &Orig = LIS.getInterval(OrigReg); 256 assert(!Orig.empty() && "Splitting empty interval?"); 257 LiveInterval::const_iterator I = Orig.find(Idx); 258 259 // Range containing Idx should begin at Idx. 260 if (I != Orig.end() && I->start <= Idx) 261 return I->start == Idx; 262 263 // Range does not contain Idx, previous must end at Idx. 264 return I != Orig.begin() && (--I)->end == Idx; 265 } 266 267 void SplitAnalysis::analyze(const LiveInterval *li) { 268 clear(); 269 CurLI = li; 270 analyzeUses(); 271 } 272 273 274 //===----------------------------------------------------------------------===// 275 // Split Editor 276 //===----------------------------------------------------------------------===// 277 278 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 279 SplitEditor::SplitEditor(SplitAnalysis &sa, 280 LiveIntervals &lis, 281 VirtRegMap &vrm, 282 MachineDominatorTree &mdt) 283 : SA(sa), LIS(lis), VRM(vrm), 284 MRI(vrm.getMachineFunction().getRegInfo()), 285 MDT(mdt), 286 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 287 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 288 Edit(0), 289 OpenIdx(0), 290 RegAssign(Allocator) 291 {} 292 293 void SplitEditor::reset(LiveRangeEdit &lre) { 294 Edit = &lre; 295 OpenIdx = 0; 296 RegAssign.clear(); 297 Values.clear(); 298 299 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. 300 LiveOutSeen.clear(); 301 302 // We don't need an AliasAnalysis since we will only be performing 303 // cheap-as-a-copy remats anyway. 304 Edit->anyRematerializable(LIS, TII, 0); 305 } 306 307 void SplitEditor::dump() const { 308 if (RegAssign.empty()) { 309 dbgs() << " empty\n"; 310 return; 311 } 312 313 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 314 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 315 dbgs() << '\n'; 316 } 317 318 VNInfo *SplitEditor::defValue(unsigned RegIdx, 319 const VNInfo *ParentVNI, 320 SlotIndex Idx) { 321 assert(ParentVNI && "Mapping NULL value"); 322 assert(Idx.isValid() && "Invalid SlotIndex"); 323 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 324 LiveInterval *LI = Edit->get(RegIdx); 325 326 // Create a new value. 327 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 328 329 // Use insert for lookup, so we can add missing values with a second lookup. 330 std::pair<ValueMap::iterator, bool> InsP = 331 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 332 333 // This was the first time (RegIdx, ParentVNI) was mapped. 334 // Keep it as a simple def without any liveness. 335 if (InsP.second) 336 return VNI; 337 338 // If the previous value was a simple mapping, add liveness for it now. 339 if (VNInfo *OldVNI = InsP.first->second) { 340 SlotIndex Def = OldVNI->def; 341 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 342 // No longer a simple mapping. 343 InsP.first->second = 0; 344 } 345 346 // This is a complex mapping, add liveness for VNI 347 SlotIndex Def = VNI->def; 348 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 349 350 return VNI; 351 } 352 353 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 354 assert(ParentVNI && "Mapping NULL value"); 355 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 356 357 // ParentVNI was either unmapped or already complex mapped. Either way. 358 if (!VNI) 359 return; 360 361 // This was previously a single mapping. Make sure the old def is represented 362 // by a trivial live range. 363 SlotIndex Def = VNI->def; 364 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 365 VNI = 0; 366 } 367 368 // extendRange - Extend the live range to reach Idx. 369 // Potentially create phi-def values. 370 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 371 assert(Idx.isValid() && "Invalid SlotIndex"); 372 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 373 assert(IdxMBB && "No MBB at Idx"); 374 LiveInterval *LI = Edit->get(RegIdx); 375 376 // Is there a def in the same MBB we can extend? 377 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 378 return; 379 380 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 381 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 382 // Perform a search for all predecessor blocks where we know the dominating 383 // VNInfo. 384 VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot()); 385 386 // When there were multiple different values, we may need new PHIs. 387 if (!VNI) 388 return updateSSA(); 389 390 // Poor man's SSA update for the single-value case. 391 LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]); 392 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 393 E = LiveInBlocks.end(); I != E; ++I) { 394 MachineBasicBlock *MBB = I->DomNode->getBlock(); 395 SlotIndex Start = LIS.getMBBStartIdx(MBB); 396 if (I->Kill.isValid()) 397 LI->addRange(LiveRange(Start, I->Kill, VNI)); 398 else { 399 LiveOutCache[MBB] = LOP; 400 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 401 } 402 } 403 } 404 405 /// findReachingDefs - Search the CFG for known live-out values. 406 /// Add required live-in blocks to LiveInBlocks. 407 VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI, 408 MachineBasicBlock *KillMBB, 409 SlotIndex Kill) { 410 // Initialize the live-out cache the first time it is needed. 411 if (LiveOutSeen.empty()) { 412 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 413 LiveOutSeen.resize(N); 414 LiveOutCache.resize(N); 415 } 416 417 // Blocks where LI should be live-in. 418 SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB); 419 420 // Remember if we have seen more than one value. 421 bool UniqueVNI = true; 422 VNInfo *TheVNI = 0; 423 424 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 425 for (unsigned i = 0; i != WorkList.size(); ++i) { 426 MachineBasicBlock *MBB = WorkList[i]; 427 assert(!MBB->pred_empty() && "Value live-in to entry block?"); 428 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 429 PE = MBB->pred_end(); PI != PE; ++PI) { 430 MachineBasicBlock *Pred = *PI; 431 LiveOutPair &LOP = LiveOutCache[Pred]; 432 433 // Is this a known live-out block? 434 if (LiveOutSeen.test(Pred->getNumber())) { 435 if (VNInfo *VNI = LOP.first) { 436 if (TheVNI && TheVNI != VNI) 437 UniqueVNI = false; 438 TheVNI = VNI; 439 } 440 continue; 441 } 442 443 // First time. LOP is garbage and must be cleared below. 444 LiveOutSeen.set(Pred->getNumber()); 445 446 // Does Pred provide a live-out value? 447 SlotIndex Start, Last; 448 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 449 Last = Last.getPrevSlot(); 450 VNInfo *VNI = LI->extendInBlock(Start, Last); 451 LOP.first = VNI; 452 if (VNI) { 453 LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; 454 if (TheVNI && TheVNI != VNI) 455 UniqueVNI = false; 456 TheVNI = VNI; 457 continue; 458 } 459 LOP.second = 0; 460 461 // No, we need a live-in value for Pred as well 462 if (Pred != KillMBB) 463 WorkList.push_back(Pred); 464 else 465 // Loopback to KillMBB, so value is really live through. 466 Kill = SlotIndex(); 467 } 468 } 469 470 // Transfer WorkList to LiveInBlocks in reverse order. 471 // This ordering works best with updateSSA(). 472 LiveInBlocks.clear(); 473 LiveInBlocks.reserve(WorkList.size()); 474 while(!WorkList.empty()) 475 LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]); 476 477 // The kill block may not be live-through. 478 assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB); 479 LiveInBlocks.back().Kill = Kill; 480 481 return UniqueVNI ? TheVNI : 0; 482 } 483 484 void SplitEditor::updateSSA() { 485 // This is essentially the same iterative algorithm that SSAUpdater uses, 486 // except we already have a dominator tree, so we don't have to recompute it. 487 unsigned Changes; 488 do { 489 Changes = 0; 490 // Propagate live-out values down the dominator tree, inserting phi-defs 491 // when necessary. 492 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 493 E = LiveInBlocks.end(); I != E; ++I) { 494 MachineDomTreeNode *Node = I->DomNode; 495 // Skip block if the live-in value has already been determined. 496 if (!Node) 497 continue; 498 MachineBasicBlock *MBB = Node->getBlock(); 499 MachineDomTreeNode *IDom = Node->getIDom(); 500 LiveOutPair IDomValue; 501 502 // We need a live-in value to a block with no immediate dominator? 503 // This is probably an unreachable block that has survived somehow. 504 bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); 505 506 // IDom dominates all of our predecessors, but it may not be their 507 // immediate dominator. Check if any of them have live-out values that are 508 // properly dominated by IDom. If so, we need a phi-def here. 509 if (!needPHI) { 510 IDomValue = LiveOutCache[IDom->getBlock()]; 511 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 512 PE = MBB->pred_end(); PI != PE; ++PI) { 513 LiveOutPair Value = LiveOutCache[*PI]; 514 if (!Value.first || Value.first == IDomValue.first) 515 continue; 516 // This predecessor is carrying something other than IDomValue. 517 // It could be because IDomValue hasn't propagated yet, or it could be 518 // because MBB is in the dominance frontier of that value. 519 if (MDT.dominates(IDom, Value.second)) { 520 needPHI = true; 521 break; 522 } 523 } 524 } 525 526 // The value may be live-through even if Kill is set, as can happen when 527 // we are called from extendRange. In that case LiveOutSeen is true, and 528 // LiveOutCache indicates a foreign or missing value. 529 LiveOutPair &LOP = LiveOutCache[MBB]; 530 531 // Create a phi-def if required. 532 if (needPHI) { 533 ++Changes; 534 SlotIndex Start = LIS.getMBBStartIdx(MBB); 535 unsigned RegIdx = RegAssign.lookup(Start); 536 LiveInterval *LI = Edit->get(RegIdx); 537 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 538 VNI->setIsPHIDef(true); 539 I->Value = VNI; 540 // This block is done, we know the final value. 541 I->DomNode = 0; 542 if (I->Kill.isValid()) 543 LI->addRange(LiveRange(Start, I->Kill, VNI)); 544 else { 545 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 546 LOP = LiveOutPair(VNI, Node); 547 } 548 } else if (IDomValue.first) { 549 // No phi-def here. Remember incoming value. 550 I->Value = IDomValue.first; 551 if (I->Kill.isValid()) 552 continue; 553 // Propagate IDomValue if needed: 554 // MBB is live-out and doesn't define its own value. 555 if (LOP.second != Node && LOP.first != IDomValue.first) { 556 ++Changes; 557 LOP = IDomValue; 558 } 559 } 560 } 561 } while (Changes); 562 563 // The values in LiveInBlocks are now accurate. No more phi-defs are needed 564 // for these blocks, so we can color the live ranges. 565 for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(), 566 E = LiveInBlocks.end(); I != E; ++I) { 567 if (!I->DomNode) 568 continue; 569 assert(I->Value && "No live-in value found"); 570 MachineBasicBlock *MBB = I->DomNode->getBlock(); 571 SlotIndex Start = LIS.getMBBStartIdx(MBB); 572 unsigned RegIdx = RegAssign.lookup(Start); 573 LiveInterval *LI = Edit->get(RegIdx); 574 LI->addRange(LiveRange(Start, I->Kill.isValid() ? 575 I->Kill : LIS.getMBBEndIdx(MBB), I->Value)); 576 } 577 } 578 579 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 580 VNInfo *ParentVNI, 581 SlotIndex UseIdx, 582 MachineBasicBlock &MBB, 583 MachineBasicBlock::iterator I) { 584 MachineInstr *CopyMI = 0; 585 SlotIndex Def; 586 LiveInterval *LI = Edit->get(RegIdx); 587 588 // We may be trying to avoid interference that ends at a deleted instruction, 589 // so always begin RegIdx 0 early and all others late. 590 bool Late = RegIdx != 0; 591 592 // Attempt cheap-as-a-copy rematerialization. 593 LiveRangeEdit::Remat RM(ParentVNI); 594 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 595 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 596 ++NumRemats; 597 } else { 598 // Can't remat, just insert a copy from parent. 599 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 600 .addReg(Edit->getReg()); 601 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 602 .getDefIndex(); 603 ++NumCopies; 604 } 605 606 // Define the value in Reg. 607 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 608 VNI->setCopy(CopyMI); 609 return VNI; 610 } 611 612 /// Create a new virtual register and live interval. 613 unsigned SplitEditor::openIntv() { 614 // Create the complement as index 0. 615 if (Edit->empty()) 616 Edit->create(LIS, VRM); 617 618 // Create the open interval. 619 OpenIdx = Edit->size(); 620 Edit->create(LIS, VRM); 621 return OpenIdx; 622 } 623 624 void SplitEditor::selectIntv(unsigned Idx) { 625 assert(Idx != 0 && "Cannot select the complement interval"); 626 assert(Idx < Edit->size() && "Can only select previously opened interval"); 627 OpenIdx = Idx; 628 } 629 630 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 631 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 632 DEBUG(dbgs() << " enterIntvBefore " << Idx); 633 Idx = Idx.getBaseIndex(); 634 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 635 if (!ParentVNI) { 636 DEBUG(dbgs() << ": not live\n"); 637 return Idx; 638 } 639 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 640 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 641 assert(MI && "enterIntvBefore called with invalid index"); 642 643 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 644 return VNI->def; 645 } 646 647 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 648 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 649 SlotIndex End = LIS.getMBBEndIdx(&MBB); 650 SlotIndex Last = End.getPrevSlot(); 651 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 652 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 653 if (!ParentVNI) { 654 DEBUG(dbgs() << ": not live\n"); 655 return End; 656 } 657 DEBUG(dbgs() << ": valno " << ParentVNI->id); 658 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 659 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 660 RegAssign.insert(VNI->def, End, OpenIdx); 661 DEBUG(dump()); 662 return VNI->def; 663 } 664 665 /// useIntv - indicate that all instructions in MBB should use OpenLI. 666 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 667 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 668 } 669 670 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 671 assert(OpenIdx && "openIntv not called before useIntv"); 672 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 673 RegAssign.insert(Start, End, OpenIdx); 674 DEBUG(dump()); 675 } 676 677 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 678 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 679 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 680 681 // The interval must be live beyond the instruction at Idx. 682 Idx = Idx.getBoundaryIndex(); 683 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 684 if (!ParentVNI) { 685 DEBUG(dbgs() << ": not live\n"); 686 return Idx.getNextSlot(); 687 } 688 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 689 690 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 691 assert(MI && "No instruction at index"); 692 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 693 llvm::next(MachineBasicBlock::iterator(MI))); 694 return VNI->def; 695 } 696 697 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 698 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 699 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 700 701 // The interval must be live into the instruction at Idx. 702 Idx = Idx.getBoundaryIndex(); 703 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 704 if (!ParentVNI) { 705 DEBUG(dbgs() << ": not live\n"); 706 return Idx.getNextSlot(); 707 } 708 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 709 710 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 711 assert(MI && "No instruction at index"); 712 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 713 return VNI->def; 714 } 715 716 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 717 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 718 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 719 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 720 721 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 722 if (!ParentVNI) { 723 DEBUG(dbgs() << ": not live\n"); 724 return Start; 725 } 726 727 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 728 MBB.SkipPHIsAndLabels(MBB.begin())); 729 RegAssign.insert(Start, VNI->def, OpenIdx); 730 DEBUG(dump()); 731 return VNI->def; 732 } 733 734 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 735 assert(OpenIdx && "openIntv not called before overlapIntv"); 736 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 737 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 738 "Parent changes value in extended range"); 739 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 740 "Range cannot span basic blocks"); 741 742 // The complement interval will be extended as needed by extendRange(). 743 if (ParentVNI) 744 markComplexMapped(0, ParentVNI); 745 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 746 RegAssign.insert(Start, End, OpenIdx); 747 DEBUG(dump()); 748 } 749 750 /// transferValues - Transfer all possible values to the new live ranges. 751 /// Values that were rematerialized are left alone, they need extendRange(). 752 bool SplitEditor::transferValues() { 753 bool Skipped = false; 754 LiveInBlocks.clear(); 755 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 756 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 757 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 758 DEBUG(dbgs() << " blit " << *ParentI << ':'); 759 VNInfo *ParentVNI = ParentI->valno; 760 // RegAssign has holes where RegIdx 0 should be used. 761 SlotIndex Start = ParentI->start; 762 AssignI.advanceTo(Start); 763 do { 764 unsigned RegIdx; 765 SlotIndex End = ParentI->end; 766 if (!AssignI.valid()) { 767 RegIdx = 0; 768 } else if (AssignI.start() <= Start) { 769 RegIdx = AssignI.value(); 770 if (AssignI.stop() < End) { 771 End = AssignI.stop(); 772 ++AssignI; 773 } 774 } else { 775 RegIdx = 0; 776 End = std::min(End, AssignI.start()); 777 } 778 779 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 780 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 781 LiveInterval *LI = Edit->get(RegIdx); 782 783 // Check for a simply defined value that can be blitted directly. 784 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 785 DEBUG(dbgs() << ':' << VNI->id); 786 LI->addRange(LiveRange(Start, End, VNI)); 787 Start = End; 788 continue; 789 } 790 791 // Skip rematerialized values, we need to use extendRange() and 792 // extendPHIKillRanges() to completely recompute the live ranges. 793 if (Edit->didRematerialize(ParentVNI)) { 794 DEBUG(dbgs() << "(remat)"); 795 Skipped = true; 796 Start = End; 797 continue; 798 } 799 800 // Initialize the live-out cache the first time it is needed. 801 if (LiveOutSeen.empty()) { 802 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 803 LiveOutSeen.resize(N); 804 LiveOutCache.resize(N); 805 } 806 807 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 808 // so the live range is accurate. Add live-in blocks in [Start;End) to the 809 // LiveInBlocks. 810 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 811 SlotIndex BlockStart, BlockEnd; 812 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 813 814 // The first block may be live-in, or it may have its own def. 815 if (Start != BlockStart) { 816 VNInfo *VNI = LI->extendInBlock(BlockStart, 817 std::min(BlockEnd, End).getPrevSlot()); 818 assert(VNI && "Missing def for complex mapped value"); 819 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 820 // MBB has its own def. Is it also live-out? 821 if (BlockEnd <= End) { 822 LiveOutSeen.set(MBB->getNumber()); 823 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]); 824 } 825 // Skip to the next block for live-in. 826 ++MBB; 827 BlockStart = BlockEnd; 828 } 829 830 // Handle the live-in blocks covered by [Start;End). 831 assert(Start <= BlockStart && "Expected live-in block"); 832 while (BlockStart < End) { 833 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 834 BlockEnd = LIS.getMBBEndIdx(MBB); 835 if (BlockStart == ParentVNI->def) { 836 // This block has the def of a parent PHI, so it isn't live-in. 837 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 838 VNInfo *VNI = LI->extendInBlock(BlockStart, 839 std::min(BlockEnd, End).getPrevSlot()); 840 assert(VNI && "Missing def for complex mapped parent PHI"); 841 if (End >= BlockEnd) { 842 // Live-out as well. 843 LiveOutSeen.set(MBB->getNumber()); 844 LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]); 845 } 846 } else { 847 // This block needs a live-in value. 848 LiveInBlocks.push_back(MDT[MBB]); 849 // The last block covered may not be live-out. 850 if (End < BlockEnd) 851 LiveInBlocks.back().Kill = End; 852 else { 853 // Live-out, but we need updateSSA to tell us the value. 854 LiveOutSeen.set(MBB->getNumber()); 855 LiveOutCache[MBB] = LiveOutPair((VNInfo*)0, 856 (MachineDomTreeNode*)0); 857 } 858 } 859 BlockStart = BlockEnd; 860 ++MBB; 861 } 862 Start = End; 863 } while (Start != ParentI->end); 864 DEBUG(dbgs() << '\n'); 865 } 866 867 if (!LiveInBlocks.empty()) 868 updateSSA(); 869 870 return Skipped; 871 } 872 873 void SplitEditor::extendPHIKillRanges() { 874 // Extend live ranges to be live-out for successor PHI values. 875 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 876 E = Edit->getParent().vni_end(); I != E; ++I) { 877 const VNInfo *PHIVNI = *I; 878 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 879 continue; 880 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 881 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 882 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 883 PE = MBB->pred_end(); PI != PE; ++PI) { 884 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 885 // The predecessor may not have a live-out value. That is OK, like an 886 // undef PHI operand. 887 if (Edit->getParent().liveAt(End)) { 888 assert(RegAssign.lookup(End) == RegIdx && 889 "Different register assignment in phi predecessor"); 890 extendRange(RegIdx, End); 891 } 892 } 893 } 894 } 895 896 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 897 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 898 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 899 RE = MRI.reg_end(); RI != RE;) { 900 MachineOperand &MO = RI.getOperand(); 901 MachineInstr *MI = MO.getParent(); 902 ++RI; 903 // LiveDebugVariables should have handled all DBG_VALUE instructions. 904 if (MI->isDebugValue()) { 905 DEBUG(dbgs() << "Zapping " << *MI); 906 MO.setReg(0); 907 continue; 908 } 909 910 // <undef> operands don't really read the register, so just assign them to 911 // the complement. 912 if (MO.isUse() && MO.isUndef()) { 913 MO.setReg(Edit->get(0)->reg); 914 continue; 915 } 916 917 SlotIndex Idx = LIS.getInstructionIndex(MI); 918 if (MO.isDef()) 919 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 920 921 // Rewrite to the mapped register at Idx. 922 unsigned RegIdx = RegAssign.lookup(Idx); 923 MO.setReg(Edit->get(RegIdx)->reg); 924 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 925 << Idx << ':' << RegIdx << '\t' << *MI); 926 927 // Extend liveness to Idx if the instruction reads reg. 928 if (!ExtendRanges) 929 continue; 930 931 // Skip instructions that don't read Reg. 932 if (MO.isDef()) { 933 if (!MO.getSubReg() && !MO.isEarlyClobber()) 934 continue; 935 // We may wan't to extend a live range for a partial redef, or for a use 936 // tied to an early clobber. 937 Idx = Idx.getPrevSlot(); 938 if (!Edit->getParent().liveAt(Idx)) 939 continue; 940 } else 941 Idx = Idx.getUseIndex(); 942 943 extendRange(RegIdx, Idx); 944 } 945 } 946 947 void SplitEditor::deleteRematVictims() { 948 SmallVector<MachineInstr*, 8> Dead; 949 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 950 LiveInterval *LI = *I; 951 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 952 LII != LIE; ++LII) { 953 // Dead defs end at the store slot. 954 if (LII->end != LII->valno->def.getNextSlot()) 955 continue; 956 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 957 assert(MI && "Missing instruction for dead def"); 958 MI->addRegisterDead(LI->reg, &TRI); 959 960 if (!MI->allDefsAreDead()) 961 continue; 962 963 DEBUG(dbgs() << "All defs dead: " << *MI); 964 Dead.push_back(MI); 965 } 966 } 967 968 if (Dead.empty()) 969 return; 970 971 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 972 } 973 974 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 975 ++NumFinished; 976 977 // At this point, the live intervals in Edit contain VNInfos corresponding to 978 // the inserted copies. 979 980 // Add the original defs from the parent interval. 981 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 982 E = Edit->getParent().vni_end(); I != E; ++I) { 983 const VNInfo *ParentVNI = *I; 984 if (ParentVNI->isUnused()) 985 continue; 986 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 987 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 988 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 989 VNI->setCopy(ParentVNI->getCopy()); 990 991 // Mark rematted values as complex everywhere to force liveness computation. 992 // The new live ranges may be truncated. 993 if (Edit->didRematerialize(ParentVNI)) 994 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 995 markComplexMapped(i, ParentVNI); 996 } 997 998 #ifndef NDEBUG 999 // Every new interval must have a def by now, otherwise the split is bogus. 1000 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1001 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 1002 #endif 1003 1004 // Transfer the simply mapped values, check if any are skipped. 1005 bool Skipped = transferValues(); 1006 if (Skipped) 1007 extendPHIKillRanges(); 1008 else 1009 ++NumSimple; 1010 1011 // Rewrite virtual registers, possibly extending ranges. 1012 rewriteAssigned(Skipped); 1013 1014 // Delete defs that were rematted everywhere. 1015 if (Skipped) 1016 deleteRematVictims(); 1017 1018 // Get rid of unused values and set phi-kill flags. 1019 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1020 (*I)->RenumberValues(LIS); 1021 1022 // Provide a reverse mapping from original indices to Edit ranges. 1023 if (LRMap) { 1024 LRMap->clear(); 1025 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1026 LRMap->push_back(i); 1027 } 1028 1029 // Now check if any registers were separated into multiple components. 1030 ConnectedVNInfoEqClasses ConEQ(LIS); 1031 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1032 // Don't use iterators, they are invalidated by create() below. 1033 LiveInterval *li = Edit->get(i); 1034 unsigned NumComp = ConEQ.Classify(li); 1035 if (NumComp <= 1) 1036 continue; 1037 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1038 SmallVector<LiveInterval*, 8> dups; 1039 dups.push_back(li); 1040 for (unsigned j = 1; j != NumComp; ++j) 1041 dups.push_back(&Edit->create(LIS, VRM)); 1042 ConEQ.Distribute(&dups[0], MRI); 1043 // The new intervals all map back to i. 1044 if (LRMap) 1045 LRMap->resize(Edit->size(), i); 1046 } 1047 1048 // Calculate spill weight and allocation hints for new intervals. 1049 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 1050 1051 assert(!LRMap || LRMap->size() == Edit->size()); 1052 } 1053 1054 1055 //===----------------------------------------------------------------------===// 1056 // Single Block Splitting 1057 //===----------------------------------------------------------------------===// 1058 1059 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 1060 /// may be an advantage to split CurLI for the duration of the block. 1061 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 1062 // If CurLI is local to one block, there is no point to splitting it. 1063 if (UseBlocks.size() <= 1) 1064 return false; 1065 // Add blocks with multiple uses. 1066 for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) { 1067 const BlockInfo &BI = UseBlocks[i]; 1068 if (BI.FirstUse == BI.LastUse) 1069 continue; 1070 Blocks.insert(BI.MBB); 1071 } 1072 return !Blocks.empty(); 1073 } 1074 1075 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1076 openIntv(); 1077 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1078 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse, 1079 LastSplitPoint)); 1080 if (!BI.LiveOut || BI.LastUse < LastSplitPoint) { 1081 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 1082 } else { 1083 // The last use is after the last valid split point. 1084 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1085 useIntv(SegStart, SegStop); 1086 overlapIntv(SegStop, BI.LastUse); 1087 } 1088 } 1089 1090 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 1091 /// basic block in Blocks. 1092 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 1093 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 1094 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks(); 1095 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1096 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1097 if (Blocks.count(BI.MBB)) 1098 splitSingleBlock(BI); 1099 } 1100 finish(); 1101 } 1102