1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/VirtRegMap.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "regalloc" 33 34 STATISTIC(NumFinished, "Number of splits finished"); 35 STATISTIC(NumSimple, "Number of splits that were simple"); 36 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 37 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 38 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 39 40 //===----------------------------------------------------------------------===// 41 // Last Insert Point Analysis 42 //===----------------------------------------------------------------------===// 43 44 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 45 unsigned BBNum) 46 : LIS(lis), LastInsertPoint(BBNum) {} 47 48 SlotIndex 49 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 50 const MachineBasicBlock &MBB) { 51 unsigned Num = MBB.getNumber(); 52 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 53 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 54 55 SmallVector<const MachineBasicBlock *, 1> EHPadSucessors; 56 for (const MachineBasicBlock *SMBB : MBB.successors()) 57 if (SMBB->isEHPad()) 58 EHPadSucessors.push_back(SMBB); 59 60 // Compute insert points on the first call. The pair is independent of the 61 // current live interval. 62 if (!LIP.first.isValid()) { 63 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 64 if (FirstTerm == MBB.end()) 65 LIP.first = MBBEnd; 66 else 67 LIP.first = LIS.getInstructionIndex(*FirstTerm); 68 69 // If there is a landing pad successor, also find the call instruction. 70 if (EHPadSucessors.empty()) 71 return LIP.first; 72 // There may not be a call instruction (?) in which case we ignore LPad. 73 LIP.second = LIP.first; 74 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin(); 75 I != E;) { 76 --I; 77 if (I->isCall()) { 78 LIP.second = LIS.getInstructionIndex(*I); 79 break; 80 } 81 } 82 } 83 84 // If CurLI is live into a landing pad successor, move the last insert point 85 // back to the call that may throw. 86 if (!LIP.second) 87 return LIP.first; 88 89 if (none_of(EHPadSucessors, [&](const MachineBasicBlock *EHPad) { 90 return LIS.isLiveInToMBB(CurLI, EHPad); 91 })) 92 return LIP.first; 93 94 // Find the value leaving MBB. 95 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 96 if (!VNI) 97 return LIP.first; 98 99 // If the value leaving MBB was defined after the call in MBB, it can't 100 // really be live-in to the landing pad. This can happen if the landing pad 101 // has a PHI, and this register is undef on the exceptional edge. 102 // <rdar://problem/10664933> 103 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 104 return LIP.first; 105 106 // Value is properly live-in to the landing pad. 107 // Only allow inserts before the call. 108 return LIP.second; 109 } 110 111 MachineBasicBlock::iterator 112 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 113 MachineBasicBlock &MBB) { 114 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 115 if (LIP == LIS.getMBBEndIdx(&MBB)) 116 return MBB.end(); 117 return LIS.getInstructionFromIndex(LIP); 118 } 119 120 //===----------------------------------------------------------------------===// 121 // Split Analysis 122 //===----------------------------------------------------------------------===// 123 124 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 125 const MachineLoopInfo &mli) 126 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 127 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr), 128 IPA(lis, MF.getNumBlockIDs()) {} 129 130 void SplitAnalysis::clear() { 131 UseSlots.clear(); 132 UseBlocks.clear(); 133 ThroughBlocks.clear(); 134 CurLI = nullptr; 135 DidRepairRange = false; 136 } 137 138 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 139 void SplitAnalysis::analyzeUses() { 140 assert(UseSlots.empty() && "Call clear first"); 141 142 // First get all the defs from the interval values. This provides the correct 143 // slots for early clobbers. 144 for (const VNInfo *VNI : CurLI->valnos) 145 if (!VNI->isPHIDef() && !VNI->isUnused()) 146 UseSlots.push_back(VNI->def); 147 148 // Get use slots form the use-def chain. 149 const MachineRegisterInfo &MRI = MF.getRegInfo(); 150 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 151 if (!MO.isUndef()) 152 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 153 154 array_pod_sort(UseSlots.begin(), UseSlots.end()); 155 156 // Remove duplicates, keeping the smaller slot for each instruction. 157 // That is what we want for early clobbers. 158 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 159 SlotIndex::isSameInstr), 160 UseSlots.end()); 161 162 // Compute per-live block info. 163 if (!calcLiveBlockInfo()) { 164 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 165 // I am looking at you, RegisterCoalescer! 166 DidRepairRange = true; 167 ++NumRepairs; 168 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 169 const_cast<LiveIntervals&>(LIS) 170 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 171 UseBlocks.clear(); 172 ThroughBlocks.clear(); 173 bool fixed = calcLiveBlockInfo(); 174 (void)fixed; 175 assert(fixed && "Couldn't fix broken live interval"); 176 } 177 178 DEBUG(dbgs() << "Analyze counted " 179 << UseSlots.size() << " instrs in " 180 << UseBlocks.size() << " blocks, through " 181 << NumThroughBlocks << " blocks.\n"); 182 } 183 184 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 185 /// where CurLI is live. 186 bool SplitAnalysis::calcLiveBlockInfo() { 187 ThroughBlocks.resize(MF.getNumBlockIDs()); 188 NumThroughBlocks = NumGapBlocks = 0; 189 if (CurLI->empty()) 190 return true; 191 192 LiveInterval::const_iterator LVI = CurLI->begin(); 193 LiveInterval::const_iterator LVE = CurLI->end(); 194 195 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 196 UseI = UseSlots.begin(); 197 UseE = UseSlots.end(); 198 199 // Loop over basic blocks where CurLI is live. 200 MachineFunction::iterator MFI = 201 LIS.getMBBFromIndex(LVI->start)->getIterator(); 202 for (;;) { 203 BlockInfo BI; 204 BI.MBB = &*MFI; 205 SlotIndex Start, Stop; 206 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 207 208 // If the block contains no uses, the range must be live through. At one 209 // point, RegisterCoalescer could create dangling ranges that ended 210 // mid-block. 211 if (UseI == UseE || *UseI >= Stop) { 212 ++NumThroughBlocks; 213 ThroughBlocks.set(BI.MBB->getNumber()); 214 // The range shouldn't end mid-block if there are no uses. This shouldn't 215 // happen. 216 if (LVI->end < Stop) 217 return false; 218 } else { 219 // This block has uses. Find the first and last uses in the block. 220 BI.FirstInstr = *UseI; 221 assert(BI.FirstInstr >= Start); 222 do ++UseI; 223 while (UseI != UseE && *UseI < Stop); 224 BI.LastInstr = UseI[-1]; 225 assert(BI.LastInstr < Stop); 226 227 // LVI is the first live segment overlapping MBB. 228 BI.LiveIn = LVI->start <= Start; 229 230 // When not live in, the first use should be a def. 231 if (!BI.LiveIn) { 232 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 233 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 234 BI.FirstDef = BI.FirstInstr; 235 } 236 237 // Look for gaps in the live range. 238 BI.LiveOut = true; 239 while (LVI->end < Stop) { 240 SlotIndex LastStop = LVI->end; 241 if (++LVI == LVE || LVI->start >= Stop) { 242 BI.LiveOut = false; 243 BI.LastInstr = LastStop; 244 break; 245 } 246 247 if (LastStop < LVI->start) { 248 // There is a gap in the live range. Create duplicate entries for the 249 // live-in snippet and the live-out snippet. 250 ++NumGapBlocks; 251 252 // Push the Live-in part. 253 BI.LiveOut = false; 254 UseBlocks.push_back(BI); 255 UseBlocks.back().LastInstr = LastStop; 256 257 // Set up BI for the live-out part. 258 BI.LiveIn = false; 259 BI.LiveOut = true; 260 BI.FirstInstr = BI.FirstDef = LVI->start; 261 } 262 263 // A Segment that starts in the middle of the block must be a def. 264 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 265 if (!BI.FirstDef) 266 BI.FirstDef = LVI->start; 267 } 268 269 UseBlocks.push_back(BI); 270 271 // LVI is now at LVE or LVI->end >= Stop. 272 if (LVI == LVE) 273 break; 274 } 275 276 // Live segment ends exactly at Stop. Move to the next segment. 277 if (LVI->end == Stop && ++LVI == LVE) 278 break; 279 280 // Pick the next basic block. 281 if (LVI->start < Stop) 282 ++MFI; 283 else 284 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 285 } 286 287 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 288 return true; 289 } 290 291 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 292 if (cli->empty()) 293 return 0; 294 LiveInterval *li = const_cast<LiveInterval*>(cli); 295 LiveInterval::iterator LVI = li->begin(); 296 LiveInterval::iterator LVE = li->end(); 297 unsigned Count = 0; 298 299 // Loop over basic blocks where li is live. 300 MachineFunction::const_iterator MFI = 301 LIS.getMBBFromIndex(LVI->start)->getIterator(); 302 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 303 for (;;) { 304 ++Count; 305 LVI = li->advanceTo(LVI, Stop); 306 if (LVI == LVE) 307 return Count; 308 do { 309 ++MFI; 310 Stop = LIS.getMBBEndIdx(&*MFI); 311 } while (Stop <= LVI->start); 312 } 313 } 314 315 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 316 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 317 const LiveInterval &Orig = LIS.getInterval(OrigReg); 318 assert(!Orig.empty() && "Splitting empty interval?"); 319 LiveInterval::const_iterator I = Orig.find(Idx); 320 321 // Range containing Idx should begin at Idx. 322 if (I != Orig.end() && I->start <= Idx) 323 return I->start == Idx; 324 325 // Range does not contain Idx, previous must end at Idx. 326 return I != Orig.begin() && (--I)->end == Idx; 327 } 328 329 void SplitAnalysis::analyze(const LiveInterval *li) { 330 clear(); 331 CurLI = li; 332 analyzeUses(); 333 } 334 335 336 //===----------------------------------------------------------------------===// 337 // Split Editor 338 //===----------------------------------------------------------------------===// 339 340 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 341 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa, 342 LiveIntervals &lis, VirtRegMap &vrm, 343 MachineDominatorTree &mdt, 344 MachineBlockFrequencyInfo &mbfi) 345 : SA(sa), AA(aa), LIS(lis), VRM(vrm), 346 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt), 347 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 348 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 349 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition), 350 RegAssign(Allocator) {} 351 352 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 353 Edit = &LRE; 354 SpillMode = SM; 355 OpenIdx = 0; 356 RegAssign.clear(); 357 Values.clear(); 358 359 // Reset the LiveRangeCalc instances needed for this spill mode. 360 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 361 &LIS.getVNInfoAllocator()); 362 if (SpillMode) 363 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 364 &LIS.getVNInfoAllocator()); 365 366 // We don't need an AliasAnalysis since we will only be performing 367 // cheap-as-a-copy remats anyway. 368 Edit->anyRematerializable(nullptr); 369 } 370 371 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 372 LLVM_DUMP_METHOD void SplitEditor::dump() const { 373 if (RegAssign.empty()) { 374 dbgs() << " empty\n"; 375 return; 376 } 377 378 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 379 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 380 dbgs() << '\n'; 381 } 382 #endif 383 384 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 385 LiveInterval &LI) { 386 for (LiveInterval::SubRange &S : LI.subranges()) 387 if (S.LaneMask == LM) 388 return S; 389 llvm_unreachable("SubRange for this mask not found"); 390 } 391 392 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 393 if (!LI.hasSubRanges()) { 394 LI.createDeadDef(VNI); 395 return; 396 } 397 398 SlotIndex Def = VNI->def; 399 if (Original) { 400 // If we are transferring a def from the original interval, make sure 401 // to only update the subranges for which the original subranges had 402 // a def at this location. 403 for (LiveInterval::SubRange &S : LI.subranges()) { 404 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 405 VNInfo *PV = PS.getVNInfoAt(Def); 406 if (PV != nullptr && PV->def == Def) 407 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 408 } 409 } else { 410 // This is a new def: either from rematerialization, or from an inserted 411 // copy. Since rematerialization can regenerate a definition of a sub- 412 // register, we need to check which subranges need to be updated. 413 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 414 assert(DefMI != nullptr); 415 LaneBitmask LM; 416 for (const MachineOperand &DefOp : DefMI->defs()) { 417 unsigned R = DefOp.getReg(); 418 if (R != LI.reg) 419 continue; 420 if (unsigned SR = DefOp.getSubReg()) 421 LM |= TRI.getSubRegIndexLaneMask(SR); 422 else { 423 LM = MRI.getMaxLaneMaskForVReg(R); 424 break; 425 } 426 } 427 for (LiveInterval::SubRange &S : LI.subranges()) 428 if ((S.LaneMask & LM).any()) 429 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 430 } 431 } 432 433 VNInfo *SplitEditor::defValue(unsigned RegIdx, 434 const VNInfo *ParentVNI, 435 SlotIndex Idx, 436 bool Original) { 437 assert(ParentVNI && "Mapping NULL value"); 438 assert(Idx.isValid() && "Invalid SlotIndex"); 439 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 440 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 441 442 // Create a new value. 443 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 444 445 bool Force = LI->hasSubRanges(); 446 ValueForcePair FP(Force ? nullptr : VNI, Force); 447 // Use insert for lookup, so we can add missing values with a second lookup. 448 std::pair<ValueMap::iterator, bool> InsP = 449 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 450 451 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 452 // forced. Keep it as a simple def without any liveness. 453 if (!Force && InsP.second) 454 return VNI; 455 456 // If the previous value was a simple mapping, add liveness for it now. 457 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 458 addDeadDef(*LI, OldVNI, Original); 459 460 // No longer a simple mapping. Switch to a complex mapping. If the 461 // interval has subranges, make it a forced mapping. 462 InsP.first->second = ValueForcePair(nullptr, Force); 463 } 464 465 // This is a complex mapping, add liveness for VNI 466 addDeadDef(*LI, VNI, Original); 467 return VNI; 468 } 469 470 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 471 assert(ParentVNI && "Mapping NULL value"); 472 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 473 VNInfo *VNI = VFP.getPointer(); 474 475 // ParentVNI was either unmapped or already complex mapped. Either way, just 476 // set the force bit. 477 if (!VNI) { 478 VFP.setInt(true); 479 return; 480 } 481 482 // This was previously a single mapping. Make sure the old def is represented 483 // by a trivial live range. 484 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 485 486 // Mark as complex mapped, forced. 487 VFP = ValueForcePair(nullptr, true); 488 } 489 490 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 491 VNInfo *ParentVNI, 492 SlotIndex UseIdx, 493 MachineBasicBlock &MBB, 494 MachineBasicBlock::iterator I) { 495 MachineInstr *CopyMI = nullptr; 496 SlotIndex Def; 497 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 498 499 // We may be trying to avoid interference that ends at a deleted instruction, 500 // so always begin RegIdx 0 early and all others late. 501 bool Late = RegIdx != 0; 502 503 // Attempt cheap-as-a-copy rematerialization. 504 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 505 LiveInterval &OrigLI = LIS.getInterval(Original); 506 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 507 508 bool DidRemat = false; 509 if (OrigVNI) { 510 LiveRangeEdit::Remat RM(ParentVNI); 511 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 512 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 513 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 514 ++NumRemats; 515 DidRemat = true; 516 } 517 } 518 if (!DidRemat) { 519 // Can't remat, just insert a copy from parent. 520 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 521 .addReg(Edit->getReg()); 522 Def = LIS.getSlotIndexes() 523 ->insertMachineInstrInMaps(*CopyMI, Late) 524 .getRegSlot(); 525 if (LI->hasSubRanges()) { 526 LaneBitmask LM = LaneBitmask::getNone(); 527 for (LiveInterval::SubRange &S : LI->subranges()) 528 LM |= S.LaneMask; 529 530 if (MRI.getMaxLaneMaskForVReg(LI->reg) != LM) { 531 // Find subreg for the lane mask. 532 unsigned SubIdx = 0; 533 for (unsigned I = 1, E = TRI.getNumSubRegIndices(); I < E; ++I) { 534 if (TRI.getSubRegIndexLaneMask(I) == LM) { 535 SubIdx = I; 536 break; 537 } 538 } 539 if (SubIdx == 0) 540 report_fatal_error("Cannot find subreg index to cover all alive lanes"); 541 CopyMI->getOperand(0).setSubReg(SubIdx); 542 CopyMI->getOperand(1).setSubReg(SubIdx); 543 CopyMI->getOperand(0).setIsUndef(true); 544 } 545 } 546 ++NumCopies; 547 } 548 549 // Define the value in Reg. 550 return defValue(RegIdx, ParentVNI, Def, false); 551 } 552 553 /// Create a new virtual register and live interval. 554 unsigned SplitEditor::openIntv() { 555 // Create the complement as index 0. 556 if (Edit->empty()) 557 Edit->createEmptyInterval(); 558 559 // Create the open interval. 560 OpenIdx = Edit->size(); 561 Edit->createEmptyInterval(); 562 return OpenIdx; 563 } 564 565 void SplitEditor::selectIntv(unsigned Idx) { 566 assert(Idx != 0 && "Cannot select the complement interval"); 567 assert(Idx < Edit->size() && "Can only select previously opened interval"); 568 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 569 OpenIdx = Idx; 570 } 571 572 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 573 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 574 DEBUG(dbgs() << " enterIntvBefore " << Idx); 575 Idx = Idx.getBaseIndex(); 576 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 577 if (!ParentVNI) { 578 DEBUG(dbgs() << ": not live\n"); 579 return Idx; 580 } 581 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 582 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 583 assert(MI && "enterIntvBefore called with invalid index"); 584 585 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 586 return VNI->def; 587 } 588 589 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 590 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 591 DEBUG(dbgs() << " enterIntvAfter " << Idx); 592 Idx = Idx.getBoundaryIndex(); 593 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 594 if (!ParentVNI) { 595 DEBUG(dbgs() << ": not live\n"); 596 return Idx; 597 } 598 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 599 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 600 assert(MI && "enterIntvAfter called with invalid index"); 601 602 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 603 std::next(MachineBasicBlock::iterator(MI))); 604 return VNI->def; 605 } 606 607 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 608 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 609 SlotIndex End = LIS.getMBBEndIdx(&MBB); 610 SlotIndex Last = End.getPrevSlot(); 611 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 612 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 613 if (!ParentVNI) { 614 DEBUG(dbgs() << ": not live\n"); 615 return End; 616 } 617 DEBUG(dbgs() << ": valno " << ParentVNI->id); 618 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 619 SA.getLastSplitPointIter(&MBB)); 620 RegAssign.insert(VNI->def, End, OpenIdx); 621 DEBUG(dump()); 622 return VNI->def; 623 } 624 625 /// useIntv - indicate that all instructions in MBB should use OpenLI. 626 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 627 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 628 } 629 630 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 631 assert(OpenIdx && "openIntv not called before useIntv"); 632 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 633 RegAssign.insert(Start, End, OpenIdx); 634 DEBUG(dump()); 635 } 636 637 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 638 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 639 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 640 641 // The interval must be live beyond the instruction at Idx. 642 SlotIndex Boundary = Idx.getBoundaryIndex(); 643 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 644 if (!ParentVNI) { 645 DEBUG(dbgs() << ": not live\n"); 646 return Boundary.getNextSlot(); 647 } 648 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 649 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 650 assert(MI && "No instruction at index"); 651 652 // In spill mode, make live ranges as short as possible by inserting the copy 653 // before MI. This is only possible if that instruction doesn't redefine the 654 // value. The inserted COPY is not a kill, and we don't need to recompute 655 // the source live range. The spiller also won't try to hoist this copy. 656 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 657 MI->readsVirtualRegister(Edit->getReg())) { 658 forceRecompute(0, ParentVNI); 659 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 660 return Idx; 661 } 662 663 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 664 std::next(MachineBasicBlock::iterator(MI))); 665 return VNI->def; 666 } 667 668 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 669 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 670 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 671 672 // The interval must be live into the instruction at Idx. 673 Idx = Idx.getBaseIndex(); 674 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 675 if (!ParentVNI) { 676 DEBUG(dbgs() << ": not live\n"); 677 return Idx.getNextSlot(); 678 } 679 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 680 681 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 682 assert(MI && "No instruction at index"); 683 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 684 return VNI->def; 685 } 686 687 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 688 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 689 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 690 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 691 692 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 693 if (!ParentVNI) { 694 DEBUG(dbgs() << ": not live\n"); 695 return Start; 696 } 697 698 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 699 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 700 RegAssign.insert(Start, VNI->def, OpenIdx); 701 DEBUG(dump()); 702 return VNI->def; 703 } 704 705 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 706 assert(OpenIdx && "openIntv not called before overlapIntv"); 707 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 708 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 709 "Parent changes value in extended range"); 710 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 711 "Range cannot span basic blocks"); 712 713 // The complement interval will be extended as needed by LRCalc.extend(). 714 if (ParentVNI) 715 forceRecompute(0, ParentVNI); 716 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 717 RegAssign.insert(Start, End, OpenIdx); 718 DEBUG(dump()); 719 } 720 721 //===----------------------------------------------------------------------===// 722 // Spill modes 723 //===----------------------------------------------------------------------===// 724 725 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 726 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 727 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 728 RegAssignMap::iterator AssignI; 729 AssignI.setMap(RegAssign); 730 731 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 732 SlotIndex Def = Copies[i]->def; 733 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 734 assert(MI && "No instruction for back-copy"); 735 736 MachineBasicBlock *MBB = MI->getParent(); 737 MachineBasicBlock::iterator MBBI(MI); 738 bool AtBegin; 739 do AtBegin = MBBI == MBB->begin(); 740 while (!AtBegin && (--MBBI)->isDebugValue()); 741 742 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 743 LIS.removeVRegDefAt(*LI, Def); 744 LIS.RemoveMachineInstrFromMaps(*MI); 745 MI->eraseFromParent(); 746 747 // Adjust RegAssign if a register assignment is killed at Def. We want to 748 // avoid calculating the live range of the source register if possible. 749 AssignI.find(Def.getPrevSlot()); 750 if (!AssignI.valid() || AssignI.start() >= Def) 751 continue; 752 // If MI doesn't kill the assigned register, just leave it. 753 if (AssignI.stop() != Def) 754 continue; 755 unsigned RegIdx = AssignI.value(); 756 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 757 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 758 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 759 } else { 760 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 761 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 762 AssignI.setStop(Kill); 763 } 764 } 765 } 766 767 MachineBasicBlock* 768 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 769 MachineBasicBlock *DefMBB) { 770 if (MBB == DefMBB) 771 return MBB; 772 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 773 774 const MachineLoopInfo &Loops = SA.Loops; 775 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 776 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 777 778 // Best candidate so far. 779 MachineBasicBlock *BestMBB = MBB; 780 unsigned BestDepth = UINT_MAX; 781 782 for (;;) { 783 const MachineLoop *Loop = Loops.getLoopFor(MBB); 784 785 // MBB isn't in a loop, it doesn't get any better. All dominators have a 786 // higher frequency by definition. 787 if (!Loop) { 788 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 789 << MBB->getNumber() << " at depth 0\n"); 790 return MBB; 791 } 792 793 // We'll never be able to exit the DefLoop. 794 if (Loop == DefLoop) { 795 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 796 << MBB->getNumber() << " in the same loop\n"); 797 return MBB; 798 } 799 800 // Least busy dominator seen so far. 801 unsigned Depth = Loop->getLoopDepth(); 802 if (Depth < BestDepth) { 803 BestMBB = MBB; 804 BestDepth = Depth; 805 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 806 << MBB->getNumber() << " at depth " << Depth << '\n'); 807 } 808 809 // Leave loop by going to the immediate dominator of the loop header. 810 // This is a bigger stride than simply walking up the dominator tree. 811 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 812 813 // Too far up the dominator tree? 814 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 815 return BestMBB; 816 817 MBB = IDom->getBlock(); 818 } 819 } 820 821 void SplitEditor::computeRedundantBackCopies( 822 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 823 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 824 LiveInterval *Parent = &Edit->getParent(); 825 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 826 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 827 828 // Aggregate VNIs having the same value as ParentVNI. 829 for (VNInfo *VNI : LI->valnos) { 830 if (VNI->isUnused()) 831 continue; 832 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 833 EqualVNs[ParentVNI->id].insert(VNI); 834 } 835 836 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 837 // redundant VNIs to BackCopies. 838 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 839 VNInfo *ParentVNI = Parent->getValNumInfo(i); 840 if (!NotToHoistSet.count(ParentVNI->id)) 841 continue; 842 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 843 SmallPtrSetIterator<VNInfo *> It2 = It1; 844 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 845 It2 = It1; 846 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 847 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 848 continue; 849 850 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 851 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 852 if (MBB1 == MBB2) { 853 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 854 } else if (MDT.dominates(MBB1, MBB2)) { 855 DominatedVNIs.insert(*It2); 856 } else if (MDT.dominates(MBB2, MBB1)) { 857 DominatedVNIs.insert(*It1); 858 } 859 } 860 } 861 if (!DominatedVNIs.empty()) { 862 forceRecompute(0, ParentVNI); 863 for (auto VNI : DominatedVNIs) { 864 BackCopies.push_back(VNI); 865 } 866 DominatedVNIs.clear(); 867 } 868 } 869 } 870 871 /// For SM_Size mode, find a common dominator for all the back-copies for 872 /// the same ParentVNI and hoist the backcopies to the dominator BB. 873 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 874 /// to do the hoisting, simply remove the dominated backcopies for the same 875 /// ParentVNI. 876 void SplitEditor::hoistCopies() { 877 // Get the complement interval, always RegIdx 0. 878 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 879 LiveInterval *Parent = &Edit->getParent(); 880 881 // Track the nearest common dominator for all back-copies for each ParentVNI, 882 // indexed by ParentVNI->id. 883 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 884 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 885 // The total cost of all the back-copies for each ParentVNI. 886 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 887 // The ParentVNI->id set for which hoisting back-copies are not beneficial 888 // for Speed. 889 DenseSet<unsigned> NotToHoistSet; 890 891 // Find the nearest common dominator for parent values with multiple 892 // back-copies. If a single back-copy dominates, put it in DomPair.second. 893 for (VNInfo *VNI : LI->valnos) { 894 if (VNI->isUnused()) 895 continue; 896 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 897 assert(ParentVNI && "Parent not live at complement def"); 898 899 // Don't hoist remats. The complement is probably going to disappear 900 // completely anyway. 901 if (Edit->didRematerialize(ParentVNI)) 902 continue; 903 904 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 905 906 DomPair &Dom = NearestDom[ParentVNI->id]; 907 908 // Keep directly defined parent values. This is either a PHI or an 909 // instruction in the complement range. All other copies of ParentVNI 910 // should be eliminated. 911 if (VNI->def == ParentVNI->def) { 912 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 913 Dom = DomPair(ValMBB, VNI->def); 914 continue; 915 } 916 // Skip the singly mapped values. There is nothing to gain from hoisting a 917 // single back-copy. 918 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 919 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 920 continue; 921 } 922 923 if (!Dom.first) { 924 // First time we see ParentVNI. VNI dominates itself. 925 Dom = DomPair(ValMBB, VNI->def); 926 } else if (Dom.first == ValMBB) { 927 // Two defs in the same block. Pick the earlier def. 928 if (!Dom.second.isValid() || VNI->def < Dom.second) 929 Dom.second = VNI->def; 930 } else { 931 // Different basic blocks. Check if one dominates. 932 MachineBasicBlock *Near = 933 MDT.findNearestCommonDominator(Dom.first, ValMBB); 934 if (Near == ValMBB) 935 // Def ValMBB dominates. 936 Dom = DomPair(ValMBB, VNI->def); 937 else if (Near != Dom.first) 938 // None dominate. Hoist to common dominator, need new def. 939 Dom = DomPair(Near, SlotIndex()); 940 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 941 } 942 943 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 944 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 945 << " hoist to BB#" << Dom.first->getNumber() << ' ' 946 << Dom.second << '\n'); 947 } 948 949 // Insert the hoisted copies. 950 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 951 DomPair &Dom = NearestDom[i]; 952 if (!Dom.first || Dom.second.isValid()) 953 continue; 954 // This value needs a hoisted copy inserted at the end of Dom.first. 955 VNInfo *ParentVNI = Parent->getValNumInfo(i); 956 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 957 // Get a less loopy dominator than Dom.first. 958 Dom.first = findShallowDominator(Dom.first, DefMBB); 959 if (SpillMode == SM_Speed && 960 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 961 NotToHoistSet.insert(ParentVNI->id); 962 continue; 963 } 964 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 965 Dom.second = 966 defFromParent(0, ParentVNI, Last, *Dom.first, 967 SA.getLastSplitPointIter(Dom.first))->def; 968 } 969 970 // Remove redundant back-copies that are now known to be dominated by another 971 // def with the same value. 972 SmallVector<VNInfo*, 8> BackCopies; 973 for (VNInfo *VNI : LI->valnos) { 974 if (VNI->isUnused()) 975 continue; 976 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 977 const DomPair &Dom = NearestDom[ParentVNI->id]; 978 if (!Dom.first || Dom.second == VNI->def || 979 NotToHoistSet.count(ParentVNI->id)) 980 continue; 981 BackCopies.push_back(VNI); 982 forceRecompute(0, ParentVNI); 983 } 984 985 // If it is not beneficial to hoist all the BackCopies, simply remove 986 // redundant BackCopies in speed mode. 987 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 988 computeRedundantBackCopies(NotToHoistSet, BackCopies); 989 990 removeBackCopies(BackCopies); 991 } 992 993 994 /// transferValues - Transfer all possible values to the new live ranges. 995 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 996 bool SplitEditor::transferValues() { 997 bool Skipped = false; 998 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 999 for (const LiveRange::Segment &S : Edit->getParent()) { 1000 DEBUG(dbgs() << " blit " << S << ':'); 1001 VNInfo *ParentVNI = S.valno; 1002 // RegAssign has holes where RegIdx 0 should be used. 1003 SlotIndex Start = S.start; 1004 AssignI.advanceTo(Start); 1005 do { 1006 unsigned RegIdx; 1007 SlotIndex End = S.end; 1008 if (!AssignI.valid()) { 1009 RegIdx = 0; 1010 } else if (AssignI.start() <= Start) { 1011 RegIdx = AssignI.value(); 1012 if (AssignI.stop() < End) { 1013 End = AssignI.stop(); 1014 ++AssignI; 1015 } 1016 } else { 1017 RegIdx = 0; 1018 End = std::min(End, AssignI.start()); 1019 } 1020 1021 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1022 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx 1023 << '(' << PrintReg(Edit->get(RegIdx)) << ')'); 1024 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1025 1026 // Check for a simply defined value that can be blitted directly. 1027 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1028 if (VNInfo *VNI = VFP.getPointer()) { 1029 DEBUG(dbgs() << ':' << VNI->id); 1030 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1031 Start = End; 1032 continue; 1033 } 1034 1035 // Skip values with forced recomputation. 1036 if (VFP.getInt()) { 1037 DEBUG(dbgs() << "(recalc)"); 1038 Skipped = true; 1039 Start = End; 1040 continue; 1041 } 1042 1043 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1044 1045 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1046 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1047 // LiveInBlocks. 1048 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1049 SlotIndex BlockStart, BlockEnd; 1050 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1051 1052 // The first block may be live-in, or it may have its own def. 1053 if (Start != BlockStart) { 1054 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1055 assert(VNI && "Missing def for complex mapped value"); 1056 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 1057 // MBB has its own def. Is it also live-out? 1058 if (BlockEnd <= End) 1059 LRC.setLiveOutValue(&*MBB, VNI); 1060 1061 // Skip to the next block for live-in. 1062 ++MBB; 1063 BlockStart = BlockEnd; 1064 } 1065 1066 // Handle the live-in blocks covered by [Start;End). 1067 assert(Start <= BlockStart && "Expected live-in block"); 1068 while (BlockStart < End) { 1069 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 1070 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1071 if (BlockStart == ParentVNI->def) { 1072 // This block has the def of a parent PHI, so it isn't live-in. 1073 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1074 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1075 assert(VNI && "Missing def for complex mapped parent PHI"); 1076 if (End >= BlockEnd) 1077 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1078 } else { 1079 // This block needs a live-in value. The last block covered may not 1080 // be live-out. 1081 if (End < BlockEnd) 1082 LRC.addLiveInBlock(LI, MDT[&*MBB], End); 1083 else { 1084 // Live-through, and we don't know the value. 1085 LRC.addLiveInBlock(LI, MDT[&*MBB]); 1086 LRC.setLiveOutValue(&*MBB, nullptr); 1087 } 1088 } 1089 BlockStart = BlockEnd; 1090 ++MBB; 1091 } 1092 Start = End; 1093 } while (Start != S.end); 1094 DEBUG(dbgs() << '\n'); 1095 } 1096 1097 LRCalc[0].calculateValues(); 1098 if (SpillMode) 1099 LRCalc[1].calculateValues(); 1100 1101 return Skipped; 1102 } 1103 1104 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1105 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1106 if (Seg == nullptr) 1107 return true; 1108 if (Seg->end != Def.getDeadSlot()) 1109 return false; 1110 // This is a dead PHI. Remove it. 1111 LR.removeSegment(*Seg, true); 1112 return true; 1113 } 1114 1115 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC, 1116 LiveRange &LR, LaneBitmask LM, 1117 ArrayRef<SlotIndex> Undefs) { 1118 for (MachineBasicBlock *P : B.predecessors()) { 1119 SlotIndex End = LIS.getMBBEndIdx(P); 1120 SlotIndex LastUse = End.getPrevSlot(); 1121 // The predecessor may not have a live-out value. That is OK, like an 1122 // undef PHI operand. 1123 LiveInterval &PLI = Edit->getParent(); 1124 // Need the cast because the inputs to ?: would otherwise be deemed 1125 // "incompatible": SubRange vs LiveInterval. 1126 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI) 1127 : static_cast<LiveRange&>(PLI); 1128 if (PSR.liveAt(LastUse)) 1129 LRC.extend(LR, End, /*PhysReg=*/0, Undefs); 1130 } 1131 } 1132 1133 void SplitEditor::extendPHIKillRanges() { 1134 // Extend live ranges to be live-out for successor PHI values. 1135 1136 // Visit each PHI def slot in the parent live interval. If the def is dead, 1137 // remove it. Otherwise, extend the live interval to reach the end indexes 1138 // of all predecessor blocks. 1139 1140 LiveInterval &ParentLI = Edit->getParent(); 1141 for (const VNInfo *V : ParentLI.valnos) { 1142 if (V->isUnused() || !V->isPHIDef()) 1143 continue; 1144 1145 unsigned RegIdx = RegAssign.lookup(V->def); 1146 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1147 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1148 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1149 if (!removeDeadSegment(V->def, LI)) 1150 extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1151 } 1152 1153 SmallVector<SlotIndex, 4> Undefs; 1154 LiveRangeCalc SubLRC; 1155 1156 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1157 for (const VNInfo *V : PS.valnos) { 1158 if (V->isUnused() || !V->isPHIDef()) 1159 continue; 1160 unsigned RegIdx = RegAssign.lookup(V->def); 1161 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1162 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI); 1163 if (removeDeadSegment(V->def, S)) 1164 continue; 1165 1166 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1167 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1168 &LIS.getVNInfoAllocator()); 1169 Undefs.clear(); 1170 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1171 extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs); 1172 } 1173 } 1174 } 1175 1176 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1177 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1178 struct ExtPoint { 1179 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1180 : MO(O), RegIdx(R), Next(N) {} 1181 MachineOperand MO; 1182 unsigned RegIdx; 1183 SlotIndex Next; 1184 }; 1185 1186 SmallVector<ExtPoint,4> ExtPoints; 1187 1188 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 1189 RE = MRI.reg_end(); RI != RE;) { 1190 MachineOperand &MO = *RI; 1191 MachineInstr *MI = MO.getParent(); 1192 ++RI; 1193 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1194 if (MI->isDebugValue()) { 1195 DEBUG(dbgs() << "Zapping " << *MI); 1196 MO.setReg(0); 1197 continue; 1198 } 1199 1200 // <undef> operands don't really read the register, so it doesn't matter 1201 // which register we choose. When the use operand is tied to a def, we must 1202 // use the same register as the def, so just do that always. 1203 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1204 if (MO.isDef() || MO.isUndef()) 1205 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1206 1207 // Rewrite to the mapped register at Idx. 1208 unsigned RegIdx = RegAssign.lookup(Idx); 1209 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1210 MO.setReg(LI.reg); 1211 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 1212 << Idx << ':' << RegIdx << '\t' << *MI); 1213 1214 // Extend liveness to Idx if the instruction reads reg. 1215 if (!ExtendRanges || MO.isUndef()) 1216 continue; 1217 1218 // Skip instructions that don't read Reg. 1219 if (MO.isDef()) { 1220 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1221 continue; 1222 // We may want to extend a live range for a partial redef, or for a use 1223 // tied to an early clobber. 1224 Idx = Idx.getPrevSlot(); 1225 if (!Edit->getParent().liveAt(Idx)) 1226 continue; 1227 } else 1228 Idx = Idx.getRegSlot(true); 1229 1230 SlotIndex Next = Idx.getNextSlot(); 1231 if (LI.hasSubRanges()) { 1232 // We have to delay extending subranges until we have seen all operands 1233 // defining the register. This is because a <def,read-undef> operand 1234 // will create an "undef" point, and we cannot extend any subranges 1235 // until all of them have been accounted for. 1236 if (MO.isUse()) 1237 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1238 } else { 1239 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1240 LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1241 } 1242 } 1243 1244 for (ExtPoint &EP : ExtPoints) { 1245 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1246 assert(LI.hasSubRanges()); 1247 1248 LiveRangeCalc SubLRC; 1249 unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1250 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1251 : MRI.getMaxLaneMaskForVReg(Reg); 1252 for (LiveInterval::SubRange &S : LI.subranges()) { 1253 if ((S.LaneMask & LM).none()) 1254 continue; 1255 // The problem here can be that the new register may have been created 1256 // for a partially defined original register. For example: 1257 // %vreg827:subreg_hireg<def,read-undef> = ... 1258 // ... 1259 // %vreg828<def> = COPY %vreg827 1260 if (S.empty()) 1261 continue; 1262 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1263 &LIS.getVNInfoAllocator()); 1264 SmallVector<SlotIndex, 4> Undefs; 1265 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1266 SubLRC.extend(S, EP.Next, 0, Undefs); 1267 } 1268 } 1269 1270 for (unsigned R : *Edit) { 1271 LiveInterval &LI = LIS.getInterval(R); 1272 if (!LI.hasSubRanges()) 1273 continue; 1274 LI.clear(); 1275 LI.removeEmptySubRanges(); 1276 LIS.constructMainRangeFromSubranges(LI); 1277 } 1278 } 1279 1280 void SplitEditor::deleteRematVictims() { 1281 SmallVector<MachineInstr*, 8> Dead; 1282 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1283 LiveInterval *LI = &LIS.getInterval(*I); 1284 for (const LiveRange::Segment &S : LI->segments) { 1285 // Dead defs end at the dead slot. 1286 if (S.end != S.valno->def.getDeadSlot()) 1287 continue; 1288 if (S.valno->isPHIDef()) 1289 continue; 1290 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1291 assert(MI && "Missing instruction for dead def"); 1292 MI->addRegisterDead(LI->reg, &TRI); 1293 1294 if (!MI->allDefsAreDead()) 1295 continue; 1296 1297 DEBUG(dbgs() << "All defs dead: " << *MI); 1298 Dead.push_back(MI); 1299 } 1300 } 1301 1302 if (Dead.empty()) 1303 return; 1304 1305 Edit->eliminateDeadDefs(Dead, None, &AA); 1306 } 1307 1308 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1309 ++NumFinished; 1310 1311 // At this point, the live intervals in Edit contain VNInfos corresponding to 1312 // the inserted copies. 1313 1314 // Add the original defs from the parent interval. 1315 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1316 if (ParentVNI->isUnused()) 1317 continue; 1318 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1319 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1320 1321 // Force rematted values to be recomputed everywhere. 1322 // The new live ranges may be truncated. 1323 if (Edit->didRematerialize(ParentVNI)) 1324 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1325 forceRecompute(i, ParentVNI); 1326 } 1327 1328 // Hoist back-copies to the complement interval when in spill mode. 1329 switch (SpillMode) { 1330 case SM_Partition: 1331 // Leave all back-copies as is. 1332 break; 1333 case SM_Size: 1334 case SM_Speed: 1335 // hoistCopies will behave differently between size and speed. 1336 hoistCopies(); 1337 } 1338 1339 // Transfer the simply mapped values, check if any are skipped. 1340 bool Skipped = transferValues(); 1341 1342 // Rewrite virtual registers, possibly extending ranges. 1343 rewriteAssigned(Skipped); 1344 1345 if (Skipped) 1346 extendPHIKillRanges(); 1347 else 1348 ++NumSimple; 1349 1350 // Delete defs that were rematted everywhere. 1351 if (Skipped) 1352 deleteRematVictims(); 1353 1354 // Get rid of unused values and set phi-kill flags. 1355 for (unsigned Reg : *Edit) { 1356 LiveInterval &LI = LIS.getInterval(Reg); 1357 LI.removeEmptySubRanges(); 1358 LI.RenumberValues(); 1359 } 1360 1361 // Provide a reverse mapping from original indices to Edit ranges. 1362 if (LRMap) { 1363 LRMap->clear(); 1364 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1365 LRMap->push_back(i); 1366 } 1367 1368 // Now check if any registers were separated into multiple components. 1369 ConnectedVNInfoEqClasses ConEQ(LIS); 1370 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1371 // Don't use iterators, they are invalidated by create() below. 1372 unsigned VReg = Edit->get(i); 1373 LiveInterval &LI = LIS.getInterval(VReg); 1374 SmallVector<LiveInterval*, 8> SplitLIs; 1375 LIS.splitSeparateComponents(LI, SplitLIs); 1376 unsigned Original = VRM.getOriginal(VReg); 1377 for (LiveInterval *SplitLI : SplitLIs) 1378 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1379 1380 // The new intervals all map back to i. 1381 if (LRMap) 1382 LRMap->resize(Edit->size(), i); 1383 } 1384 1385 // Calculate spill weight and allocation hints for new intervals. 1386 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1387 1388 assert(!LRMap || LRMap->size() == Edit->size()); 1389 } 1390 1391 1392 //===----------------------------------------------------------------------===// 1393 // Single Block Splitting 1394 //===----------------------------------------------------------------------===// 1395 1396 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1397 bool SingleInstrs) const { 1398 // Always split for multiple instructions. 1399 if (!BI.isOneInstr()) 1400 return true; 1401 // Don't split for single instructions unless explicitly requested. 1402 if (!SingleInstrs) 1403 return false; 1404 // Splitting a live-through range always makes progress. 1405 if (BI.LiveIn && BI.LiveOut) 1406 return true; 1407 // No point in isolating a copy. It has no register class constraints. 1408 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1409 return false; 1410 // Finally, don't isolate an end point that was created by earlier splits. 1411 return isOriginalEndpoint(BI.FirstInstr); 1412 } 1413 1414 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1415 openIntv(); 1416 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1417 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1418 LastSplitPoint)); 1419 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1420 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1421 } else { 1422 // The last use is after the last valid split point. 1423 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1424 useIntv(SegStart, SegStop); 1425 overlapIntv(SegStop, BI.LastInstr); 1426 } 1427 } 1428 1429 1430 //===----------------------------------------------------------------------===// 1431 // Global Live Range Splitting Support 1432 //===----------------------------------------------------------------------===// 1433 1434 // These methods support a method of global live range splitting that uses a 1435 // global algorithm to decide intervals for CFG edges. They will insert split 1436 // points and color intervals in basic blocks while avoiding interference. 1437 // 1438 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1439 // are on the stack. 1440 1441 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1442 unsigned IntvIn, SlotIndex LeaveBefore, 1443 unsigned IntvOut, SlotIndex EnterAfter){ 1444 SlotIndex Start, Stop; 1445 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1446 1447 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1448 << ") intf " << LeaveBefore << '-' << EnterAfter 1449 << ", live-through " << IntvIn << " -> " << IntvOut); 1450 1451 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1452 1453 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1454 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1455 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1456 1457 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1458 1459 if (!IntvOut) { 1460 DEBUG(dbgs() << ", spill on entry.\n"); 1461 // 1462 // <<<<<<<<< Possible LeaveBefore interference. 1463 // |-----------| Live through. 1464 // -____________ Spill on entry. 1465 // 1466 selectIntv(IntvIn); 1467 SlotIndex Idx = leaveIntvAtTop(*MBB); 1468 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1469 (void)Idx; 1470 return; 1471 } 1472 1473 if (!IntvIn) { 1474 DEBUG(dbgs() << ", reload on exit.\n"); 1475 // 1476 // >>>>>>> Possible EnterAfter interference. 1477 // |-----------| Live through. 1478 // ___________-- Reload on exit. 1479 // 1480 selectIntv(IntvOut); 1481 SlotIndex Idx = enterIntvAtEnd(*MBB); 1482 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1483 (void)Idx; 1484 return; 1485 } 1486 1487 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1488 DEBUG(dbgs() << ", straight through.\n"); 1489 // 1490 // |-----------| Live through. 1491 // ------------- Straight through, same intv, no interference. 1492 // 1493 selectIntv(IntvOut); 1494 useIntv(Start, Stop); 1495 return; 1496 } 1497 1498 // We cannot legally insert splits after LSP. 1499 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1500 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1501 1502 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1503 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1504 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1505 // 1506 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1507 // |-----------| Live through. 1508 // ------======= Switch intervals between interference. 1509 // 1510 selectIntv(IntvOut); 1511 SlotIndex Idx; 1512 if (LeaveBefore && LeaveBefore < LSP) { 1513 Idx = enterIntvBefore(LeaveBefore); 1514 useIntv(Idx, Stop); 1515 } else { 1516 Idx = enterIntvAtEnd(*MBB); 1517 } 1518 selectIntv(IntvIn); 1519 useIntv(Start, Idx); 1520 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1521 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1522 return; 1523 } 1524 1525 DEBUG(dbgs() << ", create local intv for interference.\n"); 1526 // 1527 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1528 // |-----------| Live through. 1529 // ==---------== Switch intervals before/after interference. 1530 // 1531 assert(LeaveBefore <= EnterAfter && "Missed case"); 1532 1533 selectIntv(IntvOut); 1534 SlotIndex Idx = enterIntvAfter(EnterAfter); 1535 useIntv(Idx, Stop); 1536 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1537 1538 selectIntv(IntvIn); 1539 Idx = leaveIntvBefore(LeaveBefore); 1540 useIntv(Start, Idx); 1541 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1542 } 1543 1544 1545 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1546 unsigned IntvIn, SlotIndex LeaveBefore) { 1547 SlotIndex Start, Stop; 1548 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1549 1550 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1551 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1552 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1553 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1554 1555 assert(IntvIn && "Must have register in"); 1556 assert(BI.LiveIn && "Must be live-in"); 1557 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1558 1559 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1560 DEBUG(dbgs() << " before interference.\n"); 1561 // 1562 // <<< Interference after kill. 1563 // |---o---x | Killed in block. 1564 // ========= Use IntvIn everywhere. 1565 // 1566 selectIntv(IntvIn); 1567 useIntv(Start, BI.LastInstr); 1568 return; 1569 } 1570 1571 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1572 1573 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1574 // 1575 // <<< Possible interference after last use. 1576 // |---o---o---| Live-out on stack. 1577 // =========____ Leave IntvIn after last use. 1578 // 1579 // < Interference after last use. 1580 // |---o---o--o| Live-out on stack, late last use. 1581 // ============ Copy to stack after LSP, overlap IntvIn. 1582 // \_____ Stack interval is live-out. 1583 // 1584 if (BI.LastInstr < LSP) { 1585 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1586 selectIntv(IntvIn); 1587 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1588 useIntv(Start, Idx); 1589 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1590 } else { 1591 DEBUG(dbgs() << ", spill before last split point.\n"); 1592 selectIntv(IntvIn); 1593 SlotIndex Idx = leaveIntvBefore(LSP); 1594 overlapIntv(Idx, BI.LastInstr); 1595 useIntv(Start, Idx); 1596 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1597 } 1598 return; 1599 } 1600 1601 // The interference is overlapping somewhere we wanted to use IntvIn. That 1602 // means we need to create a local interval that can be allocated a 1603 // different register. 1604 unsigned LocalIntv = openIntv(); 1605 (void)LocalIntv; 1606 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1607 1608 if (!BI.LiveOut || BI.LastInstr < LSP) { 1609 // 1610 // <<<<<<< Interference overlapping uses. 1611 // |---o---o---| Live-out on stack. 1612 // =====----____ Leave IntvIn before interference, then spill. 1613 // 1614 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1615 SlotIndex From = enterIntvBefore(LeaveBefore); 1616 useIntv(From, To); 1617 selectIntv(IntvIn); 1618 useIntv(Start, From); 1619 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1620 return; 1621 } 1622 1623 // <<<<<<< Interference overlapping uses. 1624 // |---o---o--o| Live-out on stack, late last use. 1625 // =====------- Copy to stack before LSP, overlap LocalIntv. 1626 // \_____ Stack interval is live-out. 1627 // 1628 SlotIndex To = leaveIntvBefore(LSP); 1629 overlapIntv(To, BI.LastInstr); 1630 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1631 useIntv(From, To); 1632 selectIntv(IntvIn); 1633 useIntv(Start, From); 1634 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1635 } 1636 1637 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1638 unsigned IntvOut, SlotIndex EnterAfter) { 1639 SlotIndex Start, Stop; 1640 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1641 1642 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1643 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1644 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1645 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1646 1647 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1648 1649 assert(IntvOut && "Must have register out"); 1650 assert(BI.LiveOut && "Must be live-out"); 1651 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1652 1653 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1654 DEBUG(dbgs() << " after interference.\n"); 1655 // 1656 // >>>> Interference before def. 1657 // | o---o---| Defined in block. 1658 // ========= Use IntvOut everywhere. 1659 // 1660 selectIntv(IntvOut); 1661 useIntv(BI.FirstInstr, Stop); 1662 return; 1663 } 1664 1665 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1666 DEBUG(dbgs() << ", reload after interference.\n"); 1667 // 1668 // >>>> Interference before def. 1669 // |---o---o---| Live-through, stack-in. 1670 // ____========= Enter IntvOut before first use. 1671 // 1672 selectIntv(IntvOut); 1673 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1674 useIntv(Idx, Stop); 1675 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1676 return; 1677 } 1678 1679 // The interference is overlapping somewhere we wanted to use IntvOut. That 1680 // means we need to create a local interval that can be allocated a 1681 // different register. 1682 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1683 // 1684 // >>>>>>> Interference overlapping uses. 1685 // |---o---o---| Live-through, stack-in. 1686 // ____---====== Create local interval for interference range. 1687 // 1688 selectIntv(IntvOut); 1689 SlotIndex Idx = enterIntvAfter(EnterAfter); 1690 useIntv(Idx, Stop); 1691 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1692 1693 openIntv(); 1694 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1695 useIntv(From, Idx); 1696 } 1697