1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/VirtRegMap.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "regalloc" 34 35 STATISTIC(NumFinished, "Number of splits finished"); 36 STATISTIC(NumSimple, "Number of splits that were simple"); 37 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 38 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 39 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 40 41 //===----------------------------------------------------------------------===// 42 // Last Insert Point Analysis 43 //===----------------------------------------------------------------------===// 44 45 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 46 unsigned BBNum) 47 : LIS(lis), LastInsertPoint(BBNum) {} 48 49 SlotIndex 50 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 51 const MachineBasicBlock &MBB) { 52 unsigned Num = MBB.getNumber(); 53 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 54 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 55 56 SmallVector<const MachineBasicBlock *, 1> EHPadSucessors; 57 for (const MachineBasicBlock *SMBB : MBB.successors()) 58 if (SMBB->isEHPad()) 59 EHPadSucessors.push_back(SMBB); 60 61 // Compute insert points on the first call. The pair is independent of the 62 // current live interval. 63 if (!LIP.first.isValid()) { 64 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 65 if (FirstTerm == MBB.end()) 66 LIP.first = MBBEnd; 67 else 68 LIP.first = LIS.getInstructionIndex(*FirstTerm); 69 70 // If there is a landing pad successor, also find the call instruction. 71 if (EHPadSucessors.empty()) 72 return LIP.first; 73 // There may not be a call instruction (?) in which case we ignore LPad. 74 LIP.second = LIP.first; 75 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin(); 76 I != E;) { 77 --I; 78 if (I->isCall()) { 79 LIP.second = LIS.getInstructionIndex(*I); 80 break; 81 } 82 } 83 } 84 85 // If CurLI is live into a landing pad successor, move the last insert point 86 // back to the call that may throw. 87 if (!LIP.second) 88 return LIP.first; 89 90 if (none_of(EHPadSucessors, [&](const MachineBasicBlock *EHPad) { 91 return LIS.isLiveInToMBB(CurLI, EHPad); 92 })) 93 return LIP.first; 94 95 // Find the value leaving MBB. 96 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 97 if (!VNI) 98 return LIP.first; 99 100 // If the value leaving MBB was defined after the call in MBB, it can't 101 // really be live-in to the landing pad. This can happen if the landing pad 102 // has a PHI, and this register is undef on the exceptional edge. 103 // <rdar://problem/10664933> 104 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 105 return LIP.first; 106 107 // Value is properly live-in to the landing pad. 108 // Only allow inserts before the call. 109 return LIP.second; 110 } 111 112 MachineBasicBlock::iterator 113 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 114 MachineBasicBlock &MBB) { 115 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 116 if (LIP == LIS.getMBBEndIdx(&MBB)) 117 return MBB.end(); 118 return LIS.getInstructionFromIndex(LIP); 119 } 120 121 //===----------------------------------------------------------------------===// 122 // Split Analysis 123 //===----------------------------------------------------------------------===// 124 125 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 126 const MachineLoopInfo &mli) 127 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 128 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr), 129 IPA(lis, MF.getNumBlockIDs()) {} 130 131 void SplitAnalysis::clear() { 132 UseSlots.clear(); 133 UseBlocks.clear(); 134 ThroughBlocks.clear(); 135 CurLI = nullptr; 136 DidRepairRange = false; 137 } 138 139 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 140 void SplitAnalysis::analyzeUses() { 141 assert(UseSlots.empty() && "Call clear first"); 142 143 // First get all the defs from the interval values. This provides the correct 144 // slots for early clobbers. 145 for (const VNInfo *VNI : CurLI->valnos) 146 if (!VNI->isPHIDef() && !VNI->isUnused()) 147 UseSlots.push_back(VNI->def); 148 149 // Get use slots form the use-def chain. 150 const MachineRegisterInfo &MRI = MF.getRegInfo(); 151 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 152 if (!MO.isUndef()) 153 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 154 155 array_pod_sort(UseSlots.begin(), UseSlots.end()); 156 157 // Remove duplicates, keeping the smaller slot for each instruction. 158 // That is what we want for early clobbers. 159 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 160 SlotIndex::isSameInstr), 161 UseSlots.end()); 162 163 // Compute per-live block info. 164 if (!calcLiveBlockInfo()) { 165 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 166 // I am looking at you, RegisterCoalescer! 167 DidRepairRange = true; 168 ++NumRepairs; 169 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 170 const_cast<LiveIntervals&>(LIS) 171 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 172 UseBlocks.clear(); 173 ThroughBlocks.clear(); 174 bool fixed = calcLiveBlockInfo(); 175 (void)fixed; 176 assert(fixed && "Couldn't fix broken live interval"); 177 } 178 179 DEBUG(dbgs() << "Analyze counted " 180 << UseSlots.size() << " instrs in " 181 << UseBlocks.size() << " blocks, through " 182 << NumThroughBlocks << " blocks.\n"); 183 } 184 185 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 186 /// where CurLI is live. 187 bool SplitAnalysis::calcLiveBlockInfo() { 188 ThroughBlocks.resize(MF.getNumBlockIDs()); 189 NumThroughBlocks = NumGapBlocks = 0; 190 if (CurLI->empty()) 191 return true; 192 193 LiveInterval::const_iterator LVI = CurLI->begin(); 194 LiveInterval::const_iterator LVE = CurLI->end(); 195 196 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 197 UseI = UseSlots.begin(); 198 UseE = UseSlots.end(); 199 200 // Loop over basic blocks where CurLI is live. 201 MachineFunction::iterator MFI = 202 LIS.getMBBFromIndex(LVI->start)->getIterator(); 203 for (;;) { 204 BlockInfo BI; 205 BI.MBB = &*MFI; 206 SlotIndex Start, Stop; 207 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 208 209 // If the block contains no uses, the range must be live through. At one 210 // point, RegisterCoalescer could create dangling ranges that ended 211 // mid-block. 212 if (UseI == UseE || *UseI >= Stop) { 213 ++NumThroughBlocks; 214 ThroughBlocks.set(BI.MBB->getNumber()); 215 // The range shouldn't end mid-block if there are no uses. This shouldn't 216 // happen. 217 if (LVI->end < Stop) 218 return false; 219 } else { 220 // This block has uses. Find the first and last uses in the block. 221 BI.FirstInstr = *UseI; 222 assert(BI.FirstInstr >= Start); 223 do ++UseI; 224 while (UseI != UseE && *UseI < Stop); 225 BI.LastInstr = UseI[-1]; 226 assert(BI.LastInstr < Stop); 227 228 // LVI is the first live segment overlapping MBB. 229 BI.LiveIn = LVI->start <= Start; 230 231 // When not live in, the first use should be a def. 232 if (!BI.LiveIn) { 233 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 234 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 235 BI.FirstDef = BI.FirstInstr; 236 } 237 238 // Look for gaps in the live range. 239 BI.LiveOut = true; 240 while (LVI->end < Stop) { 241 SlotIndex LastStop = LVI->end; 242 if (++LVI == LVE || LVI->start >= Stop) { 243 BI.LiveOut = false; 244 BI.LastInstr = LastStop; 245 break; 246 } 247 248 if (LastStop < LVI->start) { 249 // There is a gap in the live range. Create duplicate entries for the 250 // live-in snippet and the live-out snippet. 251 ++NumGapBlocks; 252 253 // Push the Live-in part. 254 BI.LiveOut = false; 255 UseBlocks.push_back(BI); 256 UseBlocks.back().LastInstr = LastStop; 257 258 // Set up BI for the live-out part. 259 BI.LiveIn = false; 260 BI.LiveOut = true; 261 BI.FirstInstr = BI.FirstDef = LVI->start; 262 } 263 264 // A Segment that starts in the middle of the block must be a def. 265 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 266 if (!BI.FirstDef) 267 BI.FirstDef = LVI->start; 268 } 269 270 UseBlocks.push_back(BI); 271 272 // LVI is now at LVE or LVI->end >= Stop. 273 if (LVI == LVE) 274 break; 275 } 276 277 // Live segment ends exactly at Stop. Move to the next segment. 278 if (LVI->end == Stop && ++LVI == LVE) 279 break; 280 281 // Pick the next basic block. 282 if (LVI->start < Stop) 283 ++MFI; 284 else 285 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 286 } 287 288 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 289 return true; 290 } 291 292 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 293 if (cli->empty()) 294 return 0; 295 LiveInterval *li = const_cast<LiveInterval*>(cli); 296 LiveInterval::iterator LVI = li->begin(); 297 LiveInterval::iterator LVE = li->end(); 298 unsigned Count = 0; 299 300 // Loop over basic blocks where li is live. 301 MachineFunction::const_iterator MFI = 302 LIS.getMBBFromIndex(LVI->start)->getIterator(); 303 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 304 for (;;) { 305 ++Count; 306 LVI = li->advanceTo(LVI, Stop); 307 if (LVI == LVE) 308 return Count; 309 do { 310 ++MFI; 311 Stop = LIS.getMBBEndIdx(&*MFI); 312 } while (Stop <= LVI->start); 313 } 314 } 315 316 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 317 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 318 const LiveInterval &Orig = LIS.getInterval(OrigReg); 319 assert(!Orig.empty() && "Splitting empty interval?"); 320 LiveInterval::const_iterator I = Orig.find(Idx); 321 322 // Range containing Idx should begin at Idx. 323 if (I != Orig.end() && I->start <= Idx) 324 return I->start == Idx; 325 326 // Range does not contain Idx, previous must end at Idx. 327 return I != Orig.begin() && (--I)->end == Idx; 328 } 329 330 void SplitAnalysis::analyze(const LiveInterval *li) { 331 clear(); 332 CurLI = li; 333 analyzeUses(); 334 } 335 336 337 //===----------------------------------------------------------------------===// 338 // Split Editor 339 //===----------------------------------------------------------------------===// 340 341 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 342 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa, 343 LiveIntervals &lis, VirtRegMap &vrm, 344 MachineDominatorTree &mdt, 345 MachineBlockFrequencyInfo &mbfi) 346 : SA(sa), AA(aa), LIS(lis), VRM(vrm), 347 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt), 348 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 349 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 350 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition), 351 RegAssign(Allocator) {} 352 353 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 354 Edit = &LRE; 355 SpillMode = SM; 356 OpenIdx = 0; 357 RegAssign.clear(); 358 Values.clear(); 359 360 // Reset the LiveRangeCalc instances needed for this spill mode. 361 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 362 &LIS.getVNInfoAllocator()); 363 if (SpillMode) 364 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 365 &LIS.getVNInfoAllocator()); 366 367 // We don't need an AliasAnalysis since we will only be performing 368 // cheap-as-a-copy remats anyway. 369 Edit->anyRematerializable(nullptr); 370 } 371 372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 373 LLVM_DUMP_METHOD void SplitEditor::dump() const { 374 if (RegAssign.empty()) { 375 dbgs() << " empty\n"; 376 return; 377 } 378 379 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 380 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 381 dbgs() << '\n'; 382 } 383 #endif 384 385 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 386 LiveInterval &LI) { 387 for (LiveInterval::SubRange &S : LI.subranges()) 388 if (S.LaneMask == LM) 389 return S; 390 llvm_unreachable("SubRange for this mask not found"); 391 } 392 393 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 394 if (!LI.hasSubRanges()) { 395 LI.createDeadDef(VNI); 396 return; 397 } 398 399 SlotIndex Def = VNI->def; 400 if (Original) { 401 // If we are transferring a def from the original interval, make sure 402 // to only update the subranges for which the original subranges had 403 // a def at this location. 404 for (LiveInterval::SubRange &S : LI.subranges()) { 405 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 406 VNInfo *PV = PS.getVNInfoAt(Def); 407 if (PV != nullptr && PV->def == Def) 408 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 409 } 410 } else { 411 // This is a new def: either from rematerialization, or from an inserted 412 // copy. Since rematerialization can regenerate a definition of a sub- 413 // register, we need to check which subranges need to be updated. 414 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 415 assert(DefMI != nullptr); 416 LaneBitmask LM; 417 for (const MachineOperand &DefOp : DefMI->defs()) { 418 unsigned R = DefOp.getReg(); 419 if (R != LI.reg) 420 continue; 421 if (unsigned SR = DefOp.getSubReg()) 422 LM |= TRI.getSubRegIndexLaneMask(SR); 423 else { 424 LM = MRI.getMaxLaneMaskForVReg(R); 425 break; 426 } 427 } 428 for (LiveInterval::SubRange &S : LI.subranges()) 429 if ((S.LaneMask & LM).any()) 430 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 431 } 432 } 433 434 VNInfo *SplitEditor::defValue(unsigned RegIdx, 435 const VNInfo *ParentVNI, 436 SlotIndex Idx, 437 bool Original) { 438 assert(ParentVNI && "Mapping NULL value"); 439 assert(Idx.isValid() && "Invalid SlotIndex"); 440 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 441 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 442 443 // Create a new value. 444 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 445 446 bool Force = LI->hasSubRanges(); 447 ValueForcePair FP(Force ? nullptr : VNI, Force); 448 // Use insert for lookup, so we can add missing values with a second lookup. 449 std::pair<ValueMap::iterator, bool> InsP = 450 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 451 452 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 453 // forced. Keep it as a simple def without any liveness. 454 if (!Force && InsP.second) 455 return VNI; 456 457 // If the previous value was a simple mapping, add liveness for it now. 458 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 459 addDeadDef(*LI, OldVNI, Original); 460 461 // No longer a simple mapping. Switch to a complex mapping. If the 462 // interval has subranges, make it a forced mapping. 463 InsP.first->second = ValueForcePair(nullptr, Force); 464 } 465 466 // This is a complex mapping, add liveness for VNI 467 addDeadDef(*LI, VNI, Original); 468 return VNI; 469 } 470 471 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 472 assert(ParentVNI && "Mapping NULL value"); 473 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 474 VNInfo *VNI = VFP.getPointer(); 475 476 // ParentVNI was either unmapped or already complex mapped. Either way, just 477 // set the force bit. 478 if (!VNI) { 479 VFP.setInt(true); 480 return; 481 } 482 483 // This was previously a single mapping. Make sure the old def is represented 484 // by a trivial live range. 485 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 486 487 // Mark as complex mapped, forced. 488 VFP = ValueForcePair(nullptr, true); 489 } 490 491 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg, 492 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 493 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 494 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 495 bool FirstCopy = !Def.isValid(); 496 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 497 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 498 | getInternalReadRegState(!FirstCopy), SubIdx) 499 .addReg(FromReg, 0, SubIdx); 500 501 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 502 if (FirstCopy) { 503 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 504 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 505 } else { 506 CopyMI->bundleWithPred(); 507 } 508 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx); 509 DestLI.refineSubRanges(Allocator, LaneMask, 510 [Def, &Allocator](LiveInterval::SubRange& SR) { 511 SR.createDeadDef(Def, Allocator); 512 }); 513 return Def; 514 } 515 516 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg, 517 LaneBitmask LaneMask, MachineBasicBlock &MBB, 518 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 519 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 520 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 521 // The full vreg is copied. 522 MachineInstr *CopyMI = 523 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 524 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 525 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 526 } 527 528 // Only a subset of lanes needs to be copied. The following is a simple 529 // heuristic to construct a sequence of COPYs. We could add a target 530 // specific callback if this turns out to be suboptimal. 531 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 532 533 // First pass: Try to find a perfectly matching subregister index. If none 534 // exists find the one covering the most lanemask bits. 535 SmallVector<unsigned, 8> PossibleIndexes; 536 unsigned BestIdx = 0; 537 unsigned BestCover = 0; 538 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 539 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 540 for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) { 541 // Is this index even compatible with the given class? 542 if (TRI.getSubClassWithSubReg(RC, Idx) != RC) 543 continue; 544 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 545 // Early exit if we found a perfect match. 546 if (SubRegMask == LaneMask) { 547 BestIdx = Idx; 548 break; 549 } 550 551 // The index must not cover any lanes outside \p LaneMask. 552 if ((SubRegMask & ~LaneMask).any()) 553 continue; 554 555 unsigned PopCount = countPopulation(SubRegMask.getAsInteger()); 556 PossibleIndexes.push_back(Idx); 557 if (PopCount > BestCover) { 558 BestCover = PopCount; 559 BestIdx = Idx; 560 } 561 } 562 563 // Abort if we cannot possibly implement the COPY with the given indexes. 564 if (BestIdx == 0) 565 report_fatal_error("Impossible to implement partial COPY"); 566 567 SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, 568 BestIdx, DestLI, Late, SlotIndex()); 569 570 // Greedy heuristic: Keep iterating keeping the best covering subreg index 571 // each time. 572 LaneBitmask LanesLeft = 573 LaneMask & ~(TRI.getSubRegIndexLaneMask(BestCover)); 574 while (LanesLeft.any()) { 575 unsigned BestIdx = 0; 576 int BestCover = INT_MIN; 577 for (unsigned Idx : PossibleIndexes) { 578 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 579 // Early exit if we found a perfect match. 580 if (SubRegMask == LanesLeft) { 581 BestIdx = Idx; 582 break; 583 } 584 585 // Try to cover as much of the remaining lanes as possible but 586 // as few of the already covered lanes as possible. 587 int Cover = countPopulation((SubRegMask & LanesLeft).getAsInteger()) 588 - countPopulation((SubRegMask & ~LanesLeft).getAsInteger()); 589 if (Cover > BestCover) { 590 BestCover = Cover; 591 BestIdx = Idx; 592 } 593 } 594 595 if (BestIdx == 0) 596 report_fatal_error("Impossible to implement partial COPY"); 597 598 buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 599 DestLI, Late, Def); 600 LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx); 601 } 602 603 return Def; 604 } 605 606 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 607 VNInfo *ParentVNI, 608 SlotIndex UseIdx, 609 MachineBasicBlock &MBB, 610 MachineBasicBlock::iterator I) { 611 SlotIndex Def; 612 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 613 614 // We may be trying to avoid interference that ends at a deleted instruction, 615 // so always begin RegIdx 0 early and all others late. 616 bool Late = RegIdx != 0; 617 618 // Attempt cheap-as-a-copy rematerialization. 619 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 620 LiveInterval &OrigLI = LIS.getInterval(Original); 621 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 622 623 unsigned Reg = LI->reg; 624 bool DidRemat = false; 625 if (OrigVNI) { 626 LiveRangeEdit::Remat RM(ParentVNI); 627 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 628 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 629 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 630 ++NumRemats; 631 DidRemat = true; 632 } 633 } 634 if (!DidRemat) { 635 LaneBitmask LaneMask; 636 if (LI->hasSubRanges()) { 637 LaneMask = LaneBitmask::getNone(); 638 for (LiveInterval::SubRange &S : LI->subranges()) 639 LaneMask |= S.LaneMask; 640 } else { 641 LaneMask = LaneBitmask::getAll(); 642 } 643 644 ++NumCopies; 645 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 646 } 647 648 // Define the value in Reg. 649 return defValue(RegIdx, ParentVNI, Def, false); 650 } 651 652 /// Create a new virtual register and live interval. 653 unsigned SplitEditor::openIntv() { 654 // Create the complement as index 0. 655 if (Edit->empty()) 656 Edit->createEmptyInterval(); 657 658 // Create the open interval. 659 OpenIdx = Edit->size(); 660 Edit->createEmptyInterval(); 661 return OpenIdx; 662 } 663 664 void SplitEditor::selectIntv(unsigned Idx) { 665 assert(Idx != 0 && "Cannot select the complement interval"); 666 assert(Idx < Edit->size() && "Can only select previously opened interval"); 667 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 668 OpenIdx = Idx; 669 } 670 671 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 672 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 673 DEBUG(dbgs() << " enterIntvBefore " << Idx); 674 Idx = Idx.getBaseIndex(); 675 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 676 if (!ParentVNI) { 677 DEBUG(dbgs() << ": not live\n"); 678 return Idx; 679 } 680 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 681 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 682 assert(MI && "enterIntvBefore called with invalid index"); 683 684 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 685 return VNI->def; 686 } 687 688 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 689 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 690 DEBUG(dbgs() << " enterIntvAfter " << Idx); 691 Idx = Idx.getBoundaryIndex(); 692 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 693 if (!ParentVNI) { 694 DEBUG(dbgs() << ": not live\n"); 695 return Idx; 696 } 697 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 698 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 699 assert(MI && "enterIntvAfter called with invalid index"); 700 701 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 702 std::next(MachineBasicBlock::iterator(MI))); 703 return VNI->def; 704 } 705 706 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 707 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 708 SlotIndex End = LIS.getMBBEndIdx(&MBB); 709 SlotIndex Last = End.getPrevSlot(); 710 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 711 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 712 if (!ParentVNI) { 713 DEBUG(dbgs() << ": not live\n"); 714 return End; 715 } 716 DEBUG(dbgs() << ": valno " << ParentVNI->id); 717 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 718 SA.getLastSplitPointIter(&MBB)); 719 RegAssign.insert(VNI->def, End, OpenIdx); 720 DEBUG(dump()); 721 return VNI->def; 722 } 723 724 /// useIntv - indicate that all instructions in MBB should use OpenLI. 725 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 726 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 727 } 728 729 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 730 assert(OpenIdx && "openIntv not called before useIntv"); 731 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 732 RegAssign.insert(Start, End, OpenIdx); 733 DEBUG(dump()); 734 } 735 736 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 737 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 738 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 739 740 // The interval must be live beyond the instruction at Idx. 741 SlotIndex Boundary = Idx.getBoundaryIndex(); 742 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 743 if (!ParentVNI) { 744 DEBUG(dbgs() << ": not live\n"); 745 return Boundary.getNextSlot(); 746 } 747 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 748 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 749 assert(MI && "No instruction at index"); 750 751 // In spill mode, make live ranges as short as possible by inserting the copy 752 // before MI. This is only possible if that instruction doesn't redefine the 753 // value. The inserted COPY is not a kill, and we don't need to recompute 754 // the source live range. The spiller also won't try to hoist this copy. 755 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 756 MI->readsVirtualRegister(Edit->getReg())) { 757 forceRecompute(0, ParentVNI); 758 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 759 return Idx; 760 } 761 762 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 763 std::next(MachineBasicBlock::iterator(MI))); 764 return VNI->def; 765 } 766 767 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 768 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 769 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 770 771 // The interval must be live into the instruction at Idx. 772 Idx = Idx.getBaseIndex(); 773 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 774 if (!ParentVNI) { 775 DEBUG(dbgs() << ": not live\n"); 776 return Idx.getNextSlot(); 777 } 778 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 779 780 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 781 assert(MI && "No instruction at index"); 782 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 783 return VNI->def; 784 } 785 786 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 787 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 788 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 789 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 790 791 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 792 if (!ParentVNI) { 793 DEBUG(dbgs() << ": not live\n"); 794 return Start; 795 } 796 797 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 798 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 799 RegAssign.insert(Start, VNI->def, OpenIdx); 800 DEBUG(dump()); 801 return VNI->def; 802 } 803 804 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 805 assert(OpenIdx && "openIntv not called before overlapIntv"); 806 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 807 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 808 "Parent changes value in extended range"); 809 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 810 "Range cannot span basic blocks"); 811 812 // The complement interval will be extended as needed by LRCalc.extend(). 813 if (ParentVNI) 814 forceRecompute(0, ParentVNI); 815 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 816 RegAssign.insert(Start, End, OpenIdx); 817 DEBUG(dump()); 818 } 819 820 //===----------------------------------------------------------------------===// 821 // Spill modes 822 //===----------------------------------------------------------------------===// 823 824 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 825 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 826 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 827 RegAssignMap::iterator AssignI; 828 AssignI.setMap(RegAssign); 829 830 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 831 SlotIndex Def = Copies[i]->def; 832 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 833 assert(MI && "No instruction for back-copy"); 834 835 MachineBasicBlock *MBB = MI->getParent(); 836 MachineBasicBlock::iterator MBBI(MI); 837 bool AtBegin; 838 do AtBegin = MBBI == MBB->begin(); 839 while (!AtBegin && (--MBBI)->isDebugValue()); 840 841 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 842 LIS.removeVRegDefAt(*LI, Def); 843 LIS.RemoveMachineInstrFromMaps(*MI); 844 MI->eraseFromParent(); 845 846 // Adjust RegAssign if a register assignment is killed at Def. We want to 847 // avoid calculating the live range of the source register if possible. 848 AssignI.find(Def.getPrevSlot()); 849 if (!AssignI.valid() || AssignI.start() >= Def) 850 continue; 851 // If MI doesn't kill the assigned register, just leave it. 852 if (AssignI.stop() != Def) 853 continue; 854 unsigned RegIdx = AssignI.value(); 855 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 856 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 857 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 858 } else { 859 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 860 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 861 AssignI.setStop(Kill); 862 } 863 } 864 } 865 866 MachineBasicBlock* 867 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 868 MachineBasicBlock *DefMBB) { 869 if (MBB == DefMBB) 870 return MBB; 871 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 872 873 const MachineLoopInfo &Loops = SA.Loops; 874 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 875 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 876 877 // Best candidate so far. 878 MachineBasicBlock *BestMBB = MBB; 879 unsigned BestDepth = UINT_MAX; 880 881 for (;;) { 882 const MachineLoop *Loop = Loops.getLoopFor(MBB); 883 884 // MBB isn't in a loop, it doesn't get any better. All dominators have a 885 // higher frequency by definition. 886 if (!Loop) { 887 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 888 << MBB->getNumber() << " at depth 0\n"); 889 return MBB; 890 } 891 892 // We'll never be able to exit the DefLoop. 893 if (Loop == DefLoop) { 894 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 895 << MBB->getNumber() << " in the same loop\n"); 896 return MBB; 897 } 898 899 // Least busy dominator seen so far. 900 unsigned Depth = Loop->getLoopDepth(); 901 if (Depth < BestDepth) { 902 BestMBB = MBB; 903 BestDepth = Depth; 904 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 905 << MBB->getNumber() << " at depth " << Depth << '\n'); 906 } 907 908 // Leave loop by going to the immediate dominator of the loop header. 909 // This is a bigger stride than simply walking up the dominator tree. 910 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 911 912 // Too far up the dominator tree? 913 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 914 return BestMBB; 915 916 MBB = IDom->getBlock(); 917 } 918 } 919 920 void SplitEditor::computeRedundantBackCopies( 921 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 922 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 923 LiveInterval *Parent = &Edit->getParent(); 924 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 925 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 926 927 // Aggregate VNIs having the same value as ParentVNI. 928 for (VNInfo *VNI : LI->valnos) { 929 if (VNI->isUnused()) 930 continue; 931 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 932 EqualVNs[ParentVNI->id].insert(VNI); 933 } 934 935 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 936 // redundant VNIs to BackCopies. 937 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 938 VNInfo *ParentVNI = Parent->getValNumInfo(i); 939 if (!NotToHoistSet.count(ParentVNI->id)) 940 continue; 941 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 942 SmallPtrSetIterator<VNInfo *> It2 = It1; 943 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 944 It2 = It1; 945 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 946 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 947 continue; 948 949 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 950 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 951 if (MBB1 == MBB2) { 952 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 953 } else if (MDT.dominates(MBB1, MBB2)) { 954 DominatedVNIs.insert(*It2); 955 } else if (MDT.dominates(MBB2, MBB1)) { 956 DominatedVNIs.insert(*It1); 957 } 958 } 959 } 960 if (!DominatedVNIs.empty()) { 961 forceRecompute(0, ParentVNI); 962 for (auto VNI : DominatedVNIs) { 963 BackCopies.push_back(VNI); 964 } 965 DominatedVNIs.clear(); 966 } 967 } 968 } 969 970 /// For SM_Size mode, find a common dominator for all the back-copies for 971 /// the same ParentVNI and hoist the backcopies to the dominator BB. 972 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 973 /// to do the hoisting, simply remove the dominated backcopies for the same 974 /// ParentVNI. 975 void SplitEditor::hoistCopies() { 976 // Get the complement interval, always RegIdx 0. 977 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 978 LiveInterval *Parent = &Edit->getParent(); 979 980 // Track the nearest common dominator for all back-copies for each ParentVNI, 981 // indexed by ParentVNI->id. 982 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 983 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 984 // The total cost of all the back-copies for each ParentVNI. 985 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 986 // The ParentVNI->id set for which hoisting back-copies are not beneficial 987 // for Speed. 988 DenseSet<unsigned> NotToHoistSet; 989 990 // Find the nearest common dominator for parent values with multiple 991 // back-copies. If a single back-copy dominates, put it in DomPair.second. 992 for (VNInfo *VNI : LI->valnos) { 993 if (VNI->isUnused()) 994 continue; 995 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 996 assert(ParentVNI && "Parent not live at complement def"); 997 998 // Don't hoist remats. The complement is probably going to disappear 999 // completely anyway. 1000 if (Edit->didRematerialize(ParentVNI)) 1001 continue; 1002 1003 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1004 1005 DomPair &Dom = NearestDom[ParentVNI->id]; 1006 1007 // Keep directly defined parent values. This is either a PHI or an 1008 // instruction in the complement range. All other copies of ParentVNI 1009 // should be eliminated. 1010 if (VNI->def == ParentVNI->def) { 1011 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1012 Dom = DomPair(ValMBB, VNI->def); 1013 continue; 1014 } 1015 // Skip the singly mapped values. There is nothing to gain from hoisting a 1016 // single back-copy. 1017 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1018 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1019 continue; 1020 } 1021 1022 if (!Dom.first) { 1023 // First time we see ParentVNI. VNI dominates itself. 1024 Dom = DomPair(ValMBB, VNI->def); 1025 } else if (Dom.first == ValMBB) { 1026 // Two defs in the same block. Pick the earlier def. 1027 if (!Dom.second.isValid() || VNI->def < Dom.second) 1028 Dom.second = VNI->def; 1029 } else { 1030 // Different basic blocks. Check if one dominates. 1031 MachineBasicBlock *Near = 1032 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1033 if (Near == ValMBB) 1034 // Def ValMBB dominates. 1035 Dom = DomPair(ValMBB, VNI->def); 1036 else if (Near != Dom.first) 1037 // None dominate. Hoist to common dominator, need new def. 1038 Dom = DomPair(Near, SlotIndex()); 1039 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1040 } 1041 1042 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 1043 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 1044 << " hoist to BB#" << Dom.first->getNumber() << ' ' 1045 << Dom.second << '\n'); 1046 } 1047 1048 // Insert the hoisted copies. 1049 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1050 DomPair &Dom = NearestDom[i]; 1051 if (!Dom.first || Dom.second.isValid()) 1052 continue; 1053 // This value needs a hoisted copy inserted at the end of Dom.first. 1054 VNInfo *ParentVNI = Parent->getValNumInfo(i); 1055 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1056 // Get a less loopy dominator than Dom.first. 1057 Dom.first = findShallowDominator(Dom.first, DefMBB); 1058 if (SpillMode == SM_Speed && 1059 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1060 NotToHoistSet.insert(ParentVNI->id); 1061 continue; 1062 } 1063 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 1064 Dom.second = 1065 defFromParent(0, ParentVNI, Last, *Dom.first, 1066 SA.getLastSplitPointIter(Dom.first))->def; 1067 } 1068 1069 // Remove redundant back-copies that are now known to be dominated by another 1070 // def with the same value. 1071 SmallVector<VNInfo*, 8> BackCopies; 1072 for (VNInfo *VNI : LI->valnos) { 1073 if (VNI->isUnused()) 1074 continue; 1075 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1076 const DomPair &Dom = NearestDom[ParentVNI->id]; 1077 if (!Dom.first || Dom.second == VNI->def || 1078 NotToHoistSet.count(ParentVNI->id)) 1079 continue; 1080 BackCopies.push_back(VNI); 1081 forceRecompute(0, ParentVNI); 1082 } 1083 1084 // If it is not beneficial to hoist all the BackCopies, simply remove 1085 // redundant BackCopies in speed mode. 1086 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1087 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1088 1089 removeBackCopies(BackCopies); 1090 } 1091 1092 1093 /// transferValues - Transfer all possible values to the new live ranges. 1094 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 1095 bool SplitEditor::transferValues() { 1096 bool Skipped = false; 1097 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1098 for (const LiveRange::Segment &S : Edit->getParent()) { 1099 DEBUG(dbgs() << " blit " << S << ':'); 1100 VNInfo *ParentVNI = S.valno; 1101 // RegAssign has holes where RegIdx 0 should be used. 1102 SlotIndex Start = S.start; 1103 AssignI.advanceTo(Start); 1104 do { 1105 unsigned RegIdx; 1106 SlotIndex End = S.end; 1107 if (!AssignI.valid()) { 1108 RegIdx = 0; 1109 } else if (AssignI.start() <= Start) { 1110 RegIdx = AssignI.value(); 1111 if (AssignI.stop() < End) { 1112 End = AssignI.stop(); 1113 ++AssignI; 1114 } 1115 } else { 1116 RegIdx = 0; 1117 End = std::min(End, AssignI.start()); 1118 } 1119 1120 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1121 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx 1122 << '(' << PrintReg(Edit->get(RegIdx)) << ')'); 1123 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1124 1125 // Check for a simply defined value that can be blitted directly. 1126 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1127 if (VNInfo *VNI = VFP.getPointer()) { 1128 DEBUG(dbgs() << ':' << VNI->id); 1129 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1130 Start = End; 1131 continue; 1132 } 1133 1134 // Skip values with forced recomputation. 1135 if (VFP.getInt()) { 1136 DEBUG(dbgs() << "(recalc)"); 1137 Skipped = true; 1138 Start = End; 1139 continue; 1140 } 1141 1142 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1143 1144 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1145 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1146 // LiveInBlocks. 1147 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1148 SlotIndex BlockStart, BlockEnd; 1149 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1150 1151 // The first block may be live-in, or it may have its own def. 1152 if (Start != BlockStart) { 1153 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1154 assert(VNI && "Missing def for complex mapped value"); 1155 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 1156 // MBB has its own def. Is it also live-out? 1157 if (BlockEnd <= End) 1158 LRC.setLiveOutValue(&*MBB, VNI); 1159 1160 // Skip to the next block for live-in. 1161 ++MBB; 1162 BlockStart = BlockEnd; 1163 } 1164 1165 // Handle the live-in blocks covered by [Start;End). 1166 assert(Start <= BlockStart && "Expected live-in block"); 1167 while (BlockStart < End) { 1168 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 1169 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1170 if (BlockStart == ParentVNI->def) { 1171 // This block has the def of a parent PHI, so it isn't live-in. 1172 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1173 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1174 assert(VNI && "Missing def for complex mapped parent PHI"); 1175 if (End >= BlockEnd) 1176 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1177 } else { 1178 // This block needs a live-in value. The last block covered may not 1179 // be live-out. 1180 if (End < BlockEnd) 1181 LRC.addLiveInBlock(LI, MDT[&*MBB], End); 1182 else { 1183 // Live-through, and we don't know the value. 1184 LRC.addLiveInBlock(LI, MDT[&*MBB]); 1185 LRC.setLiveOutValue(&*MBB, nullptr); 1186 } 1187 } 1188 BlockStart = BlockEnd; 1189 ++MBB; 1190 } 1191 Start = End; 1192 } while (Start != S.end); 1193 DEBUG(dbgs() << '\n'); 1194 } 1195 1196 LRCalc[0].calculateValues(); 1197 if (SpillMode) 1198 LRCalc[1].calculateValues(); 1199 1200 return Skipped; 1201 } 1202 1203 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1204 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1205 if (Seg == nullptr) 1206 return true; 1207 if (Seg->end != Def.getDeadSlot()) 1208 return false; 1209 // This is a dead PHI. Remove it. 1210 LR.removeSegment(*Seg, true); 1211 return true; 1212 } 1213 1214 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC, 1215 LiveRange &LR, LaneBitmask LM, 1216 ArrayRef<SlotIndex> Undefs) { 1217 for (MachineBasicBlock *P : B.predecessors()) { 1218 SlotIndex End = LIS.getMBBEndIdx(P); 1219 SlotIndex LastUse = End.getPrevSlot(); 1220 // The predecessor may not have a live-out value. That is OK, like an 1221 // undef PHI operand. 1222 LiveInterval &PLI = Edit->getParent(); 1223 // Need the cast because the inputs to ?: would otherwise be deemed 1224 // "incompatible": SubRange vs LiveInterval. 1225 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI) 1226 : static_cast<LiveRange&>(PLI); 1227 if (PSR.liveAt(LastUse)) 1228 LRC.extend(LR, End, /*PhysReg=*/0, Undefs); 1229 } 1230 } 1231 1232 void SplitEditor::extendPHIKillRanges() { 1233 // Extend live ranges to be live-out for successor PHI values. 1234 1235 // Visit each PHI def slot in the parent live interval. If the def is dead, 1236 // remove it. Otherwise, extend the live interval to reach the end indexes 1237 // of all predecessor blocks. 1238 1239 LiveInterval &ParentLI = Edit->getParent(); 1240 for (const VNInfo *V : ParentLI.valnos) { 1241 if (V->isUnused() || !V->isPHIDef()) 1242 continue; 1243 1244 unsigned RegIdx = RegAssign.lookup(V->def); 1245 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1246 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1247 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1248 if (!removeDeadSegment(V->def, LI)) 1249 extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1250 } 1251 1252 SmallVector<SlotIndex, 4> Undefs; 1253 LiveRangeCalc SubLRC; 1254 1255 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1256 for (const VNInfo *V : PS.valnos) { 1257 if (V->isUnused() || !V->isPHIDef()) 1258 continue; 1259 unsigned RegIdx = RegAssign.lookup(V->def); 1260 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1261 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI); 1262 if (removeDeadSegment(V->def, S)) 1263 continue; 1264 1265 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1266 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1267 &LIS.getVNInfoAllocator()); 1268 Undefs.clear(); 1269 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1270 extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs); 1271 } 1272 } 1273 } 1274 1275 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1276 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1277 struct ExtPoint { 1278 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1279 : MO(O), RegIdx(R), Next(N) {} 1280 MachineOperand MO; 1281 unsigned RegIdx; 1282 SlotIndex Next; 1283 }; 1284 1285 SmallVector<ExtPoint,4> ExtPoints; 1286 1287 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 1288 RE = MRI.reg_end(); RI != RE;) { 1289 MachineOperand &MO = *RI; 1290 MachineInstr *MI = MO.getParent(); 1291 ++RI; 1292 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1293 if (MI->isDebugValue()) { 1294 DEBUG(dbgs() << "Zapping " << *MI); 1295 MO.setReg(0); 1296 continue; 1297 } 1298 1299 // <undef> operands don't really read the register, so it doesn't matter 1300 // which register we choose. When the use operand is tied to a def, we must 1301 // use the same register as the def, so just do that always. 1302 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1303 if (MO.isDef() || MO.isUndef()) 1304 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1305 1306 // Rewrite to the mapped register at Idx. 1307 unsigned RegIdx = RegAssign.lookup(Idx); 1308 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1309 MO.setReg(LI.reg); 1310 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 1311 << Idx << ':' << RegIdx << '\t' << *MI); 1312 1313 // Extend liveness to Idx if the instruction reads reg. 1314 if (!ExtendRanges || MO.isUndef()) 1315 continue; 1316 1317 // Skip instructions that don't read Reg. 1318 if (MO.isDef()) { 1319 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1320 continue; 1321 // We may want to extend a live range for a partial redef, or for a use 1322 // tied to an early clobber. 1323 Idx = Idx.getPrevSlot(); 1324 if (!Edit->getParent().liveAt(Idx)) 1325 continue; 1326 } else 1327 Idx = Idx.getRegSlot(true); 1328 1329 SlotIndex Next = Idx.getNextSlot(); 1330 if (LI.hasSubRanges()) { 1331 // We have to delay extending subranges until we have seen all operands 1332 // defining the register. This is because a <def,read-undef> operand 1333 // will create an "undef" point, and we cannot extend any subranges 1334 // until all of them have been accounted for. 1335 if (MO.isUse()) 1336 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1337 } else { 1338 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1339 LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1340 } 1341 } 1342 1343 for (ExtPoint &EP : ExtPoints) { 1344 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1345 assert(LI.hasSubRanges()); 1346 1347 LiveRangeCalc SubLRC; 1348 unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1349 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1350 : MRI.getMaxLaneMaskForVReg(Reg); 1351 for (LiveInterval::SubRange &S : LI.subranges()) { 1352 if ((S.LaneMask & LM).none()) 1353 continue; 1354 // The problem here can be that the new register may have been created 1355 // for a partially defined original register. For example: 1356 // %vreg827:subreg_hireg<def,read-undef> = ... 1357 // ... 1358 // %vreg828<def> = COPY %vreg827 1359 if (S.empty()) 1360 continue; 1361 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1362 &LIS.getVNInfoAllocator()); 1363 SmallVector<SlotIndex, 4> Undefs; 1364 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1365 SubLRC.extend(S, EP.Next, 0, Undefs); 1366 } 1367 } 1368 1369 for (unsigned R : *Edit) { 1370 LiveInterval &LI = LIS.getInterval(R); 1371 if (!LI.hasSubRanges()) 1372 continue; 1373 LI.clear(); 1374 LI.removeEmptySubRanges(); 1375 LIS.constructMainRangeFromSubranges(LI); 1376 } 1377 } 1378 1379 void SplitEditor::deleteRematVictims() { 1380 SmallVector<MachineInstr*, 8> Dead; 1381 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1382 LiveInterval *LI = &LIS.getInterval(*I); 1383 for (const LiveRange::Segment &S : LI->segments) { 1384 // Dead defs end at the dead slot. 1385 if (S.end != S.valno->def.getDeadSlot()) 1386 continue; 1387 if (S.valno->isPHIDef()) 1388 continue; 1389 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1390 assert(MI && "Missing instruction for dead def"); 1391 MI->addRegisterDead(LI->reg, &TRI); 1392 1393 if (!MI->allDefsAreDead()) 1394 continue; 1395 1396 DEBUG(dbgs() << "All defs dead: " << *MI); 1397 Dead.push_back(MI); 1398 } 1399 } 1400 1401 if (Dead.empty()) 1402 return; 1403 1404 Edit->eliminateDeadDefs(Dead, None, &AA); 1405 } 1406 1407 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1408 ++NumFinished; 1409 1410 // At this point, the live intervals in Edit contain VNInfos corresponding to 1411 // the inserted copies. 1412 1413 // Add the original defs from the parent interval. 1414 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1415 if (ParentVNI->isUnused()) 1416 continue; 1417 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1418 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1419 1420 // Force rematted values to be recomputed everywhere. 1421 // The new live ranges may be truncated. 1422 if (Edit->didRematerialize(ParentVNI)) 1423 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1424 forceRecompute(i, ParentVNI); 1425 } 1426 1427 // Hoist back-copies to the complement interval when in spill mode. 1428 switch (SpillMode) { 1429 case SM_Partition: 1430 // Leave all back-copies as is. 1431 break; 1432 case SM_Size: 1433 case SM_Speed: 1434 // hoistCopies will behave differently between size and speed. 1435 hoistCopies(); 1436 } 1437 1438 // Transfer the simply mapped values, check if any are skipped. 1439 bool Skipped = transferValues(); 1440 1441 // Rewrite virtual registers, possibly extending ranges. 1442 rewriteAssigned(Skipped); 1443 1444 if (Skipped) 1445 extendPHIKillRanges(); 1446 else 1447 ++NumSimple; 1448 1449 // Delete defs that were rematted everywhere. 1450 if (Skipped) 1451 deleteRematVictims(); 1452 1453 // Get rid of unused values and set phi-kill flags. 1454 for (unsigned Reg : *Edit) { 1455 LiveInterval &LI = LIS.getInterval(Reg); 1456 LI.removeEmptySubRanges(); 1457 LI.RenumberValues(); 1458 } 1459 1460 // Provide a reverse mapping from original indices to Edit ranges. 1461 if (LRMap) { 1462 LRMap->clear(); 1463 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1464 LRMap->push_back(i); 1465 } 1466 1467 // Now check if any registers were separated into multiple components. 1468 ConnectedVNInfoEqClasses ConEQ(LIS); 1469 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1470 // Don't use iterators, they are invalidated by create() below. 1471 unsigned VReg = Edit->get(i); 1472 LiveInterval &LI = LIS.getInterval(VReg); 1473 SmallVector<LiveInterval*, 8> SplitLIs; 1474 LIS.splitSeparateComponents(LI, SplitLIs); 1475 unsigned Original = VRM.getOriginal(VReg); 1476 for (LiveInterval *SplitLI : SplitLIs) 1477 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1478 1479 // The new intervals all map back to i. 1480 if (LRMap) 1481 LRMap->resize(Edit->size(), i); 1482 } 1483 1484 // Calculate spill weight and allocation hints for new intervals. 1485 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1486 1487 assert(!LRMap || LRMap->size() == Edit->size()); 1488 } 1489 1490 1491 //===----------------------------------------------------------------------===// 1492 // Single Block Splitting 1493 //===----------------------------------------------------------------------===// 1494 1495 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1496 bool SingleInstrs) const { 1497 // Always split for multiple instructions. 1498 if (!BI.isOneInstr()) 1499 return true; 1500 // Don't split for single instructions unless explicitly requested. 1501 if (!SingleInstrs) 1502 return false; 1503 // Splitting a live-through range always makes progress. 1504 if (BI.LiveIn && BI.LiveOut) 1505 return true; 1506 // No point in isolating a copy. It has no register class constraints. 1507 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1508 return false; 1509 // Finally, don't isolate an end point that was created by earlier splits. 1510 return isOriginalEndpoint(BI.FirstInstr); 1511 } 1512 1513 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1514 openIntv(); 1515 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1516 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1517 LastSplitPoint)); 1518 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1519 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1520 } else { 1521 // The last use is after the last valid split point. 1522 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1523 useIntv(SegStart, SegStop); 1524 overlapIntv(SegStop, BI.LastInstr); 1525 } 1526 } 1527 1528 1529 //===----------------------------------------------------------------------===// 1530 // Global Live Range Splitting Support 1531 //===----------------------------------------------------------------------===// 1532 1533 // These methods support a method of global live range splitting that uses a 1534 // global algorithm to decide intervals for CFG edges. They will insert split 1535 // points and color intervals in basic blocks while avoiding interference. 1536 // 1537 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1538 // are on the stack. 1539 1540 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1541 unsigned IntvIn, SlotIndex LeaveBefore, 1542 unsigned IntvOut, SlotIndex EnterAfter){ 1543 SlotIndex Start, Stop; 1544 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1545 1546 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1547 << ") intf " << LeaveBefore << '-' << EnterAfter 1548 << ", live-through " << IntvIn << " -> " << IntvOut); 1549 1550 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1551 1552 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1553 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1554 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1555 1556 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1557 1558 if (!IntvOut) { 1559 DEBUG(dbgs() << ", spill on entry.\n"); 1560 // 1561 // <<<<<<<<< Possible LeaveBefore interference. 1562 // |-----------| Live through. 1563 // -____________ Spill on entry. 1564 // 1565 selectIntv(IntvIn); 1566 SlotIndex Idx = leaveIntvAtTop(*MBB); 1567 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1568 (void)Idx; 1569 return; 1570 } 1571 1572 if (!IntvIn) { 1573 DEBUG(dbgs() << ", reload on exit.\n"); 1574 // 1575 // >>>>>>> Possible EnterAfter interference. 1576 // |-----------| Live through. 1577 // ___________-- Reload on exit. 1578 // 1579 selectIntv(IntvOut); 1580 SlotIndex Idx = enterIntvAtEnd(*MBB); 1581 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1582 (void)Idx; 1583 return; 1584 } 1585 1586 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1587 DEBUG(dbgs() << ", straight through.\n"); 1588 // 1589 // |-----------| Live through. 1590 // ------------- Straight through, same intv, no interference. 1591 // 1592 selectIntv(IntvOut); 1593 useIntv(Start, Stop); 1594 return; 1595 } 1596 1597 // We cannot legally insert splits after LSP. 1598 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1599 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1600 1601 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1602 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1603 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1604 // 1605 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1606 // |-----------| Live through. 1607 // ------======= Switch intervals between interference. 1608 // 1609 selectIntv(IntvOut); 1610 SlotIndex Idx; 1611 if (LeaveBefore && LeaveBefore < LSP) { 1612 Idx = enterIntvBefore(LeaveBefore); 1613 useIntv(Idx, Stop); 1614 } else { 1615 Idx = enterIntvAtEnd(*MBB); 1616 } 1617 selectIntv(IntvIn); 1618 useIntv(Start, Idx); 1619 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1620 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1621 return; 1622 } 1623 1624 DEBUG(dbgs() << ", create local intv for interference.\n"); 1625 // 1626 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1627 // |-----------| Live through. 1628 // ==---------== Switch intervals before/after interference. 1629 // 1630 assert(LeaveBefore <= EnterAfter && "Missed case"); 1631 1632 selectIntv(IntvOut); 1633 SlotIndex Idx = enterIntvAfter(EnterAfter); 1634 useIntv(Idx, Stop); 1635 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1636 1637 selectIntv(IntvIn); 1638 Idx = leaveIntvBefore(LeaveBefore); 1639 useIntv(Start, Idx); 1640 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1641 } 1642 1643 1644 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1645 unsigned IntvIn, SlotIndex LeaveBefore) { 1646 SlotIndex Start, Stop; 1647 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1648 1649 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1650 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1651 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1652 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1653 1654 assert(IntvIn && "Must have register in"); 1655 assert(BI.LiveIn && "Must be live-in"); 1656 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1657 1658 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1659 DEBUG(dbgs() << " before interference.\n"); 1660 // 1661 // <<< Interference after kill. 1662 // |---o---x | Killed in block. 1663 // ========= Use IntvIn everywhere. 1664 // 1665 selectIntv(IntvIn); 1666 useIntv(Start, BI.LastInstr); 1667 return; 1668 } 1669 1670 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1671 1672 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1673 // 1674 // <<< Possible interference after last use. 1675 // |---o---o---| Live-out on stack. 1676 // =========____ Leave IntvIn after last use. 1677 // 1678 // < Interference after last use. 1679 // |---o---o--o| Live-out on stack, late last use. 1680 // ============ Copy to stack after LSP, overlap IntvIn. 1681 // \_____ Stack interval is live-out. 1682 // 1683 if (BI.LastInstr < LSP) { 1684 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1685 selectIntv(IntvIn); 1686 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1687 useIntv(Start, Idx); 1688 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1689 } else { 1690 DEBUG(dbgs() << ", spill before last split point.\n"); 1691 selectIntv(IntvIn); 1692 SlotIndex Idx = leaveIntvBefore(LSP); 1693 overlapIntv(Idx, BI.LastInstr); 1694 useIntv(Start, Idx); 1695 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1696 } 1697 return; 1698 } 1699 1700 // The interference is overlapping somewhere we wanted to use IntvIn. That 1701 // means we need to create a local interval that can be allocated a 1702 // different register. 1703 unsigned LocalIntv = openIntv(); 1704 (void)LocalIntv; 1705 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1706 1707 if (!BI.LiveOut || BI.LastInstr < LSP) { 1708 // 1709 // <<<<<<< Interference overlapping uses. 1710 // |---o---o---| Live-out on stack. 1711 // =====----____ Leave IntvIn before interference, then spill. 1712 // 1713 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1714 SlotIndex From = enterIntvBefore(LeaveBefore); 1715 useIntv(From, To); 1716 selectIntv(IntvIn); 1717 useIntv(Start, From); 1718 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1719 return; 1720 } 1721 1722 // <<<<<<< Interference overlapping uses. 1723 // |---o---o--o| Live-out on stack, late last use. 1724 // =====------- Copy to stack before LSP, overlap LocalIntv. 1725 // \_____ Stack interval is live-out. 1726 // 1727 SlotIndex To = leaveIntvBefore(LSP); 1728 overlapIntv(To, BI.LastInstr); 1729 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1730 useIntv(From, To); 1731 selectIntv(IntvIn); 1732 useIntv(Start, From); 1733 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1734 } 1735 1736 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1737 unsigned IntvOut, SlotIndex EnterAfter) { 1738 SlotIndex Start, Stop; 1739 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1740 1741 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1742 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1743 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1744 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1745 1746 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1747 1748 assert(IntvOut && "Must have register out"); 1749 assert(BI.LiveOut && "Must be live-out"); 1750 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1751 1752 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1753 DEBUG(dbgs() << " after interference.\n"); 1754 // 1755 // >>>> Interference before def. 1756 // | o---o---| Defined in block. 1757 // ========= Use IntvOut everywhere. 1758 // 1759 selectIntv(IntvOut); 1760 useIntv(BI.FirstInstr, Stop); 1761 return; 1762 } 1763 1764 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1765 DEBUG(dbgs() << ", reload after interference.\n"); 1766 // 1767 // >>>> Interference before def. 1768 // |---o---o---| Live-through, stack-in. 1769 // ____========= Enter IntvOut before first use. 1770 // 1771 selectIntv(IntvOut); 1772 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1773 useIntv(Idx, Stop); 1774 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1775 return; 1776 } 1777 1778 // The interference is overlapping somewhere we wanted to use IntvOut. That 1779 // means we need to create a local interval that can be allocated a 1780 // different register. 1781 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1782 // 1783 // >>>>>>> Interference overlapping uses. 1784 // |---o---o---| Live-through, stack-in. 1785 // ____---====== Create local interval for interference range. 1786 // 1787 selectIntv(IntvOut); 1788 SlotIndex Idx = enterIntvAfter(EnterAfter); 1789 useIntv(Idx, Stop); 1790 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1791 1792 openIntv(); 1793 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1794 useIntv(From, Idx); 1795 } 1796