1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "splitter"
16 #include "SplitKit.h"
17 #include "LiveRangeEdit.h"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/CalcSpillWeights.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 
30 using namespace llvm;
31 
32 static cl::opt<bool>
33 AllowSplit("spiller-splits-edges",
34            cl::desc("Allow critical edge splitting during spilling"));
35 
36 //===----------------------------------------------------------------------===//
37 //                                 Split Analysis
38 //===----------------------------------------------------------------------===//
39 
40 SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
41                              const LiveIntervals &lis,
42                              const MachineLoopInfo &mli)
43   : mf_(mf),
44     lis_(lis),
45     loops_(mli),
46     tii_(*mf.getTarget().getInstrInfo()),
47     curli_(0) {}
48 
49 void SplitAnalysis::clear() {
50   usingInstrs_.clear();
51   usingBlocks_.clear();
52   usingLoops_.clear();
53   curli_ = 0;
54 }
55 
56 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
57   MachineBasicBlock *T, *F;
58   SmallVector<MachineOperand, 4> Cond;
59   return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
60 }
61 
62 /// analyzeUses - Count instructions, basic blocks, and loops using curli.
63 void SplitAnalysis::analyzeUses() {
64   const MachineRegisterInfo &MRI = mf_.getRegInfo();
65   for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
66        MachineInstr *MI = I.skipInstruction();) {
67     if (MI->isDebugValue() || !usingInstrs_.insert(MI))
68       continue;
69     MachineBasicBlock *MBB = MI->getParent();
70     if (usingBlocks_[MBB]++)
71       continue;
72     for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
73          Loop = Loop->getParentLoop())
74       usingLoops_[Loop]++;
75   }
76   DEBUG(dbgs() << "  counted "
77                << usingInstrs_.size() << " instrs, "
78                << usingBlocks_.size() << " blocks, "
79                << usingLoops_.size()  << " loops.\n");
80 }
81 
82 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
83   for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
84     unsigned count = usingBlocks_.lookup(*I);
85     OS << " BB#" << (*I)->getNumber();
86     if (count)
87       OS << '(' << count << ')';
88   }
89 }
90 
91 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
92 // predecessor blocks, and exit blocks.
93 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
94   Blocks.clear();
95 
96   // Blocks in the loop.
97   Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
98 
99   // Predecessor blocks.
100   const MachineBasicBlock *Header = Loop->getHeader();
101   for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
102        E = Header->pred_end(); I != E; ++I)
103     if (!Blocks.Loop.count(*I))
104       Blocks.Preds.insert(*I);
105 
106   // Exit blocks.
107   for (MachineLoop::block_iterator I = Loop->block_begin(),
108        E = Loop->block_end(); I != E; ++I) {
109     const MachineBasicBlock *MBB = *I;
110     for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
111        SE = MBB->succ_end(); SI != SE; ++SI)
112       if (!Blocks.Loop.count(*SI))
113         Blocks.Exits.insert(*SI);
114   }
115 }
116 
117 void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
118   OS << "Loop:";
119   print(B.Loop, OS);
120   OS << ", preds:";
121   print(B.Preds, OS);
122   OS << ", exits:";
123   print(B.Exits, OS);
124 }
125 
126 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
127 /// and around the Loop.
128 SplitAnalysis::LoopPeripheralUse SplitAnalysis::
129 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
130   LoopPeripheralUse use = ContainedInLoop;
131   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
132        I != E; ++I) {
133     const MachineBasicBlock *MBB = I->first;
134     // Is this a peripheral block?
135     if (use < MultiPeripheral &&
136         (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
137       if (I->second > 1) use = MultiPeripheral;
138       else               use = SinglePeripheral;
139       continue;
140     }
141     // Is it a loop block?
142     if (Blocks.Loop.count(MBB))
143       continue;
144     // It must be an unrelated block.
145     DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
146     return OutsideLoop;
147   }
148   return use;
149 }
150 
151 /// getCriticalExits - It may be necessary to partially break critical edges
152 /// leaving the loop if an exit block has predecessors from outside the loop
153 /// periphery.
154 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
155                                      BlockPtrSet &CriticalExits) {
156   CriticalExits.clear();
157 
158   // A critical exit block has curli line-in, and has a predecessor that is not
159   // in the loop nor a loop predecessor. For such an exit block, the edges
160   // carrying the new variable must be moved to a new pre-exit block.
161   for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
162        I != E; ++I) {
163     const MachineBasicBlock *Exit = *I;
164     // A single-predecessor exit block is definitely not a critical edge.
165     if (Exit->pred_size() == 1)
166       continue;
167     // This exit may not have curli live in at all. No need to split.
168     if (!lis_.isLiveInToMBB(*curli_, Exit))
169       continue;
170     // Does this exit block have a predecessor that is not a loop block or loop
171     // predecessor?
172     for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
173          PE = Exit->pred_end(); PI != PE; ++PI) {
174       const MachineBasicBlock *Pred = *PI;
175       if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
176         continue;
177       // This is a critical exit block, and we need to split the exit edge.
178       CriticalExits.insert(Exit);
179       break;
180     }
181   }
182 }
183 
184 /// canSplitCriticalExits - Return true if it is possible to insert new exit
185 /// blocks before the blocks in CriticalExits.
186 bool
187 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
188                                      BlockPtrSet &CriticalExits) {
189   // If we don't allow critical edge splitting, require no critical exits.
190   if (!AllowSplit)
191     return CriticalExits.empty();
192 
193   for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
194        I != E; ++I) {
195     const MachineBasicBlock *Succ = *I;
196     // We want to insert a new pre-exit MBB before Succ, and change all the
197     // in-loop blocks to branch to the pre-exit instead of Succ.
198     // Check that all the in-loop predecessors can be changed.
199     for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
200          PE = Succ->pred_end(); PI != PE; ++PI) {
201       const MachineBasicBlock *Pred = *PI;
202       // The external predecessors won't be altered.
203       if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
204         continue;
205       if (!canAnalyzeBranch(Pred))
206         return false;
207     }
208 
209     // If Succ's layout predecessor falls through, that too must be analyzable.
210     // We need to insert the pre-exit block in the gap.
211     MachineFunction::const_iterator MFI = Succ;
212     if (MFI == mf_.begin())
213       continue;
214     if (!canAnalyzeBranch(--MFI))
215       return false;
216   }
217   // No problems found.
218   return true;
219 }
220 
221 void SplitAnalysis::analyze(const LiveInterval *li) {
222   clear();
223   curli_ = li;
224   analyzeUses();
225 }
226 
227 const MachineLoop *SplitAnalysis::getBestSplitLoop() {
228   assert(curli_ && "Call analyze() before getBestSplitLoop");
229   if (usingLoops_.empty())
230     return 0;
231 
232   LoopPtrSet Loops;
233   LoopBlocks Blocks;
234   BlockPtrSet CriticalExits;
235 
236   // We split around loops where curli is used outside the periphery.
237   for (LoopCountMap::const_iterator I = usingLoops_.begin(),
238        E = usingLoops_.end(); I != E; ++I) {
239     const MachineLoop *Loop = I->first;
240     getLoopBlocks(Loop, Blocks);
241     DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
242 
243     switch(analyzeLoopPeripheralUse(Blocks)) {
244     case OutsideLoop:
245       break;
246     case MultiPeripheral:
247       // FIXME: We could split a live range with multiple uses in a peripheral
248       // block and still make progress. However, it is possible that splitting
249       // another live range will insert copies into a peripheral block, and
250       // there is a small chance we can enter an infinity loop, inserting copies
251       // forever.
252       // For safety, stick to splitting live ranges with uses outside the
253       // periphery.
254       DEBUG(dbgs() << ": multiple peripheral uses\n");
255       break;
256     case ContainedInLoop:
257       DEBUG(dbgs() << ": fully contained\n");
258       continue;
259     case SinglePeripheral:
260       DEBUG(dbgs() << ": single peripheral use\n");
261       continue;
262     }
263     // Will it be possible to split around this loop?
264     getCriticalExits(Blocks, CriticalExits);
265     DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
266     if (!canSplitCriticalExits(Blocks, CriticalExits))
267       continue;
268     // This is a possible split.
269     Loops.insert(Loop);
270   }
271 
272   DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
273                << " candidate loops.\n");
274 
275   if (Loops.empty())
276     return 0;
277 
278   // Pick the earliest loop.
279   // FIXME: Are there other heuristics to consider?
280   const MachineLoop *Best = 0;
281   SlotIndex BestIdx;
282   for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
283        ++I) {
284     SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
285     if (!Best || Idx < BestIdx)
286       Best = *I, BestIdx = Idx;
287   }
288   DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
289   return Best;
290 }
291 
292 /// getMultiUseBlocks - if curli has more than one use in a basic block, it
293 /// may be an advantage to split curli for the duration of the block.
294 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
295   // If curli is local to one block, there is no point to splitting it.
296   if (usingBlocks_.size() <= 1)
297     return false;
298   // Add blocks with multiple uses.
299   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
300        I != E; ++I)
301     switch (I->second) {
302     case 0:
303     case 1:
304       continue;
305     case 2: {
306       // It doesn't pay to split a 2-instr block if it redefines curli.
307       VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first));
308       VNInfo *VN2 =
309         curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex());
310       // live-in and live-out with a different value.
311       if (VN1 && VN2 && VN1 != VN2)
312         continue;
313     } // Fall through.
314     default:
315       Blocks.insert(I->first);
316     }
317   return !Blocks.empty();
318 }
319 
320 //===----------------------------------------------------------------------===//
321 //                               LiveIntervalMap
322 //===----------------------------------------------------------------------===//
323 
324 // Work around the fact that the std::pair constructors are broken for pointer
325 // pairs in some implementations. makeVV(x, 0) works.
326 static inline std::pair<const VNInfo*, VNInfo*>
327 makeVV(const VNInfo *a, VNInfo *b) {
328   return std::make_pair(a, b);
329 }
330 
331 void LiveIntervalMap::reset(LiveInterval *li) {
332   li_ = li;
333   valueMap_.clear();
334 }
335 
336 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
337   ValueMap::const_iterator i = valueMap_.find(ParentVNI);
338   return i != valueMap_.end() && i->second == 0;
339 }
340 
341 // defValue - Introduce a li_ def for ParentVNI that could be later than
342 // ParentVNI->def.
343 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
344   assert(li_ && "call reset first");
345   assert(ParentVNI && "Mapping  NULL value");
346   assert(Idx.isValid() && "Invalid SlotIndex");
347   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
348 
349   // Create a new value.
350   VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
351 
352   // Use insert for lookup, so we can add missing values with a second lookup.
353   std::pair<ValueMap::iterator,bool> InsP =
354     valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
355 
356   // This is now a complex def. Mark with a NULL in valueMap.
357   if (!InsP.second)
358     InsP.first->second = 0;
359 
360   return VNI;
361 }
362 
363 
364 // mapValue - Find the mapped value for ParentVNI at Idx.
365 // Potentially create phi-def values.
366 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
367                                   bool *simple) {
368   assert(li_ && "call reset first");
369   assert(ParentVNI && "Mapping  NULL value");
370   assert(Idx.isValid() && "Invalid SlotIndex");
371   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
372 
373   // Use insert for lookup, so we can add missing values with a second lookup.
374   std::pair<ValueMap::iterator,bool> InsP =
375     valueMap_.insert(makeVV(ParentVNI, 0));
376 
377   // This was an unknown value. Create a simple mapping.
378   if (InsP.second) {
379     if (simple) *simple = true;
380     return InsP.first->second = li_->createValueCopy(ParentVNI,
381                                                      lis_.getVNInfoAllocator());
382   }
383 
384   // This was a simple mapped value.
385   if (InsP.first->second) {
386     if (simple) *simple = true;
387     return InsP.first->second;
388   }
389 
390   // This is a complex mapped value. There may be multiple defs, and we may need
391   // to create phi-defs.
392   if (simple) *simple = false;
393   MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
394   assert(IdxMBB && "No MBB at Idx");
395 
396   // Is there a def in the same MBB we can extend?
397   if (VNInfo *VNI = extendTo(IdxMBB, Idx))
398     return VNI;
399 
400   // Now for the fun part. We know that ParentVNI potentially has multiple defs,
401   // and we may need to create even more phi-defs to preserve VNInfo SSA form.
402   // Perform a depth-first search for predecessor blocks where we know the
403   // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
404 
405   // Track MBBs where we have created or learned the dominating value.
406   // This may change during the DFS as we create new phi-defs.
407   typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
408   MBBValueMap DomValue;
409   typedef SplitAnalysis::BlockPtrSet BlockPtrSet;
410   BlockPtrSet Visited;
411 
412   // Iterate over IdxMBB predecessors in a depth-first order.
413   // Skip begin() since that is always IdxMBB.
414   for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet>
415          IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)),
416          IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) {
417     MachineBasicBlock *MBB = *IDFI;
418     SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot();
419 
420     // We are operating on the restricted CFG where ParentVNI is live.
421     if (parentli_.getVNInfoAt(End) != ParentVNI) {
422       IDFI.skipChildren();
423       continue;
424     }
425 
426     // Do we have a dominating value in this block?
427     VNInfo *VNI = extendTo(MBB, End);
428     if (!VNI) {
429       ++IDFI;
430       continue;
431     }
432 
433     // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths.
434     Visited.erase(MBB);
435 
436     // Track the path back to IdxMBB, creating phi-defs
437     // as needed along the way.
438     for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
439       // Start from MBB's immediate successor. End at IdxMBB.
440       MachineBasicBlock *Succ = IDFI.getPath(PI-1);
441       std::pair<MBBValueMap::iterator, bool> InsP =
442         DomValue.insert(MBBValueMap::value_type(Succ, VNI));
443 
444       // This is the first time we backtrack to Succ.
445       if (InsP.second)
446         continue;
447 
448       // We reached Succ again with the same VNI. Nothing is going to change.
449       VNInfo *OVNI = InsP.first->second;
450       if (OVNI == VNI)
451         break;
452 
453       // Succ already has a phi-def. No need to continue.
454       SlotIndex Start = lis_.getMBBStartIdx(Succ);
455       if (OVNI->def == Start)
456         break;
457 
458       // We have a collision between the old and new VNI at Succ. That means
459       // neither dominates and we need a new phi-def.
460       VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
461       VNI->setIsPHIDef(true);
462       InsP.first->second = VNI;
463 
464       // Replace OVNI with VNI in the remaining path.
465       for (; PI > 1 ; --PI) {
466         MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
467         if (I == DomValue.end() || I->second != OVNI)
468           break;
469         I->second = VNI;
470       }
471     }
472 
473     // No need to search the children, we found a dominating value.
474     IDFI.skipChildren();
475   }
476 
477   // The search should at least find a dominating value for IdxMBB.
478   assert(!DomValue.empty() && "Couldn't find a reaching definition");
479 
480   // Since we went through the trouble of a full DFS visiting all reaching defs,
481   // the values in DomValue are now accurate. No more phi-defs are needed for
482   // these blocks, so we can color the live ranges.
483   // This makes the next mapValue call much faster.
484   VNInfo *IdxVNI = 0;
485   for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
486        ++I) {
487      MachineBasicBlock *MBB = I->first;
488      VNInfo *VNI = I->second;
489      SlotIndex Start = lis_.getMBBStartIdx(MBB);
490      if (MBB == IdxMBB) {
491        // Don't add full liveness to IdxMBB, stop at Idx.
492        if (Start != Idx)
493          li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
494        // The caller had better add some liveness to IdxVNI, or it leaks.
495        IdxVNI = VNI;
496      } else
497       li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
498   }
499 
500   assert(IdxVNI && "Didn't find value for Idx");
501   return IdxVNI;
502 }
503 
504 // extendTo - Find the last li_ value defined in MBB at or before Idx. The
505 // parentli_ is assumed to be live at Idx. Extend the live range to Idx.
506 // Return the found VNInfo, or NULL.
507 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
508   assert(li_ && "call reset first");
509   LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
510   if (I == li_->begin())
511     return 0;
512   --I;
513   if (I->end <= lis_.getMBBStartIdx(MBB))
514     return 0;
515   if (I->end <= Idx)
516     I->end = Idx.getNextSlot();
517   return I->valno;
518 }
519 
520 // addSimpleRange - Add a simple range from parentli_ to li_.
521 // ParentVNI must be live in the [Start;End) interval.
522 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
523                                      const VNInfo *ParentVNI) {
524   assert(li_ && "call reset first");
525   bool simple;
526   VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
527   // A simple mapping is easy.
528   if (simple) {
529     li_->addRange(LiveRange(Start, End, VNI));
530     return;
531   }
532 
533   // ParentVNI is a complex value. We must map per MBB.
534   MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
535   MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
536 
537   if (MBB == MBBE) {
538     li_->addRange(LiveRange(Start, End, VNI));
539     return;
540   }
541 
542   // First block.
543   li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
544 
545   // Run sequence of full blocks.
546   for (++MBB; MBB != MBBE; ++MBB) {
547     Start = lis_.getMBBStartIdx(MBB);
548     li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
549                             mapValue(ParentVNI, Start)));
550   }
551 
552   // Final block.
553   Start = lis_.getMBBStartIdx(MBB);
554   if (Start != End)
555     li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
556 }
557 
558 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
559 /// All needed values whose def is not inside [Start;End) must be defined
560 /// beforehand so mapValue will work.
561 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
562   assert(li_ && "call reset first");
563   LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
564   LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
565 
566   // Check if --I begins before Start and overlaps.
567   if (I != B) {
568     --I;
569     if (I->end > Start)
570       addSimpleRange(Start, std::min(End, I->end), I->valno);
571     ++I;
572   }
573 
574   // The remaining ranges begin after Start.
575   for (;I != E && I->start < End; ++I)
576     addSimpleRange(I->start, std::min(End, I->end), I->valno);
577 }
578 
579 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
580                                        const VNInfo *ParentVNI,
581                                        MachineBasicBlock &MBB,
582                                        MachineBasicBlock::iterator I) {
583   const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
584     get(TargetOpcode::COPY);
585   MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
586   SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
587   VNInfo *VNI = defValue(ParentVNI, DefIdx);
588   VNI->setCopy(MI);
589   li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
590   return VNI;
591 }
592 
593 //===----------------------------------------------------------------------===//
594 //                               Split Editor
595 //===----------------------------------------------------------------------===//
596 
597 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
598 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
599                          LiveRangeEdit &edit)
600   : sa_(sa), lis_(lis), vrm_(vrm),
601     mri_(vrm.getMachineFunction().getRegInfo()),
602     tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
603     edit_(edit),
604     dupli_(lis_, edit.getParent()),
605     openli_(lis_, edit.getParent())
606 {
607 }
608 
609 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
610   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
611     if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
612       return true;
613   return false;
614 }
615 
616 /// Create a new virtual register and live interval.
617 void SplitEditor::openIntv() {
618   assert(!openli_.getLI() && "Previous LI not closed before openIntv");
619 
620   if (!dupli_.getLI())
621     dupli_.reset(&edit_.create(mri_, lis_, vrm_));
622 
623   openli_.reset(&edit_.create(mri_, lis_, vrm_));
624 }
625 
626 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
627 /// not live before Idx, a COPY is not inserted.
628 void SplitEditor::enterIntvBefore(SlotIndex Idx) {
629   assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
630   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
631   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex());
632   if (!ParentVNI) {
633     DEBUG(dbgs() << ": not live\n");
634     return;
635   }
636   DEBUG(dbgs() << ": valno " << ParentVNI->id);
637   truncatedValues.insert(ParentVNI);
638   MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
639   assert(MI && "enterIntvBefore called with invalid index");
640   VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
641                                       *MI->getParent(), MI);
642   openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
643   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
644 }
645 
646 /// enterIntvAtEnd - Enter openli at the end of MBB.
647 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
648   assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
649   SlotIndex End = lis_.getMBBEndIdx(&MBB);
650   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
651   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot());
652   if (!ParentVNI) {
653     DEBUG(dbgs() << ": not live\n");
654     return;
655   }
656   DEBUG(dbgs() << ": valno " << ParentVNI->id);
657   truncatedValues.insert(ParentVNI);
658   VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
659                                       MBB, MBB.getFirstTerminator());
660   // Make sure openli is live out of MBB.
661   openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
662   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
663 }
664 
665 /// useIntv - indicate that all instructions in MBB should use openli.
666 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
667   useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
668 }
669 
670 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
671   assert(openli_.getLI() && "openIntv not called before useIntv");
672   openli_.addRange(Start, End);
673   DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
674                << *openli_.getLI() << '\n');
675 }
676 
677 /// leaveIntvAfter - Leave openli after the instruction at Idx.
678 void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
679   assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
680   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
681 
682   // The interval must be live beyond the instruction at Idx.
683   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex());
684   if (!ParentVNI) {
685     DEBUG(dbgs() << ": not live\n");
686     return;
687   }
688   DEBUG(dbgs() << ": valno " << ParentVNI->id);
689 
690   MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
691   MachineBasicBlock *MBB = MII->getParent();
692   VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
693                                      llvm::next(MII));
694 
695   // Finally we must make sure that openli is properly extended from Idx to the
696   // new copy.
697   openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
698   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
699 }
700 
701 /// leaveIntvAtTop - Leave the interval at the top of MBB.
702 /// Currently, only one value can leave the interval.
703 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
704   assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
705   SlotIndex Start = lis_.getMBBStartIdx(&MBB);
706   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
707 
708   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
709   if (!ParentVNI) {
710     DEBUG(dbgs() << ": not live\n");
711     return;
712   }
713 
714   // We are going to insert a back copy, so we must have a dupli_.
715   VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
716                                      MBB, MBB.begin());
717 
718   // Finally we must make sure that openli is properly extended from Start to
719   // the new copy.
720   openli_.addSimpleRange(Start, VNI->def, ParentVNI);
721   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
722 }
723 
724 /// closeIntv - Indicate that we are done editing the currently open
725 /// LiveInterval, and ranges can be trimmed.
726 void SplitEditor::closeIntv() {
727   assert(openli_.getLI() && "openIntv not called before closeIntv");
728 
729   DEBUG(dbgs() << "    closeIntv cleaning up\n");
730   DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
731   openli_.reset(0);
732 }
733 
734 /// rewrite - Rewrite all uses of reg to use the new registers.
735 void SplitEditor::rewrite(unsigned reg) {
736   for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
737        RE = mri_.reg_end(); RI != RE;) {
738     MachineOperand &MO = RI.getOperand();
739     MachineInstr *MI = MO.getParent();
740     ++RI;
741     if (MI->isDebugValue()) {
742       DEBUG(dbgs() << "Zapping " << *MI);
743       // FIXME: We can do much better with debug values.
744       MO.setReg(0);
745       continue;
746     }
747     SlotIndex Idx = lis_.getInstructionIndex(MI);
748     Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
749     LiveInterval *LI = 0;
750     for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
751          ++I) {
752       LiveInterval *testli = *I;
753       if (testli->liveAt(Idx)) {
754         LI = testli;
755         break;
756       }
757     }
758     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
759     assert(LI && "No register was live at use");
760     MO.setReg(LI->reg);
761     DEBUG(dbgs() << '\t' << *MI);
762   }
763 }
764 
765 void
766 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
767   // Build vector of iterator pairs from the intervals.
768   typedef std::pair<LiveInterval::const_iterator,
769                     LiveInterval::const_iterator> IIPair;
770   SmallVector<IIPair, 8> Iters;
771   for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
772        ++LI) {
773     if (*LI == dupli_.getLI())
774       continue;
775     LiveInterval::const_iterator I = (*LI)->find(Start);
776     LiveInterval::const_iterator E = (*LI)->end();
777     if (I != E)
778       Iters.push_back(std::make_pair(I, E));
779   }
780 
781   SlotIndex sidx = Start;
782   // Break [Start;End) into segments that don't overlap any intervals.
783   for (;;) {
784     SlotIndex next = sidx, eidx = End;
785     // Find overlapping intervals.
786     for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
787       LiveInterval::const_iterator I = Iters[i].first;
788       // Interval I is overlapping [sidx;eidx). Trim sidx.
789       if (I->start <= sidx) {
790         sidx = I->end;
791         // Move to the next run, remove iters when all are consumed.
792         I = ++Iters[i].first;
793         if (I == Iters[i].second) {
794           Iters.erase(Iters.begin() + i);
795           --i;
796           continue;
797         }
798       }
799       // Trim eidx too if needed.
800       if (I->start >= eidx)
801         continue;
802       eidx = I->start;
803       next = I->end;
804     }
805     // Now, [sidx;eidx) doesn't overlap anything in intervals_.
806     if (sidx < eidx)
807       dupli_.addSimpleRange(sidx, eidx, VNI);
808     // If the interval end was truncated, we can try again from next.
809     if (next <= sidx)
810       break;
811     sidx = next;
812   }
813 }
814 
815 void SplitEditor::computeRemainder() {
816   // First we need to fill in the live ranges in dupli.
817   // If values were redefined, we need a full recoloring with SSA update.
818   // If values were truncated, we only need to truncate the ranges.
819   // If values were partially rematted, we should shrink to uses.
820   // If values were fully rematted, they should be omitted.
821   // FIXME: If a single value is redefined, just move the def and truncate.
822   LiveInterval &parent = edit_.getParent();
823 
824   // Values that are fully contained in the split intervals.
825   SmallPtrSet<const VNInfo*, 8> deadValues;
826   // Map all curli values that should have live defs in dupli.
827   for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
828        E = parent.vni_end(); I != E; ++I) {
829     const VNInfo *VNI = *I;
830     // Original def is contained in the split intervals.
831     if (intervalsLiveAt(VNI->def)) {
832       // Did this value escape?
833       if (dupli_.isMapped(VNI))
834         truncatedValues.insert(VNI);
835       else
836         deadValues.insert(VNI);
837       continue;
838     }
839     // Add minimal live range at the definition.
840     VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
841     dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
842   }
843 
844   // Add all ranges to dupli.
845   for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
846        I != E; ++I) {
847     const LiveRange &LR = *I;
848     if (truncatedValues.count(LR.valno)) {
849       // recolor after removing intervals_.
850       addTruncSimpleRange(LR.start, LR.end, LR.valno);
851     } else if (!deadValues.count(LR.valno)) {
852       // recolor without truncation.
853       dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
854     }
855   }
856 }
857 
858 void SplitEditor::finish() {
859   assert(!openli_.getLI() && "Previous LI not closed before rewrite");
860   assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
861 
862   // Complete dupli liveness.
863   computeRemainder();
864 
865   // Get rid of unused values and set phi-kill flags.
866   dupli_.getLI()->RenumberValues(lis_);
867 
868   // Now check if dupli was separated into multiple connected components.
869   ConnectedVNInfoEqClasses ConEQ(lis_);
870   if (unsigned NumComp = ConEQ.Classify(dupli_.getLI())) {
871     DEBUG(dbgs() << "  Remainder has " << NumComp << " connected components: "
872                  << *dupli_.getLI() << '\n');
873     // Did the remainder break up? Create intervals for all the components.
874     if (NumComp > 1) {
875       SmallVector<LiveInterval*, 8> dups;
876       dups.push_back(dupli_.getLI());
877       for (unsigned i = 1; i != NumComp; ++i)
878         dups.push_back(&edit_.create(mri_, lis_, vrm_));
879       ConEQ.Distribute(&dups[0]);
880       // Rewrite uses to the new regs.
881       rewrite(dupli_.getLI()->reg);
882     }
883   }
884 
885   // Rewrite instructions.
886   rewrite(edit_.getReg());
887 
888   // Calculate spill weight and allocation hints for new intervals.
889   VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
890   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
891     LiveInterval &li = **I;
892     vrai.CalculateRegClass(li.reg);
893     vrai.CalculateWeightAndHint(li);
894     DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
895                  << ":" << li << '\n');
896   }
897 }
898 
899 
900 //===----------------------------------------------------------------------===//
901 //                               Loop Splitting
902 //===----------------------------------------------------------------------===//
903 
904 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
905   SplitAnalysis::LoopBlocks Blocks;
906   sa_.getLoopBlocks(Loop, Blocks);
907 
908   DEBUG({
909     dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
910   });
911 
912   // Break critical edges as needed.
913   SplitAnalysis::BlockPtrSet CriticalExits;
914   sa_.getCriticalExits(Blocks, CriticalExits);
915   assert(CriticalExits.empty() && "Cannot break critical exits yet");
916 
917   // Create new live interval for the loop.
918   openIntv();
919 
920   // Insert copies in the predecessors.
921   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
922        E = Blocks.Preds.end(); I != E; ++I) {
923     MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
924     enterIntvAtEnd(MBB);
925   }
926 
927   // Switch all loop blocks.
928   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
929        E = Blocks.Loop.end(); I != E; ++I)
930      useIntv(**I);
931 
932   // Insert back copies in the exit blocks.
933   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
934        E = Blocks.Exits.end(); I != E; ++I) {
935     MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
936     leaveIntvAtTop(MBB);
937   }
938 
939   // Done.
940   closeIntv();
941   finish();
942 }
943 
944 
945 //===----------------------------------------------------------------------===//
946 //                            Single Block Splitting
947 //===----------------------------------------------------------------------===//
948 
949 /// splitSingleBlocks - Split curli into a separate live interval inside each
950 /// basic block in Blocks.
951 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
952   DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
953   // Determine the first and last instruction using curli in each block.
954   typedef std::pair<SlotIndex,SlotIndex> IndexPair;
955   typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
956   IndexPairMap MBBRange;
957   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
958        E = sa_.usingInstrs_.end(); I != E; ++I) {
959     const MachineBasicBlock *MBB = (*I)->getParent();
960     if (!Blocks.count(MBB))
961       continue;
962     SlotIndex Idx = lis_.getInstructionIndex(*I);
963     DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
964     IndexPair &IP = MBBRange[MBB];
965     if (!IP.first.isValid() || Idx < IP.first)
966       IP.first = Idx;
967     if (!IP.second.isValid() || Idx > IP.second)
968       IP.second = Idx;
969   }
970 
971   // Create a new interval for each block.
972   for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
973        E = Blocks.end(); I != E; ++I) {
974     IndexPair &IP = MBBRange[*I];
975     DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
976                  << IP.first << ';' << IP.second << ")\n");
977     assert(IP.first.isValid() && IP.second.isValid());
978 
979     openIntv();
980     enterIntvBefore(IP.first);
981     useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
982     leaveIntvAfter(IP.second);
983     closeIntv();
984   }
985   finish();
986 }
987 
988 
989 //===----------------------------------------------------------------------===//
990 //                            Sub Block Splitting
991 //===----------------------------------------------------------------------===//
992 
993 /// getBlockForInsideSplit - If curli is contained inside a single basic block,
994 /// and it wou pay to subdivide the interval inside that block, return it.
995 /// Otherwise return NULL. The returned block can be passed to
996 /// SplitEditor::splitInsideBlock.
997 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
998   // The interval must be exclusive to one block.
999   if (usingBlocks_.size() != 1)
1000     return 0;
1001   // Don't to this for less than 4 instructions. We want to be sure that
1002   // splitting actually reduces the instruction count per interval.
1003   if (usingInstrs_.size() < 4)
1004     return 0;
1005   return usingBlocks_.begin()->first;
1006 }
1007 
1008 /// splitInsideBlock - Split curli into multiple intervals inside MBB.
1009 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1010   SmallVector<SlotIndex, 32> Uses;
1011   Uses.reserve(sa_.usingInstrs_.size());
1012   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1013        E = sa_.usingInstrs_.end(); I != E; ++I)
1014     if ((*I)->getParent() == MBB)
1015       Uses.push_back(lis_.getInstructionIndex(*I));
1016   DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1017                << Uses.size() << " instructions.\n");
1018   assert(Uses.size() >= 3 && "Need at least 3 instructions");
1019   array_pod_sort(Uses.begin(), Uses.end());
1020 
1021   // Simple algorithm: Find the largest gap between uses as determined by slot
1022   // indices. Create new intervals for instructions before the gap and after the
1023   // gap.
1024   unsigned bestPos = 0;
1025   int bestGap = 0;
1026   DEBUG(dbgs() << "    dist (" << Uses[0]);
1027   for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1028     int g = Uses[i-1].distance(Uses[i]);
1029     DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1030     if (g > bestGap)
1031       bestPos = i, bestGap = g;
1032   }
1033   DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1034 
1035   // bestPos points to the first use after the best gap.
1036   assert(bestPos > 0 && "Invalid gap");
1037 
1038   // FIXME: Don't create intervals for low densities.
1039 
1040   // First interval before the gap. Don't create single-instr intervals.
1041   if (bestPos > 1) {
1042     openIntv();
1043     enterIntvBefore(Uses.front());
1044     useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1045     leaveIntvAfter(Uses[bestPos-1]);
1046     closeIntv();
1047   }
1048 
1049   // Second interval after the gap.
1050   if (bestPos < Uses.size()-1) {
1051     openIntv();
1052     enterIntvBefore(Uses[bestPos]);
1053     useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1054     leaveIntvAfter(Uses.back());
1055     closeIntv();
1056   }
1057 
1058   finish();
1059 }
1060