1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SplitKit.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "regalloc"
33 
34 STATISTIC(NumFinished, "Number of splits finished");
35 STATISTIC(NumSimple,   "Number of splits that were simple");
36 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
37 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
38 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
39 
40 //===----------------------------------------------------------------------===//
41 //                                 Split Analysis
42 //===----------------------------------------------------------------------===//
43 
44 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
45                              const MachineLoopInfo &mli)
46     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
47       TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
48       LastSplitPoint(MF.getNumBlockIDs()) {}
49 
50 void SplitAnalysis::clear() {
51   UseSlots.clear();
52   UseBlocks.clear();
53   ThroughBlocks.clear();
54   CurLI = nullptr;
55   DidRepairRange = false;
56 }
57 
58 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
59   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
60   // FIXME: Handle multiple EH pad successors.
61   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
62   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
63   SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
64 
65   // Compute split points on the first call. The pair is independent of the
66   // current live interval.
67   if (!LSP.first.isValid()) {
68     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
69     if (FirstTerm == MBB->end())
70       LSP.first = MBBEnd;
71     else
72       LSP.first = LIS.getInstructionIndex(*FirstTerm);
73 
74     // If there is a landing pad successor, also find the call instruction.
75     if (!LPad)
76       return LSP.first;
77     // There may not be a call instruction (?) in which case we ignore LPad.
78     LSP.second = LSP.first;
79     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
80          I != E;) {
81       --I;
82       if (I->isCall()) {
83         LSP.second = LIS.getInstructionIndex(*I);
84         break;
85       }
86     }
87   }
88 
89   // If CurLI is live into a landing pad successor, move the last split point
90   // back to the call that may throw.
91   if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
92     return LSP.first;
93 
94   // Find the value leaving MBB.
95   const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
96   if (!VNI)
97     return LSP.first;
98 
99   // If the value leaving MBB was defined after the call in MBB, it can't
100   // really be live-in to the landing pad.  This can happen if the landing pad
101   // has a PHI, and this register is undef on the exceptional edge.
102   // <rdar://problem/10664933>
103   if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
104     return LSP.first;
105 
106   // Value is properly live-in to the landing pad.
107   // Only allow splits before the call.
108   return LSP.second;
109 }
110 
111 MachineBasicBlock::iterator
112 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
113   SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
114   if (LSP == LIS.getMBBEndIdx(MBB))
115     return MBB->end();
116   return LIS.getInstructionFromIndex(LSP);
117 }
118 
119 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
120 void SplitAnalysis::analyzeUses() {
121   assert(UseSlots.empty() && "Call clear first");
122 
123   // First get all the defs from the interval values. This provides the correct
124   // slots for early clobbers.
125   for (const VNInfo *VNI : CurLI->valnos)
126     if (!VNI->isPHIDef() && !VNI->isUnused())
127       UseSlots.push_back(VNI->def);
128 
129   // Get use slots form the use-def chain.
130   const MachineRegisterInfo &MRI = MF.getRegInfo();
131   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
132     if (!MO.isUndef())
133       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
134 
135   array_pod_sort(UseSlots.begin(), UseSlots.end());
136 
137   // Remove duplicates, keeping the smaller slot for each instruction.
138   // That is what we want for early clobbers.
139   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
140                              SlotIndex::isSameInstr),
141                  UseSlots.end());
142 
143   // Compute per-live block info.
144   if (!calcLiveBlockInfo()) {
145     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
146     // I am looking at you, RegisterCoalescer!
147     DidRepairRange = true;
148     ++NumRepairs;
149     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
150     const_cast<LiveIntervals&>(LIS)
151       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
152     UseBlocks.clear();
153     ThroughBlocks.clear();
154     bool fixed = calcLiveBlockInfo();
155     (void)fixed;
156     assert(fixed && "Couldn't fix broken live interval");
157   }
158 
159   DEBUG(dbgs() << "Analyze counted "
160                << UseSlots.size() << " instrs in "
161                << UseBlocks.size() << " blocks, through "
162                << NumThroughBlocks << " blocks.\n");
163 }
164 
165 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
166 /// where CurLI is live.
167 bool SplitAnalysis::calcLiveBlockInfo() {
168   ThroughBlocks.resize(MF.getNumBlockIDs());
169   NumThroughBlocks = NumGapBlocks = 0;
170   if (CurLI->empty())
171     return true;
172 
173   LiveInterval::const_iterator LVI = CurLI->begin();
174   LiveInterval::const_iterator LVE = CurLI->end();
175 
176   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
177   UseI = UseSlots.begin();
178   UseE = UseSlots.end();
179 
180   // Loop over basic blocks where CurLI is live.
181   MachineFunction::iterator MFI =
182       LIS.getMBBFromIndex(LVI->start)->getIterator();
183   for (;;) {
184     BlockInfo BI;
185     BI.MBB = &*MFI;
186     SlotIndex Start, Stop;
187     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
188 
189     // If the block contains no uses, the range must be live through. At one
190     // point, RegisterCoalescer could create dangling ranges that ended
191     // mid-block.
192     if (UseI == UseE || *UseI >= Stop) {
193       ++NumThroughBlocks;
194       ThroughBlocks.set(BI.MBB->getNumber());
195       // The range shouldn't end mid-block if there are no uses. This shouldn't
196       // happen.
197       if (LVI->end < Stop)
198         return false;
199     } else {
200       // This block has uses. Find the first and last uses in the block.
201       BI.FirstInstr = *UseI;
202       assert(BI.FirstInstr >= Start);
203       do ++UseI;
204       while (UseI != UseE && *UseI < Stop);
205       BI.LastInstr = UseI[-1];
206       assert(BI.LastInstr < Stop);
207 
208       // LVI is the first live segment overlapping MBB.
209       BI.LiveIn = LVI->start <= Start;
210 
211       // When not live in, the first use should be a def.
212       if (!BI.LiveIn) {
213         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
214         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
215         BI.FirstDef = BI.FirstInstr;
216       }
217 
218       // Look for gaps in the live range.
219       BI.LiveOut = true;
220       while (LVI->end < Stop) {
221         SlotIndex LastStop = LVI->end;
222         if (++LVI == LVE || LVI->start >= Stop) {
223           BI.LiveOut = false;
224           BI.LastInstr = LastStop;
225           break;
226         }
227 
228         if (LastStop < LVI->start) {
229           // There is a gap in the live range. Create duplicate entries for the
230           // live-in snippet and the live-out snippet.
231           ++NumGapBlocks;
232 
233           // Push the Live-in part.
234           BI.LiveOut = false;
235           UseBlocks.push_back(BI);
236           UseBlocks.back().LastInstr = LastStop;
237 
238           // Set up BI for the live-out part.
239           BI.LiveIn = false;
240           BI.LiveOut = true;
241           BI.FirstInstr = BI.FirstDef = LVI->start;
242         }
243 
244         // A Segment that starts in the middle of the block must be a def.
245         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
246         if (!BI.FirstDef)
247           BI.FirstDef = LVI->start;
248       }
249 
250       UseBlocks.push_back(BI);
251 
252       // LVI is now at LVE or LVI->end >= Stop.
253       if (LVI == LVE)
254         break;
255     }
256 
257     // Live segment ends exactly at Stop. Move to the next segment.
258     if (LVI->end == Stop && ++LVI == LVE)
259       break;
260 
261     // Pick the next basic block.
262     if (LVI->start < Stop)
263       ++MFI;
264     else
265       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
266   }
267 
268   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
269   return true;
270 }
271 
272 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
273   if (cli->empty())
274     return 0;
275   LiveInterval *li = const_cast<LiveInterval*>(cli);
276   LiveInterval::iterator LVI = li->begin();
277   LiveInterval::iterator LVE = li->end();
278   unsigned Count = 0;
279 
280   // Loop over basic blocks where li is live.
281   MachineFunction::const_iterator MFI =
282       LIS.getMBBFromIndex(LVI->start)->getIterator();
283   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
284   for (;;) {
285     ++Count;
286     LVI = li->advanceTo(LVI, Stop);
287     if (LVI == LVE)
288       return Count;
289     do {
290       ++MFI;
291       Stop = LIS.getMBBEndIdx(&*MFI);
292     } while (Stop <= LVI->start);
293   }
294 }
295 
296 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
297   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
298   const LiveInterval &Orig = LIS.getInterval(OrigReg);
299   assert(!Orig.empty() && "Splitting empty interval?");
300   LiveInterval::const_iterator I = Orig.find(Idx);
301 
302   // Range containing Idx should begin at Idx.
303   if (I != Orig.end() && I->start <= Idx)
304     return I->start == Idx;
305 
306   // Range does not contain Idx, previous must end at Idx.
307   return I != Orig.begin() && (--I)->end == Idx;
308 }
309 
310 void SplitAnalysis::analyze(const LiveInterval *li) {
311   clear();
312   CurLI = li;
313   analyzeUses();
314 }
315 
316 
317 //===----------------------------------------------------------------------===//
318 //                               Split Editor
319 //===----------------------------------------------------------------------===//
320 
321 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
322 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
323                          MachineDominatorTree &mdt,
324                          MachineBlockFrequencyInfo &mbfi)
325     : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()),
326       MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
327       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
328       MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
329       RegAssign(Allocator) {}
330 
331 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
332   Edit = &LRE;
333   SpillMode = SM;
334   OpenIdx = 0;
335   RegAssign.clear();
336   Values.clear();
337 
338   // Reset the LiveRangeCalc instances needed for this spill mode.
339   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
340                   &LIS.getVNInfoAllocator());
341   if (SpillMode)
342     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
343                     &LIS.getVNInfoAllocator());
344 
345   // We don't need an AliasAnalysis since we will only be performing
346   // cheap-as-a-copy remats anyway.
347   Edit->anyRematerializable(nullptr);
348 }
349 
350 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
351 LLVM_DUMP_METHOD void SplitEditor::dump() const {
352   if (RegAssign.empty()) {
353     dbgs() << " empty\n";
354     return;
355   }
356 
357   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
358     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
359   dbgs() << '\n';
360 }
361 #endif
362 
363 VNInfo *SplitEditor::defValue(unsigned RegIdx,
364                               const VNInfo *ParentVNI,
365                               SlotIndex Idx) {
366   assert(ParentVNI && "Mapping  NULL value");
367   assert(Idx.isValid() && "Invalid SlotIndex");
368   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
369   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
370 
371   // Create a new value.
372   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
373 
374   // Use insert for lookup, so we can add missing values with a second lookup.
375   std::pair<ValueMap::iterator, bool> InsP =
376     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
377                                  ValueForcePair(VNI, false)));
378 
379   // This was the first time (RegIdx, ParentVNI) was mapped.
380   // Keep it as a simple def without any liveness.
381   if (InsP.second)
382     return VNI;
383 
384   // If the previous value was a simple mapping, add liveness for it now.
385   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
386     SlotIndex Def = OldVNI->def;
387     LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
388     // No longer a simple mapping.  Switch to a complex, non-forced mapping.
389     InsP.first->second = ValueForcePair();
390   }
391 
392   // This is a complex mapping, add liveness for VNI
393   SlotIndex Def = VNI->def;
394   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
395 
396   return VNI;
397 }
398 
399 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
400   assert(ParentVNI && "Mapping  NULL value");
401   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
402   VNInfo *VNI = VFP.getPointer();
403 
404   // ParentVNI was either unmapped or already complex mapped. Either way, just
405   // set the force bit.
406   if (!VNI) {
407     VFP.setInt(true);
408     return;
409   }
410 
411   // This was previously a single mapping. Make sure the old def is represented
412   // by a trivial live range.
413   SlotIndex Def = VNI->def;
414   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
415   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
416   // Mark as complex mapped, forced.
417   VFP = ValueForcePair(nullptr, true);
418 }
419 
420 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
421                                    VNInfo *ParentVNI,
422                                    SlotIndex UseIdx,
423                                    MachineBasicBlock &MBB,
424                                    MachineBasicBlock::iterator I) {
425   MachineInstr *CopyMI = nullptr;
426   SlotIndex Def;
427   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
428 
429   // We may be trying to avoid interference that ends at a deleted instruction,
430   // so always begin RegIdx 0 early and all others late.
431   bool Late = RegIdx != 0;
432 
433   // Attempt cheap-as-a-copy rematerialization.
434   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
435   LiveInterval &OrigLI = LIS.getInterval(Original);
436   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
437   LiveRangeEdit::Remat RM(ParentVNI);
438   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
439 
440   if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
441     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
442     ++NumRemats;
443   } else {
444     // Can't remat, just insert a copy from parent.
445     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
446                .addReg(Edit->getReg());
447     Def = LIS.getSlotIndexes()
448               ->insertMachineInstrInMaps(*CopyMI, Late)
449               .getRegSlot();
450     ++NumCopies;
451   }
452 
453   // Define the value in Reg.
454   return defValue(RegIdx, ParentVNI, Def);
455 }
456 
457 /// Create a new virtual register and live interval.
458 unsigned SplitEditor::openIntv() {
459   // Create the complement as index 0.
460   if (Edit->empty())
461     Edit->createEmptyInterval();
462 
463   // Create the open interval.
464   OpenIdx = Edit->size();
465   Edit->createEmptyInterval();
466   return OpenIdx;
467 }
468 
469 void SplitEditor::selectIntv(unsigned Idx) {
470   assert(Idx != 0 && "Cannot select the complement interval");
471   assert(Idx < Edit->size() && "Can only select previously opened interval");
472   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
473   OpenIdx = Idx;
474 }
475 
476 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
477   assert(OpenIdx && "openIntv not called before enterIntvBefore");
478   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
479   Idx = Idx.getBaseIndex();
480   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
481   if (!ParentVNI) {
482     DEBUG(dbgs() << ": not live\n");
483     return Idx;
484   }
485   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
486   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
487   assert(MI && "enterIntvBefore called with invalid index");
488 
489   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
490   return VNI->def;
491 }
492 
493 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
494   assert(OpenIdx && "openIntv not called before enterIntvAfter");
495   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
496   Idx = Idx.getBoundaryIndex();
497   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
498   if (!ParentVNI) {
499     DEBUG(dbgs() << ": not live\n");
500     return Idx;
501   }
502   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
503   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
504   assert(MI && "enterIntvAfter called with invalid index");
505 
506   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
507                               std::next(MachineBasicBlock::iterator(MI)));
508   return VNI->def;
509 }
510 
511 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
512   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
513   SlotIndex End = LIS.getMBBEndIdx(&MBB);
514   SlotIndex Last = End.getPrevSlot();
515   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
516   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
517   if (!ParentVNI) {
518     DEBUG(dbgs() << ": not live\n");
519     return End;
520   }
521   DEBUG(dbgs() << ": valno " << ParentVNI->id);
522   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
523                               SA.getLastSplitPointIter(&MBB));
524   RegAssign.insert(VNI->def, End, OpenIdx);
525   DEBUG(dump());
526   return VNI->def;
527 }
528 
529 /// useIntv - indicate that all instructions in MBB should use OpenLI.
530 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
531   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
532 }
533 
534 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
535   assert(OpenIdx && "openIntv not called before useIntv");
536   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
537   RegAssign.insert(Start, End, OpenIdx);
538   DEBUG(dump());
539 }
540 
541 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
542   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
543   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
544 
545   // The interval must be live beyond the instruction at Idx.
546   SlotIndex Boundary = Idx.getBoundaryIndex();
547   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
548   if (!ParentVNI) {
549     DEBUG(dbgs() << ": not live\n");
550     return Boundary.getNextSlot();
551   }
552   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
553   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
554   assert(MI && "No instruction at index");
555 
556   // In spill mode, make live ranges as short as possible by inserting the copy
557   // before MI.  This is only possible if that instruction doesn't redefine the
558   // value.  The inserted COPY is not a kill, and we don't need to recompute
559   // the source live range.  The spiller also won't try to hoist this copy.
560   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
561       MI->readsVirtualRegister(Edit->getReg())) {
562     forceRecompute(0, ParentVNI);
563     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
564     return Idx;
565   }
566 
567   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
568                               std::next(MachineBasicBlock::iterator(MI)));
569   return VNI->def;
570 }
571 
572 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
573   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
574   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
575 
576   // The interval must be live into the instruction at Idx.
577   Idx = Idx.getBaseIndex();
578   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
579   if (!ParentVNI) {
580     DEBUG(dbgs() << ": not live\n");
581     return Idx.getNextSlot();
582   }
583   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
584 
585   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
586   assert(MI && "No instruction at index");
587   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
588   return VNI->def;
589 }
590 
591 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
592   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
593   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
594   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
595 
596   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
597   if (!ParentVNI) {
598     DEBUG(dbgs() << ": not live\n");
599     return Start;
600   }
601 
602   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
603                               MBB.SkipPHIsAndLabels(MBB.begin()));
604   RegAssign.insert(Start, VNI->def, OpenIdx);
605   DEBUG(dump());
606   return VNI->def;
607 }
608 
609 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
610   assert(OpenIdx && "openIntv not called before overlapIntv");
611   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
612   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
613          "Parent changes value in extended range");
614   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
615          "Range cannot span basic blocks");
616 
617   // The complement interval will be extended as needed by LRCalc.extend().
618   if (ParentVNI)
619     forceRecompute(0, ParentVNI);
620   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
621   RegAssign.insert(Start, End, OpenIdx);
622   DEBUG(dump());
623 }
624 
625 //===----------------------------------------------------------------------===//
626 //                                  Spill modes
627 //===----------------------------------------------------------------------===//
628 
629 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
630   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
631   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
632   RegAssignMap::iterator AssignI;
633   AssignI.setMap(RegAssign);
634 
635   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
636     SlotIndex Def = Copies[i]->def;
637     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
638     assert(MI && "No instruction for back-copy");
639 
640     MachineBasicBlock *MBB = MI->getParent();
641     MachineBasicBlock::iterator MBBI(MI);
642     bool AtBegin;
643     do AtBegin = MBBI == MBB->begin();
644     while (!AtBegin && (--MBBI)->isDebugValue());
645 
646     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
647     LIS.removeVRegDefAt(*LI, Def);
648     LIS.RemoveMachineInstrFromMaps(*MI);
649     MI->eraseFromParent();
650 
651     // Adjust RegAssign if a register assignment is killed at Def. We want to
652     // avoid calculating the live range of the source register if possible.
653     AssignI.find(Def.getPrevSlot());
654     if (!AssignI.valid() || AssignI.start() >= Def)
655       continue;
656     // If MI doesn't kill the assigned register, just leave it.
657     if (AssignI.stop() != Def)
658       continue;
659     unsigned RegIdx = AssignI.value();
660     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
661       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
662       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
663     } else {
664       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
665       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
666       AssignI.setStop(Kill);
667     }
668   }
669 }
670 
671 MachineBasicBlock*
672 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
673                                   MachineBasicBlock *DefMBB) {
674   if (MBB == DefMBB)
675     return MBB;
676   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
677 
678   const MachineLoopInfo &Loops = SA.Loops;
679   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
680   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
681 
682   // Best candidate so far.
683   MachineBasicBlock *BestMBB = MBB;
684   unsigned BestDepth = UINT_MAX;
685 
686   for (;;) {
687     const MachineLoop *Loop = Loops.getLoopFor(MBB);
688 
689     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
690     // higher frequency by definition.
691     if (!Loop) {
692       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
693                    << MBB->getNumber() << " at depth 0\n");
694       return MBB;
695     }
696 
697     // We'll never be able to exit the DefLoop.
698     if (Loop == DefLoop) {
699       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
700                    << MBB->getNumber() << " in the same loop\n");
701       return MBB;
702     }
703 
704     // Least busy dominator seen so far.
705     unsigned Depth = Loop->getLoopDepth();
706     if (Depth < BestDepth) {
707       BestMBB = MBB;
708       BestDepth = Depth;
709       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
710                    << MBB->getNumber() << " at depth " << Depth << '\n');
711     }
712 
713     // Leave loop by going to the immediate dominator of the loop header.
714     // This is a bigger stride than simply walking up the dominator tree.
715     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
716 
717     // Too far up the dominator tree?
718     if (!IDom || !MDT.dominates(DefDomNode, IDom))
719       return BestMBB;
720 
721     MBB = IDom->getBlock();
722   }
723 }
724 
725 void SplitEditor::computeRedundantBackCopies(
726     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
727   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
728   LiveInterval *Parent = &Edit->getParent();
729   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
730   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
731 
732   // Aggregate VNIs having the same value as ParentVNI.
733   for (VNInfo *VNI : LI->valnos) {
734     if (VNI->isUnused())
735       continue;
736     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
737     EqualVNs[ParentVNI->id].insert(VNI);
738   }
739 
740   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
741   // redundant VNIs to BackCopies.
742   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
743     VNInfo *ParentVNI = Parent->getValNumInfo(i);
744     if (!NotToHoistSet.count(ParentVNI->id))
745       continue;
746     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
747     SmallPtrSetIterator<VNInfo *> It2 = It1;
748     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
749       It2 = It1;
750       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
751         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
752           continue;
753 
754         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
755         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
756         if (MBB1 == MBB2) {
757           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
758         } else if (MDT.dominates(MBB1, MBB2)) {
759           DominatedVNIs.insert(*It2);
760         } else if (MDT.dominates(MBB2, MBB1)) {
761           DominatedVNIs.insert(*It1);
762         }
763       }
764     }
765     if (!DominatedVNIs.empty()) {
766       forceRecompute(0, ParentVNI);
767       for (auto VNI : DominatedVNIs) {
768         BackCopies.push_back(VNI);
769       }
770       DominatedVNIs.clear();
771     }
772   }
773 }
774 
775 /// For SM_Size mode, find a common dominator for all the back-copies for
776 /// the same ParentVNI and hoist the backcopies to the dominator BB.
777 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
778 /// to do the hoisting, simply remove the dominated backcopies for the same
779 /// ParentVNI.
780 void SplitEditor::hoistCopies() {
781   // Get the complement interval, always RegIdx 0.
782   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
783   LiveInterval *Parent = &Edit->getParent();
784 
785   // Track the nearest common dominator for all back-copies for each ParentVNI,
786   // indexed by ParentVNI->id.
787   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
788   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
789   // The total cost of all the back-copies for each ParentVNI.
790   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
791   // The ParentVNI->id set for which hoisting back-copies are not beneficial
792   // for Speed.
793   DenseSet<unsigned> NotToHoistSet;
794 
795   // Find the nearest common dominator for parent values with multiple
796   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
797   for (VNInfo *VNI : LI->valnos) {
798     if (VNI->isUnused())
799       continue;
800     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
801     assert(ParentVNI && "Parent not live at complement def");
802 
803     // Don't hoist remats.  The complement is probably going to disappear
804     // completely anyway.
805     if (Edit->didRematerialize(ParentVNI))
806       continue;
807 
808     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
809 
810     DomPair &Dom = NearestDom[ParentVNI->id];
811 
812     // Keep directly defined parent values.  This is either a PHI or an
813     // instruction in the complement range.  All other copies of ParentVNI
814     // should be eliminated.
815     if (VNI->def == ParentVNI->def) {
816       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
817       Dom = DomPair(ValMBB, VNI->def);
818       continue;
819     }
820     // Skip the singly mapped values.  There is nothing to gain from hoisting a
821     // single back-copy.
822     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
823       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
824       continue;
825     }
826 
827     if (!Dom.first) {
828       // First time we see ParentVNI.  VNI dominates itself.
829       Dom = DomPair(ValMBB, VNI->def);
830     } else if (Dom.first == ValMBB) {
831       // Two defs in the same block.  Pick the earlier def.
832       if (!Dom.second.isValid() || VNI->def < Dom.second)
833         Dom.second = VNI->def;
834     } else {
835       // Different basic blocks. Check if one dominates.
836       MachineBasicBlock *Near =
837         MDT.findNearestCommonDominator(Dom.first, ValMBB);
838       if (Near == ValMBB)
839         // Def ValMBB dominates.
840         Dom = DomPair(ValMBB, VNI->def);
841       else if (Near != Dom.first)
842         // None dominate. Hoist to common dominator, need new def.
843         Dom = DomPair(Near, SlotIndex());
844       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
845     }
846 
847     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
848                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
849                  << " hoist to BB#" << Dom.first->getNumber() << ' '
850                  << Dom.second << '\n');
851   }
852 
853   // Insert the hoisted copies.
854   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
855     DomPair &Dom = NearestDom[i];
856     if (!Dom.first || Dom.second.isValid())
857       continue;
858     // This value needs a hoisted copy inserted at the end of Dom.first.
859     VNInfo *ParentVNI = Parent->getValNumInfo(i);
860     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
861     // Get a less loopy dominator than Dom.first.
862     Dom.first = findShallowDominator(Dom.first, DefMBB);
863     if (SpillMode == SM_Speed &&
864         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
865       NotToHoistSet.insert(ParentVNI->id);
866       continue;
867     }
868     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
869     Dom.second =
870       defFromParent(0, ParentVNI, Last, *Dom.first,
871                     SA.getLastSplitPointIter(Dom.first))->def;
872   }
873 
874   // Remove redundant back-copies that are now known to be dominated by another
875   // def with the same value.
876   SmallVector<VNInfo*, 8> BackCopies;
877   for (VNInfo *VNI : LI->valnos) {
878     if (VNI->isUnused())
879       continue;
880     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
881     const DomPair &Dom = NearestDom[ParentVNI->id];
882     if (!Dom.first || Dom.second == VNI->def ||
883         NotToHoistSet.count(ParentVNI->id))
884       continue;
885     BackCopies.push_back(VNI);
886     forceRecompute(0, ParentVNI);
887   }
888 
889   // If it is not beneficial to hoist all the BackCopies, simply remove
890   // redundant BackCopies in speed mode.
891   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
892     computeRedundantBackCopies(NotToHoistSet, BackCopies);
893 
894   removeBackCopies(BackCopies);
895 }
896 
897 
898 /// transferValues - Transfer all possible values to the new live ranges.
899 /// Values that were rematerialized are left alone, they need LRCalc.extend().
900 bool SplitEditor::transferValues() {
901   bool Skipped = false;
902   RegAssignMap::const_iterator AssignI = RegAssign.begin();
903   for (const LiveRange::Segment &S : Edit->getParent()) {
904     DEBUG(dbgs() << "  blit " << S << ':');
905     VNInfo *ParentVNI = S.valno;
906     // RegAssign has holes where RegIdx 0 should be used.
907     SlotIndex Start = S.start;
908     AssignI.advanceTo(Start);
909     do {
910       unsigned RegIdx;
911       SlotIndex End = S.end;
912       if (!AssignI.valid()) {
913         RegIdx = 0;
914       } else if (AssignI.start() <= Start) {
915         RegIdx = AssignI.value();
916         if (AssignI.stop() < End) {
917           End = AssignI.stop();
918           ++AssignI;
919         }
920       } else {
921         RegIdx = 0;
922         End = std::min(End, AssignI.start());
923       }
924 
925       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
926       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
927       LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
928 
929       // Check for a simply defined value that can be blitted directly.
930       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
931       if (VNInfo *VNI = VFP.getPointer()) {
932         DEBUG(dbgs() << ':' << VNI->id);
933         LR.addSegment(LiveInterval::Segment(Start, End, VNI));
934         Start = End;
935         continue;
936       }
937 
938       // Skip values with forced recomputation.
939       if (VFP.getInt()) {
940         DEBUG(dbgs() << "(recalc)");
941         Skipped = true;
942         Start = End;
943         continue;
944       }
945 
946       LiveRangeCalc &LRC = getLRCalc(RegIdx);
947 
948       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
949       // so the live range is accurate. Add live-in blocks in [Start;End) to the
950       // LiveInBlocks.
951       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
952       SlotIndex BlockStart, BlockEnd;
953       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
954 
955       // The first block may be live-in, or it may have its own def.
956       if (Start != BlockStart) {
957         VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
958         assert(VNI && "Missing def for complex mapped value");
959         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
960         // MBB has its own def. Is it also live-out?
961         if (BlockEnd <= End)
962           LRC.setLiveOutValue(&*MBB, VNI);
963 
964         // Skip to the next block for live-in.
965         ++MBB;
966         BlockStart = BlockEnd;
967       }
968 
969       // Handle the live-in blocks covered by [Start;End).
970       assert(Start <= BlockStart && "Expected live-in block");
971       while (BlockStart < End) {
972         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
973         BlockEnd = LIS.getMBBEndIdx(&*MBB);
974         if (BlockStart == ParentVNI->def) {
975           // This block has the def of a parent PHI, so it isn't live-in.
976           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
977           VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
978           assert(VNI && "Missing def for complex mapped parent PHI");
979           if (End >= BlockEnd)
980             LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
981         } else {
982           // This block needs a live-in value.  The last block covered may not
983           // be live-out.
984           if (End < BlockEnd)
985             LRC.addLiveInBlock(LR, MDT[&*MBB], End);
986           else {
987             // Live-through, and we don't know the value.
988             LRC.addLiveInBlock(LR, MDT[&*MBB]);
989             LRC.setLiveOutValue(&*MBB, nullptr);
990           }
991         }
992         BlockStart = BlockEnd;
993         ++MBB;
994       }
995       Start = End;
996     } while (Start != S.end);
997     DEBUG(dbgs() << '\n');
998   }
999 
1000   LRCalc[0].calculateValues();
1001   if (SpillMode)
1002     LRCalc[1].calculateValues();
1003 
1004   return Skipped;
1005 }
1006 
1007 void SplitEditor::extendPHIKillRanges() {
1008   // Extend live ranges to be live-out for successor PHI values.
1009   for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
1010     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
1011       continue;
1012     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
1013     LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
1014 
1015     // Check whether PHI is dead.
1016     const LiveRange::Segment *Segment = LR.getSegmentContaining(PHIVNI->def);
1017     assert(Segment != nullptr && "Missing segment for VNI");
1018     if (Segment->end == PHIVNI->def.getDeadSlot()) {
1019       // This is a dead PHI. Remove it.
1020       LR.removeSegment(*Segment, true);
1021       continue;
1022     }
1023 
1024     LiveRangeCalc &LRC = getLRCalc(RegIdx);
1025     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
1026     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
1027          PE = MBB->pred_end(); PI != PE; ++PI) {
1028       SlotIndex End = LIS.getMBBEndIdx(*PI);
1029       SlotIndex LastUse = End.getPrevSlot();
1030       // The predecessor may not have a live-out value. That is OK, like an
1031       // undef PHI operand.
1032       if (Edit->getParent().liveAt(LastUse)) {
1033         assert(RegAssign.lookup(LastUse) == RegIdx &&
1034                "Different register assignment in phi predecessor");
1035         LRC.extend(LR, End);
1036       }
1037     }
1038   }
1039 }
1040 
1041 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1042 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1043   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1044        RE = MRI.reg_end(); RI != RE;) {
1045     MachineOperand &MO = *RI;
1046     MachineInstr *MI = MO.getParent();
1047     ++RI;
1048     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1049     if (MI->isDebugValue()) {
1050       DEBUG(dbgs() << "Zapping " << *MI);
1051       MO.setReg(0);
1052       continue;
1053     }
1054 
1055     // <undef> operands don't really read the register, so it doesn't matter
1056     // which register we choose.  When the use operand is tied to a def, we must
1057     // use the same register as the def, so just do that always.
1058     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1059     if (MO.isDef() || MO.isUndef())
1060       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1061 
1062     // Rewrite to the mapped register at Idx.
1063     unsigned RegIdx = RegAssign.lookup(Idx);
1064     LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
1065     MO.setReg(LI->reg);
1066     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
1067                  << Idx << ':' << RegIdx << '\t' << *MI);
1068 
1069     // Extend liveness to Idx if the instruction reads reg.
1070     if (!ExtendRanges || MO.isUndef())
1071       continue;
1072 
1073     // Skip instructions that don't read Reg.
1074     if (MO.isDef()) {
1075       if (!MO.getSubReg() && !MO.isEarlyClobber())
1076         continue;
1077       // We may wan't to extend a live range for a partial redef, or for a use
1078       // tied to an early clobber.
1079       Idx = Idx.getPrevSlot();
1080       if (!Edit->getParent().liveAt(Idx))
1081         continue;
1082     } else
1083       Idx = Idx.getRegSlot(true);
1084 
1085     getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
1086   }
1087 }
1088 
1089 void SplitEditor::deleteRematVictims() {
1090   SmallVector<MachineInstr*, 8> Dead;
1091   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1092     LiveInterval *LI = &LIS.getInterval(*I);
1093     for (const LiveRange::Segment &S : LI->segments) {
1094       // Dead defs end at the dead slot.
1095       if (S.end != S.valno->def.getDeadSlot())
1096         continue;
1097       if (S.valno->isPHIDef())
1098         continue;
1099       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1100       assert(MI && "Missing instruction for dead def");
1101       MI->addRegisterDead(LI->reg, &TRI);
1102 
1103       if (!MI->allDefsAreDead())
1104         continue;
1105 
1106       DEBUG(dbgs() << "All defs dead: " << *MI);
1107       Dead.push_back(MI);
1108     }
1109   }
1110 
1111   if (Dead.empty())
1112     return;
1113 
1114   Edit->eliminateDeadDefs(Dead);
1115 }
1116 
1117 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1118   ++NumFinished;
1119 
1120   // At this point, the live intervals in Edit contain VNInfos corresponding to
1121   // the inserted copies.
1122 
1123   // Add the original defs from the parent interval.
1124   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1125     if (ParentVNI->isUnused())
1126       continue;
1127     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1128     defValue(RegIdx, ParentVNI, ParentVNI->def);
1129 
1130     // Force rematted values to be recomputed everywhere.
1131     // The new live ranges may be truncated.
1132     if (Edit->didRematerialize(ParentVNI))
1133       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1134         forceRecompute(i, ParentVNI);
1135   }
1136 
1137   // Hoist back-copies to the complement interval when in spill mode.
1138   switch (SpillMode) {
1139   case SM_Partition:
1140     // Leave all back-copies as is.
1141     break;
1142   case SM_Size:
1143   case SM_Speed:
1144     // hoistCopies will behave differently between size and speed.
1145     hoistCopies();
1146   }
1147 
1148   // Transfer the simply mapped values, check if any are skipped.
1149   bool Skipped = transferValues();
1150 
1151   // Rewrite virtual registers, possibly extending ranges.
1152   rewriteAssigned(Skipped);
1153 
1154   if (Skipped)
1155     extendPHIKillRanges();
1156   else
1157     ++NumSimple;
1158 
1159   // Delete defs that were rematted everywhere.
1160   if (Skipped)
1161     deleteRematVictims();
1162 
1163   // Get rid of unused values and set phi-kill flags.
1164   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1165     LiveInterval &LI = LIS.getInterval(*I);
1166     LI.RenumberValues();
1167   }
1168 
1169   // Provide a reverse mapping from original indices to Edit ranges.
1170   if (LRMap) {
1171     LRMap->clear();
1172     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1173       LRMap->push_back(i);
1174   }
1175 
1176   // Now check if any registers were separated into multiple components.
1177   ConnectedVNInfoEqClasses ConEQ(LIS);
1178   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1179     // Don't use iterators, they are invalidated by create() below.
1180     unsigned VReg = Edit->get(i);
1181     LiveInterval &LI = LIS.getInterval(VReg);
1182     SmallVector<LiveInterval*, 8> SplitLIs;
1183     LIS.splitSeparateComponents(LI, SplitLIs);
1184     unsigned Original = VRM.getOriginal(VReg);
1185     for (LiveInterval *SplitLI : SplitLIs)
1186       VRM.setIsSplitFromReg(SplitLI->reg, Original);
1187 
1188     // The new intervals all map back to i.
1189     if (LRMap)
1190       LRMap->resize(Edit->size(), i);
1191   }
1192 
1193   // Calculate spill weight and allocation hints for new intervals.
1194   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1195 
1196   assert(!LRMap || LRMap->size() == Edit->size());
1197 }
1198 
1199 
1200 //===----------------------------------------------------------------------===//
1201 //                            Single Block Splitting
1202 //===----------------------------------------------------------------------===//
1203 
1204 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1205                                            bool SingleInstrs) const {
1206   // Always split for multiple instructions.
1207   if (!BI.isOneInstr())
1208     return true;
1209   // Don't split for single instructions unless explicitly requested.
1210   if (!SingleInstrs)
1211     return false;
1212   // Splitting a live-through range always makes progress.
1213   if (BI.LiveIn && BI.LiveOut)
1214     return true;
1215   // No point in isolating a copy. It has no register class constraints.
1216   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1217     return false;
1218   // Finally, don't isolate an end point that was created by earlier splits.
1219   return isOriginalEndpoint(BI.FirstInstr);
1220 }
1221 
1222 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1223   openIntv();
1224   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1225   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1226     LastSplitPoint));
1227   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1228     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1229   } else {
1230       // The last use is after the last valid split point.
1231     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1232     useIntv(SegStart, SegStop);
1233     overlapIntv(SegStop, BI.LastInstr);
1234   }
1235 }
1236 
1237 
1238 //===----------------------------------------------------------------------===//
1239 //                    Global Live Range Splitting Support
1240 //===----------------------------------------------------------------------===//
1241 
1242 // These methods support a method of global live range splitting that uses a
1243 // global algorithm to decide intervals for CFG edges. They will insert split
1244 // points and color intervals in basic blocks while avoiding interference.
1245 //
1246 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1247 // are on the stack.
1248 
1249 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1250                                         unsigned IntvIn, SlotIndex LeaveBefore,
1251                                         unsigned IntvOut, SlotIndex EnterAfter){
1252   SlotIndex Start, Stop;
1253   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1254 
1255   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1256                << ") intf " << LeaveBefore << '-' << EnterAfter
1257                << ", live-through " << IntvIn << " -> " << IntvOut);
1258 
1259   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1260 
1261   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1262   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1263   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1264 
1265   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1266 
1267   if (!IntvOut) {
1268     DEBUG(dbgs() << ", spill on entry.\n");
1269     //
1270     //        <<<<<<<<<    Possible LeaveBefore interference.
1271     //    |-----------|    Live through.
1272     //    -____________    Spill on entry.
1273     //
1274     selectIntv(IntvIn);
1275     SlotIndex Idx = leaveIntvAtTop(*MBB);
1276     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1277     (void)Idx;
1278     return;
1279   }
1280 
1281   if (!IntvIn) {
1282     DEBUG(dbgs() << ", reload on exit.\n");
1283     //
1284     //    >>>>>>>          Possible EnterAfter interference.
1285     //    |-----------|    Live through.
1286     //    ___________--    Reload on exit.
1287     //
1288     selectIntv(IntvOut);
1289     SlotIndex Idx = enterIntvAtEnd(*MBB);
1290     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1291     (void)Idx;
1292     return;
1293   }
1294 
1295   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1296     DEBUG(dbgs() << ", straight through.\n");
1297     //
1298     //    |-----------|    Live through.
1299     //    -------------    Straight through, same intv, no interference.
1300     //
1301     selectIntv(IntvOut);
1302     useIntv(Start, Stop);
1303     return;
1304   }
1305 
1306   // We cannot legally insert splits after LSP.
1307   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1308   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1309 
1310   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1311                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1312     DEBUG(dbgs() << ", switch avoiding interference.\n");
1313     //
1314     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1315     //    |-----------|    Live through.
1316     //    ------=======    Switch intervals between interference.
1317     //
1318     selectIntv(IntvOut);
1319     SlotIndex Idx;
1320     if (LeaveBefore && LeaveBefore < LSP) {
1321       Idx = enterIntvBefore(LeaveBefore);
1322       useIntv(Idx, Stop);
1323     } else {
1324       Idx = enterIntvAtEnd(*MBB);
1325     }
1326     selectIntv(IntvIn);
1327     useIntv(Start, Idx);
1328     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1329     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1330     return;
1331   }
1332 
1333   DEBUG(dbgs() << ", create local intv for interference.\n");
1334   //
1335   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1336   //    |-----------|    Live through.
1337   //    ==---------==    Switch intervals before/after interference.
1338   //
1339   assert(LeaveBefore <= EnterAfter && "Missed case");
1340 
1341   selectIntv(IntvOut);
1342   SlotIndex Idx = enterIntvAfter(EnterAfter);
1343   useIntv(Idx, Stop);
1344   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1345 
1346   selectIntv(IntvIn);
1347   Idx = leaveIntvBefore(LeaveBefore);
1348   useIntv(Start, Idx);
1349   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1350 }
1351 
1352 
1353 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1354                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1355   SlotIndex Start, Stop;
1356   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1357 
1358   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1359                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1360                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1361                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1362 
1363   assert(IntvIn && "Must have register in");
1364   assert(BI.LiveIn && "Must be live-in");
1365   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1366 
1367   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1368     DEBUG(dbgs() << " before interference.\n");
1369     //
1370     //               <<<    Interference after kill.
1371     //     |---o---x   |    Killed in block.
1372     //     =========        Use IntvIn everywhere.
1373     //
1374     selectIntv(IntvIn);
1375     useIntv(Start, BI.LastInstr);
1376     return;
1377   }
1378 
1379   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1380 
1381   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1382     //
1383     //               <<<    Possible interference after last use.
1384     //     |---o---o---|    Live-out on stack.
1385     //     =========____    Leave IntvIn after last use.
1386     //
1387     //                 <    Interference after last use.
1388     //     |---o---o--o|    Live-out on stack, late last use.
1389     //     ============     Copy to stack after LSP, overlap IntvIn.
1390     //            \_____    Stack interval is live-out.
1391     //
1392     if (BI.LastInstr < LSP) {
1393       DEBUG(dbgs() << ", spill after last use before interference.\n");
1394       selectIntv(IntvIn);
1395       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1396       useIntv(Start, Idx);
1397       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1398     } else {
1399       DEBUG(dbgs() << ", spill before last split point.\n");
1400       selectIntv(IntvIn);
1401       SlotIndex Idx = leaveIntvBefore(LSP);
1402       overlapIntv(Idx, BI.LastInstr);
1403       useIntv(Start, Idx);
1404       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1405     }
1406     return;
1407   }
1408 
1409   // The interference is overlapping somewhere we wanted to use IntvIn. That
1410   // means we need to create a local interval that can be allocated a
1411   // different register.
1412   unsigned LocalIntv = openIntv();
1413   (void)LocalIntv;
1414   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1415 
1416   if (!BI.LiveOut || BI.LastInstr < LSP) {
1417     //
1418     //           <<<<<<<    Interference overlapping uses.
1419     //     |---o---o---|    Live-out on stack.
1420     //     =====----____    Leave IntvIn before interference, then spill.
1421     //
1422     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1423     SlotIndex From = enterIntvBefore(LeaveBefore);
1424     useIntv(From, To);
1425     selectIntv(IntvIn);
1426     useIntv(Start, From);
1427     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1428     return;
1429   }
1430 
1431   //           <<<<<<<    Interference overlapping uses.
1432   //     |---o---o--o|    Live-out on stack, late last use.
1433   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1434   //            \_____    Stack interval is live-out.
1435   //
1436   SlotIndex To = leaveIntvBefore(LSP);
1437   overlapIntv(To, BI.LastInstr);
1438   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1439   useIntv(From, To);
1440   selectIntv(IntvIn);
1441   useIntv(Start, From);
1442   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1443 }
1444 
1445 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1446                                    unsigned IntvOut, SlotIndex EnterAfter) {
1447   SlotIndex Start, Stop;
1448   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1449 
1450   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1451                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1452                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1453                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1454 
1455   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1456 
1457   assert(IntvOut && "Must have register out");
1458   assert(BI.LiveOut && "Must be live-out");
1459   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1460 
1461   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1462     DEBUG(dbgs() << " after interference.\n");
1463     //
1464     //    >>>>             Interference before def.
1465     //    |   o---o---|    Defined in block.
1466     //        =========    Use IntvOut everywhere.
1467     //
1468     selectIntv(IntvOut);
1469     useIntv(BI.FirstInstr, Stop);
1470     return;
1471   }
1472 
1473   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1474     DEBUG(dbgs() << ", reload after interference.\n");
1475     //
1476     //    >>>>             Interference before def.
1477     //    |---o---o---|    Live-through, stack-in.
1478     //    ____=========    Enter IntvOut before first use.
1479     //
1480     selectIntv(IntvOut);
1481     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1482     useIntv(Idx, Stop);
1483     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1484     return;
1485   }
1486 
1487   // The interference is overlapping somewhere we wanted to use IntvOut. That
1488   // means we need to create a local interval that can be allocated a
1489   // different register.
1490   DEBUG(dbgs() << ", interference overlaps uses.\n");
1491   //
1492   //    >>>>>>>          Interference overlapping uses.
1493   //    |---o---o---|    Live-through, stack-in.
1494   //    ____---======    Create local interval for interference range.
1495   //
1496   selectIntv(IntvOut);
1497   SlotIndex Idx = enterIntvAfter(EnterAfter);
1498   useIntv(Idx, Stop);
1499   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1500 
1501   openIntv();
1502   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1503   useIntv(From, Idx);
1504 }
1505