1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/CalcSpillWeights.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 using namespace llvm; 32 33 static cl::opt<bool> 34 AllowSplit("spiller-splits-edges", 35 cl::desc("Allow critical edge splitting during spilling")); 36 37 STATISTIC(NumFinished, "Number of splits finished"); 38 STATISTIC(NumSimple, "Number of splits that were simple"); 39 40 //===----------------------------------------------------------------------===// 41 // Split Analysis 42 //===----------------------------------------------------------------------===// 43 44 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 45 const LiveIntervals &lis, 46 const MachineLoopInfo &mli) 47 : MF(vrm.getMachineFunction()), 48 VRM(vrm), 49 LIS(lis), 50 Loops(mli), 51 TII(*MF.getTarget().getInstrInfo()), 52 CurLI(0) {} 53 54 void SplitAnalysis::clear() { 55 UseSlots.clear(); 56 UsingInstrs.clear(); 57 UsingBlocks.clear(); 58 LiveBlocks.clear(); 59 CurLI = 0; 60 } 61 62 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 63 MachineBasicBlock *T, *F; 64 SmallVector<MachineOperand, 4> Cond; 65 return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 66 } 67 68 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 69 void SplitAnalysis::analyzeUses() { 70 const MachineRegisterInfo &MRI = MF.getRegInfo(); 71 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), 72 E = MRI.reg_end(); I != E; ++I) { 73 MachineOperand &MO = I.getOperand(); 74 if (MO.isUse() && MO.isUndef()) 75 continue; 76 MachineInstr *MI = MO.getParent(); 77 if (MI->isDebugValue() || !UsingInstrs.insert(MI)) 78 continue; 79 UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); 80 MachineBasicBlock *MBB = MI->getParent(); 81 UsingBlocks[MBB]++; 82 } 83 array_pod_sort(UseSlots.begin(), UseSlots.end()); 84 calcLiveBlockInfo(); 85 DEBUG(dbgs() << " counted " 86 << UsingInstrs.size() << " instrs, " 87 << UsingBlocks.size() << " blocks.\n"); 88 } 89 90 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 91 /// where CurLI is live. 92 void SplitAnalysis::calcLiveBlockInfo() { 93 if (CurLI->empty()) 94 return; 95 96 LiveInterval::const_iterator LVI = CurLI->begin(); 97 LiveInterval::const_iterator LVE = CurLI->end(); 98 99 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 100 UseI = UseSlots.begin(); 101 UseE = UseSlots.end(); 102 103 // Loop over basic blocks where CurLI is live. 104 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 105 for (;;) { 106 BlockInfo BI; 107 BI.MBB = MFI; 108 tie(BI.Start, BI.Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 109 110 // The last split point is the latest possible insertion point that dominates 111 // all successor blocks. If interference reaches LastSplitPoint, it is not 112 // possible to insert a split or reload that makes CurLI live in the 113 // outgoing bundle. 114 MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB); 115 if (LSP == BI.MBB->end()) 116 BI.LastSplitPoint = BI.Stop; 117 else 118 BI.LastSplitPoint = LIS.getInstructionIndex(LSP); 119 120 // LVI is the first live segment overlapping MBB. 121 BI.LiveIn = LVI->start <= BI.Start; 122 if (!BI.LiveIn) 123 BI.Def = LVI->start; 124 125 // Find the first and last uses in the block. 126 BI.Uses = hasUses(MFI); 127 if (BI.Uses && UseI != UseE) { 128 BI.FirstUse = *UseI; 129 assert(BI.FirstUse >= BI.Start); 130 do ++UseI; 131 while (UseI != UseE && *UseI < BI.Stop); 132 BI.LastUse = UseI[-1]; 133 assert(BI.LastUse < BI.Stop); 134 } 135 136 // Look for gaps in the live range. 137 bool hasGap = false; 138 BI.LiveOut = true; 139 while (LVI->end < BI.Stop) { 140 SlotIndex LastStop = LVI->end; 141 if (++LVI == LVE || LVI->start >= BI.Stop) { 142 BI.Kill = LastStop; 143 BI.LiveOut = false; 144 break; 145 } 146 if (LastStop < LVI->start) { 147 hasGap = true; 148 BI.Kill = LastStop; 149 BI.Def = LVI->start; 150 } 151 } 152 153 // Don't set LiveThrough when the block has a gap. 154 BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; 155 LiveBlocks.push_back(BI); 156 157 // LVI is now at LVE or LVI->end >= Stop. 158 if (LVI == LVE) 159 break; 160 161 // Live segment ends exactly at Stop. Move to the next segment. 162 if (LVI->end == BI.Stop && ++LVI == LVE) 163 break; 164 165 // Pick the next basic block. 166 if (LVI->start < BI.Stop) 167 ++MFI; 168 else 169 MFI = LIS.getMBBFromIndex(LVI->start); 170 } 171 } 172 173 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 174 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 175 const LiveInterval &Orig = LIS.getInterval(OrigReg); 176 assert(!Orig.empty() && "Splitting empty interval?"); 177 LiveInterval::const_iterator I = Orig.find(Idx); 178 179 // Range containing Idx should begin at Idx. 180 if (I != Orig.end() && I->start <= Idx) 181 return I->start == Idx; 182 183 // Range does not contain Idx, previous must end at Idx. 184 return I != Orig.begin() && (--I)->end == Idx; 185 } 186 187 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 188 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 189 unsigned count = UsingBlocks.lookup(*I); 190 OS << " BB#" << (*I)->getNumber(); 191 if (count) 192 OS << '(' << count << ')'; 193 } 194 } 195 196 void SplitAnalysis::analyze(const LiveInterval *li) { 197 clear(); 198 CurLI = li; 199 analyzeUses(); 200 } 201 202 203 //===----------------------------------------------------------------------===// 204 // Split Editor 205 //===----------------------------------------------------------------------===// 206 207 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 208 SplitEditor::SplitEditor(SplitAnalysis &sa, 209 LiveIntervals &lis, 210 VirtRegMap &vrm, 211 MachineDominatorTree &mdt) 212 : SA(sa), LIS(lis), VRM(vrm), 213 MRI(vrm.getMachineFunction().getRegInfo()), 214 MDT(mdt), 215 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 216 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 217 Edit(0), 218 OpenIdx(0), 219 RegAssign(Allocator) 220 {} 221 222 void SplitEditor::reset(LiveRangeEdit &lre) { 223 Edit = &lre; 224 OpenIdx = 0; 225 RegAssign.clear(); 226 Values.clear(); 227 228 // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. 229 LiveOutSeen.clear(); 230 231 // We don't need an AliasAnalysis since we will only be performing 232 // cheap-as-a-copy remats anyway. 233 Edit->anyRematerializable(LIS, TII, 0); 234 } 235 236 void SplitEditor::dump() const { 237 if (RegAssign.empty()) { 238 dbgs() << " empty\n"; 239 return; 240 } 241 242 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 243 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 244 dbgs() << '\n'; 245 } 246 247 VNInfo *SplitEditor::defValue(unsigned RegIdx, 248 const VNInfo *ParentVNI, 249 SlotIndex Idx) { 250 assert(ParentVNI && "Mapping NULL value"); 251 assert(Idx.isValid() && "Invalid SlotIndex"); 252 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 253 LiveInterval *LI = Edit->get(RegIdx); 254 255 // Create a new value. 256 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 257 258 // Preserve the PHIDef bit. 259 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 260 VNI->setIsPHIDef(true); 261 262 // Use insert for lookup, so we can add missing values with a second lookup. 263 std::pair<ValueMap::iterator, bool> InsP = 264 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 265 266 // This was the first time (RegIdx, ParentVNI) was mapped. 267 // Keep it as a simple def without any liveness. 268 if (InsP.second) 269 return VNI; 270 271 // If the previous value was a simple mapping, add liveness for it now. 272 if (VNInfo *OldVNI = InsP.first->second) { 273 SlotIndex Def = OldVNI->def; 274 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 275 // No longer a simple mapping. 276 InsP.first->second = 0; 277 } 278 279 // This is a complex mapping, add liveness for VNI 280 SlotIndex Def = VNI->def; 281 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 282 283 return VNI; 284 } 285 286 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 287 assert(ParentVNI && "Mapping NULL value"); 288 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 289 290 // ParentVNI was either unmapped or already complex mapped. Either way. 291 if (!VNI) 292 return; 293 294 // This was previously a single mapping. Make sure the old def is represented 295 // by a trivial live range. 296 SlotIndex Def = VNI->def; 297 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 298 VNI = 0; 299 } 300 301 // extendRange - Extend the live range to reach Idx. 302 // Potentially create phi-def values. 303 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 304 assert(Idx.isValid() && "Invalid SlotIndex"); 305 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 306 assert(IdxMBB && "No MBB at Idx"); 307 LiveInterval *LI = Edit->get(RegIdx); 308 309 // Is there a def in the same MBB we can extend? 310 if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) 311 return; 312 313 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 314 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 315 // Perform a search for all predecessor blocks where we know the dominating 316 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 317 DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() 318 << " at " << Idx << " in " << *LI << '\n'); 319 320 // Initialize the live-out cache the first time it is needed. 321 if (LiveOutSeen.empty()) { 322 unsigned N = VRM.getMachineFunction().getNumBlockIDs(); 323 LiveOutSeen.resize(N); 324 LiveOutCache.resize(N); 325 } 326 327 // Blocks where LI should be live-in. 328 SmallVector<MachineDomTreeNode*, 16> LiveIn; 329 LiveIn.push_back(MDT[IdxMBB]); 330 331 // Remember if we have seen more than one value. 332 bool UniqueVNI = true; 333 VNInfo *IdxVNI = 0; 334 335 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 336 for (unsigned i = 0; i != LiveIn.size(); ++i) { 337 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 338 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 339 PE = MBB->pred_end(); PI != PE; ++PI) { 340 MachineBasicBlock *Pred = *PI; 341 LiveOutPair &LOP = LiveOutCache[Pred]; 342 343 // Is this a known live-out block? 344 if (LiveOutSeen.test(Pred->getNumber())) { 345 if (VNInfo *VNI = LOP.first) { 346 if (IdxVNI && IdxVNI != VNI) 347 UniqueVNI = false; 348 IdxVNI = VNI; 349 } 350 continue; 351 } 352 353 // First time. LOP is garbage and must be cleared below. 354 LiveOutSeen.set(Pred->getNumber()); 355 356 // Does Pred provide a live-out value? 357 SlotIndex Start, Last; 358 tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); 359 Last = Last.getPrevSlot(); 360 VNInfo *VNI = LI->extendInBlock(Start, Last); 361 LOP.first = VNI; 362 if (VNI) { 363 LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; 364 if (IdxVNI && IdxVNI != VNI) 365 UniqueVNI = false; 366 IdxVNI = VNI; 367 continue; 368 } 369 LOP.second = 0; 370 371 // No, we need a live-in value for Pred as well 372 if (Pred != IdxMBB) 373 LiveIn.push_back(MDT[Pred]); 374 else 375 UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help. 376 } 377 } 378 379 // We may need to add phi-def values to preserve the SSA form. 380 if (UniqueVNI) { 381 LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]); 382 // Update LiveOutCache, but skip IdxMBB at LiveIn[0]. 383 for (unsigned i = 1, e = LiveIn.size(); i != e; ++i) 384 LiveOutCache[LiveIn[i]->getBlock()] = LOP; 385 } else 386 IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB); 387 388 // Since we went through the trouble of a full BFS visiting all reaching defs, 389 // the values in LiveIn are now accurate. No more phi-defs are needed 390 // for these blocks, so we can color the live ranges. 391 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 392 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 393 SlotIndex Start = LIS.getMBBStartIdx(MBB); 394 VNInfo *VNI = LiveOutCache[MBB].first; 395 396 // Anything in LiveIn other than IdxMBB is live-through. 397 // In IdxMBB, we should stop at Idx unless the same value is live-out. 398 if (MBB == IdxMBB && IdxVNI != VNI) 399 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 400 else 401 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 402 } 403 } 404 405 VNInfo *SplitEditor::updateSSA(unsigned RegIdx, 406 SmallVectorImpl<MachineDomTreeNode*> &LiveIn, 407 SlotIndex Idx, 408 const MachineBasicBlock *IdxMBB) { 409 // This is essentially the same iterative algorithm that SSAUpdater uses, 410 // except we already have a dominator tree, so we don't have to recompute it. 411 LiveInterval *LI = Edit->get(RegIdx); 412 VNInfo *IdxVNI = 0; 413 unsigned Changes; 414 do { 415 Changes = 0; 416 DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); 417 // Propagate live-out values down the dominator tree, inserting phi-defs 418 // when necessary. Since LiveIn was created by a BFS, going backwards makes 419 // it more likely for us to visit immediate dominators before their 420 // children. 421 for (unsigned i = LiveIn.size(); i; --i) { 422 MachineDomTreeNode *Node = LiveIn[i-1]; 423 MachineBasicBlock *MBB = Node->getBlock(); 424 MachineDomTreeNode *IDom = Node->getIDom(); 425 LiveOutPair IDomValue; 426 427 // We need a live-in value to a block with no immediate dominator? 428 // This is probably an unreachable block that has survived somehow. 429 bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); 430 431 // IDom dominates all of our predecessors, but it may not be the immediate 432 // dominator. Check if any of them have live-out values that are properly 433 // dominated by IDom. If so, we need a phi-def here. 434 if (!needPHI) { 435 IDomValue = LiveOutCache[IDom->getBlock()]; 436 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 437 PE = MBB->pred_end(); PI != PE; ++PI) { 438 LiveOutPair Value = LiveOutCache[*PI]; 439 if (!Value.first || Value.first == IDomValue.first) 440 continue; 441 // This predecessor is carrying something other than IDomValue. 442 // It could be because IDomValue hasn't propagated yet, or it could be 443 // because MBB is in the dominance frontier of that value. 444 if (MDT.dominates(IDom, Value.second)) { 445 needPHI = true; 446 break; 447 } 448 } 449 } 450 451 // Create a phi-def if required. 452 if (needPHI) { 453 ++Changes; 454 SlotIndex Start = LIS.getMBBStartIdx(MBB); 455 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 456 VNI->setIsPHIDef(true); 457 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 458 << " phi-def #" << VNI->id << " at " << Start << '\n'); 459 // We no longer need LI to be live-in. 460 LiveIn.erase(LiveIn.begin()+(i-1)); 461 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 462 if (MBB == IdxMBB) 463 IdxVNI = VNI; 464 // Check if we need to update live-out info. 465 LiveOutPair &LOP = LiveOutCache[MBB]; 466 if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) { 467 // We already have a live-out defined in MBB, so this must be IdxMBB. 468 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 469 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 470 } else { 471 // This phi-def is also live-out, so color the whole block. 472 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 473 LOP = LiveOutPair(VNI, Node); 474 } 475 } else if (IDomValue.first) { 476 // No phi-def here. Remember incoming value for IdxMBB. 477 if (MBB == IdxMBB) { 478 IdxVNI = IDomValue.first; 479 // IdxMBB need not be live-out. 480 if (!LiveOutSeen.test(MBB->getNumber())) 481 continue; 482 } 483 assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block"); 484 // Propagate IDomValue if needed: 485 // MBB is live-out and doesn't define its own value. 486 LiveOutPair &LOP = LiveOutCache[MBB]; 487 if (LOP.second != Node && LOP.first != IDomValue.first) { 488 ++Changes; 489 LOP = IDomValue; 490 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 491 << " idom valno #" << IDomValue.first->id 492 << " from BB#" << IDom->getBlock()->getNumber() << '\n'); 493 } 494 } 495 } 496 DEBUG(dbgs() << " - made " << Changes << " changes.\n"); 497 } while (Changes); 498 499 assert(IdxVNI && "Didn't find value for Idx"); 500 return IdxVNI; 501 } 502 503 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 504 VNInfo *ParentVNI, 505 SlotIndex UseIdx, 506 MachineBasicBlock &MBB, 507 MachineBasicBlock::iterator I) { 508 MachineInstr *CopyMI = 0; 509 SlotIndex Def; 510 LiveInterval *LI = Edit->get(RegIdx); 511 512 // Attempt cheap-as-a-copy rematerialization. 513 LiveRangeEdit::Remat RM(ParentVNI); 514 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 515 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 516 } else { 517 // Can't remat, just insert a copy from parent. 518 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 519 .addReg(Edit->getReg()); 520 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 521 } 522 523 // Define the value in Reg. 524 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 525 VNI->setCopy(CopyMI); 526 return VNI; 527 } 528 529 /// Create a new virtual register and live interval. 530 void SplitEditor::openIntv() { 531 assert(!OpenIdx && "Previous LI not closed before openIntv"); 532 533 // Create the complement as index 0. 534 if (Edit->empty()) 535 Edit->create(MRI, LIS, VRM); 536 537 // Create the open interval. 538 OpenIdx = Edit->size(); 539 Edit->create(MRI, LIS, VRM); 540 } 541 542 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 543 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 544 DEBUG(dbgs() << " enterIntvBefore " << Idx); 545 Idx = Idx.getBaseIndex(); 546 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 547 if (!ParentVNI) { 548 DEBUG(dbgs() << ": not live\n"); 549 return Idx; 550 } 551 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 552 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 553 assert(MI && "enterIntvBefore called with invalid index"); 554 555 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 556 return VNI->def; 557 } 558 559 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 560 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 561 SlotIndex End = LIS.getMBBEndIdx(&MBB); 562 SlotIndex Last = End.getPrevSlot(); 563 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 564 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 565 if (!ParentVNI) { 566 DEBUG(dbgs() << ": not live\n"); 567 return End; 568 } 569 DEBUG(dbgs() << ": valno " << ParentVNI->id); 570 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 571 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 572 RegAssign.insert(VNI->def, End, OpenIdx); 573 DEBUG(dump()); 574 return VNI->def; 575 } 576 577 /// useIntv - indicate that all instructions in MBB should use OpenLI. 578 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 579 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 580 } 581 582 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 583 assert(OpenIdx && "openIntv not called before useIntv"); 584 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 585 RegAssign.insert(Start, End, OpenIdx); 586 DEBUG(dump()); 587 } 588 589 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 590 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 591 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 592 593 // The interval must be live beyond the instruction at Idx. 594 Idx = Idx.getBoundaryIndex(); 595 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 596 if (!ParentVNI) { 597 DEBUG(dbgs() << ": not live\n"); 598 return Idx.getNextSlot(); 599 } 600 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 601 602 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 603 assert(MI && "No instruction at index"); 604 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 605 llvm::next(MachineBasicBlock::iterator(MI))); 606 return VNI->def; 607 } 608 609 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 610 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 611 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 612 613 // The interval must be live into the instruction at Idx. 614 Idx = Idx.getBoundaryIndex(); 615 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 616 if (!ParentVNI) { 617 DEBUG(dbgs() << ": not live\n"); 618 return Idx.getNextSlot(); 619 } 620 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 621 622 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 623 assert(MI && "No instruction at index"); 624 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 625 return VNI->def; 626 } 627 628 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 629 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 630 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 631 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 632 633 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 634 if (!ParentVNI) { 635 DEBUG(dbgs() << ": not live\n"); 636 return Start; 637 } 638 639 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 640 MBB.SkipPHIsAndLabels(MBB.begin())); 641 RegAssign.insert(Start, VNI->def, OpenIdx); 642 DEBUG(dump()); 643 return VNI->def; 644 } 645 646 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 647 assert(OpenIdx && "openIntv not called before overlapIntv"); 648 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 649 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 650 "Parent changes value in extended range"); 651 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 652 "Range cannot span basic blocks"); 653 654 // The complement interval will be extended as needed by extendRange(). 655 markComplexMapped(0, ParentVNI); 656 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 657 RegAssign.insert(Start, End, OpenIdx); 658 DEBUG(dump()); 659 } 660 661 /// closeIntv - Indicate that we are done editing the currently open 662 /// LiveInterval, and ranges can be trimmed. 663 void SplitEditor::closeIntv() { 664 assert(OpenIdx && "openIntv not called before closeIntv"); 665 OpenIdx = 0; 666 } 667 668 /// transferSimpleValues - Transfer all simply defined values to the new live 669 /// ranges. 670 /// Values that were rematerialized or that have multiple defs are left alone. 671 bool SplitEditor::transferSimpleValues() { 672 bool Skipped = false; 673 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 674 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 675 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 676 DEBUG(dbgs() << " blit " << *ParentI << ':'); 677 VNInfo *ParentVNI = ParentI->valno; 678 // RegAssign has holes where RegIdx 0 should be used. 679 SlotIndex Start = ParentI->start; 680 AssignI.advanceTo(Start); 681 do { 682 unsigned RegIdx; 683 SlotIndex End = ParentI->end; 684 if (!AssignI.valid()) { 685 RegIdx = 0; 686 } else if (AssignI.start() <= Start) { 687 RegIdx = AssignI.value(); 688 if (AssignI.stop() < End) { 689 End = AssignI.stop(); 690 ++AssignI; 691 } 692 } else { 693 RegIdx = 0; 694 End = std::min(End, AssignI.start()); 695 } 696 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 697 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 698 DEBUG(dbgs() << ':' << VNI->id); 699 Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI)); 700 } else 701 Skipped = true; 702 Start = End; 703 } while (Start != ParentI->end); 704 DEBUG(dbgs() << '\n'); 705 } 706 return Skipped; 707 } 708 709 void SplitEditor::extendPHIKillRanges() { 710 // Extend live ranges to be live-out for successor PHI values. 711 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 712 E = Edit->getParent().vni_end(); I != E; ++I) { 713 const VNInfo *PHIVNI = *I; 714 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 715 continue; 716 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 717 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 718 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 719 PE = MBB->pred_end(); PI != PE; ++PI) { 720 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 721 // The predecessor may not have a live-out value. That is OK, like an 722 // undef PHI operand. 723 if (Edit->getParent().liveAt(End)) { 724 assert(RegAssign.lookup(End) == RegIdx && 725 "Different register assignment in phi predecessor"); 726 extendRange(RegIdx, End); 727 } 728 } 729 } 730 } 731 732 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 733 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 734 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 735 RE = MRI.reg_end(); RI != RE;) { 736 MachineOperand &MO = RI.getOperand(); 737 MachineInstr *MI = MO.getParent(); 738 ++RI; 739 // LiveDebugVariables should have handled all DBG_VALUE instructions. 740 if (MI->isDebugValue()) { 741 DEBUG(dbgs() << "Zapping " << *MI); 742 MO.setReg(0); 743 continue; 744 } 745 746 // <undef> operands don't really read the register, so just assign them to 747 // the complement. 748 if (MO.isUse() && MO.isUndef()) { 749 MO.setReg(Edit->get(0)->reg); 750 continue; 751 } 752 753 SlotIndex Idx = LIS.getInstructionIndex(MI); 754 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 755 756 // Rewrite to the mapped register at Idx. 757 unsigned RegIdx = RegAssign.lookup(Idx); 758 MO.setReg(Edit->get(RegIdx)->reg); 759 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 760 << Idx << ':' << RegIdx << '\t' << *MI); 761 762 // Extend liveness to Idx. 763 if (ExtendRanges) 764 extendRange(RegIdx, Idx); 765 } 766 } 767 768 /// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. 769 void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, 770 const ConnectedVNInfoEqClasses &ConEq) { 771 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), 772 RE = MRI.reg_end(); RI != RE;) { 773 MachineOperand &MO = RI.getOperand(); 774 MachineInstr *MI = MO.getParent(); 775 ++RI; 776 if (MO.isUse() && MO.isUndef()) 777 continue; 778 // DBG_VALUE instructions should have been eliminated earlier. 779 SlotIndex Idx = LIS.getInstructionIndex(MI); 780 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 781 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 782 << Idx << ':'); 783 const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); 784 assert(VNI && "Interval not live at use."); 785 MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); 786 DEBUG(dbgs() << VNI->id << '\t' << *MI); 787 } 788 } 789 790 void SplitEditor::finish() { 791 assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); 792 ++NumFinished; 793 794 // At this point, the live intervals in Edit contain VNInfos corresponding to 795 // the inserted copies. 796 797 // Add the original defs from the parent interval. 798 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 799 E = Edit->getParent().vni_end(); I != E; ++I) { 800 const VNInfo *ParentVNI = *I; 801 if (ParentVNI->isUnused()) 802 continue; 803 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 804 defValue(RegIdx, ParentVNI, ParentVNI->def); 805 // Mark rematted values as complex everywhere to force liveness computation. 806 // The new live ranges may be truncated. 807 if (Edit->didRematerialize(ParentVNI)) 808 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 809 markComplexMapped(i, ParentVNI); 810 } 811 812 #ifndef NDEBUG 813 // Every new interval must have a def by now, otherwise the split is bogus. 814 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 815 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 816 #endif 817 818 // Transfer the simply mapped values, check if any are complex. 819 bool Complex = transferSimpleValues(); 820 if (Complex) 821 extendPHIKillRanges(); 822 else 823 ++NumSimple; 824 825 // Rewrite virtual registers, possibly extending ranges. 826 rewriteAssigned(Complex); 827 828 // FIXME: Delete defs that were rematted everywhere. 829 830 // Get rid of unused values and set phi-kill flags. 831 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 832 (*I)->RenumberValues(LIS); 833 834 // Now check if any registers were separated into multiple components. 835 ConnectedVNInfoEqClasses ConEQ(LIS); 836 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 837 // Don't use iterators, they are invalidated by create() below. 838 LiveInterval *li = Edit->get(i); 839 unsigned NumComp = ConEQ.Classify(li); 840 if (NumComp <= 1) 841 continue; 842 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 843 SmallVector<LiveInterval*, 8> dups; 844 dups.push_back(li); 845 for (unsigned i = 1; i != NumComp; ++i) 846 dups.push_back(&Edit->create(MRI, LIS, VRM)); 847 rewriteComponents(dups, ConEQ); 848 ConEQ.Distribute(&dups[0]); 849 } 850 851 // Calculate spill weight and allocation hints for new intervals. 852 VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops); 853 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 854 LiveInterval &li = **I; 855 vrai.CalculateRegClass(li.reg); 856 vrai.CalculateWeightAndHint(li); 857 DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() 858 << ":" << li << '\n'); 859 } 860 } 861 862 863 //===----------------------------------------------------------------------===// 864 // Single Block Splitting 865 //===----------------------------------------------------------------------===// 866 867 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 868 /// may be an advantage to split CurLI for the duration of the block. 869 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 870 // If CurLI is local to one block, there is no point to splitting it. 871 if (LiveBlocks.size() <= 1) 872 return false; 873 // Add blocks with multiple uses. 874 for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { 875 const BlockInfo &BI = LiveBlocks[i]; 876 if (!BI.Uses) 877 continue; 878 unsigned Instrs = UsingBlocks.lookup(BI.MBB); 879 if (Instrs <= 1) 880 continue; 881 if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough) 882 continue; 883 Blocks.insert(BI.MBB); 884 } 885 return !Blocks.empty(); 886 } 887 888 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 889 /// basic block in Blocks. 890 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 891 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 892 893 for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { 894 const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; 895 if (!BI.Uses || !Blocks.count(BI.MBB)) 896 continue; 897 898 openIntv(); 899 SlotIndex SegStart = enterIntvBefore(BI.FirstUse); 900 if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) { 901 useIntv(SegStart, leaveIntvAfter(BI.LastUse)); 902 } else { 903 // The last use is after the last valid split point. 904 SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint); 905 useIntv(SegStart, SegStop); 906 overlapIntv(SegStop, BI.LastUse); 907 } 908 closeIntv(); 909 } 910 finish(); 911 } 912