1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc"
48 
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple,   "Number of splits that were simple");
51 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
52 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
53 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
54 
55 //===----------------------------------------------------------------------===//
56 //                     Last Insert Point Analysis
57 //===----------------------------------------------------------------------===//
58 
59 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
60                                          unsigned BBNum)
61     : LIS(lis), LastInsertPoint(BBNum) {}
62 
63 SlotIndex
64 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
65                                             const MachineBasicBlock &MBB) {
66   unsigned Num = MBB.getNumber();
67   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
68   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
69 
70   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
71   bool EHPadSuccessor = false;
72   for (const MachineBasicBlock *SMBB : MBB.successors()) {
73     if (SMBB->isEHPad()) {
74       ExceptionalSuccessors.push_back(SMBB);
75       EHPadSuccessor = true;
76     } else if (SMBB->isInlineAsmBrIndirectTarget())
77       ExceptionalSuccessors.push_back(SMBB);
78   }
79 
80   // Compute insert points on the first call. The pair is independent of the
81   // current live interval.
82   if (!LIP.first.isValid()) {
83     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
84     if (FirstTerm == MBB.end())
85       LIP.first = MBBEnd;
86     else
87       LIP.first = LIS.getInstructionIndex(*FirstTerm);
88 
89     // If there is a landing pad or inlineasm_br successor, also find the
90     // instruction. If there is no such instruction, we don't need to do
91     // anything special.  We assume there cannot be multiple instructions that
92     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
93     // assume that if there are any, they will be after any other call
94     // instructions in the block.
95     if (ExceptionalSuccessors.empty())
96       return LIP.first;
97     for (const MachineInstr &MI : llvm::reverse(MBB)) {
98       if ((EHPadSuccessor && MI.isCall()) ||
99           MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
100         LIP.second = LIS.getInstructionIndex(MI);
101         break;
102       }
103     }
104   }
105 
106   // If CurLI is live into a landing pad successor, move the last insert point
107   // back to the call that may throw.
108   if (!LIP.second)
109     return LIP.first;
110 
111   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
112         return LIS.isLiveInToMBB(CurLI, EHPad);
113       }))
114     return LIP.first;
115 
116   // Find the value leaving MBB.
117   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
118   if (!VNI)
119     return LIP.first;
120 
121   // If the value leaving MBB was defined after the call in MBB, it can't
122   // really be live-in to the landing pad.  This can happen if the landing pad
123   // has a PHI, and this register is undef on the exceptional edge.
124   // <rdar://problem/10664933>
125   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
126     return LIP.first;
127 
128   // Value is properly live-in to the landing pad.
129   // Only allow inserts before the call.
130   return LIP.second;
131 }
132 
133 MachineBasicBlock::iterator
134 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
135                                             MachineBasicBlock &MBB) {
136   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
137   if (LIP == LIS.getMBBEndIdx(&MBB))
138     return MBB.end();
139   return LIS.getInstructionFromIndex(LIP);
140 }
141 
142 //===----------------------------------------------------------------------===//
143 //                                 Split Analysis
144 //===----------------------------------------------------------------------===//
145 
146 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
147                              const MachineLoopInfo &mli)
148     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
149       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
150 
151 void SplitAnalysis::clear() {
152   UseSlots.clear();
153   UseBlocks.clear();
154   ThroughBlocks.clear();
155   CurLI = nullptr;
156   DidRepairRange = false;
157 }
158 
159 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
160 void SplitAnalysis::analyzeUses() {
161   assert(UseSlots.empty() && "Call clear first");
162 
163   // First get all the defs from the interval values. This provides the correct
164   // slots for early clobbers.
165   for (const VNInfo *VNI : CurLI->valnos)
166     if (!VNI->isPHIDef() && !VNI->isUnused())
167       UseSlots.push_back(VNI->def);
168 
169   // Get use slots form the use-def chain.
170   const MachineRegisterInfo &MRI = MF.getRegInfo();
171   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
172     if (!MO.isUndef())
173       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
174 
175   array_pod_sort(UseSlots.begin(), UseSlots.end());
176 
177   // Remove duplicates, keeping the smaller slot for each instruction.
178   // That is what we want for early clobbers.
179   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
180                              SlotIndex::isSameInstr),
181                  UseSlots.end());
182 
183   // Compute per-live block info.
184   if (!calcLiveBlockInfo()) {
185     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
186     // I am looking at you, RegisterCoalescer!
187     DidRepairRange = true;
188     ++NumRepairs;
189     LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
190     const_cast<LiveIntervals&>(LIS)
191       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
192     UseBlocks.clear();
193     ThroughBlocks.clear();
194     bool fixed = calcLiveBlockInfo();
195     (void)fixed;
196     assert(fixed && "Couldn't fix broken live interval");
197   }
198 
199   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
200                     << UseBlocks.size() << " blocks, through "
201                     << NumThroughBlocks << " blocks.\n");
202 }
203 
204 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
205 /// where CurLI is live.
206 bool SplitAnalysis::calcLiveBlockInfo() {
207   ThroughBlocks.resize(MF.getNumBlockIDs());
208   NumThroughBlocks = NumGapBlocks = 0;
209   if (CurLI->empty())
210     return true;
211 
212   LiveInterval::const_iterator LVI = CurLI->begin();
213   LiveInterval::const_iterator LVE = CurLI->end();
214 
215   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
216   UseI = UseSlots.begin();
217   UseE = UseSlots.end();
218 
219   // Loop over basic blocks where CurLI is live.
220   MachineFunction::iterator MFI =
221       LIS.getMBBFromIndex(LVI->start)->getIterator();
222   while (true) {
223     BlockInfo BI;
224     BI.MBB = &*MFI;
225     SlotIndex Start, Stop;
226     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
227 
228     // If the block contains no uses, the range must be live through. At one
229     // point, RegisterCoalescer could create dangling ranges that ended
230     // mid-block.
231     if (UseI == UseE || *UseI >= Stop) {
232       ++NumThroughBlocks;
233       ThroughBlocks.set(BI.MBB->getNumber());
234       // The range shouldn't end mid-block if there are no uses. This shouldn't
235       // happen.
236       if (LVI->end < Stop)
237         return false;
238     } else {
239       // This block has uses. Find the first and last uses in the block.
240       BI.FirstInstr = *UseI;
241       assert(BI.FirstInstr >= Start);
242       do ++UseI;
243       while (UseI != UseE && *UseI < Stop);
244       BI.LastInstr = UseI[-1];
245       assert(BI.LastInstr < Stop);
246 
247       // LVI is the first live segment overlapping MBB.
248       BI.LiveIn = LVI->start <= Start;
249 
250       // When not live in, the first use should be a def.
251       if (!BI.LiveIn) {
252         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
253         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
254         BI.FirstDef = BI.FirstInstr;
255       }
256 
257       // Look for gaps in the live range.
258       BI.LiveOut = true;
259       while (LVI->end < Stop) {
260         SlotIndex LastStop = LVI->end;
261         if (++LVI == LVE || LVI->start >= Stop) {
262           BI.LiveOut = false;
263           BI.LastInstr = LastStop;
264           break;
265         }
266 
267         if (LastStop < LVI->start) {
268           // There is a gap in the live range. Create duplicate entries for the
269           // live-in snippet and the live-out snippet.
270           ++NumGapBlocks;
271 
272           // Push the Live-in part.
273           BI.LiveOut = false;
274           UseBlocks.push_back(BI);
275           UseBlocks.back().LastInstr = LastStop;
276 
277           // Set up BI for the live-out part.
278           BI.LiveIn = false;
279           BI.LiveOut = true;
280           BI.FirstInstr = BI.FirstDef = LVI->start;
281         }
282 
283         // A Segment that starts in the middle of the block must be a def.
284         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
285         if (!BI.FirstDef)
286           BI.FirstDef = LVI->start;
287       }
288 
289       UseBlocks.push_back(BI);
290 
291       // LVI is now at LVE or LVI->end >= Stop.
292       if (LVI == LVE)
293         break;
294     }
295 
296     // Live segment ends exactly at Stop. Move to the next segment.
297     if (LVI->end == Stop && ++LVI == LVE)
298       break;
299 
300     // Pick the next basic block.
301     if (LVI->start < Stop)
302       ++MFI;
303     else
304       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
305   }
306 
307   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
308   return true;
309 }
310 
311 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
312   if (cli->empty())
313     return 0;
314   LiveInterval *li = const_cast<LiveInterval*>(cli);
315   LiveInterval::iterator LVI = li->begin();
316   LiveInterval::iterator LVE = li->end();
317   unsigned Count = 0;
318 
319   // Loop over basic blocks where li is live.
320   MachineFunction::const_iterator MFI =
321       LIS.getMBBFromIndex(LVI->start)->getIterator();
322   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
323   while (true) {
324     ++Count;
325     LVI = li->advanceTo(LVI, Stop);
326     if (LVI == LVE)
327       return Count;
328     do {
329       ++MFI;
330       Stop = LIS.getMBBEndIdx(&*MFI);
331     } while (Stop <= LVI->start);
332   }
333 }
334 
335 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
336   unsigned OrigReg = VRM.getOriginal(CurLI->reg());
337   const LiveInterval &Orig = LIS.getInterval(OrigReg);
338   assert(!Orig.empty() && "Splitting empty interval?");
339   LiveInterval::const_iterator I = Orig.find(Idx);
340 
341   // Range containing Idx should begin at Idx.
342   if (I != Orig.end() && I->start <= Idx)
343     return I->start == Idx;
344 
345   // Range does not contain Idx, previous must end at Idx.
346   return I != Orig.begin() && (--I)->end == Idx;
347 }
348 
349 void SplitAnalysis::analyze(const LiveInterval *li) {
350   clear();
351   CurLI = li;
352   analyzeUses();
353 }
354 
355 //===----------------------------------------------------------------------===//
356 //                               Split Editor
357 //===----------------------------------------------------------------------===//
358 
359 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
360 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA,
361                          LiveIntervals &LIS, VirtRegMap &VRM,
362                          MachineDominatorTree &MDT,
363                          MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
364     : SA(SA), AA(AA), LIS(LIS), VRM(VRM),
365       MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT),
366       TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
367       TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
368       MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
369 
370 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
371   Edit = &LRE;
372   SpillMode = SM;
373   OpenIdx = 0;
374   RegAssign.clear();
375   Values.clear();
376 
377   // Reset the LiveIntervalCalc instances needed for this spill mode.
378   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
379                   &LIS.getVNInfoAllocator());
380   if (SpillMode)
381     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
382                     &LIS.getVNInfoAllocator());
383 
384   // We don't need an AliasAnalysis since we will only be performing
385   // cheap-as-a-copy remats anyway.
386   Edit->anyRematerializable(nullptr);
387 }
388 
389 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
390 LLVM_DUMP_METHOD void SplitEditor::dump() const {
391   if (RegAssign.empty()) {
392     dbgs() << " empty\n";
393     return;
394   }
395 
396   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
397     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
398   dbgs() << '\n';
399 }
400 #endif
401 
402 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM,
403                                                              LiveInterval &LI) {
404   for (LiveInterval::SubRange &S : LI.subranges())
405     if (S.LaneMask == LM)
406       return S;
407   llvm_unreachable("SubRange for this mask not found");
408 }
409 
410 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
411                                                         LiveInterval &LI) {
412   for (LiveInterval::SubRange &S : LI.subranges())
413     if ((S.LaneMask & LM) == LM)
414       return S;
415   llvm_unreachable("SubRange for this mask not found");
416 }
417 
418 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
419   if (!LI.hasSubRanges()) {
420     LI.createDeadDef(VNI);
421     return;
422   }
423 
424   SlotIndex Def = VNI->def;
425   if (Original) {
426     // If we are transferring a def from the original interval, make sure
427     // to only update the subranges for which the original subranges had
428     // a def at this location.
429     for (LiveInterval::SubRange &S : LI.subranges()) {
430       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
431       VNInfo *PV = PS.getVNInfoAt(Def);
432       if (PV != nullptr && PV->def == Def)
433         S.createDeadDef(Def, LIS.getVNInfoAllocator());
434     }
435   } else {
436     // This is a new def: either from rematerialization, or from an inserted
437     // copy. Since rematerialization can regenerate a definition of a sub-
438     // register, we need to check which subranges need to be updated.
439     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
440     assert(DefMI != nullptr);
441     LaneBitmask LM;
442     for (const MachineOperand &DefOp : DefMI->defs()) {
443       Register R = DefOp.getReg();
444       if (R != LI.reg())
445         continue;
446       if (unsigned SR = DefOp.getSubReg())
447         LM |= TRI.getSubRegIndexLaneMask(SR);
448       else {
449         LM = MRI.getMaxLaneMaskForVReg(R);
450         break;
451       }
452     }
453     for (LiveInterval::SubRange &S : LI.subranges())
454       if ((S.LaneMask & LM).any())
455         S.createDeadDef(Def, LIS.getVNInfoAllocator());
456   }
457 }
458 
459 VNInfo *SplitEditor::defValue(unsigned RegIdx,
460                               const VNInfo *ParentVNI,
461                               SlotIndex Idx,
462                               bool Original) {
463   assert(ParentVNI && "Mapping  NULL value");
464   assert(Idx.isValid() && "Invalid SlotIndex");
465   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
466   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
467 
468   // Create a new value.
469   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
470 
471   bool Force = LI->hasSubRanges();
472   ValueForcePair FP(Force ? nullptr : VNI, Force);
473   // Use insert for lookup, so we can add missing values with a second lookup.
474   std::pair<ValueMap::iterator, bool> InsP =
475     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
476 
477   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
478   // forced. Keep it as a simple def without any liveness.
479   if (!Force && InsP.second)
480     return VNI;
481 
482   // If the previous value was a simple mapping, add liveness for it now.
483   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
484     addDeadDef(*LI, OldVNI, Original);
485 
486     // No longer a simple mapping.  Switch to a complex mapping. If the
487     // interval has subranges, make it a forced mapping.
488     InsP.first->second = ValueForcePair(nullptr, Force);
489   }
490 
491   // This is a complex mapping, add liveness for VNI
492   addDeadDef(*LI, VNI, Original);
493   return VNI;
494 }
495 
496 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
497   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
498   VNInfo *VNI = VFP.getPointer();
499 
500   // ParentVNI was either unmapped or already complex mapped. Either way, just
501   // set the force bit.
502   if (!VNI) {
503     VFP.setInt(true);
504     return;
505   }
506 
507   // This was previously a single mapping. Make sure the old def is represented
508   // by a trivial live range.
509   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
510 
511   // Mark as complex mapped, forced.
512   VFP = ValueForcePair(nullptr, true);
513 }
514 
515 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
516     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
517     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
518   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
519   bool FirstCopy = !Def.isValid();
520   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
521       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
522               | getInternalReadRegState(!FirstCopy), SubIdx)
523       .addReg(FromReg, 0, SubIdx);
524 
525   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
526   SlotIndexes &Indexes = *LIS.getSlotIndexes();
527   if (FirstCopy) {
528     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
529   } else {
530     CopyMI->bundleWithPred();
531   }
532   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
533   DestLI.refineSubRanges(Allocator, LaneMask,
534                          [Def, &Allocator](LiveInterval::SubRange &SR) {
535                            SR.createDeadDef(Def, Allocator);
536                          },
537                          Indexes, TRI);
538   return Def;
539 }
540 
541 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
542     LaneBitmask LaneMask, MachineBasicBlock &MBB,
543     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
544   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
545   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
546     // The full vreg is copied.
547     MachineInstr *CopyMI =
548         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
549     SlotIndexes &Indexes = *LIS.getSlotIndexes();
550     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
551   }
552 
553   // Only a subset of lanes needs to be copied. The following is a simple
554   // heuristic to construct a sequence of COPYs. We could add a target
555   // specific callback if this turns out to be suboptimal.
556   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
557 
558   // First pass: Try to find a perfectly matching subregister index. If none
559   // exists find the one covering the most lanemask bits.
560   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
561   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
562 
563   SmallVector<unsigned, 8> Indexes;
564 
565   // Abort if we cannot possibly implement the COPY with the given indexes.
566   if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, Indexes))
567     report_fatal_error("Impossible to implement partial COPY");
568 
569   SlotIndex Def;
570   for (unsigned BestIdx : Indexes) {
571     Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
572                                 DestLI, Late, Def);
573   }
574 
575   return Def;
576 }
577 
578 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
579                                    VNInfo *ParentVNI,
580                                    SlotIndex UseIdx,
581                                    MachineBasicBlock &MBB,
582                                    MachineBasicBlock::iterator I) {
583   SlotIndex Def;
584   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
585 
586   // We may be trying to avoid interference that ends at a deleted instruction,
587   // so always begin RegIdx 0 early and all others late.
588   bool Late = RegIdx != 0;
589 
590   // Attempt cheap-as-a-copy rematerialization.
591   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
592   LiveInterval &OrigLI = LIS.getInterval(Original);
593   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
594 
595   Register Reg = LI->reg();
596   bool DidRemat = false;
597   if (OrigVNI) {
598     LiveRangeEdit::Remat RM(ParentVNI);
599     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
600     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
601       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
602       ++NumRemats;
603       DidRemat = true;
604     }
605   }
606   if (!DidRemat) {
607     LaneBitmask LaneMask;
608     if (OrigLI.hasSubRanges()) {
609       LaneMask = LaneBitmask::getNone();
610       for (LiveInterval::SubRange &S : OrigLI.subranges()) {
611         if (S.liveAt(UseIdx))
612           LaneMask |= S.LaneMask;
613       }
614     } else {
615       LaneMask = LaneBitmask::getAll();
616     }
617 
618     if (LaneMask.none()) {
619       const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
620       MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
621       SlotIndexes &Indexes = *LIS.getSlotIndexes();
622       Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
623     } else {
624       ++NumCopies;
625       Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
626     }
627   }
628 
629   // Define the value in Reg.
630   return defValue(RegIdx, ParentVNI, Def, false);
631 }
632 
633 /// Create a new virtual register and live interval.
634 unsigned SplitEditor::openIntv() {
635   // Create the complement as index 0.
636   if (Edit->empty())
637     Edit->createEmptyInterval();
638 
639   // Create the open interval.
640   OpenIdx = Edit->size();
641   Edit->createEmptyInterval();
642   return OpenIdx;
643 }
644 
645 void SplitEditor::selectIntv(unsigned Idx) {
646   assert(Idx != 0 && "Cannot select the complement interval");
647   assert(Idx < Edit->size() && "Can only select previously opened interval");
648   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
649   OpenIdx = Idx;
650 }
651 
652 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
653   assert(OpenIdx && "openIntv not called before enterIntvBefore");
654   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
655   Idx = Idx.getBaseIndex();
656   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
657   if (!ParentVNI) {
658     LLVM_DEBUG(dbgs() << ": not live\n");
659     return Idx;
660   }
661   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
662   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
663   assert(MI && "enterIntvBefore called with invalid index");
664 
665   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
666   return VNI->def;
667 }
668 
669 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
670   assert(OpenIdx && "openIntv not called before enterIntvAfter");
671   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
672   Idx = Idx.getBoundaryIndex();
673   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
674   if (!ParentVNI) {
675     LLVM_DEBUG(dbgs() << ": not live\n");
676     return Idx;
677   }
678   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
679   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
680   assert(MI && "enterIntvAfter called with invalid index");
681 
682   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
683                               std::next(MachineBasicBlock::iterator(MI)));
684   return VNI->def;
685 }
686 
687 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
688   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
689   SlotIndex End = LIS.getMBBEndIdx(&MBB);
690   SlotIndex Last = End.getPrevSlot();
691   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
692                     << Last);
693   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
694   if (!ParentVNI) {
695     LLVM_DEBUG(dbgs() << ": not live\n");
696     return End;
697   }
698   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
699   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
700                               SA.getLastSplitPointIter(&MBB));
701   RegAssign.insert(VNI->def, End, OpenIdx);
702   LLVM_DEBUG(dump());
703   return VNI->def;
704 }
705 
706 /// useIntv - indicate that all instructions in MBB should use OpenLI.
707 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
708   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
709 }
710 
711 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
712   assert(OpenIdx && "openIntv not called before useIntv");
713   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
714   RegAssign.insert(Start, End, OpenIdx);
715   LLVM_DEBUG(dump());
716 }
717 
718 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
719   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
720   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
721 
722   // The interval must be live beyond the instruction at Idx.
723   SlotIndex Boundary = Idx.getBoundaryIndex();
724   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
725   if (!ParentVNI) {
726     LLVM_DEBUG(dbgs() << ": not live\n");
727     return Boundary.getNextSlot();
728   }
729   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
730   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
731   assert(MI && "No instruction at index");
732 
733   // In spill mode, make live ranges as short as possible by inserting the copy
734   // before MI.  This is only possible if that instruction doesn't redefine the
735   // value.  The inserted COPY is not a kill, and we don't need to recompute
736   // the source live range.  The spiller also won't try to hoist this copy.
737   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
738       MI->readsVirtualRegister(Edit->getReg())) {
739     forceRecompute(0, *ParentVNI);
740     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
741     return Idx;
742   }
743 
744   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
745                               std::next(MachineBasicBlock::iterator(MI)));
746   return VNI->def;
747 }
748 
749 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
750   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
751   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
752 
753   // The interval must be live into the instruction at Idx.
754   Idx = Idx.getBaseIndex();
755   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
756   if (!ParentVNI) {
757     LLVM_DEBUG(dbgs() << ": not live\n");
758     return Idx.getNextSlot();
759   }
760   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
761 
762   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
763   assert(MI && "No instruction at index");
764   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
765   return VNI->def;
766 }
767 
768 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
769   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
770   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
771   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
772                     << Start);
773 
774   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
775   if (!ParentVNI) {
776     LLVM_DEBUG(dbgs() << ": not live\n");
777     return Start;
778   }
779 
780   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
781                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
782   RegAssign.insert(Start, VNI->def, OpenIdx);
783   LLVM_DEBUG(dump());
784   return VNI->def;
785 }
786 
787 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
788   assert(OpenIdx && "openIntv not called before overlapIntv");
789   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
790   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
791          "Parent changes value in extended range");
792   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
793          "Range cannot span basic blocks");
794 
795   // The complement interval will be extended as needed by LICalc.extend().
796   if (ParentVNI)
797     forceRecompute(0, *ParentVNI);
798   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
799   RegAssign.insert(Start, End, OpenIdx);
800   LLVM_DEBUG(dump());
801 }
802 
803 //===----------------------------------------------------------------------===//
804 //                                  Spill modes
805 //===----------------------------------------------------------------------===//
806 
807 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
808   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
809   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
810   RegAssignMap::iterator AssignI;
811   AssignI.setMap(RegAssign);
812 
813   for (const VNInfo *C : Copies) {
814     SlotIndex Def = C->def;
815     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
816     assert(MI && "No instruction for back-copy");
817 
818     MachineBasicBlock *MBB = MI->getParent();
819     MachineBasicBlock::iterator MBBI(MI);
820     bool AtBegin;
821     do AtBegin = MBBI == MBB->begin();
822     while (!AtBegin && (--MBBI)->isDebugInstr());
823 
824     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
825     LIS.removeVRegDefAt(*LI, Def);
826     LIS.RemoveMachineInstrFromMaps(*MI);
827     MI->eraseFromParent();
828 
829     // Adjust RegAssign if a register assignment is killed at Def. We want to
830     // avoid calculating the live range of the source register if possible.
831     AssignI.find(Def.getPrevSlot());
832     if (!AssignI.valid() || AssignI.start() >= Def)
833       continue;
834     // If MI doesn't kill the assigned register, just leave it.
835     if (AssignI.stop() != Def)
836       continue;
837     unsigned RegIdx = AssignI.value();
838     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
839       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
840                         << '\n');
841       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
842     } else {
843       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
844       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
845       AssignI.setStop(Kill);
846     }
847   }
848 }
849 
850 MachineBasicBlock*
851 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
852                                   MachineBasicBlock *DefMBB) {
853   if (MBB == DefMBB)
854     return MBB;
855   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
856 
857   const MachineLoopInfo &Loops = SA.Loops;
858   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
859   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
860 
861   // Best candidate so far.
862   MachineBasicBlock *BestMBB = MBB;
863   unsigned BestDepth = std::numeric_limits<unsigned>::max();
864 
865   while (true) {
866     const MachineLoop *Loop = Loops.getLoopFor(MBB);
867 
868     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
869     // higher frequency by definition.
870     if (!Loop) {
871       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
872                         << " dominates " << printMBBReference(*MBB)
873                         << " at depth 0\n");
874       return MBB;
875     }
876 
877     // We'll never be able to exit the DefLoop.
878     if (Loop == DefLoop) {
879       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
880                         << " dominates " << printMBBReference(*MBB)
881                         << " in the same loop\n");
882       return MBB;
883     }
884 
885     // Least busy dominator seen so far.
886     unsigned Depth = Loop->getLoopDepth();
887     if (Depth < BestDepth) {
888       BestMBB = MBB;
889       BestDepth = Depth;
890       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
891                         << " dominates " << printMBBReference(*MBB)
892                         << " at depth " << Depth << '\n');
893     }
894 
895     // Leave loop by going to the immediate dominator of the loop header.
896     // This is a bigger stride than simply walking up the dominator tree.
897     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
898 
899     // Too far up the dominator tree?
900     if (!IDom || !MDT.dominates(DefDomNode, IDom))
901       return BestMBB;
902 
903     MBB = IDom->getBlock();
904   }
905 }
906 
907 void SplitEditor::computeRedundantBackCopies(
908     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
909   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
910   LiveInterval *Parent = &Edit->getParent();
911   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
912   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
913 
914   // Aggregate VNIs having the same value as ParentVNI.
915   for (VNInfo *VNI : LI->valnos) {
916     if (VNI->isUnused())
917       continue;
918     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
919     EqualVNs[ParentVNI->id].insert(VNI);
920   }
921 
922   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
923   // redundant VNIs to BackCopies.
924   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
925     VNInfo *ParentVNI = Parent->getValNumInfo(i);
926     if (!NotToHoistSet.count(ParentVNI->id))
927       continue;
928     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
929     SmallPtrSetIterator<VNInfo *> It2 = It1;
930     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
931       It2 = It1;
932       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
933         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
934           continue;
935 
936         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
937         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
938         if (MBB1 == MBB2) {
939           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
940         } else if (MDT.dominates(MBB1, MBB2)) {
941           DominatedVNIs.insert(*It2);
942         } else if (MDT.dominates(MBB2, MBB1)) {
943           DominatedVNIs.insert(*It1);
944         }
945       }
946     }
947     if (!DominatedVNIs.empty()) {
948       forceRecompute(0, *ParentVNI);
949       append_range(BackCopies, DominatedVNIs);
950       DominatedVNIs.clear();
951     }
952   }
953 }
954 
955 /// For SM_Size mode, find a common dominator for all the back-copies for
956 /// the same ParentVNI and hoist the backcopies to the dominator BB.
957 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
958 /// to do the hoisting, simply remove the dominated backcopies for the same
959 /// ParentVNI.
960 void SplitEditor::hoistCopies() {
961   // Get the complement interval, always RegIdx 0.
962   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
963   LiveInterval *Parent = &Edit->getParent();
964 
965   // Track the nearest common dominator for all back-copies for each ParentVNI,
966   // indexed by ParentVNI->id.
967   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
968   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
969   // The total cost of all the back-copies for each ParentVNI.
970   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
971   // The ParentVNI->id set for which hoisting back-copies are not beneficial
972   // for Speed.
973   DenseSet<unsigned> NotToHoistSet;
974 
975   // Find the nearest common dominator for parent values with multiple
976   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
977   for (VNInfo *VNI : LI->valnos) {
978     if (VNI->isUnused())
979       continue;
980     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
981     assert(ParentVNI && "Parent not live at complement def");
982 
983     // Don't hoist remats.  The complement is probably going to disappear
984     // completely anyway.
985     if (Edit->didRematerialize(ParentVNI))
986       continue;
987 
988     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
989 
990     DomPair &Dom = NearestDom[ParentVNI->id];
991 
992     // Keep directly defined parent values.  This is either a PHI or an
993     // instruction in the complement range.  All other copies of ParentVNI
994     // should be eliminated.
995     if (VNI->def == ParentVNI->def) {
996       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
997       Dom = DomPair(ValMBB, VNI->def);
998       continue;
999     }
1000     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1001     // single back-copy.
1002     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1003       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1004       continue;
1005     }
1006 
1007     if (!Dom.first) {
1008       // First time we see ParentVNI.  VNI dominates itself.
1009       Dom = DomPair(ValMBB, VNI->def);
1010     } else if (Dom.first == ValMBB) {
1011       // Two defs in the same block.  Pick the earlier def.
1012       if (!Dom.second.isValid() || VNI->def < Dom.second)
1013         Dom.second = VNI->def;
1014     } else {
1015       // Different basic blocks. Check if one dominates.
1016       MachineBasicBlock *Near =
1017         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1018       if (Near == ValMBB)
1019         // Def ValMBB dominates.
1020         Dom = DomPair(ValMBB, VNI->def);
1021       else if (Near != Dom.first)
1022         // None dominate. Hoist to common dominator, need new def.
1023         Dom = DomPair(Near, SlotIndex());
1024       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1025     }
1026 
1027     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1028                       << VNI->def << " for parent " << ParentVNI->id << '@'
1029                       << ParentVNI->def << " hoist to "
1030                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1031                       << '\n');
1032   }
1033 
1034   // Insert the hoisted copies.
1035   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1036     DomPair &Dom = NearestDom[i];
1037     if (!Dom.first || Dom.second.isValid())
1038       continue;
1039     // This value needs a hoisted copy inserted at the end of Dom.first.
1040     VNInfo *ParentVNI = Parent->getValNumInfo(i);
1041     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1042     // Get a less loopy dominator than Dom.first.
1043     Dom.first = findShallowDominator(Dom.first, DefMBB);
1044     if (SpillMode == SM_Speed &&
1045         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1046       NotToHoistSet.insert(ParentVNI->id);
1047       continue;
1048     }
1049     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
1050     Dom.second =
1051       defFromParent(0, ParentVNI, Last, *Dom.first,
1052                     SA.getLastSplitPointIter(Dom.first))->def;
1053   }
1054 
1055   // Remove redundant back-copies that are now known to be dominated by another
1056   // def with the same value.
1057   SmallVector<VNInfo*, 8> BackCopies;
1058   for (VNInfo *VNI : LI->valnos) {
1059     if (VNI->isUnused())
1060       continue;
1061     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1062     const DomPair &Dom = NearestDom[ParentVNI->id];
1063     if (!Dom.first || Dom.second == VNI->def ||
1064         NotToHoistSet.count(ParentVNI->id))
1065       continue;
1066     BackCopies.push_back(VNI);
1067     forceRecompute(0, *ParentVNI);
1068   }
1069 
1070   // If it is not beneficial to hoist all the BackCopies, simply remove
1071   // redundant BackCopies in speed mode.
1072   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1073     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1074 
1075   removeBackCopies(BackCopies);
1076 }
1077 
1078 /// transferValues - Transfer all possible values to the new live ranges.
1079 /// Values that were rematerialized are left alone, they need LICalc.extend().
1080 bool SplitEditor::transferValues() {
1081   bool Skipped = false;
1082   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1083   for (const LiveRange::Segment &S : Edit->getParent()) {
1084     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1085     VNInfo *ParentVNI = S.valno;
1086     // RegAssign has holes where RegIdx 0 should be used.
1087     SlotIndex Start = S.start;
1088     AssignI.advanceTo(Start);
1089     do {
1090       unsigned RegIdx;
1091       SlotIndex End = S.end;
1092       if (!AssignI.valid()) {
1093         RegIdx = 0;
1094       } else if (AssignI.start() <= Start) {
1095         RegIdx = AssignI.value();
1096         if (AssignI.stop() < End) {
1097           End = AssignI.stop();
1098           ++AssignI;
1099         }
1100       } else {
1101         RegIdx = 0;
1102         End = std::min(End, AssignI.start());
1103       }
1104 
1105       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1106       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1107                         << printReg(Edit->get(RegIdx)) << ')');
1108       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1109 
1110       // Check for a simply defined value that can be blitted directly.
1111       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1112       if (VNInfo *VNI = VFP.getPointer()) {
1113         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1114         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1115         Start = End;
1116         continue;
1117       }
1118 
1119       // Skip values with forced recomputation.
1120       if (VFP.getInt()) {
1121         LLVM_DEBUG(dbgs() << "(recalc)");
1122         Skipped = true;
1123         Start = End;
1124         continue;
1125       }
1126 
1127       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1128 
1129       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1130       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1131       // LiveInBlocks.
1132       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1133       SlotIndex BlockStart, BlockEnd;
1134       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1135 
1136       // The first block may be live-in, or it may have its own def.
1137       if (Start != BlockStart) {
1138         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1139         assert(VNI && "Missing def for complex mapped value");
1140         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1141         // MBB has its own def. Is it also live-out?
1142         if (BlockEnd <= End)
1143           LIC.setLiveOutValue(&*MBB, VNI);
1144 
1145         // Skip to the next block for live-in.
1146         ++MBB;
1147         BlockStart = BlockEnd;
1148       }
1149 
1150       // Handle the live-in blocks covered by [Start;End).
1151       assert(Start <= BlockStart && "Expected live-in block");
1152       while (BlockStart < End) {
1153         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1154         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1155         if (BlockStart == ParentVNI->def) {
1156           // This block has the def of a parent PHI, so it isn't live-in.
1157           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1158           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1159           assert(VNI && "Missing def for complex mapped parent PHI");
1160           if (End >= BlockEnd)
1161             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1162         } else {
1163           // This block needs a live-in value.  The last block covered may not
1164           // be live-out.
1165           if (End < BlockEnd)
1166             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1167           else {
1168             // Live-through, and we don't know the value.
1169             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1170             LIC.setLiveOutValue(&*MBB, nullptr);
1171           }
1172         }
1173         BlockStart = BlockEnd;
1174         ++MBB;
1175       }
1176       Start = End;
1177     } while (Start != S.end);
1178     LLVM_DEBUG(dbgs() << '\n');
1179   }
1180 
1181   LICalc[0].calculateValues();
1182   if (SpillMode)
1183     LICalc[1].calculateValues();
1184 
1185   return Skipped;
1186 }
1187 
1188 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1189   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1190   if (Seg == nullptr)
1191     return true;
1192   if (Seg->end != Def.getDeadSlot())
1193     return false;
1194   // This is a dead PHI. Remove it.
1195   LR.removeSegment(*Seg, true);
1196   return true;
1197 }
1198 
1199 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1200                                  LiveRange &LR, LaneBitmask LM,
1201                                  ArrayRef<SlotIndex> Undefs) {
1202   for (MachineBasicBlock *P : B.predecessors()) {
1203     SlotIndex End = LIS.getMBBEndIdx(P);
1204     SlotIndex LastUse = End.getPrevSlot();
1205     // The predecessor may not have a live-out value. That is OK, like an
1206     // undef PHI operand.
1207     LiveInterval &PLI = Edit->getParent();
1208     // Need the cast because the inputs to ?: would otherwise be deemed
1209     // "incompatible": SubRange vs LiveInterval.
1210     LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1211                                : static_cast<LiveRange &>(PLI);
1212     if (PSR.liveAt(LastUse))
1213       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1214   }
1215 }
1216 
1217 void SplitEditor::extendPHIKillRanges() {
1218   // Extend live ranges to be live-out for successor PHI values.
1219 
1220   // Visit each PHI def slot in the parent live interval. If the def is dead,
1221   // remove it. Otherwise, extend the live interval to reach the end indexes
1222   // of all predecessor blocks.
1223 
1224   LiveInterval &ParentLI = Edit->getParent();
1225   for (const VNInfo *V : ParentLI.valnos) {
1226     if (V->isUnused() || !V->isPHIDef())
1227       continue;
1228 
1229     unsigned RegIdx = RegAssign.lookup(V->def);
1230     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1231     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1232     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1233     if (!removeDeadSegment(V->def, LI))
1234       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1235   }
1236 
1237   SmallVector<SlotIndex, 4> Undefs;
1238   LiveIntervalCalc SubLIC;
1239 
1240   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1241     for (const VNInfo *V : PS.valnos) {
1242       if (V->isUnused() || !V->isPHIDef())
1243         continue;
1244       unsigned RegIdx = RegAssign.lookup(V->def);
1245       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1246       LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1247       if (removeDeadSegment(V->def, S))
1248         continue;
1249 
1250       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1251       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1252                    &LIS.getVNInfoAllocator());
1253       Undefs.clear();
1254       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1255       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1256     }
1257   }
1258 }
1259 
1260 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1261 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1262   struct ExtPoint {
1263     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1264       : MO(O), RegIdx(R), Next(N) {}
1265 
1266     MachineOperand MO;
1267     unsigned RegIdx;
1268     SlotIndex Next;
1269   };
1270 
1271   SmallVector<ExtPoint,4> ExtPoints;
1272 
1273   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1274        RE = MRI.reg_end(); RI != RE;) {
1275     MachineOperand &MO = *RI;
1276     MachineInstr *MI = MO.getParent();
1277     ++RI;
1278     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1279     if (MI->isDebugValue()) {
1280       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1281       MO.setReg(0);
1282       continue;
1283     }
1284 
1285     // <undef> operands don't really read the register, so it doesn't matter
1286     // which register we choose.  When the use operand is tied to a def, we must
1287     // use the same register as the def, so just do that always.
1288     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1289     if (MO.isDef() || MO.isUndef())
1290       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1291 
1292     // Rewrite to the mapped register at Idx.
1293     unsigned RegIdx = RegAssign.lookup(Idx);
1294     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1295     MO.setReg(LI.reg());
1296     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1297                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1298 
1299     // Extend liveness to Idx if the instruction reads reg.
1300     if (!ExtendRanges || MO.isUndef())
1301       continue;
1302 
1303     // Skip instructions that don't read Reg.
1304     if (MO.isDef()) {
1305       if (!MO.getSubReg() && !MO.isEarlyClobber())
1306         continue;
1307       // We may want to extend a live range for a partial redef, or for a use
1308       // tied to an early clobber.
1309       Idx = Idx.getPrevSlot();
1310       if (!Edit->getParent().liveAt(Idx))
1311         continue;
1312     } else
1313       Idx = Idx.getRegSlot(true);
1314 
1315     SlotIndex Next = Idx.getNextSlot();
1316     if (LI.hasSubRanges()) {
1317       // We have to delay extending subranges until we have seen all operands
1318       // defining the register. This is because a <def,read-undef> operand
1319       // will create an "undef" point, and we cannot extend any subranges
1320       // until all of them have been accounted for.
1321       if (MO.isUse())
1322         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1323     } else {
1324       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1325       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1326     }
1327   }
1328 
1329   for (ExtPoint &EP : ExtPoints) {
1330     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1331     assert(LI.hasSubRanges());
1332 
1333     LiveIntervalCalc SubLIC;
1334     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1335     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1336                               : MRI.getMaxLaneMaskForVReg(Reg);
1337     for (LiveInterval::SubRange &S : LI.subranges()) {
1338       if ((S.LaneMask & LM).none())
1339         continue;
1340       // The problem here can be that the new register may have been created
1341       // for a partially defined original register. For example:
1342       //   %0:subreg_hireg<def,read-undef> = ...
1343       //   ...
1344       //   %1 = COPY %0
1345       if (S.empty())
1346         continue;
1347       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1348                    &LIS.getVNInfoAllocator());
1349       SmallVector<SlotIndex, 4> Undefs;
1350       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1351       SubLIC.extend(S, EP.Next, 0, Undefs);
1352     }
1353   }
1354 
1355   for (Register R : *Edit) {
1356     LiveInterval &LI = LIS.getInterval(R);
1357     if (!LI.hasSubRanges())
1358       continue;
1359     LI.clear();
1360     LI.removeEmptySubRanges();
1361     LIS.constructMainRangeFromSubranges(LI);
1362   }
1363 }
1364 
1365 void SplitEditor::deleteRematVictims() {
1366   SmallVector<MachineInstr*, 8> Dead;
1367   for (const Register &R : *Edit) {
1368     LiveInterval *LI = &LIS.getInterval(R);
1369     for (const LiveRange::Segment &S : LI->segments) {
1370       // Dead defs end at the dead slot.
1371       if (S.end != S.valno->def.getDeadSlot())
1372         continue;
1373       if (S.valno->isPHIDef())
1374         continue;
1375       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1376       assert(MI && "Missing instruction for dead def");
1377       MI->addRegisterDead(LI->reg(), &TRI);
1378 
1379       if (!MI->allDefsAreDead())
1380         continue;
1381 
1382       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1383       Dead.push_back(MI);
1384     }
1385   }
1386 
1387   if (Dead.empty())
1388     return;
1389 
1390   Edit->eliminateDeadDefs(Dead, None, &AA);
1391 }
1392 
1393 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1394   // Fast-path for common case.
1395   if (!ParentVNI.isPHIDef()) {
1396     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1397       forceRecompute(I, ParentVNI);
1398     return;
1399   }
1400 
1401   // Trace value through phis.
1402   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1403   SmallVector<const VNInfo *, 4> WorkList;
1404   Visited.insert(&ParentVNI);
1405   WorkList.push_back(&ParentVNI);
1406 
1407   const LiveInterval &ParentLI = Edit->getParent();
1408   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1409   do {
1410     const VNInfo &VNI = *WorkList.back();
1411     WorkList.pop_back();
1412     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1413       forceRecompute(I, VNI);
1414     if (!VNI.isPHIDef())
1415       continue;
1416 
1417     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1418     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1419       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1420       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1421       assert(PredVNI && "Value available in PhiVNI predecessor");
1422       if (Visited.insert(PredVNI).second)
1423         WorkList.push_back(PredVNI);
1424     }
1425   } while(!WorkList.empty());
1426 }
1427 
1428 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1429   ++NumFinished;
1430 
1431   // At this point, the live intervals in Edit contain VNInfos corresponding to
1432   // the inserted copies.
1433 
1434   // Add the original defs from the parent interval.
1435   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1436     if (ParentVNI->isUnused())
1437       continue;
1438     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1439     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1440 
1441     // Force rematted values to be recomputed everywhere.
1442     // The new live ranges may be truncated.
1443     if (Edit->didRematerialize(ParentVNI))
1444       forceRecomputeVNI(*ParentVNI);
1445   }
1446 
1447   // Hoist back-copies to the complement interval when in spill mode.
1448   switch (SpillMode) {
1449   case SM_Partition:
1450     // Leave all back-copies as is.
1451     break;
1452   case SM_Size:
1453   case SM_Speed:
1454     // hoistCopies will behave differently between size and speed.
1455     hoistCopies();
1456   }
1457 
1458   // Transfer the simply mapped values, check if any are skipped.
1459   bool Skipped = transferValues();
1460 
1461   // Rewrite virtual registers, possibly extending ranges.
1462   rewriteAssigned(Skipped);
1463 
1464   if (Skipped)
1465     extendPHIKillRanges();
1466   else
1467     ++NumSimple;
1468 
1469   // Delete defs that were rematted everywhere.
1470   if (Skipped)
1471     deleteRematVictims();
1472 
1473   // Get rid of unused values and set phi-kill flags.
1474   for (Register Reg : *Edit) {
1475     LiveInterval &LI = LIS.getInterval(Reg);
1476     LI.removeEmptySubRanges();
1477     LI.RenumberValues();
1478   }
1479 
1480   // Provide a reverse mapping from original indices to Edit ranges.
1481   if (LRMap) {
1482     LRMap->clear();
1483     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1484       LRMap->push_back(i);
1485   }
1486 
1487   // Now check if any registers were separated into multiple components.
1488   ConnectedVNInfoEqClasses ConEQ(LIS);
1489   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1490     // Don't use iterators, they are invalidated by create() below.
1491     Register VReg = Edit->get(i);
1492     LiveInterval &LI = LIS.getInterval(VReg);
1493     SmallVector<LiveInterval*, 8> SplitLIs;
1494     LIS.splitSeparateComponents(LI, SplitLIs);
1495     Register Original = VRM.getOriginal(VReg);
1496     for (LiveInterval *SplitLI : SplitLIs)
1497       VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1498 
1499     // The new intervals all map back to i.
1500     if (LRMap)
1501       LRMap->resize(Edit->size(), i);
1502   }
1503 
1504   // Calculate spill weight and allocation hints for new intervals.
1505   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1506 
1507   assert(!LRMap || LRMap->size() == Edit->size());
1508 }
1509 
1510 //===----------------------------------------------------------------------===//
1511 //                            Single Block Splitting
1512 //===----------------------------------------------------------------------===//
1513 
1514 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1515                                            bool SingleInstrs) const {
1516   // Always split for multiple instructions.
1517   if (!BI.isOneInstr())
1518     return true;
1519   // Don't split for single instructions unless explicitly requested.
1520   if (!SingleInstrs)
1521     return false;
1522   // Splitting a live-through range always makes progress.
1523   if (BI.LiveIn && BI.LiveOut)
1524     return true;
1525   // No point in isolating a copy. It has no register class constraints.
1526   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1527     return false;
1528   // Finally, don't isolate an end point that was created by earlier splits.
1529   return isOriginalEndpoint(BI.FirstInstr);
1530 }
1531 
1532 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1533   openIntv();
1534   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1535   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1536     LastSplitPoint));
1537   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1538     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1539   } else {
1540       // The last use is after the last valid split point.
1541     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1542     useIntv(SegStart, SegStop);
1543     overlapIntv(SegStop, BI.LastInstr);
1544   }
1545 }
1546 
1547 //===----------------------------------------------------------------------===//
1548 //                    Global Live Range Splitting Support
1549 //===----------------------------------------------------------------------===//
1550 
1551 // These methods support a method of global live range splitting that uses a
1552 // global algorithm to decide intervals for CFG edges. They will insert split
1553 // points and color intervals in basic blocks while avoiding interference.
1554 //
1555 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1556 // are on the stack.
1557 
1558 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1559                                         unsigned IntvIn, SlotIndex LeaveBefore,
1560                                         unsigned IntvOut, SlotIndex EnterAfter){
1561   SlotIndex Start, Stop;
1562   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1563 
1564   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1565                     << ") intf " << LeaveBefore << '-' << EnterAfter
1566                     << ", live-through " << IntvIn << " -> " << IntvOut);
1567 
1568   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1569 
1570   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1571   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1572   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1573 
1574   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1575 
1576   if (!IntvOut) {
1577     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1578     //
1579     //        <<<<<<<<<    Possible LeaveBefore interference.
1580     //    |-----------|    Live through.
1581     //    -____________    Spill on entry.
1582     //
1583     selectIntv(IntvIn);
1584     SlotIndex Idx = leaveIntvAtTop(*MBB);
1585     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1586     (void)Idx;
1587     return;
1588   }
1589 
1590   if (!IntvIn) {
1591     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1592     //
1593     //    >>>>>>>          Possible EnterAfter interference.
1594     //    |-----------|    Live through.
1595     //    ___________--    Reload on exit.
1596     //
1597     selectIntv(IntvOut);
1598     SlotIndex Idx = enterIntvAtEnd(*MBB);
1599     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1600     (void)Idx;
1601     return;
1602   }
1603 
1604   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1605     LLVM_DEBUG(dbgs() << ", straight through.\n");
1606     //
1607     //    |-----------|    Live through.
1608     //    -------------    Straight through, same intv, no interference.
1609     //
1610     selectIntv(IntvOut);
1611     useIntv(Start, Stop);
1612     return;
1613   }
1614 
1615   // We cannot legally insert splits after LSP.
1616   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1617   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1618 
1619   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1620                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1621     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1622     //
1623     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1624     //    |-----------|    Live through.
1625     //    ------=======    Switch intervals between interference.
1626     //
1627     selectIntv(IntvOut);
1628     SlotIndex Idx;
1629     if (LeaveBefore && LeaveBefore < LSP) {
1630       Idx = enterIntvBefore(LeaveBefore);
1631       useIntv(Idx, Stop);
1632     } else {
1633       Idx = enterIntvAtEnd(*MBB);
1634     }
1635     selectIntv(IntvIn);
1636     useIntv(Start, Idx);
1637     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1638     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1639     return;
1640   }
1641 
1642   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1643   //
1644   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1645   //    |-----------|    Live through.
1646   //    ==---------==    Switch intervals before/after interference.
1647   //
1648   assert(LeaveBefore <= EnterAfter && "Missed case");
1649 
1650   selectIntv(IntvOut);
1651   SlotIndex Idx = enterIntvAfter(EnterAfter);
1652   useIntv(Idx, Stop);
1653   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1654 
1655   selectIntv(IntvIn);
1656   Idx = leaveIntvBefore(LeaveBefore);
1657   useIntv(Start, Idx);
1658   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1659 }
1660 
1661 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1662                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1663   SlotIndex Start, Stop;
1664   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1665 
1666   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1667                     << Stop << "), uses " << BI.FirstInstr << '-'
1668                     << BI.LastInstr << ", reg-in " << IntvIn
1669                     << ", leave before " << LeaveBefore
1670                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1671 
1672   assert(IntvIn && "Must have register in");
1673   assert(BI.LiveIn && "Must be live-in");
1674   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1675 
1676   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1677     LLVM_DEBUG(dbgs() << " before interference.\n");
1678     //
1679     //               <<<    Interference after kill.
1680     //     |---o---x   |    Killed in block.
1681     //     =========        Use IntvIn everywhere.
1682     //
1683     selectIntv(IntvIn);
1684     useIntv(Start, BI.LastInstr);
1685     return;
1686   }
1687 
1688   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1689 
1690   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1691     //
1692     //               <<<    Possible interference after last use.
1693     //     |---o---o---|    Live-out on stack.
1694     //     =========____    Leave IntvIn after last use.
1695     //
1696     //                 <    Interference after last use.
1697     //     |---o---o--o|    Live-out on stack, late last use.
1698     //     ============     Copy to stack after LSP, overlap IntvIn.
1699     //            \_____    Stack interval is live-out.
1700     //
1701     if (BI.LastInstr < LSP) {
1702       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1703       selectIntv(IntvIn);
1704       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1705       useIntv(Start, Idx);
1706       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1707     } else {
1708       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1709       selectIntv(IntvIn);
1710       SlotIndex Idx = leaveIntvBefore(LSP);
1711       overlapIntv(Idx, BI.LastInstr);
1712       useIntv(Start, Idx);
1713       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1714     }
1715     return;
1716   }
1717 
1718   // The interference is overlapping somewhere we wanted to use IntvIn. That
1719   // means we need to create a local interval that can be allocated a
1720   // different register.
1721   unsigned LocalIntv = openIntv();
1722   (void)LocalIntv;
1723   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1724 
1725   if (!BI.LiveOut || BI.LastInstr < LSP) {
1726     //
1727     //           <<<<<<<    Interference overlapping uses.
1728     //     |---o---o---|    Live-out on stack.
1729     //     =====----____    Leave IntvIn before interference, then spill.
1730     //
1731     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1732     SlotIndex From = enterIntvBefore(LeaveBefore);
1733     useIntv(From, To);
1734     selectIntv(IntvIn);
1735     useIntv(Start, From);
1736     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1737     return;
1738   }
1739 
1740   //           <<<<<<<    Interference overlapping uses.
1741   //     |---o---o--o|    Live-out on stack, late last use.
1742   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1743   //            \_____    Stack interval is live-out.
1744   //
1745   SlotIndex To = leaveIntvBefore(LSP);
1746   overlapIntv(To, BI.LastInstr);
1747   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1748   useIntv(From, To);
1749   selectIntv(IntvIn);
1750   useIntv(Start, From);
1751   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1752 }
1753 
1754 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1755                                    unsigned IntvOut, SlotIndex EnterAfter) {
1756   SlotIndex Start, Stop;
1757   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1758 
1759   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1760                     << Stop << "), uses " << BI.FirstInstr << '-'
1761                     << BI.LastInstr << ", reg-out " << IntvOut
1762                     << ", enter after " << EnterAfter
1763                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1764 
1765   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1766 
1767   assert(IntvOut && "Must have register out");
1768   assert(BI.LiveOut && "Must be live-out");
1769   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1770 
1771   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1772     LLVM_DEBUG(dbgs() << " after interference.\n");
1773     //
1774     //    >>>>             Interference before def.
1775     //    |   o---o---|    Defined in block.
1776     //        =========    Use IntvOut everywhere.
1777     //
1778     selectIntv(IntvOut);
1779     useIntv(BI.FirstInstr, Stop);
1780     return;
1781   }
1782 
1783   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1784     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1785     //
1786     //    >>>>             Interference before def.
1787     //    |---o---o---|    Live-through, stack-in.
1788     //    ____=========    Enter IntvOut before first use.
1789     //
1790     selectIntv(IntvOut);
1791     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1792     useIntv(Idx, Stop);
1793     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1794     return;
1795   }
1796 
1797   // The interference is overlapping somewhere we wanted to use IntvOut. That
1798   // means we need to create a local interval that can be allocated a
1799   // different register.
1800   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1801   //
1802   //    >>>>>>>          Interference overlapping uses.
1803   //    |---o---o---|    Live-through, stack-in.
1804   //    ____---======    Create local interval for interference range.
1805   //
1806   selectIntv(IntvOut);
1807   SlotIndex Idx = enterIntvAfter(EnterAfter);
1808   useIntv(Idx, Stop);
1809   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1810 
1811   openIntv();
1812   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1813   useIntv(From, Idx);
1814 }
1815 
1816 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1817   OS << "{" << printMBBReference(*MBB) << ", "
1818      << "uses " << FirstInstr << " to " << LastInstr << ", "
1819      << "1st def " << FirstDef << ", "
1820      << (LiveIn ? "live in" : "dead in") << ", "
1821      << (LiveOut ? "live out" : "dead out") << "}";
1822 }
1823 
1824 void SplitAnalysis::BlockInfo::dump() const {
1825   print(dbgs());
1826   dbgs() << "\n";
1827 }
1828