1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/CodeGen/CalcSpillWeights.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 using namespace llvm; 32 33 static cl::opt<bool> 34 AllowSplit("spiller-splits-edges", 35 cl::desc("Allow critical edge splitting during spilling")); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(mf), 45 LIS(lis), 46 Loops(mli), 47 TII(*mf.getTarget().getInstrInfo()), 48 CurLI(0) {} 49 50 void SplitAnalysis::clear() { 51 UseSlots.clear(); 52 UsingInstrs.clear(); 53 UsingBlocks.clear(); 54 UsingLoops.clear(); 55 CurLI = 0; 56 } 57 58 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 59 MachineBasicBlock *T, *F; 60 SmallVector<MachineOperand, 4> Cond; 61 return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 62 } 63 64 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 65 void SplitAnalysis::analyzeUses() { 66 const MachineRegisterInfo &MRI = MF.getRegInfo(); 67 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg); 68 MachineInstr *MI = I.skipInstruction();) { 69 if (MI->isDebugValue() || !UsingInstrs.insert(MI)) 70 continue; 71 UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); 72 MachineBasicBlock *MBB = MI->getParent(); 73 if (UsingBlocks[MBB]++) 74 continue; 75 for (MachineLoop *Loop = Loops.getLoopFor(MBB); Loop; 76 Loop = Loop->getParentLoop()) 77 UsingLoops[Loop]++; 78 } 79 array_pod_sort(UseSlots.begin(), UseSlots.end()); 80 DEBUG(dbgs() << " counted " 81 << UsingInstrs.size() << " instrs, " 82 << UsingBlocks.size() << " blocks, " 83 << UsingLoops.size() << " loops.\n"); 84 } 85 86 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 87 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 88 unsigned count = UsingBlocks.lookup(*I); 89 OS << " BB#" << (*I)->getNumber(); 90 if (count) 91 OS << '(' << count << ')'; 92 } 93 } 94 95 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 96 // predecessor blocks, and exit blocks. 97 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 98 Blocks.clear(); 99 100 // Blocks in the loop. 101 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 102 103 // Predecessor blocks. 104 const MachineBasicBlock *Header = Loop->getHeader(); 105 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 106 E = Header->pred_end(); I != E; ++I) 107 if (!Blocks.Loop.count(*I)) 108 Blocks.Preds.insert(*I); 109 110 // Exit blocks. 111 for (MachineLoop::block_iterator I = Loop->block_begin(), 112 E = Loop->block_end(); I != E; ++I) { 113 const MachineBasicBlock *MBB = *I; 114 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 115 SE = MBB->succ_end(); SI != SE; ++SI) 116 if (!Blocks.Loop.count(*SI)) 117 Blocks.Exits.insert(*SI); 118 } 119 } 120 121 void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 122 OS << "Loop:"; 123 print(B.Loop, OS); 124 OS << ", preds:"; 125 print(B.Preds, OS); 126 OS << ", exits:"; 127 print(B.Exits, OS); 128 } 129 130 /// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in 131 /// and around the Loop. 132 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 133 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 134 LoopPeripheralUse use = ContainedInLoop; 135 for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end(); 136 I != E; ++I) { 137 const MachineBasicBlock *MBB = I->first; 138 // Is this a peripheral block? 139 if (use < MultiPeripheral && 140 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 141 if (I->second > 1) use = MultiPeripheral; 142 else use = SinglePeripheral; 143 continue; 144 } 145 // Is it a loop block? 146 if (Blocks.Loop.count(MBB)) 147 continue; 148 // It must be an unrelated block. 149 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 150 return OutsideLoop; 151 } 152 return use; 153 } 154 155 /// getCriticalExits - It may be necessary to partially break critical edges 156 /// leaving the loop if an exit block has predecessors from outside the loop 157 /// periphery. 158 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 159 BlockPtrSet &CriticalExits) { 160 CriticalExits.clear(); 161 162 // A critical exit block has CurLI live-in, and has a predecessor that is not 163 // in the loop nor a loop predecessor. For such an exit block, the edges 164 // carrying the new variable must be moved to a new pre-exit block. 165 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 166 I != E; ++I) { 167 const MachineBasicBlock *Exit = *I; 168 // A single-predecessor exit block is definitely not a critical edge. 169 if (Exit->pred_size() == 1) 170 continue; 171 // This exit may not have CurLI live in at all. No need to split. 172 if (!LIS.isLiveInToMBB(*CurLI, Exit)) 173 continue; 174 // Does this exit block have a predecessor that is not a loop block or loop 175 // predecessor? 176 for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), 177 PE = Exit->pred_end(); PI != PE; ++PI) { 178 const MachineBasicBlock *Pred = *PI; 179 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 180 continue; 181 // This is a critical exit block, and we need to split the exit edge. 182 CriticalExits.insert(Exit); 183 break; 184 } 185 } 186 } 187 188 void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, 189 BlockPtrSet &CriticalPreds) { 190 CriticalPreds.clear(); 191 192 // A critical predecessor block has CurLI live-out, and has a successor that 193 // has CurLI live-in and is not in the loop nor a loop exit block. For such a 194 // predecessor block, we must carry the value in both the 'inside' and 195 // 'outside' registers. 196 for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); 197 I != E; ++I) { 198 const MachineBasicBlock *Pred = *I; 199 // Definitely not a critical edge. 200 if (Pred->succ_size() == 1) 201 continue; 202 // This block may not have CurLI live out at all if there is a PHI. 203 if (!LIS.isLiveOutOfMBB(*CurLI, Pred)) 204 continue; 205 // Does this block have a successor outside the loop? 206 for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), 207 SE = Pred->succ_end(); SI != SE; ++SI) { 208 const MachineBasicBlock *Succ = *SI; 209 if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) 210 continue; 211 if (!LIS.isLiveInToMBB(*CurLI, Succ)) 212 continue; 213 // This is a critical predecessor block. 214 CriticalPreds.insert(Pred); 215 break; 216 } 217 } 218 } 219 220 /// canSplitCriticalExits - Return true if it is possible to insert new exit 221 /// blocks before the blocks in CriticalExits. 222 bool 223 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 224 BlockPtrSet &CriticalExits) { 225 // If we don't allow critical edge splitting, require no critical exits. 226 if (!AllowSplit) 227 return CriticalExits.empty(); 228 229 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 230 I != E; ++I) { 231 const MachineBasicBlock *Succ = *I; 232 // We want to insert a new pre-exit MBB before Succ, and change all the 233 // in-loop blocks to branch to the pre-exit instead of Succ. 234 // Check that all the in-loop predecessors can be changed. 235 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 236 PE = Succ->pred_end(); PI != PE; ++PI) { 237 const MachineBasicBlock *Pred = *PI; 238 // The external predecessors won't be altered. 239 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 240 continue; 241 if (!canAnalyzeBranch(Pred)) 242 return false; 243 } 244 245 // If Succ's layout predecessor falls through, that too must be analyzable. 246 // We need to insert the pre-exit block in the gap. 247 MachineFunction::const_iterator MFI = Succ; 248 if (MFI == MF.begin()) 249 continue; 250 if (!canAnalyzeBranch(--MFI)) 251 return false; 252 } 253 // No problems found. 254 return true; 255 } 256 257 void SplitAnalysis::analyze(const LiveInterval *li) { 258 clear(); 259 CurLI = li; 260 analyzeUses(); 261 } 262 263 void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) { 264 assert(CurLI && "Call analyze() before getSplitLoops"); 265 if (UsingLoops.empty()) 266 return; 267 268 LoopBlocks Blocks; 269 BlockPtrSet CriticalExits; 270 271 // We split around loops where CurLI is used outside the periphery. 272 for (LoopCountMap::const_iterator I = UsingLoops.begin(), 273 E = UsingLoops.end(); I != E; ++I) { 274 const MachineLoop *Loop = I->first; 275 getLoopBlocks(Loop, Blocks); 276 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 277 278 switch(analyzeLoopPeripheralUse(Blocks)) { 279 case OutsideLoop: 280 break; 281 case MultiPeripheral: 282 // FIXME: We could split a live range with multiple uses in a peripheral 283 // block and still make progress. However, it is possible that splitting 284 // another live range will insert copies into a peripheral block, and 285 // there is a small chance we can enter an infinite loop, inserting copies 286 // forever. 287 // For safety, stick to splitting live ranges with uses outside the 288 // periphery. 289 DEBUG(dbgs() << ": multiple peripheral uses"); 290 break; 291 case ContainedInLoop: 292 DEBUG(dbgs() << ": fully contained\n"); 293 continue; 294 case SinglePeripheral: 295 DEBUG(dbgs() << ": single peripheral use\n"); 296 continue; 297 } 298 // Will it be possible to split around this loop? 299 getCriticalExits(Blocks, CriticalExits); 300 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 301 if (!canSplitCriticalExits(Blocks, CriticalExits)) 302 continue; 303 // This is a possible split. 304 Loops.insert(Loop); 305 } 306 307 DEBUG(dbgs() << " getSplitLoops found " << Loops.size() 308 << " candidate loops.\n"); 309 } 310 311 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 312 LoopPtrSet Loops; 313 getSplitLoops(Loops); 314 if (Loops.empty()) 315 return 0; 316 317 // Pick the earliest loop. 318 // FIXME: Are there other heuristics to consider? 319 const MachineLoop *Best = 0; 320 SlotIndex BestIdx; 321 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 322 ++I) { 323 SlotIndex Idx = LIS.getMBBStartIdx((*I)->getHeader()); 324 if (!Best || Idx < BestIdx) 325 Best = *I, BestIdx = Idx; 326 } 327 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 328 return Best; 329 } 330 331 /// isBypassLoop - Return true if CurLI is live through Loop and has no uses 332 /// inside the loop. Bypass loops are candidates for splitting because it can 333 /// prevent interference inside the loop. 334 bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) { 335 // If CurLI is live into the loop header and there are no uses in the loop, it 336 // must be live in the entire loop and live on at least one exiting edge. 337 return !UsingLoops.count(Loop) && 338 LIS.isLiveInToMBB(*CurLI, Loop->getHeader()); 339 } 340 341 /// getBypassLoops - Get all the maximal bypass loops. These are the bypass 342 /// loops whose parent is not a bypass loop. 343 void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) { 344 SmallVector<MachineLoop*, 8> Todo(Loops.begin(), Loops.end()); 345 while (!Todo.empty()) { 346 MachineLoop *Loop = Todo.pop_back_val(); 347 if (!UsingLoops.count(Loop)) { 348 // This is either a bypass loop or completely irrelevant. 349 if (LIS.isLiveInToMBB(*CurLI, Loop->getHeader())) 350 BypassLoops.insert(Loop); 351 // Either way, skip the child loops. 352 continue; 353 } 354 355 // The child loops may be bypass loops. 356 Todo.append(Loop->begin(), Loop->end()); 357 } 358 } 359 360 361 //===----------------------------------------------------------------------===// 362 // LiveIntervalMap 363 //===----------------------------------------------------------------------===// 364 365 // Work around the fact that the std::pair constructors are broken for pointer 366 // pairs in some implementations. makeVV(x, 0) works. 367 static inline std::pair<const VNInfo*, VNInfo*> 368 makeVV(const VNInfo *a, VNInfo *b) { 369 return std::make_pair(a, b); 370 } 371 372 void LiveIntervalMap::reset(LiveInterval *li) { 373 LI = li; 374 Values.clear(); 375 LiveOutCache.clear(); 376 } 377 378 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 379 ValueMap::const_iterator i = Values.find(ParentVNI); 380 return i != Values.end() && i->second == 0; 381 } 382 383 // defValue - Introduce a LI def for ParentVNI that could be later than 384 // ParentVNI->def. 385 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 386 assert(LI && "call reset first"); 387 assert(ParentVNI && "Mapping NULL value"); 388 assert(Idx.isValid() && "Invalid SlotIndex"); 389 assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 390 391 // Create a new value. 392 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 393 394 // Preserve the PHIDef bit. 395 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 396 VNI->setIsPHIDef(true); 397 398 // Use insert for lookup, so we can add missing values with a second lookup. 399 std::pair<ValueMap::iterator,bool> InsP = 400 Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 401 402 // This is now a complex def. Mark with a NULL in valueMap. 403 if (!InsP.second) 404 InsP.first->second = 0; 405 406 return VNI; 407 } 408 409 410 // mapValue - Find the mapped value for ParentVNI at Idx. 411 // Potentially create phi-def values. 412 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 413 bool *simple) { 414 assert(LI && "call reset first"); 415 assert(ParentVNI && "Mapping NULL value"); 416 assert(Idx.isValid() && "Invalid SlotIndex"); 417 assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 418 419 // Use insert for lookup, so we can add missing values with a second lookup. 420 std::pair<ValueMap::iterator,bool> InsP = 421 Values.insert(makeVV(ParentVNI, 0)); 422 423 // This was an unknown value. Create a simple mapping. 424 if (InsP.second) { 425 if (simple) *simple = true; 426 return InsP.first->second = LI->createValueCopy(ParentVNI, 427 LIS.getVNInfoAllocator()); 428 } 429 430 // This was a simple mapped value. 431 if (InsP.first->second) { 432 if (simple) *simple = true; 433 return InsP.first->second; 434 } 435 436 // This is a complex mapped value. There may be multiple defs, and we may need 437 // to create phi-defs. 438 if (simple) *simple = false; 439 MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); 440 assert(IdxMBB && "No MBB at Idx"); 441 442 // Is there a def in the same MBB we can extend? 443 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 444 return VNI; 445 446 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 447 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 448 // Perform a search for all predecessor blocks where we know the dominating 449 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 450 DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() 451 << " at " << Idx << " in " << *LI << '\n'); 452 453 // Blocks where LI should be live-in. 454 SmallVector<MachineDomTreeNode*, 16> LiveIn; 455 LiveIn.push_back(MDT[IdxMBB]); 456 457 // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. 458 for (unsigned i = 0; i != LiveIn.size(); ++i) { 459 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 460 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 461 PE = MBB->pred_end(); PI != PE; ++PI) { 462 MachineBasicBlock *Pred = *PI; 463 // Is this a known live-out block? 464 std::pair<LiveOutMap::iterator,bool> LOIP = 465 LiveOutCache.insert(std::make_pair(Pred, LiveOutPair())); 466 // Yes, we have been here before. 467 if (!LOIP.second) { 468 DEBUG(if (VNInfo *VNI = LOIP.first->second.first) 469 dbgs() << " known valno #" << VNI->id 470 << " at BB#" << Pred->getNumber() << '\n'); 471 continue; 472 } 473 474 // Does Pred provide a live-out value? 475 SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot(); 476 if (VNInfo *VNI = extendTo(Pred, Last)) { 477 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def); 478 DEBUG(dbgs() << " found valno #" << VNI->id 479 << " from BB#" << DefMBB->getNumber() 480 << " at BB#" << Pred->getNumber() << '\n'); 481 LiveOutPair &LOP = LOIP.first->second; 482 LOP.first = VNI; 483 LOP.second = MDT[DefMBB]; 484 continue; 485 } 486 // No, we need a live-in value for Pred as well 487 if (Pred != IdxMBB) 488 LiveIn.push_back(MDT[Pred]); 489 } 490 } 491 492 // We may need to add phi-def values to preserve the SSA form. 493 // This is essentially the same iterative algorithm that SSAUpdater uses, 494 // except we already have a dominator tree, so we don't have to recompute it. 495 VNInfo *IdxVNI = 0; 496 unsigned Changes; 497 do { 498 Changes = 0; 499 DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); 500 // Propagate live-out values down the dominator tree, inserting phi-defs when 501 // necessary. Since LiveIn was created by a BFS, going backwards makes it more 502 // likely for us to visit immediate dominators before their children. 503 for (unsigned i = LiveIn.size(); i; --i) { 504 MachineDomTreeNode *Node = LiveIn[i-1]; 505 MachineBasicBlock *MBB = Node->getBlock(); 506 MachineDomTreeNode *IDom = Node->getIDom(); 507 LiveOutPair IDomValue; 508 // We need a live-in value to a block with no immediate dominator? 509 // This is probably an unreachable block that has survived somehow. 510 bool needPHI = !IDom; 511 512 // Get the IDom live-out value. 513 if (!needPHI) { 514 LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock()); 515 if (I != LiveOutCache.end()) 516 IDomValue = I->second; 517 else 518 // If IDom is outside our set of live-out blocks, there must be new 519 // defs, and we need a phi-def here. 520 needPHI = true; 521 } 522 523 // IDom dominates all of our predecessors, but it may not be the immediate 524 // dominator. Check if any of them have live-out values that are properly 525 // dominated by IDom. If so, we need a phi-def here. 526 if (!needPHI) { 527 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 528 PE = MBB->pred_end(); PI != PE; ++PI) { 529 LiveOutPair Value = LiveOutCache[*PI]; 530 if (!Value.first || Value.first == IDomValue.first) 531 continue; 532 // This predecessor is carrying something other than IDomValue. 533 // It could be because IDomValue hasn't propagated yet, or it could be 534 // because MBB is in the dominance frontier of that value. 535 if (MDT.dominates(IDom, Value.second)) { 536 needPHI = true; 537 break; 538 } 539 } 540 } 541 542 // Create a phi-def if required. 543 if (needPHI) { 544 ++Changes; 545 SlotIndex Start = LIS.getMBBStartIdx(MBB); 546 VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); 547 VNI->setIsPHIDef(true); 548 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 549 << " phi-def #" << VNI->id << " at " << Start << '\n'); 550 // We no longer need LI to be live-in. 551 LiveIn.erase(LiveIn.begin()+(i-1)); 552 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 553 if (MBB == IdxMBB) 554 IdxVNI = VNI; 555 // Check if we need to update live-out info. 556 LiveOutMap::iterator I = LiveOutCache.find(MBB); 557 if (I == LiveOutCache.end() || I->second.second == Node) { 558 // We already have a live-out defined in MBB, so this must be IdxMBB. 559 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 560 LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 561 } else { 562 // This phi-def is also live-out, so color the whole block. 563 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 564 I->second = LiveOutPair(VNI, Node); 565 } 566 } else if (IDomValue.first) { 567 // No phi-def here. Remember incoming value for IdxMBB. 568 if (MBB == IdxMBB) 569 IdxVNI = IDomValue.first; 570 // Propagate IDomValue if needed: 571 // MBB is live-out and doesn't define its own value. 572 LiveOutMap::iterator I = LiveOutCache.find(MBB); 573 if (I != LiveOutCache.end() && I->second.second != Node && 574 I->second.first != IDomValue.first) { 575 ++Changes; 576 I->second = IDomValue; 577 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 578 << " idom valno #" << IDomValue.first->id 579 << " from BB#" << IDom->getBlock()->getNumber() << '\n'); 580 } 581 } 582 } 583 DEBUG(dbgs() << " - made " << Changes << " changes.\n"); 584 } while (Changes); 585 586 assert(IdxVNI && "Didn't find value for Idx"); 587 588 #ifndef NDEBUG 589 // Check the LiveOutCache invariants. 590 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 591 I != E; ++I) { 592 assert(I->first && "Null MBB entry in cache"); 593 assert(I->second.first && "Null VNInfo in cache"); 594 assert(I->second.second && "Null DomTreeNode in cache"); 595 if (I->second.second->getBlock() == I->first) 596 continue; 597 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 598 PE = I->first->pred_end(); PI != PE; ++PI) 599 assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant"); 600 } 601 #endif 602 603 // Since we went through the trouble of a full BFS visiting all reaching defs, 604 // the values in LiveIn are now accurate. No more phi-defs are needed 605 // for these blocks, so we can color the live ranges. 606 // This makes the next mapValue call much faster. 607 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 608 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 609 SlotIndex Start = LIS.getMBBStartIdx(MBB); 610 VNInfo *VNI = LiveOutCache.lookup(MBB).first; 611 612 // Anything in LiveIn other than IdxMBB is live-through. 613 // In IdxMBB, we should stop at Idx unless the same value is live-out. 614 if (MBB == IdxMBB && IdxVNI != VNI) 615 LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 616 else 617 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 618 } 619 620 return IdxVNI; 621 } 622 623 #ifndef NDEBUG 624 void LiveIntervalMap::dumpCache() { 625 for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); 626 I != E; ++I) { 627 assert(I->first && "Null MBB entry in cache"); 628 assert(I->second.first && "Null VNInfo in cache"); 629 assert(I->second.second && "Null DomTreeNode in cache"); 630 dbgs() << " cache: BB#" << I->first->getNumber() 631 << " has valno #" << I->second.first->id << " from BB#" 632 << I->second.second->getBlock()->getNumber() << ", preds"; 633 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 634 PE = I->first->pred_end(); PI != PE; ++PI) 635 dbgs() << " BB#" << (*PI)->getNumber(); 636 dbgs() << '\n'; 637 } 638 dbgs() << " cache: " << LiveOutCache.size() << " entries.\n"; 639 } 640 #endif 641 642 // extendTo - Find the last LI value defined in MBB at or before Idx. The 643 // ParentLI is assumed to be live at Idx. Extend the live range to Idx. 644 // Return the found VNInfo, or NULL. 645 VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { 646 assert(LI && "call reset first"); 647 LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx); 648 if (I == LI->begin()) 649 return 0; 650 --I; 651 if (I->end <= LIS.getMBBStartIdx(MBB)) 652 return 0; 653 if (I->end <= Idx) 654 I->end = Idx.getNextSlot(); 655 return I->valno; 656 } 657 658 // addSimpleRange - Add a simple range from ParentLI to LI. 659 // ParentVNI must be live in the [Start;End) interval. 660 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 661 const VNInfo *ParentVNI) { 662 assert(LI && "call reset first"); 663 bool simple; 664 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 665 // A simple mapping is easy. 666 if (simple) { 667 LI->addRange(LiveRange(Start, End, VNI)); 668 return; 669 } 670 671 // ParentVNI is a complex value. We must map per MBB. 672 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 673 MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot()); 674 675 if (MBB == MBBE) { 676 LI->addRange(LiveRange(Start, End, VNI)); 677 return; 678 } 679 680 // First block. 681 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); 682 683 // Run sequence of full blocks. 684 for (++MBB; MBB != MBBE; ++MBB) { 685 Start = LIS.getMBBStartIdx(MBB); 686 LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), 687 mapValue(ParentVNI, Start))); 688 } 689 690 // Final block. 691 Start = LIS.getMBBStartIdx(MBB); 692 if (Start != End) 693 LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 694 } 695 696 /// addRange - Add live ranges to LI where [Start;End) intersects ParentLI. 697 /// All needed values whose def is not inside [Start;End) must be defined 698 /// beforehand so mapValue will work. 699 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 700 assert(LI && "call reset first"); 701 LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end(); 702 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 703 704 // Check if --I begins before Start and overlaps. 705 if (I != B) { 706 --I; 707 if (I->end > Start) 708 addSimpleRange(Start, std::min(End, I->end), I->valno); 709 ++I; 710 } 711 712 // The remaining ranges begin after Start. 713 for (;I != E && I->start < End; ++I) 714 addSimpleRange(I->start, std::min(End, I->end), I->valno); 715 } 716 717 718 //===----------------------------------------------------------------------===// 719 // Split Editor 720 //===----------------------------------------------------------------------===// 721 722 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 723 SplitEditor::SplitEditor(SplitAnalysis &sa, 724 LiveIntervals &lis, 725 VirtRegMap &vrm, 726 MachineDominatorTree &mdt, 727 LiveRangeEdit &edit) 728 : sa_(sa), LIS(lis), VRM(vrm), 729 MRI(vrm.getMachineFunction().getRegInfo()), 730 MDT(mdt), 731 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 732 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 733 Edit(edit), 734 OpenIdx(0), 735 RegAssign(Allocator) 736 { 737 // We don't need an AliasAnalysis since we will only be performing 738 // cheap-as-a-copy remats anyway. 739 Edit.anyRematerializable(LIS, TII, 0); 740 } 741 742 void SplitEditor::dump() const { 743 if (RegAssign.empty()) { 744 dbgs() << " empty\n"; 745 return; 746 } 747 748 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 749 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 750 dbgs() << '\n'; 751 } 752 753 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 754 VNInfo *ParentVNI, 755 SlotIndex UseIdx, 756 MachineBasicBlock &MBB, 757 MachineBasicBlock::iterator I) { 758 MachineInstr *CopyMI = 0; 759 SlotIndex Def; 760 LiveInterval *LI = Edit.get(RegIdx); 761 762 // Attempt cheap-as-a-copy rematerialization. 763 LiveRangeEdit::Remat RM(ParentVNI); 764 if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) { 765 Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); 766 } else { 767 // Can't remat, just insert a copy from parent. 768 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 769 .addReg(Edit.getReg()); 770 Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 771 } 772 773 // Define the value in Reg. 774 VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def); 775 VNI->setCopy(CopyMI); 776 777 // Add minimal liveness for the new value. 778 Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 779 return VNI; 780 } 781 782 /// Create a new virtual register and live interval. 783 void SplitEditor::openIntv() { 784 assert(!OpenIdx && "Previous LI not closed before openIntv"); 785 786 // Create the complement as index 0. 787 if (Edit.empty()) { 788 Edit.create(MRI, LIS, VRM); 789 LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); 790 LIMappers.back().reset(Edit.get(0)); 791 } 792 793 // Create the open interval. 794 OpenIdx = Edit.size(); 795 Edit.create(MRI, LIS, VRM); 796 LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); 797 LIMappers[OpenIdx].reset(Edit.get(OpenIdx)); 798 } 799 800 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 801 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 802 DEBUG(dbgs() << " enterIntvBefore " << Idx); 803 Idx = Idx.getBaseIndex(); 804 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 805 if (!ParentVNI) { 806 DEBUG(dbgs() << ": not live\n"); 807 return Idx; 808 } 809 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 810 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 811 assert(MI && "enterIntvBefore called with invalid index"); 812 813 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 814 return VNI->def; 815 } 816 817 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 818 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 819 SlotIndex End = LIS.getMBBEndIdx(&MBB); 820 SlotIndex Last = End.getPrevSlot(); 821 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 822 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last); 823 if (!ParentVNI) { 824 DEBUG(dbgs() << ": not live\n"); 825 return End; 826 } 827 DEBUG(dbgs() << ": valno " << ParentVNI->id); 828 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 829 LIS.getLastSplitPoint(Edit.getParent(), &MBB)); 830 RegAssign.insert(VNI->def, End, OpenIdx); 831 DEBUG(dump()); 832 return VNI->def; 833 } 834 835 /// useIntv - indicate that all instructions in MBB should use OpenLI. 836 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 837 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 838 } 839 840 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 841 assert(OpenIdx && "openIntv not called before useIntv"); 842 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 843 RegAssign.insert(Start, End, OpenIdx); 844 DEBUG(dump()); 845 } 846 847 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 848 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 849 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 850 851 // The interval must be live beyond the instruction at Idx. 852 Idx = Idx.getBoundaryIndex(); 853 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 854 if (!ParentVNI) { 855 DEBUG(dbgs() << ": not live\n"); 856 return Idx.getNextSlot(); 857 } 858 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 859 860 MachineBasicBlock::iterator MII = LIS.getInstructionFromIndex(Idx); 861 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, 862 *MII->getParent(), llvm::next(MII)); 863 return VNI->def; 864 } 865 866 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 867 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 868 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 869 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 870 871 VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start); 872 if (!ParentVNI) { 873 DEBUG(dbgs() << ": not live\n"); 874 return Start; 875 } 876 877 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 878 MBB.SkipPHIsAndLabels(MBB.begin())); 879 RegAssign.insert(Start, VNI->def, OpenIdx); 880 DEBUG(dump()); 881 return VNI->def; 882 } 883 884 /// closeIntv - Indicate that we are done editing the currently open 885 /// LiveInterval, and ranges can be trimmed. 886 void SplitEditor::closeIntv() { 887 assert(OpenIdx && "openIntv not called before closeIntv"); 888 OpenIdx = 0; 889 } 890 891 /// rewriteAssigned - Rewrite all uses of Edit.getReg(). 892 void SplitEditor::rewriteAssigned() { 893 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()), 894 RE = MRI.reg_end(); RI != RE;) { 895 MachineOperand &MO = RI.getOperand(); 896 MachineInstr *MI = MO.getParent(); 897 ++RI; 898 // LiveDebugVariables should have handled all DBG_VALUE instructions. 899 if (MI->isDebugValue()) { 900 DEBUG(dbgs() << "Zapping " << *MI); 901 MO.setReg(0); 902 continue; 903 } 904 SlotIndex Idx = LIS.getInstructionIndex(MI); 905 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 906 907 // Rewrite to the mapped register at Idx. 908 unsigned RegIdx = RegAssign.lookup(Idx); 909 MO.setReg(Edit.get(RegIdx)->reg); 910 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 911 << Idx << ':' << RegIdx << '\t' << *MI); 912 913 // Extend liveness to Idx. 914 const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); 915 LIMappers[RegIdx].mapValue(ParentVNI, Idx); 916 } 917 } 918 919 /// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. 920 void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, 921 const ConnectedVNInfoEqClasses &ConEq) { 922 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), 923 RE = MRI.reg_end(); RI != RE;) { 924 MachineOperand &MO = RI.getOperand(); 925 MachineInstr *MI = MO.getParent(); 926 ++RI; 927 if (MO.isUse() && MO.isUndef()) 928 continue; 929 // DBG_VALUE instructions should have been eliminated earlier. 930 SlotIndex Idx = LIS.getInstructionIndex(MI); 931 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 932 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 933 << Idx << ':'); 934 const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); 935 assert(VNI && "Interval not live at use."); 936 MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); 937 DEBUG(dbgs() << VNI->id << '\t' << *MI); 938 } 939 } 940 941 void SplitEditor::finish() { 942 assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); 943 944 // At this point, the live intervals in Edit contain VNInfos corresponding to 945 // the inserted copies. 946 947 // Add the original defs from the parent interval. 948 for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), 949 E = Edit.getParent().vni_end(); I != E; ++I) { 950 const VNInfo *ParentVNI = *I; 951 if (ParentVNI->isUnused()) 952 continue; 953 LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)]; 954 VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def); 955 LIM.getLI()->addRange(LiveRange(ParentVNI->def, 956 ParentVNI->def.getNextSlot(), VNI)); 957 // Mark all values as complex to force liveness computation. 958 // This should really only be necessary for remat victims, but we are lazy. 959 LIM.markComplexMapped(ParentVNI); 960 } 961 962 #ifndef NDEBUG 963 // Every new interval must have a def by now, otherwise the split is bogus. 964 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) 965 assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); 966 #endif 967 968 // FIXME: Don't recompute the liveness of all values, infer it from the 969 // overlaps between the parent live interval and RegAssign. 970 // The mapValue algorithm is only necessary when: 971 // - The parent value maps to multiple defs, and new phis are needed, or 972 // - The value has been rematerialized before some uses, and we want to 973 // minimize the live range so it only reaches the remaining uses. 974 // All other values have simple liveness that can be computed from RegAssign 975 // and the parent live interval. 976 977 // Extend live ranges to be live-out for successor PHI values. 978 for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), 979 E = Edit.getParent().vni_end(); I != E; ++I) { 980 const VNInfo *PHIVNI = *I; 981 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 982 continue; 983 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 984 LiveIntervalMap &LIM = LIMappers[RegIdx]; 985 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 986 DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def 987 << " -> " << RegIdx << '\n'); 988 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 989 PE = MBB->pred_end(); PI != PE; ++PI) { 990 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 991 DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End); 992 // The predecessor may not have a live-out value. That is OK, like an 993 // undef PHI operand. 994 if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) { 995 DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n"); 996 assert(RegAssign.lookup(End) == RegIdx && 997 "Different register assignment in phi predecessor"); 998 LIM.mapValue(VNI, End); 999 } 1000 else 1001 DEBUG(dbgs() << " is not live-out\n"); 1002 } 1003 DEBUG(dbgs() << " " << *LIM.getLI() << '\n'); 1004 } 1005 1006 // Rewrite instructions. 1007 rewriteAssigned(); 1008 1009 // FIXME: Delete defs that were rematted everywhere. 1010 1011 // Get rid of unused values and set phi-kill flags. 1012 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) 1013 (*I)->RenumberValues(LIS); 1014 1015 // Now check if any registers were separated into multiple components. 1016 ConnectedVNInfoEqClasses ConEQ(LIS); 1017 for (unsigned i = 0, e = Edit.size(); i != e; ++i) { 1018 // Don't use iterators, they are invalidated by create() below. 1019 LiveInterval *li = Edit.get(i); 1020 unsigned NumComp = ConEQ.Classify(li); 1021 if (NumComp <= 1) 1022 continue; 1023 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1024 SmallVector<LiveInterval*, 8> dups; 1025 dups.push_back(li); 1026 for (unsigned i = 1; i != NumComp; ++i) 1027 dups.push_back(&Edit.create(MRI, LIS, VRM)); 1028 rewriteComponents(dups, ConEQ); 1029 ConEQ.Distribute(&dups[0]); 1030 } 1031 1032 // Calculate spill weight and allocation hints for new intervals. 1033 VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, sa_.Loops); 1034 for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){ 1035 LiveInterval &li = **I; 1036 vrai.CalculateRegClass(li.reg); 1037 vrai.CalculateWeightAndHint(li); 1038 DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() 1039 << ":" << li << '\n'); 1040 } 1041 } 1042 1043 1044 //===----------------------------------------------------------------------===// 1045 // Loop Splitting 1046 //===----------------------------------------------------------------------===// 1047 1048 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 1049 SplitAnalysis::LoopBlocks Blocks; 1050 sa_.getLoopBlocks(Loop, Blocks); 1051 1052 DEBUG({ 1053 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 1054 }); 1055 1056 // Break critical edges as needed. 1057 SplitAnalysis::BlockPtrSet CriticalExits; 1058 sa_.getCriticalExits(Blocks, CriticalExits); 1059 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 1060 1061 // Create new live interval for the loop. 1062 openIntv(); 1063 1064 // Insert copies in the predecessors if live-in to the header. 1065 if (LIS.isLiveInToMBB(Edit.getParent(), Loop->getHeader())) { 1066 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 1067 E = Blocks.Preds.end(); I != E; ++I) { 1068 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 1069 enterIntvAtEnd(MBB); 1070 } 1071 } 1072 1073 // Switch all loop blocks. 1074 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 1075 E = Blocks.Loop.end(); I != E; ++I) 1076 useIntv(**I); 1077 1078 // Insert back copies in the exit blocks. 1079 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 1080 E = Blocks.Exits.end(); I != E; ++I) { 1081 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 1082 leaveIntvAtTop(MBB); 1083 } 1084 1085 // Done. 1086 closeIntv(); 1087 finish(); 1088 } 1089 1090 1091 //===----------------------------------------------------------------------===// 1092 // Single Block Splitting 1093 //===----------------------------------------------------------------------===// 1094 1095 /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it 1096 /// may be an advantage to split CurLI for the duration of the block. 1097 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 1098 // If CurLI is local to one block, there is no point to splitting it. 1099 if (UsingBlocks.size() <= 1) 1100 return false; 1101 // Add blocks with multiple uses. 1102 for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end(); 1103 I != E; ++I) 1104 switch (I->second) { 1105 case 0: 1106 case 1: 1107 continue; 1108 case 2: { 1109 // When there are only two uses and CurLI is both live in and live out, 1110 // we don't really win anything by isolating the block since we would be 1111 // inserting two copies. 1112 // The remaing register would still have two uses in the block. (Unless it 1113 // separates into disconnected components). 1114 if (LIS.isLiveInToMBB(*CurLI, I->first) && 1115 LIS.isLiveOutOfMBB(*CurLI, I->first)) 1116 continue; 1117 } // Fall through. 1118 default: 1119 Blocks.insert(I->first); 1120 } 1121 return !Blocks.empty(); 1122 } 1123 1124 /// splitSingleBlocks - Split CurLI into a separate live interval inside each 1125 /// basic block in Blocks. 1126 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 1127 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 1128 // Determine the first and last instruction using CurLI in each block. 1129 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 1130 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 1131 IndexPairMap MBBRange; 1132 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(), 1133 E = sa_.UsingInstrs.end(); I != E; ++I) { 1134 const MachineBasicBlock *MBB = (*I)->getParent(); 1135 if (!Blocks.count(MBB)) 1136 continue; 1137 SlotIndex Idx = LIS.getInstructionIndex(*I); 1138 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 1139 IndexPair &IP = MBBRange[MBB]; 1140 if (!IP.first.isValid() || Idx < IP.first) 1141 IP.first = Idx; 1142 if (!IP.second.isValid() || Idx > IP.second) 1143 IP.second = Idx; 1144 } 1145 1146 // Create a new interval for each block. 1147 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 1148 E = Blocks.end(); I != E; ++I) { 1149 IndexPair &IP = MBBRange[*I]; 1150 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 1151 << IP.first << ';' << IP.second << ")\n"); 1152 assert(IP.first.isValid() && IP.second.isValid()); 1153 1154 openIntv(); 1155 useIntv(enterIntvBefore(IP.first), leaveIntvAfter(IP.second)); 1156 closeIntv(); 1157 } 1158 finish(); 1159 } 1160 1161 1162 //===----------------------------------------------------------------------===// 1163 // Sub Block Splitting 1164 //===----------------------------------------------------------------------===// 1165 1166 /// getBlockForInsideSplit - If CurLI is contained inside a single basic block, 1167 /// and it wou pay to subdivide the interval inside that block, return it. 1168 /// Otherwise return NULL. The returned block can be passed to 1169 /// SplitEditor::splitInsideBlock. 1170 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1171 // The interval must be exclusive to one block. 1172 if (UsingBlocks.size() != 1) 1173 return 0; 1174 // Don't to this for less than 4 instructions. We want to be sure that 1175 // splitting actually reduces the instruction count per interval. 1176 if (UsingInstrs.size() < 4) 1177 return 0; 1178 return UsingBlocks.begin()->first; 1179 } 1180 1181 /// splitInsideBlock - Split CurLI into multiple intervals inside MBB. 1182 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1183 SmallVector<SlotIndex, 32> Uses; 1184 Uses.reserve(sa_.UsingInstrs.size()); 1185 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(), 1186 E = sa_.UsingInstrs.end(); I != E; ++I) 1187 if ((*I)->getParent() == MBB) 1188 Uses.push_back(LIS.getInstructionIndex(*I)); 1189 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1190 << Uses.size() << " instructions.\n"); 1191 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1192 array_pod_sort(Uses.begin(), Uses.end()); 1193 1194 // Simple algorithm: Find the largest gap between uses as determined by slot 1195 // indices. Create new intervals for instructions before the gap and after the 1196 // gap. 1197 unsigned bestPos = 0; 1198 int bestGap = 0; 1199 DEBUG(dbgs() << " dist (" << Uses[0]); 1200 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1201 int g = Uses[i-1].distance(Uses[i]); 1202 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1203 if (g > bestGap) 1204 bestPos = i, bestGap = g; 1205 } 1206 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1207 1208 // bestPos points to the first use after the best gap. 1209 assert(bestPos > 0 && "Invalid gap"); 1210 1211 // FIXME: Don't create intervals for low densities. 1212 1213 // First interval before the gap. Don't create single-instr intervals. 1214 if (bestPos > 1) { 1215 openIntv(); 1216 useIntv(enterIntvBefore(Uses.front()), leaveIntvAfter(Uses[bestPos-1])); 1217 closeIntv(); 1218 } 1219 1220 // Second interval after the gap. 1221 if (bestPos < Uses.size()-1) { 1222 openIntv(); 1223 useIntv(enterIntvBefore(Uses[bestPos]), leaveIntvAfter(Uses.back())); 1224 closeIntv(); 1225 } 1226 1227 finish(); 1228 } 1229