1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "LiveRangeCalc.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/VirtRegMap.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/MC/LaneBitmask.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/BlockFrequency.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetOpcodes.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <limits> 54 #include <tuple> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "regalloc" 60 61 STATISTIC(NumFinished, "Number of splits finished"); 62 STATISTIC(NumSimple, "Number of splits that were simple"); 63 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 64 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 65 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 66 67 //===----------------------------------------------------------------------===// 68 // Last Insert Point Analysis 69 //===----------------------------------------------------------------------===// 70 71 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 72 unsigned BBNum) 73 : LIS(lis), LastInsertPoint(BBNum) {} 74 75 SlotIndex 76 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 77 const MachineBasicBlock &MBB) { 78 unsigned Num = MBB.getNumber(); 79 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 80 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 81 82 SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors; 83 for (const MachineBasicBlock *SMBB : MBB.successors()) 84 if (SMBB->isEHPad()) 85 EHPadSuccessors.push_back(SMBB); 86 87 // Compute insert points on the first call. The pair is independent of the 88 // current live interval. 89 if (!LIP.first.isValid()) { 90 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 91 if (FirstTerm == MBB.end()) 92 LIP.first = MBBEnd; 93 else 94 LIP.first = LIS.getInstructionIndex(*FirstTerm); 95 96 // If there is a landing pad successor, also find the call instruction. 97 if (EHPadSuccessors.empty()) 98 return LIP.first; 99 // There may not be a call instruction (?) in which case we ignore LPad. 100 LIP.second = LIP.first; 101 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin(); 102 I != E;) { 103 --I; 104 if (I->isCall()) { 105 LIP.second = LIS.getInstructionIndex(*I); 106 break; 107 } 108 } 109 } 110 111 // If CurLI is live into a landing pad successor, move the last insert point 112 // back to the call that may throw. 113 if (!LIP.second) 114 return LIP.first; 115 116 if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) { 117 return LIS.isLiveInToMBB(CurLI, EHPad); 118 })) 119 return LIP.first; 120 121 // Find the value leaving MBB. 122 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 123 if (!VNI) 124 return LIP.first; 125 126 // If the value leaving MBB was defined after the call in MBB, it can't 127 // really be live-in to the landing pad. This can happen if the landing pad 128 // has a PHI, and this register is undef on the exceptional edge. 129 // <rdar://problem/10664933> 130 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 131 return LIP.first; 132 133 // Value is properly live-in to the landing pad. 134 // Only allow inserts before the call. 135 return LIP.second; 136 } 137 138 MachineBasicBlock::iterator 139 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 140 MachineBasicBlock &MBB) { 141 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 142 if (LIP == LIS.getMBBEndIdx(&MBB)) 143 return MBB.end(); 144 return LIS.getInstructionFromIndex(LIP); 145 } 146 147 //===----------------------------------------------------------------------===// 148 // Split Analysis 149 //===----------------------------------------------------------------------===// 150 151 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 152 const MachineLoopInfo &mli) 153 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 154 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 155 156 void SplitAnalysis::clear() { 157 UseSlots.clear(); 158 UseBlocks.clear(); 159 ThroughBlocks.clear(); 160 CurLI = nullptr; 161 DidRepairRange = false; 162 } 163 164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 165 void SplitAnalysis::analyzeUses() { 166 assert(UseSlots.empty() && "Call clear first"); 167 168 // First get all the defs from the interval values. This provides the correct 169 // slots for early clobbers. 170 for (const VNInfo *VNI : CurLI->valnos) 171 if (!VNI->isPHIDef() && !VNI->isUnused()) 172 UseSlots.push_back(VNI->def); 173 174 // Get use slots form the use-def chain. 175 const MachineRegisterInfo &MRI = MF.getRegInfo(); 176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 177 if (!MO.isUndef()) 178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 179 180 array_pod_sort(UseSlots.begin(), UseSlots.end()); 181 182 // Remove duplicates, keeping the smaller slot for each instruction. 183 // That is what we want for early clobbers. 184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 185 SlotIndex::isSameInstr), 186 UseSlots.end()); 187 188 // Compute per-live block info. 189 if (!calcLiveBlockInfo()) { 190 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 191 // I am looking at you, RegisterCoalescer! 192 DidRepairRange = true; 193 ++NumRepairs; 194 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 195 const_cast<LiveIntervals&>(LIS) 196 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 197 UseBlocks.clear(); 198 ThroughBlocks.clear(); 199 bool fixed = calcLiveBlockInfo(); 200 (void)fixed; 201 assert(fixed && "Couldn't fix broken live interval"); 202 } 203 204 DEBUG(dbgs() << "Analyze counted " 205 << UseSlots.size() << " instrs in " 206 << UseBlocks.size() << " blocks, through " 207 << NumThroughBlocks << " blocks.\n"); 208 } 209 210 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 211 /// where CurLI is live. 212 bool SplitAnalysis::calcLiveBlockInfo() { 213 ThroughBlocks.resize(MF.getNumBlockIDs()); 214 NumThroughBlocks = NumGapBlocks = 0; 215 if (CurLI->empty()) 216 return true; 217 218 LiveInterval::const_iterator LVI = CurLI->begin(); 219 LiveInterval::const_iterator LVE = CurLI->end(); 220 221 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 222 UseI = UseSlots.begin(); 223 UseE = UseSlots.end(); 224 225 // Loop over basic blocks where CurLI is live. 226 MachineFunction::iterator MFI = 227 LIS.getMBBFromIndex(LVI->start)->getIterator(); 228 while (true) { 229 BlockInfo BI; 230 BI.MBB = &*MFI; 231 SlotIndex Start, Stop; 232 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 233 234 // If the block contains no uses, the range must be live through. At one 235 // point, RegisterCoalescer could create dangling ranges that ended 236 // mid-block. 237 if (UseI == UseE || *UseI >= Stop) { 238 ++NumThroughBlocks; 239 ThroughBlocks.set(BI.MBB->getNumber()); 240 // The range shouldn't end mid-block if there are no uses. This shouldn't 241 // happen. 242 if (LVI->end < Stop) 243 return false; 244 } else { 245 // This block has uses. Find the first and last uses in the block. 246 BI.FirstInstr = *UseI; 247 assert(BI.FirstInstr >= Start); 248 do ++UseI; 249 while (UseI != UseE && *UseI < Stop); 250 BI.LastInstr = UseI[-1]; 251 assert(BI.LastInstr < Stop); 252 253 // LVI is the first live segment overlapping MBB. 254 BI.LiveIn = LVI->start <= Start; 255 256 // When not live in, the first use should be a def. 257 if (!BI.LiveIn) { 258 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 259 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 260 BI.FirstDef = BI.FirstInstr; 261 } 262 263 // Look for gaps in the live range. 264 BI.LiveOut = true; 265 while (LVI->end < Stop) { 266 SlotIndex LastStop = LVI->end; 267 if (++LVI == LVE || LVI->start >= Stop) { 268 BI.LiveOut = false; 269 BI.LastInstr = LastStop; 270 break; 271 } 272 273 if (LastStop < LVI->start) { 274 // There is a gap in the live range. Create duplicate entries for the 275 // live-in snippet and the live-out snippet. 276 ++NumGapBlocks; 277 278 // Push the Live-in part. 279 BI.LiveOut = false; 280 UseBlocks.push_back(BI); 281 UseBlocks.back().LastInstr = LastStop; 282 283 // Set up BI for the live-out part. 284 BI.LiveIn = false; 285 BI.LiveOut = true; 286 BI.FirstInstr = BI.FirstDef = LVI->start; 287 } 288 289 // A Segment that starts in the middle of the block must be a def. 290 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 291 if (!BI.FirstDef) 292 BI.FirstDef = LVI->start; 293 } 294 295 UseBlocks.push_back(BI); 296 297 // LVI is now at LVE or LVI->end >= Stop. 298 if (LVI == LVE) 299 break; 300 } 301 302 // Live segment ends exactly at Stop. Move to the next segment. 303 if (LVI->end == Stop && ++LVI == LVE) 304 break; 305 306 // Pick the next basic block. 307 if (LVI->start < Stop) 308 ++MFI; 309 else 310 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 311 } 312 313 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 314 return true; 315 } 316 317 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 318 if (cli->empty()) 319 return 0; 320 LiveInterval *li = const_cast<LiveInterval*>(cli); 321 LiveInterval::iterator LVI = li->begin(); 322 LiveInterval::iterator LVE = li->end(); 323 unsigned Count = 0; 324 325 // Loop over basic blocks where li is live. 326 MachineFunction::const_iterator MFI = 327 LIS.getMBBFromIndex(LVI->start)->getIterator(); 328 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 329 while (true) { 330 ++Count; 331 LVI = li->advanceTo(LVI, Stop); 332 if (LVI == LVE) 333 return Count; 334 do { 335 ++MFI; 336 Stop = LIS.getMBBEndIdx(&*MFI); 337 } while (Stop <= LVI->start); 338 } 339 } 340 341 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 342 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 343 const LiveInterval &Orig = LIS.getInterval(OrigReg); 344 assert(!Orig.empty() && "Splitting empty interval?"); 345 LiveInterval::const_iterator I = Orig.find(Idx); 346 347 // Range containing Idx should begin at Idx. 348 if (I != Orig.end() && I->start <= Idx) 349 return I->start == Idx; 350 351 // Range does not contain Idx, previous must end at Idx. 352 return I != Orig.begin() && (--I)->end == Idx; 353 } 354 355 void SplitAnalysis::analyze(const LiveInterval *li) { 356 clear(); 357 CurLI = li; 358 analyzeUses(); 359 } 360 361 //===----------------------------------------------------------------------===// 362 // Split Editor 363 //===----------------------------------------------------------------------===// 364 365 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 366 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa, 367 LiveIntervals &lis, VirtRegMap &vrm, 368 MachineDominatorTree &mdt, 369 MachineBlockFrequencyInfo &mbfi) 370 : SA(sa), AA(aa), LIS(lis), VRM(vrm), 371 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt), 372 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()), 373 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()), 374 MBFI(mbfi), RegAssign(Allocator) {} 375 376 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 377 Edit = &LRE; 378 SpillMode = SM; 379 OpenIdx = 0; 380 RegAssign.clear(); 381 Values.clear(); 382 383 // Reset the LiveRangeCalc instances needed for this spill mode. 384 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 385 &LIS.getVNInfoAllocator()); 386 if (SpillMode) 387 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 388 &LIS.getVNInfoAllocator()); 389 390 // We don't need an AliasAnalysis since we will only be performing 391 // cheap-as-a-copy remats anyway. 392 Edit->anyRematerializable(nullptr); 393 } 394 395 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 396 LLVM_DUMP_METHOD void SplitEditor::dump() const { 397 if (RegAssign.empty()) { 398 dbgs() << " empty\n"; 399 return; 400 } 401 402 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 403 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 404 dbgs() << '\n'; 405 } 406 #endif 407 408 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 409 LiveInterval &LI) { 410 for (LiveInterval::SubRange &S : LI.subranges()) 411 if (S.LaneMask == LM) 412 return S; 413 llvm_unreachable("SubRange for this mask not found"); 414 } 415 416 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 417 if (!LI.hasSubRanges()) { 418 LI.createDeadDef(VNI); 419 return; 420 } 421 422 SlotIndex Def = VNI->def; 423 if (Original) { 424 // If we are transferring a def from the original interval, make sure 425 // to only update the subranges for which the original subranges had 426 // a def at this location. 427 for (LiveInterval::SubRange &S : LI.subranges()) { 428 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 429 VNInfo *PV = PS.getVNInfoAt(Def); 430 if (PV != nullptr && PV->def == Def) 431 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 432 } 433 } else { 434 // This is a new def: either from rematerialization, or from an inserted 435 // copy. Since rematerialization can regenerate a definition of a sub- 436 // register, we need to check which subranges need to be updated. 437 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 438 assert(DefMI != nullptr); 439 LaneBitmask LM; 440 for (const MachineOperand &DefOp : DefMI->defs()) { 441 unsigned R = DefOp.getReg(); 442 if (R != LI.reg) 443 continue; 444 if (unsigned SR = DefOp.getSubReg()) 445 LM |= TRI.getSubRegIndexLaneMask(SR); 446 else { 447 LM = MRI.getMaxLaneMaskForVReg(R); 448 break; 449 } 450 } 451 for (LiveInterval::SubRange &S : LI.subranges()) 452 if ((S.LaneMask & LM).any()) 453 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 454 } 455 } 456 457 VNInfo *SplitEditor::defValue(unsigned RegIdx, 458 const VNInfo *ParentVNI, 459 SlotIndex Idx, 460 bool Original) { 461 assert(ParentVNI && "Mapping NULL value"); 462 assert(Idx.isValid() && "Invalid SlotIndex"); 463 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 464 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 465 466 // Create a new value. 467 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 468 469 bool Force = LI->hasSubRanges(); 470 ValueForcePair FP(Force ? nullptr : VNI, Force); 471 // Use insert for lookup, so we can add missing values with a second lookup. 472 std::pair<ValueMap::iterator, bool> InsP = 473 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 474 475 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 476 // forced. Keep it as a simple def without any liveness. 477 if (!Force && InsP.second) 478 return VNI; 479 480 // If the previous value was a simple mapping, add liveness for it now. 481 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 482 addDeadDef(*LI, OldVNI, Original); 483 484 // No longer a simple mapping. Switch to a complex mapping. If the 485 // interval has subranges, make it a forced mapping. 486 InsP.first->second = ValueForcePair(nullptr, Force); 487 } 488 489 // This is a complex mapping, add liveness for VNI 490 addDeadDef(*LI, VNI, Original); 491 return VNI; 492 } 493 494 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 495 assert(ParentVNI && "Mapping NULL value"); 496 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 497 VNInfo *VNI = VFP.getPointer(); 498 499 // ParentVNI was either unmapped or already complex mapped. Either way, just 500 // set the force bit. 501 if (!VNI) { 502 VFP.setInt(true); 503 return; 504 } 505 506 // This was previously a single mapping. Make sure the old def is represented 507 // by a trivial live range. 508 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 509 510 // Mark as complex mapped, forced. 511 VFP = ValueForcePair(nullptr, true); 512 } 513 514 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg, 515 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 516 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 517 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 518 bool FirstCopy = !Def.isValid(); 519 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 520 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 521 | getInternalReadRegState(!FirstCopy), SubIdx) 522 .addReg(FromReg, 0, SubIdx); 523 524 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 525 if (FirstCopy) { 526 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 527 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 528 } else { 529 CopyMI->bundleWithPred(); 530 } 531 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx); 532 DestLI.refineSubRanges(Allocator, LaneMask, 533 [Def, &Allocator](LiveInterval::SubRange& SR) { 534 SR.createDeadDef(Def, Allocator); 535 }); 536 return Def; 537 } 538 539 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg, 540 LaneBitmask LaneMask, MachineBasicBlock &MBB, 541 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 542 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 543 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 544 // The full vreg is copied. 545 MachineInstr *CopyMI = 546 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 547 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 548 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 549 } 550 551 // Only a subset of lanes needs to be copied. The following is a simple 552 // heuristic to construct a sequence of COPYs. We could add a target 553 // specific callback if this turns out to be suboptimal. 554 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 555 556 // First pass: Try to find a perfectly matching subregister index. If none 557 // exists find the one covering the most lanemask bits. 558 SmallVector<unsigned, 8> PossibleIndexes; 559 unsigned BestIdx = 0; 560 unsigned BestCover = 0; 561 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 562 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 563 for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) { 564 // Is this index even compatible with the given class? 565 if (TRI.getSubClassWithSubReg(RC, Idx) != RC) 566 continue; 567 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 568 // Early exit if we found a perfect match. 569 if (SubRegMask == LaneMask) { 570 BestIdx = Idx; 571 break; 572 } 573 574 // The index must not cover any lanes outside \p LaneMask. 575 if ((SubRegMask & ~LaneMask).any()) 576 continue; 577 578 unsigned PopCount = SubRegMask.getNumLanes(); 579 PossibleIndexes.push_back(Idx); 580 if (PopCount > BestCover) { 581 BestCover = PopCount; 582 BestIdx = Idx; 583 } 584 } 585 586 // Abort if we cannot possibly implement the COPY with the given indexes. 587 if (BestIdx == 0) 588 report_fatal_error("Impossible to implement partial COPY"); 589 590 SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, 591 BestIdx, DestLI, Late, SlotIndex()); 592 593 // Greedy heuristic: Keep iterating keeping the best covering subreg index 594 // each time. 595 LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx)); 596 while (LanesLeft.any()) { 597 unsigned BestIdx = 0; 598 int BestCover = std::numeric_limits<int>::min(); 599 for (unsigned Idx : PossibleIndexes) { 600 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx); 601 // Early exit if we found a perfect match. 602 if (SubRegMask == LanesLeft) { 603 BestIdx = Idx; 604 break; 605 } 606 607 // Try to cover as much of the remaining lanes as possible but 608 // as few of the already covered lanes as possible. 609 int Cover = (SubRegMask & LanesLeft).getNumLanes() 610 - (SubRegMask & ~LanesLeft).getNumLanes(); 611 if (Cover > BestCover) { 612 BestCover = Cover; 613 BestIdx = Idx; 614 } 615 } 616 617 if (BestIdx == 0) 618 report_fatal_error("Impossible to implement partial COPY"); 619 620 buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 621 DestLI, Late, Def); 622 LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx); 623 } 624 625 return Def; 626 } 627 628 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 629 VNInfo *ParentVNI, 630 SlotIndex UseIdx, 631 MachineBasicBlock &MBB, 632 MachineBasicBlock::iterator I) { 633 SlotIndex Def; 634 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 635 636 // We may be trying to avoid interference that ends at a deleted instruction, 637 // so always begin RegIdx 0 early and all others late. 638 bool Late = RegIdx != 0; 639 640 // Attempt cheap-as-a-copy rematerialization. 641 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 642 LiveInterval &OrigLI = LIS.getInterval(Original); 643 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 644 645 unsigned Reg = LI->reg; 646 bool DidRemat = false; 647 if (OrigVNI) { 648 LiveRangeEdit::Remat RM(ParentVNI); 649 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 650 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 651 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 652 ++NumRemats; 653 DidRemat = true; 654 } 655 } 656 if (!DidRemat) { 657 LaneBitmask LaneMask; 658 if (LI->hasSubRanges()) { 659 LaneMask = LaneBitmask::getNone(); 660 for (LiveInterval::SubRange &S : LI->subranges()) 661 LaneMask |= S.LaneMask; 662 } else { 663 LaneMask = LaneBitmask::getAll(); 664 } 665 666 ++NumCopies; 667 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 668 } 669 670 // Define the value in Reg. 671 return defValue(RegIdx, ParentVNI, Def, false); 672 } 673 674 /// Create a new virtual register and live interval. 675 unsigned SplitEditor::openIntv() { 676 // Create the complement as index 0. 677 if (Edit->empty()) 678 Edit->createEmptyInterval(); 679 680 // Create the open interval. 681 OpenIdx = Edit->size(); 682 Edit->createEmptyInterval(); 683 return OpenIdx; 684 } 685 686 void SplitEditor::selectIntv(unsigned Idx) { 687 assert(Idx != 0 && "Cannot select the complement interval"); 688 assert(Idx < Edit->size() && "Can only select previously opened interval"); 689 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 690 OpenIdx = Idx; 691 } 692 693 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 694 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 695 DEBUG(dbgs() << " enterIntvBefore " << Idx); 696 Idx = Idx.getBaseIndex(); 697 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 698 if (!ParentVNI) { 699 DEBUG(dbgs() << ": not live\n"); 700 return Idx; 701 } 702 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 703 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 704 assert(MI && "enterIntvBefore called with invalid index"); 705 706 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 707 return VNI->def; 708 } 709 710 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 711 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 712 DEBUG(dbgs() << " enterIntvAfter " << Idx); 713 Idx = Idx.getBoundaryIndex(); 714 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 715 if (!ParentVNI) { 716 DEBUG(dbgs() << ": not live\n"); 717 return Idx; 718 } 719 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 720 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 721 assert(MI && "enterIntvAfter called with invalid index"); 722 723 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 724 std::next(MachineBasicBlock::iterator(MI))); 725 return VNI->def; 726 } 727 728 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 729 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 730 SlotIndex End = LIS.getMBBEndIdx(&MBB); 731 SlotIndex Last = End.getPrevSlot(); 732 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 733 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 734 if (!ParentVNI) { 735 DEBUG(dbgs() << ": not live\n"); 736 return End; 737 } 738 DEBUG(dbgs() << ": valno " << ParentVNI->id); 739 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 740 SA.getLastSplitPointIter(&MBB)); 741 RegAssign.insert(VNI->def, End, OpenIdx); 742 DEBUG(dump()); 743 return VNI->def; 744 } 745 746 /// useIntv - indicate that all instructions in MBB should use OpenLI. 747 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 748 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 749 } 750 751 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 752 assert(OpenIdx && "openIntv not called before useIntv"); 753 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 754 RegAssign.insert(Start, End, OpenIdx); 755 DEBUG(dump()); 756 } 757 758 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 759 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 760 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 761 762 // The interval must be live beyond the instruction at Idx. 763 SlotIndex Boundary = Idx.getBoundaryIndex(); 764 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 765 if (!ParentVNI) { 766 DEBUG(dbgs() << ": not live\n"); 767 return Boundary.getNextSlot(); 768 } 769 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 770 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 771 assert(MI && "No instruction at index"); 772 773 // In spill mode, make live ranges as short as possible by inserting the copy 774 // before MI. This is only possible if that instruction doesn't redefine the 775 // value. The inserted COPY is not a kill, and we don't need to recompute 776 // the source live range. The spiller also won't try to hoist this copy. 777 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 778 MI->readsVirtualRegister(Edit->getReg())) { 779 forceRecompute(0, ParentVNI); 780 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 781 return Idx; 782 } 783 784 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 785 std::next(MachineBasicBlock::iterator(MI))); 786 return VNI->def; 787 } 788 789 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 790 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 791 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 792 793 // The interval must be live into the instruction at Idx. 794 Idx = Idx.getBaseIndex(); 795 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 796 if (!ParentVNI) { 797 DEBUG(dbgs() << ": not live\n"); 798 return Idx.getNextSlot(); 799 } 800 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 801 802 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 803 assert(MI && "No instruction at index"); 804 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 805 return VNI->def; 806 } 807 808 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 809 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 810 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 811 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 812 813 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 814 if (!ParentVNI) { 815 DEBUG(dbgs() << ": not live\n"); 816 return Start; 817 } 818 819 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 820 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 821 RegAssign.insert(Start, VNI->def, OpenIdx); 822 DEBUG(dump()); 823 return VNI->def; 824 } 825 826 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 827 assert(OpenIdx && "openIntv not called before overlapIntv"); 828 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 829 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 830 "Parent changes value in extended range"); 831 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 832 "Range cannot span basic blocks"); 833 834 // The complement interval will be extended as needed by LRCalc.extend(). 835 if (ParentVNI) 836 forceRecompute(0, ParentVNI); 837 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 838 RegAssign.insert(Start, End, OpenIdx); 839 DEBUG(dump()); 840 } 841 842 //===----------------------------------------------------------------------===// 843 // Spill modes 844 //===----------------------------------------------------------------------===// 845 846 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 847 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 848 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 849 RegAssignMap::iterator AssignI; 850 AssignI.setMap(RegAssign); 851 852 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 853 SlotIndex Def = Copies[i]->def; 854 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 855 assert(MI && "No instruction for back-copy"); 856 857 MachineBasicBlock *MBB = MI->getParent(); 858 MachineBasicBlock::iterator MBBI(MI); 859 bool AtBegin; 860 do AtBegin = MBBI == MBB->begin(); 861 while (!AtBegin && (--MBBI)->isDebugValue()); 862 863 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 864 LIS.removeVRegDefAt(*LI, Def); 865 LIS.RemoveMachineInstrFromMaps(*MI); 866 MI->eraseFromParent(); 867 868 // Adjust RegAssign if a register assignment is killed at Def. We want to 869 // avoid calculating the live range of the source register if possible. 870 AssignI.find(Def.getPrevSlot()); 871 if (!AssignI.valid() || AssignI.start() >= Def) 872 continue; 873 // If MI doesn't kill the assigned register, just leave it. 874 if (AssignI.stop() != Def) 875 continue; 876 unsigned RegIdx = AssignI.value(); 877 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 878 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 879 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 880 } else { 881 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 882 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 883 AssignI.setStop(Kill); 884 } 885 } 886 } 887 888 MachineBasicBlock* 889 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 890 MachineBasicBlock *DefMBB) { 891 if (MBB == DefMBB) 892 return MBB; 893 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 894 895 const MachineLoopInfo &Loops = SA.Loops; 896 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 897 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 898 899 // Best candidate so far. 900 MachineBasicBlock *BestMBB = MBB; 901 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 902 903 while (true) { 904 const MachineLoop *Loop = Loops.getLoopFor(MBB); 905 906 // MBB isn't in a loop, it doesn't get any better. All dominators have a 907 // higher frequency by definition. 908 if (!Loop) { 909 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 910 << MBB->getNumber() << " at depth 0\n"); 911 return MBB; 912 } 913 914 // We'll never be able to exit the DefLoop. 915 if (Loop == DefLoop) { 916 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 917 << MBB->getNumber() << " in the same loop\n"); 918 return MBB; 919 } 920 921 // Least busy dominator seen so far. 922 unsigned Depth = Loop->getLoopDepth(); 923 if (Depth < BestDepth) { 924 BestMBB = MBB; 925 BestDepth = Depth; 926 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 927 << MBB->getNumber() << " at depth " << Depth << '\n'); 928 } 929 930 // Leave loop by going to the immediate dominator of the loop header. 931 // This is a bigger stride than simply walking up the dominator tree. 932 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 933 934 // Too far up the dominator tree? 935 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 936 return BestMBB; 937 938 MBB = IDom->getBlock(); 939 } 940 } 941 942 void SplitEditor::computeRedundantBackCopies( 943 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 944 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 945 LiveInterval *Parent = &Edit->getParent(); 946 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 947 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 948 949 // Aggregate VNIs having the same value as ParentVNI. 950 for (VNInfo *VNI : LI->valnos) { 951 if (VNI->isUnused()) 952 continue; 953 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 954 EqualVNs[ParentVNI->id].insert(VNI); 955 } 956 957 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 958 // redundant VNIs to BackCopies. 959 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 960 VNInfo *ParentVNI = Parent->getValNumInfo(i); 961 if (!NotToHoistSet.count(ParentVNI->id)) 962 continue; 963 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 964 SmallPtrSetIterator<VNInfo *> It2 = It1; 965 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 966 It2 = It1; 967 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 968 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 969 continue; 970 971 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 972 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 973 if (MBB1 == MBB2) { 974 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 975 } else if (MDT.dominates(MBB1, MBB2)) { 976 DominatedVNIs.insert(*It2); 977 } else if (MDT.dominates(MBB2, MBB1)) { 978 DominatedVNIs.insert(*It1); 979 } 980 } 981 } 982 if (!DominatedVNIs.empty()) { 983 forceRecompute(0, ParentVNI); 984 for (auto VNI : DominatedVNIs) { 985 BackCopies.push_back(VNI); 986 } 987 DominatedVNIs.clear(); 988 } 989 } 990 } 991 992 /// For SM_Size mode, find a common dominator for all the back-copies for 993 /// the same ParentVNI and hoist the backcopies to the dominator BB. 994 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 995 /// to do the hoisting, simply remove the dominated backcopies for the same 996 /// ParentVNI. 997 void SplitEditor::hoistCopies() { 998 // Get the complement interval, always RegIdx 0. 999 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1000 LiveInterval *Parent = &Edit->getParent(); 1001 1002 // Track the nearest common dominator for all back-copies for each ParentVNI, 1003 // indexed by ParentVNI->id. 1004 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1005 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1006 // The total cost of all the back-copies for each ParentVNI. 1007 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1008 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1009 // for Speed. 1010 DenseSet<unsigned> NotToHoistSet; 1011 1012 // Find the nearest common dominator for parent values with multiple 1013 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1014 for (VNInfo *VNI : LI->valnos) { 1015 if (VNI->isUnused()) 1016 continue; 1017 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1018 assert(ParentVNI && "Parent not live at complement def"); 1019 1020 // Don't hoist remats. The complement is probably going to disappear 1021 // completely anyway. 1022 if (Edit->didRematerialize(ParentVNI)) 1023 continue; 1024 1025 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1026 1027 DomPair &Dom = NearestDom[ParentVNI->id]; 1028 1029 // Keep directly defined parent values. This is either a PHI or an 1030 // instruction in the complement range. All other copies of ParentVNI 1031 // should be eliminated. 1032 if (VNI->def == ParentVNI->def) { 1033 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1034 Dom = DomPair(ValMBB, VNI->def); 1035 continue; 1036 } 1037 // Skip the singly mapped values. There is nothing to gain from hoisting a 1038 // single back-copy. 1039 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1040 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1041 continue; 1042 } 1043 1044 if (!Dom.first) { 1045 // First time we see ParentVNI. VNI dominates itself. 1046 Dom = DomPair(ValMBB, VNI->def); 1047 } else if (Dom.first == ValMBB) { 1048 // Two defs in the same block. Pick the earlier def. 1049 if (!Dom.second.isValid() || VNI->def < Dom.second) 1050 Dom.second = VNI->def; 1051 } else { 1052 // Different basic blocks. Check if one dominates. 1053 MachineBasicBlock *Near = 1054 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1055 if (Near == ValMBB) 1056 // Def ValMBB dominates. 1057 Dom = DomPair(ValMBB, VNI->def); 1058 else if (Near != Dom.first) 1059 // None dominate. Hoist to common dominator, need new def. 1060 Dom = DomPair(Near, SlotIndex()); 1061 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1062 } 1063 1064 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 1065 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 1066 << " hoist to BB#" << Dom.first->getNumber() << ' ' 1067 << Dom.second << '\n'); 1068 } 1069 1070 // Insert the hoisted copies. 1071 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1072 DomPair &Dom = NearestDom[i]; 1073 if (!Dom.first || Dom.second.isValid()) 1074 continue; 1075 // This value needs a hoisted copy inserted at the end of Dom.first. 1076 VNInfo *ParentVNI = Parent->getValNumInfo(i); 1077 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1078 // Get a less loopy dominator than Dom.first. 1079 Dom.first = findShallowDominator(Dom.first, DefMBB); 1080 if (SpillMode == SM_Speed && 1081 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1082 NotToHoistSet.insert(ParentVNI->id); 1083 continue; 1084 } 1085 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 1086 Dom.second = 1087 defFromParent(0, ParentVNI, Last, *Dom.first, 1088 SA.getLastSplitPointIter(Dom.first))->def; 1089 } 1090 1091 // Remove redundant back-copies that are now known to be dominated by another 1092 // def with the same value. 1093 SmallVector<VNInfo*, 8> BackCopies; 1094 for (VNInfo *VNI : LI->valnos) { 1095 if (VNI->isUnused()) 1096 continue; 1097 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1098 const DomPair &Dom = NearestDom[ParentVNI->id]; 1099 if (!Dom.first || Dom.second == VNI->def || 1100 NotToHoistSet.count(ParentVNI->id)) 1101 continue; 1102 BackCopies.push_back(VNI); 1103 forceRecompute(0, ParentVNI); 1104 } 1105 1106 // If it is not beneficial to hoist all the BackCopies, simply remove 1107 // redundant BackCopies in speed mode. 1108 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1109 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1110 1111 removeBackCopies(BackCopies); 1112 } 1113 1114 /// transferValues - Transfer all possible values to the new live ranges. 1115 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 1116 bool SplitEditor::transferValues() { 1117 bool Skipped = false; 1118 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1119 for (const LiveRange::Segment &S : Edit->getParent()) { 1120 DEBUG(dbgs() << " blit " << S << ':'); 1121 VNInfo *ParentVNI = S.valno; 1122 // RegAssign has holes where RegIdx 0 should be used. 1123 SlotIndex Start = S.start; 1124 AssignI.advanceTo(Start); 1125 do { 1126 unsigned RegIdx; 1127 SlotIndex End = S.end; 1128 if (!AssignI.valid()) { 1129 RegIdx = 0; 1130 } else if (AssignI.start() <= Start) { 1131 RegIdx = AssignI.value(); 1132 if (AssignI.stop() < End) { 1133 End = AssignI.stop(); 1134 ++AssignI; 1135 } 1136 } else { 1137 RegIdx = 0; 1138 End = std::min(End, AssignI.start()); 1139 } 1140 1141 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1142 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx 1143 << '(' << PrintReg(Edit->get(RegIdx)) << ')'); 1144 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1145 1146 // Check for a simply defined value that can be blitted directly. 1147 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1148 if (VNInfo *VNI = VFP.getPointer()) { 1149 DEBUG(dbgs() << ':' << VNI->id); 1150 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1151 Start = End; 1152 continue; 1153 } 1154 1155 // Skip values with forced recomputation. 1156 if (VFP.getInt()) { 1157 DEBUG(dbgs() << "(recalc)"); 1158 Skipped = true; 1159 Start = End; 1160 continue; 1161 } 1162 1163 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1164 1165 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1166 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1167 // LiveInBlocks. 1168 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1169 SlotIndex BlockStart, BlockEnd; 1170 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1171 1172 // The first block may be live-in, or it may have its own def. 1173 if (Start != BlockStart) { 1174 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1175 assert(VNI && "Missing def for complex mapped value"); 1176 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 1177 // MBB has its own def. Is it also live-out? 1178 if (BlockEnd <= End) 1179 LRC.setLiveOutValue(&*MBB, VNI); 1180 1181 // Skip to the next block for live-in. 1182 ++MBB; 1183 BlockStart = BlockEnd; 1184 } 1185 1186 // Handle the live-in blocks covered by [Start;End). 1187 assert(Start <= BlockStart && "Expected live-in block"); 1188 while (BlockStart < End) { 1189 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 1190 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1191 if (BlockStart == ParentVNI->def) { 1192 // This block has the def of a parent PHI, so it isn't live-in. 1193 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1194 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1195 assert(VNI && "Missing def for complex mapped parent PHI"); 1196 if (End >= BlockEnd) 1197 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1198 } else { 1199 // This block needs a live-in value. The last block covered may not 1200 // be live-out. 1201 if (End < BlockEnd) 1202 LRC.addLiveInBlock(LI, MDT[&*MBB], End); 1203 else { 1204 // Live-through, and we don't know the value. 1205 LRC.addLiveInBlock(LI, MDT[&*MBB]); 1206 LRC.setLiveOutValue(&*MBB, nullptr); 1207 } 1208 } 1209 BlockStart = BlockEnd; 1210 ++MBB; 1211 } 1212 Start = End; 1213 } while (Start != S.end); 1214 DEBUG(dbgs() << '\n'); 1215 } 1216 1217 LRCalc[0].calculateValues(); 1218 if (SpillMode) 1219 LRCalc[1].calculateValues(); 1220 1221 return Skipped; 1222 } 1223 1224 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1225 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1226 if (Seg == nullptr) 1227 return true; 1228 if (Seg->end != Def.getDeadSlot()) 1229 return false; 1230 // This is a dead PHI. Remove it. 1231 LR.removeSegment(*Seg, true); 1232 return true; 1233 } 1234 1235 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC, 1236 LiveRange &LR, LaneBitmask LM, 1237 ArrayRef<SlotIndex> Undefs) { 1238 for (MachineBasicBlock *P : B.predecessors()) { 1239 SlotIndex End = LIS.getMBBEndIdx(P); 1240 SlotIndex LastUse = End.getPrevSlot(); 1241 // The predecessor may not have a live-out value. That is OK, like an 1242 // undef PHI operand. 1243 LiveInterval &PLI = Edit->getParent(); 1244 // Need the cast because the inputs to ?: would otherwise be deemed 1245 // "incompatible": SubRange vs LiveInterval. 1246 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI) 1247 : static_cast<LiveRange&>(PLI); 1248 if (PSR.liveAt(LastUse)) 1249 LRC.extend(LR, End, /*PhysReg=*/0, Undefs); 1250 } 1251 } 1252 1253 void SplitEditor::extendPHIKillRanges() { 1254 // Extend live ranges to be live-out for successor PHI values. 1255 1256 // Visit each PHI def slot in the parent live interval. If the def is dead, 1257 // remove it. Otherwise, extend the live interval to reach the end indexes 1258 // of all predecessor blocks. 1259 1260 LiveInterval &ParentLI = Edit->getParent(); 1261 for (const VNInfo *V : ParentLI.valnos) { 1262 if (V->isUnused() || !V->isPHIDef()) 1263 continue; 1264 1265 unsigned RegIdx = RegAssign.lookup(V->def); 1266 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1267 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1268 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1269 if (!removeDeadSegment(V->def, LI)) 1270 extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1271 } 1272 1273 SmallVector<SlotIndex, 4> Undefs; 1274 LiveRangeCalc SubLRC; 1275 1276 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1277 for (const VNInfo *V : PS.valnos) { 1278 if (V->isUnused() || !V->isPHIDef()) 1279 continue; 1280 unsigned RegIdx = RegAssign.lookup(V->def); 1281 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1282 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI); 1283 if (removeDeadSegment(V->def, S)) 1284 continue; 1285 1286 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1287 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1288 &LIS.getVNInfoAllocator()); 1289 Undefs.clear(); 1290 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1291 extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs); 1292 } 1293 } 1294 } 1295 1296 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1297 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1298 struct ExtPoint { 1299 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1300 : MO(O), RegIdx(R), Next(N) {} 1301 1302 MachineOperand MO; 1303 unsigned RegIdx; 1304 SlotIndex Next; 1305 }; 1306 1307 SmallVector<ExtPoint,4> ExtPoints; 1308 1309 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 1310 RE = MRI.reg_end(); RI != RE;) { 1311 MachineOperand &MO = *RI; 1312 MachineInstr *MI = MO.getParent(); 1313 ++RI; 1314 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1315 if (MI->isDebugValue()) { 1316 DEBUG(dbgs() << "Zapping " << *MI); 1317 MO.setReg(0); 1318 continue; 1319 } 1320 1321 // <undef> operands don't really read the register, so it doesn't matter 1322 // which register we choose. When the use operand is tied to a def, we must 1323 // use the same register as the def, so just do that always. 1324 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1325 if (MO.isDef() || MO.isUndef()) 1326 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1327 1328 // Rewrite to the mapped register at Idx. 1329 unsigned RegIdx = RegAssign.lookup(Idx); 1330 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1331 MO.setReg(LI.reg); 1332 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 1333 << Idx << ':' << RegIdx << '\t' << *MI); 1334 1335 // Extend liveness to Idx if the instruction reads reg. 1336 if (!ExtendRanges || MO.isUndef()) 1337 continue; 1338 1339 // Skip instructions that don't read Reg. 1340 if (MO.isDef()) { 1341 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1342 continue; 1343 // We may want to extend a live range for a partial redef, or for a use 1344 // tied to an early clobber. 1345 Idx = Idx.getPrevSlot(); 1346 if (!Edit->getParent().liveAt(Idx)) 1347 continue; 1348 } else 1349 Idx = Idx.getRegSlot(true); 1350 1351 SlotIndex Next = Idx.getNextSlot(); 1352 if (LI.hasSubRanges()) { 1353 // We have to delay extending subranges until we have seen all operands 1354 // defining the register. This is because a <def,read-undef> operand 1355 // will create an "undef" point, and we cannot extend any subranges 1356 // until all of them have been accounted for. 1357 if (MO.isUse()) 1358 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1359 } else { 1360 LiveRangeCalc &LRC = getLRCalc(RegIdx); 1361 LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1362 } 1363 } 1364 1365 for (ExtPoint &EP : ExtPoints) { 1366 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1367 assert(LI.hasSubRanges()); 1368 1369 LiveRangeCalc SubLRC; 1370 unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1371 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1372 : MRI.getMaxLaneMaskForVReg(Reg); 1373 for (LiveInterval::SubRange &S : LI.subranges()) { 1374 if ((S.LaneMask & LM).none()) 1375 continue; 1376 // The problem here can be that the new register may have been created 1377 // for a partially defined original register. For example: 1378 // %vreg827:subreg_hireg<def,read-undef> = ... 1379 // ... 1380 // %vreg828<def> = COPY %vreg827 1381 if (S.empty()) 1382 continue; 1383 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1384 &LIS.getVNInfoAllocator()); 1385 SmallVector<SlotIndex, 4> Undefs; 1386 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1387 SubLRC.extend(S, EP.Next, 0, Undefs); 1388 } 1389 } 1390 1391 for (unsigned R : *Edit) { 1392 LiveInterval &LI = LIS.getInterval(R); 1393 if (!LI.hasSubRanges()) 1394 continue; 1395 LI.clear(); 1396 LI.removeEmptySubRanges(); 1397 LIS.constructMainRangeFromSubranges(LI); 1398 } 1399 } 1400 1401 void SplitEditor::deleteRematVictims() { 1402 SmallVector<MachineInstr*, 8> Dead; 1403 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1404 LiveInterval *LI = &LIS.getInterval(*I); 1405 for (const LiveRange::Segment &S : LI->segments) { 1406 // Dead defs end at the dead slot. 1407 if (S.end != S.valno->def.getDeadSlot()) 1408 continue; 1409 if (S.valno->isPHIDef()) 1410 continue; 1411 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1412 assert(MI && "Missing instruction for dead def"); 1413 MI->addRegisterDead(LI->reg, &TRI); 1414 1415 if (!MI->allDefsAreDead()) 1416 continue; 1417 1418 DEBUG(dbgs() << "All defs dead: " << *MI); 1419 Dead.push_back(MI); 1420 } 1421 } 1422 1423 if (Dead.empty()) 1424 return; 1425 1426 Edit->eliminateDeadDefs(Dead, None, &AA); 1427 } 1428 1429 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1430 ++NumFinished; 1431 1432 // At this point, the live intervals in Edit contain VNInfos corresponding to 1433 // the inserted copies. 1434 1435 // Add the original defs from the parent interval. 1436 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1437 if (ParentVNI->isUnused()) 1438 continue; 1439 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1440 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1441 1442 // Force rematted values to be recomputed everywhere. 1443 // The new live ranges may be truncated. 1444 if (Edit->didRematerialize(ParentVNI)) 1445 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1446 forceRecompute(i, ParentVNI); 1447 } 1448 1449 // Hoist back-copies to the complement interval when in spill mode. 1450 switch (SpillMode) { 1451 case SM_Partition: 1452 // Leave all back-copies as is. 1453 break; 1454 case SM_Size: 1455 case SM_Speed: 1456 // hoistCopies will behave differently between size and speed. 1457 hoistCopies(); 1458 } 1459 1460 // Transfer the simply mapped values, check if any are skipped. 1461 bool Skipped = transferValues(); 1462 1463 // Rewrite virtual registers, possibly extending ranges. 1464 rewriteAssigned(Skipped); 1465 1466 if (Skipped) 1467 extendPHIKillRanges(); 1468 else 1469 ++NumSimple; 1470 1471 // Delete defs that were rematted everywhere. 1472 if (Skipped) 1473 deleteRematVictims(); 1474 1475 // Get rid of unused values and set phi-kill flags. 1476 for (unsigned Reg : *Edit) { 1477 LiveInterval &LI = LIS.getInterval(Reg); 1478 LI.removeEmptySubRanges(); 1479 LI.RenumberValues(); 1480 } 1481 1482 // Provide a reverse mapping from original indices to Edit ranges. 1483 if (LRMap) { 1484 LRMap->clear(); 1485 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1486 LRMap->push_back(i); 1487 } 1488 1489 // Now check if any registers were separated into multiple components. 1490 ConnectedVNInfoEqClasses ConEQ(LIS); 1491 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1492 // Don't use iterators, they are invalidated by create() below. 1493 unsigned VReg = Edit->get(i); 1494 LiveInterval &LI = LIS.getInterval(VReg); 1495 SmallVector<LiveInterval*, 8> SplitLIs; 1496 LIS.splitSeparateComponents(LI, SplitLIs); 1497 unsigned Original = VRM.getOriginal(VReg); 1498 for (LiveInterval *SplitLI : SplitLIs) 1499 VRM.setIsSplitFromReg(SplitLI->reg, Original); 1500 1501 // The new intervals all map back to i. 1502 if (LRMap) 1503 LRMap->resize(Edit->size(), i); 1504 } 1505 1506 // Calculate spill weight and allocation hints for new intervals. 1507 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1508 1509 assert(!LRMap || LRMap->size() == Edit->size()); 1510 } 1511 1512 //===----------------------------------------------------------------------===// 1513 // Single Block Splitting 1514 //===----------------------------------------------------------------------===// 1515 1516 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1517 bool SingleInstrs) const { 1518 // Always split for multiple instructions. 1519 if (!BI.isOneInstr()) 1520 return true; 1521 // Don't split for single instructions unless explicitly requested. 1522 if (!SingleInstrs) 1523 return false; 1524 // Splitting a live-through range always makes progress. 1525 if (BI.LiveIn && BI.LiveOut) 1526 return true; 1527 // No point in isolating a copy. It has no register class constraints. 1528 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1529 return false; 1530 // Finally, don't isolate an end point that was created by earlier splits. 1531 return isOriginalEndpoint(BI.FirstInstr); 1532 } 1533 1534 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1535 openIntv(); 1536 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1537 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1538 LastSplitPoint)); 1539 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1540 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1541 } else { 1542 // The last use is after the last valid split point. 1543 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1544 useIntv(SegStart, SegStop); 1545 overlapIntv(SegStop, BI.LastInstr); 1546 } 1547 } 1548 1549 //===----------------------------------------------------------------------===// 1550 // Global Live Range Splitting Support 1551 //===----------------------------------------------------------------------===// 1552 1553 // These methods support a method of global live range splitting that uses a 1554 // global algorithm to decide intervals for CFG edges. They will insert split 1555 // points and color intervals in basic blocks while avoiding interference. 1556 // 1557 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1558 // are on the stack. 1559 1560 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1561 unsigned IntvIn, SlotIndex LeaveBefore, 1562 unsigned IntvOut, SlotIndex EnterAfter){ 1563 SlotIndex Start, Stop; 1564 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1565 1566 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1567 << ") intf " << LeaveBefore << '-' << EnterAfter 1568 << ", live-through " << IntvIn << " -> " << IntvOut); 1569 1570 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1571 1572 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1573 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1574 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1575 1576 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1577 1578 if (!IntvOut) { 1579 DEBUG(dbgs() << ", spill on entry.\n"); 1580 // 1581 // <<<<<<<<< Possible LeaveBefore interference. 1582 // |-----------| Live through. 1583 // -____________ Spill on entry. 1584 // 1585 selectIntv(IntvIn); 1586 SlotIndex Idx = leaveIntvAtTop(*MBB); 1587 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1588 (void)Idx; 1589 return; 1590 } 1591 1592 if (!IntvIn) { 1593 DEBUG(dbgs() << ", reload on exit.\n"); 1594 // 1595 // >>>>>>> Possible EnterAfter interference. 1596 // |-----------| Live through. 1597 // ___________-- Reload on exit. 1598 // 1599 selectIntv(IntvOut); 1600 SlotIndex Idx = enterIntvAtEnd(*MBB); 1601 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1602 (void)Idx; 1603 return; 1604 } 1605 1606 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1607 DEBUG(dbgs() << ", straight through.\n"); 1608 // 1609 // |-----------| Live through. 1610 // ------------- Straight through, same intv, no interference. 1611 // 1612 selectIntv(IntvOut); 1613 useIntv(Start, Stop); 1614 return; 1615 } 1616 1617 // We cannot legally insert splits after LSP. 1618 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1619 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1620 1621 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1622 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1623 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1624 // 1625 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1626 // |-----------| Live through. 1627 // ------======= Switch intervals between interference. 1628 // 1629 selectIntv(IntvOut); 1630 SlotIndex Idx; 1631 if (LeaveBefore && LeaveBefore < LSP) { 1632 Idx = enterIntvBefore(LeaveBefore); 1633 useIntv(Idx, Stop); 1634 } else { 1635 Idx = enterIntvAtEnd(*MBB); 1636 } 1637 selectIntv(IntvIn); 1638 useIntv(Start, Idx); 1639 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1640 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1641 return; 1642 } 1643 1644 DEBUG(dbgs() << ", create local intv for interference.\n"); 1645 // 1646 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1647 // |-----------| Live through. 1648 // ==---------== Switch intervals before/after interference. 1649 // 1650 assert(LeaveBefore <= EnterAfter && "Missed case"); 1651 1652 selectIntv(IntvOut); 1653 SlotIndex Idx = enterIntvAfter(EnterAfter); 1654 useIntv(Idx, Stop); 1655 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1656 1657 selectIntv(IntvIn); 1658 Idx = leaveIntvBefore(LeaveBefore); 1659 useIntv(Start, Idx); 1660 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1661 } 1662 1663 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1664 unsigned IntvIn, SlotIndex LeaveBefore) { 1665 SlotIndex Start, Stop; 1666 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1667 1668 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1669 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1670 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1671 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1672 1673 assert(IntvIn && "Must have register in"); 1674 assert(BI.LiveIn && "Must be live-in"); 1675 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1676 1677 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1678 DEBUG(dbgs() << " before interference.\n"); 1679 // 1680 // <<< Interference after kill. 1681 // |---o---x | Killed in block. 1682 // ========= Use IntvIn everywhere. 1683 // 1684 selectIntv(IntvIn); 1685 useIntv(Start, BI.LastInstr); 1686 return; 1687 } 1688 1689 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1690 1691 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1692 // 1693 // <<< Possible interference after last use. 1694 // |---o---o---| Live-out on stack. 1695 // =========____ Leave IntvIn after last use. 1696 // 1697 // < Interference after last use. 1698 // |---o---o--o| Live-out on stack, late last use. 1699 // ============ Copy to stack after LSP, overlap IntvIn. 1700 // \_____ Stack interval is live-out. 1701 // 1702 if (BI.LastInstr < LSP) { 1703 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1704 selectIntv(IntvIn); 1705 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1706 useIntv(Start, Idx); 1707 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1708 } else { 1709 DEBUG(dbgs() << ", spill before last split point.\n"); 1710 selectIntv(IntvIn); 1711 SlotIndex Idx = leaveIntvBefore(LSP); 1712 overlapIntv(Idx, BI.LastInstr); 1713 useIntv(Start, Idx); 1714 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1715 } 1716 return; 1717 } 1718 1719 // The interference is overlapping somewhere we wanted to use IntvIn. That 1720 // means we need to create a local interval that can be allocated a 1721 // different register. 1722 unsigned LocalIntv = openIntv(); 1723 (void)LocalIntv; 1724 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1725 1726 if (!BI.LiveOut || BI.LastInstr < LSP) { 1727 // 1728 // <<<<<<< Interference overlapping uses. 1729 // |---o---o---| Live-out on stack. 1730 // =====----____ Leave IntvIn before interference, then spill. 1731 // 1732 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1733 SlotIndex From = enterIntvBefore(LeaveBefore); 1734 useIntv(From, To); 1735 selectIntv(IntvIn); 1736 useIntv(Start, From); 1737 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1738 return; 1739 } 1740 1741 // <<<<<<< Interference overlapping uses. 1742 // |---o---o--o| Live-out on stack, late last use. 1743 // =====------- Copy to stack before LSP, overlap LocalIntv. 1744 // \_____ Stack interval is live-out. 1745 // 1746 SlotIndex To = leaveIntvBefore(LSP); 1747 overlapIntv(To, BI.LastInstr); 1748 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1749 useIntv(From, To); 1750 selectIntv(IntvIn); 1751 useIntv(Start, From); 1752 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1753 } 1754 1755 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1756 unsigned IntvOut, SlotIndex EnterAfter) { 1757 SlotIndex Start, Stop; 1758 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1759 1760 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1761 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1762 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1763 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1764 1765 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1766 1767 assert(IntvOut && "Must have register out"); 1768 assert(BI.LiveOut && "Must be live-out"); 1769 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1770 1771 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1772 DEBUG(dbgs() << " after interference.\n"); 1773 // 1774 // >>>> Interference before def. 1775 // | o---o---| Defined in block. 1776 // ========= Use IntvOut everywhere. 1777 // 1778 selectIntv(IntvOut); 1779 useIntv(BI.FirstInstr, Stop); 1780 return; 1781 } 1782 1783 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1784 DEBUG(dbgs() << ", reload after interference.\n"); 1785 // 1786 // >>>> Interference before def. 1787 // |---o---o---| Live-through, stack-in. 1788 // ____========= Enter IntvOut before first use. 1789 // 1790 selectIntv(IntvOut); 1791 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1792 useIntv(Idx, Stop); 1793 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1794 return; 1795 } 1796 1797 // The interference is overlapping somewhere we wanted to use IntvOut. That 1798 // means we need to create a local interval that can be allocated a 1799 // different register. 1800 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1801 // 1802 // >>>>>>> Interference overlapping uses. 1803 // |---o---o---| Live-through, stack-in. 1804 // ____---====== Create local interval for interference range. 1805 // 1806 selectIntv(IntvOut); 1807 SlotIndex Idx = enterIntvAfter(EnterAfter); 1808 useIntv(Idx, Stop); 1809 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1810 1811 openIntv(); 1812 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1813 useIntv(From, Idx); 1814 } 1815