1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SplitKit.h"
16 #include "LiveRangeCalc.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/VirtRegMap.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/Support/Allocator.h"
41 #include "llvm/Support/BlockFrequency.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetOpcodes.h"
48 #include "llvm/Target/TargetRegisterInfo.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <limits>
54 #include <tuple>
55 #include <utility>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "regalloc"
60 
61 STATISTIC(NumFinished, "Number of splits finished");
62 STATISTIC(NumSimple,   "Number of splits that were simple");
63 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
64 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
65 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
66 
67 //===----------------------------------------------------------------------===//
68 //                     Last Insert Point Analysis
69 //===----------------------------------------------------------------------===//
70 
71 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
72                                          unsigned BBNum)
73     : LIS(lis), LastInsertPoint(BBNum) {}
74 
75 SlotIndex
76 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
77                                             const MachineBasicBlock &MBB) {
78   unsigned Num = MBB.getNumber();
79   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
80   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
81 
82   SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors;
83   for (const MachineBasicBlock *SMBB : MBB.successors())
84     if (SMBB->isEHPad())
85       EHPadSuccessors.push_back(SMBB);
86 
87   // Compute insert points on the first call. The pair is independent of the
88   // current live interval.
89   if (!LIP.first.isValid()) {
90     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
91     if (FirstTerm == MBB.end())
92       LIP.first = MBBEnd;
93     else
94       LIP.first = LIS.getInstructionIndex(*FirstTerm);
95 
96     // If there is a landing pad successor, also find the call instruction.
97     if (EHPadSuccessors.empty())
98       return LIP.first;
99     // There may not be a call instruction (?) in which case we ignore LPad.
100     LIP.second = LIP.first;
101     for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
102          I != E;) {
103       --I;
104       if (I->isCall()) {
105         LIP.second = LIS.getInstructionIndex(*I);
106         break;
107       }
108     }
109   }
110 
111   // If CurLI is live into a landing pad successor, move the last insert point
112   // back to the call that may throw.
113   if (!LIP.second)
114     return LIP.first;
115 
116   if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) {
117         return LIS.isLiveInToMBB(CurLI, EHPad);
118       }))
119     return LIP.first;
120 
121   // Find the value leaving MBB.
122   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
123   if (!VNI)
124     return LIP.first;
125 
126   // If the value leaving MBB was defined after the call in MBB, it can't
127   // really be live-in to the landing pad.  This can happen if the landing pad
128   // has a PHI, and this register is undef on the exceptional edge.
129   // <rdar://problem/10664933>
130   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
131     return LIP.first;
132 
133   // Value is properly live-in to the landing pad.
134   // Only allow inserts before the call.
135   return LIP.second;
136 }
137 
138 MachineBasicBlock::iterator
139 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
140                                             MachineBasicBlock &MBB) {
141   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
142   if (LIP == LIS.getMBBEndIdx(&MBB))
143     return MBB.end();
144   return LIS.getInstructionFromIndex(LIP);
145 }
146 
147 //===----------------------------------------------------------------------===//
148 //                                 Split Analysis
149 //===----------------------------------------------------------------------===//
150 
151 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
152                              const MachineLoopInfo &mli)
153     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
154       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
155 
156 void SplitAnalysis::clear() {
157   UseSlots.clear();
158   UseBlocks.clear();
159   ThroughBlocks.clear();
160   CurLI = nullptr;
161   DidRepairRange = false;
162 }
163 
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
165 void SplitAnalysis::analyzeUses() {
166   assert(UseSlots.empty() && "Call clear first");
167 
168   // First get all the defs from the interval values. This provides the correct
169   // slots for early clobbers.
170   for (const VNInfo *VNI : CurLI->valnos)
171     if (!VNI->isPHIDef() && !VNI->isUnused())
172       UseSlots.push_back(VNI->def);
173 
174   // Get use slots form the use-def chain.
175   const MachineRegisterInfo &MRI = MF.getRegInfo();
176   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
177     if (!MO.isUndef())
178       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
179 
180   array_pod_sort(UseSlots.begin(), UseSlots.end());
181 
182   // Remove duplicates, keeping the smaller slot for each instruction.
183   // That is what we want for early clobbers.
184   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
185                              SlotIndex::isSameInstr),
186                  UseSlots.end());
187 
188   // Compute per-live block info.
189   if (!calcLiveBlockInfo()) {
190     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
191     // I am looking at you, RegisterCoalescer!
192     DidRepairRange = true;
193     ++NumRepairs;
194     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
195     const_cast<LiveIntervals&>(LIS)
196       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
197     UseBlocks.clear();
198     ThroughBlocks.clear();
199     bool fixed = calcLiveBlockInfo();
200     (void)fixed;
201     assert(fixed && "Couldn't fix broken live interval");
202   }
203 
204   DEBUG(dbgs() << "Analyze counted "
205                << UseSlots.size() << " instrs in "
206                << UseBlocks.size() << " blocks, through "
207                << NumThroughBlocks << " blocks.\n");
208 }
209 
210 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
211 /// where CurLI is live.
212 bool SplitAnalysis::calcLiveBlockInfo() {
213   ThroughBlocks.resize(MF.getNumBlockIDs());
214   NumThroughBlocks = NumGapBlocks = 0;
215   if (CurLI->empty())
216     return true;
217 
218   LiveInterval::const_iterator LVI = CurLI->begin();
219   LiveInterval::const_iterator LVE = CurLI->end();
220 
221   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
222   UseI = UseSlots.begin();
223   UseE = UseSlots.end();
224 
225   // Loop over basic blocks where CurLI is live.
226   MachineFunction::iterator MFI =
227       LIS.getMBBFromIndex(LVI->start)->getIterator();
228   while (true) {
229     BlockInfo BI;
230     BI.MBB = &*MFI;
231     SlotIndex Start, Stop;
232     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
233 
234     // If the block contains no uses, the range must be live through. At one
235     // point, RegisterCoalescer could create dangling ranges that ended
236     // mid-block.
237     if (UseI == UseE || *UseI >= Stop) {
238       ++NumThroughBlocks;
239       ThroughBlocks.set(BI.MBB->getNumber());
240       // The range shouldn't end mid-block if there are no uses. This shouldn't
241       // happen.
242       if (LVI->end < Stop)
243         return false;
244     } else {
245       // This block has uses. Find the first and last uses in the block.
246       BI.FirstInstr = *UseI;
247       assert(BI.FirstInstr >= Start);
248       do ++UseI;
249       while (UseI != UseE && *UseI < Stop);
250       BI.LastInstr = UseI[-1];
251       assert(BI.LastInstr < Stop);
252 
253       // LVI is the first live segment overlapping MBB.
254       BI.LiveIn = LVI->start <= Start;
255 
256       // When not live in, the first use should be a def.
257       if (!BI.LiveIn) {
258         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
259         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
260         BI.FirstDef = BI.FirstInstr;
261       }
262 
263       // Look for gaps in the live range.
264       BI.LiveOut = true;
265       while (LVI->end < Stop) {
266         SlotIndex LastStop = LVI->end;
267         if (++LVI == LVE || LVI->start >= Stop) {
268           BI.LiveOut = false;
269           BI.LastInstr = LastStop;
270           break;
271         }
272 
273         if (LastStop < LVI->start) {
274           // There is a gap in the live range. Create duplicate entries for the
275           // live-in snippet and the live-out snippet.
276           ++NumGapBlocks;
277 
278           // Push the Live-in part.
279           BI.LiveOut = false;
280           UseBlocks.push_back(BI);
281           UseBlocks.back().LastInstr = LastStop;
282 
283           // Set up BI for the live-out part.
284           BI.LiveIn = false;
285           BI.LiveOut = true;
286           BI.FirstInstr = BI.FirstDef = LVI->start;
287         }
288 
289         // A Segment that starts in the middle of the block must be a def.
290         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
291         if (!BI.FirstDef)
292           BI.FirstDef = LVI->start;
293       }
294 
295       UseBlocks.push_back(BI);
296 
297       // LVI is now at LVE or LVI->end >= Stop.
298       if (LVI == LVE)
299         break;
300     }
301 
302     // Live segment ends exactly at Stop. Move to the next segment.
303     if (LVI->end == Stop && ++LVI == LVE)
304       break;
305 
306     // Pick the next basic block.
307     if (LVI->start < Stop)
308       ++MFI;
309     else
310       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
311   }
312 
313   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
314   return true;
315 }
316 
317 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
318   if (cli->empty())
319     return 0;
320   LiveInterval *li = const_cast<LiveInterval*>(cli);
321   LiveInterval::iterator LVI = li->begin();
322   LiveInterval::iterator LVE = li->end();
323   unsigned Count = 0;
324 
325   // Loop over basic blocks where li is live.
326   MachineFunction::const_iterator MFI =
327       LIS.getMBBFromIndex(LVI->start)->getIterator();
328   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
329   while (true) {
330     ++Count;
331     LVI = li->advanceTo(LVI, Stop);
332     if (LVI == LVE)
333       return Count;
334     do {
335       ++MFI;
336       Stop = LIS.getMBBEndIdx(&*MFI);
337     } while (Stop <= LVI->start);
338   }
339 }
340 
341 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
342   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
343   const LiveInterval &Orig = LIS.getInterval(OrigReg);
344   assert(!Orig.empty() && "Splitting empty interval?");
345   LiveInterval::const_iterator I = Orig.find(Idx);
346 
347   // Range containing Idx should begin at Idx.
348   if (I != Orig.end() && I->start <= Idx)
349     return I->start == Idx;
350 
351   // Range does not contain Idx, previous must end at Idx.
352   return I != Orig.begin() && (--I)->end == Idx;
353 }
354 
355 void SplitAnalysis::analyze(const LiveInterval *li) {
356   clear();
357   CurLI = li;
358   analyzeUses();
359 }
360 
361 //===----------------------------------------------------------------------===//
362 //                               Split Editor
363 //===----------------------------------------------------------------------===//
364 
365 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
366 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
367                          LiveIntervals &lis, VirtRegMap &vrm,
368                          MachineDominatorTree &mdt,
369                          MachineBlockFrequencyInfo &mbfi)
370     : SA(sa), AA(aa), LIS(lis), VRM(vrm),
371       MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
372       TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
373       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
374       MBFI(mbfi), RegAssign(Allocator) {}
375 
376 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
377   Edit = &LRE;
378   SpillMode = SM;
379   OpenIdx = 0;
380   RegAssign.clear();
381   Values.clear();
382 
383   // Reset the LiveRangeCalc instances needed for this spill mode.
384   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
385                   &LIS.getVNInfoAllocator());
386   if (SpillMode)
387     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
388                     &LIS.getVNInfoAllocator());
389 
390   // We don't need an AliasAnalysis since we will only be performing
391   // cheap-as-a-copy remats anyway.
392   Edit->anyRematerializable(nullptr);
393 }
394 
395 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
396 LLVM_DUMP_METHOD void SplitEditor::dump() const {
397   if (RegAssign.empty()) {
398     dbgs() << " empty\n";
399     return;
400   }
401 
402   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
403     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
404   dbgs() << '\n';
405 }
406 #endif
407 
408 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
409                                                         LiveInterval &LI) {
410   for (LiveInterval::SubRange &S : LI.subranges())
411     if (S.LaneMask == LM)
412       return S;
413   llvm_unreachable("SubRange for this mask not found");
414 }
415 
416 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
417   if (!LI.hasSubRanges()) {
418     LI.createDeadDef(VNI);
419     return;
420   }
421 
422   SlotIndex Def = VNI->def;
423   if (Original) {
424     // If we are transferring a def from the original interval, make sure
425     // to only update the subranges for which the original subranges had
426     // a def at this location.
427     for (LiveInterval::SubRange &S : LI.subranges()) {
428       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
429       VNInfo *PV = PS.getVNInfoAt(Def);
430       if (PV != nullptr && PV->def == Def)
431         S.createDeadDef(Def, LIS.getVNInfoAllocator());
432     }
433   } else {
434     // This is a new def: either from rematerialization, or from an inserted
435     // copy. Since rematerialization can regenerate a definition of a sub-
436     // register, we need to check which subranges need to be updated.
437     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
438     assert(DefMI != nullptr);
439     LaneBitmask LM;
440     for (const MachineOperand &DefOp : DefMI->defs()) {
441       unsigned R = DefOp.getReg();
442       if (R != LI.reg)
443         continue;
444       if (unsigned SR = DefOp.getSubReg())
445         LM |= TRI.getSubRegIndexLaneMask(SR);
446       else {
447         LM = MRI.getMaxLaneMaskForVReg(R);
448         break;
449       }
450     }
451     for (LiveInterval::SubRange &S : LI.subranges())
452       if ((S.LaneMask & LM).any())
453         S.createDeadDef(Def, LIS.getVNInfoAllocator());
454   }
455 }
456 
457 VNInfo *SplitEditor::defValue(unsigned RegIdx,
458                               const VNInfo *ParentVNI,
459                               SlotIndex Idx,
460                               bool Original) {
461   assert(ParentVNI && "Mapping  NULL value");
462   assert(Idx.isValid() && "Invalid SlotIndex");
463   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
464   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
465 
466   // Create a new value.
467   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
468 
469   bool Force = LI->hasSubRanges();
470   ValueForcePair FP(Force ? nullptr : VNI, Force);
471   // Use insert for lookup, so we can add missing values with a second lookup.
472   std::pair<ValueMap::iterator, bool> InsP =
473     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
474 
475   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
476   // forced. Keep it as a simple def without any liveness.
477   if (!Force && InsP.second)
478     return VNI;
479 
480   // If the previous value was a simple mapping, add liveness for it now.
481   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
482     addDeadDef(*LI, OldVNI, Original);
483 
484     // No longer a simple mapping.  Switch to a complex mapping. If the
485     // interval has subranges, make it a forced mapping.
486     InsP.first->second = ValueForcePair(nullptr, Force);
487   }
488 
489   // This is a complex mapping, add liveness for VNI
490   addDeadDef(*LI, VNI, Original);
491   return VNI;
492 }
493 
494 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
495   assert(ParentVNI && "Mapping  NULL value");
496   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
497   VNInfo *VNI = VFP.getPointer();
498 
499   // ParentVNI was either unmapped or already complex mapped. Either way, just
500   // set the force bit.
501   if (!VNI) {
502     VFP.setInt(true);
503     return;
504   }
505 
506   // This was previously a single mapping. Make sure the old def is represented
507   // by a trivial live range.
508   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
509 
510   // Mark as complex mapped, forced.
511   VFP = ValueForcePair(nullptr, true);
512 }
513 
514 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
515     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
516     unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
517   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
518   bool FirstCopy = !Def.isValid();
519   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
520       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
521               | getInternalReadRegState(!FirstCopy), SubIdx)
522       .addReg(FromReg, 0, SubIdx);
523 
524   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
525   if (FirstCopy) {
526     SlotIndexes &Indexes = *LIS.getSlotIndexes();
527     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
528   } else {
529     CopyMI->bundleWithPred();
530   }
531   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
532   DestLI.refineSubRanges(Allocator, LaneMask,
533                          [Def, &Allocator](LiveInterval::SubRange& SR) {
534     SR.createDeadDef(Def, Allocator);
535   });
536   return Def;
537 }
538 
539 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
540     LaneBitmask LaneMask, MachineBasicBlock &MBB,
541     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
542   const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
543   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
544     // The full vreg is copied.
545     MachineInstr *CopyMI =
546         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
547     SlotIndexes &Indexes = *LIS.getSlotIndexes();
548     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
549   }
550 
551   // Only a subset of lanes needs to be copied. The following is a simple
552   // heuristic to construct a sequence of COPYs. We could add a target
553   // specific callback if this turns out to be suboptimal.
554   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
555 
556   // First pass: Try to find a perfectly matching subregister index. If none
557   // exists find the one covering the most lanemask bits.
558   SmallVector<unsigned, 8> PossibleIndexes;
559   unsigned BestIdx = 0;
560   unsigned BestCover = 0;
561   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
562   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
563   for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
564     // Is this index even compatible with the given class?
565     if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
566       continue;
567     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
568     // Early exit if we found a perfect match.
569     if (SubRegMask == LaneMask) {
570       BestIdx = Idx;
571       break;
572     }
573 
574     // The index must not cover any lanes outside \p LaneMask.
575     if ((SubRegMask & ~LaneMask).any())
576       continue;
577 
578     unsigned PopCount = SubRegMask.getNumLanes();
579     PossibleIndexes.push_back(Idx);
580     if (PopCount > BestCover) {
581       BestCover = PopCount;
582       BestIdx = Idx;
583     }
584   }
585 
586   // Abort if we cannot possibly implement the COPY with the given indexes.
587   if (BestIdx == 0)
588     report_fatal_error("Impossible to implement partial COPY");
589 
590   SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
591                                         BestIdx, DestLI, Late, SlotIndex());
592 
593   // Greedy heuristic: Keep iterating keeping the best covering subreg index
594   // each time.
595   LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
596   while (LanesLeft.any()) {
597     unsigned BestIdx = 0;
598     int BestCover = std::numeric_limits<int>::min();
599     for (unsigned Idx : PossibleIndexes) {
600       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
601       // Early exit if we found a perfect match.
602       if (SubRegMask == LanesLeft) {
603         BestIdx = Idx;
604         break;
605       }
606 
607       // Try to cover as much of the remaining lanes as possible but
608       // as few of the already covered lanes as possible.
609       int Cover = (SubRegMask & LanesLeft).getNumLanes()
610                 - (SubRegMask & ~LanesLeft).getNumLanes();
611       if (Cover > BestCover) {
612         BestCover = Cover;
613         BestIdx = Idx;
614       }
615     }
616 
617     if (BestIdx == 0)
618       report_fatal_error("Impossible to implement partial COPY");
619 
620     buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
621                           DestLI, Late, Def);
622     LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
623   }
624 
625   return Def;
626 }
627 
628 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
629                                    VNInfo *ParentVNI,
630                                    SlotIndex UseIdx,
631                                    MachineBasicBlock &MBB,
632                                    MachineBasicBlock::iterator I) {
633   SlotIndex Def;
634   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
635 
636   // We may be trying to avoid interference that ends at a deleted instruction,
637   // so always begin RegIdx 0 early and all others late.
638   bool Late = RegIdx != 0;
639 
640   // Attempt cheap-as-a-copy rematerialization.
641   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
642   LiveInterval &OrigLI = LIS.getInterval(Original);
643   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
644 
645   unsigned Reg = LI->reg;
646   bool DidRemat = false;
647   if (OrigVNI) {
648     LiveRangeEdit::Remat RM(ParentVNI);
649     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
650     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
651       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
652       ++NumRemats;
653       DidRemat = true;
654     }
655   }
656   if (!DidRemat) {
657     LaneBitmask LaneMask;
658     if (LI->hasSubRanges()) {
659       LaneMask = LaneBitmask::getNone();
660       for (LiveInterval::SubRange &S : LI->subranges())
661         LaneMask |= S.LaneMask;
662     } else {
663       LaneMask = LaneBitmask::getAll();
664     }
665 
666     ++NumCopies;
667     Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
668   }
669 
670   // Define the value in Reg.
671   return defValue(RegIdx, ParentVNI, Def, false);
672 }
673 
674 /// Create a new virtual register and live interval.
675 unsigned SplitEditor::openIntv() {
676   // Create the complement as index 0.
677   if (Edit->empty())
678     Edit->createEmptyInterval();
679 
680   // Create the open interval.
681   OpenIdx = Edit->size();
682   Edit->createEmptyInterval();
683   return OpenIdx;
684 }
685 
686 void SplitEditor::selectIntv(unsigned Idx) {
687   assert(Idx != 0 && "Cannot select the complement interval");
688   assert(Idx < Edit->size() && "Can only select previously opened interval");
689   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
690   OpenIdx = Idx;
691 }
692 
693 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
694   assert(OpenIdx && "openIntv not called before enterIntvBefore");
695   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
696   Idx = Idx.getBaseIndex();
697   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
698   if (!ParentVNI) {
699     DEBUG(dbgs() << ": not live\n");
700     return Idx;
701   }
702   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
703   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
704   assert(MI && "enterIntvBefore called with invalid index");
705 
706   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
707   return VNI->def;
708 }
709 
710 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
711   assert(OpenIdx && "openIntv not called before enterIntvAfter");
712   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
713   Idx = Idx.getBoundaryIndex();
714   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
715   if (!ParentVNI) {
716     DEBUG(dbgs() << ": not live\n");
717     return Idx;
718   }
719   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
720   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
721   assert(MI && "enterIntvAfter called with invalid index");
722 
723   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
724                               std::next(MachineBasicBlock::iterator(MI)));
725   return VNI->def;
726 }
727 
728 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
729   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
730   SlotIndex End = LIS.getMBBEndIdx(&MBB);
731   SlotIndex Last = End.getPrevSlot();
732   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
733   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
734   if (!ParentVNI) {
735     DEBUG(dbgs() << ": not live\n");
736     return End;
737   }
738   DEBUG(dbgs() << ": valno " << ParentVNI->id);
739   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
740                               SA.getLastSplitPointIter(&MBB));
741   RegAssign.insert(VNI->def, End, OpenIdx);
742   DEBUG(dump());
743   return VNI->def;
744 }
745 
746 /// useIntv - indicate that all instructions in MBB should use OpenLI.
747 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
748   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
749 }
750 
751 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
752   assert(OpenIdx && "openIntv not called before useIntv");
753   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
754   RegAssign.insert(Start, End, OpenIdx);
755   DEBUG(dump());
756 }
757 
758 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
759   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
760   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
761 
762   // The interval must be live beyond the instruction at Idx.
763   SlotIndex Boundary = Idx.getBoundaryIndex();
764   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
765   if (!ParentVNI) {
766     DEBUG(dbgs() << ": not live\n");
767     return Boundary.getNextSlot();
768   }
769   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
770   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
771   assert(MI && "No instruction at index");
772 
773   // In spill mode, make live ranges as short as possible by inserting the copy
774   // before MI.  This is only possible if that instruction doesn't redefine the
775   // value.  The inserted COPY is not a kill, and we don't need to recompute
776   // the source live range.  The spiller also won't try to hoist this copy.
777   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
778       MI->readsVirtualRegister(Edit->getReg())) {
779     forceRecompute(0, ParentVNI);
780     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
781     return Idx;
782   }
783 
784   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
785                               std::next(MachineBasicBlock::iterator(MI)));
786   return VNI->def;
787 }
788 
789 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
790   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
791   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
792 
793   // The interval must be live into the instruction at Idx.
794   Idx = Idx.getBaseIndex();
795   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
796   if (!ParentVNI) {
797     DEBUG(dbgs() << ": not live\n");
798     return Idx.getNextSlot();
799   }
800   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
801 
802   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
803   assert(MI && "No instruction at index");
804   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
805   return VNI->def;
806 }
807 
808 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
809   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
810   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
811   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
812 
813   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
814   if (!ParentVNI) {
815     DEBUG(dbgs() << ": not live\n");
816     return Start;
817   }
818 
819   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
820                               MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
821   RegAssign.insert(Start, VNI->def, OpenIdx);
822   DEBUG(dump());
823   return VNI->def;
824 }
825 
826 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
827   assert(OpenIdx && "openIntv not called before overlapIntv");
828   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
829   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
830          "Parent changes value in extended range");
831   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
832          "Range cannot span basic blocks");
833 
834   // The complement interval will be extended as needed by LRCalc.extend().
835   if (ParentVNI)
836     forceRecompute(0, ParentVNI);
837   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
838   RegAssign.insert(Start, End, OpenIdx);
839   DEBUG(dump());
840 }
841 
842 //===----------------------------------------------------------------------===//
843 //                                  Spill modes
844 //===----------------------------------------------------------------------===//
845 
846 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
847   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
848   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
849   RegAssignMap::iterator AssignI;
850   AssignI.setMap(RegAssign);
851 
852   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
853     SlotIndex Def = Copies[i]->def;
854     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
855     assert(MI && "No instruction for back-copy");
856 
857     MachineBasicBlock *MBB = MI->getParent();
858     MachineBasicBlock::iterator MBBI(MI);
859     bool AtBegin;
860     do AtBegin = MBBI == MBB->begin();
861     while (!AtBegin && (--MBBI)->isDebugValue());
862 
863     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
864     LIS.removeVRegDefAt(*LI, Def);
865     LIS.RemoveMachineInstrFromMaps(*MI);
866     MI->eraseFromParent();
867 
868     // Adjust RegAssign if a register assignment is killed at Def. We want to
869     // avoid calculating the live range of the source register if possible.
870     AssignI.find(Def.getPrevSlot());
871     if (!AssignI.valid() || AssignI.start() >= Def)
872       continue;
873     // If MI doesn't kill the assigned register, just leave it.
874     if (AssignI.stop() != Def)
875       continue;
876     unsigned RegIdx = AssignI.value();
877     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
878       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
879       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
880     } else {
881       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
882       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
883       AssignI.setStop(Kill);
884     }
885   }
886 }
887 
888 MachineBasicBlock*
889 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
890                                   MachineBasicBlock *DefMBB) {
891   if (MBB == DefMBB)
892     return MBB;
893   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
894 
895   const MachineLoopInfo &Loops = SA.Loops;
896   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
897   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
898 
899   // Best candidate so far.
900   MachineBasicBlock *BestMBB = MBB;
901   unsigned BestDepth = std::numeric_limits<unsigned>::max();
902 
903   while (true) {
904     const MachineLoop *Loop = Loops.getLoopFor(MBB);
905 
906     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
907     // higher frequency by definition.
908     if (!Loop) {
909       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
910                    << MBB->getNumber() << " at depth 0\n");
911       return MBB;
912     }
913 
914     // We'll never be able to exit the DefLoop.
915     if (Loop == DefLoop) {
916       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
917                    << MBB->getNumber() << " in the same loop\n");
918       return MBB;
919     }
920 
921     // Least busy dominator seen so far.
922     unsigned Depth = Loop->getLoopDepth();
923     if (Depth < BestDepth) {
924       BestMBB = MBB;
925       BestDepth = Depth;
926       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
927                    << MBB->getNumber() << " at depth " << Depth << '\n');
928     }
929 
930     // Leave loop by going to the immediate dominator of the loop header.
931     // This is a bigger stride than simply walking up the dominator tree.
932     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
933 
934     // Too far up the dominator tree?
935     if (!IDom || !MDT.dominates(DefDomNode, IDom))
936       return BestMBB;
937 
938     MBB = IDom->getBlock();
939   }
940 }
941 
942 void SplitEditor::computeRedundantBackCopies(
943     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
944   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
945   LiveInterval *Parent = &Edit->getParent();
946   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
947   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
948 
949   // Aggregate VNIs having the same value as ParentVNI.
950   for (VNInfo *VNI : LI->valnos) {
951     if (VNI->isUnused())
952       continue;
953     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
954     EqualVNs[ParentVNI->id].insert(VNI);
955   }
956 
957   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
958   // redundant VNIs to BackCopies.
959   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
960     VNInfo *ParentVNI = Parent->getValNumInfo(i);
961     if (!NotToHoistSet.count(ParentVNI->id))
962       continue;
963     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
964     SmallPtrSetIterator<VNInfo *> It2 = It1;
965     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
966       It2 = It1;
967       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
968         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
969           continue;
970 
971         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
972         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
973         if (MBB1 == MBB2) {
974           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
975         } else if (MDT.dominates(MBB1, MBB2)) {
976           DominatedVNIs.insert(*It2);
977         } else if (MDT.dominates(MBB2, MBB1)) {
978           DominatedVNIs.insert(*It1);
979         }
980       }
981     }
982     if (!DominatedVNIs.empty()) {
983       forceRecompute(0, ParentVNI);
984       for (auto VNI : DominatedVNIs) {
985         BackCopies.push_back(VNI);
986       }
987       DominatedVNIs.clear();
988     }
989   }
990 }
991 
992 /// For SM_Size mode, find a common dominator for all the back-copies for
993 /// the same ParentVNI and hoist the backcopies to the dominator BB.
994 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
995 /// to do the hoisting, simply remove the dominated backcopies for the same
996 /// ParentVNI.
997 void SplitEditor::hoistCopies() {
998   // Get the complement interval, always RegIdx 0.
999   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1000   LiveInterval *Parent = &Edit->getParent();
1001 
1002   // Track the nearest common dominator for all back-copies for each ParentVNI,
1003   // indexed by ParentVNI->id.
1004   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1005   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1006   // The total cost of all the back-copies for each ParentVNI.
1007   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1008   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1009   // for Speed.
1010   DenseSet<unsigned> NotToHoistSet;
1011 
1012   // Find the nearest common dominator for parent values with multiple
1013   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1014   for (VNInfo *VNI : LI->valnos) {
1015     if (VNI->isUnused())
1016       continue;
1017     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1018     assert(ParentVNI && "Parent not live at complement def");
1019 
1020     // Don't hoist remats.  The complement is probably going to disappear
1021     // completely anyway.
1022     if (Edit->didRematerialize(ParentVNI))
1023       continue;
1024 
1025     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1026 
1027     DomPair &Dom = NearestDom[ParentVNI->id];
1028 
1029     // Keep directly defined parent values.  This is either a PHI or an
1030     // instruction in the complement range.  All other copies of ParentVNI
1031     // should be eliminated.
1032     if (VNI->def == ParentVNI->def) {
1033       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1034       Dom = DomPair(ValMBB, VNI->def);
1035       continue;
1036     }
1037     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1038     // single back-copy.
1039     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1040       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1041       continue;
1042     }
1043 
1044     if (!Dom.first) {
1045       // First time we see ParentVNI.  VNI dominates itself.
1046       Dom = DomPair(ValMBB, VNI->def);
1047     } else if (Dom.first == ValMBB) {
1048       // Two defs in the same block.  Pick the earlier def.
1049       if (!Dom.second.isValid() || VNI->def < Dom.second)
1050         Dom.second = VNI->def;
1051     } else {
1052       // Different basic blocks. Check if one dominates.
1053       MachineBasicBlock *Near =
1054         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1055       if (Near == ValMBB)
1056         // Def ValMBB dominates.
1057         Dom = DomPair(ValMBB, VNI->def);
1058       else if (Near != Dom.first)
1059         // None dominate. Hoist to common dominator, need new def.
1060         Dom = DomPair(Near, SlotIndex());
1061       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1062     }
1063 
1064     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
1065                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
1066                  << " hoist to BB#" << Dom.first->getNumber() << ' '
1067                  << Dom.second << '\n');
1068   }
1069 
1070   // Insert the hoisted copies.
1071   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1072     DomPair &Dom = NearestDom[i];
1073     if (!Dom.first || Dom.second.isValid())
1074       continue;
1075     // This value needs a hoisted copy inserted at the end of Dom.first.
1076     VNInfo *ParentVNI = Parent->getValNumInfo(i);
1077     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1078     // Get a less loopy dominator than Dom.first.
1079     Dom.first = findShallowDominator(Dom.first, DefMBB);
1080     if (SpillMode == SM_Speed &&
1081         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1082       NotToHoistSet.insert(ParentVNI->id);
1083       continue;
1084     }
1085     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
1086     Dom.second =
1087       defFromParent(0, ParentVNI, Last, *Dom.first,
1088                     SA.getLastSplitPointIter(Dom.first))->def;
1089   }
1090 
1091   // Remove redundant back-copies that are now known to be dominated by another
1092   // def with the same value.
1093   SmallVector<VNInfo*, 8> BackCopies;
1094   for (VNInfo *VNI : LI->valnos) {
1095     if (VNI->isUnused())
1096       continue;
1097     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1098     const DomPair &Dom = NearestDom[ParentVNI->id];
1099     if (!Dom.first || Dom.second == VNI->def ||
1100         NotToHoistSet.count(ParentVNI->id))
1101       continue;
1102     BackCopies.push_back(VNI);
1103     forceRecompute(0, ParentVNI);
1104   }
1105 
1106   // If it is not beneficial to hoist all the BackCopies, simply remove
1107   // redundant BackCopies in speed mode.
1108   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1109     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1110 
1111   removeBackCopies(BackCopies);
1112 }
1113 
1114 /// transferValues - Transfer all possible values to the new live ranges.
1115 /// Values that were rematerialized are left alone, they need LRCalc.extend().
1116 bool SplitEditor::transferValues() {
1117   bool Skipped = false;
1118   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1119   for (const LiveRange::Segment &S : Edit->getParent()) {
1120     DEBUG(dbgs() << "  blit " << S << ':');
1121     VNInfo *ParentVNI = S.valno;
1122     // RegAssign has holes where RegIdx 0 should be used.
1123     SlotIndex Start = S.start;
1124     AssignI.advanceTo(Start);
1125     do {
1126       unsigned RegIdx;
1127       SlotIndex End = S.end;
1128       if (!AssignI.valid()) {
1129         RegIdx = 0;
1130       } else if (AssignI.start() <= Start) {
1131         RegIdx = AssignI.value();
1132         if (AssignI.stop() < End) {
1133           End = AssignI.stop();
1134           ++AssignI;
1135         }
1136       } else {
1137         RegIdx = 0;
1138         End = std::min(End, AssignI.start());
1139       }
1140 
1141       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1142       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx
1143                    << '(' << PrintReg(Edit->get(RegIdx)) << ')');
1144       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1145 
1146       // Check for a simply defined value that can be blitted directly.
1147       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1148       if (VNInfo *VNI = VFP.getPointer()) {
1149         DEBUG(dbgs() << ':' << VNI->id);
1150         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1151         Start = End;
1152         continue;
1153       }
1154 
1155       // Skip values with forced recomputation.
1156       if (VFP.getInt()) {
1157         DEBUG(dbgs() << "(recalc)");
1158         Skipped = true;
1159         Start = End;
1160         continue;
1161       }
1162 
1163       LiveRangeCalc &LRC = getLRCalc(RegIdx);
1164 
1165       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1166       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1167       // LiveInBlocks.
1168       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1169       SlotIndex BlockStart, BlockEnd;
1170       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1171 
1172       // The first block may be live-in, or it may have its own def.
1173       if (Start != BlockStart) {
1174         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1175         assert(VNI && "Missing def for complex mapped value");
1176         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
1177         // MBB has its own def. Is it also live-out?
1178         if (BlockEnd <= End)
1179           LRC.setLiveOutValue(&*MBB, VNI);
1180 
1181         // Skip to the next block for live-in.
1182         ++MBB;
1183         BlockStart = BlockEnd;
1184       }
1185 
1186       // Handle the live-in blocks covered by [Start;End).
1187       assert(Start <= BlockStart && "Expected live-in block");
1188       while (BlockStart < End) {
1189         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
1190         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1191         if (BlockStart == ParentVNI->def) {
1192           // This block has the def of a parent PHI, so it isn't live-in.
1193           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1194           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1195           assert(VNI && "Missing def for complex mapped parent PHI");
1196           if (End >= BlockEnd)
1197             LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1198         } else {
1199           // This block needs a live-in value.  The last block covered may not
1200           // be live-out.
1201           if (End < BlockEnd)
1202             LRC.addLiveInBlock(LI, MDT[&*MBB], End);
1203           else {
1204             // Live-through, and we don't know the value.
1205             LRC.addLiveInBlock(LI, MDT[&*MBB]);
1206             LRC.setLiveOutValue(&*MBB, nullptr);
1207           }
1208         }
1209         BlockStart = BlockEnd;
1210         ++MBB;
1211       }
1212       Start = End;
1213     } while (Start != S.end);
1214     DEBUG(dbgs() << '\n');
1215   }
1216 
1217   LRCalc[0].calculateValues();
1218   if (SpillMode)
1219     LRCalc[1].calculateValues();
1220 
1221   return Skipped;
1222 }
1223 
1224 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1225   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1226   if (Seg == nullptr)
1227     return true;
1228   if (Seg->end != Def.getDeadSlot())
1229     return false;
1230   // This is a dead PHI. Remove it.
1231   LR.removeSegment(*Seg, true);
1232   return true;
1233 }
1234 
1235 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
1236                                  LiveRange &LR, LaneBitmask LM,
1237                                  ArrayRef<SlotIndex> Undefs) {
1238   for (MachineBasicBlock *P : B.predecessors()) {
1239     SlotIndex End = LIS.getMBBEndIdx(P);
1240     SlotIndex LastUse = End.getPrevSlot();
1241     // The predecessor may not have a live-out value. That is OK, like an
1242     // undef PHI operand.
1243     LiveInterval &PLI = Edit->getParent();
1244     // Need the cast because the inputs to ?: would otherwise be deemed
1245     // "incompatible": SubRange vs LiveInterval.
1246     LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
1247                                : static_cast<LiveRange&>(PLI);
1248     if (PSR.liveAt(LastUse))
1249       LRC.extend(LR, End, /*PhysReg=*/0, Undefs);
1250   }
1251 }
1252 
1253 void SplitEditor::extendPHIKillRanges() {
1254   // Extend live ranges to be live-out for successor PHI values.
1255 
1256   // Visit each PHI def slot in the parent live interval. If the def is dead,
1257   // remove it. Otherwise, extend the live interval to reach the end indexes
1258   // of all predecessor blocks.
1259 
1260   LiveInterval &ParentLI = Edit->getParent();
1261   for (const VNInfo *V : ParentLI.valnos) {
1262     if (V->isUnused() || !V->isPHIDef())
1263       continue;
1264 
1265     unsigned RegIdx = RegAssign.lookup(V->def);
1266     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1267     LiveRangeCalc &LRC = getLRCalc(RegIdx);
1268     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1269     if (!removeDeadSegment(V->def, LI))
1270       extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1271   }
1272 
1273   SmallVector<SlotIndex, 4> Undefs;
1274   LiveRangeCalc SubLRC;
1275 
1276   for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1277     for (const VNInfo *V : PS.valnos) {
1278       if (V->isUnused() || !V->isPHIDef())
1279         continue;
1280       unsigned RegIdx = RegAssign.lookup(V->def);
1281       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1282       LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
1283       if (removeDeadSegment(V->def, S))
1284         continue;
1285 
1286       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1287       SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1288                    &LIS.getVNInfoAllocator());
1289       Undefs.clear();
1290       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1291       extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs);
1292     }
1293   }
1294 }
1295 
1296 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1297 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1298   struct ExtPoint {
1299     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1300       : MO(O), RegIdx(R), Next(N) {}
1301 
1302     MachineOperand MO;
1303     unsigned RegIdx;
1304     SlotIndex Next;
1305   };
1306 
1307   SmallVector<ExtPoint,4> ExtPoints;
1308 
1309   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1310        RE = MRI.reg_end(); RI != RE;) {
1311     MachineOperand &MO = *RI;
1312     MachineInstr *MI = MO.getParent();
1313     ++RI;
1314     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1315     if (MI->isDebugValue()) {
1316       DEBUG(dbgs() << "Zapping " << *MI);
1317       MO.setReg(0);
1318       continue;
1319     }
1320 
1321     // <undef> operands don't really read the register, so it doesn't matter
1322     // which register we choose.  When the use operand is tied to a def, we must
1323     // use the same register as the def, so just do that always.
1324     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1325     if (MO.isDef() || MO.isUndef())
1326       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1327 
1328     // Rewrite to the mapped register at Idx.
1329     unsigned RegIdx = RegAssign.lookup(Idx);
1330     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1331     MO.setReg(LI.reg);
1332     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
1333                  << Idx << ':' << RegIdx << '\t' << *MI);
1334 
1335     // Extend liveness to Idx if the instruction reads reg.
1336     if (!ExtendRanges || MO.isUndef())
1337       continue;
1338 
1339     // Skip instructions that don't read Reg.
1340     if (MO.isDef()) {
1341       if (!MO.getSubReg() && !MO.isEarlyClobber())
1342         continue;
1343       // We may want to extend a live range for a partial redef, or for a use
1344       // tied to an early clobber.
1345       Idx = Idx.getPrevSlot();
1346       if (!Edit->getParent().liveAt(Idx))
1347         continue;
1348     } else
1349       Idx = Idx.getRegSlot(true);
1350 
1351     SlotIndex Next = Idx.getNextSlot();
1352     if (LI.hasSubRanges()) {
1353       // We have to delay extending subranges until we have seen all operands
1354       // defining the register. This is because a <def,read-undef> operand
1355       // will create an "undef" point, and we cannot extend any subranges
1356       // until all of them have been accounted for.
1357       if (MO.isUse())
1358         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1359     } else {
1360       LiveRangeCalc &LRC = getLRCalc(RegIdx);
1361       LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1362     }
1363   }
1364 
1365   for (ExtPoint &EP : ExtPoints) {
1366     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1367     assert(LI.hasSubRanges());
1368 
1369     LiveRangeCalc SubLRC;
1370     unsigned Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1371     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1372                               : MRI.getMaxLaneMaskForVReg(Reg);
1373     for (LiveInterval::SubRange &S : LI.subranges()) {
1374       if ((S.LaneMask & LM).none())
1375         continue;
1376       // The problem here can be that the new register may have been created
1377       // for a partially defined original register. For example:
1378       //   %vreg827:subreg_hireg<def,read-undef> = ...
1379       //   ...
1380       //   %vreg828<def> = COPY %vreg827
1381       if (S.empty())
1382         continue;
1383       SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1384                    &LIS.getVNInfoAllocator());
1385       SmallVector<SlotIndex, 4> Undefs;
1386       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1387       SubLRC.extend(S, EP.Next, 0, Undefs);
1388     }
1389   }
1390 
1391   for (unsigned R : *Edit) {
1392     LiveInterval &LI = LIS.getInterval(R);
1393     if (!LI.hasSubRanges())
1394       continue;
1395     LI.clear();
1396     LI.removeEmptySubRanges();
1397     LIS.constructMainRangeFromSubranges(LI);
1398   }
1399 }
1400 
1401 void SplitEditor::deleteRematVictims() {
1402   SmallVector<MachineInstr*, 8> Dead;
1403   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1404     LiveInterval *LI = &LIS.getInterval(*I);
1405     for (const LiveRange::Segment &S : LI->segments) {
1406       // Dead defs end at the dead slot.
1407       if (S.end != S.valno->def.getDeadSlot())
1408         continue;
1409       if (S.valno->isPHIDef())
1410         continue;
1411       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1412       assert(MI && "Missing instruction for dead def");
1413       MI->addRegisterDead(LI->reg, &TRI);
1414 
1415       if (!MI->allDefsAreDead())
1416         continue;
1417 
1418       DEBUG(dbgs() << "All defs dead: " << *MI);
1419       Dead.push_back(MI);
1420     }
1421   }
1422 
1423   if (Dead.empty())
1424     return;
1425 
1426   Edit->eliminateDeadDefs(Dead, None, &AA);
1427 }
1428 
1429 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1430   ++NumFinished;
1431 
1432   // At this point, the live intervals in Edit contain VNInfos corresponding to
1433   // the inserted copies.
1434 
1435   // Add the original defs from the parent interval.
1436   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1437     if (ParentVNI->isUnused())
1438       continue;
1439     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1440     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1441 
1442     // Force rematted values to be recomputed everywhere.
1443     // The new live ranges may be truncated.
1444     if (Edit->didRematerialize(ParentVNI))
1445       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1446         forceRecompute(i, ParentVNI);
1447   }
1448 
1449   // Hoist back-copies to the complement interval when in spill mode.
1450   switch (SpillMode) {
1451   case SM_Partition:
1452     // Leave all back-copies as is.
1453     break;
1454   case SM_Size:
1455   case SM_Speed:
1456     // hoistCopies will behave differently between size and speed.
1457     hoistCopies();
1458   }
1459 
1460   // Transfer the simply mapped values, check if any are skipped.
1461   bool Skipped = transferValues();
1462 
1463   // Rewrite virtual registers, possibly extending ranges.
1464   rewriteAssigned(Skipped);
1465 
1466   if (Skipped)
1467     extendPHIKillRanges();
1468   else
1469     ++NumSimple;
1470 
1471   // Delete defs that were rematted everywhere.
1472   if (Skipped)
1473     deleteRematVictims();
1474 
1475   // Get rid of unused values and set phi-kill flags.
1476   for (unsigned Reg : *Edit) {
1477     LiveInterval &LI = LIS.getInterval(Reg);
1478     LI.removeEmptySubRanges();
1479     LI.RenumberValues();
1480   }
1481 
1482   // Provide a reverse mapping from original indices to Edit ranges.
1483   if (LRMap) {
1484     LRMap->clear();
1485     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1486       LRMap->push_back(i);
1487   }
1488 
1489   // Now check if any registers were separated into multiple components.
1490   ConnectedVNInfoEqClasses ConEQ(LIS);
1491   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1492     // Don't use iterators, they are invalidated by create() below.
1493     unsigned VReg = Edit->get(i);
1494     LiveInterval &LI = LIS.getInterval(VReg);
1495     SmallVector<LiveInterval*, 8> SplitLIs;
1496     LIS.splitSeparateComponents(LI, SplitLIs);
1497     unsigned Original = VRM.getOriginal(VReg);
1498     for (LiveInterval *SplitLI : SplitLIs)
1499       VRM.setIsSplitFromReg(SplitLI->reg, Original);
1500 
1501     // The new intervals all map back to i.
1502     if (LRMap)
1503       LRMap->resize(Edit->size(), i);
1504   }
1505 
1506   // Calculate spill weight and allocation hints for new intervals.
1507   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1508 
1509   assert(!LRMap || LRMap->size() == Edit->size());
1510 }
1511 
1512 //===----------------------------------------------------------------------===//
1513 //                            Single Block Splitting
1514 //===----------------------------------------------------------------------===//
1515 
1516 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1517                                            bool SingleInstrs) const {
1518   // Always split for multiple instructions.
1519   if (!BI.isOneInstr())
1520     return true;
1521   // Don't split for single instructions unless explicitly requested.
1522   if (!SingleInstrs)
1523     return false;
1524   // Splitting a live-through range always makes progress.
1525   if (BI.LiveIn && BI.LiveOut)
1526     return true;
1527   // No point in isolating a copy. It has no register class constraints.
1528   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1529     return false;
1530   // Finally, don't isolate an end point that was created by earlier splits.
1531   return isOriginalEndpoint(BI.FirstInstr);
1532 }
1533 
1534 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1535   openIntv();
1536   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1537   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1538     LastSplitPoint));
1539   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1540     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1541   } else {
1542       // The last use is after the last valid split point.
1543     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1544     useIntv(SegStart, SegStop);
1545     overlapIntv(SegStop, BI.LastInstr);
1546   }
1547 }
1548 
1549 //===----------------------------------------------------------------------===//
1550 //                    Global Live Range Splitting Support
1551 //===----------------------------------------------------------------------===//
1552 
1553 // These methods support a method of global live range splitting that uses a
1554 // global algorithm to decide intervals for CFG edges. They will insert split
1555 // points and color intervals in basic blocks while avoiding interference.
1556 //
1557 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1558 // are on the stack.
1559 
1560 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1561                                         unsigned IntvIn, SlotIndex LeaveBefore,
1562                                         unsigned IntvOut, SlotIndex EnterAfter){
1563   SlotIndex Start, Stop;
1564   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1565 
1566   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1567                << ") intf " << LeaveBefore << '-' << EnterAfter
1568                << ", live-through " << IntvIn << " -> " << IntvOut);
1569 
1570   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1571 
1572   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1573   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1574   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1575 
1576   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1577 
1578   if (!IntvOut) {
1579     DEBUG(dbgs() << ", spill on entry.\n");
1580     //
1581     //        <<<<<<<<<    Possible LeaveBefore interference.
1582     //    |-----------|    Live through.
1583     //    -____________    Spill on entry.
1584     //
1585     selectIntv(IntvIn);
1586     SlotIndex Idx = leaveIntvAtTop(*MBB);
1587     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1588     (void)Idx;
1589     return;
1590   }
1591 
1592   if (!IntvIn) {
1593     DEBUG(dbgs() << ", reload on exit.\n");
1594     //
1595     //    >>>>>>>          Possible EnterAfter interference.
1596     //    |-----------|    Live through.
1597     //    ___________--    Reload on exit.
1598     //
1599     selectIntv(IntvOut);
1600     SlotIndex Idx = enterIntvAtEnd(*MBB);
1601     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1602     (void)Idx;
1603     return;
1604   }
1605 
1606   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1607     DEBUG(dbgs() << ", straight through.\n");
1608     //
1609     //    |-----------|    Live through.
1610     //    -------------    Straight through, same intv, no interference.
1611     //
1612     selectIntv(IntvOut);
1613     useIntv(Start, Stop);
1614     return;
1615   }
1616 
1617   // We cannot legally insert splits after LSP.
1618   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1619   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1620 
1621   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1622                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1623     DEBUG(dbgs() << ", switch avoiding interference.\n");
1624     //
1625     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1626     //    |-----------|    Live through.
1627     //    ------=======    Switch intervals between interference.
1628     //
1629     selectIntv(IntvOut);
1630     SlotIndex Idx;
1631     if (LeaveBefore && LeaveBefore < LSP) {
1632       Idx = enterIntvBefore(LeaveBefore);
1633       useIntv(Idx, Stop);
1634     } else {
1635       Idx = enterIntvAtEnd(*MBB);
1636     }
1637     selectIntv(IntvIn);
1638     useIntv(Start, Idx);
1639     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1640     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1641     return;
1642   }
1643 
1644   DEBUG(dbgs() << ", create local intv for interference.\n");
1645   //
1646   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1647   //    |-----------|    Live through.
1648   //    ==---------==    Switch intervals before/after interference.
1649   //
1650   assert(LeaveBefore <= EnterAfter && "Missed case");
1651 
1652   selectIntv(IntvOut);
1653   SlotIndex Idx = enterIntvAfter(EnterAfter);
1654   useIntv(Idx, Stop);
1655   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1656 
1657   selectIntv(IntvIn);
1658   Idx = leaveIntvBefore(LeaveBefore);
1659   useIntv(Start, Idx);
1660   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1661 }
1662 
1663 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1664                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1665   SlotIndex Start, Stop;
1666   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1667 
1668   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1669                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1670                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1671                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1672 
1673   assert(IntvIn && "Must have register in");
1674   assert(BI.LiveIn && "Must be live-in");
1675   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1676 
1677   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1678     DEBUG(dbgs() << " before interference.\n");
1679     //
1680     //               <<<    Interference after kill.
1681     //     |---o---x   |    Killed in block.
1682     //     =========        Use IntvIn everywhere.
1683     //
1684     selectIntv(IntvIn);
1685     useIntv(Start, BI.LastInstr);
1686     return;
1687   }
1688 
1689   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1690 
1691   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1692     //
1693     //               <<<    Possible interference after last use.
1694     //     |---o---o---|    Live-out on stack.
1695     //     =========____    Leave IntvIn after last use.
1696     //
1697     //                 <    Interference after last use.
1698     //     |---o---o--o|    Live-out on stack, late last use.
1699     //     ============     Copy to stack after LSP, overlap IntvIn.
1700     //            \_____    Stack interval is live-out.
1701     //
1702     if (BI.LastInstr < LSP) {
1703       DEBUG(dbgs() << ", spill after last use before interference.\n");
1704       selectIntv(IntvIn);
1705       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1706       useIntv(Start, Idx);
1707       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1708     } else {
1709       DEBUG(dbgs() << ", spill before last split point.\n");
1710       selectIntv(IntvIn);
1711       SlotIndex Idx = leaveIntvBefore(LSP);
1712       overlapIntv(Idx, BI.LastInstr);
1713       useIntv(Start, Idx);
1714       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1715     }
1716     return;
1717   }
1718 
1719   // The interference is overlapping somewhere we wanted to use IntvIn. That
1720   // means we need to create a local interval that can be allocated a
1721   // different register.
1722   unsigned LocalIntv = openIntv();
1723   (void)LocalIntv;
1724   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1725 
1726   if (!BI.LiveOut || BI.LastInstr < LSP) {
1727     //
1728     //           <<<<<<<    Interference overlapping uses.
1729     //     |---o---o---|    Live-out on stack.
1730     //     =====----____    Leave IntvIn before interference, then spill.
1731     //
1732     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1733     SlotIndex From = enterIntvBefore(LeaveBefore);
1734     useIntv(From, To);
1735     selectIntv(IntvIn);
1736     useIntv(Start, From);
1737     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1738     return;
1739   }
1740 
1741   //           <<<<<<<    Interference overlapping uses.
1742   //     |---o---o--o|    Live-out on stack, late last use.
1743   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1744   //            \_____    Stack interval is live-out.
1745   //
1746   SlotIndex To = leaveIntvBefore(LSP);
1747   overlapIntv(To, BI.LastInstr);
1748   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1749   useIntv(From, To);
1750   selectIntv(IntvIn);
1751   useIntv(Start, From);
1752   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1753 }
1754 
1755 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1756                                    unsigned IntvOut, SlotIndex EnterAfter) {
1757   SlotIndex Start, Stop;
1758   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1759 
1760   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1761                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1762                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1763                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1764 
1765   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1766 
1767   assert(IntvOut && "Must have register out");
1768   assert(BI.LiveOut && "Must be live-out");
1769   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1770 
1771   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1772     DEBUG(dbgs() << " after interference.\n");
1773     //
1774     //    >>>>             Interference before def.
1775     //    |   o---o---|    Defined in block.
1776     //        =========    Use IntvOut everywhere.
1777     //
1778     selectIntv(IntvOut);
1779     useIntv(BI.FirstInstr, Stop);
1780     return;
1781   }
1782 
1783   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1784     DEBUG(dbgs() << ", reload after interference.\n");
1785     //
1786     //    >>>>             Interference before def.
1787     //    |---o---o---|    Live-through, stack-in.
1788     //    ____=========    Enter IntvOut before first use.
1789     //
1790     selectIntv(IntvOut);
1791     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1792     useIntv(Idx, Stop);
1793     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1794     return;
1795   }
1796 
1797   // The interference is overlapping somewhere we wanted to use IntvOut. That
1798   // means we need to create a local interval that can be allocated a
1799   // different register.
1800   DEBUG(dbgs() << ", interference overlaps uses.\n");
1801   //
1802   //    >>>>>>>          Interference overlapping uses.
1803   //    |---o---o---|    Live-through, stack-in.
1804   //    ____---======    Create local interval for interference range.
1805   //
1806   selectIntv(IntvOut);
1807   SlotIndex Idx = enterIntvAfter(EnterAfter);
1808   useIntv(Idx, Stop);
1809   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1810 
1811   openIntv();
1812   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1813   useIntv(From, Idx);
1814 }
1815