1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 STATISTIC(NumFinished, "Number of splits finished"); 32 STATISTIC(NumSimple, "Number of splits that were simple"); 33 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 34 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 35 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : MF(vrm.getMachineFunction()), 45 VRM(vrm), 46 LIS(lis), 47 Loops(mli), 48 TII(*MF.getTarget().getInstrInfo()), 49 CurLI(0), 50 LastSplitPoint(MF.getNumBlockIDs()) {} 51 52 void SplitAnalysis::clear() { 53 UseSlots.clear(); 54 UseBlocks.clear(); 55 ThroughBlocks.clear(); 56 CurLI = 0; 57 DidRepairRange = false; 58 } 59 60 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 61 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 62 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 63 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 64 65 // Compute split points on the first call. The pair is independent of the 66 // current live interval. 67 if (!LSP.first.isValid()) { 68 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 69 if (FirstTerm == MBB->end()) 70 LSP.first = LIS.getMBBEndIdx(MBB); 71 else 72 LSP.first = LIS.getInstructionIndex(FirstTerm); 73 74 // If there is a landing pad successor, also find the call instruction. 75 if (!LPad) 76 return LSP.first; 77 // There may not be a call instruction (?) in which case we ignore LPad. 78 LSP.second = LSP.first; 79 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 80 I != E;) { 81 --I; 82 if (I->getDesc().isCall()) { 83 LSP.second = LIS.getInstructionIndex(I); 84 break; 85 } 86 } 87 } 88 89 // If CurLI is live into a landing pad successor, move the last split point 90 // back to the call that may throw. 91 if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) 92 return LSP.second; 93 else 94 return LSP.first; 95 } 96 97 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 98 void SplitAnalysis::analyzeUses() { 99 assert(UseSlots.empty() && "Call clear first"); 100 101 // First get all the defs from the interval values. This provides the correct 102 // slots for early clobbers. 103 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 104 E = CurLI->vni_end(); I != E; ++I) 105 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 106 UseSlots.push_back((*I)->def); 107 108 // Get use slots form the use-def chain. 109 const MachineRegisterInfo &MRI = MF.getRegInfo(); 110 for (MachineRegisterInfo::use_nodbg_iterator 111 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 112 ++I) 113 if (!I.getOperand().isUndef()) 114 UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex()); 115 116 array_pod_sort(UseSlots.begin(), UseSlots.end()); 117 118 // Remove duplicates, keeping the smaller slot for each instruction. 119 // That is what we want for early clobbers. 120 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 121 SlotIndex::isSameInstr), 122 UseSlots.end()); 123 124 // Compute per-live block info. 125 if (!calcLiveBlockInfo()) { 126 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 127 // I am looking at you, RegisterCoalescer! 128 DidRepairRange = true; 129 ++NumRepairs; 130 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 131 const_cast<LiveIntervals&>(LIS) 132 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 133 UseBlocks.clear(); 134 ThroughBlocks.clear(); 135 bool fixed = calcLiveBlockInfo(); 136 (void)fixed; 137 assert(fixed && "Couldn't fix broken live interval"); 138 } 139 140 DEBUG(dbgs() << "Analyze counted " 141 << UseSlots.size() << " instrs in " 142 << UseBlocks.size() << " blocks, through " 143 << NumThroughBlocks << " blocks.\n"); 144 } 145 146 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 147 /// where CurLI is live. 148 bool SplitAnalysis::calcLiveBlockInfo() { 149 ThroughBlocks.resize(MF.getNumBlockIDs()); 150 NumThroughBlocks = NumGapBlocks = 0; 151 if (CurLI->empty()) 152 return true; 153 154 LiveInterval::const_iterator LVI = CurLI->begin(); 155 LiveInterval::const_iterator LVE = CurLI->end(); 156 157 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 158 UseI = UseSlots.begin(); 159 UseE = UseSlots.end(); 160 161 // Loop over basic blocks where CurLI is live. 162 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 163 for (;;) { 164 BlockInfo BI; 165 BI.MBB = MFI; 166 SlotIndex Start, Stop; 167 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 168 169 // If the block contains no uses, the range must be live through. At one 170 // point, RegisterCoalescer could create dangling ranges that ended 171 // mid-block. 172 if (UseI == UseE || *UseI >= Stop) { 173 ++NumThroughBlocks; 174 ThroughBlocks.set(BI.MBB->getNumber()); 175 // The range shouldn't end mid-block if there are no uses. This shouldn't 176 // happen. 177 if (LVI->end < Stop) 178 return false; 179 } else { 180 // This block has uses. Find the first and last uses in the block. 181 BI.FirstInstr = *UseI; 182 assert(BI.FirstInstr >= Start); 183 do ++UseI; 184 while (UseI != UseE && *UseI < Stop); 185 BI.LastInstr = UseI[-1]; 186 assert(BI.LastInstr < Stop); 187 188 // LVI is the first live segment overlapping MBB. 189 BI.LiveIn = LVI->start <= Start; 190 191 // When not live in, the first use should be a def. 192 if (!BI.LiveIn) { 193 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 194 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 195 BI.FirstDef = BI.FirstInstr; 196 } 197 198 // Look for gaps in the live range. 199 BI.LiveOut = true; 200 while (LVI->end < Stop) { 201 SlotIndex LastStop = LVI->end; 202 if (++LVI == LVE || LVI->start >= Stop) { 203 BI.LiveOut = false; 204 BI.LastInstr = LastStop; 205 break; 206 } 207 208 if (LastStop < LVI->start) { 209 // There is a gap in the live range. Create duplicate entries for the 210 // live-in snippet and the live-out snippet. 211 ++NumGapBlocks; 212 213 // Push the Live-in part. 214 BI.LiveOut = false; 215 UseBlocks.push_back(BI); 216 UseBlocks.back().LastInstr = LastStop; 217 218 // Set up BI for the live-out part. 219 BI.LiveIn = false; 220 BI.LiveOut = true; 221 BI.FirstInstr = BI.FirstDef = LVI->start; 222 } 223 224 // A LiveRange that starts in the middle of the block must be a def. 225 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 226 if (!BI.FirstDef) 227 BI.FirstDef = LVI->start; 228 } 229 230 UseBlocks.push_back(BI); 231 232 // LVI is now at LVE or LVI->end >= Stop. 233 if (LVI == LVE) 234 break; 235 } 236 237 // Live segment ends exactly at Stop. Move to the next segment. 238 if (LVI->end == Stop && ++LVI == LVE) 239 break; 240 241 // Pick the next basic block. 242 if (LVI->start < Stop) 243 ++MFI; 244 else 245 MFI = LIS.getMBBFromIndex(LVI->start); 246 } 247 248 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 249 return true; 250 } 251 252 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 253 if (cli->empty()) 254 return 0; 255 LiveInterval *li = const_cast<LiveInterval*>(cli); 256 LiveInterval::iterator LVI = li->begin(); 257 LiveInterval::iterator LVE = li->end(); 258 unsigned Count = 0; 259 260 // Loop over basic blocks where li is live. 261 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 262 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 263 for (;;) { 264 ++Count; 265 LVI = li->advanceTo(LVI, Stop); 266 if (LVI == LVE) 267 return Count; 268 do { 269 ++MFI; 270 Stop = LIS.getMBBEndIdx(MFI); 271 } while (Stop <= LVI->start); 272 } 273 } 274 275 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 276 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 277 const LiveInterval &Orig = LIS.getInterval(OrigReg); 278 assert(!Orig.empty() && "Splitting empty interval?"); 279 LiveInterval::const_iterator I = Orig.find(Idx); 280 281 // Range containing Idx should begin at Idx. 282 if (I != Orig.end() && I->start <= Idx) 283 return I->start == Idx; 284 285 // Range does not contain Idx, previous must end at Idx. 286 return I != Orig.begin() && (--I)->end == Idx; 287 } 288 289 void SplitAnalysis::analyze(const LiveInterval *li) { 290 clear(); 291 CurLI = li; 292 analyzeUses(); 293 } 294 295 296 //===----------------------------------------------------------------------===// 297 // Split Editor 298 //===----------------------------------------------------------------------===// 299 300 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 301 SplitEditor::SplitEditor(SplitAnalysis &sa, 302 LiveIntervals &lis, 303 VirtRegMap &vrm, 304 MachineDominatorTree &mdt) 305 : SA(sa), LIS(lis), VRM(vrm), 306 MRI(vrm.getMachineFunction().getRegInfo()), 307 MDT(mdt), 308 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 309 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 310 Edit(0), 311 OpenIdx(0), 312 SpillMode(SM_Partition), 313 RegAssign(Allocator) 314 {} 315 316 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 317 Edit = &LRE; 318 SpillMode = SM; 319 OpenIdx = 0; 320 RegAssign.clear(); 321 Values.clear(); 322 323 // Reset the LiveRangeCalc instances needed for this spill mode. 324 LRCalc[0].reset(&VRM.getMachineFunction()); 325 if (SpillMode) 326 LRCalc[1].reset(&VRM.getMachineFunction()); 327 328 // We don't need an AliasAnalysis since we will only be performing 329 // cheap-as-a-copy remats anyway. 330 Edit->anyRematerializable(LIS, TII, 0); 331 } 332 333 void SplitEditor::dump() const { 334 if (RegAssign.empty()) { 335 dbgs() << " empty\n"; 336 return; 337 } 338 339 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 340 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 341 dbgs() << '\n'; 342 } 343 344 VNInfo *SplitEditor::defValue(unsigned RegIdx, 345 const VNInfo *ParentVNI, 346 SlotIndex Idx) { 347 assert(ParentVNI && "Mapping NULL value"); 348 assert(Idx.isValid() && "Invalid SlotIndex"); 349 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 350 LiveInterval *LI = Edit->get(RegIdx); 351 352 // Create a new value. 353 VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 354 355 // Use insert for lookup, so we can add missing values with a second lookup. 356 std::pair<ValueMap::iterator, bool> InsP = 357 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); 358 359 // This was the first time (RegIdx, ParentVNI) was mapped. 360 // Keep it as a simple def without any liveness. 361 if (InsP.second) 362 return VNI; 363 364 // If the previous value was a simple mapping, add liveness for it now. 365 if (VNInfo *OldVNI = InsP.first->second) { 366 SlotIndex Def = OldVNI->def; 367 LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); 368 // No longer a simple mapping. 369 InsP.first->second = 0; 370 } 371 372 // This is a complex mapping, add liveness for VNI 373 SlotIndex Def = VNI->def; 374 LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 375 376 return VNI; 377 } 378 379 void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { 380 assert(ParentVNI && "Mapping NULL value"); 381 VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; 382 383 // ParentVNI was either unmapped or already complex mapped. Either way. 384 if (!VNI) 385 return; 386 387 // This was previously a single mapping. Make sure the old def is represented 388 // by a trivial live range. 389 SlotIndex Def = VNI->def; 390 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); 391 VNI = 0; 392 } 393 394 // extendRange - Extend the live range to reach Idx. 395 // Potentially create phi-def values. 396 void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { 397 getLRCalc(RegIdx).extend(Edit->get(RegIdx), Idx.getNextSlot(), 398 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); 399 } 400 401 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 402 VNInfo *ParentVNI, 403 SlotIndex UseIdx, 404 MachineBasicBlock &MBB, 405 MachineBasicBlock::iterator I) { 406 MachineInstr *CopyMI = 0; 407 SlotIndex Def; 408 LiveInterval *LI = Edit->get(RegIdx); 409 410 // We may be trying to avoid interference that ends at a deleted instruction, 411 // so always begin RegIdx 0 early and all others late. 412 bool Late = RegIdx != 0; 413 414 // Attempt cheap-as-a-copy rematerialization. 415 LiveRangeEdit::Remat RM(ParentVNI); 416 if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { 417 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late); 418 ++NumRemats; 419 } else { 420 // Can't remat, just insert a copy from parent. 421 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 422 .addReg(Edit->getReg()); 423 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 424 .getDefIndex(); 425 ++NumCopies; 426 } 427 428 // Define the value in Reg. 429 VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); 430 VNI->setCopy(CopyMI); 431 return VNI; 432 } 433 434 /// Create a new virtual register and live interval. 435 unsigned SplitEditor::openIntv() { 436 // Create the complement as index 0. 437 if (Edit->empty()) 438 Edit->create(LIS, VRM); 439 440 // Create the open interval. 441 OpenIdx = Edit->size(); 442 Edit->create(LIS, VRM); 443 return OpenIdx; 444 } 445 446 void SplitEditor::selectIntv(unsigned Idx) { 447 assert(Idx != 0 && "Cannot select the complement interval"); 448 assert(Idx < Edit->size() && "Can only select previously opened interval"); 449 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 450 OpenIdx = Idx; 451 } 452 453 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 454 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 455 DEBUG(dbgs() << " enterIntvBefore " << Idx); 456 Idx = Idx.getBaseIndex(); 457 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 458 if (!ParentVNI) { 459 DEBUG(dbgs() << ": not live\n"); 460 return Idx; 461 } 462 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 463 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 464 assert(MI && "enterIntvBefore called with invalid index"); 465 466 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 467 return VNI->def; 468 } 469 470 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 471 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 472 DEBUG(dbgs() << " enterIntvAfter " << Idx); 473 Idx = Idx.getBoundaryIndex(); 474 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 475 if (!ParentVNI) { 476 DEBUG(dbgs() << ": not live\n"); 477 return Idx; 478 } 479 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 480 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 481 assert(MI && "enterIntvAfter called with invalid index"); 482 483 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 484 llvm::next(MachineBasicBlock::iterator(MI))); 485 return VNI->def; 486 } 487 488 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 489 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 490 SlotIndex End = LIS.getMBBEndIdx(&MBB); 491 SlotIndex Last = End.getPrevSlot(); 492 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 493 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 494 if (!ParentVNI) { 495 DEBUG(dbgs() << ": not live\n"); 496 return End; 497 } 498 DEBUG(dbgs() << ": valno " << ParentVNI->id); 499 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 500 LIS.getLastSplitPoint(Edit->getParent(), &MBB)); 501 RegAssign.insert(VNI->def, End, OpenIdx); 502 DEBUG(dump()); 503 return VNI->def; 504 } 505 506 /// useIntv - indicate that all instructions in MBB should use OpenLI. 507 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 508 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 509 } 510 511 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 512 assert(OpenIdx && "openIntv not called before useIntv"); 513 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 514 RegAssign.insert(Start, End, OpenIdx); 515 DEBUG(dump()); 516 } 517 518 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 519 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 520 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 521 522 // The interval must be live beyond the instruction at Idx. 523 Idx = Idx.getBoundaryIndex(); 524 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 525 if (!ParentVNI) { 526 DEBUG(dbgs() << ": not live\n"); 527 return Idx.getNextSlot(); 528 } 529 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 530 531 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 532 assert(MI && "No instruction at index"); 533 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), 534 llvm::next(MachineBasicBlock::iterator(MI))); 535 return VNI->def; 536 } 537 538 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 539 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 540 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 541 542 // The interval must be live into the instruction at Idx. 543 Idx = Idx.getBaseIndex(); 544 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 545 if (!ParentVNI) { 546 DEBUG(dbgs() << ": not live\n"); 547 return Idx.getNextSlot(); 548 } 549 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 550 551 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 552 assert(MI && "No instruction at index"); 553 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 554 return VNI->def; 555 } 556 557 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 558 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 559 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 560 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 561 562 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 563 if (!ParentVNI) { 564 DEBUG(dbgs() << ": not live\n"); 565 return Start; 566 } 567 568 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 569 MBB.SkipPHIsAndLabels(MBB.begin())); 570 RegAssign.insert(Start, VNI->def, OpenIdx); 571 DEBUG(dump()); 572 return VNI->def; 573 } 574 575 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 576 assert(OpenIdx && "openIntv not called before overlapIntv"); 577 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 578 assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && 579 "Parent changes value in extended range"); 580 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 581 "Range cannot span basic blocks"); 582 583 // The complement interval will be extended as needed by extendRange(). 584 if (ParentVNI) 585 markComplexMapped(0, ParentVNI); 586 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 587 RegAssign.insert(Start, End, OpenIdx); 588 DEBUG(dump()); 589 } 590 591 /// transferValues - Transfer all possible values to the new live ranges. 592 /// Values that were rematerialized are left alone, they need extendRange(). 593 bool SplitEditor::transferValues() { 594 bool Skipped = false; 595 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 596 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 597 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 598 DEBUG(dbgs() << " blit " << *ParentI << ':'); 599 VNInfo *ParentVNI = ParentI->valno; 600 // RegAssign has holes where RegIdx 0 should be used. 601 SlotIndex Start = ParentI->start; 602 AssignI.advanceTo(Start); 603 do { 604 unsigned RegIdx; 605 SlotIndex End = ParentI->end; 606 if (!AssignI.valid()) { 607 RegIdx = 0; 608 } else if (AssignI.start() <= Start) { 609 RegIdx = AssignI.value(); 610 if (AssignI.stop() < End) { 611 End = AssignI.stop(); 612 ++AssignI; 613 } 614 } else { 615 RegIdx = 0; 616 End = std::min(End, AssignI.start()); 617 } 618 619 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 620 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 621 LiveInterval *LI = Edit->get(RegIdx); 622 623 // Check for a simply defined value that can be blitted directly. 624 if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { 625 DEBUG(dbgs() << ':' << VNI->id); 626 LI->addRange(LiveRange(Start, End, VNI)); 627 Start = End; 628 continue; 629 } 630 631 // Skip rematerialized values, we need to use extendRange() and 632 // extendPHIKillRanges() to completely recompute the live ranges. 633 if (Edit->didRematerialize(ParentVNI)) { 634 DEBUG(dbgs() << "(remat)"); 635 Skipped = true; 636 Start = End; 637 continue; 638 } 639 640 LiveRangeCalc &LRC = getLRCalc(RegIdx); 641 642 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 643 // so the live range is accurate. Add live-in blocks in [Start;End) to the 644 // LiveInBlocks. 645 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 646 SlotIndex BlockStart, BlockEnd; 647 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 648 649 // The first block may be live-in, or it may have its own def. 650 if (Start != BlockStart) { 651 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 652 assert(VNI && "Missing def for complex mapped value"); 653 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 654 // MBB has its own def. Is it also live-out? 655 if (BlockEnd <= End) 656 LRC.setLiveOutValue(MBB, VNI); 657 658 // Skip to the next block for live-in. 659 ++MBB; 660 BlockStart = BlockEnd; 661 } 662 663 // Handle the live-in blocks covered by [Start;End). 664 assert(Start <= BlockStart && "Expected live-in block"); 665 while (BlockStart < End) { 666 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 667 BlockEnd = LIS.getMBBEndIdx(MBB); 668 if (BlockStart == ParentVNI->def) { 669 // This block has the def of a parent PHI, so it isn't live-in. 670 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 671 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 672 assert(VNI && "Missing def for complex mapped parent PHI"); 673 if (End >= BlockEnd) 674 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 675 } else { 676 // This block needs a live-in value. The last block covered may not 677 // be live-out. 678 if (End < BlockEnd) 679 LRC.addLiveInBlock(LI, MDT[MBB], End); 680 else { 681 // Live-through, and we don't know the value. 682 LRC.addLiveInBlock(LI, MDT[MBB]); 683 LRC.setLiveOutValue(MBB, 0); 684 } 685 } 686 BlockStart = BlockEnd; 687 ++MBB; 688 } 689 Start = End; 690 } while (Start != ParentI->end); 691 DEBUG(dbgs() << '\n'); 692 } 693 694 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT, 695 &LIS.getVNInfoAllocator()); 696 if (SpillMode) 697 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT, 698 &LIS.getVNInfoAllocator()); 699 700 return Skipped; 701 } 702 703 void SplitEditor::extendPHIKillRanges() { 704 // Extend live ranges to be live-out for successor PHI values. 705 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 706 E = Edit->getParent().vni_end(); I != E; ++I) { 707 const VNInfo *PHIVNI = *I; 708 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 709 continue; 710 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 711 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 712 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 713 PE = MBB->pred_end(); PI != PE; ++PI) { 714 SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); 715 // The predecessor may not have a live-out value. That is OK, like an 716 // undef PHI operand. 717 if (Edit->getParent().liveAt(End)) { 718 assert(RegAssign.lookup(End) == RegIdx && 719 "Different register assignment in phi predecessor"); 720 extendRange(RegIdx, End); 721 } 722 } 723 } 724 } 725 726 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 727 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 728 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 729 RE = MRI.reg_end(); RI != RE;) { 730 MachineOperand &MO = RI.getOperand(); 731 MachineInstr *MI = MO.getParent(); 732 ++RI; 733 // LiveDebugVariables should have handled all DBG_VALUE instructions. 734 if (MI->isDebugValue()) { 735 DEBUG(dbgs() << "Zapping " << *MI); 736 MO.setReg(0); 737 continue; 738 } 739 740 // <undef> operands don't really read the register, so it doesn't matter 741 // which register we choose. When the use operand is tied to a def, we must 742 // use the same register as the def, so just do that always. 743 SlotIndex Idx = LIS.getInstructionIndex(MI); 744 if (MO.isDef() || MO.isUndef()) 745 Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); 746 747 // Rewrite to the mapped register at Idx. 748 unsigned RegIdx = RegAssign.lookup(Idx); 749 MO.setReg(Edit->get(RegIdx)->reg); 750 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 751 << Idx << ':' << RegIdx << '\t' << *MI); 752 753 // Extend liveness to Idx if the instruction reads reg. 754 if (!ExtendRanges || MO.isUndef()) 755 continue; 756 757 // Skip instructions that don't read Reg. 758 if (MO.isDef()) { 759 if (!MO.getSubReg() && !MO.isEarlyClobber()) 760 continue; 761 // We may wan't to extend a live range for a partial redef, or for a use 762 // tied to an early clobber. 763 Idx = Idx.getPrevSlot(); 764 if (!Edit->getParent().liveAt(Idx)) 765 continue; 766 } else 767 Idx = Idx.getUseIndex(); 768 769 extendRange(RegIdx, Idx); 770 } 771 } 772 773 void SplitEditor::deleteRematVictims() { 774 SmallVector<MachineInstr*, 8> Dead; 775 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 776 LiveInterval *LI = *I; 777 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 778 LII != LIE; ++LII) { 779 // Dead defs end at the store slot. 780 if (LII->end != LII->valno->def.getNextSlot()) 781 continue; 782 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 783 assert(MI && "Missing instruction for dead def"); 784 MI->addRegisterDead(LI->reg, &TRI); 785 786 if (!MI->allDefsAreDead()) 787 continue; 788 789 DEBUG(dbgs() << "All defs dead: " << *MI); 790 Dead.push_back(MI); 791 } 792 } 793 794 if (Dead.empty()) 795 return; 796 797 Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); 798 } 799 800 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 801 ++NumFinished; 802 803 // At this point, the live intervals in Edit contain VNInfos corresponding to 804 // the inserted copies. 805 806 // Add the original defs from the parent interval. 807 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 808 E = Edit->getParent().vni_end(); I != E; ++I) { 809 const VNInfo *ParentVNI = *I; 810 if (ParentVNI->isUnused()) 811 continue; 812 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 813 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 814 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 815 VNI->setCopy(ParentVNI->getCopy()); 816 817 // Mark rematted values as complex everywhere to force liveness computation. 818 // The new live ranges may be truncated. 819 if (Edit->didRematerialize(ParentVNI)) 820 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 821 markComplexMapped(i, ParentVNI); 822 } 823 824 // Transfer the simply mapped values, check if any are skipped. 825 bool Skipped = transferValues(); 826 if (Skipped) 827 extendPHIKillRanges(); 828 else 829 ++NumSimple; 830 831 // Rewrite virtual registers, possibly extending ranges. 832 rewriteAssigned(Skipped); 833 834 // Delete defs that were rematted everywhere. 835 if (Skipped) 836 deleteRematVictims(); 837 838 // Get rid of unused values and set phi-kill flags. 839 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 840 (*I)->RenumberValues(LIS); 841 842 // Provide a reverse mapping from original indices to Edit ranges. 843 if (LRMap) { 844 LRMap->clear(); 845 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 846 LRMap->push_back(i); 847 } 848 849 // Now check if any registers were separated into multiple components. 850 ConnectedVNInfoEqClasses ConEQ(LIS); 851 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 852 // Don't use iterators, they are invalidated by create() below. 853 LiveInterval *li = Edit->get(i); 854 unsigned NumComp = ConEQ.Classify(li); 855 if (NumComp <= 1) 856 continue; 857 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 858 SmallVector<LiveInterval*, 8> dups; 859 dups.push_back(li); 860 for (unsigned j = 1; j != NumComp; ++j) 861 dups.push_back(&Edit->create(LIS, VRM)); 862 ConEQ.Distribute(&dups[0], MRI); 863 // The new intervals all map back to i. 864 if (LRMap) 865 LRMap->resize(Edit->size(), i); 866 } 867 868 // Calculate spill weight and allocation hints for new intervals. 869 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); 870 871 assert(!LRMap || LRMap->size() == Edit->size()); 872 } 873 874 875 //===----------------------------------------------------------------------===// 876 // Single Block Splitting 877 //===----------------------------------------------------------------------===// 878 879 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 880 bool SingleInstrs) const { 881 // Always split for multiple instructions. 882 if (!BI.isOneInstr()) 883 return true; 884 // Don't split for single instructions unless explicitly requested. 885 if (!SingleInstrs) 886 return false; 887 // Splitting a live-through range always makes progress. 888 if (BI.LiveIn && BI.LiveOut) 889 return true; 890 // No point in isolating a copy. It has no register class constraints. 891 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 892 return false; 893 // Finally, don't isolate an end point that was created by earlier splits. 894 return isOriginalEndpoint(BI.FirstInstr); 895 } 896 897 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 898 openIntv(); 899 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 900 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 901 LastSplitPoint)); 902 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 903 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 904 } else { 905 // The last use is after the last valid split point. 906 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 907 useIntv(SegStart, SegStop); 908 overlapIntv(SegStop, BI.LastInstr); 909 } 910 } 911 912 913 //===----------------------------------------------------------------------===// 914 // Global Live Range Splitting Support 915 //===----------------------------------------------------------------------===// 916 917 // These methods support a method of global live range splitting that uses a 918 // global algorithm to decide intervals for CFG edges. They will insert split 919 // points and color intervals in basic blocks while avoiding interference. 920 // 921 // Note that splitSingleBlock is also useful for blocks where both CFG edges 922 // are on the stack. 923 924 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 925 unsigned IntvIn, SlotIndex LeaveBefore, 926 unsigned IntvOut, SlotIndex EnterAfter){ 927 SlotIndex Start, Stop; 928 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 929 930 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 931 << ") intf " << LeaveBefore << '-' << EnterAfter 932 << ", live-through " << IntvIn << " -> " << IntvOut); 933 934 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 935 936 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 937 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 938 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 939 940 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 941 942 if (!IntvOut) { 943 DEBUG(dbgs() << ", spill on entry.\n"); 944 // 945 // <<<<<<<<< Possible LeaveBefore interference. 946 // |-----------| Live through. 947 // -____________ Spill on entry. 948 // 949 selectIntv(IntvIn); 950 SlotIndex Idx = leaveIntvAtTop(*MBB); 951 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 952 (void)Idx; 953 return; 954 } 955 956 if (!IntvIn) { 957 DEBUG(dbgs() << ", reload on exit.\n"); 958 // 959 // >>>>>>> Possible EnterAfter interference. 960 // |-----------| Live through. 961 // ___________-- Reload on exit. 962 // 963 selectIntv(IntvOut); 964 SlotIndex Idx = enterIntvAtEnd(*MBB); 965 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 966 (void)Idx; 967 return; 968 } 969 970 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 971 DEBUG(dbgs() << ", straight through.\n"); 972 // 973 // |-----------| Live through. 974 // ------------- Straight through, same intv, no interference. 975 // 976 selectIntv(IntvOut); 977 useIntv(Start, Stop); 978 return; 979 } 980 981 // We cannot legally insert splits after LSP. 982 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 983 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 984 985 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 986 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 987 DEBUG(dbgs() << ", switch avoiding interference.\n"); 988 // 989 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 990 // |-----------| Live through. 991 // ------======= Switch intervals between interference. 992 // 993 selectIntv(IntvOut); 994 SlotIndex Idx; 995 if (LeaveBefore && LeaveBefore < LSP) { 996 Idx = enterIntvBefore(LeaveBefore); 997 useIntv(Idx, Stop); 998 } else { 999 Idx = enterIntvAtEnd(*MBB); 1000 } 1001 selectIntv(IntvIn); 1002 useIntv(Start, Idx); 1003 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1004 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1005 return; 1006 } 1007 1008 DEBUG(dbgs() << ", create local intv for interference.\n"); 1009 // 1010 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1011 // |-----------| Live through. 1012 // ==---------== Switch intervals before/after interference. 1013 // 1014 assert(LeaveBefore <= EnterAfter && "Missed case"); 1015 1016 selectIntv(IntvOut); 1017 SlotIndex Idx = enterIntvAfter(EnterAfter); 1018 useIntv(Idx, Stop); 1019 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1020 1021 selectIntv(IntvIn); 1022 Idx = leaveIntvBefore(LeaveBefore); 1023 useIntv(Start, Idx); 1024 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1025 } 1026 1027 1028 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1029 unsigned IntvIn, SlotIndex LeaveBefore) { 1030 SlotIndex Start, Stop; 1031 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1032 1033 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1034 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1035 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1036 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1037 1038 assert(IntvIn && "Must have register in"); 1039 assert(BI.LiveIn && "Must be live-in"); 1040 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1041 1042 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1043 DEBUG(dbgs() << " before interference.\n"); 1044 // 1045 // <<< Interference after kill. 1046 // |---o---x | Killed in block. 1047 // ========= Use IntvIn everywhere. 1048 // 1049 selectIntv(IntvIn); 1050 useIntv(Start, BI.LastInstr); 1051 return; 1052 } 1053 1054 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1055 1056 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1057 // 1058 // <<< Possible interference after last use. 1059 // |---o---o---| Live-out on stack. 1060 // =========____ Leave IntvIn after last use. 1061 // 1062 // < Interference after last use. 1063 // |---o---o--o| Live-out on stack, late last use. 1064 // ============ Copy to stack after LSP, overlap IntvIn. 1065 // \_____ Stack interval is live-out. 1066 // 1067 if (BI.LastInstr < LSP) { 1068 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1069 selectIntv(IntvIn); 1070 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1071 useIntv(Start, Idx); 1072 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1073 } else { 1074 DEBUG(dbgs() << ", spill before last split point.\n"); 1075 selectIntv(IntvIn); 1076 SlotIndex Idx = leaveIntvBefore(LSP); 1077 overlapIntv(Idx, BI.LastInstr); 1078 useIntv(Start, Idx); 1079 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1080 } 1081 return; 1082 } 1083 1084 // The interference is overlapping somewhere we wanted to use IntvIn. That 1085 // means we need to create a local interval that can be allocated a 1086 // different register. 1087 unsigned LocalIntv = openIntv(); 1088 (void)LocalIntv; 1089 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1090 1091 if (!BI.LiveOut || BI.LastInstr < LSP) { 1092 // 1093 // <<<<<<< Interference overlapping uses. 1094 // |---o---o---| Live-out on stack. 1095 // =====----____ Leave IntvIn before interference, then spill. 1096 // 1097 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1098 SlotIndex From = enterIntvBefore(LeaveBefore); 1099 useIntv(From, To); 1100 selectIntv(IntvIn); 1101 useIntv(Start, From); 1102 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1103 return; 1104 } 1105 1106 // <<<<<<< Interference overlapping uses. 1107 // |---o---o--o| Live-out on stack, late last use. 1108 // =====------- Copy to stack before LSP, overlap LocalIntv. 1109 // \_____ Stack interval is live-out. 1110 // 1111 SlotIndex To = leaveIntvBefore(LSP); 1112 overlapIntv(To, BI.LastInstr); 1113 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1114 useIntv(From, To); 1115 selectIntv(IntvIn); 1116 useIntv(Start, From); 1117 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1118 } 1119 1120 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1121 unsigned IntvOut, SlotIndex EnterAfter) { 1122 SlotIndex Start, Stop; 1123 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1124 1125 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1126 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1127 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1128 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1129 1130 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1131 1132 assert(IntvOut && "Must have register out"); 1133 assert(BI.LiveOut && "Must be live-out"); 1134 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1135 1136 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1137 DEBUG(dbgs() << " after interference.\n"); 1138 // 1139 // >>>> Interference before def. 1140 // | o---o---| Defined in block. 1141 // ========= Use IntvOut everywhere. 1142 // 1143 selectIntv(IntvOut); 1144 useIntv(BI.FirstInstr, Stop); 1145 return; 1146 } 1147 1148 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1149 DEBUG(dbgs() << ", reload after interference.\n"); 1150 // 1151 // >>>> Interference before def. 1152 // |---o---o---| Live-through, stack-in. 1153 // ____========= Enter IntvOut before first use. 1154 // 1155 selectIntv(IntvOut); 1156 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1157 useIntv(Idx, Stop); 1158 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1159 return; 1160 } 1161 1162 // The interference is overlapping somewhere we wanted to use IntvOut. That 1163 // means we need to create a local interval that can be allocated a 1164 // different register. 1165 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1166 // 1167 // >>>>>>> Interference overlapping uses. 1168 // |---o---o---| Live-through, stack-in. 1169 // ____---====== Create local interval for interference range. 1170 // 1171 selectIntv(IntvOut); 1172 SlotIndex Idx = enterIntvAfter(EnterAfter); 1173 useIntv(Idx, Stop); 1174 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1175 1176 openIntv(); 1177 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1178 useIntv(From, Idx); 1179 } 1180