1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "splitter" 16 #include "SplitKit.h" 17 #include "VirtRegMap.h" 18 #include "llvm/CodeGen/CalcSpillWeights.h" 19 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 static cl::opt<bool> 32 AllowSplit("spiller-splits-edges", 33 cl::desc("Allow critical edge splitting during spilling")); 34 35 //===----------------------------------------------------------------------===// 36 // Split Analysis 37 //===----------------------------------------------------------------------===// 38 39 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 40 const LiveIntervals &lis, 41 const MachineLoopInfo &mli) 42 : mf_(mf), 43 lis_(lis), 44 loops_(mli), 45 tii_(*mf.getTarget().getInstrInfo()), 46 curli_(0) {} 47 48 void SplitAnalysis::clear() { 49 usingInstrs_.clear(); 50 usingBlocks_.clear(); 51 usingLoops_.clear(); 52 curli_ = 0; 53 } 54 55 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 56 MachineBasicBlock *T, *F; 57 SmallVector<MachineOperand, 4> Cond; 58 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 59 } 60 61 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 62 void SplitAnalysis::analyzeUses() { 63 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 64 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 65 MachineInstr *MI = I.skipInstruction();) { 66 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 67 continue; 68 MachineBasicBlock *MBB = MI->getParent(); 69 if (usingBlocks_[MBB]++) 70 continue; 71 if (MachineLoop *Loop = loops_.getLoopFor(MBB)) 72 usingLoops_[Loop]++; 73 } 74 DEBUG(dbgs() << " counted " 75 << usingInstrs_.size() << " instrs, " 76 << usingBlocks_.size() << " blocks, " 77 << usingLoops_.size() << " loops.\n"); 78 } 79 80 /// removeUse - Update statistics by noting that MI no longer uses curli. 81 void SplitAnalysis::removeUse(const MachineInstr *MI) { 82 if (!usingInstrs_.erase(MI)) 83 return; 84 85 // Decrement MBB count. 86 const MachineBasicBlock *MBB = MI->getParent(); 87 BlockCountMap::iterator bi = usingBlocks_.find(MBB); 88 assert(bi != usingBlocks_.end() && "MBB missing"); 89 assert(bi->second && "0 count in map"); 90 if (--bi->second) 91 return; 92 // No more uses in MBB. 93 usingBlocks_.erase(bi); 94 95 // Decrement loop count. 96 MachineLoop *Loop = loops_.getLoopFor(MBB); 97 if (!Loop) 98 return; 99 LoopCountMap::iterator li = usingLoops_.find(Loop); 100 assert(li != usingLoops_.end() && "Loop missing"); 101 assert(li->second && "0 count in map"); 102 if (--li->second) 103 return; 104 // No more blocks in Loop. 105 usingLoops_.erase(li); 106 } 107 108 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 109 // predecessor blocks, and exit blocks. 110 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 111 Blocks.clear(); 112 113 // Blocks in the loop. 114 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 115 116 // Predecessor blocks. 117 const MachineBasicBlock *Header = Loop->getHeader(); 118 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 119 E = Header->pred_end(); I != E; ++I) 120 if (!Blocks.Loop.count(*I)) 121 Blocks.Preds.insert(*I); 122 123 // Exit blocks. 124 for (MachineLoop::block_iterator I = Loop->block_begin(), 125 E = Loop->block_end(); I != E; ++I) { 126 const MachineBasicBlock *MBB = *I; 127 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 128 SE = MBB->succ_end(); SI != SE; ++SI) 129 if (!Blocks.Loop.count(*SI)) 130 Blocks.Exits.insert(*SI); 131 } 132 } 133 134 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 135 /// and around the Loop. 136 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 137 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 138 LoopPeripheralUse use = ContainedInLoop; 139 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 140 I != E; ++I) { 141 const MachineBasicBlock *MBB = I->first; 142 // Is this a peripheral block? 143 if (use < MultiPeripheral && 144 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 145 if (I->second > 1) use = MultiPeripheral; 146 else use = SinglePeripheral; 147 continue; 148 } 149 // Is it a loop block? 150 if (Blocks.Loop.count(MBB)) 151 continue; 152 // It must be an unrelated block. 153 return OutsideLoop; 154 } 155 return use; 156 } 157 158 /// getCriticalExits - It may be necessary to partially break critical edges 159 /// leaving the loop if an exit block has phi uses of curli. Collect the exit 160 /// blocks that need special treatment into CriticalExits. 161 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 162 BlockPtrSet &CriticalExits) { 163 CriticalExits.clear(); 164 165 // A critical exit block contains a phi def of curli, and has a predecessor 166 // that is not in the loop nor a loop predecessor. 167 // For such an exit block, the edges carrying the new variable must be moved 168 // to a new pre-exit block. 169 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 170 I != E; ++I) { 171 const MachineBasicBlock *Succ = *I; 172 SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ); 173 VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx); 174 // This exit may not have curli live in at all. No need to split. 175 if (!SuccVNI) 176 continue; 177 // If this is not a PHI def, it is either using a value from before the 178 // loop, or a value defined inside the loop. Both are safe. 179 if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx) 180 continue; 181 // This exit block does have a PHI. Does it also have a predecessor that is 182 // not a loop block or loop predecessor? 183 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 184 PE = Succ->pred_end(); PI != PE; ++PI) { 185 const MachineBasicBlock *Pred = *PI; 186 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 187 continue; 188 // This is a critical exit block, and we need to split the exit edge. 189 CriticalExits.insert(Succ); 190 break; 191 } 192 } 193 } 194 195 /// canSplitCriticalExits - Return true if it is possible to insert new exit 196 /// blocks before the blocks in CriticalExits. 197 bool 198 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 199 BlockPtrSet &CriticalExits) { 200 // If we don't allow critical edge splitting, require no critical exits. 201 if (!AllowSplit) 202 return CriticalExits.empty(); 203 204 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 205 I != E; ++I) { 206 const MachineBasicBlock *Succ = *I; 207 // We want to insert a new pre-exit MBB before Succ, and change all the 208 // in-loop blocks to branch to the pre-exit instead of Succ. 209 // Check that all the in-loop predecessors can be changed. 210 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 211 PE = Succ->pred_end(); PI != PE; ++PI) { 212 const MachineBasicBlock *Pred = *PI; 213 // The external predecessors won't be altered. 214 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 215 continue; 216 if (!canAnalyzeBranch(Pred)) 217 return false; 218 } 219 220 // If Succ's layout predecessor falls through, that too must be analyzable. 221 // We need to insert the pre-exit block in the gap. 222 MachineFunction::const_iterator MFI = Succ; 223 if (MFI == mf_.begin()) 224 continue; 225 if (!canAnalyzeBranch(--MFI)) 226 return false; 227 } 228 // No problems found. 229 return true; 230 } 231 232 void SplitAnalysis::analyze(const LiveInterval *li) { 233 clear(); 234 curli_ = li; 235 analyzeUses(); 236 } 237 238 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 239 assert(curli_ && "Call analyze() before getBestSplitLoop"); 240 if (usingLoops_.empty()) 241 return 0; 242 243 LoopPtrSet Loops, SecondLoops; 244 LoopBlocks Blocks; 245 BlockPtrSet CriticalExits; 246 247 // Find first-class and second class candidate loops. 248 // We prefer to split around loops where curli is used outside the periphery. 249 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 250 E = usingLoops_.end(); I != E; ++I) { 251 const MachineLoop *Loop = I->first; 252 getLoopBlocks(Loop, Blocks); 253 254 LoopPtrSet *LPS = 0; 255 switch(analyzeLoopPeripheralUse(Blocks)) { 256 case OutsideLoop: 257 LPS = &Loops; 258 break; 259 case MultiPeripheral: 260 LPS = &SecondLoops; 261 break; 262 case ContainedInLoop: 263 DEBUG(dbgs() << " contained in " << *Loop); 264 continue; 265 case SinglePeripheral: 266 DEBUG(dbgs() << " single peripheral use in " << *Loop); 267 continue; 268 } 269 // Will it be possible to split around this loop? 270 getCriticalExits(Blocks, CriticalExits); 271 DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from " 272 << *Loop); 273 if (!canSplitCriticalExits(Blocks, CriticalExits)) 274 continue; 275 // This is a possible split. 276 assert(LPS); 277 LPS->insert(Loop); 278 } 279 280 DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + " 281 << SecondLoops.size() << " candidate loops.\n"); 282 283 // If there are no first class loops available, look at second class loops. 284 if (Loops.empty()) 285 Loops = SecondLoops; 286 287 if (Loops.empty()) 288 return 0; 289 290 // Pick the earliest loop. 291 // FIXME: Are there other heuristics to consider? 292 const MachineLoop *Best = 0; 293 SlotIndex BestIdx; 294 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 295 ++I) { 296 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 297 if (!Best || Idx < BestIdx) 298 Best = *I, BestIdx = Idx; 299 } 300 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 301 return Best; 302 } 303 304 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 305 /// may be an advantage to split curli for the duration of the block. 306 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 307 // If curli is local to one block, there is no point to splitting it. 308 if (usingBlocks_.size() <= 1) 309 return false; 310 // Add blocks with multiple uses. 311 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 312 I != E; ++I) 313 switch (I->second) { 314 case 0: 315 case 1: 316 continue; 317 case 2: { 318 // It doesn't pay to split a 2-instr block if it redefines curli. 319 VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first)); 320 VNInfo *VN2 = 321 curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex()); 322 // live-in and live-out with a different value. 323 if (VN1 && VN2 && VN1 != VN2) 324 continue; 325 } // Fall through. 326 default: 327 Blocks.insert(I->first); 328 } 329 return !Blocks.empty(); 330 } 331 332 //===----------------------------------------------------------------------===// 333 // LiveIntervalMap 334 //===----------------------------------------------------------------------===// 335 336 // Work around the fact that the std::pair constructors are broken for pointer 337 // pairs in some implementations. makeVV(x, 0) works. 338 static inline std::pair<const VNInfo*, VNInfo*> 339 makeVV(const VNInfo *a, VNInfo *b) { 340 return std::make_pair(a, b); 341 } 342 343 void LiveIntervalMap::reset(LiveInterval *li) { 344 li_ = li; 345 valueMap_.clear(); 346 } 347 348 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 349 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 350 return i != valueMap_.end() && i->second == 0; 351 } 352 353 // defValue - Introduce a li_ def for ParentVNI that could be later than 354 // ParentVNI->def. 355 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 356 assert(li_ && "call reset first"); 357 assert(ParentVNI && "Mapping NULL value"); 358 assert(Idx.isValid() && "Invalid SlotIndex"); 359 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 360 361 // Create a new value. 362 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 363 364 // Use insert for lookup, so we can add missing values with a second lookup. 365 std::pair<ValueMap::iterator,bool> InsP = 366 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 367 368 // This is now a complex def. Mark with a NULL in valueMap. 369 if (!InsP.second) 370 InsP.first->second = 0; 371 372 return VNI; 373 } 374 375 376 // mapValue - Find the mapped value for ParentVNI at Idx. 377 // Potentially create phi-def values. 378 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 379 bool *simple) { 380 assert(li_ && "call reset first"); 381 assert(ParentVNI && "Mapping NULL value"); 382 assert(Idx.isValid() && "Invalid SlotIndex"); 383 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 384 385 // Use insert for lookup, so we can add missing values with a second lookup. 386 std::pair<ValueMap::iterator,bool> InsP = 387 valueMap_.insert(makeVV(ParentVNI, 0)); 388 389 // This was an unknown value. Create a simple mapping. 390 if (InsP.second) { 391 if (simple) *simple = true; 392 return InsP.first->second = li_->createValueCopy(ParentVNI, 393 lis_.getVNInfoAllocator()); 394 } 395 396 // This was a simple mapped value. 397 if (InsP.first->second) { 398 if (simple) *simple = true; 399 return InsP.first->second; 400 } 401 402 // This is a complex mapped value. There may be multiple defs, and we may need 403 // to create phi-defs. 404 if (simple) *simple = false; 405 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 406 assert(IdxMBB && "No MBB at Idx"); 407 408 // Is there a def in the same MBB we can extend? 409 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 410 return VNI; 411 412 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 413 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 414 // Perform a depth-first search for predecessor blocks where we know the 415 // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 416 417 // Track MBBs where we have created or learned the dominating value. 418 // This may change during the DFS as we create new phi-defs. 419 typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap; 420 MBBValueMap DomValue; 421 typedef SplitAnalysis::BlockPtrSet BlockPtrSet; 422 BlockPtrSet Visited; 423 424 // Iterate over IdxMBB predecessors in a depth-first order. 425 // Skip begin() since that is always IdxMBB. 426 for (idf_ext_iterator<MachineBasicBlock*, BlockPtrSet> 427 IDFI = llvm::next(idf_ext_begin(IdxMBB, Visited)), 428 IDFE = idf_ext_end(IdxMBB, Visited); IDFI != IDFE;) { 429 MachineBasicBlock *MBB = *IDFI; 430 SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot(); 431 432 // We are operating on the restricted CFG where ParentVNI is live. 433 if (parentli_.getVNInfoAt(End) != ParentVNI) { 434 IDFI.skipChildren(); 435 continue; 436 } 437 438 // Do we have a dominating value in this block? 439 VNInfo *VNI = extendTo(MBB, End); 440 if (!VNI) { 441 ++IDFI; 442 continue; 443 } 444 445 // Yes, VNI dominates MBB. Make sure we visit MBB again from other paths. 446 Visited.erase(MBB); 447 448 // Track the path back to IdxMBB, creating phi-defs 449 // as needed along the way. 450 for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) { 451 // Start from MBB's immediate successor. End at IdxMBB. 452 MachineBasicBlock *Succ = IDFI.getPath(PI-1); 453 std::pair<MBBValueMap::iterator, bool> InsP = 454 DomValue.insert(MBBValueMap::value_type(Succ, VNI)); 455 456 // This is the first time we backtrack to Succ. 457 if (InsP.second) 458 continue; 459 460 // We reached Succ again with the same VNI. Nothing is going to change. 461 VNInfo *OVNI = InsP.first->second; 462 if (OVNI == VNI) 463 break; 464 465 // Succ already has a phi-def. No need to continue. 466 SlotIndex Start = lis_.getMBBStartIdx(Succ); 467 if (OVNI->def == Start) 468 break; 469 470 // We have a collision between the old and new VNI at Succ. That means 471 // neither dominates and we need a new phi-def. 472 VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 473 VNI->setIsPHIDef(true); 474 InsP.first->second = VNI; 475 476 // Replace OVNI with VNI in the remaining path. 477 for (; PI > 1 ; --PI) { 478 MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2)); 479 if (I == DomValue.end() || I->second != OVNI) 480 break; 481 I->second = VNI; 482 } 483 } 484 485 // No need to search the children, we found a dominating value. 486 IDFI.skipChildren(); 487 } 488 489 // The search should at least find a dominating value for IdxMBB. 490 assert(!DomValue.empty() && "Couldn't find a reaching definition"); 491 492 // Since we went through the trouble of a full DFS visiting all reaching defs, 493 // the values in DomValue are now accurate. No more phi-defs are needed for 494 // these blocks, so we can color the live ranges. 495 // This makes the next mapValue call much faster. 496 VNInfo *IdxVNI = 0; 497 for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E; 498 ++I) { 499 MachineBasicBlock *MBB = I->first; 500 VNInfo *VNI = I->second; 501 SlotIndex Start = lis_.getMBBStartIdx(MBB); 502 if (MBB == IdxMBB) { 503 // Don't add full liveness to IdxMBB, stop at Idx. 504 if (Start != Idx) 505 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 506 // The caller had better add some liveness to IdxVNI, or it leaks. 507 IdxVNI = VNI; 508 } else 509 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 510 } 511 512 assert(IdxVNI && "Didn't find value for Idx"); 513 return IdxVNI; 514 } 515 516 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 517 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 518 // Return the found VNInfo, or NULL. 519 VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) { 520 assert(li_ && "call reset first"); 521 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 522 if (I == li_->begin()) 523 return 0; 524 --I; 525 if (I->end <= lis_.getMBBStartIdx(MBB)) 526 return 0; 527 if (I->end <= Idx) 528 I->end = Idx.getNextSlot(); 529 return I->valno; 530 } 531 532 // addSimpleRange - Add a simple range from parentli_ to li_. 533 // ParentVNI must be live in the [Start;End) interval. 534 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 535 const VNInfo *ParentVNI) { 536 assert(li_ && "call reset first"); 537 bool simple; 538 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 539 // A simple mapping is easy. 540 if (simple) { 541 li_->addRange(LiveRange(Start, End, VNI)); 542 return; 543 } 544 545 // ParentVNI is a complex value. We must map per MBB. 546 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 547 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 548 549 if (MBB == MBBE) { 550 li_->addRange(LiveRange(Start, End, VNI)); 551 return; 552 } 553 554 // First block. 555 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 556 557 // Run sequence of full blocks. 558 for (++MBB; MBB != MBBE; ++MBB) { 559 Start = lis_.getMBBStartIdx(MBB); 560 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 561 mapValue(ParentVNI, Start))); 562 } 563 564 // Final block. 565 Start = lis_.getMBBStartIdx(MBB); 566 if (Start != End) 567 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 568 } 569 570 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 571 /// All needed values whose def is not inside [Start;End) must be defined 572 /// beforehand so mapValue will work. 573 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 574 assert(li_ && "call reset first"); 575 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 576 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 577 578 // Check if --I begins before Start and overlaps. 579 if (I != B) { 580 --I; 581 if (I->end > Start) 582 addSimpleRange(Start, std::min(End, I->end), I->valno); 583 ++I; 584 } 585 586 // The remaining ranges begin after Start. 587 for (;I != E && I->start < End; ++I) 588 addSimpleRange(I->start, std::min(End, I->end), I->valno); 589 } 590 591 VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg, 592 const VNInfo *ParentVNI, 593 MachineBasicBlock &MBB, 594 MachineBasicBlock::iterator I) { 595 const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()-> 596 get(TargetOpcode::COPY); 597 MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg); 598 SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); 599 VNInfo *VNI = defValue(ParentVNI, DefIdx); 600 VNI->setCopy(MI); 601 li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI)); 602 return VNI; 603 } 604 605 //===----------------------------------------------------------------------===// 606 // Split Editor 607 //===----------------------------------------------------------------------===// 608 609 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 610 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 611 SmallVectorImpl<LiveInterval*> &intervals) 612 : sa_(sa), lis_(lis), vrm_(vrm), 613 mri_(vrm.getMachineFunction().getRegInfo()), 614 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 615 curli_(sa_.getCurLI()), 616 dupli_(lis_, *curli_), 617 openli_(lis_, *curli_), 618 intervals_(intervals), 619 firstInterval(intervals_.size()) 620 { 621 assert(curli_ && "SplitEditor created from empty SplitAnalysis"); 622 623 // Make sure curli_ is assigned a stack slot, so all our intervals get the 624 // same slot as curli_. 625 if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT) 626 vrm_.assignVirt2StackSlot(curli_->reg); 627 628 } 629 630 LiveInterval *SplitEditor::createInterval() { 631 unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg)); 632 LiveInterval &Intv = lis_.getOrCreateInterval(Reg); 633 vrm_.grow(); 634 vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg)); 635 return &Intv; 636 } 637 638 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 639 for (int i = firstInterval, e = intervals_.size(); i != e; ++i) 640 if (intervals_[i]->liveAt(Idx)) 641 return true; 642 return false; 643 } 644 645 /// Create a new virtual register and live interval. 646 void SplitEditor::openIntv() { 647 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 648 649 if (!dupli_.getLI()) 650 dupli_.reset(createInterval()); 651 652 openli_.reset(createInterval()); 653 intervals_.push_back(openli_.getLI()); 654 } 655 656 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 657 /// not live before Idx, a COPY is not inserted. 658 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 659 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 660 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex()); 661 if (!ParentVNI) { 662 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": not live\n"); 663 return; 664 } 665 truncatedValues.insert(ParentVNI); 666 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 667 assert(MI && "enterIntvBefore called with invalid index"); 668 openli_.defByCopyFrom(curli_->reg, ParentVNI, *MI->getParent(), MI); 669 DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_.getLI() 670 << '\n'); 671 } 672 673 /// enterIntvAtEnd - Enter openli at the end of MBB. 674 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 675 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 676 SlotIndex End = lis_.getMBBEndIdx(&MBB); 677 VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot()); 678 if (!ParentVNI) { 679 DEBUG(dbgs() << " enterIntvAtEnd " << End << ": not live\n"); 680 return; 681 } 682 truncatedValues.insert(ParentVNI); 683 VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI, 684 MBB, MBB.getFirstTerminator()); 685 // Make sure openli is live out of MBB. 686 openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI)); 687 DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_.getLI() << '\n'); 688 } 689 690 /// useIntv - indicate that all instructions in MBB should use openli. 691 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 692 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 693 } 694 695 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 696 assert(openli_.getLI() && "openIntv not called before useIntv"); 697 openli_.addRange(Start, End); 698 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 699 << *openli_.getLI() << '\n'); 700 } 701 702 /// leaveIntvAfter - Leave openli after the instruction at Idx. 703 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 704 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 705 706 // The interval must be live beyond the instruction at Idx. 707 VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getBoundaryIndex()); 708 if (!ParentVNI) { 709 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n"); 710 return; 711 } 712 713 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 714 MachineBasicBlock *MBB = MII->getParent(); 715 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB, 716 llvm::next(MII)); 717 718 // Finally we must make sure that openli is properly extended from Idx to the 719 // new copy. 720 openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI); 721 DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_.getLI() 722 << '\n'); 723 } 724 725 /// leaveIntvAtTop - Leave the interval at the top of MBB. 726 /// Currently, only one value can leave the interval. 727 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 728 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 729 730 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 731 VNInfo *ParentVNI = curli_->getVNInfoAt(Start); 732 733 // Is curli even live-in to MBB? 734 if (!ParentVNI) { 735 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n"); 736 return; 737 } 738 739 // We are going to insert a back copy, so we must have a dupli_. 740 VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, 741 MBB, MBB.begin()); 742 743 // Finally we must make sure that openli is properly extended from Start to 744 // the new copy. 745 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 746 DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": " << *openli_.getLI() 747 << '\n'); 748 } 749 750 /// closeIntv - Indicate that we are done editing the currently open 751 /// LiveInterval, and ranges can be trimmed. 752 void SplitEditor::closeIntv() { 753 assert(openli_.getLI() && "openIntv not called before closeIntv"); 754 755 DEBUG(dbgs() << " closeIntv cleaning up\n"); 756 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 757 openli_.reset(0); 758 } 759 760 void 761 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 762 SlotIndex sidx = Start; 763 764 // Break [Start;End) into segments that don't overlap any intervals. 765 for (;;) { 766 SlotIndex next = sidx, eidx = End; 767 // Find overlapping intervals. 768 for (int i = firstInterval, e = intervals_.size(); i != e && sidx < eidx; 769 ++i) { 770 LiveInterval::const_iterator I = intervals_[i]->find(sidx); 771 LiveInterval::const_iterator E = intervals_[i]->end(); 772 if (I == E) 773 continue; 774 // Interval I is overlapping [sidx;eidx). Trim sidx. 775 if (I->start <= sidx) { 776 sidx = I->end; 777 if (++I == E) 778 continue; 779 } 780 // Trim eidx too if needed. 781 if (I->start >= eidx) 782 continue; 783 eidx = I->start; 784 if (I->end > next) 785 next = I->end; 786 } 787 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 788 if (sidx < eidx) 789 dupli_.addSimpleRange(sidx, eidx, VNI); 790 // If the interval end was truncated, we can try again from next. 791 if (next <= sidx) 792 break; 793 sidx = next; 794 } 795 } 796 797 /// rewrite - after all the new live ranges have been created, rewrite 798 /// instructions using curli to use the new intervals. 799 void SplitEditor::rewrite() { 800 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 801 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 802 803 // First we need to fill in the live ranges in dupli. 804 // If values were redefined, we need a full recoloring with SSA update. 805 // If values were truncated, we only need to truncate the ranges. 806 // If values were partially rematted, we should shrink to uses. 807 // If values were fully rematted, they should be omitted. 808 // FIXME: If a single value is redefined, just move the def and truncate. 809 810 // Values that are fully contained in the split intervals. 811 SmallPtrSet<const VNInfo*, 8> deadValues; 812 813 // Map all curli values that should have live defs in dupli. 814 for (LiveInterval::const_vni_iterator I = curli_->vni_begin(), 815 E = curli_->vni_end(); I != E; ++I) { 816 const VNInfo *VNI = *I; 817 // Original def is contained in the split intervals. 818 if (intervalsLiveAt(VNI->def)) { 819 // Did this value escape? 820 if (dupli_.isMapped(VNI)) 821 truncatedValues.insert(VNI); 822 else 823 deadValues.insert(VNI); 824 continue; 825 } 826 // Add minimal live range at the definition. 827 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 828 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 829 } 830 831 // Add all ranges to dupli. 832 for (LiveInterval::const_iterator I = curli_->begin(), E = curli_->end(); 833 I != E; ++I) { 834 const LiveRange &LR = *I; 835 if (truncatedValues.count(LR.valno)) { 836 // recolor after removing intervals_. 837 addTruncSimpleRange(LR.start, LR.end, LR.valno); 838 } else if (!deadValues.count(LR.valno)) { 839 // recolor without truncation. 840 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 841 } 842 } 843 844 845 const LiveInterval *curli = sa_.getCurLI(); 846 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg), 847 RE = mri_.reg_end(); RI != RE;) { 848 MachineOperand &MO = RI.getOperand(); 849 MachineInstr *MI = MO.getParent(); 850 ++RI; 851 if (MI->isDebugValue()) { 852 DEBUG(dbgs() << "Zapping " << *MI); 853 // FIXME: We can do much better with debug values. 854 MO.setReg(0); 855 continue; 856 } 857 SlotIndex Idx = lis_.getInstructionIndex(MI); 858 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 859 LiveInterval *LI = dupli_.getLI(); 860 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 861 LiveInterval *testli = intervals_[i]; 862 if (testli->liveAt(Idx)) { 863 LI = testli; 864 break; 865 } 866 } 867 MO.setReg(LI->reg); 868 sa_.removeUse(MI); 869 DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI); 870 } 871 872 // dupli_ goes in last, after rewriting. 873 if (dupli_.getLI()->empty()) { 874 DEBUG(dbgs() << " dupli became empty?\n"); 875 lis_.removeInterval(dupli_.getLI()->reg); 876 dupli_.reset(0); 877 } else { 878 dupli_.getLI()->RenumberValues(lis_); 879 intervals_.push_back(dupli_.getLI()); 880 } 881 882 // Calculate spill weight and allocation hints for new intervals. 883 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 884 for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) { 885 LiveInterval &li = *intervals_[i]; 886 vrai.CalculateRegClass(li.reg); 887 vrai.CalculateWeightAndHint(li); 888 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 889 << ":" << li << '\n'); 890 } 891 } 892 893 894 //===----------------------------------------------------------------------===// 895 // Loop Splitting 896 //===----------------------------------------------------------------------===// 897 898 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 899 SplitAnalysis::LoopBlocks Blocks; 900 sa_.getLoopBlocks(Loop, Blocks); 901 902 // Break critical edges as needed. 903 SplitAnalysis::BlockPtrSet CriticalExits; 904 sa_.getCriticalExits(Blocks, CriticalExits); 905 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 906 907 // Create new live interval for the loop. 908 openIntv(); 909 910 // Insert copies in the predecessors. 911 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 912 E = Blocks.Preds.end(); I != E; ++I) { 913 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 914 enterIntvAtEnd(MBB); 915 } 916 917 // Switch all loop blocks. 918 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 919 E = Blocks.Loop.end(); I != E; ++I) 920 useIntv(**I); 921 922 // Insert back copies in the exit blocks. 923 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 924 E = Blocks.Exits.end(); I != E; ++I) { 925 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 926 leaveIntvAtTop(MBB); 927 } 928 929 // Done. 930 closeIntv(); 931 rewrite(); 932 } 933 934 935 //===----------------------------------------------------------------------===// 936 // Single Block Splitting 937 //===----------------------------------------------------------------------===// 938 939 /// splitSingleBlocks - Split curli into a separate live interval inside each 940 /// basic block in Blocks. 941 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 942 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 943 // Determine the first and last instruction using curli in each block. 944 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 945 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 946 IndexPairMap MBBRange; 947 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 948 E = sa_.usingInstrs_.end(); I != E; ++I) { 949 const MachineBasicBlock *MBB = (*I)->getParent(); 950 if (!Blocks.count(MBB)) 951 continue; 952 SlotIndex Idx = lis_.getInstructionIndex(*I); 953 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 954 IndexPair &IP = MBBRange[MBB]; 955 if (!IP.first.isValid() || Idx < IP.first) 956 IP.first = Idx; 957 if (!IP.second.isValid() || Idx > IP.second) 958 IP.second = Idx; 959 } 960 961 // Create a new interval for each block. 962 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 963 E = Blocks.end(); I != E; ++I) { 964 IndexPair &IP = MBBRange[*I]; 965 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 966 << IP.first << ';' << IP.second << ")\n"); 967 assert(IP.first.isValid() && IP.second.isValid()); 968 969 openIntv(); 970 enterIntvBefore(IP.first); 971 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 972 leaveIntvAfter(IP.second); 973 closeIntv(); 974 } 975 rewrite(); 976 } 977 978 979 //===----------------------------------------------------------------------===// 980 // Sub Block Splitting 981 //===----------------------------------------------------------------------===// 982 983 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 984 /// and it wou pay to subdivide the interval inside that block, return it. 985 /// Otherwise return NULL. The returned block can be passed to 986 /// SplitEditor::splitInsideBlock. 987 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 988 // The interval must be exclusive to one block. 989 if (usingBlocks_.size() != 1) 990 return 0; 991 // Don't to this for less than 4 instructions. We want to be sure that 992 // splitting actually reduces the instruction count per interval. 993 if (usingInstrs_.size() < 4) 994 return 0; 995 return usingBlocks_.begin()->first; 996 } 997 998 /// splitInsideBlock - Split curli into multiple intervals inside MBB. 999 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1000 SmallVector<SlotIndex, 32> Uses; 1001 Uses.reserve(sa_.usingInstrs_.size()); 1002 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1003 E = sa_.usingInstrs_.end(); I != E; ++I) 1004 if ((*I)->getParent() == MBB) 1005 Uses.push_back(lis_.getInstructionIndex(*I)); 1006 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1007 << Uses.size() << " instructions.\n"); 1008 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1009 array_pod_sort(Uses.begin(), Uses.end()); 1010 1011 // Simple algorithm: Find the largest gap between uses as determined by slot 1012 // indices. Create new intervals for instructions before the gap and after the 1013 // gap. 1014 unsigned bestPos = 0; 1015 int bestGap = 0; 1016 DEBUG(dbgs() << " dist (" << Uses[0]); 1017 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1018 int g = Uses[i-1].distance(Uses[i]); 1019 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1020 if (g > bestGap) 1021 bestPos = i, bestGap = g; 1022 } 1023 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1024 1025 // bestPos points to the first use after the best gap. 1026 assert(bestPos > 0 && "Invalid gap"); 1027 1028 // FIXME: Don't create intervals for low densities. 1029 1030 // First interval before the gap. Don't create single-instr intervals. 1031 if (bestPos > 1) { 1032 openIntv(); 1033 enterIntvBefore(Uses.front()); 1034 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1035 leaveIntvAfter(Uses[bestPos-1]); 1036 closeIntv(); 1037 } 1038 1039 // Second interval after the gap. 1040 if (bestPos < Uses.size()-1) { 1041 openIntv(); 1042 enterIntvBefore(Uses[bestPos]); 1043 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1044 leaveIntvAfter(Uses.back()); 1045 closeIntv(); 1046 } 1047 1048 rewrite(); 1049 } 1050