1 //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the spill code placement analysis. 11 // 12 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on 13 // basic blocks are weighted by the block frequency and added to become the node 14 // bias. 15 // 16 // Transparent basic blocks have the variable live through, but don't care if it 17 // is spilled or in a register. These blocks become connections in the Hopfield 18 // network, again weighted by block frequency. 19 // 20 // The Hopfield network minimizes (possibly locally) its energy function: 21 // 22 // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b ) 23 // 24 // The energy function represents the expected spill code execution frequency, 25 // or the cost of spilling. This is a Lyapunov function which never increases 26 // when a node is updated. It is guaranteed to converge to a local minimum. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "spillplacement" 31 #include "SpillPlacement.h" 32 #include "llvm/ADT/BitVector.h" 33 #include "llvm/CodeGen/EdgeBundles.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/Format.h" 41 42 using namespace llvm; 43 44 char SpillPlacement::ID = 0; 45 INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement", 46 "Spill Code Placement Analysis", true, true) 47 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 48 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 49 INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement", 50 "Spill Code Placement Analysis", true, true) 51 52 char &llvm::SpillPlacementID = SpillPlacement::ID; 53 54 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const { 55 AU.setPreservesAll(); 56 AU.addRequired<MachineBlockFrequencyInfo>(); 57 AU.addRequiredTransitive<EdgeBundles>(); 58 AU.addRequiredTransitive<MachineLoopInfo>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 /// Node - Each edge bundle corresponds to a Hopfield node. 63 /// 64 /// The node contains precomputed frequency data that only depends on the CFG, 65 /// but Bias and Links are computed each time placeSpills is called. 66 /// 67 /// The node Value is positive when the variable should be in a register. The 68 /// value can change when linked nodes change, but convergence is very fast 69 /// because all weights are positive. 70 /// 71 struct SpillPlacement::Node { 72 /// Scale - Inverse block frequency feeding into[0] or out of[1] the bundle. 73 /// Ideally, these two numbers should be identical, but inaccuracies in the 74 /// block frequency estimates means that we need to normalize ingoing and 75 /// outgoing frequencies separately so they are commensurate. 76 float Scale[2]; 77 78 /// Bias - Normalized contributions from non-transparent blocks. 79 /// A bundle connected to a MustSpill block has a huge negative bias, 80 /// otherwise it is a number in the range [-2;2]. 81 float Bias; 82 83 /// Value - Output value of this node computed from the Bias and links. 84 /// This is always in the range [-1;1]. A positive number means the variable 85 /// should go in a register through this bundle. 86 float Value; 87 88 typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector; 89 90 /// Links - (Weight, BundleNo) for all transparent blocks connecting to other 91 /// bundles. The weights are all positive and add up to at most 2, weights 92 /// from ingoing and outgoing nodes separately add up to a most 1. The weight 93 /// sum can be less than 2 when the variable is not live into / out of some 94 /// connected basic blocks. 95 LinkVector Links; 96 97 /// preferReg - Return true when this node prefers to be in a register. 98 bool preferReg() const { 99 // Undecided nodes (Value==0) go on the stack. 100 return Value > 0; 101 } 102 103 /// mustSpill - Return True if this node is so biased that it must spill. 104 bool mustSpill() const { 105 // Actually, we must spill if Bias < sum(weights). 106 // It may be worth it to compute the weight sum here? 107 return Bias < -2.0f; 108 } 109 110 /// Node - Create a blank Node. 111 Node() { 112 Scale[0] = Scale[1] = 0; 113 } 114 115 /// clear - Reset per-query data, but preserve frequencies that only depend on 116 // the CFG. 117 void clear() { 118 Bias = Value = 0; 119 Links.clear(); 120 } 121 122 /// addLink - Add a link to bundle b with weight w. 123 /// out=0 for an ingoing link, and 1 for an outgoing link. 124 void addLink(unsigned b, float w, bool out) { 125 // Normalize w relative to all connected blocks from that direction. 126 w *= Scale[out]; 127 128 // There can be multiple links to the same bundle, add them up. 129 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) 130 if (I->second == b) { 131 I->first += w; 132 return; 133 } 134 // This must be the first link to b. 135 Links.push_back(std::make_pair(w, b)); 136 } 137 138 /// addBias - Bias this node from an ingoing[0] or outgoing[1] link. 139 /// Return the change to the total number of positive biases. 140 void addBias(float w, bool out) { 141 // Normalize w relative to all connected blocks from that direction. 142 w *= Scale[out]; 143 Bias += w; 144 } 145 146 /// update - Recompute Value from Bias and Links. Return true when node 147 /// preference changes. 148 bool update(const Node nodes[]) { 149 // Compute the weighted sum of inputs. 150 float Sum = Bias; 151 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) 152 Sum += I->first * nodes[I->second].Value; 153 154 // The weighted sum is going to be in the range [-2;2]. Ideally, we should 155 // simply set Value = sign(Sum), but we will add a dead zone around 0 for 156 // two reasons: 157 // 1. It avoids arbitrary bias when all links are 0 as is possible during 158 // initial iterations. 159 // 2. It helps tame rounding errors when the links nominally sum to 0. 160 const float Thres = 1e-4f; 161 bool Before = preferReg(); 162 if (Sum < -Thres) 163 Value = -1; 164 else if (Sum > Thres) 165 Value = 1; 166 else 167 Value = 0; 168 return Before != preferReg(); 169 } 170 }; 171 172 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) { 173 MF = &mf; 174 bundles = &getAnalysis<EdgeBundles>(); 175 loops = &getAnalysis<MachineLoopInfo>(); 176 177 assert(!nodes && "Leaking node array"); 178 nodes = new Node[bundles->getNumBundles()]; 179 180 // Compute total ingoing and outgoing block frequencies for all bundles. 181 BlockFrequency.resize(mf.getNumBlockIDs()); 182 MachineBlockFrequencyInfo &MBFI = getAnalysis<MachineBlockFrequencyInfo>(); 183 float EntryFreq = BlockFrequency::getEntryFrequency(); 184 for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) { 185 float Freq = MBFI.getBlockFreq(I).getFrequency() / EntryFreq; 186 unsigned Num = I->getNumber(); 187 BlockFrequency[Num] = Freq; 188 nodes[bundles->getBundle(Num, 1)].Scale[0] += Freq; 189 nodes[bundles->getBundle(Num, 0)].Scale[1] += Freq; 190 } 191 192 // Scales are reciprocal frequencies. 193 for (unsigned i = 0, e = bundles->getNumBundles(); i != e; ++i) 194 for (unsigned d = 0; d != 2; ++d) 195 if (nodes[i].Scale[d] > 0) 196 nodes[i].Scale[d] = 1 / nodes[i].Scale[d]; 197 198 // We never change the function. 199 return false; 200 } 201 202 void SpillPlacement::releaseMemory() { 203 delete[] nodes; 204 nodes = 0; 205 } 206 207 /// activate - mark node n as active if it wasn't already. 208 void SpillPlacement::activate(unsigned n) { 209 if (ActiveNodes->test(n)) 210 return; 211 ActiveNodes->set(n); 212 nodes[n].clear(); 213 214 // Very large bundles usually come from big switches, indirect branches, 215 // landing pads, or loops with many 'continue' statements. It is difficult to 216 // allocate registers when so many different blocks are involved. 217 // 218 // Give a small negative bias to large bundles such that 1/32 of the 219 // connected blocks need to be interested before we consider expanding the 220 // region through the bundle. This helps compile time by limiting the number 221 // of blocks visited and the number of links in the Hopfield network. 222 if (bundles->getBlocks(n).size() > 100) 223 nodes[n].Bias = -0.0625f; 224 } 225 226 227 /// addConstraints - Compute node biases and weights from a set of constraints. 228 /// Set a bit in NodeMask for each active node. 229 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) { 230 for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(), 231 E = LiveBlocks.end(); I != E; ++I) { 232 float Freq = getBlockFrequency(I->Number); 233 const float Bias[] = { 234 0, // DontCare, 235 1, // PrefReg, 236 -1, // PrefSpill 237 0, // PrefBoth 238 -HUGE_VALF // MustSpill 239 }; 240 241 // Live-in to block? 242 if (I->Entry != DontCare) { 243 unsigned ib = bundles->getBundle(I->Number, 0); 244 activate(ib); 245 nodes[ib].addBias(Freq * Bias[I->Entry], 1); 246 } 247 248 // Live-out from block? 249 if (I->Exit != DontCare) { 250 unsigned ob = bundles->getBundle(I->Number, 1); 251 activate(ob); 252 nodes[ob].addBias(Freq * Bias[I->Exit], 0); 253 } 254 } 255 } 256 257 /// addPrefSpill - Same as addConstraints(PrefSpill) 258 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) { 259 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 260 I != E; ++I) { 261 float Freq = getBlockFrequency(*I); 262 if (Strong) 263 Freq += Freq; 264 unsigned ib = bundles->getBundle(*I, 0); 265 unsigned ob = bundles->getBundle(*I, 1); 266 activate(ib); 267 activate(ob); 268 nodes[ib].addBias(-Freq, 1); 269 nodes[ob].addBias(-Freq, 0); 270 } 271 } 272 273 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) { 274 for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E; 275 ++I) { 276 unsigned Number = *I; 277 unsigned ib = bundles->getBundle(Number, 0); 278 unsigned ob = bundles->getBundle(Number, 1); 279 280 // Ignore self-loops. 281 if (ib == ob) 282 continue; 283 activate(ib); 284 activate(ob); 285 if (nodes[ib].Links.empty() && !nodes[ib].mustSpill()) 286 Linked.push_back(ib); 287 if (nodes[ob].Links.empty() && !nodes[ob].mustSpill()) 288 Linked.push_back(ob); 289 float Freq = getBlockFrequency(Number); 290 nodes[ib].addLink(ob, Freq, 1); 291 nodes[ob].addLink(ib, Freq, 0); 292 } 293 } 294 295 bool SpillPlacement::scanActiveBundles() { 296 Linked.clear(); 297 RecentPositive.clear(); 298 for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) { 299 nodes[n].update(nodes); 300 // A node that must spill, or a node without any links is not going to 301 // change its value ever again, so exclude it from iterations. 302 if (nodes[n].mustSpill()) 303 continue; 304 if (!nodes[n].Links.empty()) 305 Linked.push_back(n); 306 if (nodes[n].preferReg()) 307 RecentPositive.push_back(n); 308 } 309 return !RecentPositive.empty(); 310 } 311 312 /// iterate - Repeatedly update the Hopfield nodes until stability or the 313 /// maximum number of iterations is reached. 314 /// @param Linked - Numbers of linked nodes that need updating. 315 void SpillPlacement::iterate() { 316 // First update the recently positive nodes. They have likely received new 317 // negative bias that will turn them off. 318 while (!RecentPositive.empty()) 319 nodes[RecentPositive.pop_back_val()].update(nodes); 320 321 if (Linked.empty()) 322 return; 323 324 // Run up to 10 iterations. The edge bundle numbering is closely related to 325 // basic block numbering, so there is a strong tendency towards chains of 326 // linked nodes with sequential numbers. By scanning the linked nodes 327 // backwards and forwards, we make it very likely that a single node can 328 // affect the entire network in a single iteration. That means very fast 329 // convergence, usually in a single iteration. 330 for (unsigned iteration = 0; iteration != 10; ++iteration) { 331 // Scan backwards, skipping the last node which was just updated. 332 bool Changed = false; 333 for (SmallVectorImpl<unsigned>::const_reverse_iterator I = 334 llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) { 335 unsigned n = *I; 336 if (nodes[n].update(nodes)) { 337 Changed = true; 338 if (nodes[n].preferReg()) 339 RecentPositive.push_back(n); 340 } 341 } 342 if (!Changed || !RecentPositive.empty()) 343 return; 344 345 // Scan forwards, skipping the first node which was just updated. 346 Changed = false; 347 for (SmallVectorImpl<unsigned>::const_iterator I = 348 llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) { 349 unsigned n = *I; 350 if (nodes[n].update(nodes)) { 351 Changed = true; 352 if (nodes[n].preferReg()) 353 RecentPositive.push_back(n); 354 } 355 } 356 if (!Changed || !RecentPositive.empty()) 357 return; 358 } 359 } 360 361 void SpillPlacement::prepare(BitVector &RegBundles) { 362 Linked.clear(); 363 RecentPositive.clear(); 364 // Reuse RegBundles as our ActiveNodes vector. 365 ActiveNodes = &RegBundles; 366 ActiveNodes->clear(); 367 ActiveNodes->resize(bundles->getNumBundles()); 368 } 369 370 bool 371 SpillPlacement::finish() { 372 assert(ActiveNodes && "Call prepare() first"); 373 374 // Write preferences back to ActiveNodes. 375 bool Perfect = true; 376 for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) 377 if (!nodes[n].preferReg()) { 378 ActiveNodes->reset(n); 379 Perfect = false; 380 } 381 ActiveNodes = 0; 382 return Perfect; 383 } 384