1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for safe point where the prologue and epilogue can be 11 // inserted. 12 // The safe point for the prologue (resp. epilogue) is called Save 13 // (resp. Restore). 14 // A point is safe for prologue (resp. epilogue) if and only if 15 // it 1) dominates (resp. post-dominates) all the frame related operations and 16 // between 2) two executions of the Save (resp. Restore) point there is an 17 // execution of the Restore (resp. Save) point. 18 // 19 // For instance, the following points are safe: 20 // for (int i = 0; i < 10; ++i) { 21 // Save 22 // ... 23 // Restore 24 // } 25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... 26 // And the following points are not: 27 // for (int i = 0; i < 10; ++i) { 28 // Save 29 // ... 30 // } 31 // for (int i = 0; i < 10; ++i) { 32 // ... 33 // Restore 34 // } 35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. 36 // 37 // This pass also ensures that the safe points are 3) cheaper than the regular 38 // entry and exits blocks. 39 // 40 // Property #1 is ensured via the use of MachineDominatorTree and 41 // MachinePostDominatorTree. 42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both 43 // points must be in the same loop. 44 // Property #3 is ensured via the MachineBlockFrequencyInfo. 45 // 46 // If this pass found points matching all these properties, then 47 // MachineFrameInfo is updated with this information. 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/ADT/BitVector.h" 52 #include "llvm/ADT/PostOrderIterator.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 58 #include "llvm/CodeGen/MachineDominators.h" 59 #include "llvm/CodeGen/MachineFrameInfo.h" 60 #include "llvm/CodeGen/MachineFunction.h" 61 #include "llvm/CodeGen/MachineFunctionPass.h" 62 #include "llvm/CodeGen/MachineInstr.h" 63 #include "llvm/CodeGen/MachineLoopInfo.h" 64 #include "llvm/CodeGen/MachineOperand.h" 65 #include "llvm/CodeGen/MachinePostDominators.h" 66 #include "llvm/CodeGen/RegisterClassInfo.h" 67 #include "llvm/CodeGen/RegisterScavenging.h" 68 #include "llvm/CodeGen/TargetFrameLowering.h" 69 #include "llvm/CodeGen/TargetInstrInfo.h" 70 #include "llvm/CodeGen/TargetRegisterInfo.h" 71 #include "llvm/CodeGen/TargetSubtargetInfo.h" 72 #include "llvm/IR/Attributes.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/MC/MCAsmInfo.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/ErrorHandling.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetMachine.h" 81 #include <cassert> 82 #include <cstdint> 83 #include <memory> 84 85 using namespace llvm; 86 87 #define DEBUG_TYPE "shrink-wrap" 88 89 STATISTIC(NumFunc, "Number of functions"); 90 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); 91 STATISTIC(NumCandidatesDropped, 92 "Number of shrink-wrapping candidates dropped because of frequency"); 93 94 static cl::opt<cl::boolOrDefault> 95 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, 96 cl::desc("enable the shrink-wrapping pass")); 97 98 namespace { 99 100 /// \brief Class to determine where the safe point to insert the 101 /// prologue and epilogue are. 102 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the 103 /// shrink-wrapping term for prologue/epilogue placement, this pass 104 /// does not rely on expensive data-flow analysis. Instead we use the 105 /// dominance properties and loop information to decide which point 106 /// are safe for such insertion. 107 class ShrinkWrap : public MachineFunctionPass { 108 /// Hold callee-saved information. 109 RegisterClassInfo RCI; 110 MachineDominatorTree *MDT; 111 MachinePostDominatorTree *MPDT; 112 113 /// Current safe point found for the prologue. 114 /// The prologue will be inserted before the first instruction 115 /// in this basic block. 116 MachineBasicBlock *Save; 117 118 /// Current safe point found for the epilogue. 119 /// The epilogue will be inserted before the first terminator instruction 120 /// in this basic block. 121 MachineBasicBlock *Restore; 122 123 /// Hold the information of the basic block frequency. 124 /// Use to check the profitability of the new points. 125 MachineBlockFrequencyInfo *MBFI; 126 127 /// Hold the loop information. Used to determine if Save and Restore 128 /// are in the same loop. 129 MachineLoopInfo *MLI; 130 131 /// Frequency of the Entry block. 132 uint64_t EntryFreq; 133 134 /// Current opcode for frame setup. 135 unsigned FrameSetupOpcode; 136 137 /// Current opcode for frame destroy. 138 unsigned FrameDestroyOpcode; 139 140 /// Entry block. 141 const MachineBasicBlock *Entry; 142 143 using SetOfRegs = SmallSetVector<unsigned, 16>; 144 145 /// Registers that need to be saved for the current function. 146 mutable SetOfRegs CurrentCSRs; 147 148 /// Current MachineFunction. 149 MachineFunction *MachineFunc; 150 151 /// \brief Check if \p MI uses or defines a callee-saved register or 152 /// a frame index. If this is the case, this means \p MI must happen 153 /// after Save and before Restore. 154 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const; 155 156 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { 157 if (CurrentCSRs.empty()) { 158 BitVector SavedRegs; 159 const TargetFrameLowering *TFI = 160 MachineFunc->getSubtarget().getFrameLowering(); 161 162 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); 163 164 for (int Reg = SavedRegs.find_first(); Reg != -1; 165 Reg = SavedRegs.find_next(Reg)) 166 CurrentCSRs.insert((unsigned)Reg); 167 } 168 return CurrentCSRs; 169 } 170 171 /// \brief Update the Save and Restore points such that \p MBB is in 172 /// the region that is dominated by Save and post-dominated by Restore 173 /// and Save and Restore still match the safe point definition. 174 /// Such point may not exist and Save and/or Restore may be null after 175 /// this call. 176 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); 177 178 /// \brief Initialize the pass for \p MF. 179 void init(MachineFunction &MF) { 180 RCI.runOnMachineFunction(MF); 181 MDT = &getAnalysis<MachineDominatorTree>(); 182 MPDT = &getAnalysis<MachinePostDominatorTree>(); 183 Save = nullptr; 184 Restore = nullptr; 185 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 186 MLI = &getAnalysis<MachineLoopInfo>(); 187 EntryFreq = MBFI->getEntryFreq(); 188 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 189 FrameSetupOpcode = TII.getCallFrameSetupOpcode(); 190 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); 191 Entry = &MF.front(); 192 CurrentCSRs.clear(); 193 MachineFunc = &MF; 194 195 ++NumFunc; 196 } 197 198 /// Check whether or not Save and Restore points are still interesting for 199 /// shrink-wrapping. 200 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } 201 202 /// \brief Check if shrink wrapping is enabled for this target and function. 203 static bool isShrinkWrapEnabled(const MachineFunction &MF); 204 205 public: 206 static char ID; 207 208 ShrinkWrap() : MachineFunctionPass(ID) { 209 initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); 210 } 211 212 void getAnalysisUsage(AnalysisUsage &AU) const override { 213 AU.setPreservesAll(); 214 AU.addRequired<MachineBlockFrequencyInfo>(); 215 AU.addRequired<MachineDominatorTree>(); 216 AU.addRequired<MachinePostDominatorTree>(); 217 AU.addRequired<MachineLoopInfo>(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 StringRef getPassName() const override { return "Shrink Wrapping analysis"; } 222 223 /// \brief Perform the shrink-wrapping analysis and update 224 /// the MachineFrameInfo attached to \p MF with the results. 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 }; 227 228 } // end anonymous namespace 229 230 char ShrinkWrap::ID = 0; 231 232 char &llvm::ShrinkWrapID = ShrinkWrap::ID; 233 234 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 235 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 236 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 237 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 238 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 239 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 240 241 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, 242 RegScavenger *RS) const { 243 if (MI.getOpcode() == FrameSetupOpcode || 244 MI.getOpcode() == FrameDestroyOpcode) { 245 DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); 246 return true; 247 } 248 for (const MachineOperand &MO : MI.operands()) { 249 bool UseOrDefCSR = false; 250 if (MO.isReg()) { 251 // Ignore instructions like DBG_VALUE which don't read/def the register. 252 if (!MO.isDef() && !MO.readsReg()) 253 continue; 254 unsigned PhysReg = MO.getReg(); 255 if (!PhysReg) 256 continue; 257 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 258 "Unallocated register?!"); 259 UseOrDefCSR = RCI.getLastCalleeSavedAlias(PhysReg); 260 } else if (MO.isRegMask()) { 261 // Check if this regmask clobbers any of the CSRs. 262 for (unsigned Reg : getCurrentCSRs(RS)) { 263 if (MO.clobbersPhysReg(Reg)) { 264 UseOrDefCSR = true; 265 break; 266 } 267 } 268 } 269 // Skip FrameIndex operands in DBG_VALUE instructions. 270 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { 271 DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" 272 << MO.isFI() << "): " << MI << '\n'); 273 return true; 274 } 275 } 276 return false; 277 } 278 279 /// \brief Helper function to find the immediate (post) dominator. 280 template <typename ListOfBBs, typename DominanceAnalysis> 281 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, 282 DominanceAnalysis &Dom) { 283 MachineBasicBlock *IDom = &Block; 284 for (MachineBasicBlock *BB : BBs) { 285 IDom = Dom.findNearestCommonDominator(IDom, BB); 286 if (!IDom) 287 break; 288 } 289 if (IDom == &Block) 290 return nullptr; 291 return IDom; 292 } 293 294 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, 295 RegScavenger *RS) { 296 // Get rid of the easy cases first. 297 if (!Save) 298 Save = &MBB; 299 else 300 Save = MDT->findNearestCommonDominator(Save, &MBB); 301 302 if (!Save) { 303 DEBUG(dbgs() << "Found a block that is not reachable from Entry\n"); 304 return; 305 } 306 307 if (!Restore) 308 Restore = &MBB; 309 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it 310 // means the block never returns. If that's the 311 // case, we don't want to call 312 // `findNearestCommonDominator`, which will 313 // return `Restore`. 314 Restore = MPDT->findNearestCommonDominator(Restore, &MBB); 315 else 316 Restore = nullptr; // Abort, we can't find a restore point in this case. 317 318 // Make sure we would be able to insert the restore code before the 319 // terminator. 320 if (Restore == &MBB) { 321 for (const MachineInstr &Terminator : MBB.terminators()) { 322 if (!useOrDefCSROrFI(Terminator, RS)) 323 continue; 324 // One of the terminator needs to happen before the restore point. 325 if (MBB.succ_empty()) { 326 Restore = nullptr; // Abort, we can't find a restore point in this case. 327 break; 328 } 329 // Look for a restore point that post-dominates all the successors. 330 // The immediate post-dominator is what we are looking for. 331 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 332 break; 333 } 334 } 335 336 if (!Restore) { 337 DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n"); 338 return; 339 } 340 341 // Make sure Save and Restore are suitable for shrink-wrapping: 342 // 1. all path from Save needs to lead to Restore before exiting. 343 // 2. all path to Restore needs to go through Save from Entry. 344 // We achieve that by making sure that: 345 // A. Save dominates Restore. 346 // B. Restore post-dominates Save. 347 // C. Save and Restore are in the same loop. 348 bool SaveDominatesRestore = false; 349 bool RestorePostDominatesSave = false; 350 while (Save && Restore && 351 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || 352 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || 353 // Post-dominance is not enough in loops to ensure that all uses/defs 354 // are after the prologue and before the epilogue at runtime. 355 // E.g., 356 // while(1) { 357 // Save 358 // Restore 359 // if (...) 360 // break; 361 // use/def CSRs 362 // } 363 // All the uses/defs of CSRs are dominated by Save and post-dominated 364 // by Restore. However, the CSRs uses are still reachable after 365 // Restore and before Save are executed. 366 // 367 // For now, just push the restore/save points outside of loops. 368 // FIXME: Refine the criteria to still find interesting cases 369 // for loops. 370 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 371 // Fix (A). 372 if (!SaveDominatesRestore) { 373 Save = MDT->findNearestCommonDominator(Save, Restore); 374 continue; 375 } 376 // Fix (B). 377 if (!RestorePostDominatesSave) 378 Restore = MPDT->findNearestCommonDominator(Restore, Save); 379 380 // Fix (C). 381 if (Save && Restore && 382 (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 383 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { 384 // Push Save outside of this loop if immediate dominator is different 385 // from save block. If immediate dominator is not different, bail out. 386 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 387 if (!Save) 388 break; 389 } else { 390 // If the loop does not exit, there is no point in looking 391 // for a post-dominator outside the loop. 392 SmallVector<MachineBasicBlock*, 4> ExitBlocks; 393 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); 394 // Push Restore outside of this loop. 395 // Look for the immediate post-dominator of the loop exits. 396 MachineBasicBlock *IPdom = Restore; 397 for (MachineBasicBlock *LoopExitBB: ExitBlocks) { 398 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); 399 if (!IPdom) 400 break; 401 } 402 // If the immediate post-dominator is not in a less nested loop, 403 // then we are stuck in a program with an infinite loop. 404 // In that case, we will not find a safe point, hence, bail out. 405 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) 406 Restore = IPdom; 407 else { 408 Restore = nullptr; 409 break; 410 } 411 } 412 } 413 } 414 } 415 416 /// Check whether the edge (\p SrcBB, \p DestBB) is a backedge according to MLI. 417 /// I.e., check if it exists a loop that contains SrcBB and where DestBB is the 418 /// loop header. 419 static bool isProperBackedge(const MachineLoopInfo &MLI, 420 const MachineBasicBlock *SrcBB, 421 const MachineBasicBlock *DestBB) { 422 for (const MachineLoop *Loop = MLI.getLoopFor(SrcBB); Loop; 423 Loop = Loop->getParentLoop()) { 424 if (Loop->getHeader() == DestBB) 425 return true; 426 } 427 return false; 428 } 429 430 /// Check if the CFG of \p MF is irreducible. 431 static bool isIrreducibleCFG(const MachineFunction &MF, 432 const MachineLoopInfo &MLI) { 433 const MachineBasicBlock *Entry = &*MF.begin(); 434 ReversePostOrderTraversal<const MachineBasicBlock *> RPOT(Entry); 435 BitVector VisitedBB(MF.getNumBlockIDs()); 436 for (const MachineBasicBlock *MBB : RPOT) { 437 VisitedBB.set(MBB->getNumber()); 438 for (const MachineBasicBlock *SuccBB : MBB->successors()) { 439 if (!VisitedBB.test(SuccBB->getNumber())) 440 continue; 441 // We already visited SuccBB, thus MBB->SuccBB must be a backedge. 442 // Check that the head matches what we have in the loop information. 443 // Otherwise, we have an irreducible graph. 444 if (!isProperBackedge(MLI, MBB, SuccBB)) 445 return true; 446 } 447 } 448 return false; 449 } 450 451 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { 452 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) 453 return false; 454 455 DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); 456 457 init(MF); 458 459 if (isIrreducibleCFG(MF, *MLI)) { 460 // If MF is irreducible, a block may be in a loop without 461 // MachineLoopInfo reporting it. I.e., we may use the 462 // post-dominance property in loops, which lead to incorrect 463 // results. Moreover, we may miss that the prologue and 464 // epilogue are not in the same loop, leading to unbalanced 465 // construction/deconstruction of the stack frame. 466 DEBUG(dbgs() << "Irreducible CFGs are not supported yet\n"); 467 return false; 468 } 469 470 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 471 std::unique_ptr<RegScavenger> RS( 472 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); 473 474 for (MachineBasicBlock &MBB : MF) { 475 DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName() 476 << '\n'); 477 478 if (MBB.isEHFuncletEntry()) { 479 DEBUG(dbgs() << "EH Funclets are not supported yet.\n"); 480 return false; 481 } 482 483 for (const MachineInstr &MI : MBB) { 484 if (!useOrDefCSROrFI(MI, RS.get())) 485 continue; 486 // Save (resp. restore) point must dominate (resp. post dominate) 487 // MI. Look for the proper basic block for those. 488 updateSaveRestorePoints(MBB, RS.get()); 489 // If we are at a point where we cannot improve the placement of 490 // save/restore instructions, just give up. 491 if (!ArePointsInteresting()) { 492 DEBUG(dbgs() << "No Shrink wrap candidate found\n"); 493 return false; 494 } 495 // No need to look for other instructions, this basic block 496 // will already be part of the handled region. 497 break; 498 } 499 } 500 if (!ArePointsInteresting()) { 501 // If the points are not interesting at this point, then they must be null 502 // because it means we did not encounter any frame/CSR related code. 503 // Otherwise, we would have returned from the previous loop. 504 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); 505 DEBUG(dbgs() << "Nothing to shrink-wrap\n"); 506 return false; 507 } 508 509 DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq 510 << '\n'); 511 512 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 513 do { 514 DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " 515 << Save->getNumber() << ' ' << Save->getName() << ' ' 516 << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: " 517 << Restore->getNumber() << ' ' << Restore->getName() << ' ' 518 << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); 519 520 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; 521 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && 522 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && 523 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && 524 TFI->canUseAsEpilogue(*Restore))) 525 break; 526 DEBUG(dbgs() << "New points are too expensive or invalid for the target\n"); 527 MachineBasicBlock *NewBB; 528 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { 529 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 530 if (!Save) 531 break; 532 NewBB = Save; 533 } else { 534 // Restore is expensive. 535 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 536 if (!Restore) 537 break; 538 NewBB = Restore; 539 } 540 updateSaveRestorePoints(*NewBB, RS.get()); 541 } while (Save && Restore); 542 543 if (!ArePointsInteresting()) { 544 ++NumCandidatesDropped; 545 return false; 546 } 547 548 DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber() 549 << ' ' << Save->getName() << "\nRestore: " 550 << Restore->getNumber() << ' ' << Restore->getName() << '\n'); 551 552 MachineFrameInfo &MFI = MF.getFrameInfo(); 553 MFI.setSavePoint(Save); 554 MFI.setRestorePoint(Restore); 555 ++NumCandidates; 556 return false; 557 } 558 559 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { 560 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 561 562 switch (EnableShrinkWrapOpt) { 563 case cl::BOU_UNSET: 564 return TFI->enableShrinkWrapping(MF) && 565 // Windows with CFI has some limitations that make it impossible 566 // to use shrink-wrapping. 567 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 568 // Sanitizers look at the value of the stack at the location 569 // of the crash. Since a crash can happen anywhere, the 570 // frame must be lowered before anything else happen for the 571 // sanitizers to be able to get a correct stack frame. 572 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || 573 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || 574 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || 575 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); 576 // If EnableShrinkWrap is set, it takes precedence on whatever the 577 // target sets. The rational is that we assume we want to test 578 // something related to shrink-wrapping. 579 case cl::BOU_TRUE: 580 return true; 581 case cl::BOU_FALSE: 582 return false; 583 } 584 llvm_unreachable("Invalid shrink-wrapping state"); 585 } 586