1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for safe point where the prologue and epilogue can be 11 // inserted. 12 // The safe point for the prologue (resp. epilogue) is called Save 13 // (resp. Restore). 14 // A point is safe for prologue (resp. epilogue) if and only if 15 // it 1) dominates (resp. post-dominates) all the frame related operations and 16 // between 2) two executions of the Save (resp. Restore) point there is an 17 // execution of the Restore (resp. Save) point. 18 // 19 // For instance, the following points are safe: 20 // for (int i = 0; i < 10; ++i) { 21 // Save 22 // ... 23 // Restore 24 // } 25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... 26 // And the following points are not: 27 // for (int i = 0; i < 10; ++i) { 28 // Save 29 // ... 30 // } 31 // for (int i = 0; i < 10; ++i) { 32 // ... 33 // Restore 34 // } 35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. 36 // 37 // This pass also ensures that the safe points are 3) cheaper than the regular 38 // entry and exits blocks. 39 // 40 // Property #1 is ensured via the use of MachineDominatorTree and 41 // MachinePostDominatorTree. 42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both 43 // points must be in the same loop. 44 // Property #3 is ensured via the MachineBlockFrequencyInfo. 45 // 46 // If this pass found points matching all these properties, then 47 // MachineFrameInfo is updated with this information. 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/ADT/BitVector.h" 52 #include "llvm/ADT/PostOrderIterator.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 58 #include "llvm/CodeGen/MachineDominators.h" 59 #include "llvm/CodeGen/MachineFrameInfo.h" 60 #include "llvm/CodeGen/MachineFunction.h" 61 #include "llvm/CodeGen/MachineFunctionPass.h" 62 #include "llvm/CodeGen/MachineInstr.h" 63 #include "llvm/CodeGen/MachineLoopInfo.h" 64 #include "llvm/CodeGen/MachineOperand.h" 65 #include "llvm/CodeGen/MachinePostDominators.h" 66 #include "llvm/CodeGen/RegisterClassInfo.h" 67 #include "llvm/CodeGen/RegisterScavenging.h" 68 #include "llvm/CodeGen/TargetFrameLowering.h" 69 #include "llvm/CodeGen/TargetInstrInfo.h" 70 #include "llvm/CodeGen/TargetRegisterInfo.h" 71 #include "llvm/CodeGen/TargetSubtargetInfo.h" 72 #include "llvm/IR/Attributes.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/MC/MCAsmInfo.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/ErrorHandling.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetMachine.h" 81 #include <cassert> 82 #include <cstdint> 83 #include <memory> 84 85 using namespace llvm; 86 87 #define DEBUG_TYPE "shrink-wrap" 88 89 STATISTIC(NumFunc, "Number of functions"); 90 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); 91 STATISTIC(NumCandidatesDropped, 92 "Number of shrink-wrapping candidates dropped because of frequency"); 93 94 static cl::opt<cl::boolOrDefault> 95 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, 96 cl::desc("enable the shrink-wrapping pass")); 97 98 namespace { 99 100 /// \brief Class to determine where the safe point to insert the 101 /// prologue and epilogue are. 102 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the 103 /// shrink-wrapping term for prologue/epilogue placement, this pass 104 /// does not rely on expensive data-flow analysis. Instead we use the 105 /// dominance properties and loop information to decide which point 106 /// are safe for such insertion. 107 class ShrinkWrap : public MachineFunctionPass { 108 /// Hold callee-saved information. 109 RegisterClassInfo RCI; 110 MachineDominatorTree *MDT; 111 MachinePostDominatorTree *MPDT; 112 113 /// Current safe point found for the prologue. 114 /// The prologue will be inserted before the first instruction 115 /// in this basic block. 116 MachineBasicBlock *Save; 117 118 /// Current safe point found for the epilogue. 119 /// The epilogue will be inserted before the first terminator instruction 120 /// in this basic block. 121 MachineBasicBlock *Restore; 122 123 /// Hold the information of the basic block frequency. 124 /// Use to check the profitability of the new points. 125 MachineBlockFrequencyInfo *MBFI; 126 127 /// Hold the loop information. Used to determine if Save and Restore 128 /// are in the same loop. 129 MachineLoopInfo *MLI; 130 131 /// Frequency of the Entry block. 132 uint64_t EntryFreq; 133 134 /// Current opcode for frame setup. 135 unsigned FrameSetupOpcode; 136 137 /// Current opcode for frame destroy. 138 unsigned FrameDestroyOpcode; 139 140 /// Entry block. 141 const MachineBasicBlock *Entry; 142 143 using SetOfRegs = SmallSetVector<unsigned, 16>; 144 145 /// Registers that need to be saved for the current function. 146 mutable SetOfRegs CurrentCSRs; 147 148 /// Current MachineFunction. 149 MachineFunction *MachineFunc; 150 151 /// \brief Check if \p MI uses or defines a callee-saved register or 152 /// a frame index. If this is the case, this means \p MI must happen 153 /// after Save and before Restore. 154 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const; 155 156 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { 157 if (CurrentCSRs.empty()) { 158 BitVector SavedRegs; 159 const TargetFrameLowering *TFI = 160 MachineFunc->getSubtarget().getFrameLowering(); 161 162 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); 163 164 for (int Reg = SavedRegs.find_first(); Reg != -1; 165 Reg = SavedRegs.find_next(Reg)) 166 CurrentCSRs.insert((unsigned)Reg); 167 } 168 return CurrentCSRs; 169 } 170 171 /// \brief Update the Save and Restore points such that \p MBB is in 172 /// the region that is dominated by Save and post-dominated by Restore 173 /// and Save and Restore still match the safe point definition. 174 /// Such point may not exist and Save and/or Restore may be null after 175 /// this call. 176 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); 177 178 /// \brief Initialize the pass for \p MF. 179 void init(MachineFunction &MF) { 180 RCI.runOnMachineFunction(MF); 181 MDT = &getAnalysis<MachineDominatorTree>(); 182 MPDT = &getAnalysis<MachinePostDominatorTree>(); 183 Save = nullptr; 184 Restore = nullptr; 185 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 186 MLI = &getAnalysis<MachineLoopInfo>(); 187 EntryFreq = MBFI->getEntryFreq(); 188 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 189 FrameSetupOpcode = TII.getCallFrameSetupOpcode(); 190 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); 191 Entry = &MF.front(); 192 CurrentCSRs.clear(); 193 MachineFunc = &MF; 194 195 ++NumFunc; 196 } 197 198 /// Check whether or not Save and Restore points are still interesting for 199 /// shrink-wrapping. 200 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } 201 202 /// \brief Check if shrink wrapping is enabled for this target and function. 203 static bool isShrinkWrapEnabled(const MachineFunction &MF); 204 205 public: 206 static char ID; 207 208 ShrinkWrap() : MachineFunctionPass(ID) { 209 initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); 210 } 211 212 void getAnalysisUsage(AnalysisUsage &AU) const override { 213 AU.setPreservesAll(); 214 AU.addRequired<MachineBlockFrequencyInfo>(); 215 AU.addRequired<MachineDominatorTree>(); 216 AU.addRequired<MachinePostDominatorTree>(); 217 AU.addRequired<MachineLoopInfo>(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 StringRef getPassName() const override { return "Shrink Wrapping analysis"; } 222 223 /// \brief Perform the shrink-wrapping analysis and update 224 /// the MachineFrameInfo attached to \p MF with the results. 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 }; 227 228 } // end anonymous namespace 229 230 char ShrinkWrap::ID = 0; 231 232 char &llvm::ShrinkWrapID = ShrinkWrap::ID; 233 234 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 235 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 236 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 237 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 238 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 239 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 240 241 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, 242 RegScavenger *RS) const { 243 if (MI.getOpcode() == FrameSetupOpcode || 244 MI.getOpcode() == FrameDestroyOpcode) { 245 DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); 246 return true; 247 } 248 for (const MachineOperand &MO : MI.operands()) { 249 bool UseOrDefCSR = false; 250 if (MO.isReg()) { 251 unsigned PhysReg = MO.getReg(); 252 if (!PhysReg) 253 continue; 254 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 255 "Unallocated register?!"); 256 UseOrDefCSR = RCI.getLastCalleeSavedAlias(PhysReg); 257 } else if (MO.isRegMask()) { 258 // Check if this regmask clobbers any of the CSRs. 259 for (unsigned Reg : getCurrentCSRs(RS)) { 260 if (MO.clobbersPhysReg(Reg)) { 261 UseOrDefCSR = true; 262 break; 263 } 264 } 265 } 266 if (UseOrDefCSR || MO.isFI()) { 267 DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" 268 << MO.isFI() << "): " << MI << '\n'); 269 return true; 270 } 271 } 272 return false; 273 } 274 275 /// \brief Helper function to find the immediate (post) dominator. 276 template <typename ListOfBBs, typename DominanceAnalysis> 277 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, 278 DominanceAnalysis &Dom) { 279 MachineBasicBlock *IDom = &Block; 280 for (MachineBasicBlock *BB : BBs) { 281 IDom = Dom.findNearestCommonDominator(IDom, BB); 282 if (!IDom) 283 break; 284 } 285 if (IDom == &Block) 286 return nullptr; 287 return IDom; 288 } 289 290 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, 291 RegScavenger *RS) { 292 // Get rid of the easy cases first. 293 if (!Save) 294 Save = &MBB; 295 else 296 Save = MDT->findNearestCommonDominator(Save, &MBB); 297 298 if (!Save) { 299 DEBUG(dbgs() << "Found a block that is not reachable from Entry\n"); 300 return; 301 } 302 303 if (!Restore) 304 Restore = &MBB; 305 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it 306 // means the block never returns. If that's the 307 // case, we don't want to call 308 // `findNearestCommonDominator`, which will 309 // return `Restore`. 310 Restore = MPDT->findNearestCommonDominator(Restore, &MBB); 311 else 312 Restore = nullptr; // Abort, we can't find a restore point in this case. 313 314 // Make sure we would be able to insert the restore code before the 315 // terminator. 316 if (Restore == &MBB) { 317 for (const MachineInstr &Terminator : MBB.terminators()) { 318 if (!useOrDefCSROrFI(Terminator, RS)) 319 continue; 320 // One of the terminator needs to happen before the restore point. 321 if (MBB.succ_empty()) { 322 Restore = nullptr; // Abort, we can't find a restore point in this case. 323 break; 324 } 325 // Look for a restore point that post-dominates all the successors. 326 // The immediate post-dominator is what we are looking for. 327 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 328 break; 329 } 330 } 331 332 if (!Restore) { 333 DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n"); 334 return; 335 } 336 337 // Make sure Save and Restore are suitable for shrink-wrapping: 338 // 1. all path from Save needs to lead to Restore before exiting. 339 // 2. all path to Restore needs to go through Save from Entry. 340 // We achieve that by making sure that: 341 // A. Save dominates Restore. 342 // B. Restore post-dominates Save. 343 // C. Save and Restore are in the same loop. 344 bool SaveDominatesRestore = false; 345 bool RestorePostDominatesSave = false; 346 while (Save && Restore && 347 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || 348 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || 349 // Post-dominance is not enough in loops to ensure that all uses/defs 350 // are after the prologue and before the epilogue at runtime. 351 // E.g., 352 // while(1) { 353 // Save 354 // Restore 355 // if (...) 356 // break; 357 // use/def CSRs 358 // } 359 // All the uses/defs of CSRs are dominated by Save and post-dominated 360 // by Restore. However, the CSRs uses are still reachable after 361 // Restore and before Save are executed. 362 // 363 // For now, just push the restore/save points outside of loops. 364 // FIXME: Refine the criteria to still find interesting cases 365 // for loops. 366 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 367 // Fix (A). 368 if (!SaveDominatesRestore) { 369 Save = MDT->findNearestCommonDominator(Save, Restore); 370 continue; 371 } 372 // Fix (B). 373 if (!RestorePostDominatesSave) 374 Restore = MPDT->findNearestCommonDominator(Restore, Save); 375 376 // Fix (C). 377 if (Save && Restore && 378 (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 379 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { 380 // Push Save outside of this loop if immediate dominator is different 381 // from save block. If immediate dominator is not different, bail out. 382 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 383 if (!Save) 384 break; 385 } else { 386 // If the loop does not exit, there is no point in looking 387 // for a post-dominator outside the loop. 388 SmallVector<MachineBasicBlock*, 4> ExitBlocks; 389 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); 390 // Push Restore outside of this loop. 391 // Look for the immediate post-dominator of the loop exits. 392 MachineBasicBlock *IPdom = Restore; 393 for (MachineBasicBlock *LoopExitBB: ExitBlocks) { 394 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); 395 if (!IPdom) 396 break; 397 } 398 // If the immediate post-dominator is not in a less nested loop, 399 // then we are stuck in a program with an infinite loop. 400 // In that case, we will not find a safe point, hence, bail out. 401 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) 402 Restore = IPdom; 403 else { 404 Restore = nullptr; 405 break; 406 } 407 } 408 } 409 } 410 } 411 412 /// Check whether the edge (\p SrcBB, \p DestBB) is a backedge according to MLI. 413 /// I.e., check if it exists a loop that contains SrcBB and where DestBB is the 414 /// loop header. 415 static bool isProperBackedge(const MachineLoopInfo &MLI, 416 const MachineBasicBlock *SrcBB, 417 const MachineBasicBlock *DestBB) { 418 for (const MachineLoop *Loop = MLI.getLoopFor(SrcBB); Loop; 419 Loop = Loop->getParentLoop()) { 420 if (Loop->getHeader() == DestBB) 421 return true; 422 } 423 return false; 424 } 425 426 /// Check if the CFG of \p MF is irreducible. 427 static bool isIrreducibleCFG(const MachineFunction &MF, 428 const MachineLoopInfo &MLI) { 429 const MachineBasicBlock *Entry = &*MF.begin(); 430 ReversePostOrderTraversal<const MachineBasicBlock *> RPOT(Entry); 431 BitVector VisitedBB(MF.getNumBlockIDs()); 432 for (const MachineBasicBlock *MBB : RPOT) { 433 VisitedBB.set(MBB->getNumber()); 434 for (const MachineBasicBlock *SuccBB : MBB->successors()) { 435 if (!VisitedBB.test(SuccBB->getNumber())) 436 continue; 437 // We already visited SuccBB, thus MBB->SuccBB must be a backedge. 438 // Check that the head matches what we have in the loop information. 439 // Otherwise, we have an irreducible graph. 440 if (!isProperBackedge(MLI, MBB, SuccBB)) 441 return true; 442 } 443 } 444 return false; 445 } 446 447 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { 448 if (skipFunction(*MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) 449 return false; 450 451 DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); 452 453 init(MF); 454 455 if (isIrreducibleCFG(MF, *MLI)) { 456 // If MF is irreducible, a block may be in a loop without 457 // MachineLoopInfo reporting it. I.e., we may use the 458 // post-dominance property in loops, which lead to incorrect 459 // results. Moreover, we may miss that the prologue and 460 // epilogue are not in the same loop, leading to unbalanced 461 // construction/deconstruction of the stack frame. 462 DEBUG(dbgs() << "Irreducible CFGs are not supported yet\n"); 463 return false; 464 } 465 466 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 467 std::unique_ptr<RegScavenger> RS( 468 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); 469 470 for (MachineBasicBlock &MBB : MF) { 471 DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName() 472 << '\n'); 473 474 if (MBB.isEHFuncletEntry()) { 475 DEBUG(dbgs() << "EH Funclets are not supported yet.\n"); 476 return false; 477 } 478 479 for (const MachineInstr &MI : MBB) { 480 if (!useOrDefCSROrFI(MI, RS.get())) 481 continue; 482 // Save (resp. restore) point must dominate (resp. post dominate) 483 // MI. Look for the proper basic block for those. 484 updateSaveRestorePoints(MBB, RS.get()); 485 // If we are at a point where we cannot improve the placement of 486 // save/restore instructions, just give up. 487 if (!ArePointsInteresting()) { 488 DEBUG(dbgs() << "No Shrink wrap candidate found\n"); 489 return false; 490 } 491 // No need to look for other instructions, this basic block 492 // will already be part of the handled region. 493 break; 494 } 495 } 496 if (!ArePointsInteresting()) { 497 // If the points are not interesting at this point, then they must be null 498 // because it means we did not encounter any frame/CSR related code. 499 // Otherwise, we would have returned from the previous loop. 500 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); 501 DEBUG(dbgs() << "Nothing to shrink-wrap\n"); 502 return false; 503 } 504 505 DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq 506 << '\n'); 507 508 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 509 do { 510 DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " 511 << Save->getNumber() << ' ' << Save->getName() << ' ' 512 << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: " 513 << Restore->getNumber() << ' ' << Restore->getName() << ' ' 514 << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); 515 516 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; 517 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && 518 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && 519 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && 520 TFI->canUseAsEpilogue(*Restore))) 521 break; 522 DEBUG(dbgs() << "New points are too expensive or invalid for the target\n"); 523 MachineBasicBlock *NewBB; 524 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { 525 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 526 if (!Save) 527 break; 528 NewBB = Save; 529 } else { 530 // Restore is expensive. 531 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 532 if (!Restore) 533 break; 534 NewBB = Restore; 535 } 536 updateSaveRestorePoints(*NewBB, RS.get()); 537 } while (Save && Restore); 538 539 if (!ArePointsInteresting()) { 540 ++NumCandidatesDropped; 541 return false; 542 } 543 544 DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber() 545 << ' ' << Save->getName() << "\nRestore: " 546 << Restore->getNumber() << ' ' << Restore->getName() << '\n'); 547 548 MachineFrameInfo &MFI = MF.getFrameInfo(); 549 MFI.setSavePoint(Save); 550 MFI.setRestorePoint(Restore); 551 ++NumCandidates; 552 return false; 553 } 554 555 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { 556 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 557 558 switch (EnableShrinkWrapOpt) { 559 case cl::BOU_UNSET: 560 return TFI->enableShrinkWrapping(MF) && 561 // Windows with CFI has some limitations that make it impossible 562 // to use shrink-wrapping. 563 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 564 // Sanitizers look at the value of the stack at the location 565 // of the crash. Since a crash can happen anywhere, the 566 // frame must be lowered before anything else happen for the 567 // sanitizers to be able to get a correct stack frame. 568 !(MF.getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 569 MF.getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 570 MF.getFunction()->hasFnAttribute(Attribute::SanitizeMemory)); 571 // If EnableShrinkWrap is set, it takes precedence on whatever the 572 // target sets. The rational is that we assume we want to test 573 // something related to shrink-wrapping. 574 case cl::BOU_TRUE: 575 return true; 576 case cl::BOU_FALSE: 577 return false; 578 } 579 llvm_unreachable("Invalid shrink-wrapping state"); 580 } 581