1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for safe point where the prologue and epilogue can be
11 // inserted.
12 // The safe point for the prologue (resp. epilogue) is called Save
13 // (resp. Restore).
14 // A point is safe for prologue (resp. epilogue) if and only if
15 // it 1) dominates (resp. post-dominates) all the frame related operations and
16 // between 2) two executions of the Save (resp. Restore) point there is an
17 // execution of the Restore (resp. Save) point.
18 //
19 // For instance, the following points are safe:
20 // for (int i = 0; i < 10; ++i) {
21 //   Save
22 //   ...
23 //   Restore
24 // }
25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
26 // And the following points are not:
27 // for (int i = 0; i < 10; ++i) {
28 //   Save
29 //   ...
30 // }
31 // for (int i = 0; i < 10; ++i) {
32 //   ...
33 //   Restore
34 // }
35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
36 //
37 // This pass also ensures that the safe points are 3) cheaper than the regular
38 // entry and exits blocks.
39 //
40 // Property #1 is ensured via the use of MachineDominatorTree and
41 // MachinePostDominatorTree.
42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
43 // points must be in the same loop.
44 // Property #3 is ensured via the MachineBlockFrequencyInfo.
45 //
46 // If this pass found points matching all these properties, then
47 // MachineFrameInfo is updated with this information.
48 //
49 //===----------------------------------------------------------------------===//
50 
51 #include "llvm/ADT/BitVector.h"
52 #include "llvm/ADT/PostOrderIterator.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
58 #include "llvm/CodeGen/MachineDominators.h"
59 #include "llvm/CodeGen/MachineFrameInfo.h"
60 #include "llvm/CodeGen/MachineFunction.h"
61 #include "llvm/CodeGen/MachineFunctionPass.h"
62 #include "llvm/CodeGen/MachineInstr.h"
63 #include "llvm/CodeGen/MachineLoopInfo.h"
64 #include "llvm/CodeGen/MachineOperand.h"
65 #include "llvm/CodeGen/MachinePostDominators.h"
66 #include "llvm/CodeGen/RegisterClassInfo.h"
67 #include "llvm/CodeGen/RegisterScavenging.h"
68 #include "llvm/CodeGen/TargetFrameLowering.h"
69 #include "llvm/CodeGen/TargetInstrInfo.h"
70 #include "llvm/CodeGen/TargetRegisterInfo.h"
71 #include "llvm/CodeGen/TargetSubtargetInfo.h"
72 #include "llvm/IR/Attributes.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/MC/MCAsmInfo.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/ErrorHandling.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Target/TargetMachine.h"
81 #include <cassert>
82 #include <cstdint>
83 #include <memory>
84 
85 using namespace llvm;
86 
87 #define DEBUG_TYPE "shrink-wrap"
88 
89 STATISTIC(NumFunc, "Number of functions");
90 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
91 STATISTIC(NumCandidatesDropped,
92           "Number of shrink-wrapping candidates dropped because of frequency");
93 
94 static cl::opt<cl::boolOrDefault>
95 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
96                     cl::desc("enable the shrink-wrapping pass"));
97 
98 namespace {
99 
100 /// \brief Class to determine where the safe point to insert the
101 /// prologue and epilogue are.
102 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
103 /// shrink-wrapping term for prologue/epilogue placement, this pass
104 /// does not rely on expensive data-flow analysis. Instead we use the
105 /// dominance properties and loop information to decide which point
106 /// are safe for such insertion.
107 class ShrinkWrap : public MachineFunctionPass {
108   /// Hold callee-saved information.
109   RegisterClassInfo RCI;
110   MachineDominatorTree *MDT;
111   MachinePostDominatorTree *MPDT;
112 
113   /// Current safe point found for the prologue.
114   /// The prologue will be inserted before the first instruction
115   /// in this basic block.
116   MachineBasicBlock *Save;
117 
118   /// Current safe point found for the epilogue.
119   /// The epilogue will be inserted before the first terminator instruction
120   /// in this basic block.
121   MachineBasicBlock *Restore;
122 
123   /// Hold the information of the basic block frequency.
124   /// Use to check the profitability of the new points.
125   MachineBlockFrequencyInfo *MBFI;
126 
127   /// Hold the loop information. Used to determine if Save and Restore
128   /// are in the same loop.
129   MachineLoopInfo *MLI;
130 
131   /// Frequency of the Entry block.
132   uint64_t EntryFreq;
133 
134   /// Current opcode for frame setup.
135   unsigned FrameSetupOpcode;
136 
137   /// Current opcode for frame destroy.
138   unsigned FrameDestroyOpcode;
139 
140   /// Entry block.
141   const MachineBasicBlock *Entry;
142 
143   using SetOfRegs = SmallSetVector<unsigned, 16>;
144 
145   /// Registers that need to be saved for the current function.
146   mutable SetOfRegs CurrentCSRs;
147 
148   /// Current MachineFunction.
149   MachineFunction *MachineFunc;
150 
151   /// \brief Check if \p MI uses or defines a callee-saved register or
152   /// a frame index. If this is the case, this means \p MI must happen
153   /// after Save and before Restore.
154   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
155 
156   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
157     if (CurrentCSRs.empty()) {
158       BitVector SavedRegs;
159       const TargetFrameLowering *TFI =
160           MachineFunc->getSubtarget().getFrameLowering();
161 
162       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
163 
164       for (int Reg = SavedRegs.find_first(); Reg != -1;
165            Reg = SavedRegs.find_next(Reg))
166         CurrentCSRs.insert((unsigned)Reg);
167     }
168     return CurrentCSRs;
169   }
170 
171   /// \brief Update the Save and Restore points such that \p MBB is in
172   /// the region that is dominated by Save and post-dominated by Restore
173   /// and Save and Restore still match the safe point definition.
174   /// Such point may not exist and Save and/or Restore may be null after
175   /// this call.
176   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
177 
178   /// \brief Initialize the pass for \p MF.
179   void init(MachineFunction &MF) {
180     RCI.runOnMachineFunction(MF);
181     MDT = &getAnalysis<MachineDominatorTree>();
182     MPDT = &getAnalysis<MachinePostDominatorTree>();
183     Save = nullptr;
184     Restore = nullptr;
185     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
186     MLI = &getAnalysis<MachineLoopInfo>();
187     EntryFreq = MBFI->getEntryFreq();
188     const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
189     FrameSetupOpcode = TII.getCallFrameSetupOpcode();
190     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
191     Entry = &MF.front();
192     CurrentCSRs.clear();
193     MachineFunc = &MF;
194 
195     ++NumFunc;
196   }
197 
198   /// Check whether or not Save and Restore points are still interesting for
199   /// shrink-wrapping.
200   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
201 
202   /// \brief Check if shrink wrapping is enabled for this target and function.
203   static bool isShrinkWrapEnabled(const MachineFunction &MF);
204 
205 public:
206   static char ID;
207 
208   ShrinkWrap() : MachineFunctionPass(ID) {
209     initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
210   }
211 
212   void getAnalysisUsage(AnalysisUsage &AU) const override {
213     AU.setPreservesAll();
214     AU.addRequired<MachineBlockFrequencyInfo>();
215     AU.addRequired<MachineDominatorTree>();
216     AU.addRequired<MachinePostDominatorTree>();
217     AU.addRequired<MachineLoopInfo>();
218     MachineFunctionPass::getAnalysisUsage(AU);
219   }
220 
221   StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
222 
223   /// \brief Perform the shrink-wrapping analysis and update
224   /// the MachineFrameInfo attached to \p MF with the results.
225   bool runOnMachineFunction(MachineFunction &MF) override;
226 };
227 
228 } // end anonymous namespace
229 
230 char ShrinkWrap::ID = 0;
231 
232 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
233 
234 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
235 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
236 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
237 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
238 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
239 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
240 
241 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
242                                  RegScavenger *RS) const {
243   if (MI.getOpcode() == FrameSetupOpcode ||
244       MI.getOpcode() == FrameDestroyOpcode) {
245     DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
246     return true;
247   }
248   for (const MachineOperand &MO : MI.operands()) {
249     bool UseOrDefCSR = false;
250     if (MO.isReg()) {
251       unsigned PhysReg = MO.getReg();
252       if (!PhysReg)
253         continue;
254       assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
255              "Unallocated register?!");
256       UseOrDefCSR = RCI.getLastCalleeSavedAlias(PhysReg);
257     } else if (MO.isRegMask()) {
258       // Check if this regmask clobbers any of the CSRs.
259       for (unsigned Reg : getCurrentCSRs(RS)) {
260         if (MO.clobbersPhysReg(Reg)) {
261           UseOrDefCSR = true;
262           break;
263         }
264       }
265     }
266     if (UseOrDefCSR || MO.isFI()) {
267       DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
268                    << MO.isFI() << "): " << MI << '\n');
269       return true;
270     }
271   }
272   return false;
273 }
274 
275 /// \brief Helper function to find the immediate (post) dominator.
276 template <typename ListOfBBs, typename DominanceAnalysis>
277 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
278                                    DominanceAnalysis &Dom) {
279   MachineBasicBlock *IDom = &Block;
280   for (MachineBasicBlock *BB : BBs) {
281     IDom = Dom.findNearestCommonDominator(IDom, BB);
282     if (!IDom)
283       break;
284   }
285   if (IDom == &Block)
286     return nullptr;
287   return IDom;
288 }
289 
290 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
291                                          RegScavenger *RS) {
292   // Get rid of the easy cases first.
293   if (!Save)
294     Save = &MBB;
295   else
296     Save = MDT->findNearestCommonDominator(Save, &MBB);
297 
298   if (!Save) {
299     DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
300     return;
301   }
302 
303   if (!Restore)
304     Restore = &MBB;
305   else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
306                                 // means the block never returns. If that's the
307                                 // case, we don't want to call
308                                 // `findNearestCommonDominator`, which will
309                                 // return `Restore`.
310     Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
311   else
312     Restore = nullptr; // Abort, we can't find a restore point in this case.
313 
314   // Make sure we would be able to insert the restore code before the
315   // terminator.
316   if (Restore == &MBB) {
317     for (const MachineInstr &Terminator : MBB.terminators()) {
318       if (!useOrDefCSROrFI(Terminator, RS))
319         continue;
320       // One of the terminator needs to happen before the restore point.
321       if (MBB.succ_empty()) {
322         Restore = nullptr; // Abort, we can't find a restore point in this case.
323         break;
324       }
325       // Look for a restore point that post-dominates all the successors.
326       // The immediate post-dominator is what we are looking for.
327       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
328       break;
329     }
330   }
331 
332   if (!Restore) {
333     DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n");
334     return;
335   }
336 
337   // Make sure Save and Restore are suitable for shrink-wrapping:
338   // 1. all path from Save needs to lead to Restore before exiting.
339   // 2. all path to Restore needs to go through Save from Entry.
340   // We achieve that by making sure that:
341   // A. Save dominates Restore.
342   // B. Restore post-dominates Save.
343   // C. Save and Restore are in the same loop.
344   bool SaveDominatesRestore = false;
345   bool RestorePostDominatesSave = false;
346   while (Save && Restore &&
347          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
348           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
349           // Post-dominance is not enough in loops to ensure that all uses/defs
350           // are after the prologue and before the epilogue at runtime.
351           // E.g.,
352           // while(1) {
353           //  Save
354           //  Restore
355           //   if (...)
356           //     break;
357           //  use/def CSRs
358           // }
359           // All the uses/defs of CSRs are dominated by Save and post-dominated
360           // by Restore. However, the CSRs uses are still reachable after
361           // Restore and before Save are executed.
362           //
363           // For now, just push the restore/save points outside of loops.
364           // FIXME: Refine the criteria to still find interesting cases
365           // for loops.
366           MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
367     // Fix (A).
368     if (!SaveDominatesRestore) {
369       Save = MDT->findNearestCommonDominator(Save, Restore);
370       continue;
371     }
372     // Fix (B).
373     if (!RestorePostDominatesSave)
374       Restore = MPDT->findNearestCommonDominator(Restore, Save);
375 
376     // Fix (C).
377     if (Save && Restore &&
378         (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
379       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
380         // Push Save outside of this loop if immediate dominator is different
381         // from save block. If immediate dominator is not different, bail out.
382         Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
383         if (!Save)
384           break;
385       } else {
386         // If the loop does not exit, there is no point in looking
387         // for a post-dominator outside the loop.
388         SmallVector<MachineBasicBlock*, 4> ExitBlocks;
389         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
390         // Push Restore outside of this loop.
391         // Look for the immediate post-dominator of the loop exits.
392         MachineBasicBlock *IPdom = Restore;
393         for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
394           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
395           if (!IPdom)
396             break;
397         }
398         // If the immediate post-dominator is not in a less nested loop,
399         // then we are stuck in a program with an infinite loop.
400         // In that case, we will not find a safe point, hence, bail out.
401         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
402           Restore = IPdom;
403         else {
404           Restore = nullptr;
405           break;
406         }
407       }
408     }
409   }
410 }
411 
412 /// Check whether the edge (\p SrcBB, \p DestBB) is a backedge according to MLI.
413 /// I.e., check if it exists a loop that contains SrcBB and where DestBB is the
414 /// loop header.
415 static bool isProperBackedge(const MachineLoopInfo &MLI,
416                              const MachineBasicBlock *SrcBB,
417                              const MachineBasicBlock *DestBB) {
418   for (const MachineLoop *Loop = MLI.getLoopFor(SrcBB); Loop;
419        Loop = Loop->getParentLoop()) {
420     if (Loop->getHeader() == DestBB)
421       return true;
422   }
423   return false;
424 }
425 
426 /// Check if the CFG of \p MF is irreducible.
427 static bool isIrreducibleCFG(const MachineFunction &MF,
428                              const MachineLoopInfo &MLI) {
429   const MachineBasicBlock *Entry = &*MF.begin();
430   ReversePostOrderTraversal<const MachineBasicBlock *> RPOT(Entry);
431   BitVector VisitedBB(MF.getNumBlockIDs());
432   for (const MachineBasicBlock *MBB : RPOT) {
433     VisitedBB.set(MBB->getNumber());
434     for (const MachineBasicBlock *SuccBB : MBB->successors()) {
435       if (!VisitedBB.test(SuccBB->getNumber()))
436         continue;
437       // We already visited SuccBB, thus MBB->SuccBB must be a backedge.
438       // Check that the head matches what we have in the loop information.
439       // Otherwise, we have an irreducible graph.
440       if (!isProperBackedge(MLI, MBB, SuccBB))
441         return true;
442     }
443   }
444   return false;
445 }
446 
447 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
448   if (skipFunction(*MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
449     return false;
450 
451   DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
452 
453   init(MF);
454 
455   if (isIrreducibleCFG(MF, *MLI)) {
456     // If MF is irreducible, a block may be in a loop without
457     // MachineLoopInfo reporting it. I.e., we may use the
458     // post-dominance property in loops, which lead to incorrect
459     // results. Moreover, we may miss that the prologue and
460     // epilogue are not in the same loop, leading to unbalanced
461     // construction/deconstruction of the stack frame.
462     DEBUG(dbgs() << "Irreducible CFGs are not supported yet\n");
463     return false;
464   }
465 
466   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
467   std::unique_ptr<RegScavenger> RS(
468       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
469 
470   for (MachineBasicBlock &MBB : MF) {
471     DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName()
472                  << '\n');
473 
474     if (MBB.isEHFuncletEntry()) {
475       DEBUG(dbgs() << "EH Funclets are not supported yet.\n");
476       return false;
477     }
478 
479     for (const MachineInstr &MI : MBB) {
480       if (!useOrDefCSROrFI(MI, RS.get()))
481         continue;
482       // Save (resp. restore) point must dominate (resp. post dominate)
483       // MI. Look for the proper basic block for those.
484       updateSaveRestorePoints(MBB, RS.get());
485       // If we are at a point where we cannot improve the placement of
486       // save/restore instructions, just give up.
487       if (!ArePointsInteresting()) {
488         DEBUG(dbgs() << "No Shrink wrap candidate found\n");
489         return false;
490       }
491       // No need to look for other instructions, this basic block
492       // will already be part of the handled region.
493       break;
494     }
495   }
496   if (!ArePointsInteresting()) {
497     // If the points are not interesting at this point, then they must be null
498     // because it means we did not encounter any frame/CSR related code.
499     // Otherwise, we would have returned from the previous loop.
500     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
501     DEBUG(dbgs() << "Nothing to shrink-wrap\n");
502     return false;
503   }
504 
505   DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
506                << '\n');
507 
508   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
509   do {
510     DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
511                  << Save->getNumber() << ' ' << Save->getName() << ' '
512                  << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: "
513                  << Restore->getNumber() << ' ' << Restore->getName() << ' '
514                  << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
515 
516     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
517     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
518          EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
519         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
520          TFI->canUseAsEpilogue(*Restore)))
521       break;
522     DEBUG(dbgs() << "New points are too expensive or invalid for the target\n");
523     MachineBasicBlock *NewBB;
524     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
525       Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
526       if (!Save)
527         break;
528       NewBB = Save;
529     } else {
530       // Restore is expensive.
531       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
532       if (!Restore)
533         break;
534       NewBB = Restore;
535     }
536     updateSaveRestorePoints(*NewBB, RS.get());
537   } while (Save && Restore);
538 
539   if (!ArePointsInteresting()) {
540     ++NumCandidatesDropped;
541     return false;
542   }
543 
544   DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber()
545                << ' ' << Save->getName() << "\nRestore: "
546                << Restore->getNumber() << ' ' << Restore->getName() << '\n');
547 
548   MachineFrameInfo &MFI = MF.getFrameInfo();
549   MFI.setSavePoint(Save);
550   MFI.setRestorePoint(Restore);
551   ++NumCandidates;
552   return false;
553 }
554 
555 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
556   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
557 
558   switch (EnableShrinkWrapOpt) {
559   case cl::BOU_UNSET:
560     return TFI->enableShrinkWrapping(MF) &&
561       // Windows with CFI has some limitations that make it impossible
562       // to use shrink-wrapping.
563       !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
564       // Sanitizers look at the value of the stack at the location
565       // of the crash. Since a crash can happen anywhere, the
566       // frame must be lowered before anything else happen for the
567       // sanitizers to be able to get a correct stack frame.
568       !(MF.getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
569         MF.getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
570         MF.getFunction()->hasFnAttribute(Attribute::SanitizeMemory));
571   // If EnableShrinkWrap is set, it takes precedence on whatever the
572   // target sets. The rational is that we assume we want to test
573   // something related to shrink-wrapping.
574   case cl::BOU_TRUE:
575     return true;
576   case cl::BOU_FALSE:
577     return false;
578   }
579   llvm_unreachable("Invalid shrink-wrapping state");
580 }
581