1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for safe point where the prologue and epilogue can be 11 // inserted. 12 // The safe point for the prologue (resp. epilogue) is called Save 13 // (resp. Restore). 14 // A point is safe for prologue (resp. epilogue) if and only if 15 // it 1) dominates (resp. post-dominates) all the frame related operations and 16 // between 2) two executions of the Save (resp. Restore) point there is an 17 // execution of the Restore (resp. Save) point. 18 // 19 // For instance, the following points are safe: 20 // for (int i = 0; i < 10; ++i) { 21 // Save 22 // ... 23 // Restore 24 // } 25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... 26 // And the following points are not: 27 // for (int i = 0; i < 10; ++i) { 28 // Save 29 // ... 30 // } 31 // for (int i = 0; i < 10; ++i) { 32 // ... 33 // Restore 34 // } 35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. 36 // 37 // This pass also ensures that the safe points are 3) cheaper than the regular 38 // entry and exits blocks. 39 // 40 // Property #1 is ensured via the use of MachineDominatorTree and 41 // MachinePostDominatorTree. 42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both 43 // points must be in the same loop. 44 // Property #3 is ensured via the MachineBlockFrequencyInfo. 45 // 46 // If this pass found points matching all these properties, then 47 // MachineFrameInfo is updated with this information. 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/ADT/BitVector.h" 52 #include "llvm/ADT/PostOrderIterator.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/CodeGen/MachineBasicBlock.h" 58 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 59 #include "llvm/CodeGen/MachineDominators.h" 60 #include "llvm/CodeGen/MachineFrameInfo.h" 61 #include "llvm/CodeGen/MachineFunction.h" 62 #include "llvm/CodeGen/MachineFunctionPass.h" 63 #include "llvm/CodeGen/MachineInstr.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineOperand.h" 66 #include "llvm/CodeGen/MachinePostDominators.h" 67 #include "llvm/CodeGen/RegisterClassInfo.h" 68 #include "llvm/CodeGen/RegisterScavenging.h" 69 #include "llvm/CodeGen/TargetFrameLowering.h" 70 #include "llvm/CodeGen/TargetInstrInfo.h" 71 #include "llvm/CodeGen/TargetLowering.h" 72 #include "llvm/CodeGen/TargetRegisterInfo.h" 73 #include "llvm/CodeGen/TargetSubtargetInfo.h" 74 #include "llvm/IR/Attributes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/MC/MCAsmInfo.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Target/TargetMachine.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <memory> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "shrink-wrap" 90 91 STATISTIC(NumFunc, "Number of functions"); 92 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); 93 STATISTIC(NumCandidatesDropped, 94 "Number of shrink-wrapping candidates dropped because of frequency"); 95 96 static cl::opt<cl::boolOrDefault> 97 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, 98 cl::desc("enable the shrink-wrapping pass")); 99 100 namespace { 101 102 /// Class to determine where the safe point to insert the 103 /// prologue and epilogue are. 104 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the 105 /// shrink-wrapping term for prologue/epilogue placement, this pass 106 /// does not rely on expensive data-flow analysis. Instead we use the 107 /// dominance properties and loop information to decide which point 108 /// are safe for such insertion. 109 class ShrinkWrap : public MachineFunctionPass { 110 /// Hold callee-saved information. 111 RegisterClassInfo RCI; 112 MachineDominatorTree *MDT; 113 MachinePostDominatorTree *MPDT; 114 115 /// Current safe point found for the prologue. 116 /// The prologue will be inserted before the first instruction 117 /// in this basic block. 118 MachineBasicBlock *Save; 119 120 /// Current safe point found for the epilogue. 121 /// The epilogue will be inserted before the first terminator instruction 122 /// in this basic block. 123 MachineBasicBlock *Restore; 124 125 /// Hold the information of the basic block frequency. 126 /// Use to check the profitability of the new points. 127 MachineBlockFrequencyInfo *MBFI; 128 129 /// Hold the loop information. Used to determine if Save and Restore 130 /// are in the same loop. 131 MachineLoopInfo *MLI; 132 133 /// Frequency of the Entry block. 134 uint64_t EntryFreq; 135 136 /// Current opcode for frame setup. 137 unsigned FrameSetupOpcode; 138 139 /// Current opcode for frame destroy. 140 unsigned FrameDestroyOpcode; 141 142 /// Stack pointer register, used by llvm.{savestack,restorestack} 143 unsigned SP; 144 145 /// Entry block. 146 const MachineBasicBlock *Entry; 147 148 using SetOfRegs = SmallSetVector<unsigned, 16>; 149 150 /// Registers that need to be saved for the current function. 151 mutable SetOfRegs CurrentCSRs; 152 153 /// Current MachineFunction. 154 MachineFunction *MachineFunc; 155 156 /// Check if \p MI uses or defines a callee-saved register or 157 /// a frame index. If this is the case, this means \p MI must happen 158 /// after Save and before Restore. 159 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const; 160 161 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { 162 if (CurrentCSRs.empty()) { 163 BitVector SavedRegs; 164 const TargetFrameLowering *TFI = 165 MachineFunc->getSubtarget().getFrameLowering(); 166 167 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); 168 169 for (int Reg = SavedRegs.find_first(); Reg != -1; 170 Reg = SavedRegs.find_next(Reg)) 171 CurrentCSRs.insert((unsigned)Reg); 172 } 173 return CurrentCSRs; 174 } 175 176 /// Update the Save and Restore points such that \p MBB is in 177 /// the region that is dominated by Save and post-dominated by Restore 178 /// and Save and Restore still match the safe point definition. 179 /// Such point may not exist and Save and/or Restore may be null after 180 /// this call. 181 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); 182 183 /// Initialize the pass for \p MF. 184 void init(MachineFunction &MF) { 185 RCI.runOnMachineFunction(MF); 186 MDT = &getAnalysis<MachineDominatorTree>(); 187 MPDT = &getAnalysis<MachinePostDominatorTree>(); 188 Save = nullptr; 189 Restore = nullptr; 190 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 191 MLI = &getAnalysis<MachineLoopInfo>(); 192 EntryFreq = MBFI->getEntryFreq(); 193 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 194 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 195 FrameSetupOpcode = TII.getCallFrameSetupOpcode(); 196 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); 197 SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); 198 Entry = &MF.front(); 199 CurrentCSRs.clear(); 200 MachineFunc = &MF; 201 202 ++NumFunc; 203 } 204 205 /// Check whether or not Save and Restore points are still interesting for 206 /// shrink-wrapping. 207 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } 208 209 /// Check if shrink wrapping is enabled for this target and function. 210 static bool isShrinkWrapEnabled(const MachineFunction &MF); 211 212 public: 213 static char ID; 214 215 ShrinkWrap() : MachineFunctionPass(ID) { 216 initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); 217 } 218 219 void getAnalysisUsage(AnalysisUsage &AU) const override { 220 AU.setPreservesAll(); 221 AU.addRequired<MachineBlockFrequencyInfo>(); 222 AU.addRequired<MachineDominatorTree>(); 223 AU.addRequired<MachinePostDominatorTree>(); 224 AU.addRequired<MachineLoopInfo>(); 225 MachineFunctionPass::getAnalysisUsage(AU); 226 } 227 228 MachineFunctionProperties getRequiredProperties() const override { 229 return MachineFunctionProperties().set( 230 MachineFunctionProperties::Property::NoVRegs); 231 } 232 233 StringRef getPassName() const override { return "Shrink Wrapping analysis"; } 234 235 /// Perform the shrink-wrapping analysis and update 236 /// the MachineFrameInfo attached to \p MF with the results. 237 bool runOnMachineFunction(MachineFunction &MF) override; 238 }; 239 240 } // end anonymous namespace 241 242 char ShrinkWrap::ID = 0; 243 244 char &llvm::ShrinkWrapID = ShrinkWrap::ID; 245 246 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 247 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 248 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 249 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 250 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 251 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 252 253 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, 254 RegScavenger *RS) const { 255 if (MI.getOpcode() == FrameSetupOpcode || 256 MI.getOpcode() == FrameDestroyOpcode) { 257 LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); 258 return true; 259 } 260 for (const MachineOperand &MO : MI.operands()) { 261 bool UseOrDefCSR = false; 262 if (MO.isReg()) { 263 // Ignore instructions like DBG_VALUE which don't read/def the register. 264 if (!MO.isDef() && !MO.readsReg()) 265 continue; 266 unsigned PhysReg = MO.getReg(); 267 if (!PhysReg) 268 continue; 269 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 270 "Unallocated register?!"); 271 // The stack pointer is not normally described as a callee-saved register 272 // in calling convention definitions, so we need to watch for it 273 // separately. An SP mentioned by a call instruction, we can ignore, 274 // though, as it's harmless and we do not want to effectively disable tail 275 // calls by forcing the restore point to post-dominate them. 276 UseOrDefCSR = (!MI.isCall() && PhysReg == SP) || 277 RCI.getLastCalleeSavedAlias(PhysReg); 278 } else if (MO.isRegMask()) { 279 // Check if this regmask clobbers any of the CSRs. 280 for (unsigned Reg : getCurrentCSRs(RS)) { 281 if (MO.clobbersPhysReg(Reg)) { 282 UseOrDefCSR = true; 283 break; 284 } 285 } 286 } 287 // Skip FrameIndex operands in DBG_VALUE instructions. 288 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { 289 LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" 290 << MO.isFI() << "): " << MI << '\n'); 291 return true; 292 } 293 } 294 return false; 295 } 296 297 /// Helper function to find the immediate (post) dominator. 298 template <typename ListOfBBs, typename DominanceAnalysis> 299 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, 300 DominanceAnalysis &Dom) { 301 MachineBasicBlock *IDom = &Block; 302 for (MachineBasicBlock *BB : BBs) { 303 IDom = Dom.findNearestCommonDominator(IDom, BB); 304 if (!IDom) 305 break; 306 } 307 if (IDom == &Block) 308 return nullptr; 309 return IDom; 310 } 311 312 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, 313 RegScavenger *RS) { 314 // Get rid of the easy cases first. 315 if (!Save) 316 Save = &MBB; 317 else 318 Save = MDT->findNearestCommonDominator(Save, &MBB); 319 320 if (!Save) { 321 LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n"); 322 return; 323 } 324 325 if (!Restore) 326 Restore = &MBB; 327 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it 328 // means the block never returns. If that's the 329 // case, we don't want to call 330 // `findNearestCommonDominator`, which will 331 // return `Restore`. 332 Restore = MPDT->findNearestCommonDominator(Restore, &MBB); 333 else 334 Restore = nullptr; // Abort, we can't find a restore point in this case. 335 336 // Make sure we would be able to insert the restore code before the 337 // terminator. 338 if (Restore == &MBB) { 339 for (const MachineInstr &Terminator : MBB.terminators()) { 340 if (!useOrDefCSROrFI(Terminator, RS)) 341 continue; 342 // One of the terminator needs to happen before the restore point. 343 if (MBB.succ_empty()) { 344 Restore = nullptr; // Abort, we can't find a restore point in this case. 345 break; 346 } 347 // Look for a restore point that post-dominates all the successors. 348 // The immediate post-dominator is what we are looking for. 349 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 350 break; 351 } 352 } 353 354 if (!Restore) { 355 LLVM_DEBUG( 356 dbgs() << "Restore point needs to be spanned on several blocks\n"); 357 return; 358 } 359 360 // Make sure Save and Restore are suitable for shrink-wrapping: 361 // 1. all path from Save needs to lead to Restore before exiting. 362 // 2. all path to Restore needs to go through Save from Entry. 363 // We achieve that by making sure that: 364 // A. Save dominates Restore. 365 // B. Restore post-dominates Save. 366 // C. Save and Restore are in the same loop. 367 bool SaveDominatesRestore = false; 368 bool RestorePostDominatesSave = false; 369 while (Save && Restore && 370 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || 371 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || 372 // Post-dominance is not enough in loops to ensure that all uses/defs 373 // are after the prologue and before the epilogue at runtime. 374 // E.g., 375 // while(1) { 376 // Save 377 // Restore 378 // if (...) 379 // break; 380 // use/def CSRs 381 // } 382 // All the uses/defs of CSRs are dominated by Save and post-dominated 383 // by Restore. However, the CSRs uses are still reachable after 384 // Restore and before Save are executed. 385 // 386 // For now, just push the restore/save points outside of loops. 387 // FIXME: Refine the criteria to still find interesting cases 388 // for loops. 389 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 390 // Fix (A). 391 if (!SaveDominatesRestore) { 392 Save = MDT->findNearestCommonDominator(Save, Restore); 393 continue; 394 } 395 // Fix (B). 396 if (!RestorePostDominatesSave) 397 Restore = MPDT->findNearestCommonDominator(Restore, Save); 398 399 // Fix (C). 400 if (Save && Restore && 401 (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 402 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { 403 // Push Save outside of this loop if immediate dominator is different 404 // from save block. If immediate dominator is not different, bail out. 405 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 406 if (!Save) 407 break; 408 } else { 409 // If the loop does not exit, there is no point in looking 410 // for a post-dominator outside the loop. 411 SmallVector<MachineBasicBlock*, 4> ExitBlocks; 412 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); 413 // Push Restore outside of this loop. 414 // Look for the immediate post-dominator of the loop exits. 415 MachineBasicBlock *IPdom = Restore; 416 for (MachineBasicBlock *LoopExitBB: ExitBlocks) { 417 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); 418 if (!IPdom) 419 break; 420 } 421 // If the immediate post-dominator is not in a less nested loop, 422 // then we are stuck in a program with an infinite loop. 423 // In that case, we will not find a safe point, hence, bail out. 424 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) 425 Restore = IPdom; 426 else { 427 Restore = nullptr; 428 break; 429 } 430 } 431 } 432 } 433 } 434 435 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { 436 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) 437 return false; 438 439 LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); 440 441 init(MF); 442 443 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); 444 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) { 445 // If MF is irreducible, a block may be in a loop without 446 // MachineLoopInfo reporting it. I.e., we may use the 447 // post-dominance property in loops, which lead to incorrect 448 // results. Moreover, we may miss that the prologue and 449 // epilogue are not in the same loop, leading to unbalanced 450 // construction/deconstruction of the stack frame. 451 LLVM_DEBUG(dbgs() << "Irreducible CFGs are not supported yet\n"); 452 return false; 453 } 454 455 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 456 std::unique_ptr<RegScavenger> RS( 457 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); 458 459 for (MachineBasicBlock &MBB : MF) { 460 LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' 461 << MBB.getName() << '\n'); 462 463 if (MBB.isEHFuncletEntry()) { 464 LLVM_DEBUG(dbgs() << "EH Funclets are not supported yet.\n"); 465 return false; 466 } 467 468 if (MBB.isEHPad()) { 469 // Push the prologue and epilogue outside of 470 // the region that may throw by making sure 471 // that all the landing pads are at least at the 472 // boundary of the save and restore points. 473 // The problem with exceptions is that the throw 474 // is not properly modeled and in particular, a 475 // basic block can jump out from the middle. 476 updateSaveRestorePoints(MBB, RS.get()); 477 if (!ArePointsInteresting()) { 478 LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n"); 479 return false; 480 } 481 continue; 482 } 483 484 for (const MachineInstr &MI : MBB) { 485 if (!useOrDefCSROrFI(MI, RS.get())) 486 continue; 487 // Save (resp. restore) point must dominate (resp. post dominate) 488 // MI. Look for the proper basic block for those. 489 updateSaveRestorePoints(MBB, RS.get()); 490 // If we are at a point where we cannot improve the placement of 491 // save/restore instructions, just give up. 492 if (!ArePointsInteresting()) { 493 LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n"); 494 return false; 495 } 496 // No need to look for other instructions, this basic block 497 // will already be part of the handled region. 498 break; 499 } 500 } 501 if (!ArePointsInteresting()) { 502 // If the points are not interesting at this point, then they must be null 503 // because it means we did not encounter any frame/CSR related code. 504 // Otherwise, we would have returned from the previous loop. 505 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); 506 LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n"); 507 return false; 508 } 509 510 LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq 511 << '\n'); 512 513 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 514 do { 515 LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " 516 << Save->getNumber() << ' ' << Save->getName() << ' ' 517 << MBFI->getBlockFreq(Save).getFrequency() 518 << "\nRestore: " << Restore->getNumber() << ' ' 519 << Restore->getName() << ' ' 520 << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); 521 522 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; 523 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && 524 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && 525 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && 526 TFI->canUseAsEpilogue(*Restore))) 527 break; 528 LLVM_DEBUG( 529 dbgs() << "New points are too expensive or invalid for the target\n"); 530 MachineBasicBlock *NewBB; 531 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { 532 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 533 if (!Save) 534 break; 535 NewBB = Save; 536 } else { 537 // Restore is expensive. 538 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 539 if (!Restore) 540 break; 541 NewBB = Restore; 542 } 543 updateSaveRestorePoints(*NewBB, RS.get()); 544 } while (Save && Restore); 545 546 if (!ArePointsInteresting()) { 547 ++NumCandidatesDropped; 548 return false; 549 } 550 551 LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " 552 << Save->getNumber() << ' ' << Save->getName() 553 << "\nRestore: " << Restore->getNumber() << ' ' 554 << Restore->getName() << '\n'); 555 556 MachineFrameInfo &MFI = MF.getFrameInfo(); 557 MFI.setSavePoint(Save); 558 MFI.setRestorePoint(Restore); 559 ++NumCandidates; 560 return false; 561 } 562 563 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { 564 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 565 566 switch (EnableShrinkWrapOpt) { 567 case cl::BOU_UNSET: 568 return TFI->enableShrinkWrapping(MF) && 569 // Windows with CFI has some limitations that make it impossible 570 // to use shrink-wrapping. 571 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 572 // Sanitizers look at the value of the stack at the location 573 // of the crash. Since a crash can happen anywhere, the 574 // frame must be lowered before anything else happen for the 575 // sanitizers to be able to get a correct stack frame. 576 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || 577 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || 578 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || 579 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); 580 // If EnableShrinkWrap is set, it takes precedence on whatever the 581 // target sets. The rational is that we assume we want to test 582 // something related to shrink-wrapping. 583 case cl::BOU_TRUE: 584 return true; 585 case cl::BOU_FALSE: 586 return false; 587 } 588 llvm_unreachable("Invalid shrink-wrapping state"); 589 } 590