1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass looks for safe point where the prologue and epilogue can be 10 // inserted. 11 // The safe point for the prologue (resp. epilogue) is called Save 12 // (resp. Restore). 13 // A point is safe for prologue (resp. epilogue) if and only if 14 // it 1) dominates (resp. post-dominates) all the frame related operations and 15 // between 2) two executions of the Save (resp. Restore) point there is an 16 // execution of the Restore (resp. Save) point. 17 // 18 // For instance, the following points are safe: 19 // for (int i = 0; i < 10; ++i) { 20 // Save 21 // ... 22 // Restore 23 // } 24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... 25 // And the following points are not: 26 // for (int i = 0; i < 10; ++i) { 27 // Save 28 // ... 29 // } 30 // for (int i = 0; i < 10; ++i) { 31 // ... 32 // Restore 33 // } 34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. 35 // 36 // This pass also ensures that the safe points are 3) cheaper than the regular 37 // entry and exits blocks. 38 // 39 // Property #1 is ensured via the use of MachineDominatorTree and 40 // MachinePostDominatorTree. 41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both 42 // points must be in the same loop. 43 // Property #3 is ensured via the MachineBlockFrequencyInfo. 44 // 45 // If this pass found points matching all these properties, then 46 // MachineFrameInfo is updated with this information. 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/ADT/BitVector.h" 51 #include "llvm/ADT/PostOrderIterator.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/CFG.h" 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 58 #include "llvm/CodeGen/MachineDominators.h" 59 #include "llvm/CodeGen/MachineFrameInfo.h" 60 #include "llvm/CodeGen/MachineFunction.h" 61 #include "llvm/CodeGen/MachineFunctionPass.h" 62 #include "llvm/CodeGen/MachineInstr.h" 63 #include "llvm/CodeGen/MachineLoopInfo.h" 64 #include "llvm/CodeGen/MachineOperand.h" 65 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 66 #include "llvm/CodeGen/MachinePostDominators.h" 67 #include "llvm/CodeGen/RegisterClassInfo.h" 68 #include "llvm/CodeGen/RegisterScavenging.h" 69 #include "llvm/CodeGen/TargetFrameLowering.h" 70 #include "llvm/CodeGen/TargetInstrInfo.h" 71 #include "llvm/CodeGen/TargetLowering.h" 72 #include "llvm/CodeGen/TargetRegisterInfo.h" 73 #include "llvm/CodeGen/TargetSubtargetInfo.h" 74 #include "llvm/IR/Attributes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/MC/MCAsmInfo.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Target/TargetMachine.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <memory> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "shrink-wrap" 90 91 STATISTIC(NumFunc, "Number of functions"); 92 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); 93 STATISTIC(NumCandidatesDropped, 94 "Number of shrink-wrapping candidates dropped because of frequency"); 95 96 static cl::opt<cl::boolOrDefault> 97 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, 98 cl::desc("enable the shrink-wrapping pass")); 99 100 namespace { 101 102 /// Class to determine where the safe point to insert the 103 /// prologue and epilogue are. 104 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the 105 /// shrink-wrapping term for prologue/epilogue placement, this pass 106 /// does not rely on expensive data-flow analysis. Instead we use the 107 /// dominance properties and loop information to decide which point 108 /// are safe for such insertion. 109 class ShrinkWrap : public MachineFunctionPass { 110 /// Hold callee-saved information. 111 RegisterClassInfo RCI; 112 MachineDominatorTree *MDT; 113 MachinePostDominatorTree *MPDT; 114 115 /// Current safe point found for the prologue. 116 /// The prologue will be inserted before the first instruction 117 /// in this basic block. 118 MachineBasicBlock *Save; 119 120 /// Current safe point found for the epilogue. 121 /// The epilogue will be inserted before the first terminator instruction 122 /// in this basic block. 123 MachineBasicBlock *Restore; 124 125 /// Hold the information of the basic block frequency. 126 /// Use to check the profitability of the new points. 127 MachineBlockFrequencyInfo *MBFI; 128 129 /// Hold the loop information. Used to determine if Save and Restore 130 /// are in the same loop. 131 MachineLoopInfo *MLI; 132 133 // Emit remarks. 134 MachineOptimizationRemarkEmitter *ORE = nullptr; 135 136 /// Frequency of the Entry block. 137 uint64_t EntryFreq; 138 139 /// Current opcode for frame setup. 140 unsigned FrameSetupOpcode; 141 142 /// Current opcode for frame destroy. 143 unsigned FrameDestroyOpcode; 144 145 /// Stack pointer register, used by llvm.{savestack,restorestack} 146 unsigned SP; 147 148 /// Entry block. 149 const MachineBasicBlock *Entry; 150 151 using SetOfRegs = SmallSetVector<unsigned, 16>; 152 153 /// Registers that need to be saved for the current function. 154 mutable SetOfRegs CurrentCSRs; 155 156 /// Current MachineFunction. 157 MachineFunction *MachineFunc; 158 159 /// Check if \p MI uses or defines a callee-saved register or 160 /// a frame index. If this is the case, this means \p MI must happen 161 /// after Save and before Restore. 162 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const; 163 164 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { 165 if (CurrentCSRs.empty()) { 166 BitVector SavedRegs; 167 const TargetFrameLowering *TFI = 168 MachineFunc->getSubtarget().getFrameLowering(); 169 170 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); 171 172 for (int Reg = SavedRegs.find_first(); Reg != -1; 173 Reg = SavedRegs.find_next(Reg)) 174 CurrentCSRs.insert((unsigned)Reg); 175 } 176 return CurrentCSRs; 177 } 178 179 /// Update the Save and Restore points such that \p MBB is in 180 /// the region that is dominated by Save and post-dominated by Restore 181 /// and Save and Restore still match the safe point definition. 182 /// Such point may not exist and Save and/or Restore may be null after 183 /// this call. 184 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); 185 186 /// Initialize the pass for \p MF. 187 void init(MachineFunction &MF) { 188 RCI.runOnMachineFunction(MF); 189 MDT = &getAnalysis<MachineDominatorTree>(); 190 MPDT = &getAnalysis<MachinePostDominatorTree>(); 191 Save = nullptr; 192 Restore = nullptr; 193 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 194 MLI = &getAnalysis<MachineLoopInfo>(); 195 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 196 EntryFreq = MBFI->getEntryFreq(); 197 const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); 198 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 199 FrameSetupOpcode = TII.getCallFrameSetupOpcode(); 200 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); 201 SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); 202 Entry = &MF.front(); 203 CurrentCSRs.clear(); 204 MachineFunc = &MF; 205 206 ++NumFunc; 207 } 208 209 /// Check whether or not Save and Restore points are still interesting for 210 /// shrink-wrapping. 211 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } 212 213 /// Check if shrink wrapping is enabled for this target and function. 214 static bool isShrinkWrapEnabled(const MachineFunction &MF); 215 216 public: 217 static char ID; 218 219 ShrinkWrap() : MachineFunctionPass(ID) { 220 initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); 221 } 222 223 void getAnalysisUsage(AnalysisUsage &AU) const override { 224 AU.setPreservesAll(); 225 AU.addRequired<MachineBlockFrequencyInfo>(); 226 AU.addRequired<MachineDominatorTree>(); 227 AU.addRequired<MachinePostDominatorTree>(); 228 AU.addRequired<MachineLoopInfo>(); 229 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 230 MachineFunctionPass::getAnalysisUsage(AU); 231 } 232 233 MachineFunctionProperties getRequiredProperties() const override { 234 return MachineFunctionProperties().set( 235 MachineFunctionProperties::Property::NoVRegs); 236 } 237 238 StringRef getPassName() const override { return "Shrink Wrapping analysis"; } 239 240 /// Perform the shrink-wrapping analysis and update 241 /// the MachineFrameInfo attached to \p MF with the results. 242 bool runOnMachineFunction(MachineFunction &MF) override; 243 }; 244 245 } // end anonymous namespace 246 247 char ShrinkWrap::ID = 0; 248 249 char &llvm::ShrinkWrapID = ShrinkWrap::ID; 250 251 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 252 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 253 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 254 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 255 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 256 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 257 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 258 259 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, 260 RegScavenger *RS) const { 261 if (MI.getOpcode() == FrameSetupOpcode || 262 MI.getOpcode() == FrameDestroyOpcode) { 263 LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); 264 return true; 265 } 266 for (const MachineOperand &MO : MI.operands()) { 267 bool UseOrDefCSR = false; 268 if (MO.isReg()) { 269 // Ignore instructions like DBG_VALUE which don't read/def the register. 270 if (!MO.isDef() && !MO.readsReg()) 271 continue; 272 unsigned PhysReg = MO.getReg(); 273 if (!PhysReg) 274 continue; 275 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 276 "Unallocated register?!"); 277 // The stack pointer is not normally described as a callee-saved register 278 // in calling convention definitions, so we need to watch for it 279 // separately. An SP mentioned by a call instruction, we can ignore, 280 // though, as it's harmless and we do not want to effectively disable tail 281 // calls by forcing the restore point to post-dominate them. 282 UseOrDefCSR = (!MI.isCall() && PhysReg == SP) || 283 RCI.getLastCalleeSavedAlias(PhysReg); 284 } else if (MO.isRegMask()) { 285 // Check if this regmask clobbers any of the CSRs. 286 for (unsigned Reg : getCurrentCSRs(RS)) { 287 if (MO.clobbersPhysReg(Reg)) { 288 UseOrDefCSR = true; 289 break; 290 } 291 } 292 } 293 // Skip FrameIndex operands in DBG_VALUE instructions. 294 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { 295 LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" 296 << MO.isFI() << "): " << MI << '\n'); 297 return true; 298 } 299 } 300 return false; 301 } 302 303 /// Helper function to find the immediate (post) dominator. 304 template <typename ListOfBBs, typename DominanceAnalysis> 305 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, 306 DominanceAnalysis &Dom) { 307 MachineBasicBlock *IDom = &Block; 308 for (MachineBasicBlock *BB : BBs) { 309 IDom = Dom.findNearestCommonDominator(IDom, BB); 310 if (!IDom) 311 break; 312 } 313 if (IDom == &Block) 314 return nullptr; 315 return IDom; 316 } 317 318 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, 319 RegScavenger *RS) { 320 // Get rid of the easy cases first. 321 if (!Save) 322 Save = &MBB; 323 else 324 Save = MDT->findNearestCommonDominator(Save, &MBB); 325 326 if (!Save) { 327 LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n"); 328 return; 329 } 330 331 if (!Restore) 332 Restore = &MBB; 333 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it 334 // means the block never returns. If that's the 335 // case, we don't want to call 336 // `findNearestCommonDominator`, which will 337 // return `Restore`. 338 Restore = MPDT->findNearestCommonDominator(Restore, &MBB); 339 else 340 Restore = nullptr; // Abort, we can't find a restore point in this case. 341 342 // Make sure we would be able to insert the restore code before the 343 // terminator. 344 if (Restore == &MBB) { 345 for (const MachineInstr &Terminator : MBB.terminators()) { 346 if (!useOrDefCSROrFI(Terminator, RS)) 347 continue; 348 // One of the terminator needs to happen before the restore point. 349 if (MBB.succ_empty()) { 350 Restore = nullptr; // Abort, we can't find a restore point in this case. 351 break; 352 } 353 // Look for a restore point that post-dominates all the successors. 354 // The immediate post-dominator is what we are looking for. 355 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 356 break; 357 } 358 } 359 360 if (!Restore) { 361 LLVM_DEBUG( 362 dbgs() << "Restore point needs to be spanned on several blocks\n"); 363 return; 364 } 365 366 // Make sure Save and Restore are suitable for shrink-wrapping: 367 // 1. all path from Save needs to lead to Restore before exiting. 368 // 2. all path to Restore needs to go through Save from Entry. 369 // We achieve that by making sure that: 370 // A. Save dominates Restore. 371 // B. Restore post-dominates Save. 372 // C. Save and Restore are in the same loop. 373 bool SaveDominatesRestore = false; 374 bool RestorePostDominatesSave = false; 375 while (Save && Restore && 376 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || 377 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || 378 // Post-dominance is not enough in loops to ensure that all uses/defs 379 // are after the prologue and before the epilogue at runtime. 380 // E.g., 381 // while(1) { 382 // Save 383 // Restore 384 // if (...) 385 // break; 386 // use/def CSRs 387 // } 388 // All the uses/defs of CSRs are dominated by Save and post-dominated 389 // by Restore. However, the CSRs uses are still reachable after 390 // Restore and before Save are executed. 391 // 392 // For now, just push the restore/save points outside of loops. 393 // FIXME: Refine the criteria to still find interesting cases 394 // for loops. 395 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 396 // Fix (A). 397 if (!SaveDominatesRestore) { 398 Save = MDT->findNearestCommonDominator(Save, Restore); 399 continue; 400 } 401 // Fix (B). 402 if (!RestorePostDominatesSave) 403 Restore = MPDT->findNearestCommonDominator(Restore, Save); 404 405 // Fix (C). 406 if (Save && Restore && 407 (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 408 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { 409 // Push Save outside of this loop if immediate dominator is different 410 // from save block. If immediate dominator is not different, bail out. 411 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 412 if (!Save) 413 break; 414 } else { 415 // If the loop does not exit, there is no point in looking 416 // for a post-dominator outside the loop. 417 SmallVector<MachineBasicBlock*, 4> ExitBlocks; 418 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); 419 // Push Restore outside of this loop. 420 // Look for the immediate post-dominator of the loop exits. 421 MachineBasicBlock *IPdom = Restore; 422 for (MachineBasicBlock *LoopExitBB: ExitBlocks) { 423 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); 424 if (!IPdom) 425 break; 426 } 427 // If the immediate post-dominator is not in a less nested loop, 428 // then we are stuck in a program with an infinite loop. 429 // In that case, we will not find a safe point, hence, bail out. 430 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) 431 Restore = IPdom; 432 else { 433 Restore = nullptr; 434 break; 435 } 436 } 437 } 438 } 439 } 440 441 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE, 442 StringRef RemarkName, StringRef RemarkMessage, 443 const DiagnosticLocation &Loc, 444 const MachineBasicBlock *MBB) { 445 ORE->emit([&]() { 446 return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB) 447 << RemarkMessage; 448 }); 449 450 LLVM_DEBUG(dbgs() << RemarkMessage << '\n'); 451 return false; 452 } 453 454 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { 455 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) 456 return false; 457 458 LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); 459 460 init(MF); 461 462 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); 463 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) { 464 // If MF is irreducible, a block may be in a loop without 465 // MachineLoopInfo reporting it. I.e., we may use the 466 // post-dominance property in loops, which lead to incorrect 467 // results. Moreover, we may miss that the prologue and 468 // epilogue are not in the same loop, leading to unbalanced 469 // construction/deconstruction of the stack frame. 470 return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG", 471 "Irreducible CFGs are not supported yet.", 472 MF.getFunction().getSubprogram(), &MF.front()); 473 } 474 475 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 476 std::unique_ptr<RegScavenger> RS( 477 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); 478 479 for (MachineBasicBlock &MBB : MF) { 480 LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' 481 << MBB.getName() << '\n'); 482 483 if (MBB.isEHFuncletEntry()) 484 return giveUpWithRemarks(ORE, "UnsupportedEHFunclets", 485 "EH Funclets are not supported yet.", 486 MBB.front().getDebugLoc(), &MBB); 487 488 if (MBB.isEHPad()) { 489 // Push the prologue and epilogue outside of 490 // the region that may throw by making sure 491 // that all the landing pads are at least at the 492 // boundary of the save and restore points. 493 // The problem with exceptions is that the throw 494 // is not properly modeled and in particular, a 495 // basic block can jump out from the middle. 496 updateSaveRestorePoints(MBB, RS.get()); 497 if (!ArePointsInteresting()) { 498 LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n"); 499 return false; 500 } 501 continue; 502 } 503 504 for (const MachineInstr &MI : MBB) { 505 if (!useOrDefCSROrFI(MI, RS.get())) 506 continue; 507 // Save (resp. restore) point must dominate (resp. post dominate) 508 // MI. Look for the proper basic block for those. 509 updateSaveRestorePoints(MBB, RS.get()); 510 // If we are at a point where we cannot improve the placement of 511 // save/restore instructions, just give up. 512 if (!ArePointsInteresting()) { 513 LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n"); 514 return false; 515 } 516 // No need to look for other instructions, this basic block 517 // will already be part of the handled region. 518 break; 519 } 520 } 521 if (!ArePointsInteresting()) { 522 // If the points are not interesting at this point, then they must be null 523 // because it means we did not encounter any frame/CSR related code. 524 // Otherwise, we would have returned from the previous loop. 525 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); 526 LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n"); 527 return false; 528 } 529 530 LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq 531 << '\n'); 532 533 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 534 do { 535 LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " 536 << Save->getNumber() << ' ' << Save->getName() << ' ' 537 << MBFI->getBlockFreq(Save).getFrequency() 538 << "\nRestore: " << Restore->getNumber() << ' ' 539 << Restore->getName() << ' ' 540 << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); 541 542 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; 543 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && 544 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && 545 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && 546 TFI->canUseAsEpilogue(*Restore))) 547 break; 548 LLVM_DEBUG( 549 dbgs() << "New points are too expensive or invalid for the target\n"); 550 MachineBasicBlock *NewBB; 551 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { 552 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 553 if (!Save) 554 break; 555 NewBB = Save; 556 } else { 557 // Restore is expensive. 558 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 559 if (!Restore) 560 break; 561 NewBB = Restore; 562 } 563 updateSaveRestorePoints(*NewBB, RS.get()); 564 } while (Save && Restore); 565 566 if (!ArePointsInteresting()) { 567 ++NumCandidatesDropped; 568 return false; 569 } 570 571 LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " 572 << Save->getNumber() << ' ' << Save->getName() 573 << "\nRestore: " << Restore->getNumber() << ' ' 574 << Restore->getName() << '\n'); 575 576 MachineFrameInfo &MFI = MF.getFrameInfo(); 577 MFI.setSavePoint(Save); 578 MFI.setRestorePoint(Restore); 579 ++NumCandidates; 580 return false; 581 } 582 583 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { 584 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 585 586 switch (EnableShrinkWrapOpt) { 587 case cl::BOU_UNSET: 588 return TFI->enableShrinkWrapping(MF) && 589 // Windows with CFI has some limitations that make it impossible 590 // to use shrink-wrapping. 591 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 592 // Sanitizers look at the value of the stack at the location 593 // of the crash. Since a crash can happen anywhere, the 594 // frame must be lowered before anything else happen for the 595 // sanitizers to be able to get a correct stack frame. 596 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || 597 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || 598 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || 599 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); 600 // If EnableShrinkWrap is set, it takes precedence on whatever the 601 // target sets. The rational is that we assume we want to test 602 // something related to shrink-wrapping. 603 case cl::BOU_TRUE: 604 return true; 605 case cl::BOU_FALSE: 606 return false; 607 } 608 llvm_unreachable("Invalid shrink-wrapping state"); 609 } 610