1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for safe point where the prologue and epilogue can be 11 // inserted. 12 // The safe point for the prologue (resp. epilogue) is called Save 13 // (resp. Restore). 14 // A point is safe for prologue (resp. epilogue) if and only if 15 // it 1) dominates (resp. post-dominates) all the frame related operations and 16 // between 2) two executions of the Save (resp. Restore) point there is an 17 // execution of the Restore (resp. Save) point. 18 // 19 // For instance, the following points are safe: 20 // for (int i = 0; i < 10; ++i) { 21 // Save 22 // ... 23 // Restore 24 // } 25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... 26 // And the following points are not: 27 // for (int i = 0; i < 10; ++i) { 28 // Save 29 // ... 30 // } 31 // for (int i = 0; i < 10; ++i) { 32 // ... 33 // Restore 34 // } 35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. 36 // 37 // This pass also ensures that the safe points are 3) cheaper than the regular 38 // entry and exits blocks. 39 // 40 // Property #1 is ensured via the use of MachineDominatorTree and 41 // MachinePostDominatorTree. 42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both 43 // points must be in the same loop. 44 // Property #3 is ensured via the MachineBlockFrequencyInfo. 45 // 46 // If this pass found points matching all these properties, then 47 // MachineFrameInfo is updated with this information. 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/ADT/BitVector.h" 52 #include "llvm/ADT/PostOrderIterator.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/CodeGen/MachineBasicBlock.h" 58 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 59 #include "llvm/CodeGen/MachineDominators.h" 60 #include "llvm/CodeGen/MachineFrameInfo.h" 61 #include "llvm/CodeGen/MachineFunction.h" 62 #include "llvm/CodeGen/MachineFunctionPass.h" 63 #include "llvm/CodeGen/MachineInstr.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineOperand.h" 66 #include "llvm/CodeGen/MachinePostDominators.h" 67 #include "llvm/CodeGen/RegisterClassInfo.h" 68 #include "llvm/CodeGen/RegisterScavenging.h" 69 #include "llvm/CodeGen/TargetFrameLowering.h" 70 #include "llvm/CodeGen/TargetInstrInfo.h" 71 #include "llvm/CodeGen/TargetRegisterInfo.h" 72 #include "llvm/CodeGen/TargetSubtargetInfo.h" 73 #include "llvm/IR/Attributes.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/MC/MCAsmInfo.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/Target/TargetMachine.h" 82 #include <cassert> 83 #include <cstdint> 84 #include <memory> 85 86 using namespace llvm; 87 88 #define DEBUG_TYPE "shrink-wrap" 89 90 STATISTIC(NumFunc, "Number of functions"); 91 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); 92 STATISTIC(NumCandidatesDropped, 93 "Number of shrink-wrapping candidates dropped because of frequency"); 94 95 static cl::opt<cl::boolOrDefault> 96 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, 97 cl::desc("enable the shrink-wrapping pass")); 98 99 namespace { 100 101 /// \brief Class to determine where the safe point to insert the 102 /// prologue and epilogue are. 103 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the 104 /// shrink-wrapping term for prologue/epilogue placement, this pass 105 /// does not rely on expensive data-flow analysis. Instead we use the 106 /// dominance properties and loop information to decide which point 107 /// are safe for such insertion. 108 class ShrinkWrap : public MachineFunctionPass { 109 /// Hold callee-saved information. 110 RegisterClassInfo RCI; 111 MachineDominatorTree *MDT; 112 MachinePostDominatorTree *MPDT; 113 114 /// Current safe point found for the prologue. 115 /// The prologue will be inserted before the first instruction 116 /// in this basic block. 117 MachineBasicBlock *Save; 118 119 /// Current safe point found for the epilogue. 120 /// The epilogue will be inserted before the first terminator instruction 121 /// in this basic block. 122 MachineBasicBlock *Restore; 123 124 /// Hold the information of the basic block frequency. 125 /// Use to check the profitability of the new points. 126 MachineBlockFrequencyInfo *MBFI; 127 128 /// Hold the loop information. Used to determine if Save and Restore 129 /// are in the same loop. 130 MachineLoopInfo *MLI; 131 132 /// Frequency of the Entry block. 133 uint64_t EntryFreq; 134 135 /// Current opcode for frame setup. 136 unsigned FrameSetupOpcode; 137 138 /// Current opcode for frame destroy. 139 unsigned FrameDestroyOpcode; 140 141 /// Entry block. 142 const MachineBasicBlock *Entry; 143 144 using SetOfRegs = SmallSetVector<unsigned, 16>; 145 146 /// Registers that need to be saved for the current function. 147 mutable SetOfRegs CurrentCSRs; 148 149 /// Current MachineFunction. 150 MachineFunction *MachineFunc; 151 152 /// \brief Check if \p MI uses or defines a callee-saved register or 153 /// a frame index. If this is the case, this means \p MI must happen 154 /// after Save and before Restore. 155 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const; 156 157 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { 158 if (CurrentCSRs.empty()) { 159 BitVector SavedRegs; 160 const TargetFrameLowering *TFI = 161 MachineFunc->getSubtarget().getFrameLowering(); 162 163 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); 164 165 for (int Reg = SavedRegs.find_first(); Reg != -1; 166 Reg = SavedRegs.find_next(Reg)) 167 CurrentCSRs.insert((unsigned)Reg); 168 } 169 return CurrentCSRs; 170 } 171 172 /// \brief Update the Save and Restore points such that \p MBB is in 173 /// the region that is dominated by Save and post-dominated by Restore 174 /// and Save and Restore still match the safe point definition. 175 /// Such point may not exist and Save and/or Restore may be null after 176 /// this call. 177 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); 178 179 /// \brief Initialize the pass for \p MF. 180 void init(MachineFunction &MF) { 181 RCI.runOnMachineFunction(MF); 182 MDT = &getAnalysis<MachineDominatorTree>(); 183 MPDT = &getAnalysis<MachinePostDominatorTree>(); 184 Save = nullptr; 185 Restore = nullptr; 186 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 187 MLI = &getAnalysis<MachineLoopInfo>(); 188 EntryFreq = MBFI->getEntryFreq(); 189 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 190 FrameSetupOpcode = TII.getCallFrameSetupOpcode(); 191 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); 192 Entry = &MF.front(); 193 CurrentCSRs.clear(); 194 MachineFunc = &MF; 195 196 ++NumFunc; 197 } 198 199 /// Check whether or not Save and Restore points are still interesting for 200 /// shrink-wrapping. 201 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } 202 203 /// \brief Check if shrink wrapping is enabled for this target and function. 204 static bool isShrinkWrapEnabled(const MachineFunction &MF); 205 206 public: 207 static char ID; 208 209 ShrinkWrap() : MachineFunctionPass(ID) { 210 initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); 211 } 212 213 void getAnalysisUsage(AnalysisUsage &AU) const override { 214 AU.setPreservesAll(); 215 AU.addRequired<MachineBlockFrequencyInfo>(); 216 AU.addRequired<MachineDominatorTree>(); 217 AU.addRequired<MachinePostDominatorTree>(); 218 AU.addRequired<MachineLoopInfo>(); 219 MachineFunctionPass::getAnalysisUsage(AU); 220 } 221 222 StringRef getPassName() const override { return "Shrink Wrapping analysis"; } 223 224 /// \brief Perform the shrink-wrapping analysis and update 225 /// the MachineFrameInfo attached to \p MF with the results. 226 bool runOnMachineFunction(MachineFunction &MF) override; 227 }; 228 229 } // end anonymous namespace 230 231 char ShrinkWrap::ID = 0; 232 233 char &llvm::ShrinkWrapID = ShrinkWrap::ID; 234 235 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 236 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 237 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 238 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 239 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 240 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) 241 242 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, 243 RegScavenger *RS) const { 244 if (MI.getOpcode() == FrameSetupOpcode || 245 MI.getOpcode() == FrameDestroyOpcode) { 246 DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); 247 return true; 248 } 249 for (const MachineOperand &MO : MI.operands()) { 250 bool UseOrDefCSR = false; 251 if (MO.isReg()) { 252 // Ignore instructions like DBG_VALUE which don't read/def the register. 253 if (!MO.isDef() && !MO.readsReg()) 254 continue; 255 unsigned PhysReg = MO.getReg(); 256 if (!PhysReg) 257 continue; 258 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 259 "Unallocated register?!"); 260 UseOrDefCSR = RCI.getLastCalleeSavedAlias(PhysReg); 261 } else if (MO.isRegMask()) { 262 // Check if this regmask clobbers any of the CSRs. 263 for (unsigned Reg : getCurrentCSRs(RS)) { 264 if (MO.clobbersPhysReg(Reg)) { 265 UseOrDefCSR = true; 266 break; 267 } 268 } 269 } 270 // Skip FrameIndex operands in DBG_VALUE instructions. 271 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { 272 DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" 273 << MO.isFI() << "): " << MI << '\n'); 274 return true; 275 } 276 } 277 return false; 278 } 279 280 /// \brief Helper function to find the immediate (post) dominator. 281 template <typename ListOfBBs, typename DominanceAnalysis> 282 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, 283 DominanceAnalysis &Dom) { 284 MachineBasicBlock *IDom = &Block; 285 for (MachineBasicBlock *BB : BBs) { 286 IDom = Dom.findNearestCommonDominator(IDom, BB); 287 if (!IDom) 288 break; 289 } 290 if (IDom == &Block) 291 return nullptr; 292 return IDom; 293 } 294 295 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, 296 RegScavenger *RS) { 297 // Get rid of the easy cases first. 298 if (!Save) 299 Save = &MBB; 300 else 301 Save = MDT->findNearestCommonDominator(Save, &MBB); 302 303 if (!Save) { 304 DEBUG(dbgs() << "Found a block that is not reachable from Entry\n"); 305 return; 306 } 307 308 if (!Restore) 309 Restore = &MBB; 310 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it 311 // means the block never returns. If that's the 312 // case, we don't want to call 313 // `findNearestCommonDominator`, which will 314 // return `Restore`. 315 Restore = MPDT->findNearestCommonDominator(Restore, &MBB); 316 else 317 Restore = nullptr; // Abort, we can't find a restore point in this case. 318 319 // Make sure we would be able to insert the restore code before the 320 // terminator. 321 if (Restore == &MBB) { 322 for (const MachineInstr &Terminator : MBB.terminators()) { 323 if (!useOrDefCSROrFI(Terminator, RS)) 324 continue; 325 // One of the terminator needs to happen before the restore point. 326 if (MBB.succ_empty()) { 327 Restore = nullptr; // Abort, we can't find a restore point in this case. 328 break; 329 } 330 // Look for a restore point that post-dominates all the successors. 331 // The immediate post-dominator is what we are looking for. 332 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 333 break; 334 } 335 } 336 337 if (!Restore) { 338 DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n"); 339 return; 340 } 341 342 // Make sure Save and Restore are suitable for shrink-wrapping: 343 // 1. all path from Save needs to lead to Restore before exiting. 344 // 2. all path to Restore needs to go through Save from Entry. 345 // We achieve that by making sure that: 346 // A. Save dominates Restore. 347 // B. Restore post-dominates Save. 348 // C. Save and Restore are in the same loop. 349 bool SaveDominatesRestore = false; 350 bool RestorePostDominatesSave = false; 351 while (Save && Restore && 352 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || 353 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || 354 // Post-dominance is not enough in loops to ensure that all uses/defs 355 // are after the prologue and before the epilogue at runtime. 356 // E.g., 357 // while(1) { 358 // Save 359 // Restore 360 // if (...) 361 // break; 362 // use/def CSRs 363 // } 364 // All the uses/defs of CSRs are dominated by Save and post-dominated 365 // by Restore. However, the CSRs uses are still reachable after 366 // Restore and before Save are executed. 367 // 368 // For now, just push the restore/save points outside of loops. 369 // FIXME: Refine the criteria to still find interesting cases 370 // for loops. 371 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 372 // Fix (A). 373 if (!SaveDominatesRestore) { 374 Save = MDT->findNearestCommonDominator(Save, Restore); 375 continue; 376 } 377 // Fix (B). 378 if (!RestorePostDominatesSave) 379 Restore = MPDT->findNearestCommonDominator(Restore, Save); 380 381 // Fix (C). 382 if (Save && Restore && 383 (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 384 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { 385 // Push Save outside of this loop if immediate dominator is different 386 // from save block. If immediate dominator is not different, bail out. 387 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 388 if (!Save) 389 break; 390 } else { 391 // If the loop does not exit, there is no point in looking 392 // for a post-dominator outside the loop. 393 SmallVector<MachineBasicBlock*, 4> ExitBlocks; 394 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); 395 // Push Restore outside of this loop. 396 // Look for the immediate post-dominator of the loop exits. 397 MachineBasicBlock *IPdom = Restore; 398 for (MachineBasicBlock *LoopExitBB: ExitBlocks) { 399 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); 400 if (!IPdom) 401 break; 402 } 403 // If the immediate post-dominator is not in a less nested loop, 404 // then we are stuck in a program with an infinite loop. 405 // In that case, we will not find a safe point, hence, bail out. 406 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) 407 Restore = IPdom; 408 else { 409 Restore = nullptr; 410 break; 411 } 412 } 413 } 414 } 415 } 416 417 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { 418 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) 419 return false; 420 421 DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); 422 423 init(MF); 424 425 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); 426 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) { 427 // If MF is irreducible, a block may be in a loop without 428 // MachineLoopInfo reporting it. I.e., we may use the 429 // post-dominance property in loops, which lead to incorrect 430 // results. Moreover, we may miss that the prologue and 431 // epilogue are not in the same loop, leading to unbalanced 432 // construction/deconstruction of the stack frame. 433 DEBUG(dbgs() << "Irreducible CFGs are not supported yet\n"); 434 return false; 435 } 436 437 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 438 std::unique_ptr<RegScavenger> RS( 439 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); 440 441 for (MachineBasicBlock &MBB : MF) { 442 DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName() 443 << '\n'); 444 445 if (MBB.isEHFuncletEntry()) { 446 DEBUG(dbgs() << "EH Funclets are not supported yet.\n"); 447 return false; 448 } 449 450 for (const MachineInstr &MI : MBB) { 451 if (!useOrDefCSROrFI(MI, RS.get())) 452 continue; 453 // Save (resp. restore) point must dominate (resp. post dominate) 454 // MI. Look for the proper basic block for those. 455 updateSaveRestorePoints(MBB, RS.get()); 456 // If we are at a point where we cannot improve the placement of 457 // save/restore instructions, just give up. 458 if (!ArePointsInteresting()) { 459 DEBUG(dbgs() << "No Shrink wrap candidate found\n"); 460 return false; 461 } 462 // No need to look for other instructions, this basic block 463 // will already be part of the handled region. 464 break; 465 } 466 } 467 if (!ArePointsInteresting()) { 468 // If the points are not interesting at this point, then they must be null 469 // because it means we did not encounter any frame/CSR related code. 470 // Otherwise, we would have returned from the previous loop. 471 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); 472 DEBUG(dbgs() << "Nothing to shrink-wrap\n"); 473 return false; 474 } 475 476 DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq 477 << '\n'); 478 479 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 480 do { 481 DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " 482 << Save->getNumber() << ' ' << Save->getName() << ' ' 483 << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: " 484 << Restore->getNumber() << ' ' << Restore->getName() << ' ' 485 << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); 486 487 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; 488 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && 489 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && 490 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && 491 TFI->canUseAsEpilogue(*Restore))) 492 break; 493 DEBUG(dbgs() << "New points are too expensive or invalid for the target\n"); 494 MachineBasicBlock *NewBB; 495 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { 496 Save = FindIDom<>(*Save, Save->predecessors(), *MDT); 497 if (!Save) 498 break; 499 NewBB = Save; 500 } else { 501 // Restore is expensive. 502 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); 503 if (!Restore) 504 break; 505 NewBB = Restore; 506 } 507 updateSaveRestorePoints(*NewBB, RS.get()); 508 } while (Save && Restore); 509 510 if (!ArePointsInteresting()) { 511 ++NumCandidatesDropped; 512 return false; 513 } 514 515 DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber() 516 << ' ' << Save->getName() << "\nRestore: " 517 << Restore->getNumber() << ' ' << Restore->getName() << '\n'); 518 519 MachineFrameInfo &MFI = MF.getFrameInfo(); 520 MFI.setSavePoint(Save); 521 MFI.setRestorePoint(Restore); 522 ++NumCandidates; 523 return false; 524 } 525 526 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { 527 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 528 529 switch (EnableShrinkWrapOpt) { 530 case cl::BOU_UNSET: 531 return TFI->enableShrinkWrapping(MF) && 532 // Windows with CFI has some limitations that make it impossible 533 // to use shrink-wrapping. 534 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 535 // Sanitizers look at the value of the stack at the location 536 // of the crash. Since a crash can happen anywhere, the 537 // frame must be lowered before anything else happen for the 538 // sanitizers to be able to get a correct stack frame. 539 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || 540 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || 541 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || 542 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); 543 // If EnableShrinkWrap is set, it takes precedence on whatever the 544 // target sets. The rational is that we assume we want to test 545 // something related to shrink-wrapping. 546 case cl::BOU_TRUE: 547 return true; 548 case cl::BOU_FALSE: 549 return false; 550 } 551 llvm_unreachable("Invalid shrink-wrapping state"); 552 } 553