1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/CFG.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/FastISel.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBuilder.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachinePassRegistry.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/SchedulerRegistry.h" 52 #include "llvm/CodeGen/SelectionDAG.h" 53 #include "llvm/CodeGen/SelectionDAGNodes.h" 54 #include "llvm/CodeGen/StackProtector.h" 55 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/ValueTypes.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Constants.h" 63 #include "llvm/IR/DataLayout.h" 64 #include "llvm/IR/DebugInfoMetadata.h" 65 #include "llvm/IR/DebugLoc.h" 66 #include "llvm/IR/DiagnosticInfo.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/InlineAsm.h" 70 #include "llvm/IR/InstIterator.h" 71 #include "llvm/IR/Instruction.h" 72 #include "llvm/IR/Instructions.h" 73 #include "llvm/IR/IntrinsicInst.h" 74 #include "llvm/IR/Intrinsics.h" 75 #include "llvm/IR/IntrinsicsWebAssembly.h" 76 #include "llvm/IR/Metadata.h" 77 #include "llvm/IR/Statepoint.h" 78 #include "llvm/IR/Type.h" 79 #include "llvm/IR/User.h" 80 #include "llvm/IR/Value.h" 81 #include "llvm/InitializePasses.h" 82 #include "llvm/MC/MCInstrDesc.h" 83 #include "llvm/Pass.h" 84 #include "llvm/Support/BranchProbability.h" 85 #include "llvm/Support/Casting.h" 86 #include "llvm/Support/CodeGen.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Compiler.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/KnownBits.h" 92 #include "llvm/Support/MachineValueType.h" 93 #include "llvm/Support/Timer.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Target/TargetIntrinsicInfo.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetOptions.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include <algorithm> 100 #include <cassert> 101 #include <cstdint> 102 #include <iterator> 103 #include <limits> 104 #include <memory> 105 #include <string> 106 #include <utility> 107 #include <vector> 108 109 using namespace llvm; 110 111 #define DEBUG_TYPE "isel" 112 113 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 114 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 115 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 116 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 117 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 118 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 119 STATISTIC(NumFastIselFailLowerArguments, 120 "Number of entry blocks where fast isel failed to lower arguments"); 121 122 static cl::opt<int> EnableFastISelAbort( 123 "fast-isel-abort", cl::Hidden, 124 cl::desc("Enable abort calls when \"fast\" instruction selection " 125 "fails to lower an instruction: 0 disable the abort, 1 will " 126 "abort but for args, calls and terminators, 2 will also " 127 "abort for argument lowering, and 3 will never fallback " 128 "to SelectionDAG.")); 129 130 static cl::opt<bool> EnableFastISelFallbackReport( 131 "fast-isel-report-on-fallback", cl::Hidden, 132 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 133 "falls back to SelectionDAG.")); 134 135 static cl::opt<bool> 136 UseMBPI("use-mbpi", 137 cl::desc("use Machine Branch Probability Info"), 138 cl::init(true), cl::Hidden); 139 140 #ifndef NDEBUG 141 static cl::opt<std::string> 142 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 143 cl::desc("Only display the basic block whose name " 144 "matches this for all view-*-dags options")); 145 static cl::opt<bool> 146 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 147 cl::desc("Pop up a window to show dags before the first " 148 "dag combine pass")); 149 static cl::opt<bool> 150 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 151 cl::desc("Pop up a window to show dags before legalize types")); 152 static cl::opt<bool> 153 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 154 cl::desc("Pop up a window to show dags before the post " 155 "legalize types dag combine pass")); 156 static cl::opt<bool> 157 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 158 cl::desc("Pop up a window to show dags before legalize")); 159 static cl::opt<bool> 160 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 161 cl::desc("Pop up a window to show dags before the second " 162 "dag combine pass")); 163 static cl::opt<bool> 164 ViewISelDAGs("view-isel-dags", cl::Hidden, 165 cl::desc("Pop up a window to show isel dags as they are selected")); 166 static cl::opt<bool> 167 ViewSchedDAGs("view-sched-dags", cl::Hidden, 168 cl::desc("Pop up a window to show sched dags as they are processed")); 169 static cl::opt<bool> 170 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 171 cl::desc("Pop up a window to show SUnit dags after they are processed")); 172 #else 173 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, 174 ViewDAGCombineLT = false, ViewLegalizeDAGs = false, 175 ViewDAGCombine2 = false, ViewISelDAGs = false, 176 ViewSchedDAGs = false, ViewSUnitDAGs = false; 177 #endif 178 179 //===---------------------------------------------------------------------===// 180 /// 181 /// RegisterScheduler class - Track the registration of instruction schedulers. 182 /// 183 //===---------------------------------------------------------------------===// 184 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 185 RegisterScheduler::Registry; 186 187 //===---------------------------------------------------------------------===// 188 /// 189 /// ISHeuristic command line option for instruction schedulers. 190 /// 191 //===---------------------------------------------------------------------===// 192 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 193 RegisterPassParser<RegisterScheduler>> 194 ISHeuristic("pre-RA-sched", 195 cl::init(&createDefaultScheduler), cl::Hidden, 196 cl::desc("Instruction schedulers available (before register" 197 " allocation):")); 198 199 static RegisterScheduler 200 defaultListDAGScheduler("default", "Best scheduler for the target", 201 createDefaultScheduler); 202 203 namespace llvm { 204 205 //===--------------------------------------------------------------------===// 206 /// This class is used by SelectionDAGISel to temporarily override 207 /// the optimization level on a per-function basis. 208 class OptLevelChanger { 209 SelectionDAGISel &IS; 210 CodeGenOpt::Level SavedOptLevel; 211 bool SavedFastISel; 212 213 public: 214 OptLevelChanger(SelectionDAGISel &ISel, 215 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 216 SavedOptLevel = IS.OptLevel; 217 SavedFastISel = IS.TM.Options.EnableFastISel; 218 if (NewOptLevel == SavedOptLevel) 219 return; 220 IS.OptLevel = NewOptLevel; 221 IS.TM.setOptLevel(NewOptLevel); 222 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 223 << IS.MF->getFunction().getName() << "\n"); 224 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 225 << NewOptLevel << "\n"); 226 if (NewOptLevel == CodeGenOpt::None) { 227 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 228 LLVM_DEBUG( 229 dbgs() << "\tFastISel is " 230 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 231 << "\n"); 232 } 233 } 234 235 ~OptLevelChanger() { 236 if (IS.OptLevel == SavedOptLevel) 237 return; 238 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 239 << IS.MF->getFunction().getName() << "\n"); 240 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 241 << SavedOptLevel << "\n"); 242 IS.OptLevel = SavedOptLevel; 243 IS.TM.setOptLevel(SavedOptLevel); 244 IS.TM.setFastISel(SavedFastISel); 245 } 246 }; 247 248 //===--------------------------------------------------------------------===// 249 /// createDefaultScheduler - This creates an instruction scheduler appropriate 250 /// for the target. 251 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 252 CodeGenOpt::Level OptLevel) { 253 const TargetLowering *TLI = IS->TLI; 254 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 255 256 // Try first to see if the Target has its own way of selecting a scheduler 257 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 258 return SchedulerCtor(IS, OptLevel); 259 } 260 261 if (OptLevel == CodeGenOpt::None || 262 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 263 TLI->getSchedulingPreference() == Sched::Source) 264 return createSourceListDAGScheduler(IS, OptLevel); 265 if (TLI->getSchedulingPreference() == Sched::RegPressure) 266 return createBURRListDAGScheduler(IS, OptLevel); 267 if (TLI->getSchedulingPreference() == Sched::Hybrid) 268 return createHybridListDAGScheduler(IS, OptLevel); 269 if (TLI->getSchedulingPreference() == Sched::VLIW) 270 return createVLIWDAGScheduler(IS, OptLevel); 271 if (TLI->getSchedulingPreference() == Sched::Fast) 272 return createFastDAGScheduler(IS, OptLevel); 273 if (TLI->getSchedulingPreference() == Sched::Linearize) 274 return createDAGLinearizer(IS, OptLevel); 275 assert(TLI->getSchedulingPreference() == Sched::ILP && 276 "Unknown sched type!"); 277 return createILPListDAGScheduler(IS, OptLevel); 278 } 279 280 } // end namespace llvm 281 282 // EmitInstrWithCustomInserter - This method should be implemented by targets 283 // that mark instructions with the 'usesCustomInserter' flag. These 284 // instructions are special in various ways, which require special support to 285 // insert. The specified MachineInstr is created but not inserted into any 286 // basic blocks, and this method is called to expand it into a sequence of 287 // instructions, potentially also creating new basic blocks and control flow. 288 // When new basic blocks are inserted and the edges from MBB to its successors 289 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 290 // DenseMap. 291 MachineBasicBlock * 292 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 293 MachineBasicBlock *MBB) const { 294 #ifndef NDEBUG 295 dbgs() << "If a target marks an instruction with " 296 "'usesCustomInserter', it must implement " 297 "TargetLowering::EmitInstrWithCustomInserter!\n"; 298 #endif 299 llvm_unreachable(nullptr); 300 } 301 302 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 303 SDNode *Node) const { 304 assert(!MI.hasPostISelHook() && 305 "If a target marks an instruction with 'hasPostISelHook', " 306 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 307 } 308 309 //===----------------------------------------------------------------------===// 310 // SelectionDAGISel code 311 //===----------------------------------------------------------------------===// 312 313 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) 314 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()), 315 SwiftError(new SwiftErrorValueTracking()), 316 CurDAG(new SelectionDAG(tm, OL)), 317 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError, 318 OL)), 319 OptLevel(OL) { 320 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 321 initializeBranchProbabilityInfoWrapperPassPass( 322 *PassRegistry::getPassRegistry()); 323 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 324 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 325 } 326 327 SelectionDAGISel::~SelectionDAGISel() { 328 delete CurDAG; 329 delete SwiftError; 330 } 331 332 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 333 if (OptLevel != CodeGenOpt::None) 334 AU.addRequired<AAResultsWrapperPass>(); 335 AU.addRequired<GCModuleInfo>(); 336 AU.addRequired<StackProtector>(); 337 AU.addPreserved<GCModuleInfo>(); 338 AU.addRequired<TargetLibraryInfoWrapperPass>(); 339 AU.addRequired<TargetTransformInfoWrapperPass>(); 340 if (UseMBPI && OptLevel != CodeGenOpt::None) 341 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 342 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 343 if (OptLevel != CodeGenOpt::None) 344 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 345 MachineFunctionPass::getAnalysisUsage(AU); 346 } 347 348 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 349 /// may trap on it. In this case we have to split the edge so that the path 350 /// through the predecessor block that doesn't go to the phi block doesn't 351 /// execute the possibly trapping instruction. If available, we pass domtree 352 /// and loop info to be updated when we split critical edges. This is because 353 /// SelectionDAGISel preserves these analyses. 354 /// This is required for correctness, so it must be done at -O0. 355 /// 356 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 357 LoopInfo *LI) { 358 // Loop for blocks with phi nodes. 359 for (BasicBlock &BB : Fn) { 360 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 361 if (!PN) continue; 362 363 ReprocessBlock: 364 // For each block with a PHI node, check to see if any of the input values 365 // are potentially trapping constant expressions. Constant expressions are 366 // the only potentially trapping value that can occur as the argument to a 367 // PHI. 368 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 369 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 370 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 371 if (!CE || !CE->canTrap()) continue; 372 373 // The only case we have to worry about is when the edge is critical. 374 // Since this block has a PHI Node, we assume it has multiple input 375 // edges: check to see if the pred has multiple successors. 376 BasicBlock *Pred = PN->getIncomingBlock(i); 377 if (Pred->getTerminator()->getNumSuccessors() == 1) 378 continue; 379 380 // Okay, we have to split this edge. 381 SplitCriticalEdge( 382 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 383 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 384 goto ReprocessBlock; 385 } 386 } 387 } 388 389 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 390 MachineModuleInfo &MMI) { 391 // Only needed for MSVC 392 if (!TT.isWindowsMSVCEnvironment()) 393 return; 394 395 // If it's already set, nothing to do. 396 if (MMI.usesMSVCFloatingPoint()) 397 return; 398 399 for (const Instruction &I : instructions(F)) { 400 if (I.getType()->isFPOrFPVectorTy()) { 401 MMI.setUsesMSVCFloatingPoint(true); 402 return; 403 } 404 for (const auto &Op : I.operands()) { 405 if (Op->getType()->isFPOrFPVectorTy()) { 406 MMI.setUsesMSVCFloatingPoint(true); 407 return; 408 } 409 } 410 } 411 } 412 413 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 414 // If we already selected that function, we do not need to run SDISel. 415 if (mf.getProperties().hasProperty( 416 MachineFunctionProperties::Property::Selected)) 417 return false; 418 // Do some sanity-checking on the command-line options. 419 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 420 "-fast-isel-abort > 0 requires -fast-isel"); 421 422 const Function &Fn = mf.getFunction(); 423 MF = &mf; 424 425 // Reset the target options before resetting the optimization 426 // level below. 427 // FIXME: This is a horrible hack and should be processed via 428 // codegen looking at the optimization level explicitly when 429 // it wants to look at it. 430 TM.resetTargetOptions(Fn); 431 // Reset OptLevel to None for optnone functions. 432 CodeGenOpt::Level NewOptLevel = OptLevel; 433 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 434 NewOptLevel = CodeGenOpt::None; 435 OptLevelChanger OLC(*this, NewOptLevel); 436 437 TII = MF->getSubtarget().getInstrInfo(); 438 TLI = MF->getSubtarget().getTargetLowering(); 439 RegInfo = &MF->getRegInfo(); 440 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn); 441 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 442 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn); 443 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 444 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 445 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 446 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 447 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 448 BlockFrequencyInfo *BFI = nullptr; 449 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None) 450 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI(); 451 452 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 453 454 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 455 456 CurDAG->init(*MF, *ORE, this, LibInfo, 457 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI); 458 FuncInfo->set(Fn, *MF, CurDAG); 459 SwiftError->setFunction(*MF); 460 461 // Now get the optional analyzes if we want to. 462 // This is based on the possibly changed OptLevel (after optnone is taken 463 // into account). That's unfortunate but OK because it just means we won't 464 // ask for passes that have been required anyway. 465 466 if (UseMBPI && OptLevel != CodeGenOpt::None) 467 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 468 else 469 FuncInfo->BPI = nullptr; 470 471 if (OptLevel != CodeGenOpt::None) 472 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 473 else 474 AA = nullptr; 475 476 SDB->init(GFI, AA, LibInfo); 477 478 MF->setHasInlineAsm(false); 479 480 FuncInfo->SplitCSR = false; 481 482 // We split CSR if the target supports it for the given function 483 // and the function has only return exits. 484 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 485 FuncInfo->SplitCSR = true; 486 487 // Collect all the return blocks. 488 for (const BasicBlock &BB : Fn) { 489 if (!succ_empty(&BB)) 490 continue; 491 492 const Instruction *Term = BB.getTerminator(); 493 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 494 continue; 495 496 // Bail out if the exit block is not Return nor Unreachable. 497 FuncInfo->SplitCSR = false; 498 break; 499 } 500 } 501 502 MachineBasicBlock *EntryMBB = &MF->front(); 503 if (FuncInfo->SplitCSR) 504 // This performs initialization so lowering for SplitCSR will be correct. 505 TLI->initializeSplitCSR(EntryMBB); 506 507 SelectAllBasicBlocks(Fn); 508 if (FastISelFailed && EnableFastISelFallbackReport) { 509 DiagnosticInfoISelFallback DiagFallback(Fn); 510 Fn.getContext().diagnose(DiagFallback); 511 } 512 513 // Replace forward-declared registers with the registers containing 514 // the desired value. 515 // Note: it is important that this happens **before** the call to 516 // EmitLiveInCopies, since implementations can skip copies of unused 517 // registers. If we don't apply the reg fixups before, some registers may 518 // appear as unused and will be skipped, resulting in bad MI. 519 MachineRegisterInfo &MRI = MF->getRegInfo(); 520 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(), 521 E = FuncInfo->RegFixups.end(); 522 I != E; ++I) { 523 Register From = I->first; 524 Register To = I->second; 525 // If To is also scheduled to be replaced, find what its ultimate 526 // replacement is. 527 while (true) { 528 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To); 529 if (J == E) 530 break; 531 To = J->second; 532 } 533 // Make sure the new register has a sufficiently constrained register class. 534 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 535 MRI.constrainRegClass(To, MRI.getRegClass(From)); 536 // Replace it. 537 538 // Replacing one register with another won't touch the kill flags. 539 // We need to conservatively clear the kill flags as a kill on the old 540 // register might dominate existing uses of the new register. 541 if (!MRI.use_empty(To)) 542 MRI.clearKillFlags(From); 543 MRI.replaceRegWith(From, To); 544 } 545 546 // If the first basic block in the function has live ins that need to be 547 // copied into vregs, emit the copies into the top of the block before 548 // emitting the code for the block. 549 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 550 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 551 552 // Insert copies in the entry block and the return blocks. 553 if (FuncInfo->SplitCSR) { 554 SmallVector<MachineBasicBlock*, 4> Returns; 555 // Collect all the return blocks. 556 for (MachineBasicBlock &MBB : mf) { 557 if (!MBB.succ_empty()) 558 continue; 559 560 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 561 if (Term != MBB.end() && Term->isReturn()) { 562 Returns.push_back(&MBB); 563 continue; 564 } 565 } 566 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 567 } 568 569 DenseMap<unsigned, unsigned> LiveInMap; 570 if (!FuncInfo->ArgDbgValues.empty()) 571 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 572 if (LI.second) 573 LiveInMap.insert(LI); 574 575 // Insert DBG_VALUE instructions for function arguments to the entry block. 576 bool InstrRef = MF->useDebugInstrRef(); 577 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 578 MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1]; 579 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && 580 "Function parameters should not be described by DBG_VALUE_LIST."); 581 bool hasFI = MI->getOperand(0).isFI(); 582 Register Reg = 583 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 584 if (Register::isPhysicalRegister(Reg)) 585 EntryMBB->insert(EntryMBB->begin(), MI); 586 else { 587 MachineInstr *Def = RegInfo->getVRegDef(Reg); 588 if (Def) { 589 MachineBasicBlock::iterator InsertPos = Def; 590 // FIXME: VR def may not be in entry block. 591 Def->getParent()->insert(std::next(InsertPos), MI); 592 } else 593 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 594 << Register::virtReg2Index(Reg) << "\n"); 595 } 596 597 // Don't try and extend through copies in instruction referencing mode. 598 if (InstrRef) 599 continue; 600 601 // If Reg is live-in then update debug info to track its copy in a vreg. 602 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 603 if (LDI != LiveInMap.end()) { 604 assert(!hasFI && "There's no handling of frame pointer updating here yet " 605 "- add if needed"); 606 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 607 MachineBasicBlock::iterator InsertPos = Def; 608 const MDNode *Variable = MI->getDebugVariable(); 609 const MDNode *Expr = MI->getDebugExpression(); 610 DebugLoc DL = MI->getDebugLoc(); 611 bool IsIndirect = MI->isIndirectDebugValue(); 612 if (IsIndirect) 613 assert(MI->getOperand(1).getImm() == 0 && 614 "DBG_VALUE with nonzero offset"); 615 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 616 "Expected inlined-at fields to agree"); 617 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST && 618 "Didn't expect to see a DBG_VALUE_LIST here"); 619 // Def is never a terminator here, so it is ok to increment InsertPos. 620 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 621 IsIndirect, LDI->second, Variable, Expr); 622 623 // If this vreg is directly copied into an exported register then 624 // that COPY instructions also need DBG_VALUE, if it is the only 625 // user of LDI->second. 626 MachineInstr *CopyUseMI = nullptr; 627 for (MachineRegisterInfo::use_instr_iterator 628 UI = RegInfo->use_instr_begin(LDI->second), 629 E = RegInfo->use_instr_end(); UI != E; ) { 630 MachineInstr *UseMI = &*(UI++); 631 if (UseMI->isDebugValue()) continue; 632 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 633 CopyUseMI = UseMI; continue; 634 } 635 // Otherwise this is another use or second copy use. 636 CopyUseMI = nullptr; break; 637 } 638 if (CopyUseMI && 639 TRI.getRegSizeInBits(LDI->second, MRI) == 640 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) { 641 // Use MI's debug location, which describes where Variable was 642 // declared, rather than whatever is attached to CopyUseMI. 643 MachineInstr *NewMI = 644 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 645 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 646 MachineBasicBlock::iterator Pos = CopyUseMI; 647 EntryMBB->insertAfter(Pos, NewMI); 648 } 649 } 650 } 651 652 // For debug-info, in instruction referencing mode, we need to perform some 653 // post-isel maintenence. 654 MF->finalizeDebugInstrRefs(); 655 656 // Determine if there are any calls in this machine function. 657 MachineFrameInfo &MFI = MF->getFrameInfo(); 658 for (const auto &MBB : *MF) { 659 if (MFI.hasCalls() && MF->hasInlineAsm()) 660 break; 661 662 for (const auto &MI : MBB) { 663 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 664 if ((MCID.isCall() && !MCID.isReturn()) || 665 MI.isStackAligningInlineAsm()) { 666 MFI.setHasCalls(true); 667 } 668 if (MI.isInlineAsm()) { 669 MF->setHasInlineAsm(true); 670 } 671 } 672 } 673 674 // Determine if there is a call to setjmp in the machine function. 675 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 676 677 // Determine if floating point is used for msvc 678 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 679 680 // Release function-specific state. SDB and CurDAG are already cleared 681 // at this point. 682 FuncInfo->clear(); 683 684 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 685 LLVM_DEBUG(MF->print(dbgs())); 686 687 return true; 688 } 689 690 static void reportFastISelFailure(MachineFunction &MF, 691 OptimizationRemarkEmitter &ORE, 692 OptimizationRemarkMissed &R, 693 bool ShouldAbort) { 694 // Print the function name explicitly if we don't have a debug location (which 695 // makes the diagnostic less useful) or if we're going to emit a raw error. 696 if (!R.getLocation().isValid() || ShouldAbort) 697 R << (" (in function: " + MF.getName() + ")").str(); 698 699 if (ShouldAbort) 700 report_fatal_error(Twine(R.getMsg())); 701 702 ORE.emit(R); 703 } 704 705 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 706 BasicBlock::const_iterator End, 707 bool &HadTailCall) { 708 // Allow creating illegal types during DAG building for the basic block. 709 CurDAG->NewNodesMustHaveLegalTypes = false; 710 711 // Lower the instructions. If a call is emitted as a tail call, cease emitting 712 // nodes for this block. 713 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 714 if (!ElidedArgCopyInstrs.count(&*I)) 715 SDB->visit(*I); 716 } 717 718 // Make sure the root of the DAG is up-to-date. 719 CurDAG->setRoot(SDB->getControlRoot()); 720 HadTailCall = SDB->HasTailCall; 721 SDB->resolveOrClearDbgInfo(); 722 SDB->clear(); 723 724 // Final step, emit the lowered DAG as machine code. 725 CodeGenAndEmitDAG(); 726 } 727 728 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 729 SmallPtrSet<SDNode *, 16> Added; 730 SmallVector<SDNode*, 128> Worklist; 731 732 Worklist.push_back(CurDAG->getRoot().getNode()); 733 Added.insert(CurDAG->getRoot().getNode()); 734 735 KnownBits Known; 736 737 do { 738 SDNode *N = Worklist.pop_back_val(); 739 740 // Otherwise, add all chain operands to the worklist. 741 for (const SDValue &Op : N->op_values()) 742 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second) 743 Worklist.push_back(Op.getNode()); 744 745 // If this is a CopyToReg with a vreg dest, process it. 746 if (N->getOpcode() != ISD::CopyToReg) 747 continue; 748 749 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 750 if (!Register::isVirtualRegister(DestReg)) 751 continue; 752 753 // Ignore non-integer values. 754 SDValue Src = N->getOperand(2); 755 EVT SrcVT = Src.getValueType(); 756 if (!SrcVT.isInteger()) 757 continue; 758 759 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 760 Known = CurDAG->computeKnownBits(Src); 761 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 762 } while (!Worklist.empty()); 763 } 764 765 void SelectionDAGISel::CodeGenAndEmitDAG() { 766 StringRef GroupName = "sdag"; 767 StringRef GroupDescription = "Instruction Selection and Scheduling"; 768 std::string BlockName; 769 bool MatchFilterBB = false; (void)MatchFilterBB; 770 #ifndef NDEBUG 771 TargetTransformInfo &TTI = 772 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 773 #endif 774 775 // Pre-type legalization allow creation of any node types. 776 CurDAG->NewNodesMustHaveLegalTypes = false; 777 778 #ifndef NDEBUG 779 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 780 FilterDAGBasicBlockName == 781 FuncInfo->MBB->getBasicBlock()->getName()); 782 #endif 783 #ifdef NDEBUG 784 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || 785 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || 786 ViewSUnitDAGs) 787 #endif 788 { 789 BlockName = 790 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 791 } 792 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 793 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 794 << "'\n"; 795 CurDAG->dump()); 796 797 #ifndef NDEBUG 798 if (TTI.hasBranchDivergence()) 799 CurDAG->VerifyDAGDivergence(); 800 #endif 801 802 if (ViewDAGCombine1 && MatchFilterBB) 803 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 804 805 // Run the DAG combiner in pre-legalize mode. 806 { 807 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 808 GroupDescription, TimePassesIsEnabled); 809 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 810 } 811 812 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 813 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 814 << "'\n"; 815 CurDAG->dump()); 816 817 #ifndef NDEBUG 818 if (TTI.hasBranchDivergence()) 819 CurDAG->VerifyDAGDivergence(); 820 #endif 821 822 // Second step, hack on the DAG until it only uses operations and types that 823 // the target supports. 824 if (ViewLegalizeTypesDAGs && MatchFilterBB) 825 CurDAG->viewGraph("legalize-types input for " + BlockName); 826 827 bool Changed; 828 { 829 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 830 GroupDescription, TimePassesIsEnabled); 831 Changed = CurDAG->LegalizeTypes(); 832 } 833 834 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 835 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 836 << "'\n"; 837 CurDAG->dump()); 838 839 #ifndef NDEBUG 840 if (TTI.hasBranchDivergence()) 841 CurDAG->VerifyDAGDivergence(); 842 #endif 843 844 // Only allow creation of legal node types. 845 CurDAG->NewNodesMustHaveLegalTypes = true; 846 847 if (Changed) { 848 if (ViewDAGCombineLT && MatchFilterBB) 849 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 850 851 // Run the DAG combiner in post-type-legalize mode. 852 { 853 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 854 GroupName, GroupDescription, TimePassesIsEnabled); 855 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 856 } 857 858 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 859 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 860 << "'\n"; 861 CurDAG->dump()); 862 863 #ifndef NDEBUG 864 if (TTI.hasBranchDivergence()) 865 CurDAG->VerifyDAGDivergence(); 866 #endif 867 } 868 869 { 870 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 871 GroupDescription, TimePassesIsEnabled); 872 Changed = CurDAG->LegalizeVectors(); 873 } 874 875 if (Changed) { 876 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 877 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 878 << "'\n"; 879 CurDAG->dump()); 880 881 #ifndef NDEBUG 882 if (TTI.hasBranchDivergence()) 883 CurDAG->VerifyDAGDivergence(); 884 #endif 885 886 { 887 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 888 GroupDescription, TimePassesIsEnabled); 889 CurDAG->LegalizeTypes(); 890 } 891 892 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 893 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 894 << "'\n"; 895 CurDAG->dump()); 896 897 #ifndef NDEBUG 898 if (TTI.hasBranchDivergence()) 899 CurDAG->VerifyDAGDivergence(); 900 #endif 901 902 if (ViewDAGCombineLT && MatchFilterBB) 903 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 904 905 // Run the DAG combiner in post-type-legalize mode. 906 { 907 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 908 GroupName, GroupDescription, TimePassesIsEnabled); 909 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 910 } 911 912 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 913 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 914 << "'\n"; 915 CurDAG->dump()); 916 917 #ifndef NDEBUG 918 if (TTI.hasBranchDivergence()) 919 CurDAG->VerifyDAGDivergence(); 920 #endif 921 } 922 923 if (ViewLegalizeDAGs && MatchFilterBB) 924 CurDAG->viewGraph("legalize input for " + BlockName); 925 926 { 927 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 928 GroupDescription, TimePassesIsEnabled); 929 CurDAG->Legalize(); 930 } 931 932 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 933 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 934 << "'\n"; 935 CurDAG->dump()); 936 937 #ifndef NDEBUG 938 if (TTI.hasBranchDivergence()) 939 CurDAG->VerifyDAGDivergence(); 940 #endif 941 942 if (ViewDAGCombine2 && MatchFilterBB) 943 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 944 945 // Run the DAG combiner in post-legalize mode. 946 { 947 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 948 GroupDescription, TimePassesIsEnabled); 949 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 950 } 951 952 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 953 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 954 << "'\n"; 955 CurDAG->dump()); 956 957 #ifndef NDEBUG 958 if (TTI.hasBranchDivergence()) 959 CurDAG->VerifyDAGDivergence(); 960 #endif 961 962 if (OptLevel != CodeGenOpt::None) 963 ComputeLiveOutVRegInfo(); 964 965 if (ViewISelDAGs && MatchFilterBB) 966 CurDAG->viewGraph("isel input for " + BlockName); 967 968 // Third, instruction select all of the operations to machine code, adding the 969 // code to the MachineBasicBlock. 970 { 971 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 972 GroupDescription, TimePassesIsEnabled); 973 DoInstructionSelection(); 974 } 975 976 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 977 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 978 << "'\n"; 979 CurDAG->dump()); 980 981 if (ViewSchedDAGs && MatchFilterBB) 982 CurDAG->viewGraph("scheduler input for " + BlockName); 983 984 // Schedule machine code. 985 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 986 { 987 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 988 GroupDescription, TimePassesIsEnabled); 989 Scheduler->Run(CurDAG, FuncInfo->MBB); 990 } 991 992 if (ViewSUnitDAGs && MatchFilterBB) 993 Scheduler->viewGraph(); 994 995 // Emit machine code to BB. This can change 'BB' to the last block being 996 // inserted into. 997 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 998 { 999 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 1000 GroupDescription, TimePassesIsEnabled); 1001 1002 // FuncInfo->InsertPt is passed by reference and set to the end of the 1003 // scheduled instructions. 1004 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 1005 } 1006 1007 // If the block was split, make sure we update any references that are used to 1008 // update PHI nodes later on. 1009 if (FirstMBB != LastMBB) 1010 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 1011 1012 // Free the scheduler state. 1013 { 1014 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1015 GroupDescription, TimePassesIsEnabled); 1016 delete Scheduler; 1017 } 1018 1019 // Free the SelectionDAG state, now that we're finished with it. 1020 CurDAG->clear(); 1021 } 1022 1023 namespace { 1024 1025 /// ISelUpdater - helper class to handle updates of the instruction selection 1026 /// graph. 1027 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1028 SelectionDAG::allnodes_iterator &ISelPosition; 1029 1030 public: 1031 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1032 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1033 1034 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1035 /// deleted is the current ISelPosition node, update ISelPosition. 1036 /// 1037 void NodeDeleted(SDNode *N, SDNode *E) override { 1038 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1039 ++ISelPosition; 1040 } 1041 }; 1042 1043 } // end anonymous namespace 1044 1045 // This function is used to enforce the topological node id property 1046 // leveraged during instruction selection. Before the selection process all 1047 // nodes are given a non-negative id such that all nodes have a greater id than 1048 // their operands. As this holds transitively we can prune checks that a node N 1049 // is a predecessor of M another by not recursively checking through M's 1050 // operands if N's ID is larger than M's ID. This significantly improves 1051 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains). 1052 1053 // However, when we fuse multiple nodes into a single node during the 1054 // selection we may induce a predecessor relationship between inputs and 1055 // outputs of distinct nodes being merged, violating the topological property. 1056 // Should a fused node have a successor which has yet to be selected, 1057 // our legality checks would be incorrect. To avoid this we mark all unselected 1058 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x => 1059 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1060 // We use bit-negation to more clearly enforce that node id -1 can only be 1061 // achieved by selected nodes. As the conversion is reversable to the original 1062 // Id, topological pruning can still be leveraged when looking for unselected 1063 // nodes. This method is called internally in all ISel replacement related 1064 // functions. 1065 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1066 SmallVector<SDNode *, 4> Nodes; 1067 Nodes.push_back(Node); 1068 1069 while (!Nodes.empty()) { 1070 SDNode *N = Nodes.pop_back_val(); 1071 for (auto *U : N->uses()) { 1072 auto UId = U->getNodeId(); 1073 if (UId > 0) { 1074 InvalidateNodeId(U); 1075 Nodes.push_back(U); 1076 } 1077 } 1078 } 1079 } 1080 1081 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a 1082 // NodeId with the equivalent node id which is invalid for topological 1083 // pruning. 1084 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1085 int InvalidId = -(N->getNodeId() + 1); 1086 N->setNodeId(InvalidId); 1087 } 1088 1089 // getUninvalidatedNodeId - get original uninvalidated node id. 1090 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1091 int Id = N->getNodeId(); 1092 if (Id < -1) 1093 return -(Id + 1); 1094 return Id; 1095 } 1096 1097 void SelectionDAGISel::DoInstructionSelection() { 1098 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1099 << printMBBReference(*FuncInfo->MBB) << " '" 1100 << FuncInfo->MBB->getName() << "'\n"); 1101 1102 PreprocessISelDAG(); 1103 1104 // Select target instructions for the DAG. 1105 { 1106 // Number all nodes with a topological order and set DAGSize. 1107 DAGSize = CurDAG->AssignTopologicalOrder(); 1108 1109 // Create a dummy node (which is not added to allnodes), that adds 1110 // a reference to the root node, preventing it from being deleted, 1111 // and tracking any changes of the root. 1112 HandleSDNode Dummy(CurDAG->getRoot()); 1113 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1114 ++ISelPosition; 1115 1116 // Make sure that ISelPosition gets properly updated when nodes are deleted 1117 // in calls made from this function. 1118 ISelUpdater ISU(*CurDAG, ISelPosition); 1119 1120 // The AllNodes list is now topological-sorted. Visit the 1121 // nodes by starting at the end of the list (the root of the 1122 // graph) and preceding back toward the beginning (the entry 1123 // node). 1124 while (ISelPosition != CurDAG->allnodes_begin()) { 1125 SDNode *Node = &*--ISelPosition; 1126 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1127 // but there are currently some corner cases that it misses. Also, this 1128 // makes it theoretically possible to disable the DAGCombiner. 1129 if (Node->use_empty()) 1130 continue; 1131 1132 #ifndef NDEBUG 1133 SmallVector<SDNode *, 4> Nodes; 1134 Nodes.push_back(Node); 1135 1136 while (!Nodes.empty()) { 1137 auto N = Nodes.pop_back_val(); 1138 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1139 continue; 1140 for (const SDValue &Op : N->op_values()) { 1141 if (Op->getOpcode() == ISD::TokenFactor) 1142 Nodes.push_back(Op.getNode()); 1143 else { 1144 // We rely on topological ordering of node ids for checking for 1145 // cycles when fusing nodes during selection. All unselected nodes 1146 // successors of an already selected node should have a negative id. 1147 // This assertion will catch such cases. If this assertion triggers 1148 // it is likely you using DAG-level Value/Node replacement functions 1149 // (versus equivalent ISEL replacement) in backend-specific 1150 // selections. See comment in EnforceNodeIdInvariant for more 1151 // details. 1152 assert(Op->getNodeId() != -1 && 1153 "Node has already selected predecessor node"); 1154 } 1155 } 1156 } 1157 #endif 1158 1159 // When we are using non-default rounding modes or FP exception behavior 1160 // FP operations are represented by StrictFP pseudo-operations. For 1161 // targets that do not (yet) understand strict FP operations directly, 1162 // we convert them to normal FP opcodes instead at this point. This 1163 // will allow them to be handled by existing target-specific instruction 1164 // selectors. 1165 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { 1166 // For some opcodes, we need to call TLI->getOperationAction using 1167 // the first operand type instead of the result type. Note that this 1168 // must match what SelectionDAGLegalize::LegalizeOp is doing. 1169 EVT ActionVT; 1170 switch (Node->getOpcode()) { 1171 case ISD::STRICT_SINT_TO_FP: 1172 case ISD::STRICT_UINT_TO_FP: 1173 case ISD::STRICT_LRINT: 1174 case ISD::STRICT_LLRINT: 1175 case ISD::STRICT_LROUND: 1176 case ISD::STRICT_LLROUND: 1177 case ISD::STRICT_FSETCC: 1178 case ISD::STRICT_FSETCCS: 1179 ActionVT = Node->getOperand(1).getValueType(); 1180 break; 1181 default: 1182 ActionVT = Node->getValueType(0); 1183 break; 1184 } 1185 if (TLI->getOperationAction(Node->getOpcode(), ActionVT) 1186 == TargetLowering::Expand) 1187 Node = CurDAG->mutateStrictFPToFP(Node); 1188 } 1189 1190 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1191 Node->dump(CurDAG)); 1192 1193 Select(Node); 1194 } 1195 1196 CurDAG->setRoot(Dummy.getValue()); 1197 } 1198 1199 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1200 1201 PostprocessISelDAG(); 1202 } 1203 1204 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1205 for (const User *U : CPI->users()) { 1206 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1207 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1208 if (IID == Intrinsic::eh_exceptionpointer || 1209 IID == Intrinsic::eh_exceptioncode) 1210 return true; 1211 } 1212 } 1213 return false; 1214 } 1215 1216 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1217 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1218 // and store the mapping in the function. 1219 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1220 const CatchPadInst *CPI) { 1221 MachineFunction *MF = MBB->getParent(); 1222 // In case of single catch (...), we don't emit LSDA, so we don't need 1223 // this information. 1224 bool IsSingleCatchAllClause = 1225 CPI->getNumArgOperands() == 1 && 1226 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1227 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 [] 1228 // and they don't need LSDA info 1229 bool IsCatchLongjmp = CPI->getNumArgOperands() == 0; 1230 if (!IsSingleCatchAllClause && !IsCatchLongjmp) { 1231 // Create a mapping from landing pad label to landing pad index. 1232 bool IntrFound = false; 1233 for (const User *U : CPI->users()) { 1234 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1235 Intrinsic::ID IID = Call->getIntrinsicID(); 1236 if (IID == Intrinsic::wasm_landingpad_index) { 1237 Value *IndexArg = Call->getArgOperand(1); 1238 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1239 MF->setWasmLandingPadIndex(MBB, Index); 1240 IntrFound = true; 1241 break; 1242 } 1243 } 1244 } 1245 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1246 (void)IntrFound; 1247 } 1248 } 1249 1250 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1251 /// do other setup for EH landing-pad blocks. 1252 bool SelectionDAGISel::PrepareEHLandingPad() { 1253 MachineBasicBlock *MBB = FuncInfo->MBB; 1254 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1255 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1256 const TargetRegisterClass *PtrRC = 1257 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1258 1259 auto Pers = classifyEHPersonality(PersonalityFn); 1260 1261 // Catchpads have one live-in register, which typically holds the exception 1262 // pointer or code. 1263 if (isFuncletEHPersonality(Pers)) { 1264 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1265 if (hasExceptionPointerOrCodeUser(CPI)) { 1266 // Get or create the virtual register to hold the pointer or code. Mark 1267 // the live in physreg and copy into the vreg. 1268 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1269 assert(EHPhysReg && "target lacks exception pointer register"); 1270 MBB->addLiveIn(EHPhysReg); 1271 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1272 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1273 TII->get(TargetOpcode::COPY), VReg) 1274 .addReg(EHPhysReg, RegState::Kill); 1275 } 1276 } 1277 return true; 1278 } 1279 1280 // Add a label to mark the beginning of the landing pad. Deletion of the 1281 // landing pad can thus be detected via the MachineModuleInfo. 1282 MCSymbol *Label = MF->addLandingPad(MBB); 1283 1284 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1285 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1286 .addSym(Label); 1287 1288 // If the unwinder does not preserve all registers, ensure that the 1289 // function marks the clobbered registers as used. 1290 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 1291 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 1292 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 1293 1294 if (Pers == EHPersonality::Wasm_CXX) { 1295 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1296 mapWasmLandingPadIndex(MBB, CPI); 1297 } else { 1298 // Assign the call site to the landing pad's begin label. 1299 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1300 // Mark exception register as live in. 1301 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1302 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1303 // Mark exception selector register as live in. 1304 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1305 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1306 } 1307 1308 return true; 1309 } 1310 1311 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1312 /// side-effect free and is either dead or folded into a generated instruction. 1313 /// Return false if it needs to be emitted. 1314 static bool isFoldedOrDeadInstruction(const Instruction *I, 1315 const FunctionLoweringInfo &FuncInfo) { 1316 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1317 !I->isTerminator() && // Terminators aren't folded. 1318 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1319 !I->isEHPad() && // EH pad instructions aren't folded. 1320 !FuncInfo.isExportedInst(I); // Exported instrs must be computed. 1321 } 1322 1323 /// Collect llvm.dbg.declare information. This is done after argument lowering 1324 /// in case the declarations refer to arguments. 1325 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { 1326 MachineFunction *MF = FuncInfo.MF; 1327 const DataLayout &DL = MF->getDataLayout(); 1328 for (const BasicBlock &BB : *FuncInfo.Fn) { 1329 for (const Instruction &I : BB) { 1330 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1331 if (!DI) 1332 continue; 1333 1334 assert(DI->getVariable() && "Missing variable"); 1335 assert(DI->getDebugLoc() && "Missing location"); 1336 const Value *Address = DI->getAddress(); 1337 if (!Address) { 1338 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI 1339 << " (bad address)\n"); 1340 continue; 1341 } 1342 1343 // Look through casts and constant offset GEPs. These mostly come from 1344 // inalloca. 1345 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1346 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1347 1348 // Check if the variable is a static alloca or a byval or inalloca 1349 // argument passed in memory. If it is not, then we will ignore this 1350 // intrinsic and handle this during isel like dbg.value. 1351 int FI = std::numeric_limits<int>::max(); 1352 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1353 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1354 if (SI != FuncInfo.StaticAllocaMap.end()) 1355 FI = SI->second; 1356 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1357 FI = FuncInfo.getArgumentFrameIndex(Arg); 1358 1359 if (FI == std::numeric_limits<int>::max()) 1360 continue; 1361 1362 DIExpression *Expr = DI->getExpression(); 1363 if (Offset.getBoolValue()) 1364 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1365 Offset.getZExtValue()); 1366 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI 1367 << ", " << *DI << "\n"); 1368 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1369 } 1370 } 1371 } 1372 1373 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1374 FastISelFailed = false; 1375 // Initialize the Fast-ISel state, if needed. 1376 FastISel *FastIS = nullptr; 1377 if (TM.Options.EnableFastISel) { 1378 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1379 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1380 } 1381 1382 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1383 1384 // Lower arguments up front. An RPO iteration always visits the entry block 1385 // first. 1386 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1387 ++NumEntryBlocks; 1388 1389 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1390 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1391 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1392 1393 CurDAG->setFunctionLoweringInfo(FuncInfo.get()); 1394 1395 if (!FastIS) { 1396 LowerArguments(Fn); 1397 } else { 1398 // See if fast isel can lower the arguments. 1399 FastIS->startNewBlock(); 1400 if (!FastIS->lowerArguments()) { 1401 FastISelFailed = true; 1402 // Fast isel failed to lower these arguments 1403 ++NumFastIselFailLowerArguments; 1404 1405 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1406 Fn.getSubprogram(), 1407 &Fn.getEntryBlock()); 1408 R << "FastISel didn't lower all arguments: " 1409 << ore::NV("Prototype", Fn.getType()); 1410 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1411 1412 // Use SelectionDAG argument lowering 1413 LowerArguments(Fn); 1414 CurDAG->setRoot(SDB->getControlRoot()); 1415 SDB->clear(); 1416 CodeGenAndEmitDAG(); 1417 } 1418 1419 // If we inserted any instructions at the beginning, make a note of 1420 // where they are, so we can be sure to emit subsequent instructions 1421 // after them. 1422 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1423 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1424 else 1425 FastIS->setLastLocalValue(nullptr); 1426 } 1427 1428 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1429 1430 if (FastIS && Inserted) 1431 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1432 1433 processDbgDeclares(*FuncInfo); 1434 1435 // Iterate over all basic blocks in the function. 1436 StackProtector &SP = getAnalysis<StackProtector>(); 1437 for (const BasicBlock *LLVMBB : RPOT) { 1438 if (OptLevel != CodeGenOpt::None) { 1439 bool AllPredsVisited = true; 1440 for (const BasicBlock *Pred : predecessors(LLVMBB)) { 1441 if (!FuncInfo->VisitedBBs.count(Pred)) { 1442 AllPredsVisited = false; 1443 break; 1444 } 1445 } 1446 1447 if (AllPredsVisited) { 1448 for (const PHINode &PN : LLVMBB->phis()) 1449 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1450 } else { 1451 for (const PHINode &PN : LLVMBB->phis()) 1452 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1453 } 1454 1455 FuncInfo->VisitedBBs.insert(LLVMBB); 1456 } 1457 1458 BasicBlock::const_iterator const Begin = 1459 LLVMBB->getFirstNonPHI()->getIterator(); 1460 BasicBlock::const_iterator const End = LLVMBB->end(); 1461 BasicBlock::const_iterator BI = End; 1462 1463 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1464 if (!FuncInfo->MBB) 1465 continue; // Some blocks like catchpads have no code or MBB. 1466 1467 // Insert new instructions after any phi or argument setup code. 1468 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1469 1470 // Setup an EH landing-pad block. 1471 FuncInfo->ExceptionPointerVirtReg = 0; 1472 FuncInfo->ExceptionSelectorVirtReg = 0; 1473 if (LLVMBB->isEHPad()) 1474 if (!PrepareEHLandingPad()) 1475 continue; 1476 1477 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1478 if (FastIS) { 1479 if (LLVMBB != &Fn.getEntryBlock()) 1480 FastIS->startNewBlock(); 1481 1482 unsigned NumFastIselRemaining = std::distance(Begin, End); 1483 1484 // Pre-assign swifterror vregs. 1485 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1486 1487 // Do FastISel on as many instructions as possible. 1488 for (; BI != Begin; --BI) { 1489 const Instruction *Inst = &*std::prev(BI); 1490 1491 // If we no longer require this instruction, skip it. 1492 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) || 1493 ElidedArgCopyInstrs.count(Inst)) { 1494 --NumFastIselRemaining; 1495 continue; 1496 } 1497 1498 // Bottom-up: reset the insert pos at the top, after any local-value 1499 // instructions. 1500 FastIS->recomputeInsertPt(); 1501 1502 // Try to select the instruction with FastISel. 1503 if (FastIS->selectInstruction(Inst)) { 1504 --NumFastIselRemaining; 1505 ++NumFastIselSuccess; 1506 // If fast isel succeeded, skip over all the folded instructions, and 1507 // then see if there is a load right before the selected instructions. 1508 // Try to fold the load if so. 1509 const Instruction *BeforeInst = Inst; 1510 while (BeforeInst != &*Begin) { 1511 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1512 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo)) 1513 break; 1514 } 1515 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1516 BeforeInst->hasOneUse() && 1517 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1518 // If we succeeded, don't re-select the load. 1519 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1520 --NumFastIselRemaining; 1521 ++NumFastIselSuccess; 1522 } 1523 continue; 1524 } 1525 1526 FastISelFailed = true; 1527 1528 // Then handle certain instructions as single-LLVM-Instruction blocks. 1529 // We cannot separate out GCrelocates to their own blocks since we need 1530 // to keep track of gc-relocates for a particular gc-statepoint. This is 1531 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1532 // visitGCRelocate. 1533 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) && 1534 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) { 1535 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1536 Inst->getDebugLoc(), LLVMBB); 1537 1538 R << "FastISel missed call"; 1539 1540 if (R.isEnabled() || EnableFastISelAbort) { 1541 std::string InstStrStorage; 1542 raw_string_ostream InstStr(InstStrStorage); 1543 InstStr << *Inst; 1544 1545 R << ": " << InstStr.str(); 1546 } 1547 1548 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1549 1550 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1551 !Inst->use_empty()) { 1552 Register &R = FuncInfo->ValueMap[Inst]; 1553 if (!R) 1554 R = FuncInfo->CreateRegs(Inst); 1555 } 1556 1557 bool HadTailCall = false; 1558 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1559 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1560 1561 // If the call was emitted as a tail call, we're done with the block. 1562 // We also need to delete any previously emitted instructions. 1563 if (HadTailCall) { 1564 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1565 --BI; 1566 break; 1567 } 1568 1569 // Recompute NumFastIselRemaining as Selection DAG instruction 1570 // selection may have handled the call, input args, etc. 1571 unsigned RemainingNow = std::distance(Begin, BI); 1572 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1573 NumFastIselRemaining = RemainingNow; 1574 continue; 1575 } 1576 1577 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1578 Inst->getDebugLoc(), LLVMBB); 1579 1580 bool ShouldAbort = EnableFastISelAbort; 1581 if (Inst->isTerminator()) { 1582 // Use a different message for terminator misses. 1583 R << "FastISel missed terminator"; 1584 // Don't abort for terminator unless the level is really high 1585 ShouldAbort = (EnableFastISelAbort > 2); 1586 } else { 1587 R << "FastISel missed"; 1588 } 1589 1590 if (R.isEnabled() || EnableFastISelAbort) { 1591 std::string InstStrStorage; 1592 raw_string_ostream InstStr(InstStrStorage); 1593 InstStr << *Inst; 1594 R << ": " << InstStr.str(); 1595 } 1596 1597 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1598 1599 NumFastIselFailures += NumFastIselRemaining; 1600 break; 1601 } 1602 1603 FastIS->recomputeInsertPt(); 1604 } 1605 1606 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1607 bool FunctionBasedInstrumentation = 1608 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1609 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1610 FunctionBasedInstrumentation); 1611 } 1612 1613 if (Begin != BI) 1614 ++NumDAGBlocks; 1615 else 1616 ++NumFastIselBlocks; 1617 1618 if (Begin != BI) { 1619 // Run SelectionDAG instruction selection on the remainder of the block 1620 // not handled by FastISel. If FastISel is not run, this is the entire 1621 // block. 1622 bool HadTailCall; 1623 SelectBasicBlock(Begin, BI, HadTailCall); 1624 1625 // But if FastISel was run, we already selected some of the block. 1626 // If we emitted a tail-call, we need to delete any previously emitted 1627 // instruction that follows it. 1628 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1629 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1630 } 1631 1632 if (FastIS) 1633 FastIS->finishBasicBlock(); 1634 FinishBasicBlock(); 1635 FuncInfo->PHINodesToUpdate.clear(); 1636 ElidedArgCopyInstrs.clear(); 1637 } 1638 1639 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1640 1641 SwiftError->propagateVRegs(); 1642 1643 delete FastIS; 1644 SDB->clearDanglingDebugInfo(); 1645 SDB->SPDescriptor.resetPerFunctionState(); 1646 } 1647 1648 void 1649 SelectionDAGISel::FinishBasicBlock() { 1650 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1651 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1652 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1653 ++i) dbgs() 1654 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1655 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1656 1657 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1658 // PHI nodes in successors. 1659 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1660 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1661 assert(PHI->isPHI() && 1662 "This is not a machine PHI node that we are updating!"); 1663 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1664 continue; 1665 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1666 } 1667 1668 // Handle stack protector. 1669 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1670 // The target provides a guard check function. There is no need to 1671 // generate error handling code or to split current basic block. 1672 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1673 1674 // Add load and check to the basicblock. 1675 FuncInfo->MBB = ParentMBB; 1676 FuncInfo->InsertPt = 1677 findSplitPointForStackProtector(ParentMBB, *TII); 1678 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1679 CurDAG->setRoot(SDB->getRoot()); 1680 SDB->clear(); 1681 CodeGenAndEmitDAG(); 1682 1683 // Clear the Per-BB State. 1684 SDB->SPDescriptor.resetPerBBState(); 1685 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1686 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1687 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1688 1689 // Find the split point to split the parent mbb. At the same time copy all 1690 // physical registers used in the tail of parent mbb into virtual registers 1691 // before the split point and back into physical registers after the split 1692 // point. This prevents us needing to deal with Live-ins and many other 1693 // register allocation issues caused by us splitting the parent mbb. The 1694 // register allocator will clean up said virtual copies later on. 1695 MachineBasicBlock::iterator SplitPoint = 1696 findSplitPointForStackProtector(ParentMBB, *TII); 1697 1698 // Splice the terminator of ParentMBB into SuccessMBB. 1699 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1700 SplitPoint, 1701 ParentMBB->end()); 1702 1703 // Add compare/jump on neq/jump to the parent BB. 1704 FuncInfo->MBB = ParentMBB; 1705 FuncInfo->InsertPt = ParentMBB->end(); 1706 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1707 CurDAG->setRoot(SDB->getRoot()); 1708 SDB->clear(); 1709 CodeGenAndEmitDAG(); 1710 1711 // CodeGen Failure MBB if we have not codegened it yet. 1712 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1713 if (FailureMBB->empty()) { 1714 FuncInfo->MBB = FailureMBB; 1715 FuncInfo->InsertPt = FailureMBB->end(); 1716 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1717 CurDAG->setRoot(SDB->getRoot()); 1718 SDB->clear(); 1719 CodeGenAndEmitDAG(); 1720 } 1721 1722 // Clear the Per-BB State. 1723 SDB->SPDescriptor.resetPerBBState(); 1724 } 1725 1726 // Lower each BitTestBlock. 1727 for (auto &BTB : SDB->SL->BitTestCases) { 1728 // Lower header first, if it wasn't already lowered 1729 if (!BTB.Emitted) { 1730 // Set the current basic block to the mbb we wish to insert the code into 1731 FuncInfo->MBB = BTB.Parent; 1732 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1733 // Emit the code 1734 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1735 CurDAG->setRoot(SDB->getRoot()); 1736 SDB->clear(); 1737 CodeGenAndEmitDAG(); 1738 } 1739 1740 BranchProbability UnhandledProb = BTB.Prob; 1741 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1742 UnhandledProb -= BTB.Cases[j].ExtraProb; 1743 // Set the current basic block to the mbb we wish to insert the code into 1744 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1745 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1746 // Emit the code 1747 1748 // If all cases cover a contiguous range, it is not necessary to jump to 1749 // the default block after the last bit test fails. This is because the 1750 // range check during bit test header creation has guaranteed that every 1751 // case here doesn't go outside the range. In this case, there is no need 1752 // to perform the last bit test, as it will always be true. Instead, make 1753 // the second-to-last bit-test fall through to the target of the last bit 1754 // test, and delete the last bit test. 1755 1756 MachineBasicBlock *NextMBB; 1757 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 1758 // Second-to-last bit-test with contiguous range or omitted range 1759 // check: fall through to the target of the final bit test. 1760 NextMBB = BTB.Cases[j + 1].TargetBB; 1761 } else if (j + 1 == ej) { 1762 // For the last bit test, fall through to Default. 1763 NextMBB = BTB.Default; 1764 } else { 1765 // Otherwise, fall through to the next bit test. 1766 NextMBB = BTB.Cases[j + 1].ThisBB; 1767 } 1768 1769 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1770 FuncInfo->MBB); 1771 1772 CurDAG->setRoot(SDB->getRoot()); 1773 SDB->clear(); 1774 CodeGenAndEmitDAG(); 1775 1776 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 1777 // Since we're not going to use the final bit test, remove it. 1778 BTB.Cases.pop_back(); 1779 break; 1780 } 1781 } 1782 1783 // Update PHI Nodes 1784 for (const std::pair<MachineInstr *, unsigned> &P : 1785 FuncInfo->PHINodesToUpdate) { 1786 MachineInstrBuilder PHI(*MF, P.first); 1787 MachineBasicBlock *PHIBB = PHI->getParent(); 1788 assert(PHI->isPHI() && 1789 "This is not a machine PHI node that we are updating!"); 1790 // This is "default" BB. We have two jumps to it. From "header" BB and 1791 // from last "case" BB, unless the latter was skipped. 1792 if (PHIBB == BTB.Default) { 1793 PHI.addReg(P.second).addMBB(BTB.Parent); 1794 if (!BTB.ContiguousRange) { 1795 PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB); 1796 } 1797 } 1798 // One of "cases" BB. 1799 for (const SwitchCG::BitTestCase &BT : BTB.Cases) { 1800 MachineBasicBlock* cBB = BT.ThisBB; 1801 if (cBB->isSuccessor(PHIBB)) 1802 PHI.addReg(P.second).addMBB(cBB); 1803 } 1804 } 1805 } 1806 SDB->SL->BitTestCases.clear(); 1807 1808 // If the JumpTable record is filled in, then we need to emit a jump table. 1809 // Updating the PHI nodes is tricky in this case, since we need to determine 1810 // whether the PHI is a successor of the range check MBB or the jump table MBB 1811 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1812 // Lower header first, if it wasn't already lowered 1813 if (!SDB->SL->JTCases[i].first.Emitted) { 1814 // Set the current basic block to the mbb we wish to insert the code into 1815 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1816 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1817 // Emit the code 1818 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1819 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1820 CurDAG->setRoot(SDB->getRoot()); 1821 SDB->clear(); 1822 CodeGenAndEmitDAG(); 1823 } 1824 1825 // Set the current basic block to the mbb we wish to insert the code into 1826 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1827 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1828 // Emit the code 1829 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1830 CurDAG->setRoot(SDB->getRoot()); 1831 SDB->clear(); 1832 CodeGenAndEmitDAG(); 1833 1834 // Update PHI Nodes 1835 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1836 pi != pe; ++pi) { 1837 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1838 MachineBasicBlock *PHIBB = PHI->getParent(); 1839 assert(PHI->isPHI() && 1840 "This is not a machine PHI node that we are updating!"); 1841 // "default" BB. We can go there only from header BB. 1842 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1843 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1844 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1845 // JT BB. Just iterate over successors here 1846 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1847 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1848 } 1849 } 1850 SDB->SL->JTCases.clear(); 1851 1852 // If we generated any switch lowering information, build and codegen any 1853 // additional DAGs necessary. 1854 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1855 // Set the current basic block to the mbb we wish to insert the code into 1856 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1857 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1858 1859 // Determine the unique successors. 1860 SmallVector<MachineBasicBlock *, 2> Succs; 1861 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1862 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1863 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1864 1865 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1866 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1867 CurDAG->setRoot(SDB->getRoot()); 1868 SDB->clear(); 1869 CodeGenAndEmitDAG(); 1870 1871 // Remember the last block, now that any splitting is done, for use in 1872 // populating PHI nodes in successors. 1873 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1874 1875 // Handle any PHI nodes in successors of this chunk, as if we were coming 1876 // from the original BB before switch expansion. Note that PHI nodes can 1877 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1878 // handle them the right number of times. 1879 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1880 FuncInfo->MBB = Succs[i]; 1881 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1882 // FuncInfo->MBB may have been removed from the CFG if a branch was 1883 // constant folded. 1884 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1885 for (MachineBasicBlock::iterator 1886 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1887 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1888 MachineInstrBuilder PHI(*MF, MBBI); 1889 // This value for this PHI node is recorded in PHINodesToUpdate. 1890 for (unsigned pn = 0; ; ++pn) { 1891 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1892 "Didn't find PHI entry!"); 1893 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1894 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1895 break; 1896 } 1897 } 1898 } 1899 } 1900 } 1901 } 1902 SDB->SL->SwitchCases.clear(); 1903 } 1904 1905 /// Create the scheduler. If a specific scheduler was specified 1906 /// via the SchedulerRegistry, use it, otherwise select the 1907 /// one preferred by the target. 1908 /// 1909 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1910 return ISHeuristic(this, OptLevel); 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // Helper functions used by the generated instruction selector. 1915 //===----------------------------------------------------------------------===// 1916 // Calls to these methods are generated by tblgen. 1917 1918 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1919 /// the dag combiner simplified the 255, we still want to match. RHS is the 1920 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1921 /// specified in the .td file (e.g. 255). 1922 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1923 int64_t DesiredMaskS) const { 1924 const APInt &ActualMask = RHS->getAPIntValue(); 1925 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1926 1927 // If the actual mask exactly matches, success! 1928 if (ActualMask == DesiredMask) 1929 return true; 1930 1931 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1932 if (!ActualMask.isSubsetOf(DesiredMask)) 1933 return false; 1934 1935 // Otherwise, the DAG Combiner may have proven that the value coming in is 1936 // either already zero or is not demanded. Check for known zero input bits. 1937 APInt NeededMask = DesiredMask & ~ActualMask; 1938 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1939 return true; 1940 1941 // TODO: check to see if missing bits are just not demanded. 1942 1943 // Otherwise, this pattern doesn't match. 1944 return false; 1945 } 1946 1947 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1948 /// the dag combiner simplified the 255, we still want to match. RHS is the 1949 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1950 /// specified in the .td file (e.g. 255). 1951 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1952 int64_t DesiredMaskS) const { 1953 const APInt &ActualMask = RHS->getAPIntValue(); 1954 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1955 1956 // If the actual mask exactly matches, success! 1957 if (ActualMask == DesiredMask) 1958 return true; 1959 1960 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1961 if (!ActualMask.isSubsetOf(DesiredMask)) 1962 return false; 1963 1964 // Otherwise, the DAG Combiner may have proven that the value coming in is 1965 // either already zero or is not demanded. Check for known zero input bits. 1966 APInt NeededMask = DesiredMask & ~ActualMask; 1967 KnownBits Known = CurDAG->computeKnownBits(LHS); 1968 1969 // If all the missing bits in the or are already known to be set, match! 1970 if (NeededMask.isSubsetOf(Known.One)) 1971 return true; 1972 1973 // TODO: check to see if missing bits are just not demanded. 1974 1975 // Otherwise, this pattern doesn't match. 1976 return false; 1977 } 1978 1979 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 1980 /// by tblgen. Others should not call it. 1981 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 1982 const SDLoc &DL) { 1983 std::vector<SDValue> InOps; 1984 std::swap(InOps, Ops); 1985 1986 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 1987 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 1988 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 1989 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 1990 1991 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 1992 if (InOps[e-1].getValueType() == MVT::Glue) 1993 --e; // Don't process a glue operand if it is here. 1994 1995 while (i != e) { 1996 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 1997 if (!InlineAsm::isMemKind(Flags)) { 1998 // Just skip over this operand, copying the operands verbatim. 1999 Ops.insert(Ops.end(), InOps.begin()+i, 2000 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2001 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2002 } else { 2003 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2004 "Memory operand with multiple values?"); 2005 2006 unsigned TiedToOperand; 2007 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2008 // We need the constraint ID from the operand this is tied to. 2009 unsigned CurOp = InlineAsm::Op_FirstOperand; 2010 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2011 for (; TiedToOperand; --TiedToOperand) { 2012 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2013 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2014 } 2015 } 2016 2017 // Otherwise, this is a memory operand. Ask the target to select it. 2018 std::vector<SDValue> SelOps; 2019 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2020 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2021 report_fatal_error("Could not match memory address. Inline asm" 2022 " failure!"); 2023 2024 // Add this to the output node. 2025 unsigned NewFlags = 2026 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2027 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2028 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2029 llvm::append_range(Ops, SelOps); 2030 i += 2; 2031 } 2032 } 2033 2034 // Add the glue input back if present. 2035 if (e != InOps.size()) 2036 Ops.push_back(InOps.back()); 2037 } 2038 2039 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2040 /// SDNode. 2041 /// 2042 static SDNode *findGlueUse(SDNode *N) { 2043 unsigned FlagResNo = N->getNumValues()-1; 2044 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2045 SDUse &Use = I.getUse(); 2046 if (Use.getResNo() == FlagResNo) 2047 return Use.getUser(); 2048 } 2049 return nullptr; 2050 } 2051 2052 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2053 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2054 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2055 bool IgnoreChains) { 2056 SmallPtrSet<const SDNode *, 16> Visited; 2057 SmallVector<const SDNode *, 16> WorkList; 2058 // Only check if we have non-immediate uses of Def. 2059 if (ImmedUse->isOnlyUserOf(Def)) 2060 return false; 2061 2062 // We don't care about paths to Def that go through ImmedUse so mark it 2063 // visited and mark non-def operands as used. 2064 Visited.insert(ImmedUse); 2065 for (const SDValue &Op : ImmedUse->op_values()) { 2066 SDNode *N = Op.getNode(); 2067 // Ignore chain deps (they are validated by 2068 // HandleMergeInputChains) and immediate uses 2069 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2070 continue; 2071 if (!Visited.insert(N).second) 2072 continue; 2073 WorkList.push_back(N); 2074 } 2075 2076 // Initialize worklist to operands of Root. 2077 if (Root != ImmedUse) { 2078 for (const SDValue &Op : Root->op_values()) { 2079 SDNode *N = Op.getNode(); 2080 // Ignore chains (they are validated by HandleMergeInputChains) 2081 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2082 continue; 2083 if (!Visited.insert(N).second) 2084 continue; 2085 WorkList.push_back(N); 2086 } 2087 } 2088 2089 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2090 } 2091 2092 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2093 /// operand node N of U during instruction selection that starts at Root. 2094 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2095 SDNode *Root) const { 2096 if (OptLevel == CodeGenOpt::None) return false; 2097 return N.hasOneUse(); 2098 } 2099 2100 /// IsLegalToFold - Returns true if the specific operand node N of 2101 /// U can be folded during instruction selection that starts at Root. 2102 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2103 CodeGenOpt::Level OptLevel, 2104 bool IgnoreChains) { 2105 if (OptLevel == CodeGenOpt::None) return false; 2106 2107 // If Root use can somehow reach N through a path that that doesn't contain 2108 // U then folding N would create a cycle. e.g. In the following 2109 // diagram, Root can reach N through X. If N is folded into Root, then 2110 // X is both a predecessor and a successor of U. 2111 // 2112 // [N*] // 2113 // ^ ^ // 2114 // / \ // 2115 // [U*] [X]? // 2116 // ^ ^ // 2117 // \ / // 2118 // \ / // 2119 // [Root*] // 2120 // 2121 // * indicates nodes to be folded together. 2122 // 2123 // If Root produces glue, then it gets (even more) interesting. Since it 2124 // will be "glued" together with its glue use in the scheduler, we need to 2125 // check if it might reach N. 2126 // 2127 // [N*] // 2128 // ^ ^ // 2129 // / \ // 2130 // [U*] [X]? // 2131 // ^ ^ // 2132 // \ \ // 2133 // \ | // 2134 // [Root*] | // 2135 // ^ | // 2136 // f | // 2137 // | / // 2138 // [Y] / // 2139 // ^ / // 2140 // f / // 2141 // | / // 2142 // [GU] // 2143 // 2144 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2145 // (call it Fold), then X is a predecessor of GU and a successor of 2146 // Fold. But since Fold and GU are glued together, this will create 2147 // a cycle in the scheduling graph. 2148 2149 // If the node has glue, walk down the graph to the "lowest" node in the 2150 // glueged set. 2151 EVT VT = Root->getValueType(Root->getNumValues()-1); 2152 while (VT == MVT::Glue) { 2153 SDNode *GU = findGlueUse(Root); 2154 if (!GU) 2155 break; 2156 Root = GU; 2157 VT = Root->getValueType(Root->getNumValues()-1); 2158 2159 // If our query node has a glue result with a use, we've walked up it. If 2160 // the user (which has already been selected) has a chain or indirectly uses 2161 // the chain, HandleMergeInputChains will not consider it. Because of 2162 // this, we cannot ignore chains in this predicate. 2163 IgnoreChains = false; 2164 } 2165 2166 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2167 } 2168 2169 void SelectionDAGISel::Select_INLINEASM(SDNode *N) { 2170 SDLoc DL(N); 2171 2172 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2173 SelectInlineAsmMemoryOperands(Ops, DL); 2174 2175 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2176 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops); 2177 New->setNodeId(-1); 2178 ReplaceUses(N, New.getNode()); 2179 CurDAG->RemoveDeadNode(N); 2180 } 2181 2182 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2183 SDLoc dl(Op); 2184 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2185 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2186 2187 EVT VT = Op->getValueType(0); 2188 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2189 Register Reg = 2190 TLI->getRegisterByName(RegStr->getString().data(), Ty, 2191 CurDAG->getMachineFunction()); 2192 SDValue New = CurDAG->getCopyFromReg( 2193 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2194 New->setNodeId(-1); 2195 ReplaceUses(Op, New.getNode()); 2196 CurDAG->RemoveDeadNode(Op); 2197 } 2198 2199 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2200 SDLoc dl(Op); 2201 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2202 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2203 2204 EVT VT = Op->getOperand(2).getValueType(); 2205 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2206 2207 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, 2208 CurDAG->getMachineFunction()); 2209 SDValue New = CurDAG->getCopyToReg( 2210 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2211 New->setNodeId(-1); 2212 ReplaceUses(Op, New.getNode()); 2213 CurDAG->RemoveDeadNode(Op); 2214 } 2215 2216 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2217 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2218 } 2219 2220 void SelectionDAGISel::Select_FREEZE(SDNode *N) { 2221 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. 2222 // If FREEZE instruction is added later, the code below must be changed as 2223 // well. 2224 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0), 2225 N->getOperand(0)); 2226 } 2227 2228 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) { 2229 CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0), 2230 N->getOperand(0)); 2231 } 2232 2233 /// GetVBR - decode a vbr encoding whose top bit is set. 2234 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t 2235 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2236 assert(Val >= 128 && "Not a VBR"); 2237 Val &= 127; // Remove first vbr bit. 2238 2239 unsigned Shift = 7; 2240 uint64_t NextBits; 2241 do { 2242 NextBits = MatcherTable[Idx++]; 2243 Val |= (NextBits&127) << Shift; 2244 Shift += 7; 2245 } while (NextBits & 128); 2246 2247 return Val; 2248 } 2249 2250 /// When a match is complete, this method updates uses of interior chain results 2251 /// to use the new results. 2252 void SelectionDAGISel::UpdateChains( 2253 SDNode *NodeToMatch, SDValue InputChain, 2254 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2255 SmallVector<SDNode*, 4> NowDeadNodes; 2256 2257 // Now that all the normal results are replaced, we replace the chain and 2258 // glue results if present. 2259 if (!ChainNodesMatched.empty()) { 2260 assert(InputChain.getNode() && 2261 "Matched input chains but didn't produce a chain"); 2262 // Loop over all of the nodes we matched that produced a chain result. 2263 // Replace all the chain results with the final chain we ended up with. 2264 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2265 SDNode *ChainNode = ChainNodesMatched[i]; 2266 // If ChainNode is null, it's because we replaced it on a previous 2267 // iteration and we cleared it out of the map. Just skip it. 2268 if (!ChainNode) 2269 continue; 2270 2271 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2272 "Deleted node left in chain"); 2273 2274 // Don't replace the results of the root node if we're doing a 2275 // MorphNodeTo. 2276 if (ChainNode == NodeToMatch && isMorphNodeTo) 2277 continue; 2278 2279 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2280 if (ChainVal.getValueType() == MVT::Glue) 2281 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2282 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2283 SelectionDAG::DAGNodeDeletedListener NDL( 2284 *CurDAG, [&](SDNode *N, SDNode *E) { 2285 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2286 static_cast<SDNode *>(nullptr)); 2287 }); 2288 if (ChainNode->getOpcode() != ISD::TokenFactor) 2289 ReplaceUses(ChainVal, InputChain); 2290 2291 // If the node became dead and we haven't already seen it, delete it. 2292 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2293 !llvm::is_contained(NowDeadNodes, ChainNode)) 2294 NowDeadNodes.push_back(ChainNode); 2295 } 2296 } 2297 2298 if (!NowDeadNodes.empty()) 2299 CurDAG->RemoveDeadNodes(NowDeadNodes); 2300 2301 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2302 } 2303 2304 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2305 /// operation for when the pattern matched at least one node with a chains. The 2306 /// input vector contains a list of all of the chained nodes that we match. We 2307 /// must determine if this is a valid thing to cover (i.e. matching it won't 2308 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2309 /// be used as the input node chain for the generated nodes. 2310 static SDValue 2311 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2312 SelectionDAG *CurDAG) { 2313 2314 SmallPtrSet<const SDNode *, 16> Visited; 2315 SmallVector<const SDNode *, 8> Worklist; 2316 SmallVector<SDValue, 3> InputChains; 2317 unsigned int Max = 8192; 2318 2319 // Quick exit on trivial merge. 2320 if (ChainNodesMatched.size() == 1) 2321 return ChainNodesMatched[0]->getOperand(0); 2322 2323 // Add chains that aren't already added (internal). Peek through 2324 // token factors. 2325 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2326 if (V.getValueType() != MVT::Other) 2327 return; 2328 if (V->getOpcode() == ISD::EntryToken) 2329 return; 2330 if (!Visited.insert(V.getNode()).second) 2331 return; 2332 if (V->getOpcode() == ISD::TokenFactor) { 2333 for (const SDValue &Op : V->op_values()) 2334 AddChains(Op); 2335 } else 2336 InputChains.push_back(V); 2337 }; 2338 2339 for (auto *N : ChainNodesMatched) { 2340 Worklist.push_back(N); 2341 Visited.insert(N); 2342 } 2343 2344 while (!Worklist.empty()) 2345 AddChains(Worklist.pop_back_val()->getOperand(0)); 2346 2347 // Skip the search if there are no chain dependencies. 2348 if (InputChains.size() == 0) 2349 return CurDAG->getEntryNode(); 2350 2351 // If one of these chains is a successor of input, we must have a 2352 // node that is both the predecessor and successor of the 2353 // to-be-merged nodes. Fail. 2354 Visited.clear(); 2355 for (SDValue V : InputChains) 2356 Worklist.push_back(V.getNode()); 2357 2358 for (auto *N : ChainNodesMatched) 2359 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2360 return SDValue(); 2361 2362 // Return merged chain. 2363 if (InputChains.size() == 1) 2364 return InputChains[0]; 2365 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2366 MVT::Other, InputChains); 2367 } 2368 2369 /// MorphNode - Handle morphing a node in place for the selector. 2370 SDNode *SelectionDAGISel:: 2371 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2372 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2373 // It is possible we're using MorphNodeTo to replace a node with no 2374 // normal results with one that has a normal result (or we could be 2375 // adding a chain) and the input could have glue and chains as well. 2376 // In this case we need to shift the operands down. 2377 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2378 // than the old isel though. 2379 int OldGlueResultNo = -1, OldChainResultNo = -1; 2380 2381 unsigned NTMNumResults = Node->getNumValues(); 2382 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2383 OldGlueResultNo = NTMNumResults-1; 2384 if (NTMNumResults != 1 && 2385 Node->getValueType(NTMNumResults-2) == MVT::Other) 2386 OldChainResultNo = NTMNumResults-2; 2387 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2388 OldChainResultNo = NTMNumResults-1; 2389 2390 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2391 // that this deletes operands of the old node that become dead. 2392 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2393 2394 // MorphNodeTo can operate in two ways: if an existing node with the 2395 // specified operands exists, it can just return it. Otherwise, it 2396 // updates the node in place to have the requested operands. 2397 if (Res == Node) { 2398 // If we updated the node in place, reset the node ID. To the isel, 2399 // this should be just like a newly allocated machine node. 2400 Res->setNodeId(-1); 2401 } 2402 2403 unsigned ResNumResults = Res->getNumValues(); 2404 // Move the glue if needed. 2405 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2406 (unsigned)OldGlueResultNo != ResNumResults-1) 2407 ReplaceUses(SDValue(Node, OldGlueResultNo), 2408 SDValue(Res, ResNumResults - 1)); 2409 2410 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2411 --ResNumResults; 2412 2413 // Move the chain reference if needed. 2414 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2415 (unsigned)OldChainResultNo != ResNumResults-1) 2416 ReplaceUses(SDValue(Node, OldChainResultNo), 2417 SDValue(Res, ResNumResults - 1)); 2418 2419 // Otherwise, no replacement happened because the node already exists. Replace 2420 // Uses of the old node with the new one. 2421 if (Res != Node) { 2422 ReplaceNode(Node, Res); 2423 } else { 2424 EnforceNodeIdInvariant(Res); 2425 } 2426 2427 return Res; 2428 } 2429 2430 /// CheckSame - Implements OP_CheckSame. 2431 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2432 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2433 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) { 2434 // Accept if it is exactly the same as a previously recorded node. 2435 unsigned RecNo = MatcherTable[MatcherIndex++]; 2436 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2437 return N == RecordedNodes[RecNo].first; 2438 } 2439 2440 /// CheckChildSame - Implements OP_CheckChildXSame. 2441 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame( 2442 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2443 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes, 2444 unsigned ChildNo) { 2445 if (ChildNo >= N.getNumOperands()) 2446 return false; // Match fails if out of range child #. 2447 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2448 RecordedNodes); 2449 } 2450 2451 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2452 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2453 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2454 const SelectionDAGISel &SDISel) { 2455 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2456 } 2457 2458 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2459 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2460 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2461 const SelectionDAGISel &SDISel, SDNode *N) { 2462 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2463 } 2464 2465 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2466 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2467 SDNode *N) { 2468 uint16_t Opc = MatcherTable[MatcherIndex++]; 2469 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2470 return N->getOpcode() == Opc; 2471 } 2472 2473 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2474 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2475 const TargetLowering *TLI, const DataLayout &DL) { 2476 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2477 if (N.getValueType() == VT) return true; 2478 2479 // Handle the case when VT is iPTR. 2480 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2481 } 2482 2483 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2484 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2485 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2486 unsigned ChildNo) { 2487 if (ChildNo >= N.getNumOperands()) 2488 return false; // Match fails if out of range child #. 2489 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2490 DL); 2491 } 2492 2493 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2494 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2495 SDValue N) { 2496 return cast<CondCodeSDNode>(N)->get() == 2497 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2498 } 2499 2500 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2501 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2502 SDValue N) { 2503 if (2 >= N.getNumOperands()) 2504 return false; 2505 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2506 } 2507 2508 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2509 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2510 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2511 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2512 if (cast<VTSDNode>(N)->getVT() == VT) 2513 return true; 2514 2515 // Handle the case when VT is iPTR. 2516 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2517 } 2518 2519 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude 2520 // shifted left by 1. 2521 static uint64_t decodeSignRotatedValue(uint64_t V) { 2522 if ((V & 1) == 0) 2523 return V >> 1; 2524 if (V != 1) 2525 return -(V >> 1); 2526 // There is no such thing as -0 with integers. "-0" really means MININT. 2527 return 1ULL << 63; 2528 } 2529 2530 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2531 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2532 SDValue N) { 2533 int64_t Val = MatcherTable[MatcherIndex++]; 2534 if (Val & 128) 2535 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2536 2537 Val = decodeSignRotatedValue(Val); 2538 2539 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2540 return C && C->getSExtValue() == Val; 2541 } 2542 2543 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2544 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2545 SDValue N, unsigned ChildNo) { 2546 if (ChildNo >= N.getNumOperands()) 2547 return false; // Match fails if out of range child #. 2548 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2549 } 2550 2551 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2552 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2553 SDValue N, const SelectionDAGISel &SDISel) { 2554 int64_t Val = MatcherTable[MatcherIndex++]; 2555 if (Val & 128) 2556 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2557 2558 if (N->getOpcode() != ISD::AND) return false; 2559 2560 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2561 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2562 } 2563 2564 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2565 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2566 const SelectionDAGISel &SDISel) { 2567 int64_t Val = MatcherTable[MatcherIndex++]; 2568 if (Val & 128) 2569 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2570 2571 if (N->getOpcode() != ISD::OR) return false; 2572 2573 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2574 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2575 } 2576 2577 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2578 /// scope, evaluate the current node. If the current predicate is known to 2579 /// fail, set Result=true and return anything. If the current predicate is 2580 /// known to pass, set Result=false and return the MatcherIndex to continue 2581 /// with. If the current predicate is unknown, set Result=false and return the 2582 /// MatcherIndex to continue with. 2583 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2584 unsigned Index, SDValue N, 2585 bool &Result, 2586 const SelectionDAGISel &SDISel, 2587 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2588 switch (Table[Index++]) { 2589 default: 2590 Result = false; 2591 return Index-1; // Could not evaluate this predicate. 2592 case SelectionDAGISel::OPC_CheckSame: 2593 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2594 return Index; 2595 case SelectionDAGISel::OPC_CheckChild0Same: 2596 case SelectionDAGISel::OPC_CheckChild1Same: 2597 case SelectionDAGISel::OPC_CheckChild2Same: 2598 case SelectionDAGISel::OPC_CheckChild3Same: 2599 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2600 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2601 return Index; 2602 case SelectionDAGISel::OPC_CheckPatternPredicate: 2603 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2604 return Index; 2605 case SelectionDAGISel::OPC_CheckPredicate: 2606 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2607 return Index; 2608 case SelectionDAGISel::OPC_CheckOpcode: 2609 Result = !::CheckOpcode(Table, Index, N.getNode()); 2610 return Index; 2611 case SelectionDAGISel::OPC_CheckType: 2612 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2613 SDISel.CurDAG->getDataLayout()); 2614 return Index; 2615 case SelectionDAGISel::OPC_CheckTypeRes: { 2616 unsigned Res = Table[Index++]; 2617 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2618 SDISel.CurDAG->getDataLayout()); 2619 return Index; 2620 } 2621 case SelectionDAGISel::OPC_CheckChild0Type: 2622 case SelectionDAGISel::OPC_CheckChild1Type: 2623 case SelectionDAGISel::OPC_CheckChild2Type: 2624 case SelectionDAGISel::OPC_CheckChild3Type: 2625 case SelectionDAGISel::OPC_CheckChild4Type: 2626 case SelectionDAGISel::OPC_CheckChild5Type: 2627 case SelectionDAGISel::OPC_CheckChild6Type: 2628 case SelectionDAGISel::OPC_CheckChild7Type: 2629 Result = !::CheckChildType( 2630 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2631 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2632 return Index; 2633 case SelectionDAGISel::OPC_CheckCondCode: 2634 Result = !::CheckCondCode(Table, Index, N); 2635 return Index; 2636 case SelectionDAGISel::OPC_CheckChild2CondCode: 2637 Result = !::CheckChild2CondCode(Table, Index, N); 2638 return Index; 2639 case SelectionDAGISel::OPC_CheckValueType: 2640 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2641 SDISel.CurDAG->getDataLayout()); 2642 return Index; 2643 case SelectionDAGISel::OPC_CheckInteger: 2644 Result = !::CheckInteger(Table, Index, N); 2645 return Index; 2646 case SelectionDAGISel::OPC_CheckChild0Integer: 2647 case SelectionDAGISel::OPC_CheckChild1Integer: 2648 case SelectionDAGISel::OPC_CheckChild2Integer: 2649 case SelectionDAGISel::OPC_CheckChild3Integer: 2650 case SelectionDAGISel::OPC_CheckChild4Integer: 2651 Result = !::CheckChildInteger(Table, Index, N, 2652 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2653 return Index; 2654 case SelectionDAGISel::OPC_CheckAndImm: 2655 Result = !::CheckAndImm(Table, Index, N, SDISel); 2656 return Index; 2657 case SelectionDAGISel::OPC_CheckOrImm: 2658 Result = !::CheckOrImm(Table, Index, N, SDISel); 2659 return Index; 2660 } 2661 } 2662 2663 namespace { 2664 2665 struct MatchScope { 2666 /// FailIndex - If this match fails, this is the index to continue with. 2667 unsigned FailIndex; 2668 2669 /// NodeStack - The node stack when the scope was formed. 2670 SmallVector<SDValue, 4> NodeStack; 2671 2672 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2673 unsigned NumRecordedNodes; 2674 2675 /// NumMatchedMemRefs - The number of matched memref entries. 2676 unsigned NumMatchedMemRefs; 2677 2678 /// InputChain/InputGlue - The current chain/glue 2679 SDValue InputChain, InputGlue; 2680 2681 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2682 bool HasChainNodesMatched; 2683 }; 2684 2685 /// \A DAG update listener to keep the matching state 2686 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2687 /// change the DAG while matching. X86 addressing mode matcher is an example 2688 /// for this. 2689 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2690 { 2691 SDNode **NodeToMatch; 2692 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2693 SmallVectorImpl<MatchScope> &MatchScopes; 2694 2695 public: 2696 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2697 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2698 SmallVectorImpl<MatchScope> &MS) 2699 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2700 RecordedNodes(RN), MatchScopes(MS) {} 2701 2702 void NodeDeleted(SDNode *N, SDNode *E) override { 2703 // Some early-returns here to avoid the search if we deleted the node or 2704 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2705 // do, so it's unnecessary to update matching state at that point). 2706 // Neither of these can occur currently because we only install this 2707 // update listener during matching a complex patterns. 2708 if (!E || E->isMachineOpcode()) 2709 return; 2710 // Check if NodeToMatch was updated. 2711 if (N == *NodeToMatch) 2712 *NodeToMatch = E; 2713 // Performing linear search here does not matter because we almost never 2714 // run this code. You'd have to have a CSE during complex pattern 2715 // matching. 2716 for (auto &I : RecordedNodes) 2717 if (I.first.getNode() == N) 2718 I.first.setNode(E); 2719 2720 for (auto &I : MatchScopes) 2721 for (auto &J : I.NodeStack) 2722 if (J.getNode() == N) 2723 J.setNode(E); 2724 } 2725 }; 2726 2727 } // end anonymous namespace 2728 2729 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2730 const unsigned char *MatcherTable, 2731 unsigned TableSize) { 2732 // FIXME: Should these even be selected? Handle these cases in the caller? 2733 switch (NodeToMatch->getOpcode()) { 2734 default: 2735 break; 2736 case ISD::EntryToken: // These nodes remain the same. 2737 case ISD::BasicBlock: 2738 case ISD::Register: 2739 case ISD::RegisterMask: 2740 case ISD::HANDLENODE: 2741 case ISD::MDNODE_SDNODE: 2742 case ISD::TargetConstant: 2743 case ISD::TargetConstantFP: 2744 case ISD::TargetConstantPool: 2745 case ISD::TargetFrameIndex: 2746 case ISD::TargetExternalSymbol: 2747 case ISD::MCSymbol: 2748 case ISD::TargetBlockAddress: 2749 case ISD::TargetJumpTable: 2750 case ISD::TargetGlobalTLSAddress: 2751 case ISD::TargetGlobalAddress: 2752 case ISD::TokenFactor: 2753 case ISD::CopyFromReg: 2754 case ISD::CopyToReg: 2755 case ISD::EH_LABEL: 2756 case ISD::ANNOTATION_LABEL: 2757 case ISD::LIFETIME_START: 2758 case ISD::LIFETIME_END: 2759 case ISD::PSEUDO_PROBE: 2760 NodeToMatch->setNodeId(-1); // Mark selected. 2761 return; 2762 case ISD::AssertSext: 2763 case ISD::AssertZext: 2764 case ISD::AssertAlign: 2765 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2766 CurDAG->RemoveDeadNode(NodeToMatch); 2767 return; 2768 case ISD::INLINEASM: 2769 case ISD::INLINEASM_BR: 2770 Select_INLINEASM(NodeToMatch); 2771 return; 2772 case ISD::READ_REGISTER: 2773 Select_READ_REGISTER(NodeToMatch); 2774 return; 2775 case ISD::WRITE_REGISTER: 2776 Select_WRITE_REGISTER(NodeToMatch); 2777 return; 2778 case ISD::UNDEF: 2779 Select_UNDEF(NodeToMatch); 2780 return; 2781 case ISD::FREEZE: 2782 Select_FREEZE(NodeToMatch); 2783 return; 2784 case ISD::ARITH_FENCE: 2785 Select_ARITH_FENCE(NodeToMatch); 2786 return; 2787 } 2788 2789 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2790 2791 // Set up the node stack with NodeToMatch as the only node on the stack. 2792 SmallVector<SDValue, 8> NodeStack; 2793 SDValue N = SDValue(NodeToMatch, 0); 2794 NodeStack.push_back(N); 2795 2796 // MatchScopes - Scopes used when matching, if a match failure happens, this 2797 // indicates where to continue checking. 2798 SmallVector<MatchScope, 8> MatchScopes; 2799 2800 // RecordedNodes - This is the set of nodes that have been recorded by the 2801 // state machine. The second value is the parent of the node, or null if the 2802 // root is recorded. 2803 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2804 2805 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2806 // pattern. 2807 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2808 2809 // These are the current input chain and glue for use when generating nodes. 2810 // Various Emit operations change these. For example, emitting a copytoreg 2811 // uses and updates these. 2812 SDValue InputChain, InputGlue; 2813 2814 // ChainNodesMatched - If a pattern matches nodes that have input/output 2815 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2816 // which ones they are. The result is captured into this list so that we can 2817 // update the chain results when the pattern is complete. 2818 SmallVector<SDNode*, 3> ChainNodesMatched; 2819 2820 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2821 2822 // Determine where to start the interpreter. Normally we start at opcode #0, 2823 // but if the state machine starts with an OPC_SwitchOpcode, then we 2824 // accelerate the first lookup (which is guaranteed to be hot) with the 2825 // OpcodeOffset table. 2826 unsigned MatcherIndex = 0; 2827 2828 if (!OpcodeOffset.empty()) { 2829 // Already computed the OpcodeOffset table, just index into it. 2830 if (N.getOpcode() < OpcodeOffset.size()) 2831 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2832 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2833 2834 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2835 // Otherwise, the table isn't computed, but the state machine does start 2836 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2837 // is the first time we're selecting an instruction. 2838 unsigned Idx = 1; 2839 while (true) { 2840 // Get the size of this case. 2841 unsigned CaseSize = MatcherTable[Idx++]; 2842 if (CaseSize & 128) 2843 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2844 if (CaseSize == 0) break; 2845 2846 // Get the opcode, add the index to the table. 2847 uint16_t Opc = MatcherTable[Idx++]; 2848 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2849 if (Opc >= OpcodeOffset.size()) 2850 OpcodeOffset.resize((Opc+1)*2); 2851 OpcodeOffset[Opc] = Idx; 2852 Idx += CaseSize; 2853 } 2854 2855 // Okay, do the lookup for the first opcode. 2856 if (N.getOpcode() < OpcodeOffset.size()) 2857 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2858 } 2859 2860 while (true) { 2861 assert(MatcherIndex < TableSize && "Invalid index"); 2862 #ifndef NDEBUG 2863 unsigned CurrentOpcodeIndex = MatcherIndex; 2864 #endif 2865 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2866 switch (Opcode) { 2867 case OPC_Scope: { 2868 // Okay, the semantics of this operation are that we should push a scope 2869 // then evaluate the first child. However, pushing a scope only to have 2870 // the first check fail (which then pops it) is inefficient. If we can 2871 // determine immediately that the first check (or first several) will 2872 // immediately fail, don't even bother pushing a scope for them. 2873 unsigned FailIndex; 2874 2875 while (true) { 2876 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2877 if (NumToSkip & 128) 2878 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2879 // Found the end of the scope with no match. 2880 if (NumToSkip == 0) { 2881 FailIndex = 0; 2882 break; 2883 } 2884 2885 FailIndex = MatcherIndex+NumToSkip; 2886 2887 unsigned MatcherIndexOfPredicate = MatcherIndex; 2888 (void)MatcherIndexOfPredicate; // silence warning. 2889 2890 // If we can't evaluate this predicate without pushing a scope (e.g. if 2891 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2892 // push the scope and evaluate the full predicate chain. 2893 bool Result; 2894 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2895 Result, *this, RecordedNodes); 2896 if (!Result) 2897 break; 2898 2899 LLVM_DEBUG( 2900 dbgs() << " Skipped scope entry (due to false predicate) at " 2901 << "index " << MatcherIndexOfPredicate << ", continuing at " 2902 << FailIndex << "\n"); 2903 ++NumDAGIselRetries; 2904 2905 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2906 // move to the next case. 2907 MatcherIndex = FailIndex; 2908 } 2909 2910 // If the whole scope failed to match, bail. 2911 if (FailIndex == 0) break; 2912 2913 // Push a MatchScope which indicates where to go if the first child fails 2914 // to match. 2915 MatchScope NewEntry; 2916 NewEntry.FailIndex = FailIndex; 2917 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2918 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2919 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2920 NewEntry.InputChain = InputChain; 2921 NewEntry.InputGlue = InputGlue; 2922 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2923 MatchScopes.push_back(NewEntry); 2924 continue; 2925 } 2926 case OPC_RecordNode: { 2927 // Remember this node, it may end up being an operand in the pattern. 2928 SDNode *Parent = nullptr; 2929 if (NodeStack.size() > 1) 2930 Parent = NodeStack[NodeStack.size()-2].getNode(); 2931 RecordedNodes.push_back(std::make_pair(N, Parent)); 2932 continue; 2933 } 2934 2935 case OPC_RecordChild0: case OPC_RecordChild1: 2936 case OPC_RecordChild2: case OPC_RecordChild3: 2937 case OPC_RecordChild4: case OPC_RecordChild5: 2938 case OPC_RecordChild6: case OPC_RecordChild7: { 2939 unsigned ChildNo = Opcode-OPC_RecordChild0; 2940 if (ChildNo >= N.getNumOperands()) 2941 break; // Match fails if out of range child #. 2942 2943 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2944 N.getNode())); 2945 continue; 2946 } 2947 case OPC_RecordMemRef: 2948 if (auto *MN = dyn_cast<MemSDNode>(N)) 2949 MatchedMemRefs.push_back(MN->getMemOperand()); 2950 else { 2951 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 2952 dbgs() << '\n'); 2953 } 2954 2955 continue; 2956 2957 case OPC_CaptureGlueInput: 2958 // If the current node has an input glue, capture it in InputGlue. 2959 if (N->getNumOperands() != 0 && 2960 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2961 InputGlue = N->getOperand(N->getNumOperands()-1); 2962 continue; 2963 2964 case OPC_MoveChild: { 2965 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2966 if (ChildNo >= N.getNumOperands()) 2967 break; // Match fails if out of range child #. 2968 N = N.getOperand(ChildNo); 2969 NodeStack.push_back(N); 2970 continue; 2971 } 2972 2973 case OPC_MoveChild0: case OPC_MoveChild1: 2974 case OPC_MoveChild2: case OPC_MoveChild3: 2975 case OPC_MoveChild4: case OPC_MoveChild5: 2976 case OPC_MoveChild6: case OPC_MoveChild7: { 2977 unsigned ChildNo = Opcode-OPC_MoveChild0; 2978 if (ChildNo >= N.getNumOperands()) 2979 break; // Match fails if out of range child #. 2980 N = N.getOperand(ChildNo); 2981 NodeStack.push_back(N); 2982 continue; 2983 } 2984 2985 case OPC_MoveParent: 2986 // Pop the current node off the NodeStack. 2987 NodeStack.pop_back(); 2988 assert(!NodeStack.empty() && "Node stack imbalance!"); 2989 N = NodeStack.back(); 2990 continue; 2991 2992 case OPC_CheckSame: 2993 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2994 continue; 2995 2996 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 2997 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 2998 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 2999 Opcode-OPC_CheckChild0Same)) 3000 break; 3001 continue; 3002 3003 case OPC_CheckPatternPredicate: 3004 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 3005 continue; 3006 case OPC_CheckPredicate: 3007 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 3008 N.getNode())) 3009 break; 3010 continue; 3011 case OPC_CheckPredicateWithOperands: { 3012 unsigned OpNum = MatcherTable[MatcherIndex++]; 3013 SmallVector<SDValue, 8> Operands; 3014 3015 for (unsigned i = 0; i < OpNum; ++i) 3016 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3017 3018 unsigned PredNo = MatcherTable[MatcherIndex++]; 3019 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3020 break; 3021 continue; 3022 } 3023 case OPC_CheckComplexPat: { 3024 unsigned CPNum = MatcherTable[MatcherIndex++]; 3025 unsigned RecNo = MatcherTable[MatcherIndex++]; 3026 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3027 3028 // If target can modify DAG during matching, keep the matching state 3029 // consistent. 3030 std::unique_ptr<MatchStateUpdater> MSU; 3031 if (ComplexPatternFuncMutatesDAG()) 3032 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3033 MatchScopes)); 3034 3035 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3036 RecordedNodes[RecNo].first, CPNum, 3037 RecordedNodes)) 3038 break; 3039 continue; 3040 } 3041 case OPC_CheckOpcode: 3042 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3043 continue; 3044 3045 case OPC_CheckType: 3046 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3047 CurDAG->getDataLayout())) 3048 break; 3049 continue; 3050 3051 case OPC_CheckTypeRes: { 3052 unsigned Res = MatcherTable[MatcherIndex++]; 3053 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3054 CurDAG->getDataLayout())) 3055 break; 3056 continue; 3057 } 3058 3059 case OPC_SwitchOpcode: { 3060 unsigned CurNodeOpcode = N.getOpcode(); 3061 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3062 unsigned CaseSize; 3063 while (true) { 3064 // Get the size of this case. 3065 CaseSize = MatcherTable[MatcherIndex++]; 3066 if (CaseSize & 128) 3067 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3068 if (CaseSize == 0) break; 3069 3070 uint16_t Opc = MatcherTable[MatcherIndex++]; 3071 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3072 3073 // If the opcode matches, then we will execute this case. 3074 if (CurNodeOpcode == Opc) 3075 break; 3076 3077 // Otherwise, skip over this case. 3078 MatcherIndex += CaseSize; 3079 } 3080 3081 // If no cases matched, bail out. 3082 if (CaseSize == 0) break; 3083 3084 // Otherwise, execute the case we found. 3085 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3086 << MatcherIndex << "\n"); 3087 continue; 3088 } 3089 3090 case OPC_SwitchType: { 3091 MVT CurNodeVT = N.getSimpleValueType(); 3092 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3093 unsigned CaseSize; 3094 while (true) { 3095 // Get the size of this case. 3096 CaseSize = MatcherTable[MatcherIndex++]; 3097 if (CaseSize & 128) 3098 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3099 if (CaseSize == 0) break; 3100 3101 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3102 if (CaseVT == MVT::iPTR) 3103 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3104 3105 // If the VT matches, then we will execute this case. 3106 if (CurNodeVT == CaseVT) 3107 break; 3108 3109 // Otherwise, skip over this case. 3110 MatcherIndex += CaseSize; 3111 } 3112 3113 // If no cases matched, bail out. 3114 if (CaseSize == 0) break; 3115 3116 // Otherwise, execute the case we found. 3117 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3118 << "] from " << SwitchStart << " to " << MatcherIndex 3119 << '\n'); 3120 continue; 3121 } 3122 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3123 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3124 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3125 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3126 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3127 CurDAG->getDataLayout(), 3128 Opcode - OPC_CheckChild0Type)) 3129 break; 3130 continue; 3131 case OPC_CheckCondCode: 3132 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3133 continue; 3134 case OPC_CheckChild2CondCode: 3135 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3136 continue; 3137 case OPC_CheckValueType: 3138 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3139 CurDAG->getDataLayout())) 3140 break; 3141 continue; 3142 case OPC_CheckInteger: 3143 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3144 continue; 3145 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3146 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3147 case OPC_CheckChild4Integer: 3148 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3149 Opcode-OPC_CheckChild0Integer)) break; 3150 continue; 3151 case OPC_CheckAndImm: 3152 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3153 continue; 3154 case OPC_CheckOrImm: 3155 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3156 continue; 3157 case OPC_CheckImmAllOnesV: 3158 if (!ISD::isConstantSplatVectorAllOnes(N.getNode())) 3159 break; 3160 continue; 3161 case OPC_CheckImmAllZerosV: 3162 if (!ISD::isConstantSplatVectorAllZeros(N.getNode())) 3163 break; 3164 continue; 3165 3166 case OPC_CheckFoldableChainNode: { 3167 assert(NodeStack.size() != 1 && "No parent node"); 3168 // Verify that all intermediate nodes between the root and this one have 3169 // a single use (ignoring chains, which are handled in UpdateChains). 3170 bool HasMultipleUses = false; 3171 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { 3172 unsigned NNonChainUses = 0; 3173 SDNode *NS = NodeStack[i].getNode(); 3174 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI) 3175 if (UI.getUse().getValueType() != MVT::Other) 3176 if (++NNonChainUses > 1) { 3177 HasMultipleUses = true; 3178 break; 3179 } 3180 if (HasMultipleUses) break; 3181 } 3182 if (HasMultipleUses) break; 3183 3184 // Check to see that the target thinks this is profitable to fold and that 3185 // we can fold it without inducing cycles in the graph. 3186 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3187 NodeToMatch) || 3188 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3189 NodeToMatch, OptLevel, 3190 true/*We validate our own chains*/)) 3191 break; 3192 3193 continue; 3194 } 3195 case OPC_EmitInteger: 3196 case OPC_EmitStringInteger: { 3197 MVT::SimpleValueType VT = 3198 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3199 int64_t Val = MatcherTable[MatcherIndex++]; 3200 if (Val & 128) 3201 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3202 if (Opcode == OPC_EmitInteger) 3203 Val = decodeSignRotatedValue(Val); 3204 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3205 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3206 VT), nullptr)); 3207 continue; 3208 } 3209 case OPC_EmitRegister: { 3210 MVT::SimpleValueType VT = 3211 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3212 unsigned RegNo = MatcherTable[MatcherIndex++]; 3213 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3214 CurDAG->getRegister(RegNo, VT), nullptr)); 3215 continue; 3216 } 3217 case OPC_EmitRegister2: { 3218 // For targets w/ more than 256 register names, the register enum 3219 // values are stored in two bytes in the matcher table (just like 3220 // opcodes). 3221 MVT::SimpleValueType VT = 3222 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3223 unsigned RegNo = MatcherTable[MatcherIndex++]; 3224 RegNo |= MatcherTable[MatcherIndex++] << 8; 3225 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3226 CurDAG->getRegister(RegNo, VT), nullptr)); 3227 continue; 3228 } 3229 3230 case OPC_EmitConvertToTarget: { 3231 // Convert from IMM/FPIMM to target version. 3232 unsigned RecNo = MatcherTable[MatcherIndex++]; 3233 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3234 SDValue Imm = RecordedNodes[RecNo].first; 3235 3236 if (Imm->getOpcode() == ISD::Constant) { 3237 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3238 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3239 Imm.getValueType()); 3240 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3241 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3242 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3243 Imm.getValueType()); 3244 } 3245 3246 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3247 continue; 3248 } 3249 3250 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3251 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3252 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3253 // These are space-optimized forms of OPC_EmitMergeInputChains. 3254 assert(!InputChain.getNode() && 3255 "EmitMergeInputChains should be the first chain producing node"); 3256 assert(ChainNodesMatched.empty() && 3257 "Should only have one EmitMergeInputChains per match"); 3258 3259 // Read all of the chained nodes. 3260 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3261 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3262 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3263 3264 // FIXME: What if other value results of the node have uses not matched 3265 // by this pattern? 3266 if (ChainNodesMatched.back() != NodeToMatch && 3267 !RecordedNodes[RecNo].first.hasOneUse()) { 3268 ChainNodesMatched.clear(); 3269 break; 3270 } 3271 3272 // Merge the input chains if they are not intra-pattern references. 3273 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3274 3275 if (!InputChain.getNode()) 3276 break; // Failed to merge. 3277 continue; 3278 } 3279 3280 case OPC_EmitMergeInputChains: { 3281 assert(!InputChain.getNode() && 3282 "EmitMergeInputChains should be the first chain producing node"); 3283 // This node gets a list of nodes we matched in the input that have 3284 // chains. We want to token factor all of the input chains to these nodes 3285 // together. However, if any of the input chains is actually one of the 3286 // nodes matched in this pattern, then we have an intra-match reference. 3287 // Ignore these because the newly token factored chain should not refer to 3288 // the old nodes. 3289 unsigned NumChains = MatcherTable[MatcherIndex++]; 3290 assert(NumChains != 0 && "Can't TF zero chains"); 3291 3292 assert(ChainNodesMatched.empty() && 3293 "Should only have one EmitMergeInputChains per match"); 3294 3295 // Read all of the chained nodes. 3296 for (unsigned i = 0; i != NumChains; ++i) { 3297 unsigned RecNo = MatcherTable[MatcherIndex++]; 3298 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3299 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3300 3301 // FIXME: What if other value results of the node have uses not matched 3302 // by this pattern? 3303 if (ChainNodesMatched.back() != NodeToMatch && 3304 !RecordedNodes[RecNo].first.hasOneUse()) { 3305 ChainNodesMatched.clear(); 3306 break; 3307 } 3308 } 3309 3310 // If the inner loop broke out, the match fails. 3311 if (ChainNodesMatched.empty()) 3312 break; 3313 3314 // Merge the input chains if they are not intra-pattern references. 3315 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3316 3317 if (!InputChain.getNode()) 3318 break; // Failed to merge. 3319 3320 continue; 3321 } 3322 3323 case OPC_EmitCopyToReg: 3324 case OPC_EmitCopyToReg2: { 3325 unsigned RecNo = MatcherTable[MatcherIndex++]; 3326 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3327 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3328 if (Opcode == OPC_EmitCopyToReg2) 3329 DestPhysReg |= MatcherTable[MatcherIndex++] << 8; 3330 3331 if (!InputChain.getNode()) 3332 InputChain = CurDAG->getEntryNode(); 3333 3334 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3335 DestPhysReg, RecordedNodes[RecNo].first, 3336 InputGlue); 3337 3338 InputGlue = InputChain.getValue(1); 3339 continue; 3340 } 3341 3342 case OPC_EmitNodeXForm: { 3343 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3344 unsigned RecNo = MatcherTable[MatcherIndex++]; 3345 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3346 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3347 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3348 continue; 3349 } 3350 case OPC_Coverage: { 3351 // This is emitted right before MorphNode/EmitNode. 3352 // So it should be safe to assume that this node has been selected 3353 unsigned index = MatcherTable[MatcherIndex++]; 3354 index |= (MatcherTable[MatcherIndex++] << 8); 3355 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3356 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3357 continue; 3358 } 3359 3360 case OPC_EmitNode: case OPC_MorphNodeTo: 3361 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3362 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3363 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3364 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3365 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3366 // Get the result VT list. 3367 unsigned NumVTs; 3368 // If this is one of the compressed forms, get the number of VTs based 3369 // on the Opcode. Otherwise read the next byte from the table. 3370 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3371 NumVTs = Opcode - OPC_MorphNodeTo0; 3372 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3373 NumVTs = Opcode - OPC_EmitNode0; 3374 else 3375 NumVTs = MatcherTable[MatcherIndex++]; 3376 SmallVector<EVT, 4> VTs; 3377 for (unsigned i = 0; i != NumVTs; ++i) { 3378 MVT::SimpleValueType VT = 3379 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3380 if (VT == MVT::iPTR) 3381 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3382 VTs.push_back(VT); 3383 } 3384 3385 if (EmitNodeInfo & OPFL_Chain) 3386 VTs.push_back(MVT::Other); 3387 if (EmitNodeInfo & OPFL_GlueOutput) 3388 VTs.push_back(MVT::Glue); 3389 3390 // This is hot code, so optimize the two most common cases of 1 and 2 3391 // results. 3392 SDVTList VTList; 3393 if (VTs.size() == 1) 3394 VTList = CurDAG->getVTList(VTs[0]); 3395 else if (VTs.size() == 2) 3396 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3397 else 3398 VTList = CurDAG->getVTList(VTs); 3399 3400 // Get the operand list. 3401 unsigned NumOps = MatcherTable[MatcherIndex++]; 3402 SmallVector<SDValue, 8> Ops; 3403 for (unsigned i = 0; i != NumOps; ++i) { 3404 unsigned RecNo = MatcherTable[MatcherIndex++]; 3405 if (RecNo & 128) 3406 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3407 3408 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3409 Ops.push_back(RecordedNodes[RecNo].first); 3410 } 3411 3412 // If there are variadic operands to add, handle them now. 3413 if (EmitNodeInfo & OPFL_VariadicInfo) { 3414 // Determine the start index to copy from. 3415 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3416 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3417 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3418 "Invalid variadic node"); 3419 // Copy all of the variadic operands, not including a potential glue 3420 // input. 3421 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3422 i != e; ++i) { 3423 SDValue V = NodeToMatch->getOperand(i); 3424 if (V.getValueType() == MVT::Glue) break; 3425 Ops.push_back(V); 3426 } 3427 } 3428 3429 // If this has chain/glue inputs, add them. 3430 if (EmitNodeInfo & OPFL_Chain) 3431 Ops.push_back(InputChain); 3432 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3433 Ops.push_back(InputGlue); 3434 3435 // Check whether any matched node could raise an FP exception. Since all 3436 // such nodes must have a chain, it suffices to check ChainNodesMatched. 3437 // We need to perform this check before potentially modifying one of the 3438 // nodes via MorphNode. 3439 bool MayRaiseFPException = false; 3440 for (auto *N : ChainNodesMatched) 3441 if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) { 3442 MayRaiseFPException = true; 3443 break; 3444 } 3445 3446 // Create the node. 3447 MachineSDNode *Res = nullptr; 3448 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3449 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3450 if (!IsMorphNodeTo) { 3451 // If this is a normal EmitNode command, just create the new node and 3452 // add the results to the RecordedNodes list. 3453 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3454 VTList, Ops); 3455 3456 // Add all the non-glue/non-chain results to the RecordedNodes list. 3457 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3458 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3459 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3460 nullptr)); 3461 } 3462 } else { 3463 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3464 "NodeToMatch was removed partway through selection"); 3465 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3466 SDNode *E) { 3467 CurDAG->salvageDebugInfo(*N); 3468 auto &Chain = ChainNodesMatched; 3469 assert((!E || !is_contained(Chain, N)) && 3470 "Chain node replaced during MorphNode"); 3471 llvm::erase_value(Chain, N); 3472 }); 3473 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3474 Ops, EmitNodeInfo)); 3475 } 3476 3477 // Set the NoFPExcept flag when no original matched node could 3478 // raise an FP exception, but the new node potentially might. 3479 if (!MayRaiseFPException && mayRaiseFPException(Res)) { 3480 SDNodeFlags Flags = Res->getFlags(); 3481 Flags.setNoFPExcept(true); 3482 Res->setFlags(Flags); 3483 } 3484 3485 // If the node had chain/glue results, update our notion of the current 3486 // chain and glue. 3487 if (EmitNodeInfo & OPFL_GlueOutput) { 3488 InputGlue = SDValue(Res, VTs.size()-1); 3489 if (EmitNodeInfo & OPFL_Chain) 3490 InputChain = SDValue(Res, VTs.size()-2); 3491 } else if (EmitNodeInfo & OPFL_Chain) 3492 InputChain = SDValue(Res, VTs.size()-1); 3493 3494 // If the OPFL_MemRefs glue is set on this node, slap all of the 3495 // accumulated memrefs onto it. 3496 // 3497 // FIXME: This is vastly incorrect for patterns with multiple outputs 3498 // instructions that access memory and for ComplexPatterns that match 3499 // loads. 3500 if (EmitNodeInfo & OPFL_MemRefs) { 3501 // Only attach load or store memory operands if the generated 3502 // instruction may load or store. 3503 const MCInstrDesc &MCID = TII->get(TargetOpc); 3504 bool mayLoad = MCID.mayLoad(); 3505 bool mayStore = MCID.mayStore(); 3506 3507 // We expect to have relatively few of these so just filter them into a 3508 // temporary buffer so that we can easily add them to the instruction. 3509 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3510 for (MachineMemOperand *MMO : MatchedMemRefs) { 3511 if (MMO->isLoad()) { 3512 if (mayLoad) 3513 FilteredMemRefs.push_back(MMO); 3514 } else if (MMO->isStore()) { 3515 if (mayStore) 3516 FilteredMemRefs.push_back(MMO); 3517 } else { 3518 FilteredMemRefs.push_back(MMO); 3519 } 3520 } 3521 3522 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3523 } 3524 3525 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3526 << " Dropping mem operands\n"; 3527 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3528 << " node: "; 3529 Res->dump(CurDAG);); 3530 3531 // If this was a MorphNodeTo then we're completely done! 3532 if (IsMorphNodeTo) { 3533 // Update chain uses. 3534 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3535 return; 3536 } 3537 continue; 3538 } 3539 3540 case OPC_CompleteMatch: { 3541 // The match has been completed, and any new nodes (if any) have been 3542 // created. Patch up references to the matched dag to use the newly 3543 // created nodes. 3544 unsigned NumResults = MatcherTable[MatcherIndex++]; 3545 3546 for (unsigned i = 0; i != NumResults; ++i) { 3547 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3548 if (ResSlot & 128) 3549 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3550 3551 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3552 SDValue Res = RecordedNodes[ResSlot].first; 3553 3554 assert(i < NodeToMatch->getNumValues() && 3555 NodeToMatch->getValueType(i) != MVT::Other && 3556 NodeToMatch->getValueType(i) != MVT::Glue && 3557 "Invalid number of results to complete!"); 3558 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3559 NodeToMatch->getValueType(i) == MVT::iPTR || 3560 Res.getValueType() == MVT::iPTR || 3561 NodeToMatch->getValueType(i).getSizeInBits() == 3562 Res.getValueSizeInBits()) && 3563 "invalid replacement"); 3564 ReplaceUses(SDValue(NodeToMatch, i), Res); 3565 } 3566 3567 // Update chain uses. 3568 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3569 3570 // If the root node defines glue, we need to update it to the glue result. 3571 // TODO: This never happens in our tests and I think it can be removed / 3572 // replaced with an assert, but if we do it this the way the change is 3573 // NFC. 3574 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3575 MVT::Glue && 3576 InputGlue.getNode()) 3577 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3578 InputGlue); 3579 3580 assert(NodeToMatch->use_empty() && 3581 "Didn't replace all uses of the node?"); 3582 CurDAG->RemoveDeadNode(NodeToMatch); 3583 3584 return; 3585 } 3586 } 3587 3588 // If the code reached this point, then the match failed. See if there is 3589 // another child to try in the current 'Scope', otherwise pop it until we 3590 // find a case to check. 3591 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3592 << "\n"); 3593 ++NumDAGIselRetries; 3594 while (true) { 3595 if (MatchScopes.empty()) { 3596 CannotYetSelect(NodeToMatch); 3597 return; 3598 } 3599 3600 // Restore the interpreter state back to the point where the scope was 3601 // formed. 3602 MatchScope &LastScope = MatchScopes.back(); 3603 RecordedNodes.resize(LastScope.NumRecordedNodes); 3604 NodeStack.clear(); 3605 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3606 N = NodeStack.back(); 3607 3608 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3609 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3610 MatcherIndex = LastScope.FailIndex; 3611 3612 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3613 3614 InputChain = LastScope.InputChain; 3615 InputGlue = LastScope.InputGlue; 3616 if (!LastScope.HasChainNodesMatched) 3617 ChainNodesMatched.clear(); 3618 3619 // Check to see what the offset is at the new MatcherIndex. If it is zero 3620 // we have reached the end of this scope, otherwise we have another child 3621 // in the current scope to try. 3622 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3623 if (NumToSkip & 128) 3624 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3625 3626 // If we have another child in this scope to match, update FailIndex and 3627 // try it. 3628 if (NumToSkip != 0) { 3629 LastScope.FailIndex = MatcherIndex+NumToSkip; 3630 break; 3631 } 3632 3633 // End of this scope, pop it and try the next child in the containing 3634 // scope. 3635 MatchScopes.pop_back(); 3636 } 3637 } 3638 } 3639 3640 /// Return whether the node may raise an FP exception. 3641 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { 3642 // For machine opcodes, consult the MCID flag. 3643 if (N->isMachineOpcode()) { 3644 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 3645 return MCID.mayRaiseFPException(); 3646 } 3647 3648 // For ISD opcodes, only StrictFP opcodes may raise an FP 3649 // exception. 3650 if (N->isTargetOpcode()) 3651 return N->isTargetStrictFPOpcode(); 3652 return N->isStrictFPOpcode(); 3653 } 3654 3655 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3656 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3657 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3658 if (!C) 3659 return false; 3660 3661 // Detect when "or" is used to add an offset to a stack object. 3662 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3663 MachineFrameInfo &MFI = MF->getFrameInfo(); 3664 Align A = MFI.getObjectAlign(FN->getIndex()); 3665 int32_t Off = C->getSExtValue(); 3666 // If the alleged offset fits in the zero bits guaranteed by 3667 // the alignment, then this or is really an add. 3668 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); 3669 } 3670 return false; 3671 } 3672 3673 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3674 std::string msg; 3675 raw_string_ostream Msg(msg); 3676 Msg << "Cannot select: "; 3677 3678 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3679 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3680 N->getOpcode() != ISD::INTRINSIC_VOID) { 3681 N->printrFull(Msg, CurDAG); 3682 Msg << "\nIn function: " << MF->getName(); 3683 } else { 3684 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3685 unsigned iid = 3686 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3687 if (iid < Intrinsic::num_intrinsics) 3688 Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid); 3689 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3690 Msg << "target intrinsic %" << TII->getName(iid); 3691 else 3692 Msg << "unknown intrinsic #" << iid; 3693 } 3694 report_fatal_error(Twine(Msg.str())); 3695 } 3696 3697 char SelectionDAGISel::ID = 0; 3698