1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576                                  DAG.getIntPtrConstant(RoundBits, DL));
577     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578                    CallConv);
579 
580     if (DAG.getDataLayout().isBigEndian())
581       // The odd parts were reversed by getCopyToParts - unreverse them.
582       std::reverse(Parts + RoundParts, Parts + NumParts);
583 
584     NumParts = RoundParts;
585     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587   }
588 
589   // The number of parts is a power of 2.  Repeatedly bisect the value using
590   // EXTRACT_ELEMENT.
591   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592                          EVT::getIntegerVT(*DAG.getContext(),
593                                            ValueVT.getSizeInBits()),
594                          Val);
595 
596   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597     for (unsigned i = 0; i < NumParts; i += StepSize) {
598       unsigned ThisBits = StepSize * PartBits / 2;
599       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600       SDValue &Part0 = Parts[i];
601       SDValue &Part1 = Parts[i+StepSize/2];
602 
603       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
607 
608       if (ThisBits == PartBits && ThisVT != PartVT) {
609         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
611       }
612     }
613   }
614 
615   if (DAG.getDataLayout().isBigEndian())
616     std::reverse(Parts, Parts + OrigNumParts);
617 }
618 
619 static SDValue widenVectorToPartType(SelectionDAG &DAG,
620                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
621   if (!PartVT.isVector())
622     return SDValue();
623 
624   EVT ValueVT = Val.getValueType();
625   unsigned PartNumElts = PartVT.getVectorNumElements();
626   unsigned ValueNumElts = ValueVT.getVectorNumElements();
627   if (PartNumElts > ValueNumElts &&
628       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
629     EVT ElementVT = PartVT.getVectorElementType();
630     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631     // undef elements.
632     SmallVector<SDValue, 16> Ops;
633     DAG.ExtractVectorElements(Val, Ops);
634     SDValue EltUndef = DAG.getUNDEF(ElementVT);
635     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
636       Ops.push_back(EltUndef);
637 
638     // FIXME: Use CONCAT for 2x -> 4x.
639     return DAG.getBuildVector(PartVT, DL, Ops);
640   }
641 
642   return SDValue();
643 }
644 
645 /// getCopyToPartsVector - Create a series of nodes that contain the specified
646 /// value split into legal parts.
647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
648                                  SDValue Val, SDValue *Parts, unsigned NumParts,
649                                  MVT PartVT, const Value *V,
650                                  Optional<CallingConv::ID> CallConv) {
651   EVT ValueVT = Val.getValueType();
652   assert(ValueVT.isVector() && "Not a vector");
653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
654   const bool IsABIRegCopy = CallConv.hasValue();
655 
656   if (NumParts == 1) {
657     EVT PartEVT = PartVT;
658     if (PartEVT == ValueVT) {
659       // Nothing to do.
660     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
661       // Bitconvert vector->vector case.
662       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
663     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
664       Val = Widened;
665     } else if (PartVT.isVector() &&
666                PartEVT.getVectorElementType().bitsGE(
667                  ValueVT.getVectorElementType()) &&
668                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
669 
670       // Promoted vector extract
671       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
672     } else {
673       if (ValueVT.getVectorNumElements() == 1) {
674         Val = DAG.getNode(
675             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
676             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
677       } else {
678         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
679                "lossy conversion of vector to scalar type");
680         EVT IntermediateType =
681             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
682         Val = DAG.getBitcast(IntermediateType, Val);
683         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
684       }
685     }
686 
687     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
688     Parts[0] = Val;
689     return;
690   }
691 
692   // Handle a multi-element vector.
693   EVT IntermediateVT;
694   MVT RegisterVT;
695   unsigned NumIntermediates;
696   unsigned NumRegs;
697   if (IsABIRegCopy) {
698     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
699         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
700         NumIntermediates, RegisterVT);
701   } else {
702     NumRegs =
703         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
704                                    NumIntermediates, RegisterVT);
705   }
706 
707   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
708   NumParts = NumRegs; // Silence a compiler warning.
709   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
710 
711   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
712     IntermediateVT.getVectorNumElements() : 1;
713 
714   // Convert the vector to the appropiate type if necessary.
715   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
716 
717   EVT BuiltVectorTy = EVT::getVectorVT(
718       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
719   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
720   if (ValueVT != BuiltVectorTy) {
721     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
722       Val = Widened;
723 
724     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
725   }
726 
727   // Split the vector into intermediate operands.
728   SmallVector<SDValue, 8> Ops(NumIntermediates);
729   for (unsigned i = 0; i != NumIntermediates; ++i) {
730     if (IntermediateVT.isVector()) {
731       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
732                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
733     } else {
734       Ops[i] = DAG.getNode(
735           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736           DAG.getConstant(i, DL, IdxVT));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
826           !RegisterVT.isInteger() || RegisterVT.isVector())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() &&
941            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
942     // Put the register class of the virtual registers in the flag word.  That
943     // way, later passes can recompute register class constraints for inline
944     // assembly as well as normal instructions.
945     // Don't do this for tied operands that can use the regclass information
946     // from the def.
947     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
948     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
949     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
950   }
951 
952   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
953   Ops.push_back(Res);
954 
955   if (Code == InlineAsm::Kind_Clobber) {
956     // Clobbers should always have a 1:1 mapping with registers, and may
957     // reference registers that have illegal (e.g. vector) types. Hence, we
958     // shouldn't try to apply any sort of splitting logic to them.
959     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
960            "No 1:1 mapping from clobbers to regs?");
961     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
962     (void)SP;
963     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
964       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
965       assert(
966           (Regs[I] != SP ||
967            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
968           "If we clobbered the stack pointer, MFI should know about it.");
969     }
970     return;
971   }
972 
973   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
974     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
975     MVT RegisterVT = RegVTs[Value];
976     for (unsigned i = 0; i != NumRegs; ++i) {
977       assert(Reg < Regs.size() && "Mismatch in # registers expected");
978       unsigned TheReg = Regs[Reg++];
979       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
980     }
981   }
982 }
983 
984 SmallVector<std::pair<unsigned, unsigned>, 4>
985 RegsForValue::getRegsAndSizes() const {
986   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
987   unsigned I = 0;
988   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
989     unsigned RegCount = std::get<0>(CountAndVT);
990     MVT RegisterVT = std::get<1>(CountAndVT);
991     unsigned RegisterSize = RegisterVT.getSizeInBits();
992     for (unsigned E = I + RegCount; I != E; ++I)
993       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
994   }
995   return OutVec;
996 }
997 
998 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
999                                const TargetLibraryInfo *li) {
1000   AA = aa;
1001   GFI = gfi;
1002   LibInfo = li;
1003   DL = &DAG.getDataLayout();
1004   Context = DAG.getContext();
1005   LPadToCallSiteMap.clear();
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   CurInst = nullptr;
1014   HasTailCall = false;
1015   SDNodeOrder = LowestSDNodeOrder;
1016   StatepointLowering.clear();
1017 }
1018 
1019 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1020   DanglingDebugInfoMap.clear();
1021 }
1022 
1023 SDValue SelectionDAGBuilder::getRoot() {
1024   if (PendingLoads.empty())
1025     return DAG.getRoot();
1026 
1027   if (PendingLoads.size() == 1) {
1028     SDValue Root = PendingLoads[0];
1029     DAG.setRoot(Root);
1030     PendingLoads.clear();
1031     return Root;
1032   }
1033 
1034   // Otherwise, we have to make a token factor node.
1035   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1036                              PendingLoads);
1037   PendingLoads.clear();
1038   DAG.setRoot(Root);
1039   return Root;
1040 }
1041 
1042 SDValue SelectionDAGBuilder::getControlRoot() {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (PendingExports.empty())
1046     return Root;
1047 
1048   // Turn all of the CopyToReg chains into one factored node.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = PendingExports.size();
1051     for (; i != e; ++i) {
1052       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1053       if (PendingExports[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       PendingExports.push_back(Root);
1059   }
1060 
1061   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1062                      PendingExports);
1063   PendingExports.clear();
1064   DAG.setRoot(Root);
1065   return Root;
1066 }
1067 
1068 void SelectionDAGBuilder::visit(const Instruction &I) {
1069   // Set up outgoing PHI node register values before emitting the terminator.
1070   if (I.isTerminator()) {
1071     HandlePHINodesInSuccessorBlocks(I.getParent());
1072   }
1073 
1074   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1075   if (!isa<DbgInfoIntrinsic>(I))
1076     ++SDNodeOrder;
1077 
1078   CurInst = &I;
1079 
1080   visit(I.getOpcode(), I);
1081 
1082   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1083     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1084     // maps to this instruction.
1085     // TODO: We could handle all flags (nsw, etc) here.
1086     // TODO: If an IR instruction maps to >1 node, only the final node will have
1087     //       flags set.
1088     if (SDNode *Node = getNodeForIRValue(&I)) {
1089       SDNodeFlags IncomingFlags;
1090       IncomingFlags.copyFMF(*FPMO);
1091       if (!Node->getFlags().isDefined())
1092         Node->setFlags(IncomingFlags);
1093       else
1094         Node->intersectFlagsWith(IncomingFlags);
1095     }
1096   }
1097 
1098   if (!I.isTerminator() && !HasTailCall &&
1099       !isStatepoint(&I)) // statepoints handle their exports internally
1100     CopyToExportRegsIfNeeded(&I);
1101 
1102   CurInst = nullptr;
1103 }
1104 
1105 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1106   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 }
1108 
1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1110   // Note: this doesn't use InstVisitor, because it has to work with
1111   // ConstantExpr's in addition to instructions.
1112   switch (Opcode) {
1113   default: llvm_unreachable("Unknown instruction type encountered!");
1114     // Build the switch statement using the Instruction.def file.
1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1116     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1117 #include "llvm/IR/Instruction.def"
1118   }
1119 }
1120 
1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1122                                                 const DIExpression *Expr) {
1123   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1124     const DbgValueInst *DI = DDI.getDI();
1125     DIVariable *DanglingVariable = DI->getVariable();
1126     DIExpression *DanglingExpr = DI->getExpression();
1127     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1128       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   for (auto &DDIMI : DanglingDebugInfoMap) {
1135     DanglingDebugInfoVector &DDIV = DDIMI.second;
1136     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1137   }
1138 }
1139 
1140 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1141 // generate the debug data structures now that we've seen its definition.
1142 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1143                                                    SDValue Val) {
1144   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1145   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1146     return;
1147 
1148   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1149   for (auto &DDI : DDIV) {
1150     const DbgValueInst *DI = DDI.getDI();
1151     assert(DI && "Ill-formed DanglingDebugInfo");
1152     DebugLoc dl = DDI.getdl();
1153     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1154     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1155     DILocalVariable *Variable = DI->getVariable();
1156     DIExpression *Expr = DI->getExpression();
1157     assert(Variable->isValidLocationForIntrinsic(dl) &&
1158            "Expected inlined-at fields to agree");
1159     SDDbgValue *SDV;
1160     if (Val.getNode()) {
1161       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1162         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1163                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1164         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1165         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1166         // inserted after the definition of Val when emitting the instructions
1167         // after ISel. An alternative could be to teach
1168         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1169         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1170                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1171                    << ValSDNodeOrder << "\n");
1172         SDV = getDbgValue(Val, Variable, Expr, dl,
1173                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1174         DAG.AddDbgValue(SDV, Val.getNode(), false);
1175       } else
1176         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1177                           << "in EmitFuncArgumentDbgValue\n");
1178     } else
1179       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1180   }
1181   DDIV.clear();
1182 }
1183 
1184 /// getCopyFromRegs - If there was virtual register allocated for the value V
1185 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1186 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1187   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1188   SDValue Result;
1189 
1190   if (It != FuncInfo.ValueMap.end()) {
1191     unsigned InReg = It->second;
1192 
1193     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1194                      DAG.getDataLayout(), InReg, Ty,
1195                      None); // This is not an ABI copy.
1196     SDValue Chain = DAG.getEntryNode();
1197     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1198                                  V);
1199     resolveDanglingDebugInfo(V, Result);
1200   }
1201 
1202   return Result;
1203 }
1204 
1205 /// getValue - Return an SDValue for the given Value.
1206 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1207   // If we already have an SDValue for this value, use it. It's important
1208   // to do this first, so that we don't create a CopyFromReg if we already
1209   // have a regular SDValue.
1210   SDValue &N = NodeMap[V];
1211   if (N.getNode()) return N;
1212 
1213   // If there's a virtual register allocated and initialized for this
1214   // value, use it.
1215   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1216     return copyFromReg;
1217 
1218   // Otherwise create a new SDValue and remember it.
1219   SDValue Val = getValueImpl(V);
1220   NodeMap[V] = Val;
1221   resolveDanglingDebugInfo(V, Val);
1222   return Val;
1223 }
1224 
1225 // Return true if SDValue exists for the given Value
1226 bool SelectionDAGBuilder::findValue(const Value *V) const {
1227   return (NodeMap.find(V) != NodeMap.end()) ||
1228     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1229 }
1230 
1231 /// getNonRegisterValue - Return an SDValue for the given Value, but
1232 /// don't look in FuncInfo.ValueMap for a virtual register.
1233 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1234   // If we already have an SDValue for this value, use it.
1235   SDValue &N = NodeMap[V];
1236   if (N.getNode()) {
1237     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1238       // Remove the debug location from the node as the node is about to be used
1239       // in a location which may differ from the original debug location.  This
1240       // is relevant to Constant and ConstantFP nodes because they can appear
1241       // as constant expressions inside PHI nodes.
1242       N->setDebugLoc(DebugLoc());
1243     }
1244     return N;
1245   }
1246 
1247   // Otherwise create a new SDValue and remember it.
1248   SDValue Val = getValueImpl(V);
1249   NodeMap[V] = Val;
1250   resolveDanglingDebugInfo(V, Val);
1251   return Val;
1252 }
1253 
1254 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1255 /// Create an SDValue for the given value.
1256 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1257   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1258 
1259   if (const Constant *C = dyn_cast<Constant>(V)) {
1260     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1261 
1262     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1263       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1264 
1265     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1266       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1267 
1268     if (isa<ConstantPointerNull>(C)) {
1269       unsigned AS = V->getType()->getPointerAddressSpace();
1270       return DAG.getConstant(0, getCurSDLoc(),
1271                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1272     }
1273 
1274     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1275       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1276 
1277     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1278       return DAG.getUNDEF(VT);
1279 
1280     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1281       visit(CE->getOpcode(), *CE);
1282       SDValue N1 = NodeMap[V];
1283       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1284       return N1;
1285     }
1286 
1287     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1288       SmallVector<SDValue, 4> Constants;
1289       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1290            OI != OE; ++OI) {
1291         SDNode *Val = getValue(*OI).getNode();
1292         // If the operand is an empty aggregate, there are no values.
1293         if (!Val) continue;
1294         // Add each leaf value from the operand to the Constants list
1295         // to form a flattened list of all the values.
1296         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1297           Constants.push_back(SDValue(Val, i));
1298       }
1299 
1300       return DAG.getMergeValues(Constants, getCurSDLoc());
1301     }
1302 
1303     if (const ConstantDataSequential *CDS =
1304           dyn_cast<ConstantDataSequential>(C)) {
1305       SmallVector<SDValue, 4> Ops;
1306       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1307         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1308         // Add each leaf value from the operand to the Constants list
1309         // to form a flattened list of all the values.
1310         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1311           Ops.push_back(SDValue(Val, i));
1312       }
1313 
1314       if (isa<ArrayType>(CDS->getType()))
1315         return DAG.getMergeValues(Ops, getCurSDLoc());
1316       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1317     }
1318 
1319     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1320       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1321              "Unknown struct or array constant!");
1322 
1323       SmallVector<EVT, 4> ValueVTs;
1324       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1325       unsigned NumElts = ValueVTs.size();
1326       if (NumElts == 0)
1327         return SDValue(); // empty struct
1328       SmallVector<SDValue, 4> Constants(NumElts);
1329       for (unsigned i = 0; i != NumElts; ++i) {
1330         EVT EltVT = ValueVTs[i];
1331         if (isa<UndefValue>(C))
1332           Constants[i] = DAG.getUNDEF(EltVT);
1333         else if (EltVT.isFloatingPoint())
1334           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1335         else
1336           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1337       }
1338 
1339       return DAG.getMergeValues(Constants, getCurSDLoc());
1340     }
1341 
1342     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1343       return DAG.getBlockAddress(BA, VT);
1344 
1345     VectorType *VecTy = cast<VectorType>(V->getType());
1346     unsigned NumElements = VecTy->getNumElements();
1347 
1348     // Now that we know the number and type of the elements, get that number of
1349     // elements into the Ops array based on what kind of constant it is.
1350     SmallVector<SDValue, 16> Ops;
1351     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1352       for (unsigned i = 0; i != NumElements; ++i)
1353         Ops.push_back(getValue(CV->getOperand(i)));
1354     } else {
1355       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1356       EVT EltVT =
1357           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1358 
1359       SDValue Op;
1360       if (EltVT.isFloatingPoint())
1361         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1362       else
1363         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1364       Ops.assign(NumElements, Op);
1365     }
1366 
1367     // Create a BUILD_VECTOR node.
1368     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1369   }
1370 
1371   // If this is a static alloca, generate it as the frameindex instead of
1372   // computation.
1373   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1374     DenseMap<const AllocaInst*, int>::iterator SI =
1375       FuncInfo.StaticAllocaMap.find(AI);
1376     if (SI != FuncInfo.StaticAllocaMap.end())
1377       return DAG.getFrameIndex(SI->second,
1378                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1379   }
1380 
1381   // If this is an instruction which fast-isel has deferred, select it now.
1382   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1383     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1384 
1385     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1386                      Inst->getType(), getABIRegCopyCC(V));
1387     SDValue Chain = DAG.getEntryNode();
1388     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1389   }
1390 
1391   llvm_unreachable("Can't get register for value!");
1392 }
1393 
1394 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1395   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1396   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1397   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1398   bool IsSEH = isAsynchronousEHPersonality(Pers);
1399   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1400   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1401   if (!IsSEH)
1402     CatchPadMBB->setIsEHScopeEntry();
1403   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1404   if (IsMSVCCXX || IsCoreCLR)
1405     CatchPadMBB->setIsEHFuncletEntry();
1406   // Wasm does not need catchpads anymore
1407   if (!IsWasmCXX)
1408     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1409                             getControlRoot()));
1410 }
1411 
1412 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1413   // Update machine-CFG edge.
1414   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1415   FuncInfo.MBB->addSuccessor(TargetMBB);
1416 
1417   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1418   bool IsSEH = isAsynchronousEHPersonality(Pers);
1419   if (IsSEH) {
1420     // If this is not a fall-through branch or optimizations are switched off,
1421     // emit the branch.
1422     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1423         TM.getOptLevel() == CodeGenOpt::None)
1424       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1425                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1426     return;
1427   }
1428 
1429   // Figure out the funclet membership for the catchret's successor.
1430   // This will be used by the FuncletLayout pass to determine how to order the
1431   // BB's.
1432   // A 'catchret' returns to the outer scope's color.
1433   Value *ParentPad = I.getCatchSwitchParentPad();
1434   const BasicBlock *SuccessorColor;
1435   if (isa<ConstantTokenNone>(ParentPad))
1436     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1437   else
1438     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1439   assert(SuccessorColor && "No parent funclet for catchret!");
1440   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1441   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1442 
1443   // Create the terminator node.
1444   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1445                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1446                             DAG.getBasicBlock(SuccessorColorMBB));
1447   DAG.setRoot(Ret);
1448 }
1449 
1450 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1451   // Don't emit any special code for the cleanuppad instruction. It just marks
1452   // the start of an EH scope/funclet.
1453   FuncInfo.MBB->setIsEHScopeEntry();
1454   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1455   if (Pers != EHPersonality::Wasm_CXX) {
1456     FuncInfo.MBB->setIsEHFuncletEntry();
1457     FuncInfo.MBB->setIsCleanupFuncletEntry();
1458   }
1459 }
1460 
1461 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1462 /// many places it could ultimately go. In the IR, we have a single unwind
1463 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1464 /// This function skips over imaginary basic blocks that hold catchswitch
1465 /// instructions, and finds all the "real" machine
1466 /// basic block destinations. As those destinations may not be successors of
1467 /// EHPadBB, here we also calculate the edge probability to those destinations.
1468 /// The passed-in Prob is the edge probability to EHPadBB.
1469 static void findUnwindDestinations(
1470     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1471     BranchProbability Prob,
1472     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1473         &UnwindDests) {
1474   EHPersonality Personality =
1475     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1476   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1477   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1478   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1479   bool IsSEH = isAsynchronousEHPersonality(Personality);
1480 
1481   while (EHPadBB) {
1482     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1483     BasicBlock *NewEHPadBB = nullptr;
1484     if (isa<LandingPadInst>(Pad)) {
1485       // Stop on landingpads. They are not funclets.
1486       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1487       break;
1488     } else if (isa<CleanupPadInst>(Pad)) {
1489       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1490       // personalities.
1491       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1492       UnwindDests.back().first->setIsEHScopeEntry();
1493       if (!IsWasmCXX)
1494         UnwindDests.back().first->setIsEHFuncletEntry();
1495       break;
1496     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1497       // Add the catchpad handlers to the possible destinations.
1498       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1499         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1500         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1501         if (IsMSVCCXX || IsCoreCLR)
1502           UnwindDests.back().first->setIsEHFuncletEntry();
1503         if (!IsSEH)
1504           UnwindDests.back().first->setIsEHScopeEntry();
1505       }
1506       NewEHPadBB = CatchSwitch->getUnwindDest();
1507     } else {
1508       continue;
1509     }
1510 
1511     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1512     if (BPI && NewEHPadBB)
1513       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1514     EHPadBB = NewEHPadBB;
1515   }
1516 }
1517 
1518 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1519   // Update successor info.
1520   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1521   auto UnwindDest = I.getUnwindDest();
1522   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1523   BranchProbability UnwindDestProb =
1524       (BPI && UnwindDest)
1525           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1526           : BranchProbability::getZero();
1527   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1528   for (auto &UnwindDest : UnwindDests) {
1529     UnwindDest.first->setIsEHPad();
1530     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1531   }
1532   FuncInfo.MBB->normalizeSuccProbs();
1533 
1534   // Create the terminator node.
1535   SDValue Ret =
1536       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1537   DAG.setRoot(Ret);
1538 }
1539 
1540 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1541   report_fatal_error("visitCatchSwitch not yet implemented!");
1542 }
1543 
1544 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1546   auto &DL = DAG.getDataLayout();
1547   SDValue Chain = getControlRoot();
1548   SmallVector<ISD::OutputArg, 8> Outs;
1549   SmallVector<SDValue, 8> OutVals;
1550 
1551   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1552   // lower
1553   //
1554   //   %val = call <ty> @llvm.experimental.deoptimize()
1555   //   ret <ty> %val
1556   //
1557   // differently.
1558   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1559     LowerDeoptimizingReturn();
1560     return;
1561   }
1562 
1563   if (!FuncInfo.CanLowerReturn) {
1564     unsigned DemoteReg = FuncInfo.DemoteRegister;
1565     const Function *F = I.getParent()->getParent();
1566 
1567     // Emit a store of the return value through the virtual register.
1568     // Leave Outs empty so that LowerReturn won't try to load return
1569     // registers the usual way.
1570     SmallVector<EVT, 1> PtrValueVTs;
1571     ComputeValueVTs(TLI, DL,
1572                     F->getReturnType()->getPointerTo(
1573                         DAG.getDataLayout().getAllocaAddrSpace()),
1574                     PtrValueVTs);
1575 
1576     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1577                                         DemoteReg, PtrValueVTs[0]);
1578     SDValue RetOp = getValue(I.getOperand(0));
1579 
1580     SmallVector<EVT, 4> ValueVTs;
1581     SmallVector<uint64_t, 4> Offsets;
1582     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1583     unsigned NumValues = ValueVTs.size();
1584 
1585     SmallVector<SDValue, 4> Chains(NumValues);
1586     for (unsigned i = 0; i != NumValues; ++i) {
1587       // An aggregate return value cannot wrap around the address space, so
1588       // offsets to its parts don't wrap either.
1589       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1590       Chains[i] = DAG.getStore(
1591           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1592           // FIXME: better loc info would be nice.
1593           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1594     }
1595 
1596     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1597                         MVT::Other, Chains);
1598   } else if (I.getNumOperands() != 0) {
1599     SmallVector<EVT, 4> ValueVTs;
1600     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1601     unsigned NumValues = ValueVTs.size();
1602     if (NumValues) {
1603       SDValue RetOp = getValue(I.getOperand(0));
1604 
1605       const Function *F = I.getParent()->getParent();
1606 
1607       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1608       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1609                                           Attribute::SExt))
1610         ExtendKind = ISD::SIGN_EXTEND;
1611       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1612                                                Attribute::ZExt))
1613         ExtendKind = ISD::ZERO_EXTEND;
1614 
1615       LLVMContext &Context = F->getContext();
1616       bool RetInReg = F->getAttributes().hasAttribute(
1617           AttributeList::ReturnIndex, Attribute::InReg);
1618 
1619       for (unsigned j = 0; j != NumValues; ++j) {
1620         EVT VT = ValueVTs[j];
1621 
1622         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1623           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1624 
1625         CallingConv::ID CC = F->getCallingConv();
1626 
1627         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1628         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1629         SmallVector<SDValue, 4> Parts(NumParts);
1630         getCopyToParts(DAG, getCurSDLoc(),
1631                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1632                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1633 
1634         // 'inreg' on function refers to return value
1635         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1636         if (RetInReg)
1637           Flags.setInReg();
1638 
1639         // Propagate extension type if any
1640         if (ExtendKind == ISD::SIGN_EXTEND)
1641           Flags.setSExt();
1642         else if (ExtendKind == ISD::ZERO_EXTEND)
1643           Flags.setZExt();
1644 
1645         for (unsigned i = 0; i < NumParts; ++i) {
1646           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1647                                         VT, /*isfixed=*/true, 0, 0));
1648           OutVals.push_back(Parts[i]);
1649         }
1650       }
1651     }
1652   }
1653 
1654   // Push in swifterror virtual register as the last element of Outs. This makes
1655   // sure swifterror virtual register will be returned in the swifterror
1656   // physical register.
1657   const Function *F = I.getParent()->getParent();
1658   if (TLI.supportSwiftError() &&
1659       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1660     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1661     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1662     Flags.setSwiftError();
1663     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1664                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1665                                   true /*isfixed*/, 1 /*origidx*/,
1666                                   0 /*partOffs*/));
1667     // Create SDNode for the swifterror virtual register.
1668     OutVals.push_back(
1669         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1670                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1671                         EVT(TLI.getPointerTy(DL))));
1672   }
1673 
1674   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1675   CallingConv::ID CallConv =
1676     DAG.getMachineFunction().getFunction().getCallingConv();
1677   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1678       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1679 
1680   // Verify that the target's LowerReturn behaved as expected.
1681   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1682          "LowerReturn didn't return a valid chain!");
1683 
1684   // Update the DAG with the new chain value resulting from return lowering.
1685   DAG.setRoot(Chain);
1686 }
1687 
1688 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1689 /// created for it, emit nodes to copy the value into the virtual
1690 /// registers.
1691 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1692   // Skip empty types
1693   if (V->getType()->isEmptyTy())
1694     return;
1695 
1696   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1697   if (VMI != FuncInfo.ValueMap.end()) {
1698     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1699     CopyValueToVirtualRegister(V, VMI->second);
1700   }
1701 }
1702 
1703 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1704 /// the current basic block, add it to ValueMap now so that we'll get a
1705 /// CopyTo/FromReg.
1706 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1707   // No need to export constants.
1708   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1709 
1710   // Already exported?
1711   if (FuncInfo.isExportedInst(V)) return;
1712 
1713   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1714   CopyValueToVirtualRegister(V, Reg);
1715 }
1716 
1717 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1718                                                      const BasicBlock *FromBB) {
1719   // The operands of the setcc have to be in this block.  We don't know
1720   // how to export them from some other block.
1721   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1722     // Can export from current BB.
1723     if (VI->getParent() == FromBB)
1724       return true;
1725 
1726     // Is already exported, noop.
1727     return FuncInfo.isExportedInst(V);
1728   }
1729 
1730   // If this is an argument, we can export it if the BB is the entry block or
1731   // if it is already exported.
1732   if (isa<Argument>(V)) {
1733     if (FromBB == &FromBB->getParent()->getEntryBlock())
1734       return true;
1735 
1736     // Otherwise, can only export this if it is already exported.
1737     return FuncInfo.isExportedInst(V);
1738   }
1739 
1740   // Otherwise, constants can always be exported.
1741   return true;
1742 }
1743 
1744 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1745 BranchProbability
1746 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1747                                         const MachineBasicBlock *Dst) const {
1748   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1749   const BasicBlock *SrcBB = Src->getBasicBlock();
1750   const BasicBlock *DstBB = Dst->getBasicBlock();
1751   if (!BPI) {
1752     // If BPI is not available, set the default probability as 1 / N, where N is
1753     // the number of successors.
1754     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1755     return BranchProbability(1, SuccSize);
1756   }
1757   return BPI->getEdgeProbability(SrcBB, DstBB);
1758 }
1759 
1760 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1761                                                MachineBasicBlock *Dst,
1762                                                BranchProbability Prob) {
1763   if (!FuncInfo.BPI)
1764     Src->addSuccessorWithoutProb(Dst);
1765   else {
1766     if (Prob.isUnknown())
1767       Prob = getEdgeProbability(Src, Dst);
1768     Src->addSuccessor(Dst, Prob);
1769   }
1770 }
1771 
1772 static bool InBlock(const Value *V, const BasicBlock *BB) {
1773   if (const Instruction *I = dyn_cast<Instruction>(V))
1774     return I->getParent() == BB;
1775   return true;
1776 }
1777 
1778 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1779 /// This function emits a branch and is used at the leaves of an OR or an
1780 /// AND operator tree.
1781 void
1782 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1783                                                   MachineBasicBlock *TBB,
1784                                                   MachineBasicBlock *FBB,
1785                                                   MachineBasicBlock *CurBB,
1786                                                   MachineBasicBlock *SwitchBB,
1787                                                   BranchProbability TProb,
1788                                                   BranchProbability FProb,
1789                                                   bool InvertCond) {
1790   const BasicBlock *BB = CurBB->getBasicBlock();
1791 
1792   // If the leaf of the tree is a comparison, merge the condition into
1793   // the caseblock.
1794   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1795     // The operands of the cmp have to be in this block.  We don't know
1796     // how to export them from some other block.  If this is the first block
1797     // of the sequence, no exporting is needed.
1798     if (CurBB == SwitchBB ||
1799         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1800          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1801       ISD::CondCode Condition;
1802       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1803         ICmpInst::Predicate Pred =
1804             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1805         Condition = getICmpCondCode(Pred);
1806       } else {
1807         const FCmpInst *FC = cast<FCmpInst>(Cond);
1808         FCmpInst::Predicate Pred =
1809             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1810         Condition = getFCmpCondCode(Pred);
1811         if (TM.Options.NoNaNsFPMath)
1812           Condition = getFCmpCodeWithoutNaN(Condition);
1813       }
1814 
1815       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1816                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1817       SwitchCases.push_back(CB);
1818       return;
1819     }
1820   }
1821 
1822   // Create a CaseBlock record representing this branch.
1823   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1824   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1825                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1826   SwitchCases.push_back(CB);
1827 }
1828 
1829 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1830                                                MachineBasicBlock *TBB,
1831                                                MachineBasicBlock *FBB,
1832                                                MachineBasicBlock *CurBB,
1833                                                MachineBasicBlock *SwitchBB,
1834                                                Instruction::BinaryOps Opc,
1835                                                BranchProbability TProb,
1836                                                BranchProbability FProb,
1837                                                bool InvertCond) {
1838   // Skip over not part of the tree and remember to invert op and operands at
1839   // next level.
1840   Value *NotCond;
1841   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
1842       InBlock(NotCond, CurBB->getBasicBlock())) {
1843     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1844                          !InvertCond);
1845     return;
1846   }
1847 
1848   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1849   // Compute the effective opcode for Cond, taking into account whether it needs
1850   // to be inverted, e.g.
1851   //   and (not (or A, B)), C
1852   // gets lowered as
1853   //   and (and (not A, not B), C)
1854   unsigned BOpc = 0;
1855   if (BOp) {
1856     BOpc = BOp->getOpcode();
1857     if (InvertCond) {
1858       if (BOpc == Instruction::And)
1859         BOpc = Instruction::Or;
1860       else if (BOpc == Instruction::Or)
1861         BOpc = Instruction::And;
1862     }
1863   }
1864 
1865   // If this node is not part of the or/and tree, emit it as a branch.
1866   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1867       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1868       BOp->getParent() != CurBB->getBasicBlock() ||
1869       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1870       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1871     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1872                                  TProb, FProb, InvertCond);
1873     return;
1874   }
1875 
1876   //  Create TmpBB after CurBB.
1877   MachineFunction::iterator BBI(CurBB);
1878   MachineFunction &MF = DAG.getMachineFunction();
1879   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1880   CurBB->getParent()->insert(++BBI, TmpBB);
1881 
1882   if (Opc == Instruction::Or) {
1883     // Codegen X | Y as:
1884     // BB1:
1885     //   jmp_if_X TBB
1886     //   jmp TmpBB
1887     // TmpBB:
1888     //   jmp_if_Y TBB
1889     //   jmp FBB
1890     //
1891 
1892     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1893     // The requirement is that
1894     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1895     //     = TrueProb for original BB.
1896     // Assuming the original probabilities are A and B, one choice is to set
1897     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1898     // A/(1+B) and 2B/(1+B). This choice assumes that
1899     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1900     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1901     // TmpBB, but the math is more complicated.
1902 
1903     auto NewTrueProb = TProb / 2;
1904     auto NewFalseProb = TProb / 2 + FProb;
1905     // Emit the LHS condition.
1906     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1907                          NewTrueProb, NewFalseProb, InvertCond);
1908 
1909     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1910     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1911     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1912     // Emit the RHS condition into TmpBB.
1913     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1914                          Probs[0], Probs[1], InvertCond);
1915   } else {
1916     assert(Opc == Instruction::And && "Unknown merge op!");
1917     // Codegen X & Y as:
1918     // BB1:
1919     //   jmp_if_X TmpBB
1920     //   jmp FBB
1921     // TmpBB:
1922     //   jmp_if_Y TBB
1923     //   jmp FBB
1924     //
1925     //  This requires creation of TmpBB after CurBB.
1926 
1927     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1928     // The requirement is that
1929     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1930     //     = FalseProb for original BB.
1931     // Assuming the original probabilities are A and B, one choice is to set
1932     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1933     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1934     // TrueProb for BB1 * FalseProb for TmpBB.
1935 
1936     auto NewTrueProb = TProb + FProb / 2;
1937     auto NewFalseProb = FProb / 2;
1938     // Emit the LHS condition.
1939     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1940                          NewTrueProb, NewFalseProb, InvertCond);
1941 
1942     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1943     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1944     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1945     // Emit the RHS condition into TmpBB.
1946     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1947                          Probs[0], Probs[1], InvertCond);
1948   }
1949 }
1950 
1951 /// If the set of cases should be emitted as a series of branches, return true.
1952 /// If we should emit this as a bunch of and/or'd together conditions, return
1953 /// false.
1954 bool
1955 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1956   if (Cases.size() != 2) return true;
1957 
1958   // If this is two comparisons of the same values or'd or and'd together, they
1959   // will get folded into a single comparison, so don't emit two blocks.
1960   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1961        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1962       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1963        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1964     return false;
1965   }
1966 
1967   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1968   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1969   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1970       Cases[0].CC == Cases[1].CC &&
1971       isa<Constant>(Cases[0].CmpRHS) &&
1972       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1973     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1974       return false;
1975     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1976       return false;
1977   }
1978 
1979   return true;
1980 }
1981 
1982 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1983   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1984 
1985   // Update machine-CFG edges.
1986   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1987 
1988   if (I.isUnconditional()) {
1989     // Update machine-CFG edges.
1990     BrMBB->addSuccessor(Succ0MBB);
1991 
1992     // If this is not a fall-through branch or optimizations are switched off,
1993     // emit the branch.
1994     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1995       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1996                               MVT::Other, getControlRoot(),
1997                               DAG.getBasicBlock(Succ0MBB)));
1998 
1999     return;
2000   }
2001 
2002   // If this condition is one of the special cases we handle, do special stuff
2003   // now.
2004   const Value *CondVal = I.getCondition();
2005   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2006 
2007   // If this is a series of conditions that are or'd or and'd together, emit
2008   // this as a sequence of branches instead of setcc's with and/or operations.
2009   // As long as jumps are not expensive, this should improve performance.
2010   // For example, instead of something like:
2011   //     cmp A, B
2012   //     C = seteq
2013   //     cmp D, E
2014   //     F = setle
2015   //     or C, F
2016   //     jnz foo
2017   // Emit:
2018   //     cmp A, B
2019   //     je foo
2020   //     cmp D, E
2021   //     jle foo
2022   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2023     Instruction::BinaryOps Opcode = BOp->getOpcode();
2024     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2025         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2026         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2027       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2028                            Opcode,
2029                            getEdgeProbability(BrMBB, Succ0MBB),
2030                            getEdgeProbability(BrMBB, Succ1MBB),
2031                            /*InvertCond=*/false);
2032       // If the compares in later blocks need to use values not currently
2033       // exported from this block, export them now.  This block should always
2034       // be the first entry.
2035       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2036 
2037       // Allow some cases to be rejected.
2038       if (ShouldEmitAsBranches(SwitchCases)) {
2039         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2040           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2041           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2042         }
2043 
2044         // Emit the branch for this block.
2045         visitSwitchCase(SwitchCases[0], BrMBB);
2046         SwitchCases.erase(SwitchCases.begin());
2047         return;
2048       }
2049 
2050       // Okay, we decided not to do this, remove any inserted MBB's and clear
2051       // SwitchCases.
2052       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2053         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2054 
2055       SwitchCases.clear();
2056     }
2057   }
2058 
2059   // Create a CaseBlock record representing this branch.
2060   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2061                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2062 
2063   // Use visitSwitchCase to actually insert the fast branch sequence for this
2064   // cond branch.
2065   visitSwitchCase(CB, BrMBB);
2066 }
2067 
2068 /// visitSwitchCase - Emits the necessary code to represent a single node in
2069 /// the binary search tree resulting from lowering a switch instruction.
2070 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2071                                           MachineBasicBlock *SwitchBB) {
2072   SDValue Cond;
2073   SDValue CondLHS = getValue(CB.CmpLHS);
2074   SDLoc dl = CB.DL;
2075 
2076   // Build the setcc now.
2077   if (!CB.CmpMHS) {
2078     // Fold "(X == true)" to X and "(X == false)" to !X to
2079     // handle common cases produced by branch lowering.
2080     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2081         CB.CC == ISD::SETEQ)
2082       Cond = CondLHS;
2083     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2084              CB.CC == ISD::SETEQ) {
2085       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2086       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2087     } else
2088       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2089   } else {
2090     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2091 
2092     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2093     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2094 
2095     SDValue CmpOp = getValue(CB.CmpMHS);
2096     EVT VT = CmpOp.getValueType();
2097 
2098     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2099       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2100                           ISD::SETLE);
2101     } else {
2102       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2103                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2104       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2105                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2106     }
2107   }
2108 
2109   // Update successor info
2110   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2111   // TrueBB and FalseBB are always different unless the incoming IR is
2112   // degenerate. This only happens when running llc on weird IR.
2113   if (CB.TrueBB != CB.FalseBB)
2114     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2115   SwitchBB->normalizeSuccProbs();
2116 
2117   // If the lhs block is the next block, invert the condition so that we can
2118   // fall through to the lhs instead of the rhs block.
2119   if (CB.TrueBB == NextBlock(SwitchBB)) {
2120     std::swap(CB.TrueBB, CB.FalseBB);
2121     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2122     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2123   }
2124 
2125   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2126                                MVT::Other, getControlRoot(), Cond,
2127                                DAG.getBasicBlock(CB.TrueBB));
2128 
2129   // Insert the false branch. Do this even if it's a fall through branch,
2130   // this makes it easier to do DAG optimizations which require inverting
2131   // the branch condition.
2132   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2133                        DAG.getBasicBlock(CB.FalseBB));
2134 
2135   DAG.setRoot(BrCond);
2136 }
2137 
2138 /// visitJumpTable - Emit JumpTable node in the current MBB
2139 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2140   // Emit the code for the jump table
2141   assert(JT.Reg != -1U && "Should lower JT Header first!");
2142   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2143   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2144                                      JT.Reg, PTy);
2145   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2146   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2147                                     MVT::Other, Index.getValue(1),
2148                                     Table, Index);
2149   DAG.setRoot(BrJumpTable);
2150 }
2151 
2152 /// visitJumpTableHeader - This function emits necessary code to produce index
2153 /// in the JumpTable from switch case.
2154 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2155                                                JumpTableHeader &JTH,
2156                                                MachineBasicBlock *SwitchBB) {
2157   SDLoc dl = getCurSDLoc();
2158 
2159   // Subtract the lowest switch case value from the value being switched on and
2160   // conditional branch to default mbb if the result is greater than the
2161   // difference between smallest and largest cases.
2162   SDValue SwitchOp = getValue(JTH.SValue);
2163   EVT VT = SwitchOp.getValueType();
2164   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2165                             DAG.getConstant(JTH.First, dl, VT));
2166 
2167   // The SDNode we just created, which holds the value being switched on minus
2168   // the smallest case value, needs to be copied to a virtual register so it
2169   // can be used as an index into the jump table in a subsequent basic block.
2170   // This value may be smaller or larger than the target's pointer type, and
2171   // therefore require extension or truncating.
2172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2173   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2174 
2175   unsigned JumpTableReg =
2176       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2177   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2178                                     JumpTableReg, SwitchOp);
2179   JT.Reg = JumpTableReg;
2180 
2181   // Emit the range check for the jump table, and branch to the default block
2182   // for the switch statement if the value being switched on exceeds the largest
2183   // case in the switch.
2184   SDValue CMP = DAG.getSetCC(
2185       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2186                                  Sub.getValueType()),
2187       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2188 
2189   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2190                                MVT::Other, CopyTo, CMP,
2191                                DAG.getBasicBlock(JT.Default));
2192 
2193   // Avoid emitting unnecessary branches to the next block.
2194   if (JT.MBB != NextBlock(SwitchBB))
2195     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2196                          DAG.getBasicBlock(JT.MBB));
2197 
2198   DAG.setRoot(BrCond);
2199 }
2200 
2201 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2202 /// variable if there exists one.
2203 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2204                                  SDValue &Chain) {
2205   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2206   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2207   MachineFunction &MF = DAG.getMachineFunction();
2208   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2209   MachineSDNode *Node =
2210       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2211   if (Global) {
2212     MachinePointerInfo MPInfo(Global);
2213     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2214                  MachineMemOperand::MODereferenceable;
2215     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2216         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2217     DAG.setNodeMemRefs(Node, {MemRef});
2218   }
2219   return SDValue(Node, 0);
2220 }
2221 
2222 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2223 /// tail spliced into a stack protector check success bb.
2224 ///
2225 /// For a high level explanation of how this fits into the stack protector
2226 /// generation see the comment on the declaration of class
2227 /// StackProtectorDescriptor.
2228 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2229                                                   MachineBasicBlock *ParentBB) {
2230 
2231   // First create the loads to the guard/stack slot for the comparison.
2232   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2233   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2234 
2235   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2236   int FI = MFI.getStackProtectorIndex();
2237 
2238   SDValue Guard;
2239   SDLoc dl = getCurSDLoc();
2240   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2241   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2242   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2243 
2244   // Generate code to load the content of the guard slot.
2245   SDValue GuardVal = DAG.getLoad(
2246       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2247       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2248       MachineMemOperand::MOVolatile);
2249 
2250   if (TLI.useStackGuardXorFP())
2251     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2252 
2253   // Retrieve guard check function, nullptr if instrumentation is inlined.
2254   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2255     // The target provides a guard check function to validate the guard value.
2256     // Generate a call to that function with the content of the guard slot as
2257     // argument.
2258     auto *Fn = cast<Function>(GuardCheck);
2259     FunctionType *FnTy = Fn->getFunctionType();
2260     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2261 
2262     TargetLowering::ArgListTy Args;
2263     TargetLowering::ArgListEntry Entry;
2264     Entry.Node = GuardVal;
2265     Entry.Ty = FnTy->getParamType(0);
2266     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2267       Entry.IsInReg = true;
2268     Args.push_back(Entry);
2269 
2270     TargetLowering::CallLoweringInfo CLI(DAG);
2271     CLI.setDebugLoc(getCurSDLoc())
2272       .setChain(DAG.getEntryNode())
2273       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2274                  getValue(GuardCheck), std::move(Args));
2275 
2276     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2277     DAG.setRoot(Result.second);
2278     return;
2279   }
2280 
2281   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2282   // Otherwise, emit a volatile load to retrieve the stack guard value.
2283   SDValue Chain = DAG.getEntryNode();
2284   if (TLI.useLoadStackGuardNode()) {
2285     Guard = getLoadStackGuard(DAG, dl, Chain);
2286   } else {
2287     const Value *IRGuard = TLI.getSDagStackGuard(M);
2288     SDValue GuardPtr = getValue(IRGuard);
2289 
2290     Guard =
2291         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2292                     Align, MachineMemOperand::MOVolatile);
2293   }
2294 
2295   // Perform the comparison via a subtract/getsetcc.
2296   EVT VT = Guard.getValueType();
2297   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2298 
2299   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2300                                                         *DAG.getContext(),
2301                                                         Sub.getValueType()),
2302                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2303 
2304   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2305   // branch to failure MBB.
2306   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2307                                MVT::Other, GuardVal.getOperand(0),
2308                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2309   // Otherwise branch to success MBB.
2310   SDValue Br = DAG.getNode(ISD::BR, dl,
2311                            MVT::Other, BrCond,
2312                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2313 
2314   DAG.setRoot(Br);
2315 }
2316 
2317 /// Codegen the failure basic block for a stack protector check.
2318 ///
2319 /// A failure stack protector machine basic block consists simply of a call to
2320 /// __stack_chk_fail().
2321 ///
2322 /// For a high level explanation of how this fits into the stack protector
2323 /// generation see the comment on the declaration of class
2324 /// StackProtectorDescriptor.
2325 void
2326 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2327   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2328   SDValue Chain =
2329       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2330                       None, false, getCurSDLoc(), false, false).second;
2331   DAG.setRoot(Chain);
2332 }
2333 
2334 /// visitBitTestHeader - This function emits necessary code to produce value
2335 /// suitable for "bit tests"
2336 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2337                                              MachineBasicBlock *SwitchBB) {
2338   SDLoc dl = getCurSDLoc();
2339 
2340   // Subtract the minimum value
2341   SDValue SwitchOp = getValue(B.SValue);
2342   EVT VT = SwitchOp.getValueType();
2343   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2344                             DAG.getConstant(B.First, dl, VT));
2345 
2346   // Check range
2347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2348   SDValue RangeCmp = DAG.getSetCC(
2349       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2350                                  Sub.getValueType()),
2351       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2352 
2353   // Determine the type of the test operands.
2354   bool UsePtrType = false;
2355   if (!TLI.isTypeLegal(VT))
2356     UsePtrType = true;
2357   else {
2358     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2359       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2360         // Switch table case range are encoded into series of masks.
2361         // Just use pointer type, it's guaranteed to fit.
2362         UsePtrType = true;
2363         break;
2364       }
2365   }
2366   if (UsePtrType) {
2367     VT = TLI.getPointerTy(DAG.getDataLayout());
2368     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2369   }
2370 
2371   B.RegVT = VT.getSimpleVT();
2372   B.Reg = FuncInfo.CreateReg(B.RegVT);
2373   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2374 
2375   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2376 
2377   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2378   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2379   SwitchBB->normalizeSuccProbs();
2380 
2381   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2382                                 MVT::Other, CopyTo, RangeCmp,
2383                                 DAG.getBasicBlock(B.Default));
2384 
2385   // Avoid emitting unnecessary branches to the next block.
2386   if (MBB != NextBlock(SwitchBB))
2387     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2388                           DAG.getBasicBlock(MBB));
2389 
2390   DAG.setRoot(BrRange);
2391 }
2392 
2393 /// visitBitTestCase - this function produces one "bit test"
2394 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2395                                            MachineBasicBlock* NextMBB,
2396                                            BranchProbability BranchProbToNext,
2397                                            unsigned Reg,
2398                                            BitTestCase &B,
2399                                            MachineBasicBlock *SwitchBB) {
2400   SDLoc dl = getCurSDLoc();
2401   MVT VT = BB.RegVT;
2402   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2403   SDValue Cmp;
2404   unsigned PopCount = countPopulation(B.Mask);
2405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2406   if (PopCount == 1) {
2407     // Testing for a single bit; just compare the shift count with what it
2408     // would need to be to shift a 1 bit in that position.
2409     Cmp = DAG.getSetCC(
2410         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2411         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2412         ISD::SETEQ);
2413   } else if (PopCount == BB.Range) {
2414     // There is only one zero bit in the range, test for it directly.
2415     Cmp = DAG.getSetCC(
2416         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2417         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2418         ISD::SETNE);
2419   } else {
2420     // Make desired shift
2421     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2422                                     DAG.getConstant(1, dl, VT), ShiftOp);
2423 
2424     // Emit bit tests and jumps
2425     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2426                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2427     Cmp = DAG.getSetCC(
2428         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2429         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2430   }
2431 
2432   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2433   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2434   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2435   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2436   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2437   // one as they are relative probabilities (and thus work more like weights),
2438   // and hence we need to normalize them to let the sum of them become one.
2439   SwitchBB->normalizeSuccProbs();
2440 
2441   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2442                               MVT::Other, getControlRoot(),
2443                               Cmp, DAG.getBasicBlock(B.TargetBB));
2444 
2445   // Avoid emitting unnecessary branches to the next block.
2446   if (NextMBB != NextBlock(SwitchBB))
2447     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2448                         DAG.getBasicBlock(NextMBB));
2449 
2450   DAG.setRoot(BrAnd);
2451 }
2452 
2453 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2454   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2455 
2456   // Retrieve successors. Look through artificial IR level blocks like
2457   // catchswitch for successors.
2458   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2459   const BasicBlock *EHPadBB = I.getSuccessor(1);
2460 
2461   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2462   // have to do anything here to lower funclet bundles.
2463   assert(!I.hasOperandBundlesOtherThan(
2464              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2465          "Cannot lower invokes with arbitrary operand bundles yet!");
2466 
2467   const Value *Callee(I.getCalledValue());
2468   const Function *Fn = dyn_cast<Function>(Callee);
2469   if (isa<InlineAsm>(Callee))
2470     visitInlineAsm(&I);
2471   else if (Fn && Fn->isIntrinsic()) {
2472     switch (Fn->getIntrinsicID()) {
2473     default:
2474       llvm_unreachable("Cannot invoke this intrinsic");
2475     case Intrinsic::donothing:
2476       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2477       break;
2478     case Intrinsic::experimental_patchpoint_void:
2479     case Intrinsic::experimental_patchpoint_i64:
2480       visitPatchpoint(&I, EHPadBB);
2481       break;
2482     case Intrinsic::experimental_gc_statepoint:
2483       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2484       break;
2485     }
2486   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2487     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2488     // Eventually we will support lowering the @llvm.experimental.deoptimize
2489     // intrinsic, and right now there are no plans to support other intrinsics
2490     // with deopt state.
2491     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2492   } else {
2493     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2494   }
2495 
2496   // If the value of the invoke is used outside of its defining block, make it
2497   // available as a virtual register.
2498   // We already took care of the exported value for the statepoint instruction
2499   // during call to the LowerStatepoint.
2500   if (!isStatepoint(I)) {
2501     CopyToExportRegsIfNeeded(&I);
2502   }
2503 
2504   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2505   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2506   BranchProbability EHPadBBProb =
2507       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2508           : BranchProbability::getZero();
2509   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2510 
2511   // Update successor info.
2512   addSuccessorWithProb(InvokeMBB, Return);
2513   for (auto &UnwindDest : UnwindDests) {
2514     UnwindDest.first->setIsEHPad();
2515     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2516   }
2517   InvokeMBB->normalizeSuccProbs();
2518 
2519   // Drop into normal successor.
2520   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2521                           MVT::Other, getControlRoot(),
2522                           DAG.getBasicBlock(Return)));
2523 }
2524 
2525 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2526   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2527 }
2528 
2529 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2530   assert(FuncInfo.MBB->isEHPad() &&
2531          "Call to landingpad not in landing pad!");
2532 
2533   // If there aren't registers to copy the values into (e.g., during SjLj
2534   // exceptions), then don't bother to create these DAG nodes.
2535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2536   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2537   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2538       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2539     return;
2540 
2541   // If landingpad's return type is token type, we don't create DAG nodes
2542   // for its exception pointer and selector value. The extraction of exception
2543   // pointer or selector value from token type landingpads is not currently
2544   // supported.
2545   if (LP.getType()->isTokenTy())
2546     return;
2547 
2548   SmallVector<EVT, 2> ValueVTs;
2549   SDLoc dl = getCurSDLoc();
2550   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2551   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2552 
2553   // Get the two live-in registers as SDValues. The physregs have already been
2554   // copied into virtual registers.
2555   SDValue Ops[2];
2556   if (FuncInfo.ExceptionPointerVirtReg) {
2557     Ops[0] = DAG.getZExtOrTrunc(
2558         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2559                            FuncInfo.ExceptionPointerVirtReg,
2560                            TLI.getPointerTy(DAG.getDataLayout())),
2561         dl, ValueVTs[0]);
2562   } else {
2563     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2564   }
2565   Ops[1] = DAG.getZExtOrTrunc(
2566       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2567                          FuncInfo.ExceptionSelectorVirtReg,
2568                          TLI.getPointerTy(DAG.getDataLayout())),
2569       dl, ValueVTs[1]);
2570 
2571   // Merge into one.
2572   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2573                             DAG.getVTList(ValueVTs), Ops);
2574   setValue(&LP, Res);
2575 }
2576 
2577 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2578 #ifndef NDEBUG
2579   for (const CaseCluster &CC : Clusters)
2580     assert(CC.Low == CC.High && "Input clusters must be single-case");
2581 #endif
2582 
2583   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2584     return a.Low->getValue().slt(b.Low->getValue());
2585   });
2586 
2587   // Merge adjacent clusters with the same destination.
2588   const unsigned N = Clusters.size();
2589   unsigned DstIndex = 0;
2590   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2591     CaseCluster &CC = Clusters[SrcIndex];
2592     const ConstantInt *CaseVal = CC.Low;
2593     MachineBasicBlock *Succ = CC.MBB;
2594 
2595     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2596         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2597       // If this case has the same successor and is a neighbour, merge it into
2598       // the previous cluster.
2599       Clusters[DstIndex - 1].High = CaseVal;
2600       Clusters[DstIndex - 1].Prob += CC.Prob;
2601     } else {
2602       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2603                    sizeof(Clusters[SrcIndex]));
2604     }
2605   }
2606   Clusters.resize(DstIndex);
2607 }
2608 
2609 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2610                                            MachineBasicBlock *Last) {
2611   // Update JTCases.
2612   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2613     if (JTCases[i].first.HeaderBB == First)
2614       JTCases[i].first.HeaderBB = Last;
2615 
2616   // Update BitTestCases.
2617   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2618     if (BitTestCases[i].Parent == First)
2619       BitTestCases[i].Parent = Last;
2620 }
2621 
2622 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2623   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2624 
2625   // Update machine-CFG edges with unique successors.
2626   SmallSet<BasicBlock*, 32> Done;
2627   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2628     BasicBlock *BB = I.getSuccessor(i);
2629     bool Inserted = Done.insert(BB).second;
2630     if (!Inserted)
2631         continue;
2632 
2633     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2634     addSuccessorWithProb(IndirectBrMBB, Succ);
2635   }
2636   IndirectBrMBB->normalizeSuccProbs();
2637 
2638   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2639                           MVT::Other, getControlRoot(),
2640                           getValue(I.getAddress())));
2641 }
2642 
2643 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2644   if (!DAG.getTarget().Options.TrapUnreachable)
2645     return;
2646 
2647   // We may be able to ignore unreachable behind a noreturn call.
2648   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2649     const BasicBlock &BB = *I.getParent();
2650     if (&I != &BB.front()) {
2651       BasicBlock::const_iterator PredI =
2652         std::prev(BasicBlock::const_iterator(&I));
2653       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2654         if (Call->doesNotReturn())
2655           return;
2656       }
2657     }
2658   }
2659 
2660   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2661 }
2662 
2663 void SelectionDAGBuilder::visitFSub(const User &I) {
2664   // -0.0 - X --> fneg
2665   Type *Ty = I.getType();
2666   if (isa<Constant>(I.getOperand(0)) &&
2667       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2668     SDValue Op2 = getValue(I.getOperand(1));
2669     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2670                              Op2.getValueType(), Op2));
2671     return;
2672   }
2673 
2674   visitBinary(I, ISD::FSUB);
2675 }
2676 
2677 /// Checks if the given instruction performs a vector reduction, in which case
2678 /// we have the freedom to alter the elements in the result as long as the
2679 /// reduction of them stays unchanged.
2680 static bool isVectorReductionOp(const User *I) {
2681   const Instruction *Inst = dyn_cast<Instruction>(I);
2682   if (!Inst || !Inst->getType()->isVectorTy())
2683     return false;
2684 
2685   auto OpCode = Inst->getOpcode();
2686   switch (OpCode) {
2687   case Instruction::Add:
2688   case Instruction::Mul:
2689   case Instruction::And:
2690   case Instruction::Or:
2691   case Instruction::Xor:
2692     break;
2693   case Instruction::FAdd:
2694   case Instruction::FMul:
2695     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2696       if (FPOp->getFastMathFlags().isFast())
2697         break;
2698     LLVM_FALLTHROUGH;
2699   default:
2700     return false;
2701   }
2702 
2703   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2704   // Ensure the reduction size is a power of 2.
2705   if (!isPowerOf2_32(ElemNum))
2706     return false;
2707 
2708   unsigned ElemNumToReduce = ElemNum;
2709 
2710   // Do DFS search on the def-use chain from the given instruction. We only
2711   // allow four kinds of operations during the search until we reach the
2712   // instruction that extracts the first element from the vector:
2713   //
2714   //   1. The reduction operation of the same opcode as the given instruction.
2715   //
2716   //   2. PHI node.
2717   //
2718   //   3. ShuffleVector instruction together with a reduction operation that
2719   //      does a partial reduction.
2720   //
2721   //   4. ExtractElement that extracts the first element from the vector, and we
2722   //      stop searching the def-use chain here.
2723   //
2724   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2725   // from 1-3 to the stack to continue the DFS. The given instruction is not
2726   // a reduction operation if we meet any other instructions other than those
2727   // listed above.
2728 
2729   SmallVector<const User *, 16> UsersToVisit{Inst};
2730   SmallPtrSet<const User *, 16> Visited;
2731   bool ReduxExtracted = false;
2732 
2733   while (!UsersToVisit.empty()) {
2734     auto User = UsersToVisit.back();
2735     UsersToVisit.pop_back();
2736     if (!Visited.insert(User).second)
2737       continue;
2738 
2739     for (const auto &U : User->users()) {
2740       auto Inst = dyn_cast<Instruction>(U);
2741       if (!Inst)
2742         return false;
2743 
2744       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2745         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2746           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2747             return false;
2748         UsersToVisit.push_back(U);
2749       } else if (const ShuffleVectorInst *ShufInst =
2750                      dyn_cast<ShuffleVectorInst>(U)) {
2751         // Detect the following pattern: A ShuffleVector instruction together
2752         // with a reduction that do partial reduction on the first and second
2753         // ElemNumToReduce / 2 elements, and store the result in
2754         // ElemNumToReduce / 2 elements in another vector.
2755 
2756         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2757         if (ResultElements < ElemNum)
2758           return false;
2759 
2760         if (ElemNumToReduce == 1)
2761           return false;
2762         if (!isa<UndefValue>(U->getOperand(1)))
2763           return false;
2764         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2765           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2766             return false;
2767         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2768           if (ShufInst->getMaskValue(i) != -1)
2769             return false;
2770 
2771         // There is only one user of this ShuffleVector instruction, which
2772         // must be a reduction operation.
2773         if (!U->hasOneUse())
2774           return false;
2775 
2776         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2777         if (!U2 || U2->getOpcode() != OpCode)
2778           return false;
2779 
2780         // Check operands of the reduction operation.
2781         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2782             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2783           UsersToVisit.push_back(U2);
2784           ElemNumToReduce /= 2;
2785         } else
2786           return false;
2787       } else if (isa<ExtractElementInst>(U)) {
2788         // At this moment we should have reduced all elements in the vector.
2789         if (ElemNumToReduce != 1)
2790           return false;
2791 
2792         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2793         if (!Val || !Val->isZero())
2794           return false;
2795 
2796         ReduxExtracted = true;
2797       } else
2798         return false;
2799     }
2800   }
2801   return ReduxExtracted;
2802 }
2803 
2804 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2805   SDNodeFlags Flags;
2806   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2807     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2808     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2809   }
2810   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2811     Flags.setExact(ExactOp->isExact());
2812   }
2813   if (isVectorReductionOp(&I)) {
2814     Flags.setVectorReduction(true);
2815     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2816   }
2817 
2818   SDValue Op1 = getValue(I.getOperand(0));
2819   SDValue Op2 = getValue(I.getOperand(1));
2820   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2821                                      Op1, Op2, Flags);
2822   setValue(&I, BinNodeValue);
2823 }
2824 
2825 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2826   SDValue Op1 = getValue(I.getOperand(0));
2827   SDValue Op2 = getValue(I.getOperand(1));
2828 
2829   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2830       Op1.getValueType(), DAG.getDataLayout());
2831 
2832   // Coerce the shift amount to the right type if we can.
2833   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2834     unsigned ShiftSize = ShiftTy.getSizeInBits();
2835     unsigned Op2Size = Op2.getValueSizeInBits();
2836     SDLoc DL = getCurSDLoc();
2837 
2838     // If the operand is smaller than the shift count type, promote it.
2839     if (ShiftSize > Op2Size)
2840       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2841 
2842     // If the operand is larger than the shift count type but the shift
2843     // count type has enough bits to represent any shift value, truncate
2844     // it now. This is a common case and it exposes the truncate to
2845     // optimization early.
2846     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2847       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2848     // Otherwise we'll need to temporarily settle for some other convenient
2849     // type.  Type legalization will make adjustments once the shiftee is split.
2850     else
2851       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2852   }
2853 
2854   bool nuw = false;
2855   bool nsw = false;
2856   bool exact = false;
2857 
2858   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2859 
2860     if (const OverflowingBinaryOperator *OFBinOp =
2861             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2862       nuw = OFBinOp->hasNoUnsignedWrap();
2863       nsw = OFBinOp->hasNoSignedWrap();
2864     }
2865     if (const PossiblyExactOperator *ExactOp =
2866             dyn_cast<const PossiblyExactOperator>(&I))
2867       exact = ExactOp->isExact();
2868   }
2869   SDNodeFlags Flags;
2870   Flags.setExact(exact);
2871   Flags.setNoSignedWrap(nsw);
2872   Flags.setNoUnsignedWrap(nuw);
2873   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2874                             Flags);
2875   setValue(&I, Res);
2876 }
2877 
2878 void SelectionDAGBuilder::visitSDiv(const User &I) {
2879   SDValue Op1 = getValue(I.getOperand(0));
2880   SDValue Op2 = getValue(I.getOperand(1));
2881 
2882   SDNodeFlags Flags;
2883   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2884                  cast<PossiblyExactOperator>(&I)->isExact());
2885   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2886                            Op2, Flags));
2887 }
2888 
2889 void SelectionDAGBuilder::visitICmp(const User &I) {
2890   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2891   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2892     predicate = IC->getPredicate();
2893   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2894     predicate = ICmpInst::Predicate(IC->getPredicate());
2895   SDValue Op1 = getValue(I.getOperand(0));
2896   SDValue Op2 = getValue(I.getOperand(1));
2897   ISD::CondCode Opcode = getICmpCondCode(predicate);
2898 
2899   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2900                                                         I.getType());
2901   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2902 }
2903 
2904 void SelectionDAGBuilder::visitFCmp(const User &I) {
2905   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2906   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2907     predicate = FC->getPredicate();
2908   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2909     predicate = FCmpInst::Predicate(FC->getPredicate());
2910   SDValue Op1 = getValue(I.getOperand(0));
2911   SDValue Op2 = getValue(I.getOperand(1));
2912 
2913   ISD::CondCode Condition = getFCmpCondCode(predicate);
2914   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2915   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2916     Condition = getFCmpCodeWithoutNaN(Condition);
2917 
2918   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2919                                                         I.getType());
2920   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2921 }
2922 
2923 // Check if the condition of the select has one use or two users that are both
2924 // selects with the same condition.
2925 static bool hasOnlySelectUsers(const Value *Cond) {
2926   return llvm::all_of(Cond->users(), [](const Value *V) {
2927     return isa<SelectInst>(V);
2928   });
2929 }
2930 
2931 void SelectionDAGBuilder::visitSelect(const User &I) {
2932   SmallVector<EVT, 4> ValueVTs;
2933   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2934                   ValueVTs);
2935   unsigned NumValues = ValueVTs.size();
2936   if (NumValues == 0) return;
2937 
2938   SmallVector<SDValue, 4> Values(NumValues);
2939   SDValue Cond     = getValue(I.getOperand(0));
2940   SDValue LHSVal   = getValue(I.getOperand(1));
2941   SDValue RHSVal   = getValue(I.getOperand(2));
2942   auto BaseOps = {Cond};
2943   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2944     ISD::VSELECT : ISD::SELECT;
2945 
2946   // Min/max matching is only viable if all output VTs are the same.
2947   if (is_splat(ValueVTs)) {
2948     EVT VT = ValueVTs[0];
2949     LLVMContext &Ctx = *DAG.getContext();
2950     auto &TLI = DAG.getTargetLoweringInfo();
2951 
2952     // We care about the legality of the operation after it has been type
2953     // legalized.
2954     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2955            VT != TLI.getTypeToTransformTo(Ctx, VT))
2956       VT = TLI.getTypeToTransformTo(Ctx, VT);
2957 
2958     // If the vselect is legal, assume we want to leave this as a vector setcc +
2959     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2960     // min/max is legal on the scalar type.
2961     bool UseScalarMinMax = VT.isVector() &&
2962       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2963 
2964     Value *LHS, *RHS;
2965     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2966     ISD::NodeType Opc = ISD::DELETED_NODE;
2967     switch (SPR.Flavor) {
2968     case SPF_UMAX:    Opc = ISD::UMAX; break;
2969     case SPF_UMIN:    Opc = ISD::UMIN; break;
2970     case SPF_SMAX:    Opc = ISD::SMAX; break;
2971     case SPF_SMIN:    Opc = ISD::SMIN; break;
2972     case SPF_FMINNUM:
2973       switch (SPR.NaNBehavior) {
2974       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2975       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
2976       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2977       case SPNB_RETURNS_ANY: {
2978         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2979           Opc = ISD::FMINNUM;
2980         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
2981           Opc = ISD::FMINIMUM;
2982         else if (UseScalarMinMax)
2983           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2984             ISD::FMINNUM : ISD::FMINIMUM;
2985         break;
2986       }
2987       }
2988       break;
2989     case SPF_FMAXNUM:
2990       switch (SPR.NaNBehavior) {
2991       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2992       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
2993       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2994       case SPNB_RETURNS_ANY:
2995 
2996         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2997           Opc = ISD::FMAXNUM;
2998         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
2999           Opc = ISD::FMAXIMUM;
3000         else if (UseScalarMinMax)
3001           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3002             ISD::FMAXNUM : ISD::FMAXIMUM;
3003         break;
3004       }
3005       break;
3006     default: break;
3007     }
3008 
3009     if (Opc != ISD::DELETED_NODE &&
3010         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3011          (UseScalarMinMax &&
3012           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3013         // If the underlying comparison instruction is used by any other
3014         // instruction, the consumed instructions won't be destroyed, so it is
3015         // not profitable to convert to a min/max.
3016         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3017       OpCode = Opc;
3018       LHSVal = getValue(LHS);
3019       RHSVal = getValue(RHS);
3020       BaseOps = {};
3021     }
3022   }
3023 
3024   for (unsigned i = 0; i != NumValues; ++i) {
3025     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3026     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3027     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3028     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3029                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3030                             Ops);
3031   }
3032 
3033   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3034                            DAG.getVTList(ValueVTs), Values));
3035 }
3036 
3037 void SelectionDAGBuilder::visitTrunc(const User &I) {
3038   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3039   SDValue N = getValue(I.getOperand(0));
3040   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3041                                                         I.getType());
3042   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3043 }
3044 
3045 void SelectionDAGBuilder::visitZExt(const User &I) {
3046   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3047   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3048   SDValue N = getValue(I.getOperand(0));
3049   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3050                                                         I.getType());
3051   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3052 }
3053 
3054 void SelectionDAGBuilder::visitSExt(const User &I) {
3055   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3056   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3057   SDValue N = getValue(I.getOperand(0));
3058   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3059                                                         I.getType());
3060   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3061 }
3062 
3063 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3064   // FPTrunc is never a no-op cast, no need to check
3065   SDValue N = getValue(I.getOperand(0));
3066   SDLoc dl = getCurSDLoc();
3067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3068   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3069   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3070                            DAG.getTargetConstant(
3071                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3072 }
3073 
3074 void SelectionDAGBuilder::visitFPExt(const User &I) {
3075   // FPExt is never a no-op cast, no need to check
3076   SDValue N = getValue(I.getOperand(0));
3077   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3078                                                         I.getType());
3079   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3080 }
3081 
3082 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3083   // FPToUI is never a no-op cast, no need to check
3084   SDValue N = getValue(I.getOperand(0));
3085   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3086                                                         I.getType());
3087   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3088 }
3089 
3090 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3091   // FPToSI is never a no-op cast, no need to check
3092   SDValue N = getValue(I.getOperand(0));
3093   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3094                                                         I.getType());
3095   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3096 }
3097 
3098 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3099   // UIToFP is never a no-op cast, no need to check
3100   SDValue N = getValue(I.getOperand(0));
3101   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3102                                                         I.getType());
3103   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3104 }
3105 
3106 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3107   // SIToFP is never a no-op cast, no need to check
3108   SDValue N = getValue(I.getOperand(0));
3109   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3110                                                         I.getType());
3111   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3112 }
3113 
3114 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3115   // What to do depends on the size of the integer and the size of the pointer.
3116   // We can either truncate, zero extend, or no-op, accordingly.
3117   SDValue N = getValue(I.getOperand(0));
3118   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3119                                                         I.getType());
3120   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3121 }
3122 
3123 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3124   // What to do depends on the size of the integer and the size of the pointer.
3125   // We can either truncate, zero extend, or no-op, accordingly.
3126   SDValue N = getValue(I.getOperand(0));
3127   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3128                                                         I.getType());
3129   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3130 }
3131 
3132 void SelectionDAGBuilder::visitBitCast(const User &I) {
3133   SDValue N = getValue(I.getOperand(0));
3134   SDLoc dl = getCurSDLoc();
3135   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3136                                                         I.getType());
3137 
3138   // BitCast assures us that source and destination are the same size so this is
3139   // either a BITCAST or a no-op.
3140   if (DestVT != N.getValueType())
3141     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3142                              DestVT, N)); // convert types.
3143   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3144   // might fold any kind of constant expression to an integer constant and that
3145   // is not what we are looking for. Only recognize a bitcast of a genuine
3146   // constant integer as an opaque constant.
3147   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3148     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3149                                  /*isOpaque*/true));
3150   else
3151     setValue(&I, N);            // noop cast.
3152 }
3153 
3154 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3155   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3156   const Value *SV = I.getOperand(0);
3157   SDValue N = getValue(SV);
3158   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3159 
3160   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3161   unsigned DestAS = I.getType()->getPointerAddressSpace();
3162 
3163   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3164     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3165 
3166   setValue(&I, N);
3167 }
3168 
3169 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3171   SDValue InVec = getValue(I.getOperand(0));
3172   SDValue InVal = getValue(I.getOperand(1));
3173   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3174                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3175   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3176                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3177                            InVec, InVal, InIdx));
3178 }
3179 
3180 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3182   SDValue InVec = getValue(I.getOperand(0));
3183   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3184                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3185   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3186                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3187                            InVec, InIdx));
3188 }
3189 
3190 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3191   SDValue Src1 = getValue(I.getOperand(0));
3192   SDValue Src2 = getValue(I.getOperand(1));
3193   SDLoc DL = getCurSDLoc();
3194 
3195   SmallVector<int, 8> Mask;
3196   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3197   unsigned MaskNumElts = Mask.size();
3198 
3199   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3200   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3201   EVT SrcVT = Src1.getValueType();
3202   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3203 
3204   if (SrcNumElts == MaskNumElts) {
3205     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3206     return;
3207   }
3208 
3209   // Normalize the shuffle vector since mask and vector length don't match.
3210   if (SrcNumElts < MaskNumElts) {
3211     // Mask is longer than the source vectors. We can use concatenate vector to
3212     // make the mask and vectors lengths match.
3213 
3214     if (MaskNumElts % SrcNumElts == 0) {
3215       // Mask length is a multiple of the source vector length.
3216       // Check if the shuffle is some kind of concatenation of the input
3217       // vectors.
3218       unsigned NumConcat = MaskNumElts / SrcNumElts;
3219       bool IsConcat = true;
3220       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3221       for (unsigned i = 0; i != MaskNumElts; ++i) {
3222         int Idx = Mask[i];
3223         if (Idx < 0)
3224           continue;
3225         // Ensure the indices in each SrcVT sized piece are sequential and that
3226         // the same source is used for the whole piece.
3227         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3228             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3229              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3230           IsConcat = false;
3231           break;
3232         }
3233         // Remember which source this index came from.
3234         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3235       }
3236 
3237       // The shuffle is concatenating multiple vectors together. Just emit
3238       // a CONCAT_VECTORS operation.
3239       if (IsConcat) {
3240         SmallVector<SDValue, 8> ConcatOps;
3241         for (auto Src : ConcatSrcs) {
3242           if (Src < 0)
3243             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3244           else if (Src == 0)
3245             ConcatOps.push_back(Src1);
3246           else
3247             ConcatOps.push_back(Src2);
3248         }
3249         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3250         return;
3251       }
3252     }
3253 
3254     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3255     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3256     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3257                                     PaddedMaskNumElts);
3258 
3259     // Pad both vectors with undefs to make them the same length as the mask.
3260     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3261 
3262     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3263     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3264     MOps1[0] = Src1;
3265     MOps2[0] = Src2;
3266 
3267     Src1 = Src1.isUndef()
3268                ? DAG.getUNDEF(PaddedVT)
3269                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3270     Src2 = Src2.isUndef()
3271                ? DAG.getUNDEF(PaddedVT)
3272                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3273 
3274     // Readjust mask for new input vector length.
3275     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3276     for (unsigned i = 0; i != MaskNumElts; ++i) {
3277       int Idx = Mask[i];
3278       if (Idx >= (int)SrcNumElts)
3279         Idx -= SrcNumElts - PaddedMaskNumElts;
3280       MappedOps[i] = Idx;
3281     }
3282 
3283     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3284 
3285     // If the concatenated vector was padded, extract a subvector with the
3286     // correct number of elements.
3287     if (MaskNumElts != PaddedMaskNumElts)
3288       Result = DAG.getNode(
3289           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3290           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3291 
3292     setValue(&I, Result);
3293     return;
3294   }
3295 
3296   if (SrcNumElts > MaskNumElts) {
3297     // Analyze the access pattern of the vector to see if we can extract
3298     // two subvectors and do the shuffle.
3299     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3300     bool CanExtract = true;
3301     for (int Idx : Mask) {
3302       unsigned Input = 0;
3303       if (Idx < 0)
3304         continue;
3305 
3306       if (Idx >= (int)SrcNumElts) {
3307         Input = 1;
3308         Idx -= SrcNumElts;
3309       }
3310 
3311       // If all the indices come from the same MaskNumElts sized portion of
3312       // the sources we can use extract. Also make sure the extract wouldn't
3313       // extract past the end of the source.
3314       int NewStartIdx = alignDown(Idx, MaskNumElts);
3315       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3316           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3317         CanExtract = false;
3318       // Make sure we always update StartIdx as we use it to track if all
3319       // elements are undef.
3320       StartIdx[Input] = NewStartIdx;
3321     }
3322 
3323     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3324       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3325       return;
3326     }
3327     if (CanExtract) {
3328       // Extract appropriate subvector and generate a vector shuffle
3329       for (unsigned Input = 0; Input < 2; ++Input) {
3330         SDValue &Src = Input == 0 ? Src1 : Src2;
3331         if (StartIdx[Input] < 0)
3332           Src = DAG.getUNDEF(VT);
3333         else {
3334           Src = DAG.getNode(
3335               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3336               DAG.getConstant(StartIdx[Input], DL,
3337                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3338         }
3339       }
3340 
3341       // Calculate new mask.
3342       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3343       for (int &Idx : MappedOps) {
3344         if (Idx >= (int)SrcNumElts)
3345           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3346         else if (Idx >= 0)
3347           Idx -= StartIdx[0];
3348       }
3349 
3350       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3351       return;
3352     }
3353   }
3354 
3355   // We can't use either concat vectors or extract subvectors so fall back to
3356   // replacing the shuffle with extract and build vector.
3357   // to insert and build vector.
3358   EVT EltVT = VT.getVectorElementType();
3359   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3360   SmallVector<SDValue,8> Ops;
3361   for (int Idx : Mask) {
3362     SDValue Res;
3363 
3364     if (Idx < 0) {
3365       Res = DAG.getUNDEF(EltVT);
3366     } else {
3367       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3368       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3369 
3370       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3371                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3372     }
3373 
3374     Ops.push_back(Res);
3375   }
3376 
3377   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3378 }
3379 
3380 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3381   ArrayRef<unsigned> Indices;
3382   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3383     Indices = IV->getIndices();
3384   else
3385     Indices = cast<ConstantExpr>(&I)->getIndices();
3386 
3387   const Value *Op0 = I.getOperand(0);
3388   const Value *Op1 = I.getOperand(1);
3389   Type *AggTy = I.getType();
3390   Type *ValTy = Op1->getType();
3391   bool IntoUndef = isa<UndefValue>(Op0);
3392   bool FromUndef = isa<UndefValue>(Op1);
3393 
3394   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3395 
3396   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3397   SmallVector<EVT, 4> AggValueVTs;
3398   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3399   SmallVector<EVT, 4> ValValueVTs;
3400   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3401 
3402   unsigned NumAggValues = AggValueVTs.size();
3403   unsigned NumValValues = ValValueVTs.size();
3404   SmallVector<SDValue, 4> Values(NumAggValues);
3405 
3406   // Ignore an insertvalue that produces an empty object
3407   if (!NumAggValues) {
3408     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3409     return;
3410   }
3411 
3412   SDValue Agg = getValue(Op0);
3413   unsigned i = 0;
3414   // Copy the beginning value(s) from the original aggregate.
3415   for (; i != LinearIndex; ++i)
3416     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3417                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3418   // Copy values from the inserted value(s).
3419   if (NumValValues) {
3420     SDValue Val = getValue(Op1);
3421     for (; i != LinearIndex + NumValValues; ++i)
3422       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3423                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3424   }
3425   // Copy remaining value(s) from the original aggregate.
3426   for (; i != NumAggValues; ++i)
3427     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3428                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3429 
3430   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3431                            DAG.getVTList(AggValueVTs), Values));
3432 }
3433 
3434 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3435   ArrayRef<unsigned> Indices;
3436   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3437     Indices = EV->getIndices();
3438   else
3439     Indices = cast<ConstantExpr>(&I)->getIndices();
3440 
3441   const Value *Op0 = I.getOperand(0);
3442   Type *AggTy = Op0->getType();
3443   Type *ValTy = I.getType();
3444   bool OutOfUndef = isa<UndefValue>(Op0);
3445 
3446   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3447 
3448   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3449   SmallVector<EVT, 4> ValValueVTs;
3450   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3451 
3452   unsigned NumValValues = ValValueVTs.size();
3453 
3454   // Ignore a extractvalue that produces an empty object
3455   if (!NumValValues) {
3456     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3457     return;
3458   }
3459 
3460   SmallVector<SDValue, 4> Values(NumValValues);
3461 
3462   SDValue Agg = getValue(Op0);
3463   // Copy out the selected value(s).
3464   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3465     Values[i - LinearIndex] =
3466       OutOfUndef ?
3467         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3468         SDValue(Agg.getNode(), Agg.getResNo() + i);
3469 
3470   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3471                            DAG.getVTList(ValValueVTs), Values));
3472 }
3473 
3474 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3475   Value *Op0 = I.getOperand(0);
3476   // Note that the pointer operand may be a vector of pointers. Take the scalar
3477   // element which holds a pointer.
3478   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3479   SDValue N = getValue(Op0);
3480   SDLoc dl = getCurSDLoc();
3481 
3482   // Normalize Vector GEP - all scalar operands should be converted to the
3483   // splat vector.
3484   unsigned VectorWidth = I.getType()->isVectorTy() ?
3485     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3486 
3487   if (VectorWidth && !N.getValueType().isVector()) {
3488     LLVMContext &Context = *DAG.getContext();
3489     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3490     N = DAG.getSplatBuildVector(VT, dl, N);
3491   }
3492 
3493   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3494        GTI != E; ++GTI) {
3495     const Value *Idx = GTI.getOperand();
3496     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3497       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3498       if (Field) {
3499         // N = N + Offset
3500         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3501 
3502         // In an inbounds GEP with an offset that is nonnegative even when
3503         // interpreted as signed, assume there is no unsigned overflow.
3504         SDNodeFlags Flags;
3505         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3506           Flags.setNoUnsignedWrap(true);
3507 
3508         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3509                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3510       }
3511     } else {
3512       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3513       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3514       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3515 
3516       // If this is a scalar constant or a splat vector of constants,
3517       // handle it quickly.
3518       const auto *CI = dyn_cast<ConstantInt>(Idx);
3519       if (!CI && isa<ConstantDataVector>(Idx) &&
3520           cast<ConstantDataVector>(Idx)->getSplatValue())
3521         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3522 
3523       if (CI) {
3524         if (CI->isZero())
3525           continue;
3526         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3527         LLVMContext &Context = *DAG.getContext();
3528         SDValue OffsVal = VectorWidth ?
3529           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3530           DAG.getConstant(Offs, dl, IdxTy);
3531 
3532         // In an inbouds GEP with an offset that is nonnegative even when
3533         // interpreted as signed, assume there is no unsigned overflow.
3534         SDNodeFlags Flags;
3535         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3536           Flags.setNoUnsignedWrap(true);
3537 
3538         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3539         continue;
3540       }
3541 
3542       // N = N + Idx * ElementSize;
3543       SDValue IdxN = getValue(Idx);
3544 
3545       if (!IdxN.getValueType().isVector() && VectorWidth) {
3546         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3547         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3548       }
3549 
3550       // If the index is smaller or larger than intptr_t, truncate or extend
3551       // it.
3552       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3553 
3554       // If this is a multiply by a power of two, turn it into a shl
3555       // immediately.  This is a very common case.
3556       if (ElementSize != 1) {
3557         if (ElementSize.isPowerOf2()) {
3558           unsigned Amt = ElementSize.logBase2();
3559           IdxN = DAG.getNode(ISD::SHL, dl,
3560                              N.getValueType(), IdxN,
3561                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3562         } else {
3563           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3564           IdxN = DAG.getNode(ISD::MUL, dl,
3565                              N.getValueType(), IdxN, Scale);
3566         }
3567       }
3568 
3569       N = DAG.getNode(ISD::ADD, dl,
3570                       N.getValueType(), N, IdxN);
3571     }
3572   }
3573 
3574   setValue(&I, N);
3575 }
3576 
3577 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3578   // If this is a fixed sized alloca in the entry block of the function,
3579   // allocate it statically on the stack.
3580   if (FuncInfo.StaticAllocaMap.count(&I))
3581     return;   // getValue will auto-populate this.
3582 
3583   SDLoc dl = getCurSDLoc();
3584   Type *Ty = I.getAllocatedType();
3585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586   auto &DL = DAG.getDataLayout();
3587   uint64_t TySize = DL.getTypeAllocSize(Ty);
3588   unsigned Align =
3589       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3590 
3591   SDValue AllocSize = getValue(I.getArraySize());
3592 
3593   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3594   if (AllocSize.getValueType() != IntPtr)
3595     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3596 
3597   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3598                           AllocSize,
3599                           DAG.getConstant(TySize, dl, IntPtr));
3600 
3601   // Handle alignment.  If the requested alignment is less than or equal to
3602   // the stack alignment, ignore it.  If the size is greater than or equal to
3603   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3604   unsigned StackAlign =
3605       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3606   if (Align <= StackAlign)
3607     Align = 0;
3608 
3609   // Round the size of the allocation up to the stack alignment size
3610   // by add SA-1 to the size. This doesn't overflow because we're computing
3611   // an address inside an alloca.
3612   SDNodeFlags Flags;
3613   Flags.setNoUnsignedWrap(true);
3614   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3615                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3616 
3617   // Mask out the low bits for alignment purposes.
3618   AllocSize =
3619       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3620                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3621 
3622   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3623   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3624   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3625   setValue(&I, DSA);
3626   DAG.setRoot(DSA.getValue(1));
3627 
3628   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3629 }
3630 
3631 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3632   if (I.isAtomic())
3633     return visitAtomicLoad(I);
3634 
3635   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3636   const Value *SV = I.getOperand(0);
3637   if (TLI.supportSwiftError()) {
3638     // Swifterror values can come from either a function parameter with
3639     // swifterror attribute or an alloca with swifterror attribute.
3640     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3641       if (Arg->hasSwiftErrorAttr())
3642         return visitLoadFromSwiftError(I);
3643     }
3644 
3645     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3646       if (Alloca->isSwiftError())
3647         return visitLoadFromSwiftError(I);
3648     }
3649   }
3650 
3651   SDValue Ptr = getValue(SV);
3652 
3653   Type *Ty = I.getType();
3654 
3655   bool isVolatile = I.isVolatile();
3656   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3657   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3658   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3659   unsigned Alignment = I.getAlignment();
3660 
3661   AAMDNodes AAInfo;
3662   I.getAAMetadata(AAInfo);
3663   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3664 
3665   SmallVector<EVT, 4> ValueVTs;
3666   SmallVector<uint64_t, 4> Offsets;
3667   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3668   unsigned NumValues = ValueVTs.size();
3669   if (NumValues == 0)
3670     return;
3671 
3672   SDValue Root;
3673   bool ConstantMemory = false;
3674   if (isVolatile || NumValues > MaxParallelChains)
3675     // Serialize volatile loads with other side effects.
3676     Root = getRoot();
3677   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3678                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3679     // Do not serialize (non-volatile) loads of constant memory with anything.
3680     Root = DAG.getEntryNode();
3681     ConstantMemory = true;
3682   } else {
3683     // Do not serialize non-volatile loads against each other.
3684     Root = DAG.getRoot();
3685   }
3686 
3687   SDLoc dl = getCurSDLoc();
3688 
3689   if (isVolatile)
3690     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3691 
3692   // An aggregate load cannot wrap around the address space, so offsets to its
3693   // parts don't wrap either.
3694   SDNodeFlags Flags;
3695   Flags.setNoUnsignedWrap(true);
3696 
3697   SmallVector<SDValue, 4> Values(NumValues);
3698   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3699   EVT PtrVT = Ptr.getValueType();
3700   unsigned ChainI = 0;
3701   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3702     // Serializing loads here may result in excessive register pressure, and
3703     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3704     // could recover a bit by hoisting nodes upward in the chain by recognizing
3705     // they are side-effect free or do not alias. The optimizer should really
3706     // avoid this case by converting large object/array copies to llvm.memcpy
3707     // (MaxParallelChains should always remain as failsafe).
3708     if (ChainI == MaxParallelChains) {
3709       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3710       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3711                                   makeArrayRef(Chains.data(), ChainI));
3712       Root = Chain;
3713       ChainI = 0;
3714     }
3715     SDValue A = DAG.getNode(ISD::ADD, dl,
3716                             PtrVT, Ptr,
3717                             DAG.getConstant(Offsets[i], dl, PtrVT),
3718                             Flags);
3719     auto MMOFlags = MachineMemOperand::MONone;
3720     if (isVolatile)
3721       MMOFlags |= MachineMemOperand::MOVolatile;
3722     if (isNonTemporal)
3723       MMOFlags |= MachineMemOperand::MONonTemporal;
3724     if (isInvariant)
3725       MMOFlags |= MachineMemOperand::MOInvariant;
3726     if (isDereferenceable)
3727       MMOFlags |= MachineMemOperand::MODereferenceable;
3728     MMOFlags |= TLI.getMMOFlags(I);
3729 
3730     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3731                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3732                             MMOFlags, AAInfo, Ranges);
3733 
3734     Values[i] = L;
3735     Chains[ChainI] = L.getValue(1);
3736   }
3737 
3738   if (!ConstantMemory) {
3739     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3740                                 makeArrayRef(Chains.data(), ChainI));
3741     if (isVolatile)
3742       DAG.setRoot(Chain);
3743     else
3744       PendingLoads.push_back(Chain);
3745   }
3746 
3747   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3748                            DAG.getVTList(ValueVTs), Values));
3749 }
3750 
3751 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3752   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3753          "call visitStoreToSwiftError when backend supports swifterror");
3754 
3755   SmallVector<EVT, 4> ValueVTs;
3756   SmallVector<uint64_t, 4> Offsets;
3757   const Value *SrcV = I.getOperand(0);
3758   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3759                   SrcV->getType(), ValueVTs, &Offsets);
3760   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3761          "expect a single EVT for swifterror");
3762 
3763   SDValue Src = getValue(SrcV);
3764   // Create a virtual register, then update the virtual register.
3765   unsigned VReg; bool CreatedVReg;
3766   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3767   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3768   // Chain can be getRoot or getControlRoot.
3769   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3770                                       SDValue(Src.getNode(), Src.getResNo()));
3771   DAG.setRoot(CopyNode);
3772   if (CreatedVReg)
3773     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3774 }
3775 
3776 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3777   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3778          "call visitLoadFromSwiftError when backend supports swifterror");
3779 
3780   assert(!I.isVolatile() &&
3781          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3782          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3783          "Support volatile, non temporal, invariant for load_from_swift_error");
3784 
3785   const Value *SV = I.getOperand(0);
3786   Type *Ty = I.getType();
3787   AAMDNodes AAInfo;
3788   I.getAAMetadata(AAInfo);
3789   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3790              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3791          "load_from_swift_error should not be constant memory");
3792 
3793   SmallVector<EVT, 4> ValueVTs;
3794   SmallVector<uint64_t, 4> Offsets;
3795   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3796                   ValueVTs, &Offsets);
3797   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3798          "expect a single EVT for swifterror");
3799 
3800   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3801   SDValue L = DAG.getCopyFromReg(
3802       getRoot(), getCurSDLoc(),
3803       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3804       ValueVTs[0]);
3805 
3806   setValue(&I, L);
3807 }
3808 
3809 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3810   if (I.isAtomic())
3811     return visitAtomicStore(I);
3812 
3813   const Value *SrcV = I.getOperand(0);
3814   const Value *PtrV = I.getOperand(1);
3815 
3816   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3817   if (TLI.supportSwiftError()) {
3818     // Swifterror values can come from either a function parameter with
3819     // swifterror attribute or an alloca with swifterror attribute.
3820     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3821       if (Arg->hasSwiftErrorAttr())
3822         return visitStoreToSwiftError(I);
3823     }
3824 
3825     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3826       if (Alloca->isSwiftError())
3827         return visitStoreToSwiftError(I);
3828     }
3829   }
3830 
3831   SmallVector<EVT, 4> ValueVTs;
3832   SmallVector<uint64_t, 4> Offsets;
3833   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3834                   SrcV->getType(), ValueVTs, &Offsets);
3835   unsigned NumValues = ValueVTs.size();
3836   if (NumValues == 0)
3837     return;
3838 
3839   // Get the lowered operands. Note that we do this after
3840   // checking if NumResults is zero, because with zero results
3841   // the operands won't have values in the map.
3842   SDValue Src = getValue(SrcV);
3843   SDValue Ptr = getValue(PtrV);
3844 
3845   SDValue Root = getRoot();
3846   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3847   SDLoc dl = getCurSDLoc();
3848   EVT PtrVT = Ptr.getValueType();
3849   unsigned Alignment = I.getAlignment();
3850   AAMDNodes AAInfo;
3851   I.getAAMetadata(AAInfo);
3852 
3853   auto MMOFlags = MachineMemOperand::MONone;
3854   if (I.isVolatile())
3855     MMOFlags |= MachineMemOperand::MOVolatile;
3856   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3857     MMOFlags |= MachineMemOperand::MONonTemporal;
3858   MMOFlags |= TLI.getMMOFlags(I);
3859 
3860   // An aggregate load cannot wrap around the address space, so offsets to its
3861   // parts don't wrap either.
3862   SDNodeFlags Flags;
3863   Flags.setNoUnsignedWrap(true);
3864 
3865   unsigned ChainI = 0;
3866   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3867     // See visitLoad comments.
3868     if (ChainI == MaxParallelChains) {
3869       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3870                                   makeArrayRef(Chains.data(), ChainI));
3871       Root = Chain;
3872       ChainI = 0;
3873     }
3874     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3875                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3876     SDValue St = DAG.getStore(
3877         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3878         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3879     Chains[ChainI] = St;
3880   }
3881 
3882   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3883                                   makeArrayRef(Chains.data(), ChainI));
3884   DAG.setRoot(StoreNode);
3885 }
3886 
3887 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3888                                            bool IsCompressing) {
3889   SDLoc sdl = getCurSDLoc();
3890 
3891   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3892                            unsigned& Alignment) {
3893     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3894     Src0 = I.getArgOperand(0);
3895     Ptr = I.getArgOperand(1);
3896     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3897     Mask = I.getArgOperand(3);
3898   };
3899   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3900                            unsigned& Alignment) {
3901     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3902     Src0 = I.getArgOperand(0);
3903     Ptr = I.getArgOperand(1);
3904     Mask = I.getArgOperand(2);
3905     Alignment = 0;
3906   };
3907 
3908   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3909   unsigned Alignment;
3910   if (IsCompressing)
3911     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3912   else
3913     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3914 
3915   SDValue Ptr = getValue(PtrOperand);
3916   SDValue Src0 = getValue(Src0Operand);
3917   SDValue Mask = getValue(MaskOperand);
3918 
3919   EVT VT = Src0.getValueType();
3920   if (!Alignment)
3921     Alignment = DAG.getEVTAlignment(VT);
3922 
3923   AAMDNodes AAInfo;
3924   I.getAAMetadata(AAInfo);
3925 
3926   MachineMemOperand *MMO =
3927     DAG.getMachineFunction().
3928     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3929                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3930                           Alignment, AAInfo);
3931   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3932                                          MMO, false /* Truncating */,
3933                                          IsCompressing);
3934   DAG.setRoot(StoreNode);
3935   setValue(&I, StoreNode);
3936 }
3937 
3938 // Get a uniform base for the Gather/Scatter intrinsic.
3939 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3940 // We try to represent it as a base pointer + vector of indices.
3941 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3942 // The first operand of the GEP may be a single pointer or a vector of pointers
3943 // Example:
3944 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3945 //  or
3946 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3947 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3948 //
3949 // When the first GEP operand is a single pointer - it is the uniform base we
3950 // are looking for. If first operand of the GEP is a splat vector - we
3951 // extract the splat value and use it as a uniform base.
3952 // In all other cases the function returns 'false'.
3953 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3954                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3955   SelectionDAG& DAG = SDB->DAG;
3956   LLVMContext &Context = *DAG.getContext();
3957 
3958   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3959   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3960   if (!GEP)
3961     return false;
3962 
3963   const Value *GEPPtr = GEP->getPointerOperand();
3964   if (!GEPPtr->getType()->isVectorTy())
3965     Ptr = GEPPtr;
3966   else if (!(Ptr = getSplatValue(GEPPtr)))
3967     return false;
3968 
3969   unsigned FinalIndex = GEP->getNumOperands() - 1;
3970   Value *IndexVal = GEP->getOperand(FinalIndex);
3971 
3972   // Ensure all the other indices are 0.
3973   for (unsigned i = 1; i < FinalIndex; ++i) {
3974     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3975     if (!C || !C->isZero())
3976       return false;
3977   }
3978 
3979   // The operands of the GEP may be defined in another basic block.
3980   // In this case we'll not find nodes for the operands.
3981   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3982     return false;
3983 
3984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3985   const DataLayout &DL = DAG.getDataLayout();
3986   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3987                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3988   Base = SDB->getValue(Ptr);
3989   Index = SDB->getValue(IndexVal);
3990 
3991   if (!Index.getValueType().isVector()) {
3992     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3993     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3994     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3995   }
3996   return true;
3997 }
3998 
3999 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4000   SDLoc sdl = getCurSDLoc();
4001 
4002   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4003   const Value *Ptr = I.getArgOperand(1);
4004   SDValue Src0 = getValue(I.getArgOperand(0));
4005   SDValue Mask = getValue(I.getArgOperand(3));
4006   EVT VT = Src0.getValueType();
4007   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4008   if (!Alignment)
4009     Alignment = DAG.getEVTAlignment(VT);
4010   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4011 
4012   AAMDNodes AAInfo;
4013   I.getAAMetadata(AAInfo);
4014 
4015   SDValue Base;
4016   SDValue Index;
4017   SDValue Scale;
4018   const Value *BasePtr = Ptr;
4019   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4020 
4021   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4022   MachineMemOperand *MMO = DAG.getMachineFunction().
4023     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4024                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4025                          Alignment, AAInfo);
4026   if (!UniformBase) {
4027     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4028     Index = getValue(Ptr);
4029     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4030   }
4031   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4032   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4033                                          Ops, MMO);
4034   DAG.setRoot(Scatter);
4035   setValue(&I, Scatter);
4036 }
4037 
4038 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4039   SDLoc sdl = getCurSDLoc();
4040 
4041   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4042                            unsigned& Alignment) {
4043     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4044     Ptr = I.getArgOperand(0);
4045     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4046     Mask = I.getArgOperand(2);
4047     Src0 = I.getArgOperand(3);
4048   };
4049   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4050                            unsigned& Alignment) {
4051     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4052     Ptr = I.getArgOperand(0);
4053     Alignment = 0;
4054     Mask = I.getArgOperand(1);
4055     Src0 = I.getArgOperand(2);
4056   };
4057 
4058   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4059   unsigned Alignment;
4060   if (IsExpanding)
4061     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4062   else
4063     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4064 
4065   SDValue Ptr = getValue(PtrOperand);
4066   SDValue Src0 = getValue(Src0Operand);
4067   SDValue Mask = getValue(MaskOperand);
4068 
4069   EVT VT = Src0.getValueType();
4070   if (!Alignment)
4071     Alignment = DAG.getEVTAlignment(VT);
4072 
4073   AAMDNodes AAInfo;
4074   I.getAAMetadata(AAInfo);
4075   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4076 
4077   // Do not serialize masked loads of constant memory with anything.
4078   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4079       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4080   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4081 
4082   MachineMemOperand *MMO =
4083     DAG.getMachineFunction().
4084     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4085                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4086                           Alignment, AAInfo, Ranges);
4087 
4088   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4089                                    ISD::NON_EXTLOAD, IsExpanding);
4090   if (AddToChain)
4091     PendingLoads.push_back(Load.getValue(1));
4092   setValue(&I, Load);
4093 }
4094 
4095 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4096   SDLoc sdl = getCurSDLoc();
4097 
4098   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4099   const Value *Ptr = I.getArgOperand(0);
4100   SDValue Src0 = getValue(I.getArgOperand(3));
4101   SDValue Mask = getValue(I.getArgOperand(2));
4102 
4103   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4104   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4105   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4106   if (!Alignment)
4107     Alignment = DAG.getEVTAlignment(VT);
4108 
4109   AAMDNodes AAInfo;
4110   I.getAAMetadata(AAInfo);
4111   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4112 
4113   SDValue Root = DAG.getRoot();
4114   SDValue Base;
4115   SDValue Index;
4116   SDValue Scale;
4117   const Value *BasePtr = Ptr;
4118   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4119   bool ConstantMemory = false;
4120   if (UniformBase &&
4121       AA && AA->pointsToConstantMemory(MemoryLocation(
4122           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4123           AAInfo))) {
4124     // Do not serialize (non-volatile) loads of constant memory with anything.
4125     Root = DAG.getEntryNode();
4126     ConstantMemory = true;
4127   }
4128 
4129   MachineMemOperand *MMO =
4130     DAG.getMachineFunction().
4131     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4132                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4133                          Alignment, AAInfo, Ranges);
4134 
4135   if (!UniformBase) {
4136     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4137     Index = getValue(Ptr);
4138     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4139   }
4140   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4141   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4142                                        Ops, MMO);
4143 
4144   SDValue OutChain = Gather.getValue(1);
4145   if (!ConstantMemory)
4146     PendingLoads.push_back(OutChain);
4147   setValue(&I, Gather);
4148 }
4149 
4150 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4151   SDLoc dl = getCurSDLoc();
4152   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4153   AtomicOrdering FailureOrder = I.getFailureOrdering();
4154   SyncScope::ID SSID = I.getSyncScopeID();
4155 
4156   SDValue InChain = getRoot();
4157 
4158   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4159   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4160   SDValue L = DAG.getAtomicCmpSwap(
4161       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4162       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4163       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4164       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4165 
4166   SDValue OutChain = L.getValue(2);
4167 
4168   setValue(&I, L);
4169   DAG.setRoot(OutChain);
4170 }
4171 
4172 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4173   SDLoc dl = getCurSDLoc();
4174   ISD::NodeType NT;
4175   switch (I.getOperation()) {
4176   default: llvm_unreachable("Unknown atomicrmw operation");
4177   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4178   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4179   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4180   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4181   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4182   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4183   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4184   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4185   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4186   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4187   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4188   }
4189   AtomicOrdering Order = I.getOrdering();
4190   SyncScope::ID SSID = I.getSyncScopeID();
4191 
4192   SDValue InChain = getRoot();
4193 
4194   SDValue L =
4195     DAG.getAtomic(NT, dl,
4196                   getValue(I.getValOperand()).getSimpleValueType(),
4197                   InChain,
4198                   getValue(I.getPointerOperand()),
4199                   getValue(I.getValOperand()),
4200                   I.getPointerOperand(),
4201                   /* Alignment=*/ 0, Order, SSID);
4202 
4203   SDValue OutChain = L.getValue(1);
4204 
4205   setValue(&I, L);
4206   DAG.setRoot(OutChain);
4207 }
4208 
4209 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4210   SDLoc dl = getCurSDLoc();
4211   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4212   SDValue Ops[3];
4213   Ops[0] = getRoot();
4214   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4215                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4216   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4217                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4218   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4219 }
4220 
4221 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4222   SDLoc dl = getCurSDLoc();
4223   AtomicOrdering Order = I.getOrdering();
4224   SyncScope::ID SSID = I.getSyncScopeID();
4225 
4226   SDValue InChain = getRoot();
4227 
4228   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4229   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4230 
4231   if (!TLI.supportsUnalignedAtomics() &&
4232       I.getAlignment() < VT.getStoreSize())
4233     report_fatal_error("Cannot generate unaligned atomic load");
4234 
4235   MachineMemOperand *MMO =
4236       DAG.getMachineFunction().
4237       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4238                            MachineMemOperand::MOVolatile |
4239                            MachineMemOperand::MOLoad,
4240                            VT.getStoreSize(),
4241                            I.getAlignment() ? I.getAlignment() :
4242                                               DAG.getEVTAlignment(VT),
4243                            AAMDNodes(), nullptr, SSID, Order);
4244 
4245   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4246   SDValue L =
4247       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4248                     getValue(I.getPointerOperand()), MMO);
4249 
4250   SDValue OutChain = L.getValue(1);
4251 
4252   setValue(&I, L);
4253   DAG.setRoot(OutChain);
4254 }
4255 
4256 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4257   SDLoc dl = getCurSDLoc();
4258 
4259   AtomicOrdering Order = I.getOrdering();
4260   SyncScope::ID SSID = I.getSyncScopeID();
4261 
4262   SDValue InChain = getRoot();
4263 
4264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4265   EVT VT =
4266       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4267 
4268   if (I.getAlignment() < VT.getStoreSize())
4269     report_fatal_error("Cannot generate unaligned atomic store");
4270 
4271   SDValue OutChain =
4272     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4273                   InChain,
4274                   getValue(I.getPointerOperand()),
4275                   getValue(I.getValueOperand()),
4276                   I.getPointerOperand(), I.getAlignment(),
4277                   Order, SSID);
4278 
4279   DAG.setRoot(OutChain);
4280 }
4281 
4282 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4283 /// node.
4284 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4285                                                unsigned Intrinsic) {
4286   // Ignore the callsite's attributes. A specific call site may be marked with
4287   // readnone, but the lowering code will expect the chain based on the
4288   // definition.
4289   const Function *F = I.getCalledFunction();
4290   bool HasChain = !F->doesNotAccessMemory();
4291   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4292 
4293   // Build the operand list.
4294   SmallVector<SDValue, 8> Ops;
4295   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4296     if (OnlyLoad) {
4297       // We don't need to serialize loads against other loads.
4298       Ops.push_back(DAG.getRoot());
4299     } else {
4300       Ops.push_back(getRoot());
4301     }
4302   }
4303 
4304   // Info is set by getTgtMemInstrinsic
4305   TargetLowering::IntrinsicInfo Info;
4306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4307   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4308                                                DAG.getMachineFunction(),
4309                                                Intrinsic);
4310 
4311   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4312   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4313       Info.opc == ISD::INTRINSIC_W_CHAIN)
4314     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4315                                         TLI.getPointerTy(DAG.getDataLayout())));
4316 
4317   // Add all operands of the call to the operand list.
4318   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4319     SDValue Op = getValue(I.getArgOperand(i));
4320     Ops.push_back(Op);
4321   }
4322 
4323   SmallVector<EVT, 4> ValueVTs;
4324   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4325 
4326   if (HasChain)
4327     ValueVTs.push_back(MVT::Other);
4328 
4329   SDVTList VTs = DAG.getVTList(ValueVTs);
4330 
4331   // Create the node.
4332   SDValue Result;
4333   if (IsTgtIntrinsic) {
4334     // This is target intrinsic that touches memory
4335     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4336       Ops, Info.memVT,
4337       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4338       Info.flags, Info.size);
4339   } else if (!HasChain) {
4340     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4341   } else if (!I.getType()->isVoidTy()) {
4342     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4343   } else {
4344     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4345   }
4346 
4347   if (HasChain) {
4348     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4349     if (OnlyLoad)
4350       PendingLoads.push_back(Chain);
4351     else
4352       DAG.setRoot(Chain);
4353   }
4354 
4355   if (!I.getType()->isVoidTy()) {
4356     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4357       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4358       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4359     } else
4360       Result = lowerRangeToAssertZExt(DAG, I, Result);
4361 
4362     setValue(&I, Result);
4363   }
4364 }
4365 
4366 /// GetSignificand - Get the significand and build it into a floating-point
4367 /// number with exponent of 1:
4368 ///
4369 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4370 ///
4371 /// where Op is the hexadecimal representation of floating point value.
4372 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4373   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4374                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4375   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4376                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4377   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4378 }
4379 
4380 /// GetExponent - Get the exponent:
4381 ///
4382 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4383 ///
4384 /// where Op is the hexadecimal representation of floating point value.
4385 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4386                            const TargetLowering &TLI, const SDLoc &dl) {
4387   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4388                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4389   SDValue t1 = DAG.getNode(
4390       ISD::SRL, dl, MVT::i32, t0,
4391       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4392   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4393                            DAG.getConstant(127, dl, MVT::i32));
4394   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4395 }
4396 
4397 /// getF32Constant - Get 32-bit floating point constant.
4398 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4399                               const SDLoc &dl) {
4400   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4401                            MVT::f32);
4402 }
4403 
4404 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4405                                        SelectionDAG &DAG) {
4406   // TODO: What fast-math-flags should be set on the floating-point nodes?
4407 
4408   //   IntegerPartOfX = ((int32_t)(t0);
4409   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4410 
4411   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4412   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4413   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4414 
4415   //   IntegerPartOfX <<= 23;
4416   IntegerPartOfX = DAG.getNode(
4417       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4418       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4419                                   DAG.getDataLayout())));
4420 
4421   SDValue TwoToFractionalPartOfX;
4422   if (LimitFloatPrecision <= 6) {
4423     // For floating-point precision of 6:
4424     //
4425     //   TwoToFractionalPartOfX =
4426     //     0.997535578f +
4427     //       (0.735607626f + 0.252464424f * x) * x;
4428     //
4429     // error 0.0144103317, which is 6 bits
4430     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4431                              getF32Constant(DAG, 0x3e814304, dl));
4432     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4433                              getF32Constant(DAG, 0x3f3c50c8, dl));
4434     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4435     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4436                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4437   } else if (LimitFloatPrecision <= 12) {
4438     // For floating-point precision of 12:
4439     //
4440     //   TwoToFractionalPartOfX =
4441     //     0.999892986f +
4442     //       (0.696457318f +
4443     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4444     //
4445     // error 0.000107046256, which is 13 to 14 bits
4446     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4447                              getF32Constant(DAG, 0x3da235e3, dl));
4448     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4449                              getF32Constant(DAG, 0x3e65b8f3, dl));
4450     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4451     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4452                              getF32Constant(DAG, 0x3f324b07, dl));
4453     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4454     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4455                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4456   } else { // LimitFloatPrecision <= 18
4457     // For floating-point precision of 18:
4458     //
4459     //   TwoToFractionalPartOfX =
4460     //     0.999999982f +
4461     //       (0.693148872f +
4462     //         (0.240227044f +
4463     //           (0.554906021e-1f +
4464     //             (0.961591928e-2f +
4465     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4466     // error 2.47208000*10^(-7), which is better than 18 bits
4467     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4468                              getF32Constant(DAG, 0x3924b03e, dl));
4469     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4470                              getF32Constant(DAG, 0x3ab24b87, dl));
4471     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4472     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4473                              getF32Constant(DAG, 0x3c1d8c17, dl));
4474     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4475     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4476                              getF32Constant(DAG, 0x3d634a1d, dl));
4477     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4478     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4479                              getF32Constant(DAG, 0x3e75fe14, dl));
4480     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4481     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4482                               getF32Constant(DAG, 0x3f317234, dl));
4483     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4484     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4485                                          getF32Constant(DAG, 0x3f800000, dl));
4486   }
4487 
4488   // Add the exponent into the result in integer domain.
4489   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4490   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4491                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4492 }
4493 
4494 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4495 /// limited-precision mode.
4496 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4497                          const TargetLowering &TLI) {
4498   if (Op.getValueType() == MVT::f32 &&
4499       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4500 
4501     // Put the exponent in the right bit position for later addition to the
4502     // final result:
4503     //
4504     //   #define LOG2OFe 1.4426950f
4505     //   t0 = Op * LOG2OFe
4506 
4507     // TODO: What fast-math-flags should be set here?
4508     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4509                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4510     return getLimitedPrecisionExp2(t0, dl, DAG);
4511   }
4512 
4513   // No special expansion.
4514   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4515 }
4516 
4517 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4518 /// limited-precision mode.
4519 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4520                          const TargetLowering &TLI) {
4521   // TODO: What fast-math-flags should be set on the floating-point nodes?
4522 
4523   if (Op.getValueType() == MVT::f32 &&
4524       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4525     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4526 
4527     // Scale the exponent by log(2) [0.69314718f].
4528     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4529     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4530                                         getF32Constant(DAG, 0x3f317218, dl));
4531 
4532     // Get the significand and build it into a floating-point number with
4533     // exponent of 1.
4534     SDValue X = GetSignificand(DAG, Op1, dl);
4535 
4536     SDValue LogOfMantissa;
4537     if (LimitFloatPrecision <= 6) {
4538       // For floating-point precision of 6:
4539       //
4540       //   LogofMantissa =
4541       //     -1.1609546f +
4542       //       (1.4034025f - 0.23903021f * x) * x;
4543       //
4544       // error 0.0034276066, which is better than 8 bits
4545       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4546                                getF32Constant(DAG, 0xbe74c456, dl));
4547       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4548                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4549       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4550       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4551                                   getF32Constant(DAG, 0x3f949a29, dl));
4552     } else if (LimitFloatPrecision <= 12) {
4553       // For floating-point precision of 12:
4554       //
4555       //   LogOfMantissa =
4556       //     -1.7417939f +
4557       //       (2.8212026f +
4558       //         (-1.4699568f +
4559       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4560       //
4561       // error 0.000061011436, which is 14 bits
4562       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4563                                getF32Constant(DAG, 0xbd67b6d6, dl));
4564       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4565                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4566       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4567       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4568                                getF32Constant(DAG, 0x3fbc278b, dl));
4569       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4570       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4571                                getF32Constant(DAG, 0x40348e95, dl));
4572       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4573       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4574                                   getF32Constant(DAG, 0x3fdef31a, dl));
4575     } else { // LimitFloatPrecision <= 18
4576       // For floating-point precision of 18:
4577       //
4578       //   LogOfMantissa =
4579       //     -2.1072184f +
4580       //       (4.2372794f +
4581       //         (-3.7029485f +
4582       //           (2.2781945f +
4583       //             (-0.87823314f +
4584       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4585       //
4586       // error 0.0000023660568, which is better than 18 bits
4587       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4588                                getF32Constant(DAG, 0xbc91e5ac, dl));
4589       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4590                                getF32Constant(DAG, 0x3e4350aa, dl));
4591       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4592       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4593                                getF32Constant(DAG, 0x3f60d3e3, dl));
4594       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4595       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4596                                getF32Constant(DAG, 0x4011cdf0, dl));
4597       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4598       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4599                                getF32Constant(DAG, 0x406cfd1c, dl));
4600       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4601       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4602                                getF32Constant(DAG, 0x408797cb, dl));
4603       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4604       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4605                                   getF32Constant(DAG, 0x4006dcab, dl));
4606     }
4607 
4608     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4609   }
4610 
4611   // No special expansion.
4612   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4613 }
4614 
4615 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4616 /// limited-precision mode.
4617 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4618                           const TargetLowering &TLI) {
4619   // TODO: What fast-math-flags should be set on the floating-point nodes?
4620 
4621   if (Op.getValueType() == MVT::f32 &&
4622       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4623     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4624 
4625     // Get the exponent.
4626     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4627 
4628     // Get the significand and build it into a floating-point number with
4629     // exponent of 1.
4630     SDValue X = GetSignificand(DAG, Op1, dl);
4631 
4632     // Different possible minimax approximations of significand in
4633     // floating-point for various degrees of accuracy over [1,2].
4634     SDValue Log2ofMantissa;
4635     if (LimitFloatPrecision <= 6) {
4636       // For floating-point precision of 6:
4637       //
4638       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4639       //
4640       // error 0.0049451742, which is more than 7 bits
4641       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4642                                getF32Constant(DAG, 0xbeb08fe0, dl));
4643       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4644                                getF32Constant(DAG, 0x40019463, dl));
4645       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4646       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4647                                    getF32Constant(DAG, 0x3fd6633d, dl));
4648     } else if (LimitFloatPrecision <= 12) {
4649       // For floating-point precision of 12:
4650       //
4651       //   Log2ofMantissa =
4652       //     -2.51285454f +
4653       //       (4.07009056f +
4654       //         (-2.12067489f +
4655       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4656       //
4657       // error 0.0000876136000, which is better than 13 bits
4658       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4659                                getF32Constant(DAG, 0xbda7262e, dl));
4660       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4661                                getF32Constant(DAG, 0x3f25280b, dl));
4662       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4663       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4664                                getF32Constant(DAG, 0x4007b923, dl));
4665       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4666       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4667                                getF32Constant(DAG, 0x40823e2f, dl));
4668       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4669       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4670                                    getF32Constant(DAG, 0x4020d29c, dl));
4671     } else { // LimitFloatPrecision <= 18
4672       // For floating-point precision of 18:
4673       //
4674       //   Log2ofMantissa =
4675       //     -3.0400495f +
4676       //       (6.1129976f +
4677       //         (-5.3420409f +
4678       //           (3.2865683f +
4679       //             (-1.2669343f +
4680       //               (0.27515199f -
4681       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4682       //
4683       // error 0.0000018516, which is better than 18 bits
4684       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4685                                getF32Constant(DAG, 0xbcd2769e, dl));
4686       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4687                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4688       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4689       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4690                                getF32Constant(DAG, 0x3fa22ae7, dl));
4691       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4692       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4693                                getF32Constant(DAG, 0x40525723, dl));
4694       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4695       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4696                                getF32Constant(DAG, 0x40aaf200, dl));
4697       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4698       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4699                                getF32Constant(DAG, 0x40c39dad, dl));
4700       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4701       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4702                                    getF32Constant(DAG, 0x4042902c, dl));
4703     }
4704 
4705     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4706   }
4707 
4708   // No special expansion.
4709   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4710 }
4711 
4712 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4713 /// limited-precision mode.
4714 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4715                            const TargetLowering &TLI) {
4716   // TODO: What fast-math-flags should be set on the floating-point nodes?
4717 
4718   if (Op.getValueType() == MVT::f32 &&
4719       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4720     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4721 
4722     // Scale the exponent by log10(2) [0.30102999f].
4723     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4724     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4725                                         getF32Constant(DAG, 0x3e9a209a, dl));
4726 
4727     // Get the significand and build it into a floating-point number with
4728     // exponent of 1.
4729     SDValue X = GetSignificand(DAG, Op1, dl);
4730 
4731     SDValue Log10ofMantissa;
4732     if (LimitFloatPrecision <= 6) {
4733       // For floating-point precision of 6:
4734       //
4735       //   Log10ofMantissa =
4736       //     -0.50419619f +
4737       //       (0.60948995f - 0.10380950f * x) * x;
4738       //
4739       // error 0.0014886165, which is 6 bits
4740       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4741                                getF32Constant(DAG, 0xbdd49a13, dl));
4742       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4743                                getF32Constant(DAG, 0x3f1c0789, dl));
4744       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4745       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4746                                     getF32Constant(DAG, 0x3f011300, dl));
4747     } else if (LimitFloatPrecision <= 12) {
4748       // For floating-point precision of 12:
4749       //
4750       //   Log10ofMantissa =
4751       //     -0.64831180f +
4752       //       (0.91751397f +
4753       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4754       //
4755       // error 0.00019228036, which is better than 12 bits
4756       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4757                                getF32Constant(DAG, 0x3d431f31, dl));
4758       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4759                                getF32Constant(DAG, 0x3ea21fb2, dl));
4760       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4761       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4762                                getF32Constant(DAG, 0x3f6ae232, dl));
4763       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4764       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4765                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4766     } else { // LimitFloatPrecision <= 18
4767       // For floating-point precision of 18:
4768       //
4769       //   Log10ofMantissa =
4770       //     -0.84299375f +
4771       //       (1.5327582f +
4772       //         (-1.0688956f +
4773       //           (0.49102474f +
4774       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4775       //
4776       // error 0.0000037995730, which is better than 18 bits
4777       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4778                                getF32Constant(DAG, 0x3c5d51ce, dl));
4779       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4780                                getF32Constant(DAG, 0x3e00685a, dl));
4781       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4782       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4783                                getF32Constant(DAG, 0x3efb6798, dl));
4784       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4785       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4786                                getF32Constant(DAG, 0x3f88d192, dl));
4787       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4788       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4789                                getF32Constant(DAG, 0x3fc4316c, dl));
4790       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4791       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4792                                     getF32Constant(DAG, 0x3f57ce70, dl));
4793     }
4794 
4795     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4796   }
4797 
4798   // No special expansion.
4799   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4800 }
4801 
4802 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4803 /// limited-precision mode.
4804 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4805                           const TargetLowering &TLI) {
4806   if (Op.getValueType() == MVT::f32 &&
4807       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4808     return getLimitedPrecisionExp2(Op, dl, DAG);
4809 
4810   // No special expansion.
4811   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4812 }
4813 
4814 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4815 /// limited-precision mode with x == 10.0f.
4816 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4817                          SelectionDAG &DAG, const TargetLowering &TLI) {
4818   bool IsExp10 = false;
4819   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4820       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4821     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4822       APFloat Ten(10.0f);
4823       IsExp10 = LHSC->isExactlyValue(Ten);
4824     }
4825   }
4826 
4827   // TODO: What fast-math-flags should be set on the FMUL node?
4828   if (IsExp10) {
4829     // Put the exponent in the right bit position for later addition to the
4830     // final result:
4831     //
4832     //   #define LOG2OF10 3.3219281f
4833     //   t0 = Op * LOG2OF10;
4834     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4835                              getF32Constant(DAG, 0x40549a78, dl));
4836     return getLimitedPrecisionExp2(t0, dl, DAG);
4837   }
4838 
4839   // No special expansion.
4840   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4841 }
4842 
4843 /// ExpandPowI - Expand a llvm.powi intrinsic.
4844 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4845                           SelectionDAG &DAG) {
4846   // If RHS is a constant, we can expand this out to a multiplication tree,
4847   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4848   // optimizing for size, we only want to do this if the expansion would produce
4849   // a small number of multiplies, otherwise we do the full expansion.
4850   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4851     // Get the exponent as a positive value.
4852     unsigned Val = RHSC->getSExtValue();
4853     if ((int)Val < 0) Val = -Val;
4854 
4855     // powi(x, 0) -> 1.0
4856     if (Val == 0)
4857       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4858 
4859     const Function &F = DAG.getMachineFunction().getFunction();
4860     if (!F.optForSize() ||
4861         // If optimizing for size, don't insert too many multiplies.
4862         // This inserts up to 5 multiplies.
4863         countPopulation(Val) + Log2_32(Val) < 7) {
4864       // We use the simple binary decomposition method to generate the multiply
4865       // sequence.  There are more optimal ways to do this (for example,
4866       // powi(x,15) generates one more multiply than it should), but this has
4867       // the benefit of being both really simple and much better than a libcall.
4868       SDValue Res;  // Logically starts equal to 1.0
4869       SDValue CurSquare = LHS;
4870       // TODO: Intrinsics should have fast-math-flags that propagate to these
4871       // nodes.
4872       while (Val) {
4873         if (Val & 1) {
4874           if (Res.getNode())
4875             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4876           else
4877             Res = CurSquare;  // 1.0*CurSquare.
4878         }
4879 
4880         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4881                                 CurSquare, CurSquare);
4882         Val >>= 1;
4883       }
4884 
4885       // If the original was negative, invert the result, producing 1/(x*x*x).
4886       if (RHSC->getSExtValue() < 0)
4887         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4888                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4889       return Res;
4890     }
4891   }
4892 
4893   // Otherwise, expand to a libcall.
4894   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4895 }
4896 
4897 // getUnderlyingArgReg - Find underlying register used for a truncated or
4898 // bitcasted argument.
4899 static unsigned getUnderlyingArgReg(const SDValue &N) {
4900   switch (N.getOpcode()) {
4901   case ISD::CopyFromReg:
4902     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4903   case ISD::BITCAST:
4904   case ISD::AssertZext:
4905   case ISD::AssertSext:
4906   case ISD::TRUNCATE:
4907     return getUnderlyingArgReg(N.getOperand(0));
4908   default:
4909     return 0;
4910   }
4911 }
4912 
4913 /// If the DbgValueInst is a dbg_value of a function argument, create the
4914 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4915 /// instruction selection, they will be inserted to the entry BB.
4916 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4917     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4918     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4919   const Argument *Arg = dyn_cast<Argument>(V);
4920   if (!Arg)
4921     return false;
4922 
4923   MachineFunction &MF = DAG.getMachineFunction();
4924   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4925 
4926   bool IsIndirect = false;
4927   Optional<MachineOperand> Op;
4928   // Some arguments' frame index is recorded during argument lowering.
4929   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4930   if (FI != std::numeric_limits<int>::max())
4931     Op = MachineOperand::CreateFI(FI);
4932 
4933   if (!Op && N.getNode()) {
4934     unsigned Reg = getUnderlyingArgReg(N);
4935     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4936       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4937       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4938       if (PR)
4939         Reg = PR;
4940     }
4941     if (Reg) {
4942       Op = MachineOperand::CreateReg(Reg, false);
4943       IsIndirect = IsDbgDeclare;
4944     }
4945   }
4946 
4947   if (!Op && N.getNode())
4948     // Check if frame index is available.
4949     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4950       if (FrameIndexSDNode *FINode =
4951           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4952         Op = MachineOperand::CreateFI(FINode->getIndex());
4953 
4954   if (!Op) {
4955     // Check if ValueMap has reg number.
4956     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4957     if (VMI != FuncInfo.ValueMap.end()) {
4958       const auto &TLI = DAG.getTargetLoweringInfo();
4959       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4960                        V->getType(), getABIRegCopyCC(V));
4961       if (RFV.occupiesMultipleRegs()) {
4962         unsigned Offset = 0;
4963         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4964           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4965           auto FragmentExpr = DIExpression::createFragmentExpression(
4966               Expr, Offset, RegAndSize.second);
4967           if (!FragmentExpr)
4968             continue;
4969           FuncInfo.ArgDbgValues.push_back(
4970               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4971                       Op->getReg(), Variable, *FragmentExpr));
4972           Offset += RegAndSize.second;
4973         }
4974         return true;
4975       }
4976       Op = MachineOperand::CreateReg(VMI->second, false);
4977       IsIndirect = IsDbgDeclare;
4978     }
4979   }
4980 
4981   if (!Op)
4982     return false;
4983 
4984   assert(Variable->isValidLocationForIntrinsic(DL) &&
4985          "Expected inlined-at fields to agree");
4986   IsIndirect = (Op->isReg()) ? IsIndirect : true;
4987   FuncInfo.ArgDbgValues.push_back(
4988       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4989               *Op, Variable, Expr));
4990 
4991   return true;
4992 }
4993 
4994 /// Return the appropriate SDDbgValue based on N.
4995 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4996                                              DILocalVariable *Variable,
4997                                              DIExpression *Expr,
4998                                              const DebugLoc &dl,
4999                                              unsigned DbgSDNodeOrder) {
5000   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5001     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5002     // stack slot locations.
5003     //
5004     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5005     // debug values here after optimization:
5006     //
5007     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5008     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5009     //
5010     // Both describe the direct values of their associated variables.
5011     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5012                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5013   }
5014   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5015                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5016 }
5017 
5018 // VisualStudio defines setjmp as _setjmp
5019 #if defined(_MSC_VER) && defined(setjmp) && \
5020                          !defined(setjmp_undefined_for_msvc)
5021 #  pragma push_macro("setjmp")
5022 #  undef setjmp
5023 #  define setjmp_undefined_for_msvc
5024 #endif
5025 
5026 /// Lower the call to the specified intrinsic function. If we want to emit this
5027 /// as a call to a named external function, return the name. Otherwise, lower it
5028 /// and return null.
5029 const char *
5030 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5032   SDLoc sdl = getCurSDLoc();
5033   DebugLoc dl = getCurDebugLoc();
5034   SDValue Res;
5035 
5036   switch (Intrinsic) {
5037   default:
5038     // By default, turn this into a target intrinsic node.
5039     visitTargetIntrinsic(I, Intrinsic);
5040     return nullptr;
5041   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5042   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5043   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5044   case Intrinsic::returnaddress:
5045     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5046                              TLI.getPointerTy(DAG.getDataLayout()),
5047                              getValue(I.getArgOperand(0))));
5048     return nullptr;
5049   case Intrinsic::addressofreturnaddress:
5050     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5051                              TLI.getPointerTy(DAG.getDataLayout())));
5052     return nullptr;
5053   case Intrinsic::sponentry:
5054     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5055                              TLI.getPointerTy(DAG.getDataLayout())));
5056     return nullptr;
5057   case Intrinsic::frameaddress:
5058     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5059                              TLI.getPointerTy(DAG.getDataLayout()),
5060                              getValue(I.getArgOperand(0))));
5061     return nullptr;
5062   case Intrinsic::read_register: {
5063     Value *Reg = I.getArgOperand(0);
5064     SDValue Chain = getRoot();
5065     SDValue RegName =
5066         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5067     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5068     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5069       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5070     setValue(&I, Res);
5071     DAG.setRoot(Res.getValue(1));
5072     return nullptr;
5073   }
5074   case Intrinsic::write_register: {
5075     Value *Reg = I.getArgOperand(0);
5076     Value *RegValue = I.getArgOperand(1);
5077     SDValue Chain = getRoot();
5078     SDValue RegName =
5079         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5080     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5081                             RegName, getValue(RegValue)));
5082     return nullptr;
5083   }
5084   case Intrinsic::setjmp:
5085     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5086   case Intrinsic::longjmp:
5087     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5088   case Intrinsic::memcpy: {
5089     const auto &MCI = cast<MemCpyInst>(I);
5090     SDValue Op1 = getValue(I.getArgOperand(0));
5091     SDValue Op2 = getValue(I.getArgOperand(1));
5092     SDValue Op3 = getValue(I.getArgOperand(2));
5093     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5094     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5095     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5096     unsigned Align = MinAlign(DstAlign, SrcAlign);
5097     bool isVol = MCI.isVolatile();
5098     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5099     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5100     // node.
5101     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5102                                false, isTC,
5103                                MachinePointerInfo(I.getArgOperand(0)),
5104                                MachinePointerInfo(I.getArgOperand(1)));
5105     updateDAGForMaybeTailCall(MC);
5106     return nullptr;
5107   }
5108   case Intrinsic::memset: {
5109     const auto &MSI = cast<MemSetInst>(I);
5110     SDValue Op1 = getValue(I.getArgOperand(0));
5111     SDValue Op2 = getValue(I.getArgOperand(1));
5112     SDValue Op3 = getValue(I.getArgOperand(2));
5113     // @llvm.memset defines 0 and 1 to both mean no alignment.
5114     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5115     bool isVol = MSI.isVolatile();
5116     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5117     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5118                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5119     updateDAGForMaybeTailCall(MS);
5120     return nullptr;
5121   }
5122   case Intrinsic::memmove: {
5123     const auto &MMI = cast<MemMoveInst>(I);
5124     SDValue Op1 = getValue(I.getArgOperand(0));
5125     SDValue Op2 = getValue(I.getArgOperand(1));
5126     SDValue Op3 = getValue(I.getArgOperand(2));
5127     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5128     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5129     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5130     unsigned Align = MinAlign(DstAlign, SrcAlign);
5131     bool isVol = MMI.isVolatile();
5132     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5133     // FIXME: Support passing different dest/src alignments to the memmove DAG
5134     // node.
5135     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5136                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5137                                 MachinePointerInfo(I.getArgOperand(1)));
5138     updateDAGForMaybeTailCall(MM);
5139     return nullptr;
5140   }
5141   case Intrinsic::memcpy_element_unordered_atomic: {
5142     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5143     SDValue Dst = getValue(MI.getRawDest());
5144     SDValue Src = getValue(MI.getRawSource());
5145     SDValue Length = getValue(MI.getLength());
5146 
5147     unsigned DstAlign = MI.getDestAlignment();
5148     unsigned SrcAlign = MI.getSourceAlignment();
5149     Type *LengthTy = MI.getLength()->getType();
5150     unsigned ElemSz = MI.getElementSizeInBytes();
5151     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5152     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5153                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5154                                      MachinePointerInfo(MI.getRawDest()),
5155                                      MachinePointerInfo(MI.getRawSource()));
5156     updateDAGForMaybeTailCall(MC);
5157     return nullptr;
5158   }
5159   case Intrinsic::memmove_element_unordered_atomic: {
5160     auto &MI = cast<AtomicMemMoveInst>(I);
5161     SDValue Dst = getValue(MI.getRawDest());
5162     SDValue Src = getValue(MI.getRawSource());
5163     SDValue Length = getValue(MI.getLength());
5164 
5165     unsigned DstAlign = MI.getDestAlignment();
5166     unsigned SrcAlign = MI.getSourceAlignment();
5167     Type *LengthTy = MI.getLength()->getType();
5168     unsigned ElemSz = MI.getElementSizeInBytes();
5169     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5170     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5171                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5172                                       MachinePointerInfo(MI.getRawDest()),
5173                                       MachinePointerInfo(MI.getRawSource()));
5174     updateDAGForMaybeTailCall(MC);
5175     return nullptr;
5176   }
5177   case Intrinsic::memset_element_unordered_atomic: {
5178     auto &MI = cast<AtomicMemSetInst>(I);
5179     SDValue Dst = getValue(MI.getRawDest());
5180     SDValue Val = getValue(MI.getValue());
5181     SDValue Length = getValue(MI.getLength());
5182 
5183     unsigned DstAlign = MI.getDestAlignment();
5184     Type *LengthTy = MI.getLength()->getType();
5185     unsigned ElemSz = MI.getElementSizeInBytes();
5186     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5187     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5188                                      LengthTy, ElemSz, isTC,
5189                                      MachinePointerInfo(MI.getRawDest()));
5190     updateDAGForMaybeTailCall(MC);
5191     return nullptr;
5192   }
5193   case Intrinsic::dbg_addr:
5194   case Intrinsic::dbg_declare: {
5195     const auto &DI = cast<DbgVariableIntrinsic>(I);
5196     DILocalVariable *Variable = DI.getVariable();
5197     DIExpression *Expression = DI.getExpression();
5198     dropDanglingDebugInfo(Variable, Expression);
5199     assert(Variable && "Missing variable");
5200 
5201     // Check if address has undef value.
5202     const Value *Address = DI.getVariableLocation();
5203     if (!Address || isa<UndefValue>(Address) ||
5204         (Address->use_empty() && !isa<Argument>(Address))) {
5205       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5206       return nullptr;
5207     }
5208 
5209     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5210 
5211     // Check if this variable can be described by a frame index, typically
5212     // either as a static alloca or a byval parameter.
5213     int FI = std::numeric_limits<int>::max();
5214     if (const auto *AI =
5215             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5216       if (AI->isStaticAlloca()) {
5217         auto I = FuncInfo.StaticAllocaMap.find(AI);
5218         if (I != FuncInfo.StaticAllocaMap.end())
5219           FI = I->second;
5220       }
5221     } else if (const auto *Arg = dyn_cast<Argument>(
5222                    Address->stripInBoundsConstantOffsets())) {
5223       FI = FuncInfo.getArgumentFrameIndex(Arg);
5224     }
5225 
5226     // llvm.dbg.addr is control dependent and always generates indirect
5227     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5228     // the MachineFunction variable table.
5229     if (FI != std::numeric_limits<int>::max()) {
5230       if (Intrinsic == Intrinsic::dbg_addr) {
5231         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5232             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5233         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5234       }
5235       return nullptr;
5236     }
5237 
5238     SDValue &N = NodeMap[Address];
5239     if (!N.getNode() && isa<Argument>(Address))
5240       // Check unused arguments map.
5241       N = UnusedArgNodeMap[Address];
5242     SDDbgValue *SDV;
5243     if (N.getNode()) {
5244       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5245         Address = BCI->getOperand(0);
5246       // Parameters are handled specially.
5247       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5248       if (isParameter && FINode) {
5249         // Byval parameter. We have a frame index at this point.
5250         SDV =
5251             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5252                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5253       } else if (isa<Argument>(Address)) {
5254         // Address is an argument, so try to emit its dbg value using
5255         // virtual register info from the FuncInfo.ValueMap.
5256         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5257         return nullptr;
5258       } else {
5259         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5260                               true, dl, SDNodeOrder);
5261       }
5262       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5263     } else {
5264       // If Address is an argument then try to emit its dbg value using
5265       // virtual register info from the FuncInfo.ValueMap.
5266       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5267                                     N)) {
5268         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5269       }
5270     }
5271     return nullptr;
5272   }
5273   case Intrinsic::dbg_label: {
5274     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5275     DILabel *Label = DI.getLabel();
5276     assert(Label && "Missing label");
5277 
5278     SDDbgLabel *SDV;
5279     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5280     DAG.AddDbgLabel(SDV);
5281     return nullptr;
5282   }
5283   case Intrinsic::dbg_value: {
5284     const DbgValueInst &DI = cast<DbgValueInst>(I);
5285     assert(DI.getVariable() && "Missing variable");
5286 
5287     DILocalVariable *Variable = DI.getVariable();
5288     DIExpression *Expression = DI.getExpression();
5289     dropDanglingDebugInfo(Variable, Expression);
5290     const Value *V = DI.getValue();
5291     if (!V)
5292       return nullptr;
5293 
5294     SDDbgValue *SDV;
5295     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5296       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5297       DAG.AddDbgValue(SDV, nullptr, false);
5298       return nullptr;
5299     }
5300 
5301     // Do not use getValue() in here; we don't want to generate code at
5302     // this point if it hasn't been done yet.
5303     SDValue N = NodeMap[V];
5304     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5305       N = UnusedArgNodeMap[V];
5306     if (N.getNode()) {
5307       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5308         return nullptr;
5309       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5310       DAG.AddDbgValue(SDV, N.getNode(), false);
5311       return nullptr;
5312     }
5313 
5314     // PHI nodes have already been selected, so we should know which VReg that
5315     // is assigns to already.
5316     if (isa<PHINode>(V)) {
5317       auto VMI = FuncInfo.ValueMap.find(V);
5318       if (VMI != FuncInfo.ValueMap.end()) {
5319         unsigned Reg = VMI->second;
5320         // The PHI node may be split up into several MI PHI nodes (in
5321         // FunctionLoweringInfo::set).
5322         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5323                          V->getType(), None);
5324         if (RFV.occupiesMultipleRegs()) {
5325           unsigned Offset = 0;
5326           unsigned BitsToDescribe = 0;
5327           if (auto VarSize = Variable->getSizeInBits())
5328             BitsToDescribe = *VarSize;
5329           if (auto Fragment = Expression->getFragmentInfo())
5330             BitsToDescribe = Fragment->SizeInBits;
5331           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5332             unsigned RegisterSize = RegAndSize.second;
5333             // Bail out if all bits are described already.
5334             if (Offset >= BitsToDescribe)
5335               break;
5336             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5337                 ? BitsToDescribe - Offset
5338                 : RegisterSize;
5339             auto FragmentExpr = DIExpression::createFragmentExpression(
5340                 Expression, Offset, FragmentSize);
5341             if (!FragmentExpr)
5342                 continue;
5343             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5344                                       false, dl, SDNodeOrder);
5345             DAG.AddDbgValue(SDV, nullptr, false);
5346             Offset += RegisterSize;
5347           }
5348         } else {
5349           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5350                                     SDNodeOrder);
5351           DAG.AddDbgValue(SDV, nullptr, false);
5352         }
5353         return nullptr;
5354       }
5355     }
5356 
5357     // TODO: When we get here we will either drop the dbg.value completely, or
5358     // we try to move it forward by letting it dangle for awhile. So we should
5359     // probably add an extra DbgValue to the DAG here, with a reference to
5360     // "noreg", to indicate that we have lost the debug location for the
5361     // variable.
5362 
5363     if (!V->use_empty() ) {
5364       // Do not call getValue(V) yet, as we don't want to generate code.
5365       // Remember it for later.
5366       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5367       return nullptr;
5368     }
5369 
5370     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5371     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5372     return nullptr;
5373   }
5374 
5375   case Intrinsic::eh_typeid_for: {
5376     // Find the type id for the given typeinfo.
5377     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5378     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5379     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5380     setValue(&I, Res);
5381     return nullptr;
5382   }
5383 
5384   case Intrinsic::eh_return_i32:
5385   case Intrinsic::eh_return_i64:
5386     DAG.getMachineFunction().setCallsEHReturn(true);
5387     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5388                             MVT::Other,
5389                             getControlRoot(),
5390                             getValue(I.getArgOperand(0)),
5391                             getValue(I.getArgOperand(1))));
5392     return nullptr;
5393   case Intrinsic::eh_unwind_init:
5394     DAG.getMachineFunction().setCallsUnwindInit(true);
5395     return nullptr;
5396   case Intrinsic::eh_dwarf_cfa:
5397     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5398                              TLI.getPointerTy(DAG.getDataLayout()),
5399                              getValue(I.getArgOperand(0))));
5400     return nullptr;
5401   case Intrinsic::eh_sjlj_callsite: {
5402     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5403     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5404     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5405     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5406 
5407     MMI.setCurrentCallSite(CI->getZExtValue());
5408     return nullptr;
5409   }
5410   case Intrinsic::eh_sjlj_functioncontext: {
5411     // Get and store the index of the function context.
5412     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5413     AllocaInst *FnCtx =
5414       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5415     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5416     MFI.setFunctionContextIndex(FI);
5417     return nullptr;
5418   }
5419   case Intrinsic::eh_sjlj_setjmp: {
5420     SDValue Ops[2];
5421     Ops[0] = getRoot();
5422     Ops[1] = getValue(I.getArgOperand(0));
5423     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5424                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5425     setValue(&I, Op.getValue(0));
5426     DAG.setRoot(Op.getValue(1));
5427     return nullptr;
5428   }
5429   case Intrinsic::eh_sjlj_longjmp:
5430     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5431                             getRoot(), getValue(I.getArgOperand(0))));
5432     return nullptr;
5433   case Intrinsic::eh_sjlj_setup_dispatch:
5434     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5435                             getRoot()));
5436     return nullptr;
5437   case Intrinsic::masked_gather:
5438     visitMaskedGather(I);
5439     return nullptr;
5440   case Intrinsic::masked_load:
5441     visitMaskedLoad(I);
5442     return nullptr;
5443   case Intrinsic::masked_scatter:
5444     visitMaskedScatter(I);
5445     return nullptr;
5446   case Intrinsic::masked_store:
5447     visitMaskedStore(I);
5448     return nullptr;
5449   case Intrinsic::masked_expandload:
5450     visitMaskedLoad(I, true /* IsExpanding */);
5451     return nullptr;
5452   case Intrinsic::masked_compressstore:
5453     visitMaskedStore(I, true /* IsCompressing */);
5454     return nullptr;
5455   case Intrinsic::x86_mmx_pslli_w:
5456   case Intrinsic::x86_mmx_pslli_d:
5457   case Intrinsic::x86_mmx_pslli_q:
5458   case Intrinsic::x86_mmx_psrli_w:
5459   case Intrinsic::x86_mmx_psrli_d:
5460   case Intrinsic::x86_mmx_psrli_q:
5461   case Intrinsic::x86_mmx_psrai_w:
5462   case Intrinsic::x86_mmx_psrai_d: {
5463     SDValue ShAmt = getValue(I.getArgOperand(1));
5464     if (isa<ConstantSDNode>(ShAmt)) {
5465       visitTargetIntrinsic(I, Intrinsic);
5466       return nullptr;
5467     }
5468     unsigned NewIntrinsic = 0;
5469     EVT ShAmtVT = MVT::v2i32;
5470     switch (Intrinsic) {
5471     case Intrinsic::x86_mmx_pslli_w:
5472       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5473       break;
5474     case Intrinsic::x86_mmx_pslli_d:
5475       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5476       break;
5477     case Intrinsic::x86_mmx_pslli_q:
5478       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5479       break;
5480     case Intrinsic::x86_mmx_psrli_w:
5481       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5482       break;
5483     case Intrinsic::x86_mmx_psrli_d:
5484       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5485       break;
5486     case Intrinsic::x86_mmx_psrli_q:
5487       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5488       break;
5489     case Intrinsic::x86_mmx_psrai_w:
5490       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5491       break;
5492     case Intrinsic::x86_mmx_psrai_d:
5493       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5494       break;
5495     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5496     }
5497 
5498     // The vector shift intrinsics with scalars uses 32b shift amounts but
5499     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5500     // to be zero.
5501     // We must do this early because v2i32 is not a legal type.
5502     SDValue ShOps[2];
5503     ShOps[0] = ShAmt;
5504     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5505     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5506     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5507     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5508     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5509                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5510                        getValue(I.getArgOperand(0)), ShAmt);
5511     setValue(&I, Res);
5512     return nullptr;
5513   }
5514   case Intrinsic::powi:
5515     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5516                             getValue(I.getArgOperand(1)), DAG));
5517     return nullptr;
5518   case Intrinsic::log:
5519     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5520     return nullptr;
5521   case Intrinsic::log2:
5522     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5523     return nullptr;
5524   case Intrinsic::log10:
5525     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5526     return nullptr;
5527   case Intrinsic::exp:
5528     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5529     return nullptr;
5530   case Intrinsic::exp2:
5531     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5532     return nullptr;
5533   case Intrinsic::pow:
5534     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5535                            getValue(I.getArgOperand(1)), DAG, TLI));
5536     return nullptr;
5537   case Intrinsic::sqrt:
5538   case Intrinsic::fabs:
5539   case Intrinsic::sin:
5540   case Intrinsic::cos:
5541   case Intrinsic::floor:
5542   case Intrinsic::ceil:
5543   case Intrinsic::trunc:
5544   case Intrinsic::rint:
5545   case Intrinsic::nearbyint:
5546   case Intrinsic::round:
5547   case Intrinsic::canonicalize: {
5548     unsigned Opcode;
5549     switch (Intrinsic) {
5550     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5551     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5552     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5553     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5554     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5555     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5556     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5557     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5558     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5559     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5560     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5561     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5562     }
5563 
5564     setValue(&I, DAG.getNode(Opcode, sdl,
5565                              getValue(I.getArgOperand(0)).getValueType(),
5566                              getValue(I.getArgOperand(0))));
5567     return nullptr;
5568   }
5569   case Intrinsic::minnum: {
5570     auto VT = getValue(I.getArgOperand(0)).getValueType();
5571     unsigned Opc =
5572         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5573             ? ISD::FMINIMUM
5574             : ISD::FMINNUM;
5575     setValue(&I, DAG.getNode(Opc, sdl, VT,
5576                              getValue(I.getArgOperand(0)),
5577                              getValue(I.getArgOperand(1))));
5578     return nullptr;
5579   }
5580   case Intrinsic::maxnum: {
5581     auto VT = getValue(I.getArgOperand(0)).getValueType();
5582     unsigned Opc =
5583         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5584             ? ISD::FMAXIMUM
5585             : ISD::FMAXNUM;
5586     setValue(&I, DAG.getNode(Opc, sdl, VT,
5587                              getValue(I.getArgOperand(0)),
5588                              getValue(I.getArgOperand(1))));
5589     return nullptr;
5590   }
5591   case Intrinsic::minimum:
5592     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5593                              getValue(I.getArgOperand(0)).getValueType(),
5594                              getValue(I.getArgOperand(0)),
5595                              getValue(I.getArgOperand(1))));
5596     return nullptr;
5597   case Intrinsic::maximum:
5598     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5599                              getValue(I.getArgOperand(0)).getValueType(),
5600                              getValue(I.getArgOperand(0)),
5601                              getValue(I.getArgOperand(1))));
5602     return nullptr;
5603   case Intrinsic::copysign:
5604     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5605                              getValue(I.getArgOperand(0)).getValueType(),
5606                              getValue(I.getArgOperand(0)),
5607                              getValue(I.getArgOperand(1))));
5608     return nullptr;
5609   case Intrinsic::fma:
5610     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5611                              getValue(I.getArgOperand(0)).getValueType(),
5612                              getValue(I.getArgOperand(0)),
5613                              getValue(I.getArgOperand(1)),
5614                              getValue(I.getArgOperand(2))));
5615     return nullptr;
5616   case Intrinsic::experimental_constrained_fadd:
5617   case Intrinsic::experimental_constrained_fsub:
5618   case Intrinsic::experimental_constrained_fmul:
5619   case Intrinsic::experimental_constrained_fdiv:
5620   case Intrinsic::experimental_constrained_frem:
5621   case Intrinsic::experimental_constrained_fma:
5622   case Intrinsic::experimental_constrained_sqrt:
5623   case Intrinsic::experimental_constrained_pow:
5624   case Intrinsic::experimental_constrained_powi:
5625   case Intrinsic::experimental_constrained_sin:
5626   case Intrinsic::experimental_constrained_cos:
5627   case Intrinsic::experimental_constrained_exp:
5628   case Intrinsic::experimental_constrained_exp2:
5629   case Intrinsic::experimental_constrained_log:
5630   case Intrinsic::experimental_constrained_log10:
5631   case Intrinsic::experimental_constrained_log2:
5632   case Intrinsic::experimental_constrained_rint:
5633   case Intrinsic::experimental_constrained_nearbyint:
5634   case Intrinsic::experimental_constrained_maxnum:
5635   case Intrinsic::experimental_constrained_minnum:
5636   case Intrinsic::experimental_constrained_ceil:
5637   case Intrinsic::experimental_constrained_floor:
5638   case Intrinsic::experimental_constrained_round:
5639   case Intrinsic::experimental_constrained_trunc:
5640     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5641     return nullptr;
5642   case Intrinsic::fmuladd: {
5643     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5644     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5645         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5646       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5647                                getValue(I.getArgOperand(0)).getValueType(),
5648                                getValue(I.getArgOperand(0)),
5649                                getValue(I.getArgOperand(1)),
5650                                getValue(I.getArgOperand(2))));
5651     } else {
5652       // TODO: Intrinsic calls should have fast-math-flags.
5653       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5654                                 getValue(I.getArgOperand(0)).getValueType(),
5655                                 getValue(I.getArgOperand(0)),
5656                                 getValue(I.getArgOperand(1)));
5657       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5658                                 getValue(I.getArgOperand(0)).getValueType(),
5659                                 Mul,
5660                                 getValue(I.getArgOperand(2)));
5661       setValue(&I, Add);
5662     }
5663     return nullptr;
5664   }
5665   case Intrinsic::convert_to_fp16:
5666     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5667                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5668                                          getValue(I.getArgOperand(0)),
5669                                          DAG.getTargetConstant(0, sdl,
5670                                                                MVT::i32))));
5671     return nullptr;
5672   case Intrinsic::convert_from_fp16:
5673     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5674                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5675                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5676                                          getValue(I.getArgOperand(0)))));
5677     return nullptr;
5678   case Intrinsic::pcmarker: {
5679     SDValue Tmp = getValue(I.getArgOperand(0));
5680     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5681     return nullptr;
5682   }
5683   case Intrinsic::readcyclecounter: {
5684     SDValue Op = getRoot();
5685     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5686                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5687     setValue(&I, Res);
5688     DAG.setRoot(Res.getValue(1));
5689     return nullptr;
5690   }
5691   case Intrinsic::bitreverse:
5692     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5693                              getValue(I.getArgOperand(0)).getValueType(),
5694                              getValue(I.getArgOperand(0))));
5695     return nullptr;
5696   case Intrinsic::bswap:
5697     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5698                              getValue(I.getArgOperand(0)).getValueType(),
5699                              getValue(I.getArgOperand(0))));
5700     return nullptr;
5701   case Intrinsic::cttz: {
5702     SDValue Arg = getValue(I.getArgOperand(0));
5703     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5704     EVT Ty = Arg.getValueType();
5705     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5706                              sdl, Ty, Arg));
5707     return nullptr;
5708   }
5709   case Intrinsic::ctlz: {
5710     SDValue Arg = getValue(I.getArgOperand(0));
5711     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5712     EVT Ty = Arg.getValueType();
5713     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5714                              sdl, Ty, Arg));
5715     return nullptr;
5716   }
5717   case Intrinsic::ctpop: {
5718     SDValue Arg = getValue(I.getArgOperand(0));
5719     EVT Ty = Arg.getValueType();
5720     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5721     return nullptr;
5722   }
5723   case Intrinsic::fshl:
5724   case Intrinsic::fshr: {
5725     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5726     SDValue X = getValue(I.getArgOperand(0));
5727     SDValue Y = getValue(I.getArgOperand(1));
5728     SDValue Z = getValue(I.getArgOperand(2));
5729     EVT VT = X.getValueType();
5730     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5731     SDValue Zero = DAG.getConstant(0, sdl, VT);
5732     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5733 
5734     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5735     // avoid the select that is necessary in the general case to filter out
5736     // the 0-shift possibility that leads to UB.
5737     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5738       // TODO: This should also be done if the operation is custom, but we have
5739       // to make sure targets are handling the modulo shift amount as expected.
5740       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5741       if (TLI.isOperationLegal(RotateOpcode, VT)) {
5742         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5743         return nullptr;
5744       }
5745 
5746       // Some targets only rotate one way. Try the opposite direction.
5747       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5748       if (TLI.isOperationLegal(RotateOpcode, VT)) {
5749         // Negate the shift amount because it is safe to ignore the high bits.
5750         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5751         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5752         return nullptr;
5753       }
5754 
5755       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5756       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5757       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5758       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5759       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5760       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5761       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5762       return nullptr;
5763     }
5764 
5765     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5766     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5767     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5768     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5769     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5770     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5771 
5772     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5773     // and that is undefined. We must compare and select to avoid UB.
5774     EVT CCVT = MVT::i1;
5775     if (VT.isVector())
5776       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5777 
5778     // For fshl, 0-shift returns the 1st arg (X).
5779     // For fshr, 0-shift returns the 2nd arg (Y).
5780     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5781     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5782     return nullptr;
5783   }
5784   case Intrinsic::sadd_sat: {
5785     SDValue Op1 = getValue(I.getArgOperand(0));
5786     SDValue Op2 = getValue(I.getArgOperand(1));
5787     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5788     return nullptr;
5789   }
5790   case Intrinsic::uadd_sat: {
5791     SDValue Op1 = getValue(I.getArgOperand(0));
5792     SDValue Op2 = getValue(I.getArgOperand(1));
5793     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5794     return nullptr;
5795   }
5796   case Intrinsic::ssub_sat: {
5797     SDValue Op1 = getValue(I.getArgOperand(0));
5798     SDValue Op2 = getValue(I.getArgOperand(1));
5799     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5800     return nullptr;
5801   }
5802   case Intrinsic::usub_sat: {
5803     SDValue Op1 = getValue(I.getArgOperand(0));
5804     SDValue Op2 = getValue(I.getArgOperand(1));
5805     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5806     return nullptr;
5807   }
5808   case Intrinsic::stacksave: {
5809     SDValue Op = getRoot();
5810     Res = DAG.getNode(
5811         ISD::STACKSAVE, sdl,
5812         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5813     setValue(&I, Res);
5814     DAG.setRoot(Res.getValue(1));
5815     return nullptr;
5816   }
5817   case Intrinsic::stackrestore:
5818     Res = getValue(I.getArgOperand(0));
5819     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5820     return nullptr;
5821   case Intrinsic::get_dynamic_area_offset: {
5822     SDValue Op = getRoot();
5823     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5824     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5825     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5826     // target.
5827     if (PtrTy != ResTy)
5828       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5829                          " intrinsic!");
5830     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5831                       Op);
5832     DAG.setRoot(Op);
5833     setValue(&I, Res);
5834     return nullptr;
5835   }
5836   case Intrinsic::stackguard: {
5837     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5838     MachineFunction &MF = DAG.getMachineFunction();
5839     const Module &M = *MF.getFunction().getParent();
5840     SDValue Chain = getRoot();
5841     if (TLI.useLoadStackGuardNode()) {
5842       Res = getLoadStackGuard(DAG, sdl, Chain);
5843     } else {
5844       const Value *Global = TLI.getSDagStackGuard(M);
5845       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5846       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5847                         MachinePointerInfo(Global, 0), Align,
5848                         MachineMemOperand::MOVolatile);
5849     }
5850     if (TLI.useStackGuardXorFP())
5851       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5852     DAG.setRoot(Chain);
5853     setValue(&I, Res);
5854     return nullptr;
5855   }
5856   case Intrinsic::stackprotector: {
5857     // Emit code into the DAG to store the stack guard onto the stack.
5858     MachineFunction &MF = DAG.getMachineFunction();
5859     MachineFrameInfo &MFI = MF.getFrameInfo();
5860     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5861     SDValue Src, Chain = getRoot();
5862 
5863     if (TLI.useLoadStackGuardNode())
5864       Src = getLoadStackGuard(DAG, sdl, Chain);
5865     else
5866       Src = getValue(I.getArgOperand(0));   // The guard's value.
5867 
5868     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5869 
5870     int FI = FuncInfo.StaticAllocaMap[Slot];
5871     MFI.setStackProtectorIndex(FI);
5872 
5873     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5874 
5875     // Store the stack protector onto the stack.
5876     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5877                                                  DAG.getMachineFunction(), FI),
5878                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5879     setValue(&I, Res);
5880     DAG.setRoot(Res);
5881     return nullptr;
5882   }
5883   case Intrinsic::objectsize: {
5884     // If we don't know by now, we're never going to know.
5885     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5886 
5887     assert(CI && "Non-constant type in __builtin_object_size?");
5888 
5889     SDValue Arg = getValue(I.getCalledValue());
5890     EVT Ty = Arg.getValueType();
5891 
5892     if (CI->isZero())
5893       Res = DAG.getConstant(-1ULL, sdl, Ty);
5894     else
5895       Res = DAG.getConstant(0, sdl, Ty);
5896 
5897     setValue(&I, Res);
5898     return nullptr;
5899   }
5900 
5901   case Intrinsic::is_constant:
5902     // If this wasn't constant-folded away by now, then it's not a
5903     // constant.
5904     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
5905     return nullptr;
5906 
5907   case Intrinsic::annotation:
5908   case Intrinsic::ptr_annotation:
5909   case Intrinsic::launder_invariant_group:
5910   case Intrinsic::strip_invariant_group:
5911     // Drop the intrinsic, but forward the value
5912     setValue(&I, getValue(I.getOperand(0)));
5913     return nullptr;
5914   case Intrinsic::assume:
5915   case Intrinsic::var_annotation:
5916   case Intrinsic::sideeffect:
5917     // Discard annotate attributes, assumptions, and artificial side-effects.
5918     return nullptr;
5919 
5920   case Intrinsic::codeview_annotation: {
5921     // Emit a label associated with this metadata.
5922     MachineFunction &MF = DAG.getMachineFunction();
5923     MCSymbol *Label =
5924         MF.getMMI().getContext().createTempSymbol("annotation", true);
5925     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5926     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5927     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5928     DAG.setRoot(Res);
5929     return nullptr;
5930   }
5931 
5932   case Intrinsic::init_trampoline: {
5933     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5934 
5935     SDValue Ops[6];
5936     Ops[0] = getRoot();
5937     Ops[1] = getValue(I.getArgOperand(0));
5938     Ops[2] = getValue(I.getArgOperand(1));
5939     Ops[3] = getValue(I.getArgOperand(2));
5940     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5941     Ops[5] = DAG.getSrcValue(F);
5942 
5943     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5944 
5945     DAG.setRoot(Res);
5946     return nullptr;
5947   }
5948   case Intrinsic::adjust_trampoline:
5949     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5950                              TLI.getPointerTy(DAG.getDataLayout()),
5951                              getValue(I.getArgOperand(0))));
5952     return nullptr;
5953   case Intrinsic::gcroot: {
5954     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5955            "only valid in functions with gc specified, enforced by Verifier");
5956     assert(GFI && "implied by previous");
5957     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5958     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5959 
5960     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5961     GFI->addStackRoot(FI->getIndex(), TypeMap);
5962     return nullptr;
5963   }
5964   case Intrinsic::gcread:
5965   case Intrinsic::gcwrite:
5966     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5967   case Intrinsic::flt_rounds:
5968     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5969     return nullptr;
5970 
5971   case Intrinsic::expect:
5972     // Just replace __builtin_expect(exp, c) with EXP.
5973     setValue(&I, getValue(I.getArgOperand(0)));
5974     return nullptr;
5975 
5976   case Intrinsic::debugtrap:
5977   case Intrinsic::trap: {
5978     StringRef TrapFuncName =
5979         I.getAttributes()
5980             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5981             .getValueAsString();
5982     if (TrapFuncName.empty()) {
5983       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5984         ISD::TRAP : ISD::DEBUGTRAP;
5985       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5986       return nullptr;
5987     }
5988     TargetLowering::ArgListTy Args;
5989 
5990     TargetLowering::CallLoweringInfo CLI(DAG);
5991     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5992         CallingConv::C, I.getType(),
5993         DAG.getExternalSymbol(TrapFuncName.data(),
5994                               TLI.getPointerTy(DAG.getDataLayout())),
5995         std::move(Args));
5996 
5997     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5998     DAG.setRoot(Result.second);
5999     return nullptr;
6000   }
6001 
6002   case Intrinsic::uadd_with_overflow:
6003   case Intrinsic::sadd_with_overflow:
6004   case Intrinsic::usub_with_overflow:
6005   case Intrinsic::ssub_with_overflow:
6006   case Intrinsic::umul_with_overflow:
6007   case Intrinsic::smul_with_overflow: {
6008     ISD::NodeType Op;
6009     switch (Intrinsic) {
6010     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6011     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6012     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6013     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6014     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6015     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6016     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6017     }
6018     SDValue Op1 = getValue(I.getArgOperand(0));
6019     SDValue Op2 = getValue(I.getArgOperand(1));
6020 
6021     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
6022     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6023     return nullptr;
6024   }
6025   case Intrinsic::prefetch: {
6026     SDValue Ops[5];
6027     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6028     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6029     Ops[0] = DAG.getRoot();
6030     Ops[1] = getValue(I.getArgOperand(0));
6031     Ops[2] = getValue(I.getArgOperand(1));
6032     Ops[3] = getValue(I.getArgOperand(2));
6033     Ops[4] = getValue(I.getArgOperand(3));
6034     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6035                                              DAG.getVTList(MVT::Other), Ops,
6036                                              EVT::getIntegerVT(*Context, 8),
6037                                              MachinePointerInfo(I.getArgOperand(0)),
6038                                              0, /* align */
6039                                              Flags);
6040 
6041     // Chain the prefetch in parallell with any pending loads, to stay out of
6042     // the way of later optimizations.
6043     PendingLoads.push_back(Result);
6044     Result = getRoot();
6045     DAG.setRoot(Result);
6046     return nullptr;
6047   }
6048   case Intrinsic::lifetime_start:
6049   case Intrinsic::lifetime_end: {
6050     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6051     // Stack coloring is not enabled in O0, discard region information.
6052     if (TM.getOptLevel() == CodeGenOpt::None)
6053       return nullptr;
6054 
6055     SmallVector<Value *, 4> Allocas;
6056     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
6057 
6058     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6059            E = Allocas.end(); Object != E; ++Object) {
6060       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6061 
6062       // Could not find an Alloca.
6063       if (!LifetimeObject)
6064         continue;
6065 
6066       // First check that the Alloca is static, otherwise it won't have a
6067       // valid frame index.
6068       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6069       if (SI == FuncInfo.StaticAllocaMap.end())
6070         return nullptr;
6071 
6072       int FI = SI->second;
6073 
6074       SDValue Ops[2];
6075       Ops[0] = getRoot();
6076       Ops[1] =
6077           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6078       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6079 
6080       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6081       DAG.setRoot(Res);
6082     }
6083     return nullptr;
6084   }
6085   case Intrinsic::invariant_start:
6086     // Discard region information.
6087     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6088     return nullptr;
6089   case Intrinsic::invariant_end:
6090     // Discard region information.
6091     return nullptr;
6092   case Intrinsic::clear_cache:
6093     return TLI.getClearCacheBuiltinName();
6094   case Intrinsic::donothing:
6095     // ignore
6096     return nullptr;
6097   case Intrinsic::experimental_stackmap:
6098     visitStackmap(I);
6099     return nullptr;
6100   case Intrinsic::experimental_patchpoint_void:
6101   case Intrinsic::experimental_patchpoint_i64:
6102     visitPatchpoint(&I);
6103     return nullptr;
6104   case Intrinsic::experimental_gc_statepoint:
6105     LowerStatepoint(ImmutableStatepoint(&I));
6106     return nullptr;
6107   case Intrinsic::experimental_gc_result:
6108     visitGCResult(cast<GCResultInst>(I));
6109     return nullptr;
6110   case Intrinsic::experimental_gc_relocate:
6111     visitGCRelocate(cast<GCRelocateInst>(I));
6112     return nullptr;
6113   case Intrinsic::instrprof_increment:
6114     llvm_unreachable("instrprof failed to lower an increment");
6115   case Intrinsic::instrprof_value_profile:
6116     llvm_unreachable("instrprof failed to lower a value profiling call");
6117   case Intrinsic::localescape: {
6118     MachineFunction &MF = DAG.getMachineFunction();
6119     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6120 
6121     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6122     // is the same on all targets.
6123     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6124       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6125       if (isa<ConstantPointerNull>(Arg))
6126         continue; // Skip null pointers. They represent a hole in index space.
6127       AllocaInst *Slot = cast<AllocaInst>(Arg);
6128       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6129              "can only escape static allocas");
6130       int FI = FuncInfo.StaticAllocaMap[Slot];
6131       MCSymbol *FrameAllocSym =
6132           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6133               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6134       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6135               TII->get(TargetOpcode::LOCAL_ESCAPE))
6136           .addSym(FrameAllocSym)
6137           .addFrameIndex(FI);
6138     }
6139 
6140     return nullptr;
6141   }
6142 
6143   case Intrinsic::localrecover: {
6144     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6145     MachineFunction &MF = DAG.getMachineFunction();
6146     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6147 
6148     // Get the symbol that defines the frame offset.
6149     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6150     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6151     unsigned IdxVal =
6152         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6153     MCSymbol *FrameAllocSym =
6154         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6155             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6156 
6157     // Create a MCSymbol for the label to avoid any target lowering
6158     // that would make this PC relative.
6159     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6160     SDValue OffsetVal =
6161         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6162 
6163     // Add the offset to the FP.
6164     Value *FP = I.getArgOperand(1);
6165     SDValue FPVal = getValue(FP);
6166     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6167     setValue(&I, Add);
6168 
6169     return nullptr;
6170   }
6171 
6172   case Intrinsic::eh_exceptionpointer:
6173   case Intrinsic::eh_exceptioncode: {
6174     // Get the exception pointer vreg, copy from it, and resize it to fit.
6175     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6176     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6177     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6178     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6179     SDValue N =
6180         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6181     if (Intrinsic == Intrinsic::eh_exceptioncode)
6182       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6183     setValue(&I, N);
6184     return nullptr;
6185   }
6186   case Intrinsic::xray_customevent: {
6187     // Here we want to make sure that the intrinsic behaves as if it has a
6188     // specific calling convention, and only for x86_64.
6189     // FIXME: Support other platforms later.
6190     const auto &Triple = DAG.getTarget().getTargetTriple();
6191     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6192       return nullptr;
6193 
6194     SDLoc DL = getCurSDLoc();
6195     SmallVector<SDValue, 8> Ops;
6196 
6197     // We want to say that we always want the arguments in registers.
6198     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6199     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6200     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6201     SDValue Chain = getRoot();
6202     Ops.push_back(LogEntryVal);
6203     Ops.push_back(StrSizeVal);
6204     Ops.push_back(Chain);
6205 
6206     // We need to enforce the calling convention for the callsite, so that
6207     // argument ordering is enforced correctly, and that register allocation can
6208     // see that some registers may be assumed clobbered and have to preserve
6209     // them across calls to the intrinsic.
6210     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6211                                            DL, NodeTys, Ops);
6212     SDValue patchableNode = SDValue(MN, 0);
6213     DAG.setRoot(patchableNode);
6214     setValue(&I, patchableNode);
6215     return nullptr;
6216   }
6217   case Intrinsic::xray_typedevent: {
6218     // Here we want to make sure that the intrinsic behaves as if it has a
6219     // specific calling convention, and only for x86_64.
6220     // FIXME: Support other platforms later.
6221     const auto &Triple = DAG.getTarget().getTargetTriple();
6222     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6223       return nullptr;
6224 
6225     SDLoc DL = getCurSDLoc();
6226     SmallVector<SDValue, 8> Ops;
6227 
6228     // We want to say that we always want the arguments in registers.
6229     // It's unclear to me how manipulating the selection DAG here forces callers
6230     // to provide arguments in registers instead of on the stack.
6231     SDValue LogTypeId = getValue(I.getArgOperand(0));
6232     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6233     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6234     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6235     SDValue Chain = getRoot();
6236     Ops.push_back(LogTypeId);
6237     Ops.push_back(LogEntryVal);
6238     Ops.push_back(StrSizeVal);
6239     Ops.push_back(Chain);
6240 
6241     // We need to enforce the calling convention for the callsite, so that
6242     // argument ordering is enforced correctly, and that register allocation can
6243     // see that some registers may be assumed clobbered and have to preserve
6244     // them across calls to the intrinsic.
6245     MachineSDNode *MN = DAG.getMachineNode(
6246         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6247     SDValue patchableNode = SDValue(MN, 0);
6248     DAG.setRoot(patchableNode);
6249     setValue(&I, patchableNode);
6250     return nullptr;
6251   }
6252   case Intrinsic::experimental_deoptimize:
6253     LowerDeoptimizeCall(&I);
6254     return nullptr;
6255 
6256   case Intrinsic::experimental_vector_reduce_fadd:
6257   case Intrinsic::experimental_vector_reduce_fmul:
6258   case Intrinsic::experimental_vector_reduce_add:
6259   case Intrinsic::experimental_vector_reduce_mul:
6260   case Intrinsic::experimental_vector_reduce_and:
6261   case Intrinsic::experimental_vector_reduce_or:
6262   case Intrinsic::experimental_vector_reduce_xor:
6263   case Intrinsic::experimental_vector_reduce_smax:
6264   case Intrinsic::experimental_vector_reduce_smin:
6265   case Intrinsic::experimental_vector_reduce_umax:
6266   case Intrinsic::experimental_vector_reduce_umin:
6267   case Intrinsic::experimental_vector_reduce_fmax:
6268   case Intrinsic::experimental_vector_reduce_fmin:
6269     visitVectorReduce(I, Intrinsic);
6270     return nullptr;
6271 
6272   case Intrinsic::icall_branch_funnel: {
6273     SmallVector<SDValue, 16> Ops;
6274     Ops.push_back(DAG.getRoot());
6275     Ops.push_back(getValue(I.getArgOperand(0)));
6276 
6277     int64_t Offset;
6278     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6279         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6280     if (!Base)
6281       report_fatal_error(
6282           "llvm.icall.branch.funnel operand must be a GlobalValue");
6283     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6284 
6285     struct BranchFunnelTarget {
6286       int64_t Offset;
6287       SDValue Target;
6288     };
6289     SmallVector<BranchFunnelTarget, 8> Targets;
6290 
6291     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6292       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6293           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6294       if (ElemBase != Base)
6295         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6296                            "to the same GlobalValue");
6297 
6298       SDValue Val = getValue(I.getArgOperand(Op + 1));
6299       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6300       if (!GA)
6301         report_fatal_error(
6302             "llvm.icall.branch.funnel operand must be a GlobalValue");
6303       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6304                                      GA->getGlobal(), getCurSDLoc(),
6305                                      Val.getValueType(), GA->getOffset())});
6306     }
6307     llvm::sort(Targets,
6308                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6309                  return T1.Offset < T2.Offset;
6310                });
6311 
6312     for (auto &T : Targets) {
6313       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6314       Ops.push_back(T.Target);
6315     }
6316 
6317     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6318                                  getCurSDLoc(), MVT::Other, Ops),
6319               0);
6320     DAG.setRoot(N);
6321     setValue(&I, N);
6322     HasTailCall = true;
6323     return nullptr;
6324   }
6325 
6326   case Intrinsic::wasm_landingpad_index:
6327     // Information this intrinsic contained has been transferred to
6328     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6329     // delete it now.
6330     return nullptr;
6331   }
6332 }
6333 
6334 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6335     const ConstrainedFPIntrinsic &FPI) {
6336   SDLoc sdl = getCurSDLoc();
6337   unsigned Opcode;
6338   switch (FPI.getIntrinsicID()) {
6339   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6340   case Intrinsic::experimental_constrained_fadd:
6341     Opcode = ISD::STRICT_FADD;
6342     break;
6343   case Intrinsic::experimental_constrained_fsub:
6344     Opcode = ISD::STRICT_FSUB;
6345     break;
6346   case Intrinsic::experimental_constrained_fmul:
6347     Opcode = ISD::STRICT_FMUL;
6348     break;
6349   case Intrinsic::experimental_constrained_fdiv:
6350     Opcode = ISD::STRICT_FDIV;
6351     break;
6352   case Intrinsic::experimental_constrained_frem:
6353     Opcode = ISD::STRICT_FREM;
6354     break;
6355   case Intrinsic::experimental_constrained_fma:
6356     Opcode = ISD::STRICT_FMA;
6357     break;
6358   case Intrinsic::experimental_constrained_sqrt:
6359     Opcode = ISD::STRICT_FSQRT;
6360     break;
6361   case Intrinsic::experimental_constrained_pow:
6362     Opcode = ISD::STRICT_FPOW;
6363     break;
6364   case Intrinsic::experimental_constrained_powi:
6365     Opcode = ISD::STRICT_FPOWI;
6366     break;
6367   case Intrinsic::experimental_constrained_sin:
6368     Opcode = ISD::STRICT_FSIN;
6369     break;
6370   case Intrinsic::experimental_constrained_cos:
6371     Opcode = ISD::STRICT_FCOS;
6372     break;
6373   case Intrinsic::experimental_constrained_exp:
6374     Opcode = ISD::STRICT_FEXP;
6375     break;
6376   case Intrinsic::experimental_constrained_exp2:
6377     Opcode = ISD::STRICT_FEXP2;
6378     break;
6379   case Intrinsic::experimental_constrained_log:
6380     Opcode = ISD::STRICT_FLOG;
6381     break;
6382   case Intrinsic::experimental_constrained_log10:
6383     Opcode = ISD::STRICT_FLOG10;
6384     break;
6385   case Intrinsic::experimental_constrained_log2:
6386     Opcode = ISD::STRICT_FLOG2;
6387     break;
6388   case Intrinsic::experimental_constrained_rint:
6389     Opcode = ISD::STRICT_FRINT;
6390     break;
6391   case Intrinsic::experimental_constrained_nearbyint:
6392     Opcode = ISD::STRICT_FNEARBYINT;
6393     break;
6394   case Intrinsic::experimental_constrained_maxnum:
6395     Opcode = ISD::STRICT_FMAXNUM;
6396     break;
6397   case Intrinsic::experimental_constrained_minnum:
6398     Opcode = ISD::STRICT_FMINNUM;
6399     break;
6400   case Intrinsic::experimental_constrained_ceil:
6401     Opcode = ISD::STRICT_FCEIL;
6402     break;
6403   case Intrinsic::experimental_constrained_floor:
6404     Opcode = ISD::STRICT_FFLOOR;
6405     break;
6406   case Intrinsic::experimental_constrained_round:
6407     Opcode = ISD::STRICT_FROUND;
6408     break;
6409   case Intrinsic::experimental_constrained_trunc:
6410     Opcode = ISD::STRICT_FTRUNC;
6411     break;
6412   }
6413   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6414   SDValue Chain = getRoot();
6415   SmallVector<EVT, 4> ValueVTs;
6416   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6417   ValueVTs.push_back(MVT::Other); // Out chain
6418 
6419   SDVTList VTs = DAG.getVTList(ValueVTs);
6420   SDValue Result;
6421   if (FPI.isUnaryOp())
6422     Result = DAG.getNode(Opcode, sdl, VTs,
6423                          { Chain, getValue(FPI.getArgOperand(0)) });
6424   else if (FPI.isTernaryOp())
6425     Result = DAG.getNode(Opcode, sdl, VTs,
6426                          { Chain, getValue(FPI.getArgOperand(0)),
6427                                   getValue(FPI.getArgOperand(1)),
6428                                   getValue(FPI.getArgOperand(2)) });
6429   else
6430     Result = DAG.getNode(Opcode, sdl, VTs,
6431                          { Chain, getValue(FPI.getArgOperand(0)),
6432                            getValue(FPI.getArgOperand(1))  });
6433 
6434   assert(Result.getNode()->getNumValues() == 2);
6435   SDValue OutChain = Result.getValue(1);
6436   DAG.setRoot(OutChain);
6437   SDValue FPResult = Result.getValue(0);
6438   setValue(&FPI, FPResult);
6439 }
6440 
6441 std::pair<SDValue, SDValue>
6442 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6443                                     const BasicBlock *EHPadBB) {
6444   MachineFunction &MF = DAG.getMachineFunction();
6445   MachineModuleInfo &MMI = MF.getMMI();
6446   MCSymbol *BeginLabel = nullptr;
6447 
6448   if (EHPadBB) {
6449     // Insert a label before the invoke call to mark the try range.  This can be
6450     // used to detect deletion of the invoke via the MachineModuleInfo.
6451     BeginLabel = MMI.getContext().createTempSymbol();
6452 
6453     // For SjLj, keep track of which landing pads go with which invokes
6454     // so as to maintain the ordering of pads in the LSDA.
6455     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6456     if (CallSiteIndex) {
6457       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6458       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6459 
6460       // Now that the call site is handled, stop tracking it.
6461       MMI.setCurrentCallSite(0);
6462     }
6463 
6464     // Both PendingLoads and PendingExports must be flushed here;
6465     // this call might not return.
6466     (void)getRoot();
6467     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6468 
6469     CLI.setChain(getRoot());
6470   }
6471   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6472   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6473 
6474   assert((CLI.IsTailCall || Result.second.getNode()) &&
6475          "Non-null chain expected with non-tail call!");
6476   assert((Result.second.getNode() || !Result.first.getNode()) &&
6477          "Null value expected with tail call!");
6478 
6479   if (!Result.second.getNode()) {
6480     // As a special case, a null chain means that a tail call has been emitted
6481     // and the DAG root is already updated.
6482     HasTailCall = true;
6483 
6484     // Since there's no actual continuation from this block, nothing can be
6485     // relying on us setting vregs for them.
6486     PendingExports.clear();
6487   } else {
6488     DAG.setRoot(Result.second);
6489   }
6490 
6491   if (EHPadBB) {
6492     // Insert a label at the end of the invoke call to mark the try range.  This
6493     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6494     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6495     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6496 
6497     // Inform MachineModuleInfo of range.
6498     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6499     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6500     // actually use outlined funclets and their LSDA info style.
6501     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6502       assert(CLI.CS);
6503       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6504       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6505                                 BeginLabel, EndLabel);
6506     } else if (!isScopedEHPersonality(Pers)) {
6507       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6508     }
6509   }
6510 
6511   return Result;
6512 }
6513 
6514 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6515                                       bool isTailCall,
6516                                       const BasicBlock *EHPadBB) {
6517   auto &DL = DAG.getDataLayout();
6518   FunctionType *FTy = CS.getFunctionType();
6519   Type *RetTy = CS.getType();
6520 
6521   TargetLowering::ArgListTy Args;
6522   Args.reserve(CS.arg_size());
6523 
6524   const Value *SwiftErrorVal = nullptr;
6525   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6526 
6527   // We can't tail call inside a function with a swifterror argument. Lowering
6528   // does not support this yet. It would have to move into the swifterror
6529   // register before the call.
6530   auto *Caller = CS.getInstruction()->getParent()->getParent();
6531   if (TLI.supportSwiftError() &&
6532       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6533     isTailCall = false;
6534 
6535   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6536        i != e; ++i) {
6537     TargetLowering::ArgListEntry Entry;
6538     const Value *V = *i;
6539 
6540     // Skip empty types
6541     if (V->getType()->isEmptyTy())
6542       continue;
6543 
6544     SDValue ArgNode = getValue(V);
6545     Entry.Node = ArgNode; Entry.Ty = V->getType();
6546 
6547     Entry.setAttributes(&CS, i - CS.arg_begin());
6548 
6549     // Use swifterror virtual register as input to the call.
6550     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6551       SwiftErrorVal = V;
6552       // We find the virtual register for the actual swifterror argument.
6553       // Instead of using the Value, we use the virtual register instead.
6554       Entry.Node = DAG.getRegister(FuncInfo
6555                                        .getOrCreateSwiftErrorVRegUseAt(
6556                                            CS.getInstruction(), FuncInfo.MBB, V)
6557                                        .first,
6558                                    EVT(TLI.getPointerTy(DL)));
6559     }
6560 
6561     Args.push_back(Entry);
6562 
6563     // If we have an explicit sret argument that is an Instruction, (i.e., it
6564     // might point to function-local memory), we can't meaningfully tail-call.
6565     if (Entry.IsSRet && isa<Instruction>(V))
6566       isTailCall = false;
6567   }
6568 
6569   // Check if target-independent constraints permit a tail call here.
6570   // Target-dependent constraints are checked within TLI->LowerCallTo.
6571   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6572     isTailCall = false;
6573 
6574   // Disable tail calls if there is an swifterror argument. Targets have not
6575   // been updated to support tail calls.
6576   if (TLI.supportSwiftError() && SwiftErrorVal)
6577     isTailCall = false;
6578 
6579   TargetLowering::CallLoweringInfo CLI(DAG);
6580   CLI.setDebugLoc(getCurSDLoc())
6581       .setChain(getRoot())
6582       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6583       .setTailCall(isTailCall)
6584       .setConvergent(CS.isConvergent());
6585   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6586 
6587   if (Result.first.getNode()) {
6588     const Instruction *Inst = CS.getInstruction();
6589     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6590     setValue(Inst, Result.first);
6591   }
6592 
6593   // The last element of CLI.InVals has the SDValue for swifterror return.
6594   // Here we copy it to a virtual register and update SwiftErrorMap for
6595   // book-keeping.
6596   if (SwiftErrorVal && TLI.supportSwiftError()) {
6597     // Get the last element of InVals.
6598     SDValue Src = CLI.InVals.back();
6599     unsigned VReg; bool CreatedVReg;
6600     std::tie(VReg, CreatedVReg) =
6601         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6602     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6603     // We update the virtual register for the actual swifterror argument.
6604     if (CreatedVReg)
6605       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6606     DAG.setRoot(CopyNode);
6607   }
6608 }
6609 
6610 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6611                              SelectionDAGBuilder &Builder) {
6612   // Check to see if this load can be trivially constant folded, e.g. if the
6613   // input is from a string literal.
6614   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6615     // Cast pointer to the type we really want to load.
6616     Type *LoadTy =
6617         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6618     if (LoadVT.isVector())
6619       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6620 
6621     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6622                                          PointerType::getUnqual(LoadTy));
6623 
6624     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6625             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6626       return Builder.getValue(LoadCst);
6627   }
6628 
6629   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6630   // still constant memory, the input chain can be the entry node.
6631   SDValue Root;
6632   bool ConstantMemory = false;
6633 
6634   // Do not serialize (non-volatile) loads of constant memory with anything.
6635   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6636     Root = Builder.DAG.getEntryNode();
6637     ConstantMemory = true;
6638   } else {
6639     // Do not serialize non-volatile loads against each other.
6640     Root = Builder.DAG.getRoot();
6641   }
6642 
6643   SDValue Ptr = Builder.getValue(PtrVal);
6644   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6645                                         Ptr, MachinePointerInfo(PtrVal),
6646                                         /* Alignment = */ 1);
6647 
6648   if (!ConstantMemory)
6649     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6650   return LoadVal;
6651 }
6652 
6653 /// Record the value for an instruction that produces an integer result,
6654 /// converting the type where necessary.
6655 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6656                                                   SDValue Value,
6657                                                   bool IsSigned) {
6658   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6659                                                     I.getType(), true);
6660   if (IsSigned)
6661     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6662   else
6663     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6664   setValue(&I, Value);
6665 }
6666 
6667 /// See if we can lower a memcmp call into an optimized form. If so, return
6668 /// true and lower it. Otherwise return false, and it will be lowered like a
6669 /// normal call.
6670 /// The caller already checked that \p I calls the appropriate LibFunc with a
6671 /// correct prototype.
6672 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6673   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6674   const Value *Size = I.getArgOperand(2);
6675   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6676   if (CSize && CSize->getZExtValue() == 0) {
6677     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6678                                                           I.getType(), true);
6679     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6680     return true;
6681   }
6682 
6683   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6684   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6685       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6686       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6687   if (Res.first.getNode()) {
6688     processIntegerCallValue(I, Res.first, true);
6689     PendingLoads.push_back(Res.second);
6690     return true;
6691   }
6692 
6693   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6694   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6695   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6696     return false;
6697 
6698   // If the target has a fast compare for the given size, it will return a
6699   // preferred load type for that size. Require that the load VT is legal and
6700   // that the target supports unaligned loads of that type. Otherwise, return
6701   // INVALID.
6702   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6703     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6704     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6705     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6706       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6707       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6708       // TODO: Check alignment of src and dest ptrs.
6709       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6710       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6711       if (!TLI.isTypeLegal(LVT) ||
6712           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6713           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6714         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6715     }
6716 
6717     return LVT;
6718   };
6719 
6720   // This turns into unaligned loads. We only do this if the target natively
6721   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6722   // we'll only produce a small number of byte loads.
6723   MVT LoadVT;
6724   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6725   switch (NumBitsToCompare) {
6726   default:
6727     return false;
6728   case 16:
6729     LoadVT = MVT::i16;
6730     break;
6731   case 32:
6732     LoadVT = MVT::i32;
6733     break;
6734   case 64:
6735   case 128:
6736   case 256:
6737     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6738     break;
6739   }
6740 
6741   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6742     return false;
6743 
6744   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6745   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6746 
6747   // Bitcast to a wide integer type if the loads are vectors.
6748   if (LoadVT.isVector()) {
6749     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6750     LoadL = DAG.getBitcast(CmpVT, LoadL);
6751     LoadR = DAG.getBitcast(CmpVT, LoadR);
6752   }
6753 
6754   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6755   processIntegerCallValue(I, Cmp, false);
6756   return true;
6757 }
6758 
6759 /// See if we can lower a memchr call into an optimized form. If so, return
6760 /// true and lower it. Otherwise return false, and it will be lowered like a
6761 /// normal call.
6762 /// The caller already checked that \p I calls the appropriate LibFunc with a
6763 /// correct prototype.
6764 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6765   const Value *Src = I.getArgOperand(0);
6766   const Value *Char = I.getArgOperand(1);
6767   const Value *Length = I.getArgOperand(2);
6768 
6769   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6770   std::pair<SDValue, SDValue> Res =
6771     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6772                                 getValue(Src), getValue(Char), getValue(Length),
6773                                 MachinePointerInfo(Src));
6774   if (Res.first.getNode()) {
6775     setValue(&I, Res.first);
6776     PendingLoads.push_back(Res.second);
6777     return true;
6778   }
6779 
6780   return false;
6781 }
6782 
6783 /// See if we can lower a mempcpy call into an optimized form. If so, return
6784 /// true and lower it. Otherwise return false, and it will be lowered like a
6785 /// normal call.
6786 /// The caller already checked that \p I calls the appropriate LibFunc with a
6787 /// correct prototype.
6788 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6789   SDValue Dst = getValue(I.getArgOperand(0));
6790   SDValue Src = getValue(I.getArgOperand(1));
6791   SDValue Size = getValue(I.getArgOperand(2));
6792 
6793   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6794   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6795   unsigned Align = std::min(DstAlign, SrcAlign);
6796   if (Align == 0) // Alignment of one or both could not be inferred.
6797     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6798 
6799   bool isVol = false;
6800   SDLoc sdl = getCurSDLoc();
6801 
6802   // In the mempcpy context we need to pass in a false value for isTailCall
6803   // because the return pointer needs to be adjusted by the size of
6804   // the copied memory.
6805   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6806                              false, /*isTailCall=*/false,
6807                              MachinePointerInfo(I.getArgOperand(0)),
6808                              MachinePointerInfo(I.getArgOperand(1)));
6809   assert(MC.getNode() != nullptr &&
6810          "** memcpy should not be lowered as TailCall in mempcpy context **");
6811   DAG.setRoot(MC);
6812 
6813   // Check if Size needs to be truncated or extended.
6814   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6815 
6816   // Adjust return pointer to point just past the last dst byte.
6817   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6818                                     Dst, Size);
6819   setValue(&I, DstPlusSize);
6820   return true;
6821 }
6822 
6823 /// See if we can lower a strcpy call into an optimized form.  If so, return
6824 /// true and lower it, otherwise return false and it will be lowered like a
6825 /// normal call.
6826 /// The caller already checked that \p I calls the appropriate LibFunc with a
6827 /// correct prototype.
6828 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6829   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6830 
6831   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6832   std::pair<SDValue, SDValue> Res =
6833     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6834                                 getValue(Arg0), getValue(Arg1),
6835                                 MachinePointerInfo(Arg0),
6836                                 MachinePointerInfo(Arg1), isStpcpy);
6837   if (Res.first.getNode()) {
6838     setValue(&I, Res.first);
6839     DAG.setRoot(Res.second);
6840     return true;
6841   }
6842 
6843   return false;
6844 }
6845 
6846 /// See if we can lower a strcmp call into an optimized form.  If so, return
6847 /// true and lower it, otherwise return false and it will be lowered like a
6848 /// normal call.
6849 /// The caller already checked that \p I calls the appropriate LibFunc with a
6850 /// correct prototype.
6851 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6852   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6853 
6854   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6855   std::pair<SDValue, SDValue> Res =
6856     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6857                                 getValue(Arg0), getValue(Arg1),
6858                                 MachinePointerInfo(Arg0),
6859                                 MachinePointerInfo(Arg1));
6860   if (Res.first.getNode()) {
6861     processIntegerCallValue(I, Res.first, true);
6862     PendingLoads.push_back(Res.second);
6863     return true;
6864   }
6865 
6866   return false;
6867 }
6868 
6869 /// See if we can lower a strlen call into an optimized form.  If so, return
6870 /// true and lower it, otherwise return false and it will be lowered like a
6871 /// normal call.
6872 /// The caller already checked that \p I calls the appropriate LibFunc with a
6873 /// correct prototype.
6874 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6875   const Value *Arg0 = I.getArgOperand(0);
6876 
6877   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6878   std::pair<SDValue, SDValue> Res =
6879     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6880                                 getValue(Arg0), MachinePointerInfo(Arg0));
6881   if (Res.first.getNode()) {
6882     processIntegerCallValue(I, Res.first, false);
6883     PendingLoads.push_back(Res.second);
6884     return true;
6885   }
6886 
6887   return false;
6888 }
6889 
6890 /// See if we can lower a strnlen call into an optimized form.  If so, return
6891 /// true and lower it, otherwise return false and it will be lowered like a
6892 /// normal call.
6893 /// The caller already checked that \p I calls the appropriate LibFunc with a
6894 /// correct prototype.
6895 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6896   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6897 
6898   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6899   std::pair<SDValue, SDValue> Res =
6900     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6901                                  getValue(Arg0), getValue(Arg1),
6902                                  MachinePointerInfo(Arg0));
6903   if (Res.first.getNode()) {
6904     processIntegerCallValue(I, Res.first, false);
6905     PendingLoads.push_back(Res.second);
6906     return true;
6907   }
6908 
6909   return false;
6910 }
6911 
6912 /// See if we can lower a unary floating-point operation into an SDNode with
6913 /// the specified Opcode.  If so, return true and lower it, otherwise return
6914 /// false and it will be lowered like a normal call.
6915 /// The caller already checked that \p I calls the appropriate LibFunc with a
6916 /// correct prototype.
6917 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6918                                               unsigned Opcode) {
6919   // We already checked this call's prototype; verify it doesn't modify errno.
6920   if (!I.onlyReadsMemory())
6921     return false;
6922 
6923   SDValue Tmp = getValue(I.getArgOperand(0));
6924   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6925   return true;
6926 }
6927 
6928 /// See if we can lower a binary floating-point operation into an SDNode with
6929 /// the specified Opcode. If so, return true and lower it. Otherwise return
6930 /// false, and it will be lowered like a normal call.
6931 /// The caller already checked that \p I calls the appropriate LibFunc with a
6932 /// correct prototype.
6933 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6934                                                unsigned Opcode) {
6935   // We already checked this call's prototype; verify it doesn't modify errno.
6936   if (!I.onlyReadsMemory())
6937     return false;
6938 
6939   SDValue Tmp0 = getValue(I.getArgOperand(0));
6940   SDValue Tmp1 = getValue(I.getArgOperand(1));
6941   EVT VT = Tmp0.getValueType();
6942   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6943   return true;
6944 }
6945 
6946 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6947   // Handle inline assembly differently.
6948   if (isa<InlineAsm>(I.getCalledValue())) {
6949     visitInlineAsm(&I);
6950     return;
6951   }
6952 
6953   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6954   computeUsesVAFloatArgument(I, MMI);
6955 
6956   const char *RenameFn = nullptr;
6957   if (Function *F = I.getCalledFunction()) {
6958     if (F->isDeclaration()) {
6959       // Is this an LLVM intrinsic or a target-specific intrinsic?
6960       unsigned IID = F->getIntrinsicID();
6961       if (!IID)
6962         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6963           IID = II->getIntrinsicID(F);
6964 
6965       if (IID) {
6966         RenameFn = visitIntrinsicCall(I, IID);
6967         if (!RenameFn)
6968           return;
6969       }
6970     }
6971 
6972     // Check for well-known libc/libm calls.  If the function is internal, it
6973     // can't be a library call.  Don't do the check if marked as nobuiltin for
6974     // some reason or the call site requires strict floating point semantics.
6975     LibFunc Func;
6976     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6977         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6978         LibInfo->hasOptimizedCodeGen(Func)) {
6979       switch (Func) {
6980       default: break;
6981       case LibFunc_copysign:
6982       case LibFunc_copysignf:
6983       case LibFunc_copysignl:
6984         // We already checked this call's prototype; verify it doesn't modify
6985         // errno.
6986         if (I.onlyReadsMemory()) {
6987           SDValue LHS = getValue(I.getArgOperand(0));
6988           SDValue RHS = getValue(I.getArgOperand(1));
6989           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6990                                    LHS.getValueType(), LHS, RHS));
6991           return;
6992         }
6993         break;
6994       case LibFunc_fabs:
6995       case LibFunc_fabsf:
6996       case LibFunc_fabsl:
6997         if (visitUnaryFloatCall(I, ISD::FABS))
6998           return;
6999         break;
7000       case LibFunc_fmin:
7001       case LibFunc_fminf:
7002       case LibFunc_fminl:
7003         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7004           return;
7005         break;
7006       case LibFunc_fmax:
7007       case LibFunc_fmaxf:
7008       case LibFunc_fmaxl:
7009         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7010           return;
7011         break;
7012       case LibFunc_sin:
7013       case LibFunc_sinf:
7014       case LibFunc_sinl:
7015         if (visitUnaryFloatCall(I, ISD::FSIN))
7016           return;
7017         break;
7018       case LibFunc_cos:
7019       case LibFunc_cosf:
7020       case LibFunc_cosl:
7021         if (visitUnaryFloatCall(I, ISD::FCOS))
7022           return;
7023         break;
7024       case LibFunc_sqrt:
7025       case LibFunc_sqrtf:
7026       case LibFunc_sqrtl:
7027       case LibFunc_sqrt_finite:
7028       case LibFunc_sqrtf_finite:
7029       case LibFunc_sqrtl_finite:
7030         if (visitUnaryFloatCall(I, ISD::FSQRT))
7031           return;
7032         break;
7033       case LibFunc_floor:
7034       case LibFunc_floorf:
7035       case LibFunc_floorl:
7036         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7037           return;
7038         break;
7039       case LibFunc_nearbyint:
7040       case LibFunc_nearbyintf:
7041       case LibFunc_nearbyintl:
7042         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7043           return;
7044         break;
7045       case LibFunc_ceil:
7046       case LibFunc_ceilf:
7047       case LibFunc_ceill:
7048         if (visitUnaryFloatCall(I, ISD::FCEIL))
7049           return;
7050         break;
7051       case LibFunc_rint:
7052       case LibFunc_rintf:
7053       case LibFunc_rintl:
7054         if (visitUnaryFloatCall(I, ISD::FRINT))
7055           return;
7056         break;
7057       case LibFunc_round:
7058       case LibFunc_roundf:
7059       case LibFunc_roundl:
7060         if (visitUnaryFloatCall(I, ISD::FROUND))
7061           return;
7062         break;
7063       case LibFunc_trunc:
7064       case LibFunc_truncf:
7065       case LibFunc_truncl:
7066         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7067           return;
7068         break;
7069       case LibFunc_log2:
7070       case LibFunc_log2f:
7071       case LibFunc_log2l:
7072         if (visitUnaryFloatCall(I, ISD::FLOG2))
7073           return;
7074         break;
7075       case LibFunc_exp2:
7076       case LibFunc_exp2f:
7077       case LibFunc_exp2l:
7078         if (visitUnaryFloatCall(I, ISD::FEXP2))
7079           return;
7080         break;
7081       case LibFunc_memcmp:
7082         if (visitMemCmpCall(I))
7083           return;
7084         break;
7085       case LibFunc_mempcpy:
7086         if (visitMemPCpyCall(I))
7087           return;
7088         break;
7089       case LibFunc_memchr:
7090         if (visitMemChrCall(I))
7091           return;
7092         break;
7093       case LibFunc_strcpy:
7094         if (visitStrCpyCall(I, false))
7095           return;
7096         break;
7097       case LibFunc_stpcpy:
7098         if (visitStrCpyCall(I, true))
7099           return;
7100         break;
7101       case LibFunc_strcmp:
7102         if (visitStrCmpCall(I))
7103           return;
7104         break;
7105       case LibFunc_strlen:
7106         if (visitStrLenCall(I))
7107           return;
7108         break;
7109       case LibFunc_strnlen:
7110         if (visitStrNLenCall(I))
7111           return;
7112         break;
7113       }
7114     }
7115   }
7116 
7117   SDValue Callee;
7118   if (!RenameFn)
7119     Callee = getValue(I.getCalledValue());
7120   else
7121     Callee = DAG.getExternalSymbol(
7122         RenameFn,
7123         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7124 
7125   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7126   // have to do anything here to lower funclet bundles.
7127   assert(!I.hasOperandBundlesOtherThan(
7128              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7129          "Cannot lower calls with arbitrary operand bundles!");
7130 
7131   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7132     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7133   else
7134     // Check if we can potentially perform a tail call. More detailed checking
7135     // is be done within LowerCallTo, after more information about the call is
7136     // known.
7137     LowerCallTo(&I, Callee, I.isTailCall());
7138 }
7139 
7140 namespace {
7141 
7142 /// AsmOperandInfo - This contains information for each constraint that we are
7143 /// lowering.
7144 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7145 public:
7146   /// CallOperand - If this is the result output operand or a clobber
7147   /// this is null, otherwise it is the incoming operand to the CallInst.
7148   /// This gets modified as the asm is processed.
7149   SDValue CallOperand;
7150 
7151   /// AssignedRegs - If this is a register or register class operand, this
7152   /// contains the set of register corresponding to the operand.
7153   RegsForValue AssignedRegs;
7154 
7155   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7156     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7157   }
7158 
7159   /// Whether or not this operand accesses memory
7160   bool hasMemory(const TargetLowering &TLI) const {
7161     // Indirect operand accesses access memory.
7162     if (isIndirect)
7163       return true;
7164 
7165     for (const auto &Code : Codes)
7166       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7167         return true;
7168 
7169     return false;
7170   }
7171 
7172   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7173   /// corresponds to.  If there is no Value* for this operand, it returns
7174   /// MVT::Other.
7175   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7176                            const DataLayout &DL) const {
7177     if (!CallOperandVal) return MVT::Other;
7178 
7179     if (isa<BasicBlock>(CallOperandVal))
7180       return TLI.getPointerTy(DL);
7181 
7182     llvm::Type *OpTy = CallOperandVal->getType();
7183 
7184     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7185     // If this is an indirect operand, the operand is a pointer to the
7186     // accessed type.
7187     if (isIndirect) {
7188       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7189       if (!PtrTy)
7190         report_fatal_error("Indirect operand for inline asm not a pointer!");
7191       OpTy = PtrTy->getElementType();
7192     }
7193 
7194     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7195     if (StructType *STy = dyn_cast<StructType>(OpTy))
7196       if (STy->getNumElements() == 1)
7197         OpTy = STy->getElementType(0);
7198 
7199     // If OpTy is not a single value, it may be a struct/union that we
7200     // can tile with integers.
7201     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7202       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7203       switch (BitSize) {
7204       default: break;
7205       case 1:
7206       case 8:
7207       case 16:
7208       case 32:
7209       case 64:
7210       case 128:
7211         OpTy = IntegerType::get(Context, BitSize);
7212         break;
7213       }
7214     }
7215 
7216     return TLI.getValueType(DL, OpTy, true);
7217   }
7218 };
7219 
7220 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7221 
7222 } // end anonymous namespace
7223 
7224 /// Make sure that the output operand \p OpInfo and its corresponding input
7225 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7226 /// out).
7227 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7228                                SDISelAsmOperandInfo &MatchingOpInfo,
7229                                SelectionDAG &DAG) {
7230   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7231     return;
7232 
7233   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7234   const auto &TLI = DAG.getTargetLoweringInfo();
7235 
7236   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7237       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7238                                        OpInfo.ConstraintVT);
7239   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7240       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7241                                        MatchingOpInfo.ConstraintVT);
7242   if ((OpInfo.ConstraintVT.isInteger() !=
7243        MatchingOpInfo.ConstraintVT.isInteger()) ||
7244       (MatchRC.second != InputRC.second)) {
7245     // FIXME: error out in a more elegant fashion
7246     report_fatal_error("Unsupported asm: input constraint"
7247                        " with a matching output constraint of"
7248                        " incompatible type!");
7249   }
7250   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7251 }
7252 
7253 /// Get a direct memory input to behave well as an indirect operand.
7254 /// This may introduce stores, hence the need for a \p Chain.
7255 /// \return The (possibly updated) chain.
7256 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7257                                         SDISelAsmOperandInfo &OpInfo,
7258                                         SelectionDAG &DAG) {
7259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7260 
7261   // If we don't have an indirect input, put it in the constpool if we can,
7262   // otherwise spill it to a stack slot.
7263   // TODO: This isn't quite right. We need to handle these according to
7264   // the addressing mode that the constraint wants. Also, this may take
7265   // an additional register for the computation and we don't want that
7266   // either.
7267 
7268   // If the operand is a float, integer, or vector constant, spill to a
7269   // constant pool entry to get its address.
7270   const Value *OpVal = OpInfo.CallOperandVal;
7271   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7272       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7273     OpInfo.CallOperand = DAG.getConstantPool(
7274         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7275     return Chain;
7276   }
7277 
7278   // Otherwise, create a stack slot and emit a store to it before the asm.
7279   Type *Ty = OpVal->getType();
7280   auto &DL = DAG.getDataLayout();
7281   uint64_t TySize = DL.getTypeAllocSize(Ty);
7282   unsigned Align = DL.getPrefTypeAlignment(Ty);
7283   MachineFunction &MF = DAG.getMachineFunction();
7284   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7285   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7286   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7287                        MachinePointerInfo::getFixedStack(MF, SSFI));
7288   OpInfo.CallOperand = StackSlot;
7289 
7290   return Chain;
7291 }
7292 
7293 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7294 /// specified operand.  We prefer to assign virtual registers, to allow the
7295 /// register allocator to handle the assignment process.  However, if the asm
7296 /// uses features that we can't model on machineinstrs, we have SDISel do the
7297 /// allocation.  This produces generally horrible, but correct, code.
7298 ///
7299 ///   OpInfo describes the operand
7300 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7301 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7302                                  const SDLoc &DL, SDISelAsmOperandInfo &OpInfo,
7303                                  SDISelAsmOperandInfo &RefOpInfo) {
7304   LLVMContext &Context = *DAG.getContext();
7305 
7306   MachineFunction &MF = DAG.getMachineFunction();
7307   SmallVector<unsigned, 4> Regs;
7308   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7309 
7310   // If this is a constraint for a single physreg, or a constraint for a
7311   // register class, find it.
7312   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7313       TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode,
7314                                        RefOpInfo.ConstraintVT);
7315 
7316   unsigned NumRegs = 1;
7317   if (OpInfo.ConstraintVT != MVT::Other) {
7318     // If this is an FP operand in an integer register (or visa versa), or more
7319     // generally if the operand value disagrees with the register class we plan
7320     // to stick it in, fix the operand type.
7321     //
7322     // If this is an input value, the bitcast to the new type is done now.
7323     // Bitcast for output value is done at the end of visitInlineAsm().
7324     if ((OpInfo.Type == InlineAsm::isOutput ||
7325          OpInfo.Type == InlineAsm::isInput) &&
7326         PhysReg.second &&
7327         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7328       // Try to convert to the first EVT that the reg class contains.  If the
7329       // types are identical size, use a bitcast to convert (e.g. two differing
7330       // vector types).  Note: output bitcast is done at the end of
7331       // visitInlineAsm().
7332       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7333       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7334         // Exclude indirect inputs while they are unsupported because the code
7335         // to perform the load is missing and thus OpInfo.CallOperand still
7336         // refers to the input address rather than the pointed-to value.
7337         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7338           OpInfo.CallOperand =
7339               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7340         OpInfo.ConstraintVT = RegVT;
7341         // If the operand is an FP value and we want it in integer registers,
7342         // use the corresponding integer type. This turns an f64 value into
7343         // i64, which can be passed with two i32 values on a 32-bit machine.
7344       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7345         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7346         if (OpInfo.Type == InlineAsm::isInput)
7347           OpInfo.CallOperand =
7348               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7349         OpInfo.ConstraintVT = RegVT;
7350       }
7351     }
7352 
7353     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7354   }
7355 
7356   // No need to allocate a matching input constraint since the constraint it's
7357   // matching to has already been allocated.
7358   if (OpInfo.isMatchingInputConstraint())
7359     return;
7360 
7361   MVT RegVT;
7362   EVT ValueVT = OpInfo.ConstraintVT;
7363 
7364   // If this is a constraint for a specific physical register, like {r17},
7365   // assign it now.
7366   if (unsigned AssignedReg = PhysReg.first) {
7367     const TargetRegisterClass *RC = PhysReg.second;
7368     if (OpInfo.ConstraintVT == MVT::Other)
7369       ValueVT = *TRI.legalclasstypes_begin(*RC);
7370 
7371     // Get the actual register value type.  This is important, because the user
7372     // may have asked for (e.g.) the AX register in i32 type.  We need to
7373     // remember that AX is actually i16 to get the right extension.
7374     RegVT = *TRI.legalclasstypes_begin(*RC);
7375 
7376     // This is an explicit reference to a physical register.
7377     Regs.push_back(AssignedReg);
7378 
7379     // If this is an expanded reference, add the rest of the regs to Regs.
7380     if (NumRegs != 1) {
7381       TargetRegisterClass::iterator I = RC->begin();
7382       for (; *I != AssignedReg; ++I)
7383         assert(I != RC->end() && "Didn't find reg!");
7384 
7385       // Already added the first reg.
7386       --NumRegs; ++I;
7387       for (; NumRegs; --NumRegs, ++I) {
7388         assert(I != RC->end() && "Ran out of registers to allocate!");
7389         Regs.push_back(*I);
7390       }
7391     }
7392 
7393     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7394     return;
7395   }
7396 
7397   // Otherwise, if this was a reference to an LLVM register class, create vregs
7398   // for this reference.
7399   if (const TargetRegisterClass *RC = PhysReg.second) {
7400     RegVT = *TRI.legalclasstypes_begin(*RC);
7401     if (OpInfo.ConstraintVT == MVT::Other)
7402       ValueVT = RegVT;
7403 
7404     // Create the appropriate number of virtual registers.
7405     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7406     for (; NumRegs; --NumRegs)
7407       Regs.push_back(RegInfo.createVirtualRegister(RC));
7408 
7409     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7410     return;
7411   }
7412 
7413   // Otherwise, we couldn't allocate enough registers for this.
7414 }
7415 
7416 static unsigned
7417 findMatchingInlineAsmOperand(unsigned OperandNo,
7418                              const std::vector<SDValue> &AsmNodeOperands) {
7419   // Scan until we find the definition we already emitted of this operand.
7420   unsigned CurOp = InlineAsm::Op_FirstOperand;
7421   for (; OperandNo; --OperandNo) {
7422     // Advance to the next operand.
7423     unsigned OpFlag =
7424         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7425     assert((InlineAsm::isRegDefKind(OpFlag) ||
7426             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7427             InlineAsm::isMemKind(OpFlag)) &&
7428            "Skipped past definitions?");
7429     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7430   }
7431   return CurOp;
7432 }
7433 
7434 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7435 /// \return true if it has succeeded, false otherwise
7436 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7437                               MVT RegVT, SelectionDAG &DAG) {
7438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7439   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7440   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7441     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7442       Regs.push_back(RegInfo.createVirtualRegister(RC));
7443     else
7444       return false;
7445   }
7446   return true;
7447 }
7448 
7449 namespace {
7450 
7451 class ExtraFlags {
7452   unsigned Flags = 0;
7453 
7454 public:
7455   explicit ExtraFlags(ImmutableCallSite CS) {
7456     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7457     if (IA->hasSideEffects())
7458       Flags |= InlineAsm::Extra_HasSideEffects;
7459     if (IA->isAlignStack())
7460       Flags |= InlineAsm::Extra_IsAlignStack;
7461     if (CS.isConvergent())
7462       Flags |= InlineAsm::Extra_IsConvergent;
7463     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7464   }
7465 
7466   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7467     // Ideally, we would only check against memory constraints.  However, the
7468     // meaning of an Other constraint can be target-specific and we can't easily
7469     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7470     // for Other constraints as well.
7471     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7472         OpInfo.ConstraintType == TargetLowering::C_Other) {
7473       if (OpInfo.Type == InlineAsm::isInput)
7474         Flags |= InlineAsm::Extra_MayLoad;
7475       else if (OpInfo.Type == InlineAsm::isOutput)
7476         Flags |= InlineAsm::Extra_MayStore;
7477       else if (OpInfo.Type == InlineAsm::isClobber)
7478         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7479     }
7480   }
7481 
7482   unsigned get() const { return Flags; }
7483 };
7484 
7485 } // end anonymous namespace
7486 
7487 /// visitInlineAsm - Handle a call to an InlineAsm object.
7488 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7489   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7490 
7491   /// ConstraintOperands - Information about all of the constraints.
7492   SDISelAsmOperandInfoVector ConstraintOperands;
7493 
7494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7495   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7496       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7497 
7498   bool hasMemory = false;
7499 
7500   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7501   ExtraFlags ExtraInfo(CS);
7502 
7503   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7504   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7505   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7506     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7507     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7508 
7509     MVT OpVT = MVT::Other;
7510 
7511     // Compute the value type for each operand.
7512     if (OpInfo.Type == InlineAsm::isInput ||
7513         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7514       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7515 
7516       // Process the call argument. BasicBlocks are labels, currently appearing
7517       // only in asm's.
7518       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7519         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7520       } else {
7521         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7522       }
7523 
7524       OpVT =
7525           OpInfo
7526               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7527               .getSimpleVT();
7528     }
7529 
7530     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7531       // The return value of the call is this value.  As such, there is no
7532       // corresponding argument.
7533       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7534       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7535         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7536                                       STy->getElementType(ResNo));
7537       } else {
7538         assert(ResNo == 0 && "Asm only has one result!");
7539         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7540       }
7541       ++ResNo;
7542     }
7543 
7544     OpInfo.ConstraintVT = OpVT;
7545 
7546     if (!hasMemory)
7547       hasMemory = OpInfo.hasMemory(TLI);
7548 
7549     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7550     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7551     auto TargetConstraint = TargetConstraints[i];
7552 
7553     // Compute the constraint code and ConstraintType to use.
7554     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7555 
7556     ExtraInfo.update(TargetConstraint);
7557   }
7558 
7559   SDValue Chain, Flag;
7560 
7561   // We won't need to flush pending loads if this asm doesn't touch
7562   // memory and is nonvolatile.
7563   if (hasMemory || IA->hasSideEffects())
7564     Chain = getRoot();
7565   else
7566     Chain = DAG.getRoot();
7567 
7568   // Second pass over the constraints: compute which constraint option to use
7569   // and assign registers to constraints that want a specific physreg.
7570   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7571     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7572 
7573     // If this is an output operand with a matching input operand, look up the
7574     // matching input. If their types mismatch, e.g. one is an integer, the
7575     // other is floating point, or their sizes are different, flag it as an
7576     // error.
7577     if (OpInfo.hasMatchingInput()) {
7578       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7579       patchMatchingInput(OpInfo, Input, DAG);
7580     }
7581 
7582     // Compute the constraint code and ConstraintType to use.
7583     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7584 
7585     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7586         OpInfo.Type == InlineAsm::isClobber)
7587       continue;
7588 
7589     // If this is a memory input, and if the operand is not indirect, do what we
7590     // need to provide an address for the memory input.
7591     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7592         !OpInfo.isIndirect) {
7593       assert((OpInfo.isMultipleAlternative ||
7594               (OpInfo.Type == InlineAsm::isInput)) &&
7595              "Can only indirectify direct input operands!");
7596 
7597       // Memory operands really want the address of the value.
7598       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7599 
7600       // There is no longer a Value* corresponding to this operand.
7601       OpInfo.CallOperandVal = nullptr;
7602 
7603       // It is now an indirect operand.
7604       OpInfo.isIndirect = true;
7605     }
7606 
7607     // If this constraint is for a specific register, allocate it before
7608     // anything else.
7609     SDISelAsmOperandInfo &RefOpInfo =
7610         OpInfo.isMatchingInputConstraint()
7611             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7612             : ConstraintOperands[i];
7613     if (RefOpInfo.ConstraintType == TargetLowering::C_Register)
7614       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7615   }
7616 
7617   // Third pass - Loop over all of the operands, assigning virtual or physregs
7618   // to register class operands.
7619   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7620     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7621     SDISelAsmOperandInfo &RefOpInfo =
7622         OpInfo.isMatchingInputConstraint()
7623             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7624             : ConstraintOperands[i];
7625 
7626     // C_Register operands have already been allocated, Other/Memory don't need
7627     // to be.
7628     if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7629       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7630   }
7631 
7632   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7633   std::vector<SDValue> AsmNodeOperands;
7634   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7635   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7636       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7637 
7638   // If we have a !srcloc metadata node associated with it, we want to attach
7639   // this to the ultimately generated inline asm machineinstr.  To do this, we
7640   // pass in the third operand as this (potentially null) inline asm MDNode.
7641   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7642   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7643 
7644   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7645   // bits as operand 3.
7646   AsmNodeOperands.push_back(DAG.getTargetConstant(
7647       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7648 
7649   // Loop over all of the inputs, copying the operand values into the
7650   // appropriate registers and processing the output regs.
7651   RegsForValue RetValRegs;
7652 
7653   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7654   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7655 
7656   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7657     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7658 
7659     switch (OpInfo.Type) {
7660     case InlineAsm::isOutput:
7661       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7662           OpInfo.ConstraintType != TargetLowering::C_Register) {
7663         // Memory output, or 'other' output (e.g. 'X' constraint).
7664         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7665 
7666         unsigned ConstraintID =
7667             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7668         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7669                "Failed to convert memory constraint code to constraint id.");
7670 
7671         // Add information to the INLINEASM node to know about this output.
7672         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7673         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7674         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7675                                                         MVT::i32));
7676         AsmNodeOperands.push_back(OpInfo.CallOperand);
7677         break;
7678       }
7679 
7680       // Otherwise, this is a register or register class output.
7681 
7682       // Copy the output from the appropriate register.  Find a register that
7683       // we can use.
7684       if (OpInfo.AssignedRegs.Regs.empty()) {
7685         emitInlineAsmError(
7686             CS, "couldn't allocate output register for constraint '" +
7687                     Twine(OpInfo.ConstraintCode) + "'");
7688         return;
7689       }
7690 
7691       // If this is an indirect operand, store through the pointer after the
7692       // asm.
7693       if (OpInfo.isIndirect) {
7694         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7695                                                       OpInfo.CallOperandVal));
7696       } else {
7697         // This is the result value of the call.
7698         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7699         // Concatenate this output onto the outputs list.
7700         RetValRegs.append(OpInfo.AssignedRegs);
7701       }
7702 
7703       // Add information to the INLINEASM node to know that this register is
7704       // set.
7705       OpInfo.AssignedRegs
7706           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7707                                     ? InlineAsm::Kind_RegDefEarlyClobber
7708                                     : InlineAsm::Kind_RegDef,
7709                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7710       break;
7711 
7712     case InlineAsm::isInput: {
7713       SDValue InOperandVal = OpInfo.CallOperand;
7714 
7715       if (OpInfo.isMatchingInputConstraint()) {
7716         // If this is required to match an output register we have already set,
7717         // just use its register.
7718         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7719                                                   AsmNodeOperands);
7720         unsigned OpFlag =
7721           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7722         if (InlineAsm::isRegDefKind(OpFlag) ||
7723             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7724           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7725           if (OpInfo.isIndirect) {
7726             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7727             emitInlineAsmError(CS, "inline asm not supported yet:"
7728                                    " don't know how to handle tied "
7729                                    "indirect register inputs");
7730             return;
7731           }
7732 
7733           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7734           SmallVector<unsigned, 4> Regs;
7735 
7736           if (!createVirtualRegs(Regs,
7737                                  InlineAsm::getNumOperandRegisters(OpFlag),
7738                                  RegVT, DAG)) {
7739             emitInlineAsmError(CS, "inline asm error: This value type register "
7740                                    "class is not natively supported!");
7741             return;
7742           }
7743 
7744           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7745 
7746           SDLoc dl = getCurSDLoc();
7747           // Use the produced MatchedRegs object to
7748           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7749                                     CS.getInstruction());
7750           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7751                                            true, OpInfo.getMatchedOperand(), dl,
7752                                            DAG, AsmNodeOperands);
7753           break;
7754         }
7755 
7756         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7757         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7758                "Unexpected number of operands");
7759         // Add information to the INLINEASM node to know about this input.
7760         // See InlineAsm.h isUseOperandTiedToDef.
7761         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7762         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7763                                                     OpInfo.getMatchedOperand());
7764         AsmNodeOperands.push_back(DAG.getTargetConstant(
7765             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7766         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7767         break;
7768       }
7769 
7770       // Treat indirect 'X' constraint as memory.
7771       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7772           OpInfo.isIndirect)
7773         OpInfo.ConstraintType = TargetLowering::C_Memory;
7774 
7775       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7776         std::vector<SDValue> Ops;
7777         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7778                                           Ops, DAG);
7779         if (Ops.empty()) {
7780           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7781                                      Twine(OpInfo.ConstraintCode) + "'");
7782           return;
7783         }
7784 
7785         // Add information to the INLINEASM node to know about this input.
7786         unsigned ResOpType =
7787           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7788         AsmNodeOperands.push_back(DAG.getTargetConstant(
7789             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7790         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7791         break;
7792       }
7793 
7794       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7795         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7796         assert(InOperandVal.getValueType() ==
7797                    TLI.getPointerTy(DAG.getDataLayout()) &&
7798                "Memory operands expect pointer values");
7799 
7800         unsigned ConstraintID =
7801             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7802         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7803                "Failed to convert memory constraint code to constraint id.");
7804 
7805         // Add information to the INLINEASM node to know about this input.
7806         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7807         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7808         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7809                                                         getCurSDLoc(),
7810                                                         MVT::i32));
7811         AsmNodeOperands.push_back(InOperandVal);
7812         break;
7813       }
7814 
7815       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7816               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7817              "Unknown constraint type!");
7818 
7819       // TODO: Support this.
7820       if (OpInfo.isIndirect) {
7821         emitInlineAsmError(
7822             CS, "Don't know how to handle indirect register inputs yet "
7823                 "for constraint '" +
7824                     Twine(OpInfo.ConstraintCode) + "'");
7825         return;
7826       }
7827 
7828       // Copy the input into the appropriate registers.
7829       if (OpInfo.AssignedRegs.Regs.empty()) {
7830         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7831                                    Twine(OpInfo.ConstraintCode) + "'");
7832         return;
7833       }
7834 
7835       SDLoc dl = getCurSDLoc();
7836 
7837       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7838                                         Chain, &Flag, CS.getInstruction());
7839 
7840       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7841                                                dl, DAG, AsmNodeOperands);
7842       break;
7843     }
7844     case InlineAsm::isClobber:
7845       // Add the clobbered value to the operand list, so that the register
7846       // allocator is aware that the physreg got clobbered.
7847       if (!OpInfo.AssignedRegs.Regs.empty())
7848         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7849                                                  false, 0, getCurSDLoc(), DAG,
7850                                                  AsmNodeOperands);
7851       break;
7852     }
7853   }
7854 
7855   // Finish up input operands.  Set the input chain and add the flag last.
7856   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7857   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7858 
7859   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7860                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7861   Flag = Chain.getValue(1);
7862 
7863   // If this asm returns a register value, copy the result from that register
7864   // and set it as the value of the call.
7865   if (!RetValRegs.Regs.empty()) {
7866     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7867                                              Chain, &Flag, CS.getInstruction());
7868 
7869     llvm::Type *CSResultType = CS.getType();
7870     unsigned numRet;
7871     ArrayRef<Type *> ResultTypes;
7872     SmallVector<SDValue, 1> ResultValues(1);
7873     if (CSResultType->isSingleValueType()) {
7874       numRet = 1;
7875       ResultValues[0] = Val;
7876       ResultTypes = makeArrayRef(CSResultType);
7877     } else {
7878       numRet = CSResultType->getNumContainedTypes();
7879       assert(Val->getNumOperands() == numRet &&
7880              "Mismatch in number of output operands in asm result");
7881       ResultTypes = CSResultType->subtypes();
7882       ArrayRef<SDUse> ValueUses = Val->ops();
7883       ResultValues.resize(numRet);
7884       std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(),
7885                      [](const SDUse &u) -> SDValue { return u.get(); });
7886     }
7887     SmallVector<EVT, 1> ResultVTs(numRet);
7888     for (unsigned i = 0; i < numRet; i++) {
7889       EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]);
7890       SDValue Val = ResultValues[i];
7891       assert(ResultTypes[i]->isSized() && "Unexpected unsized type");
7892       // If the type of the inline asm call site return value is different but
7893       // has same size as the type of the asm output bitcast it.  One example
7894       // of this is for vectors with different width / number of elements.
7895       // This can happen for register classes that can contain multiple
7896       // different value types.  The preg or vreg allocated may not have the
7897       // same VT as was expected.
7898       //
7899       // This can also happen for a return value that disagrees with the
7900       // register class it is put in, eg. a double in a general-purpose
7901       // register on a 32-bit machine.
7902       if (ResultVT != Val.getValueType() &&
7903           ResultVT.getSizeInBits() == Val.getValueSizeInBits())
7904         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val);
7905       else if (ResultVT != Val.getValueType() && ResultVT.isInteger() &&
7906                Val.getValueType().isInteger()) {
7907         // If a result value was tied to an input value, the computed result
7908         // may have a wider width than the expected result.  Extract the
7909         // relevant portion.
7910         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val);
7911       }
7912 
7913       assert(ResultVT == Val.getValueType() && "Asm result value mismatch!");
7914       ResultVTs[i] = ResultVT;
7915       ResultValues[i] = Val;
7916     }
7917 
7918     Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7919                       DAG.getVTList(ResultVTs), ResultValues);
7920     setValue(CS.getInstruction(), Val);
7921     // Don't need to use this as a chain in this case.
7922     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7923       return;
7924   }
7925 
7926   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7927 
7928   // Process indirect outputs, first output all of the flagged copies out of
7929   // physregs.
7930   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7931     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7932     const Value *Ptr = IndirectStoresToEmit[i].second;
7933     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7934                                              Chain, &Flag, IA);
7935     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7936   }
7937 
7938   // Emit the non-flagged stores from the physregs.
7939   SmallVector<SDValue, 8> OutChains;
7940   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7941     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7942                                getValue(StoresToEmit[i].second),
7943                                MachinePointerInfo(StoresToEmit[i].second));
7944     OutChains.push_back(Val);
7945   }
7946 
7947   if (!OutChains.empty())
7948     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7949 
7950   DAG.setRoot(Chain);
7951 }
7952 
7953 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7954                                              const Twine &Message) {
7955   LLVMContext &Ctx = *DAG.getContext();
7956   Ctx.emitError(CS.getInstruction(), Message);
7957 
7958   // Make sure we leave the DAG in a valid state
7959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7960   SmallVector<EVT, 1> ValueVTs;
7961   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7962 
7963   if (ValueVTs.empty())
7964     return;
7965 
7966   SmallVector<SDValue, 1> Ops;
7967   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7968     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7969 
7970   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7971 }
7972 
7973 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7974   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7975                           MVT::Other, getRoot(),
7976                           getValue(I.getArgOperand(0)),
7977                           DAG.getSrcValue(I.getArgOperand(0))));
7978 }
7979 
7980 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7982   const DataLayout &DL = DAG.getDataLayout();
7983   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7984                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7985                            DAG.getSrcValue(I.getOperand(0)),
7986                            DL.getABITypeAlignment(I.getType()));
7987   setValue(&I, V);
7988   DAG.setRoot(V.getValue(1));
7989 }
7990 
7991 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7992   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7993                           MVT::Other, getRoot(),
7994                           getValue(I.getArgOperand(0)),
7995                           DAG.getSrcValue(I.getArgOperand(0))));
7996 }
7997 
7998 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7999   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8000                           MVT::Other, getRoot(),
8001                           getValue(I.getArgOperand(0)),
8002                           getValue(I.getArgOperand(1)),
8003                           DAG.getSrcValue(I.getArgOperand(0)),
8004                           DAG.getSrcValue(I.getArgOperand(1))));
8005 }
8006 
8007 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8008                                                     const Instruction &I,
8009                                                     SDValue Op) {
8010   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8011   if (!Range)
8012     return Op;
8013 
8014   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8015   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8016     return Op;
8017 
8018   APInt Lo = CR.getUnsignedMin();
8019   if (!Lo.isMinValue())
8020     return Op;
8021 
8022   APInt Hi = CR.getUnsignedMax();
8023   unsigned Bits = std::max(Hi.getActiveBits(),
8024                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8025 
8026   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8027 
8028   SDLoc SL = getCurSDLoc();
8029 
8030   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8031                              DAG.getValueType(SmallVT));
8032   unsigned NumVals = Op.getNode()->getNumValues();
8033   if (NumVals == 1)
8034     return ZExt;
8035 
8036   SmallVector<SDValue, 4> Ops;
8037 
8038   Ops.push_back(ZExt);
8039   for (unsigned I = 1; I != NumVals; ++I)
8040     Ops.push_back(Op.getValue(I));
8041 
8042   return DAG.getMergeValues(Ops, SL);
8043 }
8044 
8045 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8046 /// the call being lowered.
8047 ///
8048 /// This is a helper for lowering intrinsics that follow a target calling
8049 /// convention or require stack pointer adjustment. Only a subset of the
8050 /// intrinsic's operands need to participate in the calling convention.
8051 void SelectionDAGBuilder::populateCallLoweringInfo(
8052     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
8053     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8054     bool IsPatchPoint) {
8055   TargetLowering::ArgListTy Args;
8056   Args.reserve(NumArgs);
8057 
8058   // Populate the argument list.
8059   // Attributes for args start at offset 1, after the return attribute.
8060   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8061        ArgI != ArgE; ++ArgI) {
8062     const Value *V = CS->getOperand(ArgI);
8063 
8064     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8065 
8066     TargetLowering::ArgListEntry Entry;
8067     Entry.Node = getValue(V);
8068     Entry.Ty = V->getType();
8069     Entry.setAttributes(&CS, ArgI);
8070     Args.push_back(Entry);
8071   }
8072 
8073   CLI.setDebugLoc(getCurSDLoc())
8074       .setChain(getRoot())
8075       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
8076       .setDiscardResult(CS->use_empty())
8077       .setIsPatchPoint(IsPatchPoint);
8078 }
8079 
8080 /// Add a stack map intrinsic call's live variable operands to a stackmap
8081 /// or patchpoint target node's operand list.
8082 ///
8083 /// Constants are converted to TargetConstants purely as an optimization to
8084 /// avoid constant materialization and register allocation.
8085 ///
8086 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8087 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8088 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8089 /// address materialization and register allocation, but may also be required
8090 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8091 /// alloca in the entry block, then the runtime may assume that the alloca's
8092 /// StackMap location can be read immediately after compilation and that the
8093 /// location is valid at any point during execution (this is similar to the
8094 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8095 /// only available in a register, then the runtime would need to trap when
8096 /// execution reaches the StackMap in order to read the alloca's location.
8097 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8098                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8099                                 SelectionDAGBuilder &Builder) {
8100   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8101     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8102     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8103       Ops.push_back(
8104         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8105       Ops.push_back(
8106         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8107     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8108       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8109       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8110           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8111     } else
8112       Ops.push_back(OpVal);
8113   }
8114 }
8115 
8116 /// Lower llvm.experimental.stackmap directly to its target opcode.
8117 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8118   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8119   //                                  [live variables...])
8120 
8121   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8122 
8123   SDValue Chain, InFlag, Callee, NullPtr;
8124   SmallVector<SDValue, 32> Ops;
8125 
8126   SDLoc DL = getCurSDLoc();
8127   Callee = getValue(CI.getCalledValue());
8128   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8129 
8130   // The stackmap intrinsic only records the live variables (the arguemnts
8131   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8132   // intrinsic, this won't be lowered to a function call. This means we don't
8133   // have to worry about calling conventions and target specific lowering code.
8134   // Instead we perform the call lowering right here.
8135   //
8136   // chain, flag = CALLSEQ_START(chain, 0, 0)
8137   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8138   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8139   //
8140   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8141   InFlag = Chain.getValue(1);
8142 
8143   // Add the <id> and <numBytes> constants.
8144   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8145   Ops.push_back(DAG.getTargetConstant(
8146                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8147   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8148   Ops.push_back(DAG.getTargetConstant(
8149                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8150                   MVT::i32));
8151 
8152   // Push live variables for the stack map.
8153   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8154 
8155   // We are not pushing any register mask info here on the operands list,
8156   // because the stackmap doesn't clobber anything.
8157 
8158   // Push the chain and the glue flag.
8159   Ops.push_back(Chain);
8160   Ops.push_back(InFlag);
8161 
8162   // Create the STACKMAP node.
8163   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8164   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8165   Chain = SDValue(SM, 0);
8166   InFlag = Chain.getValue(1);
8167 
8168   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8169 
8170   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8171 
8172   // Set the root to the target-lowered call chain.
8173   DAG.setRoot(Chain);
8174 
8175   // Inform the Frame Information that we have a stackmap in this function.
8176   FuncInfo.MF->getFrameInfo().setHasStackMap();
8177 }
8178 
8179 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8180 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8181                                           const BasicBlock *EHPadBB) {
8182   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8183   //                                                 i32 <numBytes>,
8184   //                                                 i8* <target>,
8185   //                                                 i32 <numArgs>,
8186   //                                                 [Args...],
8187   //                                                 [live variables...])
8188 
8189   CallingConv::ID CC = CS.getCallingConv();
8190   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8191   bool HasDef = !CS->getType()->isVoidTy();
8192   SDLoc dl = getCurSDLoc();
8193   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8194 
8195   // Handle immediate and symbolic callees.
8196   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8197     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8198                                    /*isTarget=*/true);
8199   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8200     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8201                                          SDLoc(SymbolicCallee),
8202                                          SymbolicCallee->getValueType(0));
8203 
8204   // Get the real number of arguments participating in the call <numArgs>
8205   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8206   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8207 
8208   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8209   // Intrinsics include all meta-operands up to but not including CC.
8210   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8211   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8212          "Not enough arguments provided to the patchpoint intrinsic");
8213 
8214   // For AnyRegCC the arguments are lowered later on manually.
8215   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8216   Type *ReturnTy =
8217     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8218 
8219   TargetLowering::CallLoweringInfo CLI(DAG);
8220   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8221                            true);
8222   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8223 
8224   SDNode *CallEnd = Result.second.getNode();
8225   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8226     CallEnd = CallEnd->getOperand(0).getNode();
8227 
8228   /// Get a call instruction from the call sequence chain.
8229   /// Tail calls are not allowed.
8230   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8231          "Expected a callseq node.");
8232   SDNode *Call = CallEnd->getOperand(0).getNode();
8233   bool HasGlue = Call->getGluedNode();
8234 
8235   // Replace the target specific call node with the patchable intrinsic.
8236   SmallVector<SDValue, 8> Ops;
8237 
8238   // Add the <id> and <numBytes> constants.
8239   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8240   Ops.push_back(DAG.getTargetConstant(
8241                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8242   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8243   Ops.push_back(DAG.getTargetConstant(
8244                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8245                   MVT::i32));
8246 
8247   // Add the callee.
8248   Ops.push_back(Callee);
8249 
8250   // Adjust <numArgs> to account for any arguments that have been passed on the
8251   // stack instead.
8252   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8253   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8254   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8255   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8256 
8257   // Add the calling convention
8258   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8259 
8260   // Add the arguments we omitted previously. The register allocator should
8261   // place these in any free register.
8262   if (IsAnyRegCC)
8263     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8264       Ops.push_back(getValue(CS.getArgument(i)));
8265 
8266   // Push the arguments from the call instruction up to the register mask.
8267   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8268   Ops.append(Call->op_begin() + 2, e);
8269 
8270   // Push live variables for the stack map.
8271   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8272 
8273   // Push the register mask info.
8274   if (HasGlue)
8275     Ops.push_back(*(Call->op_end()-2));
8276   else
8277     Ops.push_back(*(Call->op_end()-1));
8278 
8279   // Push the chain (this is originally the first operand of the call, but
8280   // becomes now the last or second to last operand).
8281   Ops.push_back(*(Call->op_begin()));
8282 
8283   // Push the glue flag (last operand).
8284   if (HasGlue)
8285     Ops.push_back(*(Call->op_end()-1));
8286 
8287   SDVTList NodeTys;
8288   if (IsAnyRegCC && HasDef) {
8289     // Create the return types based on the intrinsic definition
8290     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8291     SmallVector<EVT, 3> ValueVTs;
8292     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8293     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8294 
8295     // There is always a chain and a glue type at the end
8296     ValueVTs.push_back(MVT::Other);
8297     ValueVTs.push_back(MVT::Glue);
8298     NodeTys = DAG.getVTList(ValueVTs);
8299   } else
8300     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8301 
8302   // Replace the target specific call node with a PATCHPOINT node.
8303   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8304                                          dl, NodeTys, Ops);
8305 
8306   // Update the NodeMap.
8307   if (HasDef) {
8308     if (IsAnyRegCC)
8309       setValue(CS.getInstruction(), SDValue(MN, 0));
8310     else
8311       setValue(CS.getInstruction(), Result.first);
8312   }
8313 
8314   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8315   // call sequence. Furthermore the location of the chain and glue can change
8316   // when the AnyReg calling convention is used and the intrinsic returns a
8317   // value.
8318   if (IsAnyRegCC && HasDef) {
8319     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8320     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8321     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8322   } else
8323     DAG.ReplaceAllUsesWith(Call, MN);
8324   DAG.DeleteNode(Call);
8325 
8326   // Inform the Frame Information that we have a patchpoint in this function.
8327   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8328 }
8329 
8330 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8331                                             unsigned Intrinsic) {
8332   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8333   SDValue Op1 = getValue(I.getArgOperand(0));
8334   SDValue Op2;
8335   if (I.getNumArgOperands() > 1)
8336     Op2 = getValue(I.getArgOperand(1));
8337   SDLoc dl = getCurSDLoc();
8338   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8339   SDValue Res;
8340   FastMathFlags FMF;
8341   if (isa<FPMathOperator>(I))
8342     FMF = I.getFastMathFlags();
8343 
8344   switch (Intrinsic) {
8345   case Intrinsic::experimental_vector_reduce_fadd:
8346     if (FMF.isFast())
8347       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8348     else
8349       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8350     break;
8351   case Intrinsic::experimental_vector_reduce_fmul:
8352     if (FMF.isFast())
8353       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8354     else
8355       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8356     break;
8357   case Intrinsic::experimental_vector_reduce_add:
8358     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8359     break;
8360   case Intrinsic::experimental_vector_reduce_mul:
8361     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8362     break;
8363   case Intrinsic::experimental_vector_reduce_and:
8364     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8365     break;
8366   case Intrinsic::experimental_vector_reduce_or:
8367     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8368     break;
8369   case Intrinsic::experimental_vector_reduce_xor:
8370     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8371     break;
8372   case Intrinsic::experimental_vector_reduce_smax:
8373     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8374     break;
8375   case Intrinsic::experimental_vector_reduce_smin:
8376     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8377     break;
8378   case Intrinsic::experimental_vector_reduce_umax:
8379     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8380     break;
8381   case Intrinsic::experimental_vector_reduce_umin:
8382     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8383     break;
8384   case Intrinsic::experimental_vector_reduce_fmax:
8385     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8386     break;
8387   case Intrinsic::experimental_vector_reduce_fmin:
8388     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8389     break;
8390   default:
8391     llvm_unreachable("Unhandled vector reduce intrinsic");
8392   }
8393   setValue(&I, Res);
8394 }
8395 
8396 /// Returns an AttributeList representing the attributes applied to the return
8397 /// value of the given call.
8398 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8399   SmallVector<Attribute::AttrKind, 2> Attrs;
8400   if (CLI.RetSExt)
8401     Attrs.push_back(Attribute::SExt);
8402   if (CLI.RetZExt)
8403     Attrs.push_back(Attribute::ZExt);
8404   if (CLI.IsInReg)
8405     Attrs.push_back(Attribute::InReg);
8406 
8407   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8408                             Attrs);
8409 }
8410 
8411 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8412 /// implementation, which just calls LowerCall.
8413 /// FIXME: When all targets are
8414 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8415 std::pair<SDValue, SDValue>
8416 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8417   // Handle the incoming return values from the call.
8418   CLI.Ins.clear();
8419   Type *OrigRetTy = CLI.RetTy;
8420   SmallVector<EVT, 4> RetTys;
8421   SmallVector<uint64_t, 4> Offsets;
8422   auto &DL = CLI.DAG.getDataLayout();
8423   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8424 
8425   if (CLI.IsPostTypeLegalization) {
8426     // If we are lowering a libcall after legalization, split the return type.
8427     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8428     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8429     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8430       EVT RetVT = OldRetTys[i];
8431       uint64_t Offset = OldOffsets[i];
8432       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8433       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8434       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8435       RetTys.append(NumRegs, RegisterVT);
8436       for (unsigned j = 0; j != NumRegs; ++j)
8437         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8438     }
8439   }
8440 
8441   SmallVector<ISD::OutputArg, 4> Outs;
8442   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8443 
8444   bool CanLowerReturn =
8445       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8446                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8447 
8448   SDValue DemoteStackSlot;
8449   int DemoteStackIdx = -100;
8450   if (!CanLowerReturn) {
8451     // FIXME: equivalent assert?
8452     // assert(!CS.hasInAllocaArgument() &&
8453     //        "sret demotion is incompatible with inalloca");
8454     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8455     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8456     MachineFunction &MF = CLI.DAG.getMachineFunction();
8457     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8458     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8459                                               DL.getAllocaAddrSpace());
8460 
8461     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8462     ArgListEntry Entry;
8463     Entry.Node = DemoteStackSlot;
8464     Entry.Ty = StackSlotPtrType;
8465     Entry.IsSExt = false;
8466     Entry.IsZExt = false;
8467     Entry.IsInReg = false;
8468     Entry.IsSRet = true;
8469     Entry.IsNest = false;
8470     Entry.IsByVal = false;
8471     Entry.IsReturned = false;
8472     Entry.IsSwiftSelf = false;
8473     Entry.IsSwiftError = false;
8474     Entry.Alignment = Align;
8475     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8476     CLI.NumFixedArgs += 1;
8477     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8478 
8479     // sret demotion isn't compatible with tail-calls, since the sret argument
8480     // points into the callers stack frame.
8481     CLI.IsTailCall = false;
8482   } else {
8483     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8484       EVT VT = RetTys[I];
8485       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8486                                                      CLI.CallConv, VT);
8487       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8488                                                        CLI.CallConv, VT);
8489       for (unsigned i = 0; i != NumRegs; ++i) {
8490         ISD::InputArg MyFlags;
8491         MyFlags.VT = RegisterVT;
8492         MyFlags.ArgVT = VT;
8493         MyFlags.Used = CLI.IsReturnValueUsed;
8494         if (CLI.RetSExt)
8495           MyFlags.Flags.setSExt();
8496         if (CLI.RetZExt)
8497           MyFlags.Flags.setZExt();
8498         if (CLI.IsInReg)
8499           MyFlags.Flags.setInReg();
8500         CLI.Ins.push_back(MyFlags);
8501       }
8502     }
8503   }
8504 
8505   // We push in swifterror return as the last element of CLI.Ins.
8506   ArgListTy &Args = CLI.getArgs();
8507   if (supportSwiftError()) {
8508     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8509       if (Args[i].IsSwiftError) {
8510         ISD::InputArg MyFlags;
8511         MyFlags.VT = getPointerTy(DL);
8512         MyFlags.ArgVT = EVT(getPointerTy(DL));
8513         MyFlags.Flags.setSwiftError();
8514         CLI.Ins.push_back(MyFlags);
8515       }
8516     }
8517   }
8518 
8519   // Handle all of the outgoing arguments.
8520   CLI.Outs.clear();
8521   CLI.OutVals.clear();
8522   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8523     SmallVector<EVT, 4> ValueVTs;
8524     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8525     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8526     Type *FinalType = Args[i].Ty;
8527     if (Args[i].IsByVal)
8528       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8529     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8530         FinalType, CLI.CallConv, CLI.IsVarArg);
8531     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8532          ++Value) {
8533       EVT VT = ValueVTs[Value];
8534       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8535       SDValue Op = SDValue(Args[i].Node.getNode(),
8536                            Args[i].Node.getResNo() + Value);
8537       ISD::ArgFlagsTy Flags;
8538 
8539       // Certain targets (such as MIPS), may have a different ABI alignment
8540       // for a type depending on the context. Give the target a chance to
8541       // specify the alignment it wants.
8542       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8543 
8544       if (Args[i].IsZExt)
8545         Flags.setZExt();
8546       if (Args[i].IsSExt)
8547         Flags.setSExt();
8548       if (Args[i].IsInReg) {
8549         // If we are using vectorcall calling convention, a structure that is
8550         // passed InReg - is surely an HVA
8551         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8552             isa<StructType>(FinalType)) {
8553           // The first value of a structure is marked
8554           if (0 == Value)
8555             Flags.setHvaStart();
8556           Flags.setHva();
8557         }
8558         // Set InReg Flag
8559         Flags.setInReg();
8560       }
8561       if (Args[i].IsSRet)
8562         Flags.setSRet();
8563       if (Args[i].IsSwiftSelf)
8564         Flags.setSwiftSelf();
8565       if (Args[i].IsSwiftError)
8566         Flags.setSwiftError();
8567       if (Args[i].IsByVal)
8568         Flags.setByVal();
8569       if (Args[i].IsInAlloca) {
8570         Flags.setInAlloca();
8571         // Set the byval flag for CCAssignFn callbacks that don't know about
8572         // inalloca.  This way we can know how many bytes we should've allocated
8573         // and how many bytes a callee cleanup function will pop.  If we port
8574         // inalloca to more targets, we'll have to add custom inalloca handling
8575         // in the various CC lowering callbacks.
8576         Flags.setByVal();
8577       }
8578       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8579         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8580         Type *ElementTy = Ty->getElementType();
8581         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8582         // For ByVal, alignment should come from FE.  BE will guess if this
8583         // info is not there but there are cases it cannot get right.
8584         unsigned FrameAlign;
8585         if (Args[i].Alignment)
8586           FrameAlign = Args[i].Alignment;
8587         else
8588           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8589         Flags.setByValAlign(FrameAlign);
8590       }
8591       if (Args[i].IsNest)
8592         Flags.setNest();
8593       if (NeedsRegBlock)
8594         Flags.setInConsecutiveRegs();
8595       Flags.setOrigAlign(OriginalAlignment);
8596 
8597       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8598                                                  CLI.CallConv, VT);
8599       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8600                                                         CLI.CallConv, VT);
8601       SmallVector<SDValue, 4> Parts(NumParts);
8602       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8603 
8604       if (Args[i].IsSExt)
8605         ExtendKind = ISD::SIGN_EXTEND;
8606       else if (Args[i].IsZExt)
8607         ExtendKind = ISD::ZERO_EXTEND;
8608 
8609       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8610       // for now.
8611       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8612           CanLowerReturn) {
8613         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8614                "unexpected use of 'returned'");
8615         // Before passing 'returned' to the target lowering code, ensure that
8616         // either the register MVT and the actual EVT are the same size or that
8617         // the return value and argument are extended in the same way; in these
8618         // cases it's safe to pass the argument register value unchanged as the
8619         // return register value (although it's at the target's option whether
8620         // to do so)
8621         // TODO: allow code generation to take advantage of partially preserved
8622         // registers rather than clobbering the entire register when the
8623         // parameter extension method is not compatible with the return
8624         // extension method
8625         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8626             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8627              CLI.RetZExt == Args[i].IsZExt))
8628           Flags.setReturned();
8629       }
8630 
8631       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8632                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8633 
8634       for (unsigned j = 0; j != NumParts; ++j) {
8635         // if it isn't first piece, alignment must be 1
8636         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8637                                i < CLI.NumFixedArgs,
8638                                i, j*Parts[j].getValueType().getStoreSize());
8639         if (NumParts > 1 && j == 0)
8640           MyFlags.Flags.setSplit();
8641         else if (j != 0) {
8642           MyFlags.Flags.setOrigAlign(1);
8643           if (j == NumParts - 1)
8644             MyFlags.Flags.setSplitEnd();
8645         }
8646 
8647         CLI.Outs.push_back(MyFlags);
8648         CLI.OutVals.push_back(Parts[j]);
8649       }
8650 
8651       if (NeedsRegBlock && Value == NumValues - 1)
8652         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8653     }
8654   }
8655 
8656   SmallVector<SDValue, 4> InVals;
8657   CLI.Chain = LowerCall(CLI, InVals);
8658 
8659   // Update CLI.InVals to use outside of this function.
8660   CLI.InVals = InVals;
8661 
8662   // Verify that the target's LowerCall behaved as expected.
8663   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8664          "LowerCall didn't return a valid chain!");
8665   assert((!CLI.IsTailCall || InVals.empty()) &&
8666          "LowerCall emitted a return value for a tail call!");
8667   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8668          "LowerCall didn't emit the correct number of values!");
8669 
8670   // For a tail call, the return value is merely live-out and there aren't
8671   // any nodes in the DAG representing it. Return a special value to
8672   // indicate that a tail call has been emitted and no more Instructions
8673   // should be processed in the current block.
8674   if (CLI.IsTailCall) {
8675     CLI.DAG.setRoot(CLI.Chain);
8676     return std::make_pair(SDValue(), SDValue());
8677   }
8678 
8679 #ifndef NDEBUG
8680   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8681     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8682     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8683            "LowerCall emitted a value with the wrong type!");
8684   }
8685 #endif
8686 
8687   SmallVector<SDValue, 4> ReturnValues;
8688   if (!CanLowerReturn) {
8689     // The instruction result is the result of loading from the
8690     // hidden sret parameter.
8691     SmallVector<EVT, 1> PVTs;
8692     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8693 
8694     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8695     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8696     EVT PtrVT = PVTs[0];
8697 
8698     unsigned NumValues = RetTys.size();
8699     ReturnValues.resize(NumValues);
8700     SmallVector<SDValue, 4> Chains(NumValues);
8701 
8702     // An aggregate return value cannot wrap around the address space, so
8703     // offsets to its parts don't wrap either.
8704     SDNodeFlags Flags;
8705     Flags.setNoUnsignedWrap(true);
8706 
8707     for (unsigned i = 0; i < NumValues; ++i) {
8708       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8709                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8710                                                         PtrVT), Flags);
8711       SDValue L = CLI.DAG.getLoad(
8712           RetTys[i], CLI.DL, CLI.Chain, Add,
8713           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8714                                             DemoteStackIdx, Offsets[i]),
8715           /* Alignment = */ 1);
8716       ReturnValues[i] = L;
8717       Chains[i] = L.getValue(1);
8718     }
8719 
8720     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8721   } else {
8722     // Collect the legal value parts into potentially illegal values
8723     // that correspond to the original function's return values.
8724     Optional<ISD::NodeType> AssertOp;
8725     if (CLI.RetSExt)
8726       AssertOp = ISD::AssertSext;
8727     else if (CLI.RetZExt)
8728       AssertOp = ISD::AssertZext;
8729     unsigned CurReg = 0;
8730     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8731       EVT VT = RetTys[I];
8732       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8733                                                      CLI.CallConv, VT);
8734       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8735                                                        CLI.CallConv, VT);
8736 
8737       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8738                                               NumRegs, RegisterVT, VT, nullptr,
8739                                               CLI.CallConv, AssertOp));
8740       CurReg += NumRegs;
8741     }
8742 
8743     // For a function returning void, there is no return value. We can't create
8744     // such a node, so we just return a null return value in that case. In
8745     // that case, nothing will actually look at the value.
8746     if (ReturnValues.empty())
8747       return std::make_pair(SDValue(), CLI.Chain);
8748   }
8749 
8750   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8751                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8752   return std::make_pair(Res, CLI.Chain);
8753 }
8754 
8755 void TargetLowering::LowerOperationWrapper(SDNode *N,
8756                                            SmallVectorImpl<SDValue> &Results,
8757                                            SelectionDAG &DAG) const {
8758   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8759     Results.push_back(Res);
8760 }
8761 
8762 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8763   llvm_unreachable("LowerOperation not implemented for this target!");
8764 }
8765 
8766 void
8767 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8768   SDValue Op = getNonRegisterValue(V);
8769   assert((Op.getOpcode() != ISD::CopyFromReg ||
8770           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8771          "Copy from a reg to the same reg!");
8772   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8773 
8774   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8775   // If this is an InlineAsm we have to match the registers required, not the
8776   // notional registers required by the type.
8777 
8778   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8779                    None); // This is not an ABI copy.
8780   SDValue Chain = DAG.getEntryNode();
8781 
8782   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8783                               FuncInfo.PreferredExtendType.end())
8784                                  ? ISD::ANY_EXTEND
8785                                  : FuncInfo.PreferredExtendType[V];
8786   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8787   PendingExports.push_back(Chain);
8788 }
8789 
8790 #include "llvm/CodeGen/SelectionDAGISel.h"
8791 
8792 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8793 /// entry block, return true.  This includes arguments used by switches, since
8794 /// the switch may expand into multiple basic blocks.
8795 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8796   // With FastISel active, we may be splitting blocks, so force creation
8797   // of virtual registers for all non-dead arguments.
8798   if (FastISel)
8799     return A->use_empty();
8800 
8801   const BasicBlock &Entry = A->getParent()->front();
8802   for (const User *U : A->users())
8803     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8804       return false;  // Use not in entry block.
8805 
8806   return true;
8807 }
8808 
8809 using ArgCopyElisionMapTy =
8810     DenseMap<const Argument *,
8811              std::pair<const AllocaInst *, const StoreInst *>>;
8812 
8813 /// Scan the entry block of the function in FuncInfo for arguments that look
8814 /// like copies into a local alloca. Record any copied arguments in
8815 /// ArgCopyElisionCandidates.
8816 static void
8817 findArgumentCopyElisionCandidates(const DataLayout &DL,
8818                                   FunctionLoweringInfo *FuncInfo,
8819                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8820   // Record the state of every static alloca used in the entry block. Argument
8821   // allocas are all used in the entry block, so we need approximately as many
8822   // entries as we have arguments.
8823   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8824   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8825   unsigned NumArgs = FuncInfo->Fn->arg_size();
8826   StaticAllocas.reserve(NumArgs * 2);
8827 
8828   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8829     if (!V)
8830       return nullptr;
8831     V = V->stripPointerCasts();
8832     const auto *AI = dyn_cast<AllocaInst>(V);
8833     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8834       return nullptr;
8835     auto Iter = StaticAllocas.insert({AI, Unknown});
8836     return &Iter.first->second;
8837   };
8838 
8839   // Look for stores of arguments to static allocas. Look through bitcasts and
8840   // GEPs to handle type coercions, as long as the alloca is fully initialized
8841   // by the store. Any non-store use of an alloca escapes it and any subsequent
8842   // unanalyzed store might write it.
8843   // FIXME: Handle structs initialized with multiple stores.
8844   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8845     // Look for stores, and handle non-store uses conservatively.
8846     const auto *SI = dyn_cast<StoreInst>(&I);
8847     if (!SI) {
8848       // We will look through cast uses, so ignore them completely.
8849       if (I.isCast())
8850         continue;
8851       // Ignore debug info intrinsics, they don't escape or store to allocas.
8852       if (isa<DbgInfoIntrinsic>(I))
8853         continue;
8854       // This is an unknown instruction. Assume it escapes or writes to all
8855       // static alloca operands.
8856       for (const Use &U : I.operands()) {
8857         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8858           *Info = StaticAllocaInfo::Clobbered;
8859       }
8860       continue;
8861     }
8862 
8863     // If the stored value is a static alloca, mark it as escaped.
8864     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8865       *Info = StaticAllocaInfo::Clobbered;
8866 
8867     // Check if the destination is a static alloca.
8868     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8869     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8870     if (!Info)
8871       continue;
8872     const AllocaInst *AI = cast<AllocaInst>(Dst);
8873 
8874     // Skip allocas that have been initialized or clobbered.
8875     if (*Info != StaticAllocaInfo::Unknown)
8876       continue;
8877 
8878     // Check if the stored value is an argument, and that this store fully
8879     // initializes the alloca. Don't elide copies from the same argument twice.
8880     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8881     const auto *Arg = dyn_cast<Argument>(Val);
8882     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8883         Arg->getType()->isEmptyTy() ||
8884         DL.getTypeStoreSize(Arg->getType()) !=
8885             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8886         ArgCopyElisionCandidates.count(Arg)) {
8887       *Info = StaticAllocaInfo::Clobbered;
8888       continue;
8889     }
8890 
8891     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8892                       << '\n');
8893 
8894     // Mark this alloca and store for argument copy elision.
8895     *Info = StaticAllocaInfo::Elidable;
8896     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8897 
8898     // Stop scanning if we've seen all arguments. This will happen early in -O0
8899     // builds, which is useful, because -O0 builds have large entry blocks and
8900     // many allocas.
8901     if (ArgCopyElisionCandidates.size() == NumArgs)
8902       break;
8903   }
8904 }
8905 
8906 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8907 /// ArgVal is a load from a suitable fixed stack object.
8908 static void tryToElideArgumentCopy(
8909     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8910     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8911     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8912     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8913     SDValue ArgVal, bool &ArgHasUses) {
8914   // Check if this is a load from a fixed stack object.
8915   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8916   if (!LNode)
8917     return;
8918   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8919   if (!FINode)
8920     return;
8921 
8922   // Check that the fixed stack object is the right size and alignment.
8923   // Look at the alignment that the user wrote on the alloca instead of looking
8924   // at the stack object.
8925   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8926   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8927   const AllocaInst *AI = ArgCopyIter->second.first;
8928   int FixedIndex = FINode->getIndex();
8929   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8930   int OldIndex = AllocaIndex;
8931   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8932   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8933     LLVM_DEBUG(
8934         dbgs() << "  argument copy elision failed due to bad fixed stack "
8935                   "object size\n");
8936     return;
8937   }
8938   unsigned RequiredAlignment = AI->getAlignment();
8939   if (!RequiredAlignment) {
8940     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8941         AI->getAllocatedType());
8942   }
8943   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8944     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8945                          "greater than stack argument alignment ("
8946                       << RequiredAlignment << " vs "
8947                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8948     return;
8949   }
8950 
8951   // Perform the elision. Delete the old stack object and replace its only use
8952   // in the variable info map. Mark the stack object as mutable.
8953   LLVM_DEBUG({
8954     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8955            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8956            << '\n';
8957   });
8958   MFI.RemoveStackObject(OldIndex);
8959   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8960   AllocaIndex = FixedIndex;
8961   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8962   Chains.push_back(ArgVal.getValue(1));
8963 
8964   // Avoid emitting code for the store implementing the copy.
8965   const StoreInst *SI = ArgCopyIter->second.second;
8966   ElidedArgCopyInstrs.insert(SI);
8967 
8968   // Check for uses of the argument again so that we can avoid exporting ArgVal
8969   // if it is't used by anything other than the store.
8970   for (const Value *U : Arg.users()) {
8971     if (U != SI) {
8972       ArgHasUses = true;
8973       break;
8974     }
8975   }
8976 }
8977 
8978 void SelectionDAGISel::LowerArguments(const Function &F) {
8979   SelectionDAG &DAG = SDB->DAG;
8980   SDLoc dl = SDB->getCurSDLoc();
8981   const DataLayout &DL = DAG.getDataLayout();
8982   SmallVector<ISD::InputArg, 16> Ins;
8983 
8984   if (!FuncInfo->CanLowerReturn) {
8985     // Put in an sret pointer parameter before all the other parameters.
8986     SmallVector<EVT, 1> ValueVTs;
8987     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8988                     F.getReturnType()->getPointerTo(
8989                         DAG.getDataLayout().getAllocaAddrSpace()),
8990                     ValueVTs);
8991 
8992     // NOTE: Assuming that a pointer will never break down to more than one VT
8993     // or one register.
8994     ISD::ArgFlagsTy Flags;
8995     Flags.setSRet();
8996     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8997     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8998                          ISD::InputArg::NoArgIndex, 0);
8999     Ins.push_back(RetArg);
9000   }
9001 
9002   // Look for stores of arguments to static allocas. Mark such arguments with a
9003   // flag to ask the target to give us the memory location of that argument if
9004   // available.
9005   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9006   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9007 
9008   // Set up the incoming argument description vector.
9009   for (const Argument &Arg : F.args()) {
9010     unsigned ArgNo = Arg.getArgNo();
9011     SmallVector<EVT, 4> ValueVTs;
9012     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9013     bool isArgValueUsed = !Arg.use_empty();
9014     unsigned PartBase = 0;
9015     Type *FinalType = Arg.getType();
9016     if (Arg.hasAttribute(Attribute::ByVal))
9017       FinalType = cast<PointerType>(FinalType)->getElementType();
9018     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9019         FinalType, F.getCallingConv(), F.isVarArg());
9020     for (unsigned Value = 0, NumValues = ValueVTs.size();
9021          Value != NumValues; ++Value) {
9022       EVT VT = ValueVTs[Value];
9023       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9024       ISD::ArgFlagsTy Flags;
9025 
9026       // Certain targets (such as MIPS), may have a different ABI alignment
9027       // for a type depending on the context. Give the target a chance to
9028       // specify the alignment it wants.
9029       unsigned OriginalAlignment =
9030           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9031 
9032       if (Arg.hasAttribute(Attribute::ZExt))
9033         Flags.setZExt();
9034       if (Arg.hasAttribute(Attribute::SExt))
9035         Flags.setSExt();
9036       if (Arg.hasAttribute(Attribute::InReg)) {
9037         // If we are using vectorcall calling convention, a structure that is
9038         // passed InReg - is surely an HVA
9039         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9040             isa<StructType>(Arg.getType())) {
9041           // The first value of a structure is marked
9042           if (0 == Value)
9043             Flags.setHvaStart();
9044           Flags.setHva();
9045         }
9046         // Set InReg Flag
9047         Flags.setInReg();
9048       }
9049       if (Arg.hasAttribute(Attribute::StructRet))
9050         Flags.setSRet();
9051       if (Arg.hasAttribute(Attribute::SwiftSelf))
9052         Flags.setSwiftSelf();
9053       if (Arg.hasAttribute(Attribute::SwiftError))
9054         Flags.setSwiftError();
9055       if (Arg.hasAttribute(Attribute::ByVal))
9056         Flags.setByVal();
9057       if (Arg.hasAttribute(Attribute::InAlloca)) {
9058         Flags.setInAlloca();
9059         // Set the byval flag for CCAssignFn callbacks that don't know about
9060         // inalloca.  This way we can know how many bytes we should've allocated
9061         // and how many bytes a callee cleanup function will pop.  If we port
9062         // inalloca to more targets, we'll have to add custom inalloca handling
9063         // in the various CC lowering callbacks.
9064         Flags.setByVal();
9065       }
9066       if (F.getCallingConv() == CallingConv::X86_INTR) {
9067         // IA Interrupt passes frame (1st parameter) by value in the stack.
9068         if (ArgNo == 0)
9069           Flags.setByVal();
9070       }
9071       if (Flags.isByVal() || Flags.isInAlloca()) {
9072         PointerType *Ty = cast<PointerType>(Arg.getType());
9073         Type *ElementTy = Ty->getElementType();
9074         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9075         // For ByVal, alignment should be passed from FE.  BE will guess if
9076         // this info is not there but there are cases it cannot get right.
9077         unsigned FrameAlign;
9078         if (Arg.getParamAlignment())
9079           FrameAlign = Arg.getParamAlignment();
9080         else
9081           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9082         Flags.setByValAlign(FrameAlign);
9083       }
9084       if (Arg.hasAttribute(Attribute::Nest))
9085         Flags.setNest();
9086       if (NeedsRegBlock)
9087         Flags.setInConsecutiveRegs();
9088       Flags.setOrigAlign(OriginalAlignment);
9089       if (ArgCopyElisionCandidates.count(&Arg))
9090         Flags.setCopyElisionCandidate();
9091 
9092       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9093           *CurDAG->getContext(), F.getCallingConv(), VT);
9094       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9095           *CurDAG->getContext(), F.getCallingConv(), VT);
9096       for (unsigned i = 0; i != NumRegs; ++i) {
9097         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9098                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9099         if (NumRegs > 1 && i == 0)
9100           MyFlags.Flags.setSplit();
9101         // if it isn't first piece, alignment must be 1
9102         else if (i > 0) {
9103           MyFlags.Flags.setOrigAlign(1);
9104           if (i == NumRegs - 1)
9105             MyFlags.Flags.setSplitEnd();
9106         }
9107         Ins.push_back(MyFlags);
9108       }
9109       if (NeedsRegBlock && Value == NumValues - 1)
9110         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9111       PartBase += VT.getStoreSize();
9112     }
9113   }
9114 
9115   // Call the target to set up the argument values.
9116   SmallVector<SDValue, 8> InVals;
9117   SDValue NewRoot = TLI->LowerFormalArguments(
9118       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9119 
9120   // Verify that the target's LowerFormalArguments behaved as expected.
9121   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9122          "LowerFormalArguments didn't return a valid chain!");
9123   assert(InVals.size() == Ins.size() &&
9124          "LowerFormalArguments didn't emit the correct number of values!");
9125   LLVM_DEBUG({
9126     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9127       assert(InVals[i].getNode() &&
9128              "LowerFormalArguments emitted a null value!");
9129       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9130              "LowerFormalArguments emitted a value with the wrong type!");
9131     }
9132   });
9133 
9134   // Update the DAG with the new chain value resulting from argument lowering.
9135   DAG.setRoot(NewRoot);
9136 
9137   // Set up the argument values.
9138   unsigned i = 0;
9139   if (!FuncInfo->CanLowerReturn) {
9140     // Create a virtual register for the sret pointer, and put in a copy
9141     // from the sret argument into it.
9142     SmallVector<EVT, 1> ValueVTs;
9143     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9144                     F.getReturnType()->getPointerTo(
9145                         DAG.getDataLayout().getAllocaAddrSpace()),
9146                     ValueVTs);
9147     MVT VT = ValueVTs[0].getSimpleVT();
9148     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9149     Optional<ISD::NodeType> AssertOp = None;
9150     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9151                                         nullptr, F.getCallingConv(), AssertOp);
9152 
9153     MachineFunction& MF = SDB->DAG.getMachineFunction();
9154     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9155     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9156     FuncInfo->DemoteRegister = SRetReg;
9157     NewRoot =
9158         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9159     DAG.setRoot(NewRoot);
9160 
9161     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9162     ++i;
9163   }
9164 
9165   SmallVector<SDValue, 4> Chains;
9166   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9167   for (const Argument &Arg : F.args()) {
9168     SmallVector<SDValue, 4> ArgValues;
9169     SmallVector<EVT, 4> ValueVTs;
9170     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9171     unsigned NumValues = ValueVTs.size();
9172     if (NumValues == 0)
9173       continue;
9174 
9175     bool ArgHasUses = !Arg.use_empty();
9176 
9177     // Elide the copying store if the target loaded this argument from a
9178     // suitable fixed stack object.
9179     if (Ins[i].Flags.isCopyElisionCandidate()) {
9180       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9181                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9182                              InVals[i], ArgHasUses);
9183     }
9184 
9185     // If this argument is unused then remember its value. It is used to generate
9186     // debugging information.
9187     bool isSwiftErrorArg =
9188         TLI->supportSwiftError() &&
9189         Arg.hasAttribute(Attribute::SwiftError);
9190     if (!ArgHasUses && !isSwiftErrorArg) {
9191       SDB->setUnusedArgValue(&Arg, InVals[i]);
9192 
9193       // Also remember any frame index for use in FastISel.
9194       if (FrameIndexSDNode *FI =
9195           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9196         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9197     }
9198 
9199     for (unsigned Val = 0; Val != NumValues; ++Val) {
9200       EVT VT = ValueVTs[Val];
9201       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9202                                                       F.getCallingConv(), VT);
9203       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9204           *CurDAG->getContext(), F.getCallingConv(), VT);
9205 
9206       // Even an apparant 'unused' swifterror argument needs to be returned. So
9207       // we do generate a copy for it that can be used on return from the
9208       // function.
9209       if (ArgHasUses || isSwiftErrorArg) {
9210         Optional<ISD::NodeType> AssertOp;
9211         if (Arg.hasAttribute(Attribute::SExt))
9212           AssertOp = ISD::AssertSext;
9213         else if (Arg.hasAttribute(Attribute::ZExt))
9214           AssertOp = ISD::AssertZext;
9215 
9216         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9217                                              PartVT, VT, nullptr,
9218                                              F.getCallingConv(), AssertOp));
9219       }
9220 
9221       i += NumParts;
9222     }
9223 
9224     // We don't need to do anything else for unused arguments.
9225     if (ArgValues.empty())
9226       continue;
9227 
9228     // Note down frame index.
9229     if (FrameIndexSDNode *FI =
9230         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9231       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9232 
9233     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9234                                      SDB->getCurSDLoc());
9235 
9236     SDB->setValue(&Arg, Res);
9237     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9238       // We want to associate the argument with the frame index, among
9239       // involved operands, that correspond to the lowest address. The
9240       // getCopyFromParts function, called earlier, is swapping the order of
9241       // the operands to BUILD_PAIR depending on endianness. The result of
9242       // that swapping is that the least significant bits of the argument will
9243       // be in the first operand of the BUILD_PAIR node, and the most
9244       // significant bits will be in the second operand.
9245       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9246       if (LoadSDNode *LNode =
9247           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9248         if (FrameIndexSDNode *FI =
9249             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9250           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9251     }
9252 
9253     // Update the SwiftErrorVRegDefMap.
9254     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9255       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9256       if (TargetRegisterInfo::isVirtualRegister(Reg))
9257         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9258                                            FuncInfo->SwiftErrorArg, Reg);
9259     }
9260 
9261     // If this argument is live outside of the entry block, insert a copy from
9262     // wherever we got it to the vreg that other BB's will reference it as.
9263     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9264       // If we can, though, try to skip creating an unnecessary vreg.
9265       // FIXME: This isn't very clean... it would be nice to make this more
9266       // general.  It's also subtly incompatible with the hacks FastISel
9267       // uses with vregs.
9268       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9269       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9270         FuncInfo->ValueMap[&Arg] = Reg;
9271         continue;
9272       }
9273     }
9274     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9275       FuncInfo->InitializeRegForValue(&Arg);
9276       SDB->CopyToExportRegsIfNeeded(&Arg);
9277     }
9278   }
9279 
9280   if (!Chains.empty()) {
9281     Chains.push_back(NewRoot);
9282     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9283   }
9284 
9285   DAG.setRoot(NewRoot);
9286 
9287   assert(i == InVals.size() && "Argument register count mismatch!");
9288 
9289   // If any argument copy elisions occurred and we have debug info, update the
9290   // stale frame indices used in the dbg.declare variable info table.
9291   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9292   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9293     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9294       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9295       if (I != ArgCopyElisionFrameIndexMap.end())
9296         VI.Slot = I->second;
9297     }
9298   }
9299 
9300   // Finally, if the target has anything special to do, allow it to do so.
9301   EmitFunctionEntryCode();
9302 }
9303 
9304 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9305 /// ensure constants are generated when needed.  Remember the virtual registers
9306 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9307 /// directly add them, because expansion might result in multiple MBB's for one
9308 /// BB.  As such, the start of the BB might correspond to a different MBB than
9309 /// the end.
9310 void
9311 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9312   const Instruction *TI = LLVMBB->getTerminator();
9313 
9314   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9315 
9316   // Check PHI nodes in successors that expect a value to be available from this
9317   // block.
9318   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9319     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9320     if (!isa<PHINode>(SuccBB->begin())) continue;
9321     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9322 
9323     // If this terminator has multiple identical successors (common for
9324     // switches), only handle each succ once.
9325     if (!SuccsHandled.insert(SuccMBB).second)
9326       continue;
9327 
9328     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9329 
9330     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9331     // nodes and Machine PHI nodes, but the incoming operands have not been
9332     // emitted yet.
9333     for (const PHINode &PN : SuccBB->phis()) {
9334       // Ignore dead phi's.
9335       if (PN.use_empty())
9336         continue;
9337 
9338       // Skip empty types
9339       if (PN.getType()->isEmptyTy())
9340         continue;
9341 
9342       unsigned Reg;
9343       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9344 
9345       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9346         unsigned &RegOut = ConstantsOut[C];
9347         if (RegOut == 0) {
9348           RegOut = FuncInfo.CreateRegs(C->getType());
9349           CopyValueToVirtualRegister(C, RegOut);
9350         }
9351         Reg = RegOut;
9352       } else {
9353         DenseMap<const Value *, unsigned>::iterator I =
9354           FuncInfo.ValueMap.find(PHIOp);
9355         if (I != FuncInfo.ValueMap.end())
9356           Reg = I->second;
9357         else {
9358           assert(isa<AllocaInst>(PHIOp) &&
9359                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9360                  "Didn't codegen value into a register!??");
9361           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9362           CopyValueToVirtualRegister(PHIOp, Reg);
9363         }
9364       }
9365 
9366       // Remember that this register needs to added to the machine PHI node as
9367       // the input for this MBB.
9368       SmallVector<EVT, 4> ValueVTs;
9369       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9370       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9371       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9372         EVT VT = ValueVTs[vti];
9373         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9374         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9375           FuncInfo.PHINodesToUpdate.push_back(
9376               std::make_pair(&*MBBI++, Reg + i));
9377         Reg += NumRegisters;
9378       }
9379     }
9380   }
9381 
9382   ConstantsOut.clear();
9383 }
9384 
9385 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9386 /// is 0.
9387 MachineBasicBlock *
9388 SelectionDAGBuilder::StackProtectorDescriptor::
9389 AddSuccessorMBB(const BasicBlock *BB,
9390                 MachineBasicBlock *ParentMBB,
9391                 bool IsLikely,
9392                 MachineBasicBlock *SuccMBB) {
9393   // If SuccBB has not been created yet, create it.
9394   if (!SuccMBB) {
9395     MachineFunction *MF = ParentMBB->getParent();
9396     MachineFunction::iterator BBI(ParentMBB);
9397     SuccMBB = MF->CreateMachineBasicBlock(BB);
9398     MF->insert(++BBI, SuccMBB);
9399   }
9400   // Add it as a successor of ParentMBB.
9401   ParentMBB->addSuccessor(
9402       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9403   return SuccMBB;
9404 }
9405 
9406 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9407   MachineFunction::iterator I(MBB);
9408   if (++I == FuncInfo.MF->end())
9409     return nullptr;
9410   return &*I;
9411 }
9412 
9413 /// During lowering new call nodes can be created (such as memset, etc.).
9414 /// Those will become new roots of the current DAG, but complications arise
9415 /// when they are tail calls. In such cases, the call lowering will update
9416 /// the root, but the builder still needs to know that a tail call has been
9417 /// lowered in order to avoid generating an additional return.
9418 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9419   // If the node is null, we do have a tail call.
9420   if (MaybeTC.getNode() != nullptr)
9421     DAG.setRoot(MaybeTC);
9422   else
9423     HasTailCall = true;
9424 }
9425 
9426 uint64_t
9427 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9428                                        unsigned First, unsigned Last) const {
9429   assert(Last >= First);
9430   const APInt &LowCase = Clusters[First].Low->getValue();
9431   const APInt &HighCase = Clusters[Last].High->getValue();
9432   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9433 
9434   // FIXME: A range of consecutive cases has 100% density, but only requires one
9435   // comparison to lower. We should discriminate against such consecutive ranges
9436   // in jump tables.
9437 
9438   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9439 }
9440 
9441 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9442     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9443     unsigned Last) const {
9444   assert(Last >= First);
9445   assert(TotalCases[Last] >= TotalCases[First]);
9446   uint64_t NumCases =
9447       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9448   return NumCases;
9449 }
9450 
9451 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9452                                          unsigned First, unsigned Last,
9453                                          const SwitchInst *SI,
9454                                          MachineBasicBlock *DefaultMBB,
9455                                          CaseCluster &JTCluster) {
9456   assert(First <= Last);
9457 
9458   auto Prob = BranchProbability::getZero();
9459   unsigned NumCmps = 0;
9460   std::vector<MachineBasicBlock*> Table;
9461   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9462 
9463   // Initialize probabilities in JTProbs.
9464   for (unsigned I = First; I <= Last; ++I)
9465     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9466 
9467   for (unsigned I = First; I <= Last; ++I) {
9468     assert(Clusters[I].Kind == CC_Range);
9469     Prob += Clusters[I].Prob;
9470     const APInt &Low = Clusters[I].Low->getValue();
9471     const APInt &High = Clusters[I].High->getValue();
9472     NumCmps += (Low == High) ? 1 : 2;
9473     if (I != First) {
9474       // Fill the gap between this and the previous cluster.
9475       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9476       assert(PreviousHigh.slt(Low));
9477       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9478       for (uint64_t J = 0; J < Gap; J++)
9479         Table.push_back(DefaultMBB);
9480     }
9481     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9482     for (uint64_t J = 0; J < ClusterSize; ++J)
9483       Table.push_back(Clusters[I].MBB);
9484     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9485   }
9486 
9487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9488   unsigned NumDests = JTProbs.size();
9489   if (TLI.isSuitableForBitTests(
9490           NumDests, NumCmps, Clusters[First].Low->getValue(),
9491           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9492     // Clusters[First..Last] should be lowered as bit tests instead.
9493     return false;
9494   }
9495 
9496   // Create the MBB that will load from and jump through the table.
9497   // Note: We create it here, but it's not inserted into the function yet.
9498   MachineFunction *CurMF = FuncInfo.MF;
9499   MachineBasicBlock *JumpTableMBB =
9500       CurMF->CreateMachineBasicBlock(SI->getParent());
9501 
9502   // Add successors. Note: use table order for determinism.
9503   SmallPtrSet<MachineBasicBlock *, 8> Done;
9504   for (MachineBasicBlock *Succ : Table) {
9505     if (Done.count(Succ))
9506       continue;
9507     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9508     Done.insert(Succ);
9509   }
9510   JumpTableMBB->normalizeSuccProbs();
9511 
9512   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9513                      ->createJumpTableIndex(Table);
9514 
9515   // Set up the jump table info.
9516   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9517   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9518                       Clusters[Last].High->getValue(), SI->getCondition(),
9519                       nullptr, false);
9520   JTCases.emplace_back(std::move(JTH), std::move(JT));
9521 
9522   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9523                                      JTCases.size() - 1, Prob);
9524   return true;
9525 }
9526 
9527 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9528                                          const SwitchInst *SI,
9529                                          MachineBasicBlock *DefaultMBB) {
9530 #ifndef NDEBUG
9531   // Clusters must be non-empty, sorted, and only contain Range clusters.
9532   assert(!Clusters.empty());
9533   for (CaseCluster &C : Clusters)
9534     assert(C.Kind == CC_Range);
9535   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9536     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9537 #endif
9538 
9539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9540   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9541     return;
9542 
9543   const int64_t N = Clusters.size();
9544   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9545   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9546 
9547   if (N < 2 || N < MinJumpTableEntries)
9548     return;
9549 
9550   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9551   SmallVector<unsigned, 8> TotalCases(N);
9552   for (unsigned i = 0; i < N; ++i) {
9553     const APInt &Hi = Clusters[i].High->getValue();
9554     const APInt &Lo = Clusters[i].Low->getValue();
9555     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9556     if (i != 0)
9557       TotalCases[i] += TotalCases[i - 1];
9558   }
9559 
9560   // Cheap case: the whole range may be suitable for jump table.
9561   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9562   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9563   assert(NumCases < UINT64_MAX / 100);
9564   assert(Range >= NumCases);
9565   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9566     CaseCluster JTCluster;
9567     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9568       Clusters[0] = JTCluster;
9569       Clusters.resize(1);
9570       return;
9571     }
9572   }
9573 
9574   // The algorithm below is not suitable for -O0.
9575   if (TM.getOptLevel() == CodeGenOpt::None)
9576     return;
9577 
9578   // Split Clusters into minimum number of dense partitions. The algorithm uses
9579   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9580   // for the Case Statement'" (1994), but builds the MinPartitions array in
9581   // reverse order to make it easier to reconstruct the partitions in ascending
9582   // order. In the choice between two optimal partitionings, it picks the one
9583   // which yields more jump tables.
9584 
9585   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9586   SmallVector<unsigned, 8> MinPartitions(N);
9587   // LastElement[i] is the last element of the partition starting at i.
9588   SmallVector<unsigned, 8> LastElement(N);
9589   // PartitionsScore[i] is used to break ties when choosing between two
9590   // partitionings resulting in the same number of partitions.
9591   SmallVector<unsigned, 8> PartitionsScore(N);
9592   // For PartitionsScore, a small number of comparisons is considered as good as
9593   // a jump table and a single comparison is considered better than a jump
9594   // table.
9595   enum PartitionScores : unsigned {
9596     NoTable = 0,
9597     Table = 1,
9598     FewCases = 1,
9599     SingleCase = 2
9600   };
9601 
9602   // Base case: There is only one way to partition Clusters[N-1].
9603   MinPartitions[N - 1] = 1;
9604   LastElement[N - 1] = N - 1;
9605   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9606 
9607   // Note: loop indexes are signed to avoid underflow.
9608   for (int64_t i = N - 2; i >= 0; i--) {
9609     // Find optimal partitioning of Clusters[i..N-1].
9610     // Baseline: Put Clusters[i] into a partition on its own.
9611     MinPartitions[i] = MinPartitions[i + 1] + 1;
9612     LastElement[i] = i;
9613     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9614 
9615     // Search for a solution that results in fewer partitions.
9616     for (int64_t j = N - 1; j > i; j--) {
9617       // Try building a partition from Clusters[i..j].
9618       uint64_t Range = getJumpTableRange(Clusters, i, j);
9619       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9620       assert(NumCases < UINT64_MAX / 100);
9621       assert(Range >= NumCases);
9622       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9623         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9624         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9625         int64_t NumEntries = j - i + 1;
9626 
9627         if (NumEntries == 1)
9628           Score += PartitionScores::SingleCase;
9629         else if (NumEntries <= SmallNumberOfEntries)
9630           Score += PartitionScores::FewCases;
9631         else if (NumEntries >= MinJumpTableEntries)
9632           Score += PartitionScores::Table;
9633 
9634         // If this leads to fewer partitions, or to the same number of
9635         // partitions with better score, it is a better partitioning.
9636         if (NumPartitions < MinPartitions[i] ||
9637             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9638           MinPartitions[i] = NumPartitions;
9639           LastElement[i] = j;
9640           PartitionsScore[i] = Score;
9641         }
9642       }
9643     }
9644   }
9645 
9646   // Iterate over the partitions, replacing some with jump tables in-place.
9647   unsigned DstIndex = 0;
9648   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9649     Last = LastElement[First];
9650     assert(Last >= First);
9651     assert(DstIndex <= First);
9652     unsigned NumClusters = Last - First + 1;
9653 
9654     CaseCluster JTCluster;
9655     if (NumClusters >= MinJumpTableEntries &&
9656         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9657       Clusters[DstIndex++] = JTCluster;
9658     } else {
9659       for (unsigned I = First; I <= Last; ++I)
9660         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9661     }
9662   }
9663   Clusters.resize(DstIndex);
9664 }
9665 
9666 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9667                                         unsigned First, unsigned Last,
9668                                         const SwitchInst *SI,
9669                                         CaseCluster &BTCluster) {
9670   assert(First <= Last);
9671   if (First == Last)
9672     return false;
9673 
9674   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9675   unsigned NumCmps = 0;
9676   for (int64_t I = First; I <= Last; ++I) {
9677     assert(Clusters[I].Kind == CC_Range);
9678     Dests.set(Clusters[I].MBB->getNumber());
9679     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9680   }
9681   unsigned NumDests = Dests.count();
9682 
9683   APInt Low = Clusters[First].Low->getValue();
9684   APInt High = Clusters[Last].High->getValue();
9685   assert(Low.slt(High));
9686 
9687   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9688   const DataLayout &DL = DAG.getDataLayout();
9689   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9690     return false;
9691 
9692   APInt LowBound;
9693   APInt CmpRange;
9694 
9695   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9696   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9697          "Case range must fit in bit mask!");
9698 
9699   // Check if the clusters cover a contiguous range such that no value in the
9700   // range will jump to the default statement.
9701   bool ContiguousRange = true;
9702   for (int64_t I = First + 1; I <= Last; ++I) {
9703     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9704       ContiguousRange = false;
9705       break;
9706     }
9707   }
9708 
9709   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9710     // Optimize the case where all the case values fit in a word without having
9711     // to subtract minValue. In this case, we can optimize away the subtraction.
9712     LowBound = APInt::getNullValue(Low.getBitWidth());
9713     CmpRange = High;
9714     ContiguousRange = false;
9715   } else {
9716     LowBound = Low;
9717     CmpRange = High - Low;
9718   }
9719 
9720   CaseBitsVector CBV;
9721   auto TotalProb = BranchProbability::getZero();
9722   for (unsigned i = First; i <= Last; ++i) {
9723     // Find the CaseBits for this destination.
9724     unsigned j;
9725     for (j = 0; j < CBV.size(); ++j)
9726       if (CBV[j].BB == Clusters[i].MBB)
9727         break;
9728     if (j == CBV.size())
9729       CBV.push_back(
9730           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9731     CaseBits *CB = &CBV[j];
9732 
9733     // Update Mask, Bits and ExtraProb.
9734     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9735     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9736     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9737     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9738     CB->Bits += Hi - Lo + 1;
9739     CB->ExtraProb += Clusters[i].Prob;
9740     TotalProb += Clusters[i].Prob;
9741   }
9742 
9743   BitTestInfo BTI;
9744   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
9745     // Sort by probability first, number of bits second, bit mask third.
9746     if (a.ExtraProb != b.ExtraProb)
9747       return a.ExtraProb > b.ExtraProb;
9748     if (a.Bits != b.Bits)
9749       return a.Bits > b.Bits;
9750     return a.Mask < b.Mask;
9751   });
9752 
9753   for (auto &CB : CBV) {
9754     MachineBasicBlock *BitTestBB =
9755         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9756     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9757   }
9758   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9759                             SI->getCondition(), -1U, MVT::Other, false,
9760                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9761                             TotalProb);
9762 
9763   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9764                                     BitTestCases.size() - 1, TotalProb);
9765   return true;
9766 }
9767 
9768 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9769                                               const SwitchInst *SI) {
9770 // Partition Clusters into as few subsets as possible, where each subset has a
9771 // range that fits in a machine word and has <= 3 unique destinations.
9772 
9773 #ifndef NDEBUG
9774   // Clusters must be sorted and contain Range or JumpTable clusters.
9775   assert(!Clusters.empty());
9776   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9777   for (const CaseCluster &C : Clusters)
9778     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9779   for (unsigned i = 1; i < Clusters.size(); ++i)
9780     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9781 #endif
9782 
9783   // The algorithm below is not suitable for -O0.
9784   if (TM.getOptLevel() == CodeGenOpt::None)
9785     return;
9786 
9787   // If target does not have legal shift left, do not emit bit tests at all.
9788   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9789   const DataLayout &DL = DAG.getDataLayout();
9790 
9791   EVT PTy = TLI.getPointerTy(DL);
9792   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9793     return;
9794 
9795   int BitWidth = PTy.getSizeInBits();
9796   const int64_t N = Clusters.size();
9797 
9798   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9799   SmallVector<unsigned, 8> MinPartitions(N);
9800   // LastElement[i] is the last element of the partition starting at i.
9801   SmallVector<unsigned, 8> LastElement(N);
9802 
9803   // FIXME: This might not be the best algorithm for finding bit test clusters.
9804 
9805   // Base case: There is only one way to partition Clusters[N-1].
9806   MinPartitions[N - 1] = 1;
9807   LastElement[N - 1] = N - 1;
9808 
9809   // Note: loop indexes are signed to avoid underflow.
9810   for (int64_t i = N - 2; i >= 0; --i) {
9811     // Find optimal partitioning of Clusters[i..N-1].
9812     // Baseline: Put Clusters[i] into a partition on its own.
9813     MinPartitions[i] = MinPartitions[i + 1] + 1;
9814     LastElement[i] = i;
9815 
9816     // Search for a solution that results in fewer partitions.
9817     // Note: the search is limited by BitWidth, reducing time complexity.
9818     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9819       // Try building a partition from Clusters[i..j].
9820 
9821       // Check the range.
9822       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9823                                Clusters[j].High->getValue(), DL))
9824         continue;
9825 
9826       // Check nbr of destinations and cluster types.
9827       // FIXME: This works, but doesn't seem very efficient.
9828       bool RangesOnly = true;
9829       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9830       for (int64_t k = i; k <= j; k++) {
9831         if (Clusters[k].Kind != CC_Range) {
9832           RangesOnly = false;
9833           break;
9834         }
9835         Dests.set(Clusters[k].MBB->getNumber());
9836       }
9837       if (!RangesOnly || Dests.count() > 3)
9838         break;
9839 
9840       // Check if it's a better partition.
9841       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9842       if (NumPartitions < MinPartitions[i]) {
9843         // Found a better partition.
9844         MinPartitions[i] = NumPartitions;
9845         LastElement[i] = j;
9846       }
9847     }
9848   }
9849 
9850   // Iterate over the partitions, replacing with bit-test clusters in-place.
9851   unsigned DstIndex = 0;
9852   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9853     Last = LastElement[First];
9854     assert(First <= Last);
9855     assert(DstIndex <= First);
9856 
9857     CaseCluster BitTestCluster;
9858     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9859       Clusters[DstIndex++] = BitTestCluster;
9860     } else {
9861       size_t NumClusters = Last - First + 1;
9862       std::memmove(&Clusters[DstIndex], &Clusters[First],
9863                    sizeof(Clusters[0]) * NumClusters);
9864       DstIndex += NumClusters;
9865     }
9866   }
9867   Clusters.resize(DstIndex);
9868 }
9869 
9870 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9871                                         MachineBasicBlock *SwitchMBB,
9872                                         MachineBasicBlock *DefaultMBB) {
9873   MachineFunction *CurMF = FuncInfo.MF;
9874   MachineBasicBlock *NextMBB = nullptr;
9875   MachineFunction::iterator BBI(W.MBB);
9876   if (++BBI != FuncInfo.MF->end())
9877     NextMBB = &*BBI;
9878 
9879   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9880 
9881   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9882 
9883   if (Size == 2 && W.MBB == SwitchMBB) {
9884     // If any two of the cases has the same destination, and if one value
9885     // is the same as the other, but has one bit unset that the other has set,
9886     // use bit manipulation to do two compares at once.  For example:
9887     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9888     // TODO: This could be extended to merge any 2 cases in switches with 3
9889     // cases.
9890     // TODO: Handle cases where W.CaseBB != SwitchBB.
9891     CaseCluster &Small = *W.FirstCluster;
9892     CaseCluster &Big = *W.LastCluster;
9893 
9894     if (Small.Low == Small.High && Big.Low == Big.High &&
9895         Small.MBB == Big.MBB) {
9896       const APInt &SmallValue = Small.Low->getValue();
9897       const APInt &BigValue = Big.Low->getValue();
9898 
9899       // Check that there is only one bit different.
9900       APInt CommonBit = BigValue ^ SmallValue;
9901       if (CommonBit.isPowerOf2()) {
9902         SDValue CondLHS = getValue(Cond);
9903         EVT VT = CondLHS.getValueType();
9904         SDLoc DL = getCurSDLoc();
9905 
9906         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9907                                  DAG.getConstant(CommonBit, DL, VT));
9908         SDValue Cond = DAG.getSetCC(
9909             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9910             ISD::SETEQ);
9911 
9912         // Update successor info.
9913         // Both Small and Big will jump to Small.BB, so we sum up the
9914         // probabilities.
9915         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9916         if (BPI)
9917           addSuccessorWithProb(
9918               SwitchMBB, DefaultMBB,
9919               // The default destination is the first successor in IR.
9920               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9921         else
9922           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9923 
9924         // Insert the true branch.
9925         SDValue BrCond =
9926             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9927                         DAG.getBasicBlock(Small.MBB));
9928         // Insert the false branch.
9929         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9930                              DAG.getBasicBlock(DefaultMBB));
9931 
9932         DAG.setRoot(BrCond);
9933         return;
9934       }
9935     }
9936   }
9937 
9938   if (TM.getOptLevel() != CodeGenOpt::None) {
9939     // Here, we order cases by probability so the most likely case will be
9940     // checked first. However, two clusters can have the same probability in
9941     // which case their relative ordering is non-deterministic. So we use Low
9942     // as a tie-breaker as clusters are guaranteed to never overlap.
9943     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9944                [](const CaseCluster &a, const CaseCluster &b) {
9945       return a.Prob != b.Prob ?
9946              a.Prob > b.Prob :
9947              a.Low->getValue().slt(b.Low->getValue());
9948     });
9949 
9950     // Rearrange the case blocks so that the last one falls through if possible
9951     // without changing the order of probabilities.
9952     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9953       --I;
9954       if (I->Prob > W.LastCluster->Prob)
9955         break;
9956       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9957         std::swap(*I, *W.LastCluster);
9958         break;
9959       }
9960     }
9961   }
9962 
9963   // Compute total probability.
9964   BranchProbability DefaultProb = W.DefaultProb;
9965   BranchProbability UnhandledProbs = DefaultProb;
9966   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9967     UnhandledProbs += I->Prob;
9968 
9969   MachineBasicBlock *CurMBB = W.MBB;
9970   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9971     MachineBasicBlock *Fallthrough;
9972     if (I == W.LastCluster) {
9973       // For the last cluster, fall through to the default destination.
9974       Fallthrough = DefaultMBB;
9975     } else {
9976       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9977       CurMF->insert(BBI, Fallthrough);
9978       // Put Cond in a virtual register to make it available from the new blocks.
9979       ExportFromCurrentBlock(Cond);
9980     }
9981     UnhandledProbs -= I->Prob;
9982 
9983     switch (I->Kind) {
9984       case CC_JumpTable: {
9985         // FIXME: Optimize away range check based on pivot comparisons.
9986         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9987         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9988 
9989         // The jump block hasn't been inserted yet; insert it here.
9990         MachineBasicBlock *JumpMBB = JT->MBB;
9991         CurMF->insert(BBI, JumpMBB);
9992 
9993         auto JumpProb = I->Prob;
9994         auto FallthroughProb = UnhandledProbs;
9995 
9996         // If the default statement is a target of the jump table, we evenly
9997         // distribute the default probability to successors of CurMBB. Also
9998         // update the probability on the edge from JumpMBB to Fallthrough.
9999         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10000                                               SE = JumpMBB->succ_end();
10001              SI != SE; ++SI) {
10002           if (*SI == DefaultMBB) {
10003             JumpProb += DefaultProb / 2;
10004             FallthroughProb -= DefaultProb / 2;
10005             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10006             JumpMBB->normalizeSuccProbs();
10007             break;
10008           }
10009         }
10010 
10011         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10012         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10013         CurMBB->normalizeSuccProbs();
10014 
10015         // The jump table header will be inserted in our current block, do the
10016         // range check, and fall through to our fallthrough block.
10017         JTH->HeaderBB = CurMBB;
10018         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10019 
10020         // If we're in the right place, emit the jump table header right now.
10021         if (CurMBB == SwitchMBB) {
10022           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10023           JTH->Emitted = true;
10024         }
10025         break;
10026       }
10027       case CC_BitTests: {
10028         // FIXME: Optimize away range check based on pivot comparisons.
10029         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10030 
10031         // The bit test blocks haven't been inserted yet; insert them here.
10032         for (BitTestCase &BTC : BTB->Cases)
10033           CurMF->insert(BBI, BTC.ThisBB);
10034 
10035         // Fill in fields of the BitTestBlock.
10036         BTB->Parent = CurMBB;
10037         BTB->Default = Fallthrough;
10038 
10039         BTB->DefaultProb = UnhandledProbs;
10040         // If the cases in bit test don't form a contiguous range, we evenly
10041         // distribute the probability on the edge to Fallthrough to two
10042         // successors of CurMBB.
10043         if (!BTB->ContiguousRange) {
10044           BTB->Prob += DefaultProb / 2;
10045           BTB->DefaultProb -= DefaultProb / 2;
10046         }
10047 
10048         // If we're in the right place, emit the bit test header right now.
10049         if (CurMBB == SwitchMBB) {
10050           visitBitTestHeader(*BTB, SwitchMBB);
10051           BTB->Emitted = true;
10052         }
10053         break;
10054       }
10055       case CC_Range: {
10056         const Value *RHS, *LHS, *MHS;
10057         ISD::CondCode CC;
10058         if (I->Low == I->High) {
10059           // Check Cond == I->Low.
10060           CC = ISD::SETEQ;
10061           LHS = Cond;
10062           RHS=I->Low;
10063           MHS = nullptr;
10064         } else {
10065           // Check I->Low <= Cond <= I->High.
10066           CC = ISD::SETLE;
10067           LHS = I->Low;
10068           MHS = Cond;
10069           RHS = I->High;
10070         }
10071 
10072         // The false probability is the sum of all unhandled cases.
10073         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10074                      getCurSDLoc(), I->Prob, UnhandledProbs);
10075 
10076         if (CurMBB == SwitchMBB)
10077           visitSwitchCase(CB, SwitchMBB);
10078         else
10079           SwitchCases.push_back(CB);
10080 
10081         break;
10082       }
10083     }
10084     CurMBB = Fallthrough;
10085   }
10086 }
10087 
10088 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10089                                               CaseClusterIt First,
10090                                               CaseClusterIt Last) {
10091   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10092     if (X.Prob != CC.Prob)
10093       return X.Prob > CC.Prob;
10094 
10095     // Ties are broken by comparing the case value.
10096     return X.Low->getValue().slt(CC.Low->getValue());
10097   });
10098 }
10099 
10100 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10101                                         const SwitchWorkListItem &W,
10102                                         Value *Cond,
10103                                         MachineBasicBlock *SwitchMBB) {
10104   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10105          "Clusters not sorted?");
10106 
10107   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10108 
10109   // Balance the tree based on branch probabilities to create a near-optimal (in
10110   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10111   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10112   CaseClusterIt LastLeft = W.FirstCluster;
10113   CaseClusterIt FirstRight = W.LastCluster;
10114   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10115   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10116 
10117   // Move LastLeft and FirstRight towards each other from opposite directions to
10118   // find a partitioning of the clusters which balances the probability on both
10119   // sides. If LeftProb and RightProb are equal, alternate which side is
10120   // taken to ensure 0-probability nodes are distributed evenly.
10121   unsigned I = 0;
10122   while (LastLeft + 1 < FirstRight) {
10123     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10124       LeftProb += (++LastLeft)->Prob;
10125     else
10126       RightProb += (--FirstRight)->Prob;
10127     I++;
10128   }
10129 
10130   while (true) {
10131     // Our binary search tree differs from a typical BST in that ours can have up
10132     // to three values in each leaf. The pivot selection above doesn't take that
10133     // into account, which means the tree might require more nodes and be less
10134     // efficient. We compensate for this here.
10135 
10136     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10137     unsigned NumRight = W.LastCluster - FirstRight + 1;
10138 
10139     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10140       // If one side has less than 3 clusters, and the other has more than 3,
10141       // consider taking a cluster from the other side.
10142 
10143       if (NumLeft < NumRight) {
10144         // Consider moving the first cluster on the right to the left side.
10145         CaseCluster &CC = *FirstRight;
10146         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10147         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10148         if (LeftSideRank <= RightSideRank) {
10149           // Moving the cluster to the left does not demote it.
10150           ++LastLeft;
10151           ++FirstRight;
10152           continue;
10153         }
10154       } else {
10155         assert(NumRight < NumLeft);
10156         // Consider moving the last element on the left to the right side.
10157         CaseCluster &CC = *LastLeft;
10158         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10159         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10160         if (RightSideRank <= LeftSideRank) {
10161           // Moving the cluster to the right does not demot it.
10162           --LastLeft;
10163           --FirstRight;
10164           continue;
10165         }
10166       }
10167     }
10168     break;
10169   }
10170 
10171   assert(LastLeft + 1 == FirstRight);
10172   assert(LastLeft >= W.FirstCluster);
10173   assert(FirstRight <= W.LastCluster);
10174 
10175   // Use the first element on the right as pivot since we will make less-than
10176   // comparisons against it.
10177   CaseClusterIt PivotCluster = FirstRight;
10178   assert(PivotCluster > W.FirstCluster);
10179   assert(PivotCluster <= W.LastCluster);
10180 
10181   CaseClusterIt FirstLeft = W.FirstCluster;
10182   CaseClusterIt LastRight = W.LastCluster;
10183 
10184   const ConstantInt *Pivot = PivotCluster->Low;
10185 
10186   // New blocks will be inserted immediately after the current one.
10187   MachineFunction::iterator BBI(W.MBB);
10188   ++BBI;
10189 
10190   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10191   // we can branch to its destination directly if it's squeezed exactly in
10192   // between the known lower bound and Pivot - 1.
10193   MachineBasicBlock *LeftMBB;
10194   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10195       FirstLeft->Low == W.GE &&
10196       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10197     LeftMBB = FirstLeft->MBB;
10198   } else {
10199     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10200     FuncInfo.MF->insert(BBI, LeftMBB);
10201     WorkList.push_back(
10202         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10203     // Put Cond in a virtual register to make it available from the new blocks.
10204     ExportFromCurrentBlock(Cond);
10205   }
10206 
10207   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10208   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10209   // directly if RHS.High equals the current upper bound.
10210   MachineBasicBlock *RightMBB;
10211   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10212       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10213     RightMBB = FirstRight->MBB;
10214   } else {
10215     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10216     FuncInfo.MF->insert(BBI, RightMBB);
10217     WorkList.push_back(
10218         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10219     // Put Cond in a virtual register to make it available from the new blocks.
10220     ExportFromCurrentBlock(Cond);
10221   }
10222 
10223   // Create the CaseBlock record that will be used to lower the branch.
10224   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10225                getCurSDLoc(), LeftProb, RightProb);
10226 
10227   if (W.MBB == SwitchMBB)
10228     visitSwitchCase(CB, SwitchMBB);
10229   else
10230     SwitchCases.push_back(CB);
10231 }
10232 
10233 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10234 // from the swith statement.
10235 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10236                                             BranchProbability PeeledCaseProb) {
10237   if (PeeledCaseProb == BranchProbability::getOne())
10238     return BranchProbability::getZero();
10239   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10240 
10241   uint32_t Numerator = CaseProb.getNumerator();
10242   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10243   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10244 }
10245 
10246 // Try to peel the top probability case if it exceeds the threshold.
10247 // Return current MachineBasicBlock for the switch statement if the peeling
10248 // does not occur.
10249 // If the peeling is performed, return the newly created MachineBasicBlock
10250 // for the peeled switch statement. Also update Clusters to remove the peeled
10251 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10252 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10253     const SwitchInst &SI, CaseClusterVector &Clusters,
10254     BranchProbability &PeeledCaseProb) {
10255   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10256   // Don't perform if there is only one cluster or optimizing for size.
10257   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10258       TM.getOptLevel() == CodeGenOpt::None ||
10259       SwitchMBB->getParent()->getFunction().optForMinSize())
10260     return SwitchMBB;
10261 
10262   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10263   unsigned PeeledCaseIndex = 0;
10264   bool SwitchPeeled = false;
10265   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10266     CaseCluster &CC = Clusters[Index];
10267     if (CC.Prob < TopCaseProb)
10268       continue;
10269     TopCaseProb = CC.Prob;
10270     PeeledCaseIndex = Index;
10271     SwitchPeeled = true;
10272   }
10273   if (!SwitchPeeled)
10274     return SwitchMBB;
10275 
10276   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10277                     << TopCaseProb << "\n");
10278 
10279   // Record the MBB for the peeled switch statement.
10280   MachineFunction::iterator BBI(SwitchMBB);
10281   ++BBI;
10282   MachineBasicBlock *PeeledSwitchMBB =
10283       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10284   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10285 
10286   ExportFromCurrentBlock(SI.getCondition());
10287   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10288   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10289                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10290   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10291 
10292   Clusters.erase(PeeledCaseIt);
10293   for (CaseCluster &CC : Clusters) {
10294     LLVM_DEBUG(
10295         dbgs() << "Scale the probablity for one cluster, before scaling: "
10296                << CC.Prob << "\n");
10297     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10298     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10299   }
10300   PeeledCaseProb = TopCaseProb;
10301   return PeeledSwitchMBB;
10302 }
10303 
10304 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10305   // Extract cases from the switch.
10306   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10307   CaseClusterVector Clusters;
10308   Clusters.reserve(SI.getNumCases());
10309   for (auto I : SI.cases()) {
10310     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10311     const ConstantInt *CaseVal = I.getCaseValue();
10312     BranchProbability Prob =
10313         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10314             : BranchProbability(1, SI.getNumCases() + 1);
10315     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10316   }
10317 
10318   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10319 
10320   // Cluster adjacent cases with the same destination. We do this at all
10321   // optimization levels because it's cheap to do and will make codegen faster
10322   // if there are many clusters.
10323   sortAndRangeify(Clusters);
10324 
10325   if (TM.getOptLevel() != CodeGenOpt::None) {
10326     // Replace an unreachable default with the most popular destination.
10327     // FIXME: Exploit unreachable default more aggressively.
10328     bool UnreachableDefault =
10329         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10330     if (UnreachableDefault && !Clusters.empty()) {
10331       DenseMap<const BasicBlock *, unsigned> Popularity;
10332       unsigned MaxPop = 0;
10333       const BasicBlock *MaxBB = nullptr;
10334       for (auto I : SI.cases()) {
10335         const BasicBlock *BB = I.getCaseSuccessor();
10336         if (++Popularity[BB] > MaxPop) {
10337           MaxPop = Popularity[BB];
10338           MaxBB = BB;
10339         }
10340       }
10341       // Set new default.
10342       assert(MaxPop > 0 && MaxBB);
10343       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10344 
10345       // Remove cases that were pointing to the destination that is now the
10346       // default.
10347       CaseClusterVector New;
10348       New.reserve(Clusters.size());
10349       for (CaseCluster &CC : Clusters) {
10350         if (CC.MBB != DefaultMBB)
10351           New.push_back(CC);
10352       }
10353       Clusters = std::move(New);
10354     }
10355   }
10356 
10357   // The branch probablity of the peeled case.
10358   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10359   MachineBasicBlock *PeeledSwitchMBB =
10360       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10361 
10362   // If there is only the default destination, jump there directly.
10363   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10364   if (Clusters.empty()) {
10365     assert(PeeledSwitchMBB == SwitchMBB);
10366     SwitchMBB->addSuccessor(DefaultMBB);
10367     if (DefaultMBB != NextBlock(SwitchMBB)) {
10368       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10369                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10370     }
10371     return;
10372   }
10373 
10374   findJumpTables(Clusters, &SI, DefaultMBB);
10375   findBitTestClusters(Clusters, &SI);
10376 
10377   LLVM_DEBUG({
10378     dbgs() << "Case clusters: ";
10379     for (const CaseCluster &C : Clusters) {
10380       if (C.Kind == CC_JumpTable)
10381         dbgs() << "JT:";
10382       if (C.Kind == CC_BitTests)
10383         dbgs() << "BT:";
10384 
10385       C.Low->getValue().print(dbgs(), true);
10386       if (C.Low != C.High) {
10387         dbgs() << '-';
10388         C.High->getValue().print(dbgs(), true);
10389       }
10390       dbgs() << ' ';
10391     }
10392     dbgs() << '\n';
10393   });
10394 
10395   assert(!Clusters.empty());
10396   SwitchWorkList WorkList;
10397   CaseClusterIt First = Clusters.begin();
10398   CaseClusterIt Last = Clusters.end() - 1;
10399   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10400   // Scale the branchprobability for DefaultMBB if the peel occurs and
10401   // DefaultMBB is not replaced.
10402   if (PeeledCaseProb != BranchProbability::getZero() &&
10403       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10404     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10405   WorkList.push_back(
10406       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10407 
10408   while (!WorkList.empty()) {
10409     SwitchWorkListItem W = WorkList.back();
10410     WorkList.pop_back();
10411     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10412 
10413     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10414         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10415       // For optimized builds, lower large range as a balanced binary tree.
10416       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10417       continue;
10418     }
10419 
10420     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10421   }
10422 }
10423