1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().trunc(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 APInt DemandedElts = VT.isVector() 2473 ? APInt::getAllOnes(VT.getVectorNumElements()) 2474 : APInt(1, 1); 2475 return GetDemandedBits(V, DemandedBits, DemandedElts); 2476 } 2477 2478 /// See if the specified operand can be simplified with the knowledge that only 2479 /// the bits specified by DemandedBits are used in the elements specified by 2480 /// DemandedElts. 2481 /// TODO: really we should be making this into the DAG equivalent of 2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2484 const APInt &DemandedElts) { 2485 switch (V.getOpcode()) { 2486 default: 2487 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2488 *this); 2489 case ISD::Constant: { 2490 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2491 APInt NewVal = CVal & DemandedBits; 2492 if (NewVal != CVal) 2493 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2494 break; 2495 } 2496 case ISD::SRL: 2497 // Only look at single-use SRLs. 2498 if (!V.getNode()->hasOneUse()) 2499 break; 2500 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2501 // See if we can recursively simplify the LHS. 2502 unsigned Amt = RHSC->getZExtValue(); 2503 2504 // Watch out for shift count overflow though. 2505 if (Amt >= DemandedBits.getBitWidth()) 2506 break; 2507 APInt SrcDemandedBits = DemandedBits << Amt; 2508 if (SDValue SimplifyLHS = 2509 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2510 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2511 V.getOperand(1)); 2512 } 2513 break; 2514 } 2515 return SDValue(); 2516 } 2517 2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2519 /// use this predicate to simplify operations downstream. 2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2521 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2522 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2523 } 2524 2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2526 /// this predicate to simplify operations downstream. Mask is known to be zero 2527 /// for bits that V cannot have. 2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2529 unsigned Depth) const { 2530 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2531 } 2532 2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2534 /// DemandedElts. We use this predicate to simplify operations downstream. 2535 /// Mask is known to be zero for bits that V cannot have. 2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2537 const APInt &DemandedElts, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2540 } 2541 2542 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2543 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2544 unsigned Depth) const { 2545 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2546 } 2547 2548 /// isSplatValue - Return true if the vector V has the same value 2549 /// across all DemandedElts. For scalable vectors it does not make 2550 /// sense to specify which elements are demanded or undefined, therefore 2551 /// they are simply ignored. 2552 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2553 APInt &UndefElts, unsigned Depth) const { 2554 unsigned Opcode = V.getOpcode(); 2555 EVT VT = V.getValueType(); 2556 assert(VT.isVector() && "Vector type expected"); 2557 2558 if (!VT.isScalableVector() && !DemandedElts) 2559 return false; // No demanded elts, better to assume we don't know anything. 2560 2561 if (Depth >= MaxRecursionDepth) 2562 return false; // Limit search depth. 2563 2564 // Deal with some common cases here that work for both fixed and scalable 2565 // vector types. 2566 switch (Opcode) { 2567 case ISD::SPLAT_VECTOR: 2568 UndefElts = V.getOperand(0).isUndef() 2569 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2570 : APInt(DemandedElts.getBitWidth(), 0); 2571 return true; 2572 case ISD::ADD: 2573 case ISD::SUB: 2574 case ISD::AND: 2575 case ISD::XOR: 2576 case ISD::OR: { 2577 APInt UndefLHS, UndefRHS; 2578 SDValue LHS = V.getOperand(0); 2579 SDValue RHS = V.getOperand(1); 2580 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2581 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2582 UndefElts = UndefLHS | UndefRHS; 2583 return true; 2584 } 2585 return false; 2586 } 2587 case ISD::ABS: 2588 case ISD::TRUNCATE: 2589 case ISD::SIGN_EXTEND: 2590 case ISD::ZERO_EXTEND: 2591 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2592 default: 2593 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2594 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2595 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2596 break; 2597 } 2598 2599 // We don't support other cases than those above for scalable vectors at 2600 // the moment. 2601 if (VT.isScalableVector()) 2602 return false; 2603 2604 unsigned NumElts = VT.getVectorNumElements(); 2605 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2606 UndefElts = APInt::getZero(NumElts); 2607 2608 switch (Opcode) { 2609 case ISD::BUILD_VECTOR: { 2610 SDValue Scl; 2611 for (unsigned i = 0; i != NumElts; ++i) { 2612 SDValue Op = V.getOperand(i); 2613 if (Op.isUndef()) { 2614 UndefElts.setBit(i); 2615 continue; 2616 } 2617 if (!DemandedElts[i]) 2618 continue; 2619 if (Scl && Scl != Op) 2620 return false; 2621 Scl = Op; 2622 } 2623 return true; 2624 } 2625 case ISD::VECTOR_SHUFFLE: { 2626 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2627 APInt DemandedLHS = APInt::getNullValue(NumElts); 2628 APInt DemandedRHS = APInt::getNullValue(NumElts); 2629 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2630 for (int i = 0; i != (int)NumElts; ++i) { 2631 int M = Mask[i]; 2632 if (M < 0) { 2633 UndefElts.setBit(i); 2634 continue; 2635 } 2636 if (!DemandedElts[i]) 2637 continue; 2638 if (M < (int)NumElts) 2639 DemandedLHS.setBit(M); 2640 else 2641 DemandedRHS.setBit(M - NumElts); 2642 } 2643 2644 // If we aren't demanding either op, assume there's no splat. 2645 // If we are demanding both ops, assume there's no splat. 2646 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2647 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2648 return false; 2649 2650 // See if the demanded elts of the source op is a splat or we only demand 2651 // one element, which should always be a splat. 2652 // TODO: Handle source ops splats with undefs. 2653 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2654 APInt SrcUndefs; 2655 return (SrcElts.countPopulation() == 1) || 2656 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2657 (SrcElts & SrcUndefs).isZero()); 2658 }; 2659 if (!DemandedLHS.isZero()) 2660 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2661 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2662 } 2663 case ISD::EXTRACT_SUBVECTOR: { 2664 // Offset the demanded elts by the subvector index. 2665 SDValue Src = V.getOperand(0); 2666 // We don't support scalable vectors at the moment. 2667 if (Src.getValueType().isScalableVector()) 2668 return false; 2669 uint64_t Idx = V.getConstantOperandVal(1); 2670 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2671 APInt UndefSrcElts; 2672 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2673 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2674 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2675 return true; 2676 } 2677 break; 2678 } 2679 case ISD::ANY_EXTEND_VECTOR_INREG: 2680 case ISD::SIGN_EXTEND_VECTOR_INREG: 2681 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2682 // Widen the demanded elts by the src element count. 2683 SDValue Src = V.getOperand(0); 2684 // We don't support scalable vectors at the moment. 2685 if (Src.getValueType().isScalableVector()) 2686 return false; 2687 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2688 APInt UndefSrcElts; 2689 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2690 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2691 UndefElts = UndefSrcElts.trunc(NumElts); 2692 return true; 2693 } 2694 break; 2695 } 2696 case ISD::BITCAST: { 2697 SDValue Src = V.getOperand(0); 2698 EVT SrcVT = Src.getValueType(); 2699 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2700 unsigned BitWidth = VT.getScalarSizeInBits(); 2701 2702 // Ignore bitcasts from unsupported types. 2703 // TODO: Add fp support? 2704 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2705 break; 2706 2707 // Bitcast 'small element' vector to 'large element' vector. 2708 if ((BitWidth % SrcBitWidth) == 0) { 2709 // See if each sub element is a splat. 2710 unsigned Scale = BitWidth / SrcBitWidth; 2711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2712 APInt ScaledDemandedElts = 2713 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2714 for (unsigned I = 0; I != Scale; ++I) { 2715 APInt SubUndefElts; 2716 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2717 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2718 SubDemandedElts &= ScaledDemandedElts; 2719 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2720 return false; 2721 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts); 2722 } 2723 return true; 2724 } 2725 break; 2726 } 2727 } 2728 2729 return false; 2730 } 2731 2732 /// Helper wrapper to main isSplatValue function. 2733 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2734 EVT VT = V.getValueType(); 2735 assert(VT.isVector() && "Vector type expected"); 2736 2737 APInt UndefElts; 2738 APInt DemandedElts; 2739 2740 // For now we don't support this with scalable vectors. 2741 if (!VT.isScalableVector()) 2742 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2743 return isSplatValue(V, DemandedElts, UndefElts) && 2744 (AllowUndefs || !UndefElts); 2745 } 2746 2747 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2748 V = peekThroughExtractSubvectors(V); 2749 2750 EVT VT = V.getValueType(); 2751 unsigned Opcode = V.getOpcode(); 2752 switch (Opcode) { 2753 default: { 2754 APInt UndefElts; 2755 APInt DemandedElts; 2756 2757 if (!VT.isScalableVector()) 2758 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2759 2760 if (isSplatValue(V, DemandedElts, UndefElts)) { 2761 if (VT.isScalableVector()) { 2762 // DemandedElts and UndefElts are ignored for scalable vectors, since 2763 // the only supported cases are SPLAT_VECTOR nodes. 2764 SplatIdx = 0; 2765 } else { 2766 // Handle case where all demanded elements are UNDEF. 2767 if (DemandedElts.isSubsetOf(UndefElts)) { 2768 SplatIdx = 0; 2769 return getUNDEF(VT); 2770 } 2771 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2772 } 2773 return V; 2774 } 2775 break; 2776 } 2777 case ISD::SPLAT_VECTOR: 2778 SplatIdx = 0; 2779 return V; 2780 case ISD::VECTOR_SHUFFLE: { 2781 if (VT.isScalableVector()) 2782 return SDValue(); 2783 2784 // Check if this is a shuffle node doing a splat. 2785 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2786 // getTargetVShiftNode currently struggles without the splat source. 2787 auto *SVN = cast<ShuffleVectorSDNode>(V); 2788 if (!SVN->isSplat()) 2789 break; 2790 int Idx = SVN->getSplatIndex(); 2791 int NumElts = V.getValueType().getVectorNumElements(); 2792 SplatIdx = Idx % NumElts; 2793 return V.getOperand(Idx / NumElts); 2794 } 2795 } 2796 2797 return SDValue(); 2798 } 2799 2800 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2801 int SplatIdx; 2802 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2803 EVT SVT = SrcVector.getValueType().getScalarType(); 2804 EVT LegalSVT = SVT; 2805 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2806 if (!SVT.isInteger()) 2807 return SDValue(); 2808 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2809 if (LegalSVT.bitsLT(SVT)) 2810 return SDValue(); 2811 } 2812 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2813 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2814 } 2815 return SDValue(); 2816 } 2817 2818 const APInt * 2819 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2820 const APInt &DemandedElts) const { 2821 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2822 V.getOpcode() == ISD::SRA) && 2823 "Unknown shift node"); 2824 unsigned BitWidth = V.getScalarValueSizeInBits(); 2825 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2826 // Shifting more than the bitwidth is not valid. 2827 const APInt &ShAmt = SA->getAPIntValue(); 2828 if (ShAmt.ult(BitWidth)) 2829 return &ShAmt; 2830 } 2831 return nullptr; 2832 } 2833 2834 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2835 SDValue V, const APInt &DemandedElts) const { 2836 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2837 V.getOpcode() == ISD::SRA) && 2838 "Unknown shift node"); 2839 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2840 return ValidAmt; 2841 unsigned BitWidth = V.getScalarValueSizeInBits(); 2842 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2843 if (!BV) 2844 return nullptr; 2845 const APInt *MinShAmt = nullptr; 2846 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2847 if (!DemandedElts[i]) 2848 continue; 2849 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2850 if (!SA) 2851 return nullptr; 2852 // Shifting more than the bitwidth is not valid. 2853 const APInt &ShAmt = SA->getAPIntValue(); 2854 if (ShAmt.uge(BitWidth)) 2855 return nullptr; 2856 if (MinShAmt && MinShAmt->ule(ShAmt)) 2857 continue; 2858 MinShAmt = &ShAmt; 2859 } 2860 return MinShAmt; 2861 } 2862 2863 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2864 SDValue V, const APInt &DemandedElts) const { 2865 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2866 V.getOpcode() == ISD::SRA) && 2867 "Unknown shift node"); 2868 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2869 return ValidAmt; 2870 unsigned BitWidth = V.getScalarValueSizeInBits(); 2871 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2872 if (!BV) 2873 return nullptr; 2874 const APInt *MaxShAmt = nullptr; 2875 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2876 if (!DemandedElts[i]) 2877 continue; 2878 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2879 if (!SA) 2880 return nullptr; 2881 // Shifting more than the bitwidth is not valid. 2882 const APInt &ShAmt = SA->getAPIntValue(); 2883 if (ShAmt.uge(BitWidth)) 2884 return nullptr; 2885 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2886 continue; 2887 MaxShAmt = &ShAmt; 2888 } 2889 return MaxShAmt; 2890 } 2891 2892 /// Determine which bits of Op are known to be either zero or one and return 2893 /// them in Known. For vectors, the known bits are those that are shared by 2894 /// every vector element. 2895 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2896 EVT VT = Op.getValueType(); 2897 2898 // TOOD: Until we have a plan for how to represent demanded elements for 2899 // scalable vectors, we can just bail out for now. 2900 if (Op.getValueType().isScalableVector()) { 2901 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2902 return KnownBits(BitWidth); 2903 } 2904 2905 APInt DemandedElts = VT.isVector() 2906 ? APInt::getAllOnes(VT.getVectorNumElements()) 2907 : APInt(1, 1); 2908 return computeKnownBits(Op, DemandedElts, Depth); 2909 } 2910 2911 /// Determine which bits of Op are known to be either zero or one and return 2912 /// them in Known. The DemandedElts argument allows us to only collect the known 2913 /// bits that are shared by the requested vector elements. 2914 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2915 unsigned Depth) const { 2916 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2917 2918 KnownBits Known(BitWidth); // Don't know anything. 2919 2920 // TOOD: Until we have a plan for how to represent demanded elements for 2921 // scalable vectors, we can just bail out for now. 2922 if (Op.getValueType().isScalableVector()) 2923 return Known; 2924 2925 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2926 // We know all of the bits for a constant! 2927 return KnownBits::makeConstant(C->getAPIntValue()); 2928 } 2929 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2930 // We know all of the bits for a constant fp! 2931 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2932 } 2933 2934 if (Depth >= MaxRecursionDepth) 2935 return Known; // Limit search depth. 2936 2937 KnownBits Known2; 2938 unsigned NumElts = DemandedElts.getBitWidth(); 2939 assert((!Op.getValueType().isVector() || 2940 NumElts == Op.getValueType().getVectorNumElements()) && 2941 "Unexpected vector size"); 2942 2943 if (!DemandedElts) 2944 return Known; // No demanded elts, better to assume we don't know anything. 2945 2946 unsigned Opcode = Op.getOpcode(); 2947 switch (Opcode) { 2948 case ISD::BUILD_VECTOR: 2949 // Collect the known bits that are shared by every demanded vector element. 2950 Known.Zero.setAllBits(); Known.One.setAllBits(); 2951 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2952 if (!DemandedElts[i]) 2953 continue; 2954 2955 SDValue SrcOp = Op.getOperand(i); 2956 Known2 = computeKnownBits(SrcOp, Depth + 1); 2957 2958 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2959 if (SrcOp.getValueSizeInBits() != BitWidth) { 2960 assert(SrcOp.getValueSizeInBits() > BitWidth && 2961 "Expected BUILD_VECTOR implicit truncation"); 2962 Known2 = Known2.trunc(BitWidth); 2963 } 2964 2965 // Known bits are the values that are shared by every demanded element. 2966 Known = KnownBits::commonBits(Known, Known2); 2967 2968 // If we don't know any bits, early out. 2969 if (Known.isUnknown()) 2970 break; 2971 } 2972 break; 2973 case ISD::VECTOR_SHUFFLE: { 2974 // Collect the known bits that are shared by every vector element referenced 2975 // by the shuffle. 2976 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2977 Known.Zero.setAllBits(); Known.One.setAllBits(); 2978 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2979 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2980 for (unsigned i = 0; i != NumElts; ++i) { 2981 if (!DemandedElts[i]) 2982 continue; 2983 2984 int M = SVN->getMaskElt(i); 2985 if (M < 0) { 2986 // For UNDEF elements, we don't know anything about the common state of 2987 // the shuffle result. 2988 Known.resetAll(); 2989 DemandedLHS.clearAllBits(); 2990 DemandedRHS.clearAllBits(); 2991 break; 2992 } 2993 2994 if ((unsigned)M < NumElts) 2995 DemandedLHS.setBit((unsigned)M % NumElts); 2996 else 2997 DemandedRHS.setBit((unsigned)M % NumElts); 2998 } 2999 // Known bits are the values that are shared by every demanded element. 3000 if (!!DemandedLHS) { 3001 SDValue LHS = Op.getOperand(0); 3002 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3003 Known = KnownBits::commonBits(Known, Known2); 3004 } 3005 // If we don't know any bits, early out. 3006 if (Known.isUnknown()) 3007 break; 3008 if (!!DemandedRHS) { 3009 SDValue RHS = Op.getOperand(1); 3010 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3011 Known = KnownBits::commonBits(Known, Known2); 3012 } 3013 break; 3014 } 3015 case ISD::CONCAT_VECTORS: { 3016 // Split DemandedElts and test each of the demanded subvectors. 3017 Known.Zero.setAllBits(); Known.One.setAllBits(); 3018 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3019 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3020 unsigned NumSubVectors = Op.getNumOperands(); 3021 for (unsigned i = 0; i != NumSubVectors; ++i) { 3022 APInt DemandedSub = 3023 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3024 if (!!DemandedSub) { 3025 SDValue Sub = Op.getOperand(i); 3026 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3027 Known = KnownBits::commonBits(Known, Known2); 3028 } 3029 // If we don't know any bits, early out. 3030 if (Known.isUnknown()) 3031 break; 3032 } 3033 break; 3034 } 3035 case ISD::INSERT_SUBVECTOR: { 3036 // Demand any elements from the subvector and the remainder from the src its 3037 // inserted into. 3038 SDValue Src = Op.getOperand(0); 3039 SDValue Sub = Op.getOperand(1); 3040 uint64_t Idx = Op.getConstantOperandVal(2); 3041 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3042 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3043 APInt DemandedSrcElts = DemandedElts; 3044 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3045 3046 Known.One.setAllBits(); 3047 Known.Zero.setAllBits(); 3048 if (!!DemandedSubElts) { 3049 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3050 if (Known.isUnknown()) 3051 break; // early-out. 3052 } 3053 if (!!DemandedSrcElts) { 3054 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3055 Known = KnownBits::commonBits(Known, Known2); 3056 } 3057 break; 3058 } 3059 case ISD::EXTRACT_SUBVECTOR: { 3060 // Offset the demanded elts by the subvector index. 3061 SDValue Src = Op.getOperand(0); 3062 // Bail until we can represent demanded elements for scalable vectors. 3063 if (Src.getValueType().isScalableVector()) 3064 break; 3065 uint64_t Idx = Op.getConstantOperandVal(1); 3066 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3067 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3068 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3069 break; 3070 } 3071 case ISD::SCALAR_TO_VECTOR: { 3072 // We know about scalar_to_vector as much as we know about it source, 3073 // which becomes the first element of otherwise unknown vector. 3074 if (DemandedElts != 1) 3075 break; 3076 3077 SDValue N0 = Op.getOperand(0); 3078 Known = computeKnownBits(N0, Depth + 1); 3079 if (N0.getValueSizeInBits() != BitWidth) 3080 Known = Known.trunc(BitWidth); 3081 3082 break; 3083 } 3084 case ISD::BITCAST: { 3085 SDValue N0 = Op.getOperand(0); 3086 EVT SubVT = N0.getValueType(); 3087 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3088 3089 // Ignore bitcasts from unsupported types. 3090 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3091 break; 3092 3093 // Fast handling of 'identity' bitcasts. 3094 if (BitWidth == SubBitWidth) { 3095 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3096 break; 3097 } 3098 3099 bool IsLE = getDataLayout().isLittleEndian(); 3100 3101 // Bitcast 'small element' vector to 'large element' scalar/vector. 3102 if ((BitWidth % SubBitWidth) == 0) { 3103 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3104 3105 // Collect known bits for the (larger) output by collecting the known 3106 // bits from each set of sub elements and shift these into place. 3107 // We need to separately call computeKnownBits for each set of 3108 // sub elements as the knownbits for each is likely to be different. 3109 unsigned SubScale = BitWidth / SubBitWidth; 3110 APInt SubDemandedElts(NumElts * SubScale, 0); 3111 for (unsigned i = 0; i != NumElts; ++i) 3112 if (DemandedElts[i]) 3113 SubDemandedElts.setBit(i * SubScale); 3114 3115 for (unsigned i = 0; i != SubScale; ++i) { 3116 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3117 Depth + 1); 3118 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3119 Known.insertBits(Known2, SubBitWidth * Shifts); 3120 } 3121 } 3122 3123 // Bitcast 'large element' scalar/vector to 'small element' vector. 3124 if ((SubBitWidth % BitWidth) == 0) { 3125 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3126 3127 // Collect known bits for the (smaller) output by collecting the known 3128 // bits from the overlapping larger input elements and extracting the 3129 // sub sections we actually care about. 3130 unsigned SubScale = SubBitWidth / BitWidth; 3131 APInt SubDemandedElts = 3132 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3133 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3134 3135 Known.Zero.setAllBits(); Known.One.setAllBits(); 3136 for (unsigned i = 0; i != NumElts; ++i) 3137 if (DemandedElts[i]) { 3138 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3139 unsigned Offset = (Shifts % SubScale) * BitWidth; 3140 Known = KnownBits::commonBits(Known, 3141 Known2.extractBits(BitWidth, Offset)); 3142 // If we don't know any bits, early out. 3143 if (Known.isUnknown()) 3144 break; 3145 } 3146 } 3147 break; 3148 } 3149 case ISD::AND: 3150 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3151 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3152 3153 Known &= Known2; 3154 break; 3155 case ISD::OR: 3156 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 3159 Known |= Known2; 3160 break; 3161 case ISD::XOR: 3162 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3163 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3164 3165 Known ^= Known2; 3166 break; 3167 case ISD::MUL: { 3168 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3169 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3170 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3171 // TODO: SelfMultiply can be poison, but not undef. 3172 if (SelfMultiply) 3173 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3174 Op.getOperand(0), DemandedElts, false, Depth + 1); 3175 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3176 3177 // If the multiplication is known not to overflow, the product of a number 3178 // with itself is non-negative. Only do this if we didn't already computed 3179 // the opposite value for the sign bit. 3180 if (Op->getFlags().hasNoSignedWrap() && 3181 Op.getOperand(0) == Op.getOperand(1) && 3182 !Known.isNegative()) 3183 Known.makeNonNegative(); 3184 break; 3185 } 3186 case ISD::MULHU: { 3187 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3188 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3189 Known = KnownBits::mulhu(Known, Known2); 3190 break; 3191 } 3192 case ISD::MULHS: { 3193 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3194 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3195 Known = KnownBits::mulhs(Known, Known2); 3196 break; 3197 } 3198 case ISD::UMUL_LOHI: { 3199 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3200 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3201 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3202 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3203 if (Op.getResNo() == 0) 3204 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3205 else 3206 Known = KnownBits::mulhu(Known, Known2); 3207 break; 3208 } 3209 case ISD::SMUL_LOHI: { 3210 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3211 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3212 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3213 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3214 if (Op.getResNo() == 0) 3215 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3216 else 3217 Known = KnownBits::mulhs(Known, Known2); 3218 break; 3219 } 3220 case ISD::UDIV: { 3221 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3223 Known = KnownBits::udiv(Known, Known2); 3224 break; 3225 } 3226 case ISD::AVGCEILU: { 3227 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3228 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3229 Known = Known.zext(BitWidth + 1); 3230 Known2 = Known2.zext(BitWidth + 1); 3231 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3232 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3233 Known = Known.extractBits(BitWidth, 1); 3234 break; 3235 } 3236 case ISD::SELECT: 3237 case ISD::VSELECT: 3238 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3239 // If we don't know any bits, early out. 3240 if (Known.isUnknown()) 3241 break; 3242 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3243 3244 // Only known if known in both the LHS and RHS. 3245 Known = KnownBits::commonBits(Known, Known2); 3246 break; 3247 case ISD::SELECT_CC: 3248 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3249 // If we don't know any bits, early out. 3250 if (Known.isUnknown()) 3251 break; 3252 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3253 3254 // Only known if known in both the LHS and RHS. 3255 Known = KnownBits::commonBits(Known, Known2); 3256 break; 3257 case ISD::SMULO: 3258 case ISD::UMULO: 3259 if (Op.getResNo() != 1) 3260 break; 3261 // The boolean result conforms to getBooleanContents. 3262 // If we know the result of a setcc has the top bits zero, use this info. 3263 // We know that we have an integer-based boolean since these operations 3264 // are only available for integer. 3265 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3266 TargetLowering::ZeroOrOneBooleanContent && 3267 BitWidth > 1) 3268 Known.Zero.setBitsFrom(1); 3269 break; 3270 case ISD::SETCC: 3271 case ISD::STRICT_FSETCC: 3272 case ISD::STRICT_FSETCCS: { 3273 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3274 // If we know the result of a setcc has the top bits zero, use this info. 3275 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3276 TargetLowering::ZeroOrOneBooleanContent && 3277 BitWidth > 1) 3278 Known.Zero.setBitsFrom(1); 3279 break; 3280 } 3281 case ISD::SHL: 3282 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3283 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3284 Known = KnownBits::shl(Known, Known2); 3285 3286 // Minimum shift low bits are known zero. 3287 if (const APInt *ShMinAmt = 3288 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3289 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3290 break; 3291 case ISD::SRL: 3292 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3293 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3294 Known = KnownBits::lshr(Known, Known2); 3295 3296 // Minimum shift high bits are known zero. 3297 if (const APInt *ShMinAmt = 3298 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3299 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3300 break; 3301 case ISD::SRA: 3302 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3303 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3304 Known = KnownBits::ashr(Known, Known2); 3305 // TODO: Add minimum shift high known sign bits. 3306 break; 3307 case ISD::FSHL: 3308 case ISD::FSHR: 3309 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3310 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3311 3312 // For fshl, 0-shift returns the 1st arg. 3313 // For fshr, 0-shift returns the 2nd arg. 3314 if (Amt == 0) { 3315 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3316 DemandedElts, Depth + 1); 3317 break; 3318 } 3319 3320 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3321 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3322 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3323 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3324 if (Opcode == ISD::FSHL) { 3325 Known.One <<= Amt; 3326 Known.Zero <<= Amt; 3327 Known2.One.lshrInPlace(BitWidth - Amt); 3328 Known2.Zero.lshrInPlace(BitWidth - Amt); 3329 } else { 3330 Known.One <<= BitWidth - Amt; 3331 Known.Zero <<= BitWidth - Amt; 3332 Known2.One.lshrInPlace(Amt); 3333 Known2.Zero.lshrInPlace(Amt); 3334 } 3335 Known.One |= Known2.One; 3336 Known.Zero |= Known2.Zero; 3337 } 3338 break; 3339 case ISD::SIGN_EXTEND_INREG: { 3340 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3341 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3342 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3343 break; 3344 } 3345 case ISD::CTTZ: 3346 case ISD::CTTZ_ZERO_UNDEF: { 3347 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3348 // If we have a known 1, its position is our upper bound. 3349 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3350 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3351 Known.Zero.setBitsFrom(LowBits); 3352 break; 3353 } 3354 case ISD::CTLZ: 3355 case ISD::CTLZ_ZERO_UNDEF: { 3356 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3357 // If we have a known 1, its position is our upper bound. 3358 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3359 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3360 Known.Zero.setBitsFrom(LowBits); 3361 break; 3362 } 3363 case ISD::CTPOP: { 3364 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3365 // If we know some of the bits are zero, they can't be one. 3366 unsigned PossibleOnes = Known2.countMaxPopulation(); 3367 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3368 break; 3369 } 3370 case ISD::PARITY: { 3371 // Parity returns 0 everywhere but the LSB. 3372 Known.Zero.setBitsFrom(1); 3373 break; 3374 } 3375 case ISD::LOAD: { 3376 LoadSDNode *LD = cast<LoadSDNode>(Op); 3377 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3378 if (ISD::isNON_EXTLoad(LD) && Cst) { 3379 // Determine any common known bits from the loaded constant pool value. 3380 Type *CstTy = Cst->getType(); 3381 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3382 // If its a vector splat, then we can (quickly) reuse the scalar path. 3383 // NOTE: We assume all elements match and none are UNDEF. 3384 if (CstTy->isVectorTy()) { 3385 if (const Constant *Splat = Cst->getSplatValue()) { 3386 Cst = Splat; 3387 CstTy = Cst->getType(); 3388 } 3389 } 3390 // TODO - do we need to handle different bitwidths? 3391 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3392 // Iterate across all vector elements finding common known bits. 3393 Known.One.setAllBits(); 3394 Known.Zero.setAllBits(); 3395 for (unsigned i = 0; i != NumElts; ++i) { 3396 if (!DemandedElts[i]) 3397 continue; 3398 if (Constant *Elt = Cst->getAggregateElement(i)) { 3399 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3400 const APInt &Value = CInt->getValue(); 3401 Known.One &= Value; 3402 Known.Zero &= ~Value; 3403 continue; 3404 } 3405 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3406 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3407 Known.One &= Value; 3408 Known.Zero &= ~Value; 3409 continue; 3410 } 3411 } 3412 Known.One.clearAllBits(); 3413 Known.Zero.clearAllBits(); 3414 break; 3415 } 3416 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3417 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3418 Known = KnownBits::makeConstant(CInt->getValue()); 3419 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3420 Known = 3421 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3422 } 3423 } 3424 } 3425 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3426 // If this is a ZEXTLoad and we are looking at the loaded value. 3427 EVT VT = LD->getMemoryVT(); 3428 unsigned MemBits = VT.getScalarSizeInBits(); 3429 Known.Zero.setBitsFrom(MemBits); 3430 } else if (const MDNode *Ranges = LD->getRanges()) { 3431 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3432 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3433 } 3434 break; 3435 } 3436 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3437 EVT InVT = Op.getOperand(0).getValueType(); 3438 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3439 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3440 Known = Known.zext(BitWidth); 3441 break; 3442 } 3443 case ISD::ZERO_EXTEND: { 3444 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3445 Known = Known.zext(BitWidth); 3446 break; 3447 } 3448 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3449 EVT InVT = Op.getOperand(0).getValueType(); 3450 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3451 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3452 // If the sign bit is known to be zero or one, then sext will extend 3453 // it to the top bits, else it will just zext. 3454 Known = Known.sext(BitWidth); 3455 break; 3456 } 3457 case ISD::SIGN_EXTEND: { 3458 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3459 // If the sign bit is known to be zero or one, then sext will extend 3460 // it to the top bits, else it will just zext. 3461 Known = Known.sext(BitWidth); 3462 break; 3463 } 3464 case ISD::ANY_EXTEND_VECTOR_INREG: { 3465 EVT InVT = Op.getOperand(0).getValueType(); 3466 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3467 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3468 Known = Known.anyext(BitWidth); 3469 break; 3470 } 3471 case ISD::ANY_EXTEND: { 3472 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3473 Known = Known.anyext(BitWidth); 3474 break; 3475 } 3476 case ISD::TRUNCATE: { 3477 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3478 Known = Known.trunc(BitWidth); 3479 break; 3480 } 3481 case ISD::AssertZext: { 3482 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3483 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3484 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3485 Known.Zero |= (~InMask); 3486 Known.One &= (~Known.Zero); 3487 break; 3488 } 3489 case ISD::AssertAlign: { 3490 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3491 assert(LogOfAlign != 0); 3492 3493 // TODO: Should use maximum with source 3494 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3495 // well as clearing one bits. 3496 Known.Zero.setLowBits(LogOfAlign); 3497 Known.One.clearLowBits(LogOfAlign); 3498 break; 3499 } 3500 case ISD::FGETSIGN: 3501 // All bits are zero except the low bit. 3502 Known.Zero.setBitsFrom(1); 3503 break; 3504 case ISD::USUBO: 3505 case ISD::SSUBO: 3506 if (Op.getResNo() == 1) { 3507 // If we know the result of a setcc has the top bits zero, use this info. 3508 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3509 TargetLowering::ZeroOrOneBooleanContent && 3510 BitWidth > 1) 3511 Known.Zero.setBitsFrom(1); 3512 break; 3513 } 3514 LLVM_FALLTHROUGH; 3515 case ISD::SUB: 3516 case ISD::SUBC: { 3517 assert(Op.getResNo() == 0 && 3518 "We only compute knownbits for the difference here."); 3519 3520 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3521 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3522 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3523 Known, Known2); 3524 break; 3525 } 3526 case ISD::UADDO: 3527 case ISD::SADDO: 3528 case ISD::ADDCARRY: 3529 if (Op.getResNo() == 1) { 3530 // If we know the result of a setcc has the top bits zero, use this info. 3531 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3532 TargetLowering::ZeroOrOneBooleanContent && 3533 BitWidth > 1) 3534 Known.Zero.setBitsFrom(1); 3535 break; 3536 } 3537 LLVM_FALLTHROUGH; 3538 case ISD::ADD: 3539 case ISD::ADDC: 3540 case ISD::ADDE: { 3541 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3542 3543 // With ADDE and ADDCARRY, a carry bit may be added in. 3544 KnownBits Carry(1); 3545 if (Opcode == ISD::ADDE) 3546 // Can't track carry from glue, set carry to unknown. 3547 Carry.resetAll(); 3548 else if (Opcode == ISD::ADDCARRY) 3549 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3550 // the trouble (how often will we find a known carry bit). And I haven't 3551 // tested this very much yet, but something like this might work: 3552 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3553 // Carry = Carry.zextOrTrunc(1, false); 3554 Carry.resetAll(); 3555 else 3556 Carry.setAllZero(); 3557 3558 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3559 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3560 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3561 break; 3562 } 3563 case ISD::SREM: { 3564 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3565 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3566 Known = KnownBits::srem(Known, Known2); 3567 break; 3568 } 3569 case ISD::UREM: { 3570 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3571 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3572 Known = KnownBits::urem(Known, Known2); 3573 break; 3574 } 3575 case ISD::EXTRACT_ELEMENT: { 3576 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3577 const unsigned Index = Op.getConstantOperandVal(1); 3578 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3579 3580 // Remove low part of known bits mask 3581 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3582 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3583 3584 // Remove high part of known bit mask 3585 Known = Known.trunc(EltBitWidth); 3586 break; 3587 } 3588 case ISD::EXTRACT_VECTOR_ELT: { 3589 SDValue InVec = Op.getOperand(0); 3590 SDValue EltNo = Op.getOperand(1); 3591 EVT VecVT = InVec.getValueType(); 3592 // computeKnownBits not yet implemented for scalable vectors. 3593 if (VecVT.isScalableVector()) 3594 break; 3595 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3596 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3597 3598 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3599 // anything about the extended bits. 3600 if (BitWidth > EltBitWidth) 3601 Known = Known.trunc(EltBitWidth); 3602 3603 // If we know the element index, just demand that vector element, else for 3604 // an unknown element index, ignore DemandedElts and demand them all. 3605 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3606 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3607 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3608 DemandedSrcElts = 3609 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3610 3611 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3612 if (BitWidth > EltBitWidth) 3613 Known = Known.anyext(BitWidth); 3614 break; 3615 } 3616 case ISD::INSERT_VECTOR_ELT: { 3617 // If we know the element index, split the demand between the 3618 // source vector and the inserted element, otherwise assume we need 3619 // the original demanded vector elements and the value. 3620 SDValue InVec = Op.getOperand(0); 3621 SDValue InVal = Op.getOperand(1); 3622 SDValue EltNo = Op.getOperand(2); 3623 bool DemandedVal = true; 3624 APInt DemandedVecElts = DemandedElts; 3625 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3626 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3627 unsigned EltIdx = CEltNo->getZExtValue(); 3628 DemandedVal = !!DemandedElts[EltIdx]; 3629 DemandedVecElts.clearBit(EltIdx); 3630 } 3631 Known.One.setAllBits(); 3632 Known.Zero.setAllBits(); 3633 if (DemandedVal) { 3634 Known2 = computeKnownBits(InVal, Depth + 1); 3635 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3636 } 3637 if (!!DemandedVecElts) { 3638 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3639 Known = KnownBits::commonBits(Known, Known2); 3640 } 3641 break; 3642 } 3643 case ISD::BITREVERSE: { 3644 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3645 Known = Known2.reverseBits(); 3646 break; 3647 } 3648 case ISD::BSWAP: { 3649 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3650 Known = Known2.byteSwap(); 3651 break; 3652 } 3653 case ISD::ABS: { 3654 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 Known = Known2.abs(); 3656 break; 3657 } 3658 case ISD::USUBSAT: { 3659 // The result of usubsat will never be larger than the LHS. 3660 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3661 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3662 break; 3663 } 3664 case ISD::UMIN: { 3665 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3667 Known = KnownBits::umin(Known, Known2); 3668 break; 3669 } 3670 case ISD::UMAX: { 3671 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3672 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3673 Known = KnownBits::umax(Known, Known2); 3674 break; 3675 } 3676 case ISD::SMIN: 3677 case ISD::SMAX: { 3678 // If we have a clamp pattern, we know that the number of sign bits will be 3679 // the minimum of the clamp min/max range. 3680 bool IsMax = (Opcode == ISD::SMAX); 3681 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3682 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3683 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3684 CstHigh = 3685 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3686 if (CstLow && CstHigh) { 3687 if (!IsMax) 3688 std::swap(CstLow, CstHigh); 3689 3690 const APInt &ValueLow = CstLow->getAPIntValue(); 3691 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3692 if (ValueLow.sle(ValueHigh)) { 3693 unsigned LowSignBits = ValueLow.getNumSignBits(); 3694 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3695 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3696 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3697 Known.One.setHighBits(MinSignBits); 3698 break; 3699 } 3700 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3701 Known.Zero.setHighBits(MinSignBits); 3702 break; 3703 } 3704 } 3705 } 3706 3707 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3708 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3709 if (IsMax) 3710 Known = KnownBits::smax(Known, Known2); 3711 else 3712 Known = KnownBits::smin(Known, Known2); 3713 3714 // For SMAX, if CstLow is non-negative we know the result will be 3715 // non-negative and thus all sign bits are 0. 3716 // TODO: There's an equivalent of this for smin with negative constant for 3717 // known ones. 3718 if (IsMax && CstLow) { 3719 const APInt &ValueLow = CstLow->getAPIntValue(); 3720 if (ValueLow.isNonNegative()) { 3721 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3722 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3723 } 3724 } 3725 3726 break; 3727 } 3728 case ISD::FP_TO_UINT_SAT: { 3729 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3730 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3731 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3732 break; 3733 } 3734 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3735 if (Op.getResNo() == 1) { 3736 // The boolean result conforms to getBooleanContents. 3737 // If we know the result of a setcc has the top bits zero, use this info. 3738 // We know that we have an integer-based boolean since these operations 3739 // are only available for integer. 3740 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3741 TargetLowering::ZeroOrOneBooleanContent && 3742 BitWidth > 1) 3743 Known.Zero.setBitsFrom(1); 3744 break; 3745 } 3746 LLVM_FALLTHROUGH; 3747 case ISD::ATOMIC_CMP_SWAP: 3748 case ISD::ATOMIC_SWAP: 3749 case ISD::ATOMIC_LOAD_ADD: 3750 case ISD::ATOMIC_LOAD_SUB: 3751 case ISD::ATOMIC_LOAD_AND: 3752 case ISD::ATOMIC_LOAD_CLR: 3753 case ISD::ATOMIC_LOAD_OR: 3754 case ISD::ATOMIC_LOAD_XOR: 3755 case ISD::ATOMIC_LOAD_NAND: 3756 case ISD::ATOMIC_LOAD_MIN: 3757 case ISD::ATOMIC_LOAD_MAX: 3758 case ISD::ATOMIC_LOAD_UMIN: 3759 case ISD::ATOMIC_LOAD_UMAX: 3760 case ISD::ATOMIC_LOAD: { 3761 unsigned MemBits = 3762 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3763 // If we are looking at the loaded value. 3764 if (Op.getResNo() == 0) { 3765 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3766 Known.Zero.setBitsFrom(MemBits); 3767 } 3768 break; 3769 } 3770 case ISD::FrameIndex: 3771 case ISD::TargetFrameIndex: 3772 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3773 Known, getMachineFunction()); 3774 break; 3775 3776 default: 3777 if (Opcode < ISD::BUILTIN_OP_END) 3778 break; 3779 LLVM_FALLTHROUGH; 3780 case ISD::INTRINSIC_WO_CHAIN: 3781 case ISD::INTRINSIC_W_CHAIN: 3782 case ISD::INTRINSIC_VOID: 3783 // Allow the target to implement this method for its nodes. 3784 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3785 break; 3786 } 3787 3788 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3789 return Known; 3790 } 3791 3792 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3793 SDValue N1) const { 3794 // X + 0 never overflow 3795 if (isNullConstant(N1)) 3796 return OFK_Never; 3797 3798 KnownBits N1Known = computeKnownBits(N1); 3799 if (N1Known.Zero.getBoolValue()) { 3800 KnownBits N0Known = computeKnownBits(N0); 3801 3802 bool overflow; 3803 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3804 if (!overflow) 3805 return OFK_Never; 3806 } 3807 3808 // mulhi + 1 never overflow 3809 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3810 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3811 return OFK_Never; 3812 3813 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3814 KnownBits N0Known = computeKnownBits(N0); 3815 3816 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3817 return OFK_Never; 3818 } 3819 3820 return OFK_Sometime; 3821 } 3822 3823 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3824 EVT OpVT = Val.getValueType(); 3825 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3826 3827 // Is the constant a known power of 2? 3828 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3829 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3830 3831 // A left-shift of a constant one will have exactly one bit set because 3832 // shifting the bit off the end is undefined. 3833 if (Val.getOpcode() == ISD::SHL) { 3834 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3835 if (C && C->getAPIntValue() == 1) 3836 return true; 3837 } 3838 3839 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3840 // one bit set. 3841 if (Val.getOpcode() == ISD::SRL) { 3842 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3843 if (C && C->getAPIntValue().isSignMask()) 3844 return true; 3845 } 3846 3847 // Are all operands of a build vector constant powers of two? 3848 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3849 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3850 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3851 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3852 return false; 3853 })) 3854 return true; 3855 3856 // Is the operand of a splat vector a constant power of two? 3857 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3858 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3859 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3860 return true; 3861 3862 // More could be done here, though the above checks are enough 3863 // to handle some common cases. 3864 3865 // Fall back to computeKnownBits to catch other known cases. 3866 KnownBits Known = computeKnownBits(Val); 3867 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3868 } 3869 3870 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3871 EVT VT = Op.getValueType(); 3872 3873 // TODO: Assume we don't know anything for now. 3874 if (VT.isScalableVector()) 3875 return 1; 3876 3877 APInt DemandedElts = VT.isVector() 3878 ? APInt::getAllOnes(VT.getVectorNumElements()) 3879 : APInt(1, 1); 3880 return ComputeNumSignBits(Op, DemandedElts, Depth); 3881 } 3882 3883 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3884 unsigned Depth) const { 3885 EVT VT = Op.getValueType(); 3886 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3887 unsigned VTBits = VT.getScalarSizeInBits(); 3888 unsigned NumElts = DemandedElts.getBitWidth(); 3889 unsigned Tmp, Tmp2; 3890 unsigned FirstAnswer = 1; 3891 3892 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3893 const APInt &Val = C->getAPIntValue(); 3894 return Val.getNumSignBits(); 3895 } 3896 3897 if (Depth >= MaxRecursionDepth) 3898 return 1; // Limit search depth. 3899 3900 if (!DemandedElts || VT.isScalableVector()) 3901 return 1; // No demanded elts, better to assume we don't know anything. 3902 3903 unsigned Opcode = Op.getOpcode(); 3904 switch (Opcode) { 3905 default: break; 3906 case ISD::AssertSext: 3907 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3908 return VTBits-Tmp+1; 3909 case ISD::AssertZext: 3910 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3911 return VTBits-Tmp; 3912 3913 case ISD::BUILD_VECTOR: 3914 Tmp = VTBits; 3915 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3916 if (!DemandedElts[i]) 3917 continue; 3918 3919 SDValue SrcOp = Op.getOperand(i); 3920 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3921 3922 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3923 if (SrcOp.getValueSizeInBits() != VTBits) { 3924 assert(SrcOp.getValueSizeInBits() > VTBits && 3925 "Expected BUILD_VECTOR implicit truncation"); 3926 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3927 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3928 } 3929 Tmp = std::min(Tmp, Tmp2); 3930 } 3931 return Tmp; 3932 3933 case ISD::VECTOR_SHUFFLE: { 3934 // Collect the minimum number of sign bits that are shared by every vector 3935 // element referenced by the shuffle. 3936 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3937 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3938 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3939 for (unsigned i = 0; i != NumElts; ++i) { 3940 int M = SVN->getMaskElt(i); 3941 if (!DemandedElts[i]) 3942 continue; 3943 // For UNDEF elements, we don't know anything about the common state of 3944 // the shuffle result. 3945 if (M < 0) 3946 return 1; 3947 if ((unsigned)M < NumElts) 3948 DemandedLHS.setBit((unsigned)M % NumElts); 3949 else 3950 DemandedRHS.setBit((unsigned)M % NumElts); 3951 } 3952 Tmp = std::numeric_limits<unsigned>::max(); 3953 if (!!DemandedLHS) 3954 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3955 if (!!DemandedRHS) { 3956 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3957 Tmp = std::min(Tmp, Tmp2); 3958 } 3959 // If we don't know anything, early out and try computeKnownBits fall-back. 3960 if (Tmp == 1) 3961 break; 3962 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3963 return Tmp; 3964 } 3965 3966 case ISD::BITCAST: { 3967 SDValue N0 = Op.getOperand(0); 3968 EVT SrcVT = N0.getValueType(); 3969 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3970 3971 // Ignore bitcasts from unsupported types.. 3972 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3973 break; 3974 3975 // Fast handling of 'identity' bitcasts. 3976 if (VTBits == SrcBits) 3977 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3978 3979 bool IsLE = getDataLayout().isLittleEndian(); 3980 3981 // Bitcast 'large element' scalar/vector to 'small element' vector. 3982 if ((SrcBits % VTBits) == 0) { 3983 assert(VT.isVector() && "Expected bitcast to vector"); 3984 3985 unsigned Scale = SrcBits / VTBits; 3986 APInt SrcDemandedElts = 3987 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3988 3989 // Fast case - sign splat can be simply split across the small elements. 3990 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3991 if (Tmp == SrcBits) 3992 return VTBits; 3993 3994 // Slow case - determine how far the sign extends into each sub-element. 3995 Tmp2 = VTBits; 3996 for (unsigned i = 0; i != NumElts; ++i) 3997 if (DemandedElts[i]) { 3998 unsigned SubOffset = i % Scale; 3999 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4000 SubOffset = SubOffset * VTBits; 4001 if (Tmp <= SubOffset) 4002 return 1; 4003 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4004 } 4005 return Tmp2; 4006 } 4007 break; 4008 } 4009 4010 case ISD::FP_TO_SINT_SAT: 4011 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4012 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4013 return VTBits - Tmp + 1; 4014 case ISD::SIGN_EXTEND: 4015 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4016 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4017 case ISD::SIGN_EXTEND_INREG: 4018 // Max of the input and what this extends. 4019 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4020 Tmp = VTBits-Tmp+1; 4021 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4022 return std::max(Tmp, Tmp2); 4023 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4024 SDValue Src = Op.getOperand(0); 4025 EVT SrcVT = Src.getValueType(); 4026 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4027 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4028 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4029 } 4030 case ISD::SRA: 4031 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4032 // SRA X, C -> adds C sign bits. 4033 if (const APInt *ShAmt = 4034 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4035 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4036 return Tmp; 4037 case ISD::SHL: 4038 if (const APInt *ShAmt = 4039 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4040 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4041 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4042 if (ShAmt->ult(Tmp)) 4043 return Tmp - ShAmt->getZExtValue(); 4044 } 4045 break; 4046 case ISD::AND: 4047 case ISD::OR: 4048 case ISD::XOR: // NOT is handled here. 4049 // Logical binary ops preserve the number of sign bits at the worst. 4050 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4051 if (Tmp != 1) { 4052 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4053 FirstAnswer = std::min(Tmp, Tmp2); 4054 // We computed what we know about the sign bits as our first 4055 // answer. Now proceed to the generic code that uses 4056 // computeKnownBits, and pick whichever answer is better. 4057 } 4058 break; 4059 4060 case ISD::SELECT: 4061 case ISD::VSELECT: 4062 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4063 if (Tmp == 1) return 1; // Early out. 4064 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4065 return std::min(Tmp, Tmp2); 4066 case ISD::SELECT_CC: 4067 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4068 if (Tmp == 1) return 1; // Early out. 4069 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4070 return std::min(Tmp, Tmp2); 4071 4072 case ISD::SMIN: 4073 case ISD::SMAX: { 4074 // If we have a clamp pattern, we know that the number of sign bits will be 4075 // the minimum of the clamp min/max range. 4076 bool IsMax = (Opcode == ISD::SMAX); 4077 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4078 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4079 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4080 CstHigh = 4081 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4082 if (CstLow && CstHigh) { 4083 if (!IsMax) 4084 std::swap(CstLow, CstHigh); 4085 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4086 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4087 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4088 return std::min(Tmp, Tmp2); 4089 } 4090 } 4091 4092 // Fallback - just get the minimum number of sign bits of the operands. 4093 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4094 if (Tmp == 1) 4095 return 1; // Early out. 4096 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4097 return std::min(Tmp, Tmp2); 4098 } 4099 case ISD::UMIN: 4100 case ISD::UMAX: 4101 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4102 if (Tmp == 1) 4103 return 1; // Early out. 4104 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4105 return std::min(Tmp, Tmp2); 4106 case ISD::SADDO: 4107 case ISD::UADDO: 4108 case ISD::SSUBO: 4109 case ISD::USUBO: 4110 case ISD::SMULO: 4111 case ISD::UMULO: 4112 if (Op.getResNo() != 1) 4113 break; 4114 // The boolean result conforms to getBooleanContents. Fall through. 4115 // If setcc returns 0/-1, all bits are sign bits. 4116 // We know that we have an integer-based boolean since these operations 4117 // are only available for integer. 4118 if (TLI->getBooleanContents(VT.isVector(), false) == 4119 TargetLowering::ZeroOrNegativeOneBooleanContent) 4120 return VTBits; 4121 break; 4122 case ISD::SETCC: 4123 case ISD::STRICT_FSETCC: 4124 case ISD::STRICT_FSETCCS: { 4125 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4126 // If setcc returns 0/-1, all bits are sign bits. 4127 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4128 TargetLowering::ZeroOrNegativeOneBooleanContent) 4129 return VTBits; 4130 break; 4131 } 4132 case ISD::ROTL: 4133 case ISD::ROTR: 4134 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4135 4136 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4137 if (Tmp == VTBits) 4138 return VTBits; 4139 4140 if (ConstantSDNode *C = 4141 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4142 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4143 4144 // Handle rotate right by N like a rotate left by 32-N. 4145 if (Opcode == ISD::ROTR) 4146 RotAmt = (VTBits - RotAmt) % VTBits; 4147 4148 // If we aren't rotating out all of the known-in sign bits, return the 4149 // number that are left. This handles rotl(sext(x), 1) for example. 4150 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4151 } 4152 break; 4153 case ISD::ADD: 4154 case ISD::ADDC: 4155 // Add can have at most one carry bit. Thus we know that the output 4156 // is, at worst, one more bit than the inputs. 4157 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4158 if (Tmp == 1) return 1; // Early out. 4159 4160 // Special case decrementing a value (ADD X, -1): 4161 if (ConstantSDNode *CRHS = 4162 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4163 if (CRHS->isAllOnes()) { 4164 KnownBits Known = 4165 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4166 4167 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4168 // sign bits set. 4169 if ((Known.Zero | 1).isAllOnes()) 4170 return VTBits; 4171 4172 // If we are subtracting one from a positive number, there is no carry 4173 // out of the result. 4174 if (Known.isNonNegative()) 4175 return Tmp; 4176 } 4177 4178 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4179 if (Tmp2 == 1) return 1; // Early out. 4180 return std::min(Tmp, Tmp2) - 1; 4181 case ISD::SUB: 4182 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4183 if (Tmp2 == 1) return 1; // Early out. 4184 4185 // Handle NEG. 4186 if (ConstantSDNode *CLHS = 4187 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4188 if (CLHS->isZero()) { 4189 KnownBits Known = 4190 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4191 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4192 // sign bits set. 4193 if ((Known.Zero | 1).isAllOnes()) 4194 return VTBits; 4195 4196 // If the input is known to be positive (the sign bit is known clear), 4197 // the output of the NEG has the same number of sign bits as the input. 4198 if (Known.isNonNegative()) 4199 return Tmp2; 4200 4201 // Otherwise, we treat this like a SUB. 4202 } 4203 4204 // Sub can have at most one carry bit. Thus we know that the output 4205 // is, at worst, one more bit than the inputs. 4206 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4207 if (Tmp == 1) return 1; // Early out. 4208 return std::min(Tmp, Tmp2) - 1; 4209 case ISD::MUL: { 4210 // The output of the Mul can be at most twice the valid bits in the inputs. 4211 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4212 if (SignBitsOp0 == 1) 4213 break; 4214 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4215 if (SignBitsOp1 == 1) 4216 break; 4217 unsigned OutValidBits = 4218 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4219 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4220 } 4221 case ISD::SREM: 4222 // The sign bit is the LHS's sign bit, except when the result of the 4223 // remainder is zero. The magnitude of the result should be less than or 4224 // equal to the magnitude of the LHS. Therefore, the result should have 4225 // at least as many sign bits as the left hand side. 4226 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4227 case ISD::TRUNCATE: { 4228 // Check if the sign bits of source go down as far as the truncated value. 4229 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4230 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4231 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4232 return NumSrcSignBits - (NumSrcBits - VTBits); 4233 break; 4234 } 4235 case ISD::EXTRACT_ELEMENT: { 4236 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4237 const int BitWidth = Op.getValueSizeInBits(); 4238 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4239 4240 // Get reverse index (starting from 1), Op1 value indexes elements from 4241 // little end. Sign starts at big end. 4242 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4243 4244 // If the sign portion ends in our element the subtraction gives correct 4245 // result. Otherwise it gives either negative or > bitwidth result 4246 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4247 } 4248 case ISD::INSERT_VECTOR_ELT: { 4249 // If we know the element index, split the demand between the 4250 // source vector and the inserted element, otherwise assume we need 4251 // the original demanded vector elements and the value. 4252 SDValue InVec = Op.getOperand(0); 4253 SDValue InVal = Op.getOperand(1); 4254 SDValue EltNo = Op.getOperand(2); 4255 bool DemandedVal = true; 4256 APInt DemandedVecElts = DemandedElts; 4257 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4258 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4259 unsigned EltIdx = CEltNo->getZExtValue(); 4260 DemandedVal = !!DemandedElts[EltIdx]; 4261 DemandedVecElts.clearBit(EltIdx); 4262 } 4263 Tmp = std::numeric_limits<unsigned>::max(); 4264 if (DemandedVal) { 4265 // TODO - handle implicit truncation of inserted elements. 4266 if (InVal.getScalarValueSizeInBits() != VTBits) 4267 break; 4268 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4269 Tmp = std::min(Tmp, Tmp2); 4270 } 4271 if (!!DemandedVecElts) { 4272 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4273 Tmp = std::min(Tmp, Tmp2); 4274 } 4275 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4276 return Tmp; 4277 } 4278 case ISD::EXTRACT_VECTOR_ELT: { 4279 SDValue InVec = Op.getOperand(0); 4280 SDValue EltNo = Op.getOperand(1); 4281 EVT VecVT = InVec.getValueType(); 4282 // ComputeNumSignBits not yet implemented for scalable vectors. 4283 if (VecVT.isScalableVector()) 4284 break; 4285 const unsigned BitWidth = Op.getValueSizeInBits(); 4286 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4287 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4288 4289 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4290 // anything about sign bits. But if the sizes match we can derive knowledge 4291 // about sign bits from the vector operand. 4292 if (BitWidth != EltBitWidth) 4293 break; 4294 4295 // If we know the element index, just demand that vector element, else for 4296 // an unknown element index, ignore DemandedElts and demand them all. 4297 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4298 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4299 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4300 DemandedSrcElts = 4301 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4302 4303 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4304 } 4305 case ISD::EXTRACT_SUBVECTOR: { 4306 // Offset the demanded elts by the subvector index. 4307 SDValue Src = Op.getOperand(0); 4308 // Bail until we can represent demanded elements for scalable vectors. 4309 if (Src.getValueType().isScalableVector()) 4310 break; 4311 uint64_t Idx = Op.getConstantOperandVal(1); 4312 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4313 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4314 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4315 } 4316 case ISD::CONCAT_VECTORS: { 4317 // Determine the minimum number of sign bits across all demanded 4318 // elts of the input vectors. Early out if the result is already 1. 4319 Tmp = std::numeric_limits<unsigned>::max(); 4320 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4321 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4322 unsigned NumSubVectors = Op.getNumOperands(); 4323 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4324 APInt DemandedSub = 4325 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4326 if (!DemandedSub) 4327 continue; 4328 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4329 Tmp = std::min(Tmp, Tmp2); 4330 } 4331 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4332 return Tmp; 4333 } 4334 case ISD::INSERT_SUBVECTOR: { 4335 // Demand any elements from the subvector and the remainder from the src its 4336 // inserted into. 4337 SDValue Src = Op.getOperand(0); 4338 SDValue Sub = Op.getOperand(1); 4339 uint64_t Idx = Op.getConstantOperandVal(2); 4340 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4341 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4342 APInt DemandedSrcElts = DemandedElts; 4343 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4344 4345 Tmp = std::numeric_limits<unsigned>::max(); 4346 if (!!DemandedSubElts) { 4347 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4348 if (Tmp == 1) 4349 return 1; // early-out 4350 } 4351 if (!!DemandedSrcElts) { 4352 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4353 Tmp = std::min(Tmp, Tmp2); 4354 } 4355 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4356 return Tmp; 4357 } 4358 case ISD::ATOMIC_CMP_SWAP: 4359 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4360 case ISD::ATOMIC_SWAP: 4361 case ISD::ATOMIC_LOAD_ADD: 4362 case ISD::ATOMIC_LOAD_SUB: 4363 case ISD::ATOMIC_LOAD_AND: 4364 case ISD::ATOMIC_LOAD_CLR: 4365 case ISD::ATOMIC_LOAD_OR: 4366 case ISD::ATOMIC_LOAD_XOR: 4367 case ISD::ATOMIC_LOAD_NAND: 4368 case ISD::ATOMIC_LOAD_MIN: 4369 case ISD::ATOMIC_LOAD_MAX: 4370 case ISD::ATOMIC_LOAD_UMIN: 4371 case ISD::ATOMIC_LOAD_UMAX: 4372 case ISD::ATOMIC_LOAD: { 4373 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4374 // If we are looking at the loaded value. 4375 if (Op.getResNo() == 0) { 4376 if (Tmp == VTBits) 4377 return 1; // early-out 4378 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4379 return VTBits - Tmp + 1; 4380 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4381 return VTBits - Tmp; 4382 } 4383 break; 4384 } 4385 } 4386 4387 // If we are looking at the loaded value of the SDNode. 4388 if (Op.getResNo() == 0) { 4389 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4390 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4391 unsigned ExtType = LD->getExtensionType(); 4392 switch (ExtType) { 4393 default: break; 4394 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4395 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4396 return VTBits - Tmp + 1; 4397 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4398 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4399 return VTBits - Tmp; 4400 case ISD::NON_EXTLOAD: 4401 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4402 // We only need to handle vectors - computeKnownBits should handle 4403 // scalar cases. 4404 Type *CstTy = Cst->getType(); 4405 if (CstTy->isVectorTy() && 4406 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4407 VTBits == CstTy->getScalarSizeInBits()) { 4408 Tmp = VTBits; 4409 for (unsigned i = 0; i != NumElts; ++i) { 4410 if (!DemandedElts[i]) 4411 continue; 4412 if (Constant *Elt = Cst->getAggregateElement(i)) { 4413 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4414 const APInt &Value = CInt->getValue(); 4415 Tmp = std::min(Tmp, Value.getNumSignBits()); 4416 continue; 4417 } 4418 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4419 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4420 Tmp = std::min(Tmp, Value.getNumSignBits()); 4421 continue; 4422 } 4423 } 4424 // Unknown type. Conservatively assume no bits match sign bit. 4425 return 1; 4426 } 4427 return Tmp; 4428 } 4429 } 4430 break; 4431 } 4432 } 4433 } 4434 4435 // Allow the target to implement this method for its nodes. 4436 if (Opcode >= ISD::BUILTIN_OP_END || 4437 Opcode == ISD::INTRINSIC_WO_CHAIN || 4438 Opcode == ISD::INTRINSIC_W_CHAIN || 4439 Opcode == ISD::INTRINSIC_VOID) { 4440 unsigned NumBits = 4441 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4442 if (NumBits > 1) 4443 FirstAnswer = std::max(FirstAnswer, NumBits); 4444 } 4445 4446 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4447 // use this information. 4448 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4449 return std::max(FirstAnswer, Known.countMinSignBits()); 4450 } 4451 4452 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4453 unsigned Depth) const { 4454 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4455 return Op.getScalarValueSizeInBits() - SignBits + 1; 4456 } 4457 4458 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4459 const APInt &DemandedElts, 4460 unsigned Depth) const { 4461 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4462 return Op.getScalarValueSizeInBits() - SignBits + 1; 4463 } 4464 4465 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4466 unsigned Depth) const { 4467 // Early out for FREEZE. 4468 if (Op.getOpcode() == ISD::FREEZE) 4469 return true; 4470 4471 // TODO: Assume we don't know anything for now. 4472 EVT VT = Op.getValueType(); 4473 if (VT.isScalableVector()) 4474 return false; 4475 4476 APInt DemandedElts = VT.isVector() 4477 ? APInt::getAllOnes(VT.getVectorNumElements()) 4478 : APInt(1, 1); 4479 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4480 } 4481 4482 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4483 const APInt &DemandedElts, 4484 bool PoisonOnly, 4485 unsigned Depth) const { 4486 unsigned Opcode = Op.getOpcode(); 4487 4488 // Early out for FREEZE. 4489 if (Opcode == ISD::FREEZE) 4490 return true; 4491 4492 if (Depth >= MaxRecursionDepth) 4493 return false; // Limit search depth. 4494 4495 if (isIntOrFPConstant(Op)) 4496 return true; 4497 4498 switch (Opcode) { 4499 case ISD::UNDEF: 4500 return PoisonOnly; 4501 4502 case ISD::BUILD_VECTOR: 4503 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4504 // this shouldn't affect the result. 4505 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4506 if (!DemandedElts[i]) 4507 continue; 4508 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4509 Depth + 1)) 4510 return false; 4511 } 4512 return true; 4513 4514 // TODO: Search for noundef attributes from library functions. 4515 4516 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4517 4518 default: 4519 // Allow the target to implement this method for its nodes. 4520 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4521 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4522 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4523 Op, DemandedElts, *this, PoisonOnly, Depth); 4524 break; 4525 } 4526 4527 return false; 4528 } 4529 4530 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4531 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4532 !isa<ConstantSDNode>(Op.getOperand(1))) 4533 return false; 4534 4535 if (Op.getOpcode() == ISD::OR && 4536 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4537 return false; 4538 4539 return true; 4540 } 4541 4542 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4543 // If we're told that NaNs won't happen, assume they won't. 4544 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4545 return true; 4546 4547 if (Depth >= MaxRecursionDepth) 4548 return false; // Limit search depth. 4549 4550 // TODO: Handle vectors. 4551 // If the value is a constant, we can obviously see if it is a NaN or not. 4552 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4553 return !C->getValueAPF().isNaN() || 4554 (SNaN && !C->getValueAPF().isSignaling()); 4555 } 4556 4557 unsigned Opcode = Op.getOpcode(); 4558 switch (Opcode) { 4559 case ISD::FADD: 4560 case ISD::FSUB: 4561 case ISD::FMUL: 4562 case ISD::FDIV: 4563 case ISD::FREM: 4564 case ISD::FSIN: 4565 case ISD::FCOS: { 4566 if (SNaN) 4567 return true; 4568 // TODO: Need isKnownNeverInfinity 4569 return false; 4570 } 4571 case ISD::FCANONICALIZE: 4572 case ISD::FEXP: 4573 case ISD::FEXP2: 4574 case ISD::FTRUNC: 4575 case ISD::FFLOOR: 4576 case ISD::FCEIL: 4577 case ISD::FROUND: 4578 case ISD::FROUNDEVEN: 4579 case ISD::FRINT: 4580 case ISD::FNEARBYINT: { 4581 if (SNaN) 4582 return true; 4583 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4584 } 4585 case ISD::FABS: 4586 case ISD::FNEG: 4587 case ISD::FCOPYSIGN: { 4588 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4589 } 4590 case ISD::SELECT: 4591 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4592 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4593 case ISD::FP_EXTEND: 4594 case ISD::FP_ROUND: { 4595 if (SNaN) 4596 return true; 4597 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4598 } 4599 case ISD::SINT_TO_FP: 4600 case ISD::UINT_TO_FP: 4601 return true; 4602 case ISD::FMA: 4603 case ISD::FMAD: { 4604 if (SNaN) 4605 return true; 4606 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4607 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4608 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4609 } 4610 case ISD::FSQRT: // Need is known positive 4611 case ISD::FLOG: 4612 case ISD::FLOG2: 4613 case ISD::FLOG10: 4614 case ISD::FPOWI: 4615 case ISD::FPOW: { 4616 if (SNaN) 4617 return true; 4618 // TODO: Refine on operand 4619 return false; 4620 } 4621 case ISD::FMINNUM: 4622 case ISD::FMAXNUM: { 4623 // Only one needs to be known not-nan, since it will be returned if the 4624 // other ends up being one. 4625 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4626 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4627 } 4628 case ISD::FMINNUM_IEEE: 4629 case ISD::FMAXNUM_IEEE: { 4630 if (SNaN) 4631 return true; 4632 // This can return a NaN if either operand is an sNaN, or if both operands 4633 // are NaN. 4634 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4635 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4636 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4637 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4638 } 4639 case ISD::FMINIMUM: 4640 case ISD::FMAXIMUM: { 4641 // TODO: Does this quiet or return the origina NaN as-is? 4642 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4643 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4644 } 4645 case ISD::EXTRACT_VECTOR_ELT: { 4646 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4647 } 4648 default: 4649 if (Opcode >= ISD::BUILTIN_OP_END || 4650 Opcode == ISD::INTRINSIC_WO_CHAIN || 4651 Opcode == ISD::INTRINSIC_W_CHAIN || 4652 Opcode == ISD::INTRINSIC_VOID) { 4653 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4654 } 4655 4656 return false; 4657 } 4658 } 4659 4660 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4661 assert(Op.getValueType().isFloatingPoint() && 4662 "Floating point type expected"); 4663 4664 // If the value is a constant, we can obviously see if it is a zero or not. 4665 // TODO: Add BuildVector support. 4666 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4667 return !C->isZero(); 4668 return false; 4669 } 4670 4671 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4672 assert(!Op.getValueType().isFloatingPoint() && 4673 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4674 4675 // If the value is a constant, we can obviously see if it is a zero or not. 4676 if (ISD::matchUnaryPredicate(Op, 4677 [](ConstantSDNode *C) { return !C->isZero(); })) 4678 return true; 4679 4680 // TODO: Recognize more cases here. 4681 switch (Op.getOpcode()) { 4682 default: break; 4683 case ISD::OR: 4684 if (isKnownNeverZero(Op.getOperand(1)) || 4685 isKnownNeverZero(Op.getOperand(0))) 4686 return true; 4687 break; 4688 } 4689 4690 return false; 4691 } 4692 4693 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4694 // Check the obvious case. 4695 if (A == B) return true; 4696 4697 // For for negative and positive zero. 4698 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4699 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4700 if (CA->isZero() && CB->isZero()) return true; 4701 4702 // Otherwise they may not be equal. 4703 return false; 4704 } 4705 4706 // Only bits set in Mask must be negated, other bits may be arbitrary. 4707 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4708 if (isBitwiseNot(V, AllowUndefs)) 4709 return V.getOperand(0); 4710 4711 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4712 // bits in the non-extended part. 4713 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4714 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4715 return SDValue(); 4716 SDValue ExtArg = V.getOperand(0); 4717 if (ExtArg.getScalarValueSizeInBits() >= 4718 MaskC->getAPIntValue().getActiveBits() && 4719 isBitwiseNot(ExtArg, AllowUndefs) && 4720 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4721 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4722 return ExtArg.getOperand(0).getOperand(0); 4723 return SDValue(); 4724 } 4725 4726 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4727 // Match masked merge pattern (X & ~M) op (Y & M) 4728 // Including degenerate case (X & ~M) op M 4729 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4730 SDValue Other) { 4731 if (SDValue NotOperand = 4732 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4733 if (Other == NotOperand) 4734 return true; 4735 if (Other->getOpcode() == ISD::AND) 4736 return NotOperand == Other->getOperand(0) || 4737 NotOperand == Other->getOperand(1); 4738 } 4739 return false; 4740 }; 4741 if (A->getOpcode() == ISD::AND) 4742 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4743 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4744 return false; 4745 } 4746 4747 // FIXME: unify with llvm::haveNoCommonBitsSet. 4748 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4749 assert(A.getValueType() == B.getValueType() && 4750 "Values must have the same type"); 4751 if (haveNoCommonBitsSetCommutative(A, B) || 4752 haveNoCommonBitsSetCommutative(B, A)) 4753 return true; 4754 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4755 computeKnownBits(B)); 4756 } 4757 4758 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4759 SelectionDAG &DAG) { 4760 if (cast<ConstantSDNode>(Step)->isZero()) 4761 return DAG.getConstant(0, DL, VT); 4762 4763 return SDValue(); 4764 } 4765 4766 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4767 ArrayRef<SDValue> Ops, 4768 SelectionDAG &DAG) { 4769 int NumOps = Ops.size(); 4770 assert(NumOps != 0 && "Can't build an empty vector!"); 4771 assert(!VT.isScalableVector() && 4772 "BUILD_VECTOR cannot be used with scalable types"); 4773 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4774 "Incorrect element count in BUILD_VECTOR!"); 4775 4776 // BUILD_VECTOR of UNDEFs is UNDEF. 4777 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4778 return DAG.getUNDEF(VT); 4779 4780 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4781 SDValue IdentitySrc; 4782 bool IsIdentity = true; 4783 for (int i = 0; i != NumOps; ++i) { 4784 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4785 Ops[i].getOperand(0).getValueType() != VT || 4786 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4787 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4788 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4789 IsIdentity = false; 4790 break; 4791 } 4792 IdentitySrc = Ops[i].getOperand(0); 4793 } 4794 if (IsIdentity) 4795 return IdentitySrc; 4796 4797 return SDValue(); 4798 } 4799 4800 /// Try to simplify vector concatenation to an input value, undef, or build 4801 /// vector. 4802 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4803 ArrayRef<SDValue> Ops, 4804 SelectionDAG &DAG) { 4805 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4806 assert(llvm::all_of(Ops, 4807 [Ops](SDValue Op) { 4808 return Ops[0].getValueType() == Op.getValueType(); 4809 }) && 4810 "Concatenation of vectors with inconsistent value types!"); 4811 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4812 VT.getVectorElementCount() && 4813 "Incorrect element count in vector concatenation!"); 4814 4815 if (Ops.size() == 1) 4816 return Ops[0]; 4817 4818 // Concat of UNDEFs is UNDEF. 4819 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4820 return DAG.getUNDEF(VT); 4821 4822 // Scan the operands and look for extract operations from a single source 4823 // that correspond to insertion at the same location via this concatenation: 4824 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4825 SDValue IdentitySrc; 4826 bool IsIdentity = true; 4827 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4828 SDValue Op = Ops[i]; 4829 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4830 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4831 Op.getOperand(0).getValueType() != VT || 4832 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4833 Op.getConstantOperandVal(1) != IdentityIndex) { 4834 IsIdentity = false; 4835 break; 4836 } 4837 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4838 "Unexpected identity source vector for concat of extracts"); 4839 IdentitySrc = Op.getOperand(0); 4840 } 4841 if (IsIdentity) { 4842 assert(IdentitySrc && "Failed to set source vector of extracts"); 4843 return IdentitySrc; 4844 } 4845 4846 // The code below this point is only designed to work for fixed width 4847 // vectors, so we bail out for now. 4848 if (VT.isScalableVector()) 4849 return SDValue(); 4850 4851 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4852 // simplified to one big BUILD_VECTOR. 4853 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4854 EVT SVT = VT.getScalarType(); 4855 SmallVector<SDValue, 16> Elts; 4856 for (SDValue Op : Ops) { 4857 EVT OpVT = Op.getValueType(); 4858 if (Op.isUndef()) 4859 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4860 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4861 Elts.append(Op->op_begin(), Op->op_end()); 4862 else 4863 return SDValue(); 4864 } 4865 4866 // BUILD_VECTOR requires all inputs to be of the same type, find the 4867 // maximum type and extend them all. 4868 for (SDValue Op : Elts) 4869 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4870 4871 if (SVT.bitsGT(VT.getScalarType())) { 4872 for (SDValue &Op : Elts) { 4873 if (Op.isUndef()) 4874 Op = DAG.getUNDEF(SVT); 4875 else 4876 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4877 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4878 : DAG.getSExtOrTrunc(Op, DL, SVT); 4879 } 4880 } 4881 4882 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4883 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4884 return V; 4885 } 4886 4887 /// Gets or creates the specified node. 4888 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4889 FoldingSetNodeID ID; 4890 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4891 void *IP = nullptr; 4892 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4893 return SDValue(E, 0); 4894 4895 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4896 getVTList(VT)); 4897 CSEMap.InsertNode(N, IP); 4898 4899 InsertNode(N); 4900 SDValue V = SDValue(N, 0); 4901 NewSDValueDbgMsg(V, "Creating new node: ", this); 4902 return V; 4903 } 4904 4905 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4906 SDValue Operand) { 4907 SDNodeFlags Flags; 4908 if (Inserter) 4909 Flags = Inserter->getFlags(); 4910 return getNode(Opcode, DL, VT, Operand, Flags); 4911 } 4912 4913 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4914 SDValue Operand, const SDNodeFlags Flags) { 4915 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4916 "Operand is DELETED_NODE!"); 4917 // Constant fold unary operations with an integer constant operand. Even 4918 // opaque constant will be folded, because the folding of unary operations 4919 // doesn't create new constants with different values. Nevertheless, the 4920 // opaque flag is preserved during folding to prevent future folding with 4921 // other constants. 4922 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4923 const APInt &Val = C->getAPIntValue(); 4924 switch (Opcode) { 4925 default: break; 4926 case ISD::SIGN_EXTEND: 4927 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4928 C->isTargetOpcode(), C->isOpaque()); 4929 case ISD::TRUNCATE: 4930 if (C->isOpaque()) 4931 break; 4932 LLVM_FALLTHROUGH; 4933 case ISD::ZERO_EXTEND: 4934 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4935 C->isTargetOpcode(), C->isOpaque()); 4936 case ISD::ANY_EXTEND: 4937 // Some targets like RISCV prefer to sign extend some types. 4938 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4939 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4940 C->isTargetOpcode(), C->isOpaque()); 4941 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4942 C->isTargetOpcode(), C->isOpaque()); 4943 case ISD::UINT_TO_FP: 4944 case ISD::SINT_TO_FP: { 4945 APFloat apf(EVTToAPFloatSemantics(VT), 4946 APInt::getZero(VT.getSizeInBits())); 4947 (void)apf.convertFromAPInt(Val, 4948 Opcode==ISD::SINT_TO_FP, 4949 APFloat::rmNearestTiesToEven); 4950 return getConstantFP(apf, DL, VT); 4951 } 4952 case ISD::BITCAST: 4953 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4954 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4955 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4956 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4957 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4958 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4959 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4960 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4961 break; 4962 case ISD::ABS: 4963 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4964 C->isOpaque()); 4965 case ISD::BITREVERSE: 4966 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4967 C->isOpaque()); 4968 case ISD::BSWAP: 4969 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4970 C->isOpaque()); 4971 case ISD::CTPOP: 4972 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4973 C->isOpaque()); 4974 case ISD::CTLZ: 4975 case ISD::CTLZ_ZERO_UNDEF: 4976 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4977 C->isOpaque()); 4978 case ISD::CTTZ: 4979 case ISD::CTTZ_ZERO_UNDEF: 4980 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4981 C->isOpaque()); 4982 case ISD::FP16_TO_FP: { 4983 bool Ignored; 4984 APFloat FPV(APFloat::IEEEhalf(), 4985 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4986 4987 // This can return overflow, underflow, or inexact; we don't care. 4988 // FIXME need to be more flexible about rounding mode. 4989 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4990 APFloat::rmNearestTiesToEven, &Ignored); 4991 return getConstantFP(FPV, DL, VT); 4992 } 4993 case ISD::STEP_VECTOR: { 4994 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4995 return V; 4996 break; 4997 } 4998 } 4999 } 5000 5001 // Constant fold unary operations with a floating point constant operand. 5002 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 5003 APFloat V = C->getValueAPF(); // make copy 5004 switch (Opcode) { 5005 case ISD::FNEG: 5006 V.changeSign(); 5007 return getConstantFP(V, DL, VT); 5008 case ISD::FABS: 5009 V.clearSign(); 5010 return getConstantFP(V, DL, VT); 5011 case ISD::FCEIL: { 5012 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5013 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5014 return getConstantFP(V, DL, VT); 5015 break; 5016 } 5017 case ISD::FTRUNC: { 5018 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5019 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5020 return getConstantFP(V, DL, VT); 5021 break; 5022 } 5023 case ISD::FFLOOR: { 5024 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5025 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5026 return getConstantFP(V, DL, VT); 5027 break; 5028 } 5029 case ISD::FP_EXTEND: { 5030 bool ignored; 5031 // This can return overflow, underflow, or inexact; we don't care. 5032 // FIXME need to be more flexible about rounding mode. 5033 (void)V.convert(EVTToAPFloatSemantics(VT), 5034 APFloat::rmNearestTiesToEven, &ignored); 5035 return getConstantFP(V, DL, VT); 5036 } 5037 case ISD::FP_TO_SINT: 5038 case ISD::FP_TO_UINT: { 5039 bool ignored; 5040 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5041 // FIXME need to be more flexible about rounding mode. 5042 APFloat::opStatus s = 5043 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5044 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5045 break; 5046 return getConstant(IntVal, DL, VT); 5047 } 5048 case ISD::BITCAST: 5049 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5050 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5051 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5052 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5053 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5054 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5055 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5056 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5057 break; 5058 case ISD::FP_TO_FP16: { 5059 bool Ignored; 5060 // This can return overflow, underflow, or inexact; we don't care. 5061 // FIXME need to be more flexible about rounding mode. 5062 (void)V.convert(APFloat::IEEEhalf(), 5063 APFloat::rmNearestTiesToEven, &Ignored); 5064 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5065 } 5066 } 5067 } 5068 5069 // Constant fold unary operations with a vector integer or float operand. 5070 switch (Opcode) { 5071 default: 5072 // FIXME: Entirely reasonable to perform folding of other unary 5073 // operations here as the need arises. 5074 break; 5075 case ISD::FNEG: 5076 case ISD::FABS: 5077 case ISD::FCEIL: 5078 case ISD::FTRUNC: 5079 case ISD::FFLOOR: 5080 case ISD::FP_EXTEND: 5081 case ISD::FP_TO_SINT: 5082 case ISD::FP_TO_UINT: 5083 case ISD::TRUNCATE: 5084 case ISD::ANY_EXTEND: 5085 case ISD::ZERO_EXTEND: 5086 case ISD::SIGN_EXTEND: 5087 case ISD::UINT_TO_FP: 5088 case ISD::SINT_TO_FP: 5089 case ISD::ABS: 5090 case ISD::BITREVERSE: 5091 case ISD::BSWAP: 5092 case ISD::CTLZ: 5093 case ISD::CTLZ_ZERO_UNDEF: 5094 case ISD::CTTZ: 5095 case ISD::CTTZ_ZERO_UNDEF: 5096 case ISD::CTPOP: { 5097 SDValue Ops = {Operand}; 5098 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5099 return Fold; 5100 } 5101 } 5102 5103 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5104 switch (Opcode) { 5105 case ISD::STEP_VECTOR: 5106 assert(VT.isScalableVector() && 5107 "STEP_VECTOR can only be used with scalable types"); 5108 assert(OpOpcode == ISD::TargetConstant && 5109 VT.getVectorElementType() == Operand.getValueType() && 5110 "Unexpected step operand"); 5111 break; 5112 case ISD::FREEZE: 5113 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5114 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5115 return Operand; 5116 break; 5117 case ISD::TokenFactor: 5118 case ISD::MERGE_VALUES: 5119 case ISD::CONCAT_VECTORS: 5120 return Operand; // Factor, merge or concat of one node? No need. 5121 case ISD::BUILD_VECTOR: { 5122 // Attempt to simplify BUILD_VECTOR. 5123 SDValue Ops[] = {Operand}; 5124 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5125 return V; 5126 break; 5127 } 5128 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5129 case ISD::FP_EXTEND: 5130 assert(VT.isFloatingPoint() && 5131 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5132 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5133 assert((!VT.isVector() || 5134 VT.getVectorElementCount() == 5135 Operand.getValueType().getVectorElementCount()) && 5136 "Vector element count mismatch!"); 5137 assert(Operand.getValueType().bitsLT(VT) && 5138 "Invalid fpext node, dst < src!"); 5139 if (Operand.isUndef()) 5140 return getUNDEF(VT); 5141 break; 5142 case ISD::FP_TO_SINT: 5143 case ISD::FP_TO_UINT: 5144 if (Operand.isUndef()) 5145 return getUNDEF(VT); 5146 break; 5147 case ISD::SINT_TO_FP: 5148 case ISD::UINT_TO_FP: 5149 // [us]itofp(undef) = 0, because the result value is bounded. 5150 if (Operand.isUndef()) 5151 return getConstantFP(0.0, DL, VT); 5152 break; 5153 case ISD::SIGN_EXTEND: 5154 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5155 "Invalid SIGN_EXTEND!"); 5156 assert(VT.isVector() == Operand.getValueType().isVector() && 5157 "SIGN_EXTEND result type type should be vector iff the operand " 5158 "type is vector!"); 5159 if (Operand.getValueType() == VT) return Operand; // noop extension 5160 assert((!VT.isVector() || 5161 VT.getVectorElementCount() == 5162 Operand.getValueType().getVectorElementCount()) && 5163 "Vector element count mismatch!"); 5164 assert(Operand.getValueType().bitsLT(VT) && 5165 "Invalid sext node, dst < src!"); 5166 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5167 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5168 if (OpOpcode == ISD::UNDEF) 5169 // sext(undef) = 0, because the top bits will all be the same. 5170 return getConstant(0, DL, VT); 5171 break; 5172 case ISD::ZERO_EXTEND: 5173 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5174 "Invalid ZERO_EXTEND!"); 5175 assert(VT.isVector() == Operand.getValueType().isVector() && 5176 "ZERO_EXTEND result type type should be vector iff the operand " 5177 "type is vector!"); 5178 if (Operand.getValueType() == VT) return Operand; // noop extension 5179 assert((!VT.isVector() || 5180 VT.getVectorElementCount() == 5181 Operand.getValueType().getVectorElementCount()) && 5182 "Vector element count mismatch!"); 5183 assert(Operand.getValueType().bitsLT(VT) && 5184 "Invalid zext node, dst < src!"); 5185 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5186 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5187 if (OpOpcode == ISD::UNDEF) 5188 // zext(undef) = 0, because the top bits will be zero. 5189 return getConstant(0, DL, VT); 5190 break; 5191 case ISD::ANY_EXTEND: 5192 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5193 "Invalid ANY_EXTEND!"); 5194 assert(VT.isVector() == Operand.getValueType().isVector() && 5195 "ANY_EXTEND result type type should be vector iff the operand " 5196 "type is vector!"); 5197 if (Operand.getValueType() == VT) return Operand; // noop extension 5198 assert((!VT.isVector() || 5199 VT.getVectorElementCount() == 5200 Operand.getValueType().getVectorElementCount()) && 5201 "Vector element count mismatch!"); 5202 assert(Operand.getValueType().bitsLT(VT) && 5203 "Invalid anyext node, dst < src!"); 5204 5205 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5206 OpOpcode == ISD::ANY_EXTEND) 5207 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5208 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5209 if (OpOpcode == ISD::UNDEF) 5210 return getUNDEF(VT); 5211 5212 // (ext (trunc x)) -> x 5213 if (OpOpcode == ISD::TRUNCATE) { 5214 SDValue OpOp = Operand.getOperand(0); 5215 if (OpOp.getValueType() == VT) { 5216 transferDbgValues(Operand, OpOp); 5217 return OpOp; 5218 } 5219 } 5220 break; 5221 case ISD::TRUNCATE: 5222 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5223 "Invalid TRUNCATE!"); 5224 assert(VT.isVector() == Operand.getValueType().isVector() && 5225 "TRUNCATE result type type should be vector iff the operand " 5226 "type is vector!"); 5227 if (Operand.getValueType() == VT) return Operand; // noop truncate 5228 assert((!VT.isVector() || 5229 VT.getVectorElementCount() == 5230 Operand.getValueType().getVectorElementCount()) && 5231 "Vector element count mismatch!"); 5232 assert(Operand.getValueType().bitsGT(VT) && 5233 "Invalid truncate node, src < dst!"); 5234 if (OpOpcode == ISD::TRUNCATE) 5235 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5236 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5237 OpOpcode == ISD::ANY_EXTEND) { 5238 // If the source is smaller than the dest, we still need an extend. 5239 if (Operand.getOperand(0).getValueType().getScalarType() 5240 .bitsLT(VT.getScalarType())) 5241 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5242 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5243 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5244 return Operand.getOperand(0); 5245 } 5246 if (OpOpcode == ISD::UNDEF) 5247 return getUNDEF(VT); 5248 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5249 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5250 break; 5251 case ISD::ANY_EXTEND_VECTOR_INREG: 5252 case ISD::ZERO_EXTEND_VECTOR_INREG: 5253 case ISD::SIGN_EXTEND_VECTOR_INREG: 5254 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5255 assert(Operand.getValueType().bitsLE(VT) && 5256 "The input must be the same size or smaller than the result."); 5257 assert(VT.getVectorMinNumElements() < 5258 Operand.getValueType().getVectorMinNumElements() && 5259 "The destination vector type must have fewer lanes than the input."); 5260 break; 5261 case ISD::ABS: 5262 assert(VT.isInteger() && VT == Operand.getValueType() && 5263 "Invalid ABS!"); 5264 if (OpOpcode == ISD::UNDEF) 5265 return getConstant(0, DL, VT); 5266 break; 5267 case ISD::BSWAP: 5268 assert(VT.isInteger() && VT == Operand.getValueType() && 5269 "Invalid BSWAP!"); 5270 assert((VT.getScalarSizeInBits() % 16 == 0) && 5271 "BSWAP types must be a multiple of 16 bits!"); 5272 if (OpOpcode == ISD::UNDEF) 5273 return getUNDEF(VT); 5274 // bswap(bswap(X)) -> X. 5275 if (OpOpcode == ISD::BSWAP) 5276 return Operand.getOperand(0); 5277 break; 5278 case ISD::BITREVERSE: 5279 assert(VT.isInteger() && VT == Operand.getValueType() && 5280 "Invalid BITREVERSE!"); 5281 if (OpOpcode == ISD::UNDEF) 5282 return getUNDEF(VT); 5283 break; 5284 case ISD::BITCAST: 5285 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5286 "Cannot BITCAST between types of different sizes!"); 5287 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5288 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5289 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5290 if (OpOpcode == ISD::UNDEF) 5291 return getUNDEF(VT); 5292 break; 5293 case ISD::SCALAR_TO_VECTOR: 5294 assert(VT.isVector() && !Operand.getValueType().isVector() && 5295 (VT.getVectorElementType() == Operand.getValueType() || 5296 (VT.getVectorElementType().isInteger() && 5297 Operand.getValueType().isInteger() && 5298 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5299 "Illegal SCALAR_TO_VECTOR node!"); 5300 if (OpOpcode == ISD::UNDEF) 5301 return getUNDEF(VT); 5302 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5303 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5304 isa<ConstantSDNode>(Operand.getOperand(1)) && 5305 Operand.getConstantOperandVal(1) == 0 && 5306 Operand.getOperand(0).getValueType() == VT) 5307 return Operand.getOperand(0); 5308 break; 5309 case ISD::FNEG: 5310 // Negation of an unknown bag of bits is still completely undefined. 5311 if (OpOpcode == ISD::UNDEF) 5312 return getUNDEF(VT); 5313 5314 if (OpOpcode == ISD::FNEG) // --X -> X 5315 return Operand.getOperand(0); 5316 break; 5317 case ISD::FABS: 5318 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5319 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5320 break; 5321 case ISD::VSCALE: 5322 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5323 break; 5324 case ISD::CTPOP: 5325 if (Operand.getValueType().getScalarType() == MVT::i1) 5326 return Operand; 5327 break; 5328 case ISD::CTLZ: 5329 case ISD::CTTZ: 5330 if (Operand.getValueType().getScalarType() == MVT::i1) 5331 return getNOT(DL, Operand, Operand.getValueType()); 5332 break; 5333 case ISD::VECREDUCE_ADD: 5334 if (Operand.getValueType().getScalarType() == MVT::i1) 5335 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5336 break; 5337 case ISD::VECREDUCE_SMIN: 5338 case ISD::VECREDUCE_UMAX: 5339 if (Operand.getValueType().getScalarType() == MVT::i1) 5340 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5341 break; 5342 case ISD::VECREDUCE_SMAX: 5343 case ISD::VECREDUCE_UMIN: 5344 if (Operand.getValueType().getScalarType() == MVT::i1) 5345 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5346 break; 5347 } 5348 5349 SDNode *N; 5350 SDVTList VTs = getVTList(VT); 5351 SDValue Ops[] = {Operand}; 5352 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5353 FoldingSetNodeID ID; 5354 AddNodeIDNode(ID, Opcode, VTs, Ops); 5355 void *IP = nullptr; 5356 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5357 E->intersectFlagsWith(Flags); 5358 return SDValue(E, 0); 5359 } 5360 5361 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5362 N->setFlags(Flags); 5363 createOperands(N, Ops); 5364 CSEMap.InsertNode(N, IP); 5365 } else { 5366 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5367 createOperands(N, Ops); 5368 } 5369 5370 InsertNode(N); 5371 SDValue V = SDValue(N, 0); 5372 NewSDValueDbgMsg(V, "Creating new node: ", this); 5373 return V; 5374 } 5375 5376 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5377 const APInt &C2) { 5378 switch (Opcode) { 5379 case ISD::ADD: return C1 + C2; 5380 case ISD::SUB: return C1 - C2; 5381 case ISD::MUL: return C1 * C2; 5382 case ISD::AND: return C1 & C2; 5383 case ISD::OR: return C1 | C2; 5384 case ISD::XOR: return C1 ^ C2; 5385 case ISD::SHL: return C1 << C2; 5386 case ISD::SRL: return C1.lshr(C2); 5387 case ISD::SRA: return C1.ashr(C2); 5388 case ISD::ROTL: return C1.rotl(C2); 5389 case ISD::ROTR: return C1.rotr(C2); 5390 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5391 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5392 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5393 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5394 case ISD::SADDSAT: return C1.sadd_sat(C2); 5395 case ISD::UADDSAT: return C1.uadd_sat(C2); 5396 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5397 case ISD::USUBSAT: return C1.usub_sat(C2); 5398 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5399 case ISD::USHLSAT: return C1.ushl_sat(C2); 5400 case ISD::UDIV: 5401 if (!C2.getBoolValue()) 5402 break; 5403 return C1.udiv(C2); 5404 case ISD::UREM: 5405 if (!C2.getBoolValue()) 5406 break; 5407 return C1.urem(C2); 5408 case ISD::SDIV: 5409 if (!C2.getBoolValue()) 5410 break; 5411 return C1.sdiv(C2); 5412 case ISD::SREM: 5413 if (!C2.getBoolValue()) 5414 break; 5415 return C1.srem(C2); 5416 case ISD::MULHS: { 5417 unsigned FullWidth = C1.getBitWidth() * 2; 5418 APInt C1Ext = C1.sext(FullWidth); 5419 APInt C2Ext = C2.sext(FullWidth); 5420 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5421 } 5422 case ISD::MULHU: { 5423 unsigned FullWidth = C1.getBitWidth() * 2; 5424 APInt C1Ext = C1.zext(FullWidth); 5425 APInt C2Ext = C2.zext(FullWidth); 5426 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5427 } 5428 case ISD::AVGFLOORS: { 5429 unsigned FullWidth = C1.getBitWidth() + 1; 5430 APInt C1Ext = C1.sext(FullWidth); 5431 APInt C2Ext = C2.sext(FullWidth); 5432 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5433 } 5434 case ISD::AVGFLOORU: { 5435 unsigned FullWidth = C1.getBitWidth() + 1; 5436 APInt C1Ext = C1.zext(FullWidth); 5437 APInt C2Ext = C2.zext(FullWidth); 5438 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5439 } 5440 case ISD::AVGCEILS: { 5441 unsigned FullWidth = C1.getBitWidth() + 1; 5442 APInt C1Ext = C1.sext(FullWidth); 5443 APInt C2Ext = C2.sext(FullWidth); 5444 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5445 } 5446 case ISD::AVGCEILU: { 5447 unsigned FullWidth = C1.getBitWidth() + 1; 5448 APInt C1Ext = C1.zext(FullWidth); 5449 APInt C2Ext = C2.zext(FullWidth); 5450 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5451 } 5452 } 5453 return llvm::None; 5454 } 5455 5456 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5457 const GlobalAddressSDNode *GA, 5458 const SDNode *N2) { 5459 if (GA->getOpcode() != ISD::GlobalAddress) 5460 return SDValue(); 5461 if (!TLI->isOffsetFoldingLegal(GA)) 5462 return SDValue(); 5463 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5464 if (!C2) 5465 return SDValue(); 5466 int64_t Offset = C2->getSExtValue(); 5467 switch (Opcode) { 5468 case ISD::ADD: break; 5469 case ISD::SUB: Offset = -uint64_t(Offset); break; 5470 default: return SDValue(); 5471 } 5472 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5473 GA->getOffset() + uint64_t(Offset)); 5474 } 5475 5476 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5477 switch (Opcode) { 5478 case ISD::SDIV: 5479 case ISD::UDIV: 5480 case ISD::SREM: 5481 case ISD::UREM: { 5482 // If a divisor is zero/undef or any element of a divisor vector is 5483 // zero/undef, the whole op is undef. 5484 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5485 SDValue Divisor = Ops[1]; 5486 if (Divisor.isUndef() || isNullConstant(Divisor)) 5487 return true; 5488 5489 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5490 llvm::any_of(Divisor->op_values(), 5491 [](SDValue V) { return V.isUndef() || 5492 isNullConstant(V); }); 5493 // TODO: Handle signed overflow. 5494 } 5495 // TODO: Handle oversized shifts. 5496 default: 5497 return false; 5498 } 5499 } 5500 5501 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5502 EVT VT, ArrayRef<SDValue> Ops) { 5503 // If the opcode is a target-specific ISD node, there's nothing we can 5504 // do here and the operand rules may not line up with the below, so 5505 // bail early. 5506 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5507 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5508 // foldCONCAT_VECTORS in getNode before this is called. 5509 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5510 return SDValue(); 5511 5512 unsigned NumOps = Ops.size(); 5513 if (NumOps == 0) 5514 return SDValue(); 5515 5516 if (isUndef(Opcode, Ops)) 5517 return getUNDEF(VT); 5518 5519 // Handle binops special cases. 5520 if (NumOps == 2) { 5521 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5522 return CFP; 5523 5524 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5525 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5526 if (C1->isOpaque() || C2->isOpaque()) 5527 return SDValue(); 5528 5529 Optional<APInt> FoldAttempt = 5530 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5531 if (!FoldAttempt) 5532 return SDValue(); 5533 5534 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5535 assert((!Folded || !VT.isVector()) && 5536 "Can't fold vectors ops with scalar operands"); 5537 return Folded; 5538 } 5539 } 5540 5541 // fold (add Sym, c) -> Sym+c 5542 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5543 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5544 if (TLI->isCommutativeBinOp(Opcode)) 5545 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5546 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5547 } 5548 5549 // This is for vector folding only from here on. 5550 if (!VT.isVector()) 5551 return SDValue(); 5552 5553 ElementCount NumElts = VT.getVectorElementCount(); 5554 5555 // See if we can fold through bitcasted integer ops. 5556 // TODO: Can we handle undef elements? 5557 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5558 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5559 Ops[0].getOpcode() == ISD::BITCAST && 5560 Ops[1].getOpcode() == ISD::BITCAST) { 5561 SDValue N1 = peekThroughBitcasts(Ops[0]); 5562 SDValue N2 = peekThroughBitcasts(Ops[1]); 5563 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5564 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5565 EVT BVVT = N1.getValueType(); 5566 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5567 bool IsLE = getDataLayout().isLittleEndian(); 5568 unsigned EltBits = VT.getScalarSizeInBits(); 5569 SmallVector<APInt> RawBits1, RawBits2; 5570 BitVector UndefElts1, UndefElts2; 5571 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5572 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5573 UndefElts1.none() && UndefElts2.none()) { 5574 SmallVector<APInt> RawBits; 5575 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5576 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5577 if (!Fold) 5578 break; 5579 RawBits.push_back(Fold.getValue()); 5580 } 5581 if (RawBits.size() == NumElts.getFixedValue()) { 5582 // We have constant folded, but we need to cast this again back to 5583 // the original (possibly legalized) type. 5584 SmallVector<APInt> DstBits; 5585 BitVector DstUndefs; 5586 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5587 DstBits, RawBits, DstUndefs, 5588 BitVector(RawBits.size(), false)); 5589 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5590 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5591 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5592 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5593 if (DstUndefs[I]) 5594 continue; 5595 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5596 } 5597 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5598 } 5599 } 5600 } 5601 } 5602 5603 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5604 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5605 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5606 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5607 APInt RHSVal; 5608 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5609 APInt NewStep = Opcode == ISD::MUL 5610 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5611 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5612 return getStepVector(DL, VT, NewStep); 5613 } 5614 } 5615 5616 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5617 return !Op.getValueType().isVector() || 5618 Op.getValueType().getVectorElementCount() == NumElts; 5619 }; 5620 5621 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5622 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5623 Op.getOpcode() == ISD::BUILD_VECTOR || 5624 Op.getOpcode() == ISD::SPLAT_VECTOR; 5625 }; 5626 5627 // All operands must be vector types with the same number of elements as 5628 // the result type and must be either UNDEF or a build/splat vector 5629 // or UNDEF scalars. 5630 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5631 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5632 return SDValue(); 5633 5634 // If we are comparing vectors, then the result needs to be a i1 boolean that 5635 // is then extended back to the legal result type depending on how booleans 5636 // are represented. 5637 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5638 ISD::NodeType ExtendCode = 5639 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5640 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5641 : ISD::SIGN_EXTEND; 5642 5643 // Find legal integer scalar type for constant promotion and 5644 // ensure that its scalar size is at least as large as source. 5645 EVT LegalSVT = VT.getScalarType(); 5646 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5647 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5648 if (LegalSVT.bitsLT(VT.getScalarType())) 5649 return SDValue(); 5650 } 5651 5652 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5653 // only have one operand to check. For fixed-length vector types we may have 5654 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5655 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5656 5657 // Constant fold each scalar lane separately. 5658 SmallVector<SDValue, 4> ScalarResults; 5659 for (unsigned I = 0; I != NumVectorElts; I++) { 5660 SmallVector<SDValue, 4> ScalarOps; 5661 for (SDValue Op : Ops) { 5662 EVT InSVT = Op.getValueType().getScalarType(); 5663 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5664 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5665 if (Op.isUndef()) 5666 ScalarOps.push_back(getUNDEF(InSVT)); 5667 else 5668 ScalarOps.push_back(Op); 5669 continue; 5670 } 5671 5672 SDValue ScalarOp = 5673 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5674 EVT ScalarVT = ScalarOp.getValueType(); 5675 5676 // Build vector (integer) scalar operands may need implicit 5677 // truncation - do this before constant folding. 5678 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5679 // Don't create illegally-typed nodes unless they're constants or undef 5680 // - if we fail to constant fold we can't guarantee the (dead) nodes 5681 // we're creating will be cleaned up before being visited for 5682 // legalization. 5683 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5684 !isa<ConstantSDNode>(ScalarOp) && 5685 TLI->getTypeAction(*getContext(), InSVT) != 5686 TargetLowering::TypeLegal) 5687 return SDValue(); 5688 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5689 } 5690 5691 ScalarOps.push_back(ScalarOp); 5692 } 5693 5694 // Constant fold the scalar operands. 5695 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5696 5697 // Legalize the (integer) scalar constant if necessary. 5698 if (LegalSVT != SVT) 5699 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5700 5701 // Scalar folding only succeeded if the result is a constant or UNDEF. 5702 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5703 ScalarResult.getOpcode() != ISD::ConstantFP) 5704 return SDValue(); 5705 ScalarResults.push_back(ScalarResult); 5706 } 5707 5708 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5709 : getBuildVector(VT, DL, ScalarResults); 5710 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5711 return V; 5712 } 5713 5714 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5715 EVT VT, SDValue N1, SDValue N2) { 5716 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5717 // should. That will require dealing with a potentially non-default 5718 // rounding mode, checking the "opStatus" return value from the APFloat 5719 // math calculations, and possibly other variations. 5720 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5721 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5722 if (N1CFP && N2CFP) { 5723 APFloat C1 = N1CFP->getValueAPF(); // make copy 5724 const APFloat &C2 = N2CFP->getValueAPF(); 5725 switch (Opcode) { 5726 case ISD::FADD: 5727 C1.add(C2, APFloat::rmNearestTiesToEven); 5728 return getConstantFP(C1, DL, VT); 5729 case ISD::FSUB: 5730 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5731 return getConstantFP(C1, DL, VT); 5732 case ISD::FMUL: 5733 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5734 return getConstantFP(C1, DL, VT); 5735 case ISD::FDIV: 5736 C1.divide(C2, APFloat::rmNearestTiesToEven); 5737 return getConstantFP(C1, DL, VT); 5738 case ISD::FREM: 5739 C1.mod(C2); 5740 return getConstantFP(C1, DL, VT); 5741 case ISD::FCOPYSIGN: 5742 C1.copySign(C2); 5743 return getConstantFP(C1, DL, VT); 5744 case ISD::FMINNUM: 5745 return getConstantFP(minnum(C1, C2), DL, VT); 5746 case ISD::FMAXNUM: 5747 return getConstantFP(maxnum(C1, C2), DL, VT); 5748 case ISD::FMINIMUM: 5749 return getConstantFP(minimum(C1, C2), DL, VT); 5750 case ISD::FMAXIMUM: 5751 return getConstantFP(maximum(C1, C2), DL, VT); 5752 default: break; 5753 } 5754 } 5755 if (N1CFP && Opcode == ISD::FP_ROUND) { 5756 APFloat C1 = N1CFP->getValueAPF(); // make copy 5757 bool Unused; 5758 // This can return overflow, underflow, or inexact; we don't care. 5759 // FIXME need to be more flexible about rounding mode. 5760 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5761 &Unused); 5762 return getConstantFP(C1, DL, VT); 5763 } 5764 5765 switch (Opcode) { 5766 case ISD::FSUB: 5767 // -0.0 - undef --> undef (consistent with "fneg undef") 5768 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5769 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5770 return getUNDEF(VT); 5771 LLVM_FALLTHROUGH; 5772 5773 case ISD::FADD: 5774 case ISD::FMUL: 5775 case ISD::FDIV: 5776 case ISD::FREM: 5777 // If both operands are undef, the result is undef. If 1 operand is undef, 5778 // the result is NaN. This should match the behavior of the IR optimizer. 5779 if (N1.isUndef() && N2.isUndef()) 5780 return getUNDEF(VT); 5781 if (N1.isUndef() || N2.isUndef()) 5782 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5783 } 5784 return SDValue(); 5785 } 5786 5787 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5788 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5789 5790 // There's no need to assert on a byte-aligned pointer. All pointers are at 5791 // least byte aligned. 5792 if (A == Align(1)) 5793 return Val; 5794 5795 FoldingSetNodeID ID; 5796 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5797 ID.AddInteger(A.value()); 5798 5799 void *IP = nullptr; 5800 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5801 return SDValue(E, 0); 5802 5803 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5804 Val.getValueType(), A); 5805 createOperands(N, {Val}); 5806 5807 CSEMap.InsertNode(N, IP); 5808 InsertNode(N); 5809 5810 SDValue V(N, 0); 5811 NewSDValueDbgMsg(V, "Creating new node: ", this); 5812 return V; 5813 } 5814 5815 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5816 SDValue N1, SDValue N2) { 5817 SDNodeFlags Flags; 5818 if (Inserter) 5819 Flags = Inserter->getFlags(); 5820 return getNode(Opcode, DL, VT, N1, N2, Flags); 5821 } 5822 5823 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5824 SDValue &N2) const { 5825 if (!TLI->isCommutativeBinOp(Opcode)) 5826 return; 5827 5828 // Canonicalize: 5829 // binop(const, nonconst) -> binop(nonconst, const) 5830 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5831 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5832 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5833 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5834 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5835 std::swap(N1, N2); 5836 5837 // Canonicalize: 5838 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5839 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5840 N2.getOpcode() == ISD::STEP_VECTOR) 5841 std::swap(N1, N2); 5842 } 5843 5844 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5845 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5846 assert(N1.getOpcode() != ISD::DELETED_NODE && 5847 N2.getOpcode() != ISD::DELETED_NODE && 5848 "Operand is DELETED_NODE!"); 5849 5850 canonicalizeCommutativeBinop(Opcode, N1, N2); 5851 5852 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5853 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5854 5855 // Don't allow undefs in vector splats - we might be returning N2 when folding 5856 // to zero etc. 5857 ConstantSDNode *N2CV = 5858 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5859 5860 switch (Opcode) { 5861 default: break; 5862 case ISD::TokenFactor: 5863 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5864 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5865 // Fold trivial token factors. 5866 if (N1.getOpcode() == ISD::EntryToken) return N2; 5867 if (N2.getOpcode() == ISD::EntryToken) return N1; 5868 if (N1 == N2) return N1; 5869 break; 5870 case ISD::BUILD_VECTOR: { 5871 // Attempt to simplify BUILD_VECTOR. 5872 SDValue Ops[] = {N1, N2}; 5873 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5874 return V; 5875 break; 5876 } 5877 case ISD::CONCAT_VECTORS: { 5878 SDValue Ops[] = {N1, N2}; 5879 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5880 return V; 5881 break; 5882 } 5883 case ISD::AND: 5884 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5885 assert(N1.getValueType() == N2.getValueType() && 5886 N1.getValueType() == VT && "Binary operator types must match!"); 5887 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5888 // worth handling here. 5889 if (N2CV && N2CV->isZero()) 5890 return N2; 5891 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5892 return N1; 5893 break; 5894 case ISD::OR: 5895 case ISD::XOR: 5896 case ISD::ADD: 5897 case ISD::SUB: 5898 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5899 assert(N1.getValueType() == N2.getValueType() && 5900 N1.getValueType() == VT && "Binary operator types must match!"); 5901 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5902 // it's worth handling here. 5903 if (N2CV && N2CV->isZero()) 5904 return N1; 5905 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5906 VT.getVectorElementType() == MVT::i1) 5907 return getNode(ISD::XOR, DL, VT, N1, N2); 5908 break; 5909 case ISD::MUL: 5910 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5911 assert(N1.getValueType() == N2.getValueType() && 5912 N1.getValueType() == VT && "Binary operator types must match!"); 5913 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5914 return getNode(ISD::AND, DL, VT, N1, N2); 5915 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5916 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5917 const APInt &N2CImm = N2C->getAPIntValue(); 5918 return getVScale(DL, VT, MulImm * N2CImm); 5919 } 5920 break; 5921 case ISD::UDIV: 5922 case ISD::UREM: 5923 case ISD::MULHU: 5924 case ISD::MULHS: 5925 case ISD::SDIV: 5926 case ISD::SREM: 5927 case ISD::SADDSAT: 5928 case ISD::SSUBSAT: 5929 case ISD::UADDSAT: 5930 case ISD::USUBSAT: 5931 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5932 assert(N1.getValueType() == N2.getValueType() && 5933 N1.getValueType() == VT && "Binary operator types must match!"); 5934 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5935 // fold (add_sat x, y) -> (or x, y) for bool types. 5936 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5937 return getNode(ISD::OR, DL, VT, N1, N2); 5938 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5939 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5940 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5941 } 5942 break; 5943 case ISD::SMIN: 5944 case ISD::UMAX: 5945 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5946 assert(N1.getValueType() == N2.getValueType() && 5947 N1.getValueType() == VT && "Binary operator types must match!"); 5948 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5949 return getNode(ISD::OR, DL, VT, N1, N2); 5950 break; 5951 case ISD::SMAX: 5952 case ISD::UMIN: 5953 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5954 assert(N1.getValueType() == N2.getValueType() && 5955 N1.getValueType() == VT && "Binary operator types must match!"); 5956 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5957 return getNode(ISD::AND, DL, VT, N1, N2); 5958 break; 5959 case ISD::FADD: 5960 case ISD::FSUB: 5961 case ISD::FMUL: 5962 case ISD::FDIV: 5963 case ISD::FREM: 5964 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5965 assert(N1.getValueType() == N2.getValueType() && 5966 N1.getValueType() == VT && "Binary operator types must match!"); 5967 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5968 return V; 5969 break; 5970 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5971 assert(N1.getValueType() == VT && 5972 N1.getValueType().isFloatingPoint() && 5973 N2.getValueType().isFloatingPoint() && 5974 "Invalid FCOPYSIGN!"); 5975 break; 5976 case ISD::SHL: 5977 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5978 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5979 const APInt &ShiftImm = N2C->getAPIntValue(); 5980 return getVScale(DL, VT, MulImm << ShiftImm); 5981 } 5982 LLVM_FALLTHROUGH; 5983 case ISD::SRA: 5984 case ISD::SRL: 5985 if (SDValue V = simplifyShift(N1, N2)) 5986 return V; 5987 LLVM_FALLTHROUGH; 5988 case ISD::ROTL: 5989 case ISD::ROTR: 5990 assert(VT == N1.getValueType() && 5991 "Shift operators return type must be the same as their first arg"); 5992 assert(VT.isInteger() && N2.getValueType().isInteger() && 5993 "Shifts only work on integers"); 5994 assert((!VT.isVector() || VT == N2.getValueType()) && 5995 "Vector shift amounts must be in the same as their first arg"); 5996 // Verify that the shift amount VT is big enough to hold valid shift 5997 // amounts. This catches things like trying to shift an i1024 value by an 5998 // i8, which is easy to fall into in generic code that uses 5999 // TLI.getShiftAmount(). 6000 assert(N2.getValueType().getScalarSizeInBits() >= 6001 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6002 "Invalid use of small shift amount with oversized value!"); 6003 6004 // Always fold shifts of i1 values so the code generator doesn't need to 6005 // handle them. Since we know the size of the shift has to be less than the 6006 // size of the value, the shift/rotate count is guaranteed to be zero. 6007 if (VT == MVT::i1) 6008 return N1; 6009 if (N2CV && N2CV->isZero()) 6010 return N1; 6011 break; 6012 case ISD::FP_ROUND: 6013 assert(VT.isFloatingPoint() && 6014 N1.getValueType().isFloatingPoint() && 6015 VT.bitsLE(N1.getValueType()) && 6016 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6017 "Invalid FP_ROUND!"); 6018 if (N1.getValueType() == VT) return N1; // noop conversion. 6019 break; 6020 case ISD::AssertSext: 6021 case ISD::AssertZext: { 6022 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6023 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6024 assert(VT.isInteger() && EVT.isInteger() && 6025 "Cannot *_EXTEND_INREG FP types"); 6026 assert(!EVT.isVector() && 6027 "AssertSExt/AssertZExt type should be the vector element type " 6028 "rather than the vector type!"); 6029 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6030 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6031 break; 6032 } 6033 case ISD::SIGN_EXTEND_INREG: { 6034 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6035 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6036 assert(VT.isInteger() && EVT.isInteger() && 6037 "Cannot *_EXTEND_INREG FP types"); 6038 assert(EVT.isVector() == VT.isVector() && 6039 "SIGN_EXTEND_INREG type should be vector iff the operand " 6040 "type is vector!"); 6041 assert((!EVT.isVector() || 6042 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6043 "Vector element counts must match in SIGN_EXTEND_INREG"); 6044 assert(EVT.bitsLE(VT) && "Not extending!"); 6045 if (EVT == VT) return N1; // Not actually extending 6046 6047 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6048 unsigned FromBits = EVT.getScalarSizeInBits(); 6049 Val <<= Val.getBitWidth() - FromBits; 6050 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6051 return getConstant(Val, DL, ConstantVT); 6052 }; 6053 6054 if (N1C) { 6055 const APInt &Val = N1C->getAPIntValue(); 6056 return SignExtendInReg(Val, VT); 6057 } 6058 6059 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6060 SmallVector<SDValue, 8> Ops; 6061 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6062 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6063 SDValue Op = N1.getOperand(i); 6064 if (Op.isUndef()) { 6065 Ops.push_back(getUNDEF(OpVT)); 6066 continue; 6067 } 6068 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6069 APInt Val = C->getAPIntValue(); 6070 Ops.push_back(SignExtendInReg(Val, OpVT)); 6071 } 6072 return getBuildVector(VT, DL, Ops); 6073 } 6074 break; 6075 } 6076 case ISD::FP_TO_SINT_SAT: 6077 case ISD::FP_TO_UINT_SAT: { 6078 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6079 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6080 assert(N1.getValueType().isVector() == VT.isVector() && 6081 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6082 "vector!"); 6083 assert((!VT.isVector() || VT.getVectorNumElements() == 6084 N1.getValueType().getVectorNumElements()) && 6085 "Vector element counts must match in FP_TO_*INT_SAT"); 6086 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6087 "Type to saturate to must be a scalar."); 6088 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6089 "Not extending!"); 6090 break; 6091 } 6092 case ISD::EXTRACT_VECTOR_ELT: 6093 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6094 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6095 element type of the vector."); 6096 6097 // Extract from an undefined value or using an undefined index is undefined. 6098 if (N1.isUndef() || N2.isUndef()) 6099 return getUNDEF(VT); 6100 6101 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6102 // vectors. For scalable vectors we will provide appropriate support for 6103 // dealing with arbitrary indices. 6104 if (N2C && N1.getValueType().isFixedLengthVector() && 6105 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6106 return getUNDEF(VT); 6107 6108 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6109 // expanding copies of large vectors from registers. This only works for 6110 // fixed length vectors, since we need to know the exact number of 6111 // elements. 6112 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6113 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6114 unsigned Factor = 6115 N1.getOperand(0).getValueType().getVectorNumElements(); 6116 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6117 N1.getOperand(N2C->getZExtValue() / Factor), 6118 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6119 } 6120 6121 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6122 // lowering is expanding large vector constants. 6123 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6124 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6125 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6126 N1.getValueType().isFixedLengthVector()) && 6127 "BUILD_VECTOR used for scalable vectors"); 6128 unsigned Index = 6129 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6130 SDValue Elt = N1.getOperand(Index); 6131 6132 if (VT != Elt.getValueType()) 6133 // If the vector element type is not legal, the BUILD_VECTOR operands 6134 // are promoted and implicitly truncated, and the result implicitly 6135 // extended. Make that explicit here. 6136 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6137 6138 return Elt; 6139 } 6140 6141 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6142 // operations are lowered to scalars. 6143 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6144 // If the indices are the same, return the inserted element else 6145 // if the indices are known different, extract the element from 6146 // the original vector. 6147 SDValue N1Op2 = N1.getOperand(2); 6148 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6149 6150 if (N1Op2C && N2C) { 6151 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6152 if (VT == N1.getOperand(1).getValueType()) 6153 return N1.getOperand(1); 6154 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6155 } 6156 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6157 } 6158 } 6159 6160 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6161 // when vector types are scalarized and v1iX is legal. 6162 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6163 // Here we are completely ignoring the extract element index (N2), 6164 // which is fine for fixed width vectors, since any index other than 0 6165 // is undefined anyway. However, this cannot be ignored for scalable 6166 // vectors - in theory we could support this, but we don't want to do this 6167 // without a profitability check. 6168 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6169 N1.getValueType().isFixedLengthVector() && 6170 N1.getValueType().getVectorNumElements() == 1) { 6171 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6172 N1.getOperand(1)); 6173 } 6174 break; 6175 case ISD::EXTRACT_ELEMENT: 6176 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6177 assert(!N1.getValueType().isVector() && !VT.isVector() && 6178 (N1.getValueType().isInteger() == VT.isInteger()) && 6179 N1.getValueType() != VT && 6180 "Wrong types for EXTRACT_ELEMENT!"); 6181 6182 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6183 // 64-bit integers into 32-bit parts. Instead of building the extract of 6184 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6185 if (N1.getOpcode() == ISD::BUILD_PAIR) 6186 return N1.getOperand(N2C->getZExtValue()); 6187 6188 // EXTRACT_ELEMENT of a constant int is also very common. 6189 if (N1C) { 6190 unsigned ElementSize = VT.getSizeInBits(); 6191 unsigned Shift = ElementSize * N2C->getZExtValue(); 6192 const APInt &Val = N1C->getAPIntValue(); 6193 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6194 } 6195 break; 6196 case ISD::EXTRACT_SUBVECTOR: { 6197 EVT N1VT = N1.getValueType(); 6198 assert(VT.isVector() && N1VT.isVector() && 6199 "Extract subvector VTs must be vectors!"); 6200 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6201 "Extract subvector VTs must have the same element type!"); 6202 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6203 "Cannot extract a scalable vector from a fixed length vector!"); 6204 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6205 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6206 "Extract subvector must be from larger vector to smaller vector!"); 6207 assert(N2C && "Extract subvector index must be a constant"); 6208 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6209 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6210 N1VT.getVectorMinNumElements()) && 6211 "Extract subvector overflow!"); 6212 assert(N2C->getAPIntValue().getBitWidth() == 6213 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6214 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6215 6216 // Trivial extraction. 6217 if (VT == N1VT) 6218 return N1; 6219 6220 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6221 if (N1.isUndef()) 6222 return getUNDEF(VT); 6223 6224 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6225 // the concat have the same type as the extract. 6226 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6227 VT == N1.getOperand(0).getValueType()) { 6228 unsigned Factor = VT.getVectorMinNumElements(); 6229 return N1.getOperand(N2C->getZExtValue() / Factor); 6230 } 6231 6232 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6233 // during shuffle legalization. 6234 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6235 VT == N1.getOperand(1).getValueType()) 6236 return N1.getOperand(1); 6237 break; 6238 } 6239 } 6240 6241 // Perform trivial constant folding. 6242 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6243 return SV; 6244 6245 // Canonicalize an UNDEF to the RHS, even over a constant. 6246 if (N1.isUndef()) { 6247 if (TLI->isCommutativeBinOp(Opcode)) { 6248 std::swap(N1, N2); 6249 } else { 6250 switch (Opcode) { 6251 case ISD::SUB: 6252 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6253 case ISD::SIGN_EXTEND_INREG: 6254 case ISD::UDIV: 6255 case ISD::SDIV: 6256 case ISD::UREM: 6257 case ISD::SREM: 6258 case ISD::SSUBSAT: 6259 case ISD::USUBSAT: 6260 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6261 } 6262 } 6263 } 6264 6265 // Fold a bunch of operators when the RHS is undef. 6266 if (N2.isUndef()) { 6267 switch (Opcode) { 6268 case ISD::XOR: 6269 if (N1.isUndef()) 6270 // Handle undef ^ undef -> 0 special case. This is a common 6271 // idiom (misuse). 6272 return getConstant(0, DL, VT); 6273 LLVM_FALLTHROUGH; 6274 case ISD::ADD: 6275 case ISD::SUB: 6276 case ISD::UDIV: 6277 case ISD::SDIV: 6278 case ISD::UREM: 6279 case ISD::SREM: 6280 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6281 case ISD::MUL: 6282 case ISD::AND: 6283 case ISD::SSUBSAT: 6284 case ISD::USUBSAT: 6285 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6286 case ISD::OR: 6287 case ISD::SADDSAT: 6288 case ISD::UADDSAT: 6289 return getAllOnesConstant(DL, VT); 6290 } 6291 } 6292 6293 // Memoize this node if possible. 6294 SDNode *N; 6295 SDVTList VTs = getVTList(VT); 6296 SDValue Ops[] = {N1, N2}; 6297 if (VT != MVT::Glue) { 6298 FoldingSetNodeID ID; 6299 AddNodeIDNode(ID, Opcode, VTs, Ops); 6300 void *IP = nullptr; 6301 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6302 E->intersectFlagsWith(Flags); 6303 return SDValue(E, 0); 6304 } 6305 6306 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6307 N->setFlags(Flags); 6308 createOperands(N, Ops); 6309 CSEMap.InsertNode(N, IP); 6310 } else { 6311 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6312 createOperands(N, Ops); 6313 } 6314 6315 InsertNode(N); 6316 SDValue V = SDValue(N, 0); 6317 NewSDValueDbgMsg(V, "Creating new node: ", this); 6318 return V; 6319 } 6320 6321 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6322 SDValue N1, SDValue N2, SDValue N3) { 6323 SDNodeFlags Flags; 6324 if (Inserter) 6325 Flags = Inserter->getFlags(); 6326 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6327 } 6328 6329 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6330 SDValue N1, SDValue N2, SDValue N3, 6331 const SDNodeFlags Flags) { 6332 assert(N1.getOpcode() != ISD::DELETED_NODE && 6333 N2.getOpcode() != ISD::DELETED_NODE && 6334 N3.getOpcode() != ISD::DELETED_NODE && 6335 "Operand is DELETED_NODE!"); 6336 // Perform various simplifications. 6337 switch (Opcode) { 6338 case ISD::FMA: { 6339 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6340 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6341 N3.getValueType() == VT && "FMA types must match!"); 6342 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6343 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6344 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6345 if (N1CFP && N2CFP && N3CFP) { 6346 APFloat V1 = N1CFP->getValueAPF(); 6347 const APFloat &V2 = N2CFP->getValueAPF(); 6348 const APFloat &V3 = N3CFP->getValueAPF(); 6349 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6350 return getConstantFP(V1, DL, VT); 6351 } 6352 break; 6353 } 6354 case ISD::BUILD_VECTOR: { 6355 // Attempt to simplify BUILD_VECTOR. 6356 SDValue Ops[] = {N1, N2, N3}; 6357 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6358 return V; 6359 break; 6360 } 6361 case ISD::CONCAT_VECTORS: { 6362 SDValue Ops[] = {N1, N2, N3}; 6363 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6364 return V; 6365 break; 6366 } 6367 case ISD::SETCC: { 6368 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6369 assert(N1.getValueType() == N2.getValueType() && 6370 "SETCC operands must have the same type!"); 6371 assert(VT.isVector() == N1.getValueType().isVector() && 6372 "SETCC type should be vector iff the operand type is vector!"); 6373 assert((!VT.isVector() || VT.getVectorElementCount() == 6374 N1.getValueType().getVectorElementCount()) && 6375 "SETCC vector element counts must match!"); 6376 // Use FoldSetCC to simplify SETCC's. 6377 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6378 return V; 6379 // Vector constant folding. 6380 SDValue Ops[] = {N1, N2, N3}; 6381 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6382 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6383 return V; 6384 } 6385 break; 6386 } 6387 case ISD::SELECT: 6388 case ISD::VSELECT: 6389 if (SDValue V = simplifySelect(N1, N2, N3)) 6390 return V; 6391 break; 6392 case ISD::VECTOR_SHUFFLE: 6393 llvm_unreachable("should use getVectorShuffle constructor!"); 6394 case ISD::VECTOR_SPLICE: { 6395 if (cast<ConstantSDNode>(N3)->isNullValue()) 6396 return N1; 6397 break; 6398 } 6399 case ISD::INSERT_VECTOR_ELT: { 6400 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6401 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6402 // for scalable vectors where we will generate appropriate code to 6403 // deal with out-of-bounds cases correctly. 6404 if (N3C && N1.getValueType().isFixedLengthVector() && 6405 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6406 return getUNDEF(VT); 6407 6408 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6409 if (N3.isUndef()) 6410 return getUNDEF(VT); 6411 6412 // If the inserted element is an UNDEF, just use the input vector. 6413 if (N2.isUndef()) 6414 return N1; 6415 6416 break; 6417 } 6418 case ISD::INSERT_SUBVECTOR: { 6419 // Inserting undef into undef is still undef. 6420 if (N1.isUndef() && N2.isUndef()) 6421 return getUNDEF(VT); 6422 6423 EVT N2VT = N2.getValueType(); 6424 assert(VT == N1.getValueType() && 6425 "Dest and insert subvector source types must match!"); 6426 assert(VT.isVector() && N2VT.isVector() && 6427 "Insert subvector VTs must be vectors!"); 6428 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6429 "Cannot insert a scalable vector into a fixed length vector!"); 6430 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6431 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6432 "Insert subvector must be from smaller vector to larger vector!"); 6433 assert(isa<ConstantSDNode>(N3) && 6434 "Insert subvector index must be constant"); 6435 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6436 (N2VT.getVectorMinNumElements() + 6437 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6438 VT.getVectorMinNumElements()) && 6439 "Insert subvector overflow!"); 6440 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6441 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6442 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6443 6444 // Trivial insertion. 6445 if (VT == N2VT) 6446 return N2; 6447 6448 // If this is an insert of an extracted vector into an undef vector, we 6449 // can just use the input to the extract. 6450 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6451 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6452 return N2.getOperand(0); 6453 break; 6454 } 6455 case ISD::BITCAST: 6456 // Fold bit_convert nodes from a type to themselves. 6457 if (N1.getValueType() == VT) 6458 return N1; 6459 break; 6460 } 6461 6462 // Memoize node if it doesn't produce a flag. 6463 SDNode *N; 6464 SDVTList VTs = getVTList(VT); 6465 SDValue Ops[] = {N1, N2, N3}; 6466 if (VT != MVT::Glue) { 6467 FoldingSetNodeID ID; 6468 AddNodeIDNode(ID, Opcode, VTs, Ops); 6469 void *IP = nullptr; 6470 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6471 E->intersectFlagsWith(Flags); 6472 return SDValue(E, 0); 6473 } 6474 6475 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6476 N->setFlags(Flags); 6477 createOperands(N, Ops); 6478 CSEMap.InsertNode(N, IP); 6479 } else { 6480 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6481 createOperands(N, Ops); 6482 } 6483 6484 InsertNode(N); 6485 SDValue V = SDValue(N, 0); 6486 NewSDValueDbgMsg(V, "Creating new node: ", this); 6487 return V; 6488 } 6489 6490 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6491 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6492 SDValue Ops[] = { N1, N2, N3, N4 }; 6493 return getNode(Opcode, DL, VT, Ops); 6494 } 6495 6496 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6497 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6498 SDValue N5) { 6499 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6500 return getNode(Opcode, DL, VT, Ops); 6501 } 6502 6503 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6504 /// the incoming stack arguments to be loaded from the stack. 6505 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6506 SmallVector<SDValue, 8> ArgChains; 6507 6508 // Include the original chain at the beginning of the list. When this is 6509 // used by target LowerCall hooks, this helps legalize find the 6510 // CALLSEQ_BEGIN node. 6511 ArgChains.push_back(Chain); 6512 6513 // Add a chain value for each stack argument. 6514 for (SDNode *U : getEntryNode().getNode()->uses()) 6515 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6516 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6517 if (FI->getIndex() < 0) 6518 ArgChains.push_back(SDValue(L, 1)); 6519 6520 // Build a tokenfactor for all the chains. 6521 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6522 } 6523 6524 /// getMemsetValue - Vectorized representation of the memset value 6525 /// operand. 6526 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6527 const SDLoc &dl) { 6528 assert(!Value.isUndef()); 6529 6530 unsigned NumBits = VT.getScalarSizeInBits(); 6531 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6532 assert(C->getAPIntValue().getBitWidth() == 8); 6533 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6534 if (VT.isInteger()) { 6535 bool IsOpaque = VT.getSizeInBits() > 64 || 6536 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6537 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6538 } 6539 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6540 VT); 6541 } 6542 6543 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6544 EVT IntVT = VT.getScalarType(); 6545 if (!IntVT.isInteger()) 6546 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6547 6548 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6549 if (NumBits > 8) { 6550 // Use a multiplication with 0x010101... to extend the input to the 6551 // required length. 6552 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6553 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6554 DAG.getConstant(Magic, dl, IntVT)); 6555 } 6556 6557 if (VT != Value.getValueType() && !VT.isInteger()) 6558 Value = DAG.getBitcast(VT.getScalarType(), Value); 6559 if (VT != Value.getValueType()) 6560 Value = DAG.getSplatBuildVector(VT, dl, Value); 6561 6562 return Value; 6563 } 6564 6565 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6566 /// used when a memcpy is turned into a memset when the source is a constant 6567 /// string ptr. 6568 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6569 const TargetLowering &TLI, 6570 const ConstantDataArraySlice &Slice) { 6571 // Handle vector with all elements zero. 6572 if (Slice.Array == nullptr) { 6573 if (VT.isInteger()) 6574 return DAG.getConstant(0, dl, VT); 6575 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6576 return DAG.getConstantFP(0.0, dl, VT); 6577 if (VT.isVector()) { 6578 unsigned NumElts = VT.getVectorNumElements(); 6579 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6580 return DAG.getNode(ISD::BITCAST, dl, VT, 6581 DAG.getConstant(0, dl, 6582 EVT::getVectorVT(*DAG.getContext(), 6583 EltVT, NumElts))); 6584 } 6585 llvm_unreachable("Expected type!"); 6586 } 6587 6588 assert(!VT.isVector() && "Can't handle vector type here!"); 6589 unsigned NumVTBits = VT.getSizeInBits(); 6590 unsigned NumVTBytes = NumVTBits / 8; 6591 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6592 6593 APInt Val(NumVTBits, 0); 6594 if (DAG.getDataLayout().isLittleEndian()) { 6595 for (unsigned i = 0; i != NumBytes; ++i) 6596 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6597 } else { 6598 for (unsigned i = 0; i != NumBytes; ++i) 6599 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6600 } 6601 6602 // If the "cost" of materializing the integer immediate is less than the cost 6603 // of a load, then it is cost effective to turn the load into the immediate. 6604 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6605 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6606 return DAG.getConstant(Val, dl, VT); 6607 return SDValue(); 6608 } 6609 6610 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6611 const SDLoc &DL, 6612 const SDNodeFlags Flags) { 6613 EVT VT = Base.getValueType(); 6614 SDValue Index; 6615 6616 if (Offset.isScalable()) 6617 Index = getVScale(DL, Base.getValueType(), 6618 APInt(Base.getValueSizeInBits().getFixedSize(), 6619 Offset.getKnownMinSize())); 6620 else 6621 Index = getConstant(Offset.getFixedSize(), DL, VT); 6622 6623 return getMemBasePlusOffset(Base, Index, DL, Flags); 6624 } 6625 6626 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6627 const SDLoc &DL, 6628 const SDNodeFlags Flags) { 6629 assert(Offset.getValueType().isInteger()); 6630 EVT BasePtrVT = Ptr.getValueType(); 6631 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6632 } 6633 6634 /// Returns true if memcpy source is constant data. 6635 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6636 uint64_t SrcDelta = 0; 6637 GlobalAddressSDNode *G = nullptr; 6638 if (Src.getOpcode() == ISD::GlobalAddress) 6639 G = cast<GlobalAddressSDNode>(Src); 6640 else if (Src.getOpcode() == ISD::ADD && 6641 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6642 Src.getOperand(1).getOpcode() == ISD::Constant) { 6643 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6644 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6645 } 6646 if (!G) 6647 return false; 6648 6649 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6650 SrcDelta + G->getOffset()); 6651 } 6652 6653 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6654 SelectionDAG &DAG) { 6655 // On Darwin, -Os means optimize for size without hurting performance, so 6656 // only really optimize for size when -Oz (MinSize) is used. 6657 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6658 return MF.getFunction().hasMinSize(); 6659 return DAG.shouldOptForSize(); 6660 } 6661 6662 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6663 SmallVector<SDValue, 32> &OutChains, unsigned From, 6664 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6665 SmallVector<SDValue, 16> &OutStoreChains) { 6666 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6667 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6668 SmallVector<SDValue, 16> GluedLoadChains; 6669 for (unsigned i = From; i < To; ++i) { 6670 OutChains.push_back(OutLoadChains[i]); 6671 GluedLoadChains.push_back(OutLoadChains[i]); 6672 } 6673 6674 // Chain for all loads. 6675 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6676 GluedLoadChains); 6677 6678 for (unsigned i = From; i < To; ++i) { 6679 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6680 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6681 ST->getBasePtr(), ST->getMemoryVT(), 6682 ST->getMemOperand()); 6683 OutChains.push_back(NewStore); 6684 } 6685 } 6686 6687 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6688 SDValue Chain, SDValue Dst, SDValue Src, 6689 uint64_t Size, Align Alignment, 6690 bool isVol, bool AlwaysInline, 6691 MachinePointerInfo DstPtrInfo, 6692 MachinePointerInfo SrcPtrInfo, 6693 const AAMDNodes &AAInfo) { 6694 // Turn a memcpy of undef to nop. 6695 // FIXME: We need to honor volatile even is Src is undef. 6696 if (Src.isUndef()) 6697 return Chain; 6698 6699 // Expand memcpy to a series of load and store ops if the size operand falls 6700 // below a certain threshold. 6701 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6702 // rather than maybe a humongous number of loads and stores. 6703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6704 const DataLayout &DL = DAG.getDataLayout(); 6705 LLVMContext &C = *DAG.getContext(); 6706 std::vector<EVT> MemOps; 6707 bool DstAlignCanChange = false; 6708 MachineFunction &MF = DAG.getMachineFunction(); 6709 MachineFrameInfo &MFI = MF.getFrameInfo(); 6710 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6711 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6712 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6713 DstAlignCanChange = true; 6714 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6715 if (!SrcAlign || Alignment > *SrcAlign) 6716 SrcAlign = Alignment; 6717 assert(SrcAlign && "SrcAlign must be set"); 6718 ConstantDataArraySlice Slice; 6719 // If marked as volatile, perform a copy even when marked as constant. 6720 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6721 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6722 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6723 const MemOp Op = isZeroConstant 6724 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6725 /*IsZeroMemset*/ true, isVol) 6726 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6727 *SrcAlign, isVol, CopyFromConstant); 6728 if (!TLI.findOptimalMemOpLowering( 6729 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6730 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6731 return SDValue(); 6732 6733 if (DstAlignCanChange) { 6734 Type *Ty = MemOps[0].getTypeForEVT(C); 6735 Align NewAlign = DL.getABITypeAlign(Ty); 6736 6737 // Don't promote to an alignment that would require dynamic stack 6738 // realignment. 6739 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6740 if (!TRI->hasStackRealignment(MF)) 6741 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6742 NewAlign = NewAlign / 2; 6743 6744 if (NewAlign > Alignment) { 6745 // Give the stack frame object a larger alignment if needed. 6746 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6747 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6748 Alignment = NewAlign; 6749 } 6750 } 6751 6752 // Prepare AAInfo for loads/stores after lowering this memcpy. 6753 AAMDNodes NewAAInfo = AAInfo; 6754 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6755 6756 MachineMemOperand::Flags MMOFlags = 6757 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6758 SmallVector<SDValue, 16> OutLoadChains; 6759 SmallVector<SDValue, 16> OutStoreChains; 6760 SmallVector<SDValue, 32> OutChains; 6761 unsigned NumMemOps = MemOps.size(); 6762 uint64_t SrcOff = 0, DstOff = 0; 6763 for (unsigned i = 0; i != NumMemOps; ++i) { 6764 EVT VT = MemOps[i]; 6765 unsigned VTSize = VT.getSizeInBits() / 8; 6766 SDValue Value, Store; 6767 6768 if (VTSize > Size) { 6769 // Issuing an unaligned load / store pair that overlaps with the previous 6770 // pair. Adjust the offset accordingly. 6771 assert(i == NumMemOps-1 && i != 0); 6772 SrcOff -= VTSize - Size; 6773 DstOff -= VTSize - Size; 6774 } 6775 6776 if (CopyFromConstant && 6777 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6778 // It's unlikely a store of a vector immediate can be done in a single 6779 // instruction. It would require a load from a constantpool first. 6780 // We only handle zero vectors here. 6781 // FIXME: Handle other cases where store of vector immediate is done in 6782 // a single instruction. 6783 ConstantDataArraySlice SubSlice; 6784 if (SrcOff < Slice.Length) { 6785 SubSlice = Slice; 6786 SubSlice.move(SrcOff); 6787 } else { 6788 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6789 SubSlice.Array = nullptr; 6790 SubSlice.Offset = 0; 6791 SubSlice.Length = VTSize; 6792 } 6793 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6794 if (Value.getNode()) { 6795 Store = DAG.getStore( 6796 Chain, dl, Value, 6797 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6798 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6799 OutChains.push_back(Store); 6800 } 6801 } 6802 6803 if (!Store.getNode()) { 6804 // The type might not be legal for the target. This should only happen 6805 // if the type is smaller than a legal type, as on PPC, so the right 6806 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6807 // to Load/Store if NVT==VT. 6808 // FIXME does the case above also need this? 6809 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6810 assert(NVT.bitsGE(VT)); 6811 6812 bool isDereferenceable = 6813 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6814 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6815 if (isDereferenceable) 6816 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6817 6818 Value = DAG.getExtLoad( 6819 ISD::EXTLOAD, dl, NVT, Chain, 6820 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6821 SrcPtrInfo.getWithOffset(SrcOff), VT, 6822 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6823 OutLoadChains.push_back(Value.getValue(1)); 6824 6825 Store = DAG.getTruncStore( 6826 Chain, dl, Value, 6827 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6828 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6829 OutStoreChains.push_back(Store); 6830 } 6831 SrcOff += VTSize; 6832 DstOff += VTSize; 6833 Size -= VTSize; 6834 } 6835 6836 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6837 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6838 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6839 6840 if (NumLdStInMemcpy) { 6841 // It may be that memcpy might be converted to memset if it's memcpy 6842 // of constants. In such a case, we won't have loads and stores, but 6843 // just stores. In the absence of loads, there is nothing to gang up. 6844 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6845 // If target does not care, just leave as it. 6846 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6847 OutChains.push_back(OutLoadChains[i]); 6848 OutChains.push_back(OutStoreChains[i]); 6849 } 6850 } else { 6851 // Ld/St less than/equal limit set by target. 6852 if (NumLdStInMemcpy <= GluedLdStLimit) { 6853 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6854 NumLdStInMemcpy, OutLoadChains, 6855 OutStoreChains); 6856 } else { 6857 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6858 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6859 unsigned GlueIter = 0; 6860 6861 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6862 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6863 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6864 6865 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6866 OutLoadChains, OutStoreChains); 6867 GlueIter += GluedLdStLimit; 6868 } 6869 6870 // Residual ld/st. 6871 if (RemainingLdStInMemcpy) { 6872 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6873 RemainingLdStInMemcpy, OutLoadChains, 6874 OutStoreChains); 6875 } 6876 } 6877 } 6878 } 6879 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6880 } 6881 6882 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6883 SDValue Chain, SDValue Dst, SDValue Src, 6884 uint64_t Size, Align Alignment, 6885 bool isVol, bool AlwaysInline, 6886 MachinePointerInfo DstPtrInfo, 6887 MachinePointerInfo SrcPtrInfo, 6888 const AAMDNodes &AAInfo) { 6889 // Turn a memmove of undef to nop. 6890 // FIXME: We need to honor volatile even is Src is undef. 6891 if (Src.isUndef()) 6892 return Chain; 6893 6894 // Expand memmove to a series of load and store ops if the size operand falls 6895 // below a certain threshold. 6896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6897 const DataLayout &DL = DAG.getDataLayout(); 6898 LLVMContext &C = *DAG.getContext(); 6899 std::vector<EVT> MemOps; 6900 bool DstAlignCanChange = false; 6901 MachineFunction &MF = DAG.getMachineFunction(); 6902 MachineFrameInfo &MFI = MF.getFrameInfo(); 6903 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6904 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6905 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6906 DstAlignCanChange = true; 6907 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6908 if (!SrcAlign || Alignment > *SrcAlign) 6909 SrcAlign = Alignment; 6910 assert(SrcAlign && "SrcAlign must be set"); 6911 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6912 if (!TLI.findOptimalMemOpLowering( 6913 MemOps, Limit, 6914 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6915 /*IsVolatile*/ true), 6916 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6917 MF.getFunction().getAttributes())) 6918 return SDValue(); 6919 6920 if (DstAlignCanChange) { 6921 Type *Ty = MemOps[0].getTypeForEVT(C); 6922 Align NewAlign = DL.getABITypeAlign(Ty); 6923 if (NewAlign > Alignment) { 6924 // Give the stack frame object a larger alignment if needed. 6925 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6926 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6927 Alignment = NewAlign; 6928 } 6929 } 6930 6931 // Prepare AAInfo for loads/stores after lowering this memmove. 6932 AAMDNodes NewAAInfo = AAInfo; 6933 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6934 6935 MachineMemOperand::Flags MMOFlags = 6936 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6937 uint64_t SrcOff = 0, DstOff = 0; 6938 SmallVector<SDValue, 8> LoadValues; 6939 SmallVector<SDValue, 8> LoadChains; 6940 SmallVector<SDValue, 8> OutChains; 6941 unsigned NumMemOps = MemOps.size(); 6942 for (unsigned i = 0; i < NumMemOps; i++) { 6943 EVT VT = MemOps[i]; 6944 unsigned VTSize = VT.getSizeInBits() / 8; 6945 SDValue Value; 6946 6947 bool isDereferenceable = 6948 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6949 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6950 if (isDereferenceable) 6951 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6952 6953 Value = DAG.getLoad( 6954 VT, dl, Chain, 6955 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6956 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6957 LoadValues.push_back(Value); 6958 LoadChains.push_back(Value.getValue(1)); 6959 SrcOff += VTSize; 6960 } 6961 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6962 OutChains.clear(); 6963 for (unsigned i = 0; i < NumMemOps; i++) { 6964 EVT VT = MemOps[i]; 6965 unsigned VTSize = VT.getSizeInBits() / 8; 6966 SDValue Store; 6967 6968 Store = DAG.getStore( 6969 Chain, dl, LoadValues[i], 6970 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6971 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6972 OutChains.push_back(Store); 6973 DstOff += VTSize; 6974 } 6975 6976 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6977 } 6978 6979 /// Lower the call to 'memset' intrinsic function into a series of store 6980 /// operations. 6981 /// 6982 /// \param DAG Selection DAG where lowered code is placed. 6983 /// \param dl Link to corresponding IR location. 6984 /// \param Chain Control flow dependency. 6985 /// \param Dst Pointer to destination memory location. 6986 /// \param Src Value of byte to write into the memory. 6987 /// \param Size Number of bytes to write. 6988 /// \param Alignment Alignment of the destination in bytes. 6989 /// \param isVol True if destination is volatile. 6990 /// \param DstPtrInfo IR information on the memory pointer. 6991 /// \returns New head in the control flow, if lowering was successful, empty 6992 /// SDValue otherwise. 6993 /// 6994 /// The function tries to replace 'llvm.memset' intrinsic with several store 6995 /// operations and value calculation code. This is usually profitable for small 6996 /// memory size. 6997 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6998 SDValue Chain, SDValue Dst, SDValue Src, 6999 uint64_t Size, Align Alignment, bool isVol, 7000 MachinePointerInfo DstPtrInfo, 7001 const AAMDNodes &AAInfo) { 7002 // Turn a memset of undef to nop. 7003 // FIXME: We need to honor volatile even is Src is undef. 7004 if (Src.isUndef()) 7005 return Chain; 7006 7007 // Expand memset to a series of load/store ops if the size operand 7008 // falls below a certain threshold. 7009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7010 std::vector<EVT> MemOps; 7011 bool DstAlignCanChange = false; 7012 MachineFunction &MF = DAG.getMachineFunction(); 7013 MachineFrameInfo &MFI = MF.getFrameInfo(); 7014 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7015 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7016 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7017 DstAlignCanChange = true; 7018 bool IsZeroVal = 7019 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7020 if (!TLI.findOptimalMemOpLowering( 7021 MemOps, TLI.getMaxStoresPerMemset(OptSize), 7022 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7023 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7024 return SDValue(); 7025 7026 if (DstAlignCanChange) { 7027 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7028 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7029 if (NewAlign > Alignment) { 7030 // Give the stack frame object a larger alignment if needed. 7031 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7032 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7033 Alignment = NewAlign; 7034 } 7035 } 7036 7037 SmallVector<SDValue, 8> OutChains; 7038 uint64_t DstOff = 0; 7039 unsigned NumMemOps = MemOps.size(); 7040 7041 // Find the largest store and generate the bit pattern for it. 7042 EVT LargestVT = MemOps[0]; 7043 for (unsigned i = 1; i < NumMemOps; i++) 7044 if (MemOps[i].bitsGT(LargestVT)) 7045 LargestVT = MemOps[i]; 7046 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7047 7048 // Prepare AAInfo for loads/stores after lowering this memset. 7049 AAMDNodes NewAAInfo = AAInfo; 7050 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7051 7052 for (unsigned i = 0; i < NumMemOps; i++) { 7053 EVT VT = MemOps[i]; 7054 unsigned VTSize = VT.getSizeInBits() / 8; 7055 if (VTSize > Size) { 7056 // Issuing an unaligned load / store pair that overlaps with the previous 7057 // pair. Adjust the offset accordingly. 7058 assert(i == NumMemOps-1 && i != 0); 7059 DstOff -= VTSize - Size; 7060 } 7061 7062 // If this store is smaller than the largest store see whether we can get 7063 // the smaller value for free with a truncate. 7064 SDValue Value = MemSetValue; 7065 if (VT.bitsLT(LargestVT)) { 7066 if (!LargestVT.isVector() && !VT.isVector() && 7067 TLI.isTruncateFree(LargestVT, VT)) 7068 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7069 else 7070 Value = getMemsetValue(Src, VT, DAG, dl); 7071 } 7072 assert(Value.getValueType() == VT && "Value with wrong type."); 7073 SDValue Store = DAG.getStore( 7074 Chain, dl, Value, 7075 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7076 DstPtrInfo.getWithOffset(DstOff), Alignment, 7077 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7078 NewAAInfo); 7079 OutChains.push_back(Store); 7080 DstOff += VT.getSizeInBits() / 8; 7081 Size -= VTSize; 7082 } 7083 7084 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7085 } 7086 7087 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7088 unsigned AS) { 7089 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7090 // pointer operands can be losslessly bitcasted to pointers of address space 0 7091 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7092 report_fatal_error("cannot lower memory intrinsic in address space " + 7093 Twine(AS)); 7094 } 7095 } 7096 7097 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7098 SDValue Src, SDValue Size, Align Alignment, 7099 bool isVol, bool AlwaysInline, bool isTailCall, 7100 MachinePointerInfo DstPtrInfo, 7101 MachinePointerInfo SrcPtrInfo, 7102 const AAMDNodes &AAInfo) { 7103 // Check to see if we should lower the memcpy to loads and stores first. 7104 // For cases within the target-specified limits, this is the best choice. 7105 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7106 if (ConstantSize) { 7107 // Memcpy with size zero? Just return the original chain. 7108 if (ConstantSize->isZero()) 7109 return Chain; 7110 7111 SDValue Result = getMemcpyLoadsAndStores( 7112 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7113 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7114 if (Result.getNode()) 7115 return Result; 7116 } 7117 7118 // Then check to see if we should lower the memcpy with target-specific 7119 // code. If the target chooses to do this, this is the next best. 7120 if (TSI) { 7121 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7122 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7123 DstPtrInfo, SrcPtrInfo); 7124 if (Result.getNode()) 7125 return Result; 7126 } 7127 7128 // If we really need inline code and the target declined to provide it, 7129 // use a (potentially long) sequence of loads and stores. 7130 if (AlwaysInline) { 7131 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7132 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7133 ConstantSize->getZExtValue(), Alignment, 7134 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7135 } 7136 7137 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7138 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7139 7140 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7141 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7142 // respect volatile, so they may do things like read or write memory 7143 // beyond the given memory regions. But fixing this isn't easy, and most 7144 // people don't care. 7145 7146 // Emit a library call. 7147 TargetLowering::ArgListTy Args; 7148 TargetLowering::ArgListEntry Entry; 7149 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7150 Entry.Node = Dst; Args.push_back(Entry); 7151 Entry.Node = Src; Args.push_back(Entry); 7152 7153 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7154 Entry.Node = Size; Args.push_back(Entry); 7155 // FIXME: pass in SDLoc 7156 TargetLowering::CallLoweringInfo CLI(*this); 7157 CLI.setDebugLoc(dl) 7158 .setChain(Chain) 7159 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7160 Dst.getValueType().getTypeForEVT(*getContext()), 7161 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7162 TLI->getPointerTy(getDataLayout())), 7163 std::move(Args)) 7164 .setDiscardResult() 7165 .setTailCall(isTailCall); 7166 7167 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7168 return CallResult.second; 7169 } 7170 7171 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7172 SDValue Dst, unsigned DstAlign, 7173 SDValue Src, unsigned SrcAlign, 7174 SDValue Size, Type *SizeTy, 7175 unsigned ElemSz, bool isTailCall, 7176 MachinePointerInfo DstPtrInfo, 7177 MachinePointerInfo SrcPtrInfo) { 7178 // Emit a library call. 7179 TargetLowering::ArgListTy Args; 7180 TargetLowering::ArgListEntry Entry; 7181 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7182 Entry.Node = Dst; 7183 Args.push_back(Entry); 7184 7185 Entry.Node = Src; 7186 Args.push_back(Entry); 7187 7188 Entry.Ty = SizeTy; 7189 Entry.Node = Size; 7190 Args.push_back(Entry); 7191 7192 RTLIB::Libcall LibraryCall = 7193 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7194 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7195 report_fatal_error("Unsupported element size"); 7196 7197 TargetLowering::CallLoweringInfo CLI(*this); 7198 CLI.setDebugLoc(dl) 7199 .setChain(Chain) 7200 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7201 Type::getVoidTy(*getContext()), 7202 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7203 TLI->getPointerTy(getDataLayout())), 7204 std::move(Args)) 7205 .setDiscardResult() 7206 .setTailCall(isTailCall); 7207 7208 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7209 return CallResult.second; 7210 } 7211 7212 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7213 SDValue Src, SDValue Size, Align Alignment, 7214 bool isVol, bool isTailCall, 7215 MachinePointerInfo DstPtrInfo, 7216 MachinePointerInfo SrcPtrInfo, 7217 const AAMDNodes &AAInfo) { 7218 // Check to see if we should lower the memmove to loads and stores first. 7219 // For cases within the target-specified limits, this is the best choice. 7220 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7221 if (ConstantSize) { 7222 // Memmove with size zero? Just return the original chain. 7223 if (ConstantSize->isZero()) 7224 return Chain; 7225 7226 SDValue Result = getMemmoveLoadsAndStores( 7227 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7228 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7229 if (Result.getNode()) 7230 return Result; 7231 } 7232 7233 // Then check to see if we should lower the memmove with target-specific 7234 // code. If the target chooses to do this, this is the next best. 7235 if (TSI) { 7236 SDValue Result = 7237 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7238 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7239 if (Result.getNode()) 7240 return Result; 7241 } 7242 7243 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7244 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7245 7246 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7247 // not be safe. See memcpy above for more details. 7248 7249 // Emit a library call. 7250 TargetLowering::ArgListTy Args; 7251 TargetLowering::ArgListEntry Entry; 7252 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7253 Entry.Node = Dst; Args.push_back(Entry); 7254 Entry.Node = Src; Args.push_back(Entry); 7255 7256 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7257 Entry.Node = Size; Args.push_back(Entry); 7258 // FIXME: pass in SDLoc 7259 TargetLowering::CallLoweringInfo CLI(*this); 7260 CLI.setDebugLoc(dl) 7261 .setChain(Chain) 7262 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7263 Dst.getValueType().getTypeForEVT(*getContext()), 7264 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7265 TLI->getPointerTy(getDataLayout())), 7266 std::move(Args)) 7267 .setDiscardResult() 7268 .setTailCall(isTailCall); 7269 7270 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7271 return CallResult.second; 7272 } 7273 7274 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7275 SDValue Dst, unsigned DstAlign, 7276 SDValue Src, unsigned SrcAlign, 7277 SDValue Size, Type *SizeTy, 7278 unsigned ElemSz, bool isTailCall, 7279 MachinePointerInfo DstPtrInfo, 7280 MachinePointerInfo SrcPtrInfo) { 7281 // Emit a library call. 7282 TargetLowering::ArgListTy Args; 7283 TargetLowering::ArgListEntry Entry; 7284 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7285 Entry.Node = Dst; 7286 Args.push_back(Entry); 7287 7288 Entry.Node = Src; 7289 Args.push_back(Entry); 7290 7291 Entry.Ty = SizeTy; 7292 Entry.Node = Size; 7293 Args.push_back(Entry); 7294 7295 RTLIB::Libcall LibraryCall = 7296 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7297 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7298 report_fatal_error("Unsupported element size"); 7299 7300 TargetLowering::CallLoweringInfo CLI(*this); 7301 CLI.setDebugLoc(dl) 7302 .setChain(Chain) 7303 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7304 Type::getVoidTy(*getContext()), 7305 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7306 TLI->getPointerTy(getDataLayout())), 7307 std::move(Args)) 7308 .setDiscardResult() 7309 .setTailCall(isTailCall); 7310 7311 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7312 return CallResult.second; 7313 } 7314 7315 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7316 SDValue Src, SDValue Size, Align Alignment, 7317 bool isVol, bool isTailCall, 7318 MachinePointerInfo DstPtrInfo, 7319 const AAMDNodes &AAInfo) { 7320 // Check to see if we should lower the memset to stores first. 7321 // For cases within the target-specified limits, this is the best choice. 7322 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7323 if (ConstantSize) { 7324 // Memset with size zero? Just return the original chain. 7325 if (ConstantSize->isZero()) 7326 return Chain; 7327 7328 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7329 ConstantSize->getZExtValue(), Alignment, 7330 isVol, DstPtrInfo, AAInfo); 7331 7332 if (Result.getNode()) 7333 return Result; 7334 } 7335 7336 // Then check to see if we should lower the memset with target-specific 7337 // code. If the target chooses to do this, this is the next best. 7338 if (TSI) { 7339 SDValue Result = TSI->EmitTargetCodeForMemset( 7340 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7341 if (Result.getNode()) 7342 return Result; 7343 } 7344 7345 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7346 7347 // Emit a library call. 7348 auto &Ctx = *getContext(); 7349 const auto& DL = getDataLayout(); 7350 7351 TargetLowering::CallLoweringInfo CLI(*this); 7352 // FIXME: pass in SDLoc 7353 CLI.setDebugLoc(dl).setChain(Chain); 7354 7355 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7356 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7357 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7358 7359 // Helper function to create an Entry from Node and Type. 7360 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7361 TargetLowering::ArgListEntry Entry; 7362 Entry.Node = Node; 7363 Entry.Ty = Ty; 7364 return Entry; 7365 }; 7366 7367 // If zeroing out and bzero is present, use it. 7368 if (SrcIsZero && BzeroName) { 7369 TargetLowering::ArgListTy Args; 7370 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7371 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7372 CLI.setLibCallee( 7373 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7374 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7375 } else { 7376 TargetLowering::ArgListTy Args; 7377 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7378 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7379 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7380 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7381 Dst.getValueType().getTypeForEVT(Ctx), 7382 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7383 TLI->getPointerTy(DL)), 7384 std::move(Args)); 7385 } 7386 7387 CLI.setDiscardResult().setTailCall(isTailCall); 7388 7389 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7390 return CallResult.second; 7391 } 7392 7393 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7394 SDValue Dst, unsigned DstAlign, 7395 SDValue Value, SDValue Size, Type *SizeTy, 7396 unsigned ElemSz, bool isTailCall, 7397 MachinePointerInfo DstPtrInfo) { 7398 // Emit a library call. 7399 TargetLowering::ArgListTy Args; 7400 TargetLowering::ArgListEntry Entry; 7401 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7402 Entry.Node = Dst; 7403 Args.push_back(Entry); 7404 7405 Entry.Ty = Type::getInt8Ty(*getContext()); 7406 Entry.Node = Value; 7407 Args.push_back(Entry); 7408 7409 Entry.Ty = SizeTy; 7410 Entry.Node = Size; 7411 Args.push_back(Entry); 7412 7413 RTLIB::Libcall LibraryCall = 7414 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7415 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7416 report_fatal_error("Unsupported element size"); 7417 7418 TargetLowering::CallLoweringInfo CLI(*this); 7419 CLI.setDebugLoc(dl) 7420 .setChain(Chain) 7421 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7422 Type::getVoidTy(*getContext()), 7423 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7424 TLI->getPointerTy(getDataLayout())), 7425 std::move(Args)) 7426 .setDiscardResult() 7427 .setTailCall(isTailCall); 7428 7429 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7430 return CallResult.second; 7431 } 7432 7433 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7434 SDVTList VTList, ArrayRef<SDValue> Ops, 7435 MachineMemOperand *MMO) { 7436 FoldingSetNodeID ID; 7437 ID.AddInteger(MemVT.getRawBits()); 7438 AddNodeIDNode(ID, Opcode, VTList, Ops); 7439 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7440 ID.AddInteger(MMO->getFlags()); 7441 void* IP = nullptr; 7442 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7443 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7444 return SDValue(E, 0); 7445 } 7446 7447 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7448 VTList, MemVT, MMO); 7449 createOperands(N, Ops); 7450 7451 CSEMap.InsertNode(N, IP); 7452 InsertNode(N); 7453 return SDValue(N, 0); 7454 } 7455 7456 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7457 EVT MemVT, SDVTList VTs, SDValue Chain, 7458 SDValue Ptr, SDValue Cmp, SDValue Swp, 7459 MachineMemOperand *MMO) { 7460 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7461 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7462 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7463 7464 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7465 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7466 } 7467 7468 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7469 SDValue Chain, SDValue Ptr, SDValue Val, 7470 MachineMemOperand *MMO) { 7471 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7472 Opcode == ISD::ATOMIC_LOAD_SUB || 7473 Opcode == ISD::ATOMIC_LOAD_AND || 7474 Opcode == ISD::ATOMIC_LOAD_CLR || 7475 Opcode == ISD::ATOMIC_LOAD_OR || 7476 Opcode == ISD::ATOMIC_LOAD_XOR || 7477 Opcode == ISD::ATOMIC_LOAD_NAND || 7478 Opcode == ISD::ATOMIC_LOAD_MIN || 7479 Opcode == ISD::ATOMIC_LOAD_MAX || 7480 Opcode == ISD::ATOMIC_LOAD_UMIN || 7481 Opcode == ISD::ATOMIC_LOAD_UMAX || 7482 Opcode == ISD::ATOMIC_LOAD_FADD || 7483 Opcode == ISD::ATOMIC_LOAD_FSUB || 7484 Opcode == ISD::ATOMIC_SWAP || 7485 Opcode == ISD::ATOMIC_STORE) && 7486 "Invalid Atomic Op"); 7487 7488 EVT VT = Val.getValueType(); 7489 7490 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7491 getVTList(VT, MVT::Other); 7492 SDValue Ops[] = {Chain, Ptr, Val}; 7493 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7494 } 7495 7496 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7497 EVT VT, SDValue Chain, SDValue Ptr, 7498 MachineMemOperand *MMO) { 7499 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7500 7501 SDVTList VTs = getVTList(VT, MVT::Other); 7502 SDValue Ops[] = {Chain, Ptr}; 7503 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7504 } 7505 7506 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7507 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7508 if (Ops.size() == 1) 7509 return Ops[0]; 7510 7511 SmallVector<EVT, 4> VTs; 7512 VTs.reserve(Ops.size()); 7513 for (const SDValue &Op : Ops) 7514 VTs.push_back(Op.getValueType()); 7515 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7516 } 7517 7518 SDValue SelectionDAG::getMemIntrinsicNode( 7519 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7520 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7521 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7522 if (!Size && MemVT.isScalableVector()) 7523 Size = MemoryLocation::UnknownSize; 7524 else if (!Size) 7525 Size = MemVT.getStoreSize(); 7526 7527 MachineFunction &MF = getMachineFunction(); 7528 MachineMemOperand *MMO = 7529 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7530 7531 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7532 } 7533 7534 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7535 SDVTList VTList, 7536 ArrayRef<SDValue> Ops, EVT MemVT, 7537 MachineMemOperand *MMO) { 7538 assert((Opcode == ISD::INTRINSIC_VOID || 7539 Opcode == ISD::INTRINSIC_W_CHAIN || 7540 Opcode == ISD::PREFETCH || 7541 ((int)Opcode <= std::numeric_limits<int>::max() && 7542 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7543 "Opcode is not a memory-accessing opcode!"); 7544 7545 // Memoize the node unless it returns a flag. 7546 MemIntrinsicSDNode *N; 7547 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7548 FoldingSetNodeID ID; 7549 AddNodeIDNode(ID, Opcode, VTList, Ops); 7550 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7551 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7552 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7553 ID.AddInteger(MMO->getFlags()); 7554 void *IP = nullptr; 7555 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7556 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7557 return SDValue(E, 0); 7558 } 7559 7560 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7561 VTList, MemVT, MMO); 7562 createOperands(N, Ops); 7563 7564 CSEMap.InsertNode(N, IP); 7565 } else { 7566 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7567 VTList, MemVT, MMO); 7568 createOperands(N, Ops); 7569 } 7570 InsertNode(N); 7571 SDValue V(N, 0); 7572 NewSDValueDbgMsg(V, "Creating new node: ", this); 7573 return V; 7574 } 7575 7576 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7577 SDValue Chain, int FrameIndex, 7578 int64_t Size, int64_t Offset) { 7579 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7580 const auto VTs = getVTList(MVT::Other); 7581 SDValue Ops[2] = { 7582 Chain, 7583 getFrameIndex(FrameIndex, 7584 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7585 true)}; 7586 7587 FoldingSetNodeID ID; 7588 AddNodeIDNode(ID, Opcode, VTs, Ops); 7589 ID.AddInteger(FrameIndex); 7590 ID.AddInteger(Size); 7591 ID.AddInteger(Offset); 7592 void *IP = nullptr; 7593 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7594 return SDValue(E, 0); 7595 7596 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7597 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7598 createOperands(N, Ops); 7599 CSEMap.InsertNode(N, IP); 7600 InsertNode(N); 7601 SDValue V(N, 0); 7602 NewSDValueDbgMsg(V, "Creating new node: ", this); 7603 return V; 7604 } 7605 7606 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7607 uint64_t Guid, uint64_t Index, 7608 uint32_t Attr) { 7609 const unsigned Opcode = ISD::PSEUDO_PROBE; 7610 const auto VTs = getVTList(MVT::Other); 7611 SDValue Ops[] = {Chain}; 7612 FoldingSetNodeID ID; 7613 AddNodeIDNode(ID, Opcode, VTs, Ops); 7614 ID.AddInteger(Guid); 7615 ID.AddInteger(Index); 7616 void *IP = nullptr; 7617 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7618 return SDValue(E, 0); 7619 7620 auto *N = newSDNode<PseudoProbeSDNode>( 7621 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7622 createOperands(N, Ops); 7623 CSEMap.InsertNode(N, IP); 7624 InsertNode(N); 7625 SDValue V(N, 0); 7626 NewSDValueDbgMsg(V, "Creating new node: ", this); 7627 return V; 7628 } 7629 7630 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7631 /// MachinePointerInfo record from it. This is particularly useful because the 7632 /// code generator has many cases where it doesn't bother passing in a 7633 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7634 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7635 SelectionDAG &DAG, SDValue Ptr, 7636 int64_t Offset = 0) { 7637 // If this is FI+Offset, we can model it. 7638 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7639 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7640 FI->getIndex(), Offset); 7641 7642 // If this is (FI+Offset1)+Offset2, we can model it. 7643 if (Ptr.getOpcode() != ISD::ADD || 7644 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7645 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7646 return Info; 7647 7648 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7649 return MachinePointerInfo::getFixedStack( 7650 DAG.getMachineFunction(), FI, 7651 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7652 } 7653 7654 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7655 /// MachinePointerInfo record from it. This is particularly useful because the 7656 /// code generator has many cases where it doesn't bother passing in a 7657 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7658 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7659 SelectionDAG &DAG, SDValue Ptr, 7660 SDValue OffsetOp) { 7661 // If the 'Offset' value isn't a constant, we can't handle this. 7662 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7663 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7664 if (OffsetOp.isUndef()) 7665 return InferPointerInfo(Info, DAG, Ptr); 7666 return Info; 7667 } 7668 7669 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7670 EVT VT, const SDLoc &dl, SDValue Chain, 7671 SDValue Ptr, SDValue Offset, 7672 MachinePointerInfo PtrInfo, EVT MemVT, 7673 Align Alignment, 7674 MachineMemOperand::Flags MMOFlags, 7675 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7676 assert(Chain.getValueType() == MVT::Other && 7677 "Invalid chain type"); 7678 7679 MMOFlags |= MachineMemOperand::MOLoad; 7680 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7681 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7682 // clients. 7683 if (PtrInfo.V.isNull()) 7684 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7685 7686 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7687 MachineFunction &MF = getMachineFunction(); 7688 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7689 Alignment, AAInfo, Ranges); 7690 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7691 } 7692 7693 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7694 EVT VT, const SDLoc &dl, SDValue Chain, 7695 SDValue Ptr, SDValue Offset, EVT MemVT, 7696 MachineMemOperand *MMO) { 7697 if (VT == MemVT) { 7698 ExtType = ISD::NON_EXTLOAD; 7699 } else if (ExtType == ISD::NON_EXTLOAD) { 7700 assert(VT == MemVT && "Non-extending load from different memory type!"); 7701 } else { 7702 // Extending load. 7703 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7704 "Should only be an extending load, not truncating!"); 7705 assert(VT.isInteger() == MemVT.isInteger() && 7706 "Cannot convert from FP to Int or Int -> FP!"); 7707 assert(VT.isVector() == MemVT.isVector() && 7708 "Cannot use an ext load to convert to or from a vector!"); 7709 assert((!VT.isVector() || 7710 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7711 "Cannot use an ext load to change the number of vector elements!"); 7712 } 7713 7714 bool Indexed = AM != ISD::UNINDEXED; 7715 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7716 7717 SDVTList VTs = Indexed ? 7718 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7719 SDValue Ops[] = { Chain, Ptr, Offset }; 7720 FoldingSetNodeID ID; 7721 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7722 ID.AddInteger(MemVT.getRawBits()); 7723 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7724 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7725 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7726 ID.AddInteger(MMO->getFlags()); 7727 void *IP = nullptr; 7728 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7729 cast<LoadSDNode>(E)->refineAlignment(MMO); 7730 return SDValue(E, 0); 7731 } 7732 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7733 ExtType, MemVT, MMO); 7734 createOperands(N, Ops); 7735 7736 CSEMap.InsertNode(N, IP); 7737 InsertNode(N); 7738 SDValue V(N, 0); 7739 NewSDValueDbgMsg(V, "Creating new node: ", this); 7740 return V; 7741 } 7742 7743 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7744 SDValue Ptr, MachinePointerInfo PtrInfo, 7745 MaybeAlign Alignment, 7746 MachineMemOperand::Flags MMOFlags, 7747 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7748 SDValue Undef = getUNDEF(Ptr.getValueType()); 7749 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7750 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7751 } 7752 7753 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7754 SDValue Ptr, MachineMemOperand *MMO) { 7755 SDValue Undef = getUNDEF(Ptr.getValueType()); 7756 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7757 VT, MMO); 7758 } 7759 7760 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7761 EVT VT, SDValue Chain, SDValue Ptr, 7762 MachinePointerInfo PtrInfo, EVT MemVT, 7763 MaybeAlign Alignment, 7764 MachineMemOperand::Flags MMOFlags, 7765 const AAMDNodes &AAInfo) { 7766 SDValue Undef = getUNDEF(Ptr.getValueType()); 7767 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7768 MemVT, Alignment, MMOFlags, AAInfo); 7769 } 7770 7771 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7772 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7773 MachineMemOperand *MMO) { 7774 SDValue Undef = getUNDEF(Ptr.getValueType()); 7775 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7776 MemVT, MMO); 7777 } 7778 7779 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7780 SDValue Base, SDValue Offset, 7781 ISD::MemIndexedMode AM) { 7782 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7783 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7784 // Don't propagate the invariant or dereferenceable flags. 7785 auto MMOFlags = 7786 LD->getMemOperand()->getFlags() & 7787 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7788 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7789 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7790 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7791 } 7792 7793 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7794 SDValue Ptr, MachinePointerInfo PtrInfo, 7795 Align Alignment, 7796 MachineMemOperand::Flags MMOFlags, 7797 const AAMDNodes &AAInfo) { 7798 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7799 7800 MMOFlags |= MachineMemOperand::MOStore; 7801 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7802 7803 if (PtrInfo.V.isNull()) 7804 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7805 7806 MachineFunction &MF = getMachineFunction(); 7807 uint64_t Size = 7808 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7809 MachineMemOperand *MMO = 7810 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7811 return getStore(Chain, dl, Val, Ptr, MMO); 7812 } 7813 7814 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7815 SDValue Ptr, MachineMemOperand *MMO) { 7816 assert(Chain.getValueType() == MVT::Other && 7817 "Invalid chain type"); 7818 EVT VT = Val.getValueType(); 7819 SDVTList VTs = getVTList(MVT::Other); 7820 SDValue Undef = getUNDEF(Ptr.getValueType()); 7821 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7822 FoldingSetNodeID ID; 7823 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7824 ID.AddInteger(VT.getRawBits()); 7825 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7826 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7827 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7828 ID.AddInteger(MMO->getFlags()); 7829 void *IP = nullptr; 7830 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7831 cast<StoreSDNode>(E)->refineAlignment(MMO); 7832 return SDValue(E, 0); 7833 } 7834 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7835 ISD::UNINDEXED, false, VT, MMO); 7836 createOperands(N, Ops); 7837 7838 CSEMap.InsertNode(N, IP); 7839 InsertNode(N); 7840 SDValue V(N, 0); 7841 NewSDValueDbgMsg(V, "Creating new node: ", this); 7842 return V; 7843 } 7844 7845 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7846 SDValue Ptr, MachinePointerInfo PtrInfo, 7847 EVT SVT, Align Alignment, 7848 MachineMemOperand::Flags MMOFlags, 7849 const AAMDNodes &AAInfo) { 7850 assert(Chain.getValueType() == MVT::Other && 7851 "Invalid chain type"); 7852 7853 MMOFlags |= MachineMemOperand::MOStore; 7854 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7855 7856 if (PtrInfo.V.isNull()) 7857 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7858 7859 MachineFunction &MF = getMachineFunction(); 7860 MachineMemOperand *MMO = MF.getMachineMemOperand( 7861 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7862 Alignment, AAInfo); 7863 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7864 } 7865 7866 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7867 SDValue Ptr, EVT SVT, 7868 MachineMemOperand *MMO) { 7869 EVT VT = Val.getValueType(); 7870 7871 assert(Chain.getValueType() == MVT::Other && 7872 "Invalid chain type"); 7873 if (VT == SVT) 7874 return getStore(Chain, dl, Val, Ptr, MMO); 7875 7876 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7877 "Should only be a truncating store, not extending!"); 7878 assert(VT.isInteger() == SVT.isInteger() && 7879 "Can't do FP-INT conversion!"); 7880 assert(VT.isVector() == SVT.isVector() && 7881 "Cannot use trunc store to convert to or from a vector!"); 7882 assert((!VT.isVector() || 7883 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7884 "Cannot use trunc store to change the number of vector elements!"); 7885 7886 SDVTList VTs = getVTList(MVT::Other); 7887 SDValue Undef = getUNDEF(Ptr.getValueType()); 7888 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7889 FoldingSetNodeID ID; 7890 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7891 ID.AddInteger(SVT.getRawBits()); 7892 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7893 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7894 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7895 ID.AddInteger(MMO->getFlags()); 7896 void *IP = nullptr; 7897 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7898 cast<StoreSDNode>(E)->refineAlignment(MMO); 7899 return SDValue(E, 0); 7900 } 7901 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7902 ISD::UNINDEXED, true, SVT, MMO); 7903 createOperands(N, Ops); 7904 7905 CSEMap.InsertNode(N, IP); 7906 InsertNode(N); 7907 SDValue V(N, 0); 7908 NewSDValueDbgMsg(V, "Creating new node: ", this); 7909 return V; 7910 } 7911 7912 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7913 SDValue Base, SDValue Offset, 7914 ISD::MemIndexedMode AM) { 7915 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7916 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7917 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7918 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7919 FoldingSetNodeID ID; 7920 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7921 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7922 ID.AddInteger(ST->getRawSubclassData()); 7923 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7924 ID.AddInteger(ST->getMemOperand()->getFlags()); 7925 void *IP = nullptr; 7926 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7927 return SDValue(E, 0); 7928 7929 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7930 ST->isTruncatingStore(), ST->getMemoryVT(), 7931 ST->getMemOperand()); 7932 createOperands(N, Ops); 7933 7934 CSEMap.InsertNode(N, IP); 7935 InsertNode(N); 7936 SDValue V(N, 0); 7937 NewSDValueDbgMsg(V, "Creating new node: ", this); 7938 return V; 7939 } 7940 7941 SDValue SelectionDAG::getLoadVP( 7942 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7943 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7944 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7945 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7946 const MDNode *Ranges, bool IsExpanding) { 7947 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7948 7949 MMOFlags |= MachineMemOperand::MOLoad; 7950 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7951 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7952 // clients. 7953 if (PtrInfo.V.isNull()) 7954 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7955 7956 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7957 MachineFunction &MF = getMachineFunction(); 7958 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7959 Alignment, AAInfo, Ranges); 7960 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7961 MMO, IsExpanding); 7962 } 7963 7964 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7965 ISD::LoadExtType ExtType, EVT VT, 7966 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7967 SDValue Offset, SDValue Mask, SDValue EVL, 7968 EVT MemVT, MachineMemOperand *MMO, 7969 bool IsExpanding) { 7970 bool Indexed = AM != ISD::UNINDEXED; 7971 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7972 7973 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7974 : getVTList(VT, MVT::Other); 7975 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7976 FoldingSetNodeID ID; 7977 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7978 ID.AddInteger(VT.getRawBits()); 7979 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7980 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7981 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7982 ID.AddInteger(MMO->getFlags()); 7983 void *IP = nullptr; 7984 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7985 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7986 return SDValue(E, 0); 7987 } 7988 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7989 ExtType, IsExpanding, MemVT, MMO); 7990 createOperands(N, Ops); 7991 7992 CSEMap.InsertNode(N, IP); 7993 InsertNode(N); 7994 SDValue V(N, 0); 7995 NewSDValueDbgMsg(V, "Creating new node: ", this); 7996 return V; 7997 } 7998 7999 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8000 SDValue Ptr, SDValue Mask, SDValue EVL, 8001 MachinePointerInfo PtrInfo, 8002 MaybeAlign Alignment, 8003 MachineMemOperand::Flags MMOFlags, 8004 const AAMDNodes &AAInfo, const MDNode *Ranges, 8005 bool IsExpanding) { 8006 SDValue Undef = getUNDEF(Ptr.getValueType()); 8007 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8008 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8009 IsExpanding); 8010 } 8011 8012 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8013 SDValue Ptr, SDValue Mask, SDValue EVL, 8014 MachineMemOperand *MMO, bool IsExpanding) { 8015 SDValue Undef = getUNDEF(Ptr.getValueType()); 8016 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8017 Mask, EVL, VT, MMO, IsExpanding); 8018 } 8019 8020 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8021 EVT VT, SDValue Chain, SDValue Ptr, 8022 SDValue Mask, SDValue EVL, 8023 MachinePointerInfo PtrInfo, EVT MemVT, 8024 MaybeAlign Alignment, 8025 MachineMemOperand::Flags MMOFlags, 8026 const AAMDNodes &AAInfo, bool IsExpanding) { 8027 SDValue Undef = getUNDEF(Ptr.getValueType()); 8028 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8029 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8030 IsExpanding); 8031 } 8032 8033 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8034 EVT VT, SDValue Chain, SDValue Ptr, 8035 SDValue Mask, SDValue EVL, EVT MemVT, 8036 MachineMemOperand *MMO, bool IsExpanding) { 8037 SDValue Undef = getUNDEF(Ptr.getValueType()); 8038 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8039 EVL, MemVT, MMO, IsExpanding); 8040 } 8041 8042 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8043 SDValue Base, SDValue Offset, 8044 ISD::MemIndexedMode AM) { 8045 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8046 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8047 // Don't propagate the invariant or dereferenceable flags. 8048 auto MMOFlags = 8049 LD->getMemOperand()->getFlags() & 8050 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8051 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8052 LD->getChain(), Base, Offset, LD->getMask(), 8053 LD->getVectorLength(), LD->getPointerInfo(), 8054 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8055 nullptr, LD->isExpandingLoad()); 8056 } 8057 8058 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8059 SDValue Ptr, SDValue Offset, SDValue Mask, 8060 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8061 ISD::MemIndexedMode AM, bool IsTruncating, 8062 bool IsCompressing) { 8063 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8064 bool Indexed = AM != ISD::UNINDEXED; 8065 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8066 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8067 : getVTList(MVT::Other); 8068 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8069 FoldingSetNodeID ID; 8070 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8071 ID.AddInteger(MemVT.getRawBits()); 8072 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8073 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8074 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8075 ID.AddInteger(MMO->getFlags()); 8076 void *IP = nullptr; 8077 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8078 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8079 return SDValue(E, 0); 8080 } 8081 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8082 IsTruncating, IsCompressing, MemVT, MMO); 8083 createOperands(N, Ops); 8084 8085 CSEMap.InsertNode(N, IP); 8086 InsertNode(N); 8087 SDValue V(N, 0); 8088 NewSDValueDbgMsg(V, "Creating new node: ", this); 8089 return V; 8090 } 8091 8092 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8093 SDValue Val, SDValue Ptr, SDValue Mask, 8094 SDValue EVL, MachinePointerInfo PtrInfo, 8095 EVT SVT, Align Alignment, 8096 MachineMemOperand::Flags MMOFlags, 8097 const AAMDNodes &AAInfo, 8098 bool IsCompressing) { 8099 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8100 8101 MMOFlags |= MachineMemOperand::MOStore; 8102 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8103 8104 if (PtrInfo.V.isNull()) 8105 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8106 8107 MachineFunction &MF = getMachineFunction(); 8108 MachineMemOperand *MMO = MF.getMachineMemOperand( 8109 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8110 Alignment, AAInfo); 8111 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8112 IsCompressing); 8113 } 8114 8115 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8116 SDValue Val, SDValue Ptr, SDValue Mask, 8117 SDValue EVL, EVT SVT, 8118 MachineMemOperand *MMO, 8119 bool IsCompressing) { 8120 EVT VT = Val.getValueType(); 8121 8122 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8123 if (VT == SVT) 8124 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8125 EVL, VT, MMO, ISD::UNINDEXED, 8126 /*IsTruncating*/ false, IsCompressing); 8127 8128 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8129 "Should only be a truncating store, not extending!"); 8130 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8131 assert(VT.isVector() == SVT.isVector() && 8132 "Cannot use trunc store to convert to or from a vector!"); 8133 assert((!VT.isVector() || 8134 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8135 "Cannot use trunc store to change the number of vector elements!"); 8136 8137 SDVTList VTs = getVTList(MVT::Other); 8138 SDValue Undef = getUNDEF(Ptr.getValueType()); 8139 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8140 FoldingSetNodeID ID; 8141 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8142 ID.AddInteger(SVT.getRawBits()); 8143 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8144 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8145 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8146 ID.AddInteger(MMO->getFlags()); 8147 void *IP = nullptr; 8148 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8149 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8150 return SDValue(E, 0); 8151 } 8152 auto *N = 8153 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8154 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8155 createOperands(N, Ops); 8156 8157 CSEMap.InsertNode(N, IP); 8158 InsertNode(N); 8159 SDValue V(N, 0); 8160 NewSDValueDbgMsg(V, "Creating new node: ", this); 8161 return V; 8162 } 8163 8164 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8165 SDValue Base, SDValue Offset, 8166 ISD::MemIndexedMode AM) { 8167 auto *ST = cast<VPStoreSDNode>(OrigStore); 8168 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8169 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8170 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8171 Offset, ST->getMask(), ST->getVectorLength()}; 8172 FoldingSetNodeID ID; 8173 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8174 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8175 ID.AddInteger(ST->getRawSubclassData()); 8176 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8177 ID.AddInteger(ST->getMemOperand()->getFlags()); 8178 void *IP = nullptr; 8179 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8180 return SDValue(E, 0); 8181 8182 auto *N = newSDNode<VPStoreSDNode>( 8183 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8184 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8185 createOperands(N, Ops); 8186 8187 CSEMap.InsertNode(N, IP); 8188 InsertNode(N); 8189 SDValue V(N, 0); 8190 NewSDValueDbgMsg(V, "Creating new node: ", this); 8191 return V; 8192 } 8193 8194 SDValue SelectionDAG::getStridedLoadVP( 8195 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8196 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8197 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8198 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8199 const MDNode *Ranges, bool IsExpanding) { 8200 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8201 8202 MMOFlags |= MachineMemOperand::MOLoad; 8203 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8204 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8205 // clients. 8206 if (PtrInfo.V.isNull()) 8207 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8208 8209 uint64_t Size = MemoryLocation::UnknownSize; 8210 MachineFunction &MF = getMachineFunction(); 8211 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8212 Alignment, AAInfo, Ranges); 8213 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8214 EVL, MemVT, MMO, IsExpanding); 8215 } 8216 8217 SDValue SelectionDAG::getStridedLoadVP( 8218 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8219 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8220 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8221 bool Indexed = AM != ISD::UNINDEXED; 8222 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8223 8224 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8225 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8226 : getVTList(VT, MVT::Other); 8227 FoldingSetNodeID ID; 8228 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8229 ID.AddInteger(VT.getRawBits()); 8230 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8231 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8232 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8233 8234 void *IP = nullptr; 8235 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8236 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8237 return SDValue(E, 0); 8238 } 8239 8240 auto *N = 8241 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8242 ExtType, IsExpanding, MemVT, MMO); 8243 createOperands(N, Ops); 8244 CSEMap.InsertNode(N, IP); 8245 InsertNode(N); 8246 SDValue V(N, 0); 8247 NewSDValueDbgMsg(V, "Creating new node: ", this); 8248 return V; 8249 } 8250 8251 SDValue SelectionDAG::getStridedLoadVP( 8252 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8253 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8254 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8255 const MDNode *Ranges, bool IsExpanding) { 8256 SDValue Undef = getUNDEF(Ptr.getValueType()); 8257 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8258 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8259 MMOFlags, AAInfo, Ranges, IsExpanding); 8260 } 8261 8262 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8263 SDValue Ptr, SDValue Stride, 8264 SDValue Mask, SDValue EVL, 8265 MachineMemOperand *MMO, 8266 bool IsExpanding) { 8267 SDValue Undef = getUNDEF(Ptr.getValueType()); 8268 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8269 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8270 } 8271 8272 SDValue SelectionDAG::getExtStridedLoadVP( 8273 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8274 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8275 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8276 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8277 bool IsExpanding) { 8278 SDValue Undef = getUNDEF(Ptr.getValueType()); 8279 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8280 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8281 MMOFlags, AAInfo, nullptr, IsExpanding); 8282 } 8283 8284 SDValue SelectionDAG::getExtStridedLoadVP( 8285 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8286 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8287 MachineMemOperand *MMO, bool IsExpanding) { 8288 SDValue Undef = getUNDEF(Ptr.getValueType()); 8289 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8290 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8291 } 8292 8293 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8294 SDValue Base, SDValue Offset, 8295 ISD::MemIndexedMode AM) { 8296 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8297 assert(SLD->getOffset().isUndef() && 8298 "Strided load is already a indexed load!"); 8299 // Don't propagate the invariant or dereferenceable flags. 8300 auto MMOFlags = 8301 SLD->getMemOperand()->getFlags() & 8302 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8303 return getStridedLoadVP( 8304 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8305 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8306 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8307 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8308 } 8309 8310 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8311 SDValue Val, SDValue Ptr, 8312 SDValue Offset, SDValue Stride, 8313 SDValue Mask, SDValue EVL, EVT MemVT, 8314 MachineMemOperand *MMO, 8315 ISD::MemIndexedMode AM, 8316 bool IsTruncating, bool IsCompressing) { 8317 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8318 bool Indexed = AM != ISD::UNINDEXED; 8319 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8320 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8321 : getVTList(MVT::Other); 8322 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8323 FoldingSetNodeID ID; 8324 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8325 ID.AddInteger(MemVT.getRawBits()); 8326 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8327 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8328 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8329 void *IP = nullptr; 8330 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8331 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8332 return SDValue(E, 0); 8333 } 8334 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8335 VTs, AM, IsTruncating, 8336 IsCompressing, MemVT, MMO); 8337 createOperands(N, Ops); 8338 8339 CSEMap.InsertNode(N, IP); 8340 InsertNode(N); 8341 SDValue V(N, 0); 8342 NewSDValueDbgMsg(V, "Creating new node: ", this); 8343 return V; 8344 } 8345 8346 SDValue SelectionDAG::getTruncStridedStoreVP( 8347 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8348 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8349 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8350 bool IsCompressing) { 8351 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8352 8353 MMOFlags |= MachineMemOperand::MOStore; 8354 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8355 8356 if (PtrInfo.V.isNull()) 8357 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8358 8359 MachineFunction &MF = getMachineFunction(); 8360 MachineMemOperand *MMO = MF.getMachineMemOperand( 8361 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8362 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8363 MMO, IsCompressing); 8364 } 8365 8366 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8367 SDValue Val, SDValue Ptr, 8368 SDValue Stride, SDValue Mask, 8369 SDValue EVL, EVT SVT, 8370 MachineMemOperand *MMO, 8371 bool IsCompressing) { 8372 EVT VT = Val.getValueType(); 8373 8374 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8375 if (VT == SVT) 8376 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8377 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8378 /*IsTruncating*/ false, IsCompressing); 8379 8380 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8381 "Should only be a truncating store, not extending!"); 8382 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8383 assert(VT.isVector() == SVT.isVector() && 8384 "Cannot use trunc store to convert to or from a vector!"); 8385 assert((!VT.isVector() || 8386 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8387 "Cannot use trunc store to change the number of vector elements!"); 8388 8389 SDVTList VTs = getVTList(MVT::Other); 8390 SDValue Undef = getUNDEF(Ptr.getValueType()); 8391 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8392 FoldingSetNodeID ID; 8393 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8394 ID.AddInteger(SVT.getRawBits()); 8395 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8396 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8397 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8398 void *IP = nullptr; 8399 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8400 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8401 return SDValue(E, 0); 8402 } 8403 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8404 VTs, ISD::UNINDEXED, true, 8405 IsCompressing, SVT, MMO); 8406 createOperands(N, Ops); 8407 8408 CSEMap.InsertNode(N, IP); 8409 InsertNode(N); 8410 SDValue V(N, 0); 8411 NewSDValueDbgMsg(V, "Creating new node: ", this); 8412 return V; 8413 } 8414 8415 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8416 const SDLoc &DL, SDValue Base, 8417 SDValue Offset, 8418 ISD::MemIndexedMode AM) { 8419 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8420 assert(SST->getOffset().isUndef() && 8421 "Strided store is already an indexed store!"); 8422 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8423 SDValue Ops[] = { 8424 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8425 SST->getMask(), SST->getVectorLength()}; 8426 FoldingSetNodeID ID; 8427 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8428 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8429 ID.AddInteger(SST->getRawSubclassData()); 8430 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8431 void *IP = nullptr; 8432 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8433 return SDValue(E, 0); 8434 8435 auto *N = newSDNode<VPStridedStoreSDNode>( 8436 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8437 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8438 createOperands(N, Ops); 8439 8440 CSEMap.InsertNode(N, IP); 8441 InsertNode(N); 8442 SDValue V(N, 0); 8443 NewSDValueDbgMsg(V, "Creating new node: ", this); 8444 return V; 8445 } 8446 8447 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8448 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8449 ISD::MemIndexType IndexType) { 8450 assert(Ops.size() == 6 && "Incompatible number of operands"); 8451 8452 FoldingSetNodeID ID; 8453 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8454 ID.AddInteger(VT.getRawBits()); 8455 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8456 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8457 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8458 ID.AddInteger(MMO->getFlags()); 8459 void *IP = nullptr; 8460 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8461 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8462 return SDValue(E, 0); 8463 } 8464 8465 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8466 VT, MMO, IndexType); 8467 createOperands(N, Ops); 8468 8469 assert(N->getMask().getValueType().getVectorElementCount() == 8470 N->getValueType(0).getVectorElementCount() && 8471 "Vector width mismatch between mask and data"); 8472 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8473 N->getValueType(0).getVectorElementCount().isScalable() && 8474 "Scalable flags of index and data do not match"); 8475 assert(ElementCount::isKnownGE( 8476 N->getIndex().getValueType().getVectorElementCount(), 8477 N->getValueType(0).getVectorElementCount()) && 8478 "Vector width mismatch between index and data"); 8479 assert(isa<ConstantSDNode>(N->getScale()) && 8480 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8481 "Scale should be a constant power of 2"); 8482 8483 CSEMap.InsertNode(N, IP); 8484 InsertNode(N); 8485 SDValue V(N, 0); 8486 NewSDValueDbgMsg(V, "Creating new node: ", this); 8487 return V; 8488 } 8489 8490 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8491 ArrayRef<SDValue> Ops, 8492 MachineMemOperand *MMO, 8493 ISD::MemIndexType IndexType) { 8494 assert(Ops.size() == 7 && "Incompatible number of operands"); 8495 8496 FoldingSetNodeID ID; 8497 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8498 ID.AddInteger(VT.getRawBits()); 8499 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8500 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8501 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8502 ID.AddInteger(MMO->getFlags()); 8503 void *IP = nullptr; 8504 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8505 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8506 return SDValue(E, 0); 8507 } 8508 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8509 VT, MMO, IndexType); 8510 createOperands(N, Ops); 8511 8512 assert(N->getMask().getValueType().getVectorElementCount() == 8513 N->getValue().getValueType().getVectorElementCount() && 8514 "Vector width mismatch between mask and data"); 8515 assert( 8516 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8517 N->getValue().getValueType().getVectorElementCount().isScalable() && 8518 "Scalable flags of index and data do not match"); 8519 assert(ElementCount::isKnownGE( 8520 N->getIndex().getValueType().getVectorElementCount(), 8521 N->getValue().getValueType().getVectorElementCount()) && 8522 "Vector width mismatch between index and data"); 8523 assert(isa<ConstantSDNode>(N->getScale()) && 8524 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8525 "Scale should be a constant power of 2"); 8526 8527 CSEMap.InsertNode(N, IP); 8528 InsertNode(N); 8529 SDValue V(N, 0); 8530 NewSDValueDbgMsg(V, "Creating new node: ", this); 8531 return V; 8532 } 8533 8534 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8535 SDValue Base, SDValue Offset, SDValue Mask, 8536 SDValue PassThru, EVT MemVT, 8537 MachineMemOperand *MMO, 8538 ISD::MemIndexedMode AM, 8539 ISD::LoadExtType ExtTy, bool isExpanding) { 8540 bool Indexed = AM != ISD::UNINDEXED; 8541 assert((Indexed || Offset.isUndef()) && 8542 "Unindexed masked load with an offset!"); 8543 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8544 : getVTList(VT, MVT::Other); 8545 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8546 FoldingSetNodeID ID; 8547 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8548 ID.AddInteger(MemVT.getRawBits()); 8549 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8550 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8551 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8552 ID.AddInteger(MMO->getFlags()); 8553 void *IP = nullptr; 8554 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8555 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8556 return SDValue(E, 0); 8557 } 8558 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8559 AM, ExtTy, isExpanding, MemVT, MMO); 8560 createOperands(N, Ops); 8561 8562 CSEMap.InsertNode(N, IP); 8563 InsertNode(N); 8564 SDValue V(N, 0); 8565 NewSDValueDbgMsg(V, "Creating new node: ", this); 8566 return V; 8567 } 8568 8569 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8570 SDValue Base, SDValue Offset, 8571 ISD::MemIndexedMode AM) { 8572 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8573 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8574 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8575 Offset, LD->getMask(), LD->getPassThru(), 8576 LD->getMemoryVT(), LD->getMemOperand(), AM, 8577 LD->getExtensionType(), LD->isExpandingLoad()); 8578 } 8579 8580 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8581 SDValue Val, SDValue Base, SDValue Offset, 8582 SDValue Mask, EVT MemVT, 8583 MachineMemOperand *MMO, 8584 ISD::MemIndexedMode AM, bool IsTruncating, 8585 bool IsCompressing) { 8586 assert(Chain.getValueType() == MVT::Other && 8587 "Invalid chain type"); 8588 bool Indexed = AM != ISD::UNINDEXED; 8589 assert((Indexed || Offset.isUndef()) && 8590 "Unindexed masked store with an offset!"); 8591 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8592 : getVTList(MVT::Other); 8593 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8594 FoldingSetNodeID ID; 8595 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8596 ID.AddInteger(MemVT.getRawBits()); 8597 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8598 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8599 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8600 ID.AddInteger(MMO->getFlags()); 8601 void *IP = nullptr; 8602 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8603 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8604 return SDValue(E, 0); 8605 } 8606 auto *N = 8607 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8608 IsTruncating, IsCompressing, MemVT, MMO); 8609 createOperands(N, Ops); 8610 8611 CSEMap.InsertNode(N, IP); 8612 InsertNode(N); 8613 SDValue V(N, 0); 8614 NewSDValueDbgMsg(V, "Creating new node: ", this); 8615 return V; 8616 } 8617 8618 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8619 SDValue Base, SDValue Offset, 8620 ISD::MemIndexedMode AM) { 8621 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8622 assert(ST->getOffset().isUndef() && 8623 "Masked store is already a indexed store!"); 8624 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8625 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8626 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8627 } 8628 8629 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8630 ArrayRef<SDValue> Ops, 8631 MachineMemOperand *MMO, 8632 ISD::MemIndexType IndexType, 8633 ISD::LoadExtType ExtTy) { 8634 assert(Ops.size() == 6 && "Incompatible number of operands"); 8635 8636 FoldingSetNodeID ID; 8637 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8638 ID.AddInteger(MemVT.getRawBits()); 8639 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8640 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8641 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8642 ID.AddInteger(MMO->getFlags()); 8643 void *IP = nullptr; 8644 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8645 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8646 return SDValue(E, 0); 8647 } 8648 8649 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8650 VTs, MemVT, MMO, IndexType, ExtTy); 8651 createOperands(N, Ops); 8652 8653 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8654 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8655 assert(N->getMask().getValueType().getVectorElementCount() == 8656 N->getValueType(0).getVectorElementCount() && 8657 "Vector width mismatch between mask and data"); 8658 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8659 N->getValueType(0).getVectorElementCount().isScalable() && 8660 "Scalable flags of index and data do not match"); 8661 assert(ElementCount::isKnownGE( 8662 N->getIndex().getValueType().getVectorElementCount(), 8663 N->getValueType(0).getVectorElementCount()) && 8664 "Vector width mismatch between index and data"); 8665 assert(isa<ConstantSDNode>(N->getScale()) && 8666 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8667 "Scale should be a constant power of 2"); 8668 8669 CSEMap.InsertNode(N, IP); 8670 InsertNode(N); 8671 SDValue V(N, 0); 8672 NewSDValueDbgMsg(V, "Creating new node: ", this); 8673 return V; 8674 } 8675 8676 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8677 ArrayRef<SDValue> Ops, 8678 MachineMemOperand *MMO, 8679 ISD::MemIndexType IndexType, 8680 bool IsTrunc) { 8681 assert(Ops.size() == 6 && "Incompatible number of operands"); 8682 8683 FoldingSetNodeID ID; 8684 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8685 ID.AddInteger(MemVT.getRawBits()); 8686 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8687 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8688 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8689 ID.AddInteger(MMO->getFlags()); 8690 void *IP = nullptr; 8691 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8692 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8693 return SDValue(E, 0); 8694 } 8695 8696 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8697 VTs, MemVT, MMO, IndexType, IsTrunc); 8698 createOperands(N, Ops); 8699 8700 assert(N->getMask().getValueType().getVectorElementCount() == 8701 N->getValue().getValueType().getVectorElementCount() && 8702 "Vector width mismatch between mask and data"); 8703 assert( 8704 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8705 N->getValue().getValueType().getVectorElementCount().isScalable() && 8706 "Scalable flags of index and data do not match"); 8707 assert(ElementCount::isKnownGE( 8708 N->getIndex().getValueType().getVectorElementCount(), 8709 N->getValue().getValueType().getVectorElementCount()) && 8710 "Vector width mismatch between index and data"); 8711 assert(isa<ConstantSDNode>(N->getScale()) && 8712 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8713 "Scale should be a constant power of 2"); 8714 8715 CSEMap.InsertNode(N, IP); 8716 InsertNode(N); 8717 SDValue V(N, 0); 8718 NewSDValueDbgMsg(V, "Creating new node: ", this); 8719 return V; 8720 } 8721 8722 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8723 // select undef, T, F --> T (if T is a constant), otherwise F 8724 // select, ?, undef, F --> F 8725 // select, ?, T, undef --> T 8726 if (Cond.isUndef()) 8727 return isConstantValueOfAnyType(T) ? T : F; 8728 if (T.isUndef()) 8729 return F; 8730 if (F.isUndef()) 8731 return T; 8732 8733 // select true, T, F --> T 8734 // select false, T, F --> F 8735 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8736 return CondC->isZero() ? F : T; 8737 8738 // TODO: This should simplify VSELECT with constant condition using something 8739 // like this (but check boolean contents to be complete?): 8740 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8741 // return T; 8742 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8743 // return F; 8744 8745 // select ?, T, T --> T 8746 if (T == F) 8747 return T; 8748 8749 return SDValue(); 8750 } 8751 8752 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8753 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8754 if (X.isUndef()) 8755 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8756 // shift X, undef --> undef (because it may shift by the bitwidth) 8757 if (Y.isUndef()) 8758 return getUNDEF(X.getValueType()); 8759 8760 // shift 0, Y --> 0 8761 // shift X, 0 --> X 8762 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8763 return X; 8764 8765 // shift X, C >= bitwidth(X) --> undef 8766 // All vector elements must be too big (or undef) to avoid partial undefs. 8767 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8768 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8769 }; 8770 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8771 return getUNDEF(X.getValueType()); 8772 8773 return SDValue(); 8774 } 8775 8776 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8777 SDNodeFlags Flags) { 8778 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8779 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8780 // operation is poison. That result can be relaxed to undef. 8781 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8782 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8783 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8784 (YC && YC->getValueAPF().isNaN()); 8785 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8786 (YC && YC->getValueAPF().isInfinity()); 8787 8788 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8789 return getUNDEF(X.getValueType()); 8790 8791 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8792 return getUNDEF(X.getValueType()); 8793 8794 if (!YC) 8795 return SDValue(); 8796 8797 // X + -0.0 --> X 8798 if (Opcode == ISD::FADD) 8799 if (YC->getValueAPF().isNegZero()) 8800 return X; 8801 8802 // X - +0.0 --> X 8803 if (Opcode == ISD::FSUB) 8804 if (YC->getValueAPF().isPosZero()) 8805 return X; 8806 8807 // X * 1.0 --> X 8808 // X / 1.0 --> X 8809 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8810 if (YC->getValueAPF().isExactlyValue(1.0)) 8811 return X; 8812 8813 // X * 0.0 --> 0.0 8814 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8815 if (YC->getValueAPF().isZero()) 8816 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8817 8818 return SDValue(); 8819 } 8820 8821 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8822 SDValue Ptr, SDValue SV, unsigned Align) { 8823 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8824 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8825 } 8826 8827 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8828 ArrayRef<SDUse> Ops) { 8829 switch (Ops.size()) { 8830 case 0: return getNode(Opcode, DL, VT); 8831 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8832 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8833 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8834 default: break; 8835 } 8836 8837 // Copy from an SDUse array into an SDValue array for use with 8838 // the regular getNode logic. 8839 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8840 return getNode(Opcode, DL, VT, NewOps); 8841 } 8842 8843 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8844 ArrayRef<SDValue> Ops) { 8845 SDNodeFlags Flags; 8846 if (Inserter) 8847 Flags = Inserter->getFlags(); 8848 return getNode(Opcode, DL, VT, Ops, Flags); 8849 } 8850 8851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8852 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8853 unsigned NumOps = Ops.size(); 8854 switch (NumOps) { 8855 case 0: return getNode(Opcode, DL, VT); 8856 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8857 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8858 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8859 default: break; 8860 } 8861 8862 #ifndef NDEBUG 8863 for (auto &Op : Ops) 8864 assert(Op.getOpcode() != ISD::DELETED_NODE && 8865 "Operand is DELETED_NODE!"); 8866 #endif 8867 8868 switch (Opcode) { 8869 default: break; 8870 case ISD::BUILD_VECTOR: 8871 // Attempt to simplify BUILD_VECTOR. 8872 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8873 return V; 8874 break; 8875 case ISD::CONCAT_VECTORS: 8876 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8877 return V; 8878 break; 8879 case ISD::SELECT_CC: 8880 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8881 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8882 "LHS and RHS of condition must have same type!"); 8883 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8884 "True and False arms of SelectCC must have same type!"); 8885 assert(Ops[2].getValueType() == VT && 8886 "select_cc node must be of same type as true and false value!"); 8887 break; 8888 case ISD::BR_CC: 8889 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8890 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8891 "LHS/RHS of comparison should match types!"); 8892 break; 8893 case ISD::VP_ADD: 8894 case ISD::VP_SUB: 8895 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8896 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8897 Opcode = ISD::VP_XOR; 8898 break; 8899 case ISD::VP_MUL: 8900 // If it is VP_MUL mask operation then turn it to VP_AND 8901 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8902 Opcode = ISD::VP_AND; 8903 break; 8904 case ISD::VP_REDUCE_MUL: 8905 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8906 if (VT == MVT::i1) 8907 Opcode = ISD::VP_REDUCE_AND; 8908 break; 8909 case ISD::VP_REDUCE_ADD: 8910 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8911 if (VT == MVT::i1) 8912 Opcode = ISD::VP_REDUCE_XOR; 8913 break; 8914 case ISD::VP_REDUCE_SMAX: 8915 case ISD::VP_REDUCE_UMIN: 8916 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8917 // VP_REDUCE_AND. 8918 if (VT == MVT::i1) 8919 Opcode = ISD::VP_REDUCE_AND; 8920 break; 8921 case ISD::VP_REDUCE_SMIN: 8922 case ISD::VP_REDUCE_UMAX: 8923 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8924 // VP_REDUCE_OR. 8925 if (VT == MVT::i1) 8926 Opcode = ISD::VP_REDUCE_OR; 8927 break; 8928 } 8929 8930 // Memoize nodes. 8931 SDNode *N; 8932 SDVTList VTs = getVTList(VT); 8933 8934 if (VT != MVT::Glue) { 8935 FoldingSetNodeID ID; 8936 AddNodeIDNode(ID, Opcode, VTs, Ops); 8937 void *IP = nullptr; 8938 8939 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8940 return SDValue(E, 0); 8941 8942 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8943 createOperands(N, Ops); 8944 8945 CSEMap.InsertNode(N, IP); 8946 } else { 8947 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8948 createOperands(N, Ops); 8949 } 8950 8951 N->setFlags(Flags); 8952 InsertNode(N); 8953 SDValue V(N, 0); 8954 NewSDValueDbgMsg(V, "Creating new node: ", this); 8955 return V; 8956 } 8957 8958 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8959 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8960 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8961 } 8962 8963 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8964 ArrayRef<SDValue> Ops) { 8965 SDNodeFlags Flags; 8966 if (Inserter) 8967 Flags = Inserter->getFlags(); 8968 return getNode(Opcode, DL, VTList, Ops, Flags); 8969 } 8970 8971 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8972 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8973 if (VTList.NumVTs == 1) 8974 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 8975 8976 #ifndef NDEBUG 8977 for (auto &Op : Ops) 8978 assert(Op.getOpcode() != ISD::DELETED_NODE && 8979 "Operand is DELETED_NODE!"); 8980 #endif 8981 8982 switch (Opcode) { 8983 case ISD::STRICT_FP_EXTEND: 8984 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8985 "Invalid STRICT_FP_EXTEND!"); 8986 assert(VTList.VTs[0].isFloatingPoint() && 8987 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8988 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8989 "STRICT_FP_EXTEND result type should be vector iff the operand " 8990 "type is vector!"); 8991 assert((!VTList.VTs[0].isVector() || 8992 VTList.VTs[0].getVectorNumElements() == 8993 Ops[1].getValueType().getVectorNumElements()) && 8994 "Vector element count mismatch!"); 8995 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8996 "Invalid fpext node, dst <= src!"); 8997 break; 8998 case ISD::STRICT_FP_ROUND: 8999 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9000 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9001 "STRICT_FP_ROUND result type should be vector iff the operand " 9002 "type is vector!"); 9003 assert((!VTList.VTs[0].isVector() || 9004 VTList.VTs[0].getVectorNumElements() == 9005 Ops[1].getValueType().getVectorNumElements()) && 9006 "Vector element count mismatch!"); 9007 assert(VTList.VTs[0].isFloatingPoint() && 9008 Ops[1].getValueType().isFloatingPoint() && 9009 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9010 isa<ConstantSDNode>(Ops[2]) && 9011 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9012 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9013 "Invalid STRICT_FP_ROUND!"); 9014 break; 9015 #if 0 9016 // FIXME: figure out how to safely handle things like 9017 // int foo(int x) { return 1 << (x & 255); } 9018 // int bar() { return foo(256); } 9019 case ISD::SRA_PARTS: 9020 case ISD::SRL_PARTS: 9021 case ISD::SHL_PARTS: 9022 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9023 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9024 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9025 else if (N3.getOpcode() == ISD::AND) 9026 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9027 // If the and is only masking out bits that cannot effect the shift, 9028 // eliminate the and. 9029 unsigned NumBits = VT.getScalarSizeInBits()*2; 9030 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9031 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9032 } 9033 break; 9034 #endif 9035 } 9036 9037 // Memoize the node unless it returns a flag. 9038 SDNode *N; 9039 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9040 FoldingSetNodeID ID; 9041 AddNodeIDNode(ID, Opcode, VTList, Ops); 9042 void *IP = nullptr; 9043 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9044 return SDValue(E, 0); 9045 9046 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9047 createOperands(N, Ops); 9048 CSEMap.InsertNode(N, IP); 9049 } else { 9050 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9051 createOperands(N, Ops); 9052 } 9053 9054 N->setFlags(Flags); 9055 InsertNode(N); 9056 SDValue V(N, 0); 9057 NewSDValueDbgMsg(V, "Creating new node: ", this); 9058 return V; 9059 } 9060 9061 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9062 SDVTList VTList) { 9063 return getNode(Opcode, DL, VTList, None); 9064 } 9065 9066 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9067 SDValue N1) { 9068 SDValue Ops[] = { N1 }; 9069 return getNode(Opcode, DL, VTList, Ops); 9070 } 9071 9072 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9073 SDValue N1, SDValue N2) { 9074 SDValue Ops[] = { N1, N2 }; 9075 return getNode(Opcode, DL, VTList, Ops); 9076 } 9077 9078 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9079 SDValue N1, SDValue N2, SDValue N3) { 9080 SDValue Ops[] = { N1, N2, N3 }; 9081 return getNode(Opcode, DL, VTList, Ops); 9082 } 9083 9084 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9085 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9086 SDValue Ops[] = { N1, N2, N3, N4 }; 9087 return getNode(Opcode, DL, VTList, Ops); 9088 } 9089 9090 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9091 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9092 SDValue N5) { 9093 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9094 return getNode(Opcode, DL, VTList, Ops); 9095 } 9096 9097 SDVTList SelectionDAG::getVTList(EVT VT) { 9098 return makeVTList(SDNode::getValueTypeList(VT), 1); 9099 } 9100 9101 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9102 FoldingSetNodeID ID; 9103 ID.AddInteger(2U); 9104 ID.AddInteger(VT1.getRawBits()); 9105 ID.AddInteger(VT2.getRawBits()); 9106 9107 void *IP = nullptr; 9108 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9109 if (!Result) { 9110 EVT *Array = Allocator.Allocate<EVT>(2); 9111 Array[0] = VT1; 9112 Array[1] = VT2; 9113 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9114 VTListMap.InsertNode(Result, IP); 9115 } 9116 return Result->getSDVTList(); 9117 } 9118 9119 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9120 FoldingSetNodeID ID; 9121 ID.AddInteger(3U); 9122 ID.AddInteger(VT1.getRawBits()); 9123 ID.AddInteger(VT2.getRawBits()); 9124 ID.AddInteger(VT3.getRawBits()); 9125 9126 void *IP = nullptr; 9127 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9128 if (!Result) { 9129 EVT *Array = Allocator.Allocate<EVT>(3); 9130 Array[0] = VT1; 9131 Array[1] = VT2; 9132 Array[2] = VT3; 9133 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9134 VTListMap.InsertNode(Result, IP); 9135 } 9136 return Result->getSDVTList(); 9137 } 9138 9139 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9140 FoldingSetNodeID ID; 9141 ID.AddInteger(4U); 9142 ID.AddInteger(VT1.getRawBits()); 9143 ID.AddInteger(VT2.getRawBits()); 9144 ID.AddInteger(VT3.getRawBits()); 9145 ID.AddInteger(VT4.getRawBits()); 9146 9147 void *IP = nullptr; 9148 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9149 if (!Result) { 9150 EVT *Array = Allocator.Allocate<EVT>(4); 9151 Array[0] = VT1; 9152 Array[1] = VT2; 9153 Array[2] = VT3; 9154 Array[3] = VT4; 9155 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9156 VTListMap.InsertNode(Result, IP); 9157 } 9158 return Result->getSDVTList(); 9159 } 9160 9161 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9162 unsigned NumVTs = VTs.size(); 9163 FoldingSetNodeID ID; 9164 ID.AddInteger(NumVTs); 9165 for (unsigned index = 0; index < NumVTs; index++) { 9166 ID.AddInteger(VTs[index].getRawBits()); 9167 } 9168 9169 void *IP = nullptr; 9170 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9171 if (!Result) { 9172 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9173 llvm::copy(VTs, Array); 9174 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9175 VTListMap.InsertNode(Result, IP); 9176 } 9177 return Result->getSDVTList(); 9178 } 9179 9180 9181 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9182 /// specified operands. If the resultant node already exists in the DAG, 9183 /// this does not modify the specified node, instead it returns the node that 9184 /// already exists. If the resultant node does not exist in the DAG, the 9185 /// input node is returned. As a degenerate case, if you specify the same 9186 /// input operands as the node already has, the input node is returned. 9187 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9188 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9189 9190 // Check to see if there is no change. 9191 if (Op == N->getOperand(0)) return N; 9192 9193 // See if the modified node already exists. 9194 void *InsertPos = nullptr; 9195 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9196 return Existing; 9197 9198 // Nope it doesn't. Remove the node from its current place in the maps. 9199 if (InsertPos) 9200 if (!RemoveNodeFromCSEMaps(N)) 9201 InsertPos = nullptr; 9202 9203 // Now we update the operands. 9204 N->OperandList[0].set(Op); 9205 9206 updateDivergence(N); 9207 // If this gets put into a CSE map, add it. 9208 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9209 return N; 9210 } 9211 9212 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9213 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9214 9215 // Check to see if there is no change. 9216 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9217 return N; // No operands changed, just return the input node. 9218 9219 // See if the modified node already exists. 9220 void *InsertPos = nullptr; 9221 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9222 return Existing; 9223 9224 // Nope it doesn't. Remove the node from its current place in the maps. 9225 if (InsertPos) 9226 if (!RemoveNodeFromCSEMaps(N)) 9227 InsertPos = nullptr; 9228 9229 // Now we update the operands. 9230 if (N->OperandList[0] != Op1) 9231 N->OperandList[0].set(Op1); 9232 if (N->OperandList[1] != Op2) 9233 N->OperandList[1].set(Op2); 9234 9235 updateDivergence(N); 9236 // If this gets put into a CSE map, add it. 9237 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9238 return N; 9239 } 9240 9241 SDNode *SelectionDAG:: 9242 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9243 SDValue Ops[] = { Op1, Op2, Op3 }; 9244 return UpdateNodeOperands(N, Ops); 9245 } 9246 9247 SDNode *SelectionDAG:: 9248 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9249 SDValue Op3, SDValue Op4) { 9250 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9251 return UpdateNodeOperands(N, Ops); 9252 } 9253 9254 SDNode *SelectionDAG:: 9255 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9256 SDValue Op3, SDValue Op4, SDValue Op5) { 9257 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9258 return UpdateNodeOperands(N, Ops); 9259 } 9260 9261 SDNode *SelectionDAG:: 9262 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9263 unsigned NumOps = Ops.size(); 9264 assert(N->getNumOperands() == NumOps && 9265 "Update with wrong number of operands"); 9266 9267 // If no operands changed just return the input node. 9268 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9269 return N; 9270 9271 // See if the modified node already exists. 9272 void *InsertPos = nullptr; 9273 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9274 return Existing; 9275 9276 // Nope it doesn't. Remove the node from its current place in the maps. 9277 if (InsertPos) 9278 if (!RemoveNodeFromCSEMaps(N)) 9279 InsertPos = nullptr; 9280 9281 // Now we update the operands. 9282 for (unsigned i = 0; i != NumOps; ++i) 9283 if (N->OperandList[i] != Ops[i]) 9284 N->OperandList[i].set(Ops[i]); 9285 9286 updateDivergence(N); 9287 // If this gets put into a CSE map, add it. 9288 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9289 return N; 9290 } 9291 9292 /// DropOperands - Release the operands and set this node to have 9293 /// zero operands. 9294 void SDNode::DropOperands() { 9295 // Unlike the code in MorphNodeTo that does this, we don't need to 9296 // watch for dead nodes here. 9297 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9298 SDUse &Use = *I++; 9299 Use.set(SDValue()); 9300 } 9301 } 9302 9303 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9304 ArrayRef<MachineMemOperand *> NewMemRefs) { 9305 if (NewMemRefs.empty()) { 9306 N->clearMemRefs(); 9307 return; 9308 } 9309 9310 // Check if we can avoid allocating by storing a single reference directly. 9311 if (NewMemRefs.size() == 1) { 9312 N->MemRefs = NewMemRefs[0]; 9313 N->NumMemRefs = 1; 9314 return; 9315 } 9316 9317 MachineMemOperand **MemRefsBuffer = 9318 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9319 llvm::copy(NewMemRefs, MemRefsBuffer); 9320 N->MemRefs = MemRefsBuffer; 9321 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9322 } 9323 9324 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9325 /// machine opcode. 9326 /// 9327 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9328 EVT VT) { 9329 SDVTList VTs = getVTList(VT); 9330 return SelectNodeTo(N, MachineOpc, VTs, None); 9331 } 9332 9333 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9334 EVT VT, SDValue Op1) { 9335 SDVTList VTs = getVTList(VT); 9336 SDValue Ops[] = { Op1 }; 9337 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9338 } 9339 9340 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9341 EVT VT, SDValue Op1, 9342 SDValue Op2) { 9343 SDVTList VTs = getVTList(VT); 9344 SDValue Ops[] = { Op1, Op2 }; 9345 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9346 } 9347 9348 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9349 EVT VT, SDValue Op1, 9350 SDValue Op2, SDValue Op3) { 9351 SDVTList VTs = getVTList(VT); 9352 SDValue Ops[] = { Op1, Op2, Op3 }; 9353 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9354 } 9355 9356 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9357 EVT VT, ArrayRef<SDValue> Ops) { 9358 SDVTList VTs = getVTList(VT); 9359 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9360 } 9361 9362 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9363 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9364 SDVTList VTs = getVTList(VT1, VT2); 9365 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9366 } 9367 9368 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9369 EVT VT1, EVT VT2) { 9370 SDVTList VTs = getVTList(VT1, VT2); 9371 return SelectNodeTo(N, MachineOpc, VTs, None); 9372 } 9373 9374 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9375 EVT VT1, EVT VT2, EVT VT3, 9376 ArrayRef<SDValue> Ops) { 9377 SDVTList VTs = getVTList(VT1, VT2, VT3); 9378 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9379 } 9380 9381 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9382 EVT VT1, EVT VT2, 9383 SDValue Op1, SDValue Op2) { 9384 SDVTList VTs = getVTList(VT1, VT2); 9385 SDValue Ops[] = { Op1, Op2 }; 9386 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9387 } 9388 9389 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9390 SDVTList VTs,ArrayRef<SDValue> Ops) { 9391 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9392 // Reset the NodeID to -1. 9393 New->setNodeId(-1); 9394 if (New != N) { 9395 ReplaceAllUsesWith(N, New); 9396 RemoveDeadNode(N); 9397 } 9398 return New; 9399 } 9400 9401 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9402 /// the line number information on the merged node since it is not possible to 9403 /// preserve the information that operation is associated with multiple lines. 9404 /// This will make the debugger working better at -O0, were there is a higher 9405 /// probability having other instructions associated with that line. 9406 /// 9407 /// For IROrder, we keep the smaller of the two 9408 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9409 DebugLoc NLoc = N->getDebugLoc(); 9410 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9411 N->setDebugLoc(DebugLoc()); 9412 } 9413 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9414 N->setIROrder(Order); 9415 return N; 9416 } 9417 9418 /// MorphNodeTo - This *mutates* the specified node to have the specified 9419 /// return type, opcode, and operands. 9420 /// 9421 /// Note that MorphNodeTo returns the resultant node. If there is already a 9422 /// node of the specified opcode and operands, it returns that node instead of 9423 /// the current one. Note that the SDLoc need not be the same. 9424 /// 9425 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9426 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9427 /// node, and because it doesn't require CSE recalculation for any of 9428 /// the node's users. 9429 /// 9430 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9431 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9432 /// the legalizer which maintain worklists that would need to be updated when 9433 /// deleting things. 9434 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9435 SDVTList VTs, ArrayRef<SDValue> Ops) { 9436 // If an identical node already exists, use it. 9437 void *IP = nullptr; 9438 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9439 FoldingSetNodeID ID; 9440 AddNodeIDNode(ID, Opc, VTs, Ops); 9441 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9442 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9443 } 9444 9445 if (!RemoveNodeFromCSEMaps(N)) 9446 IP = nullptr; 9447 9448 // Start the morphing. 9449 N->NodeType = Opc; 9450 N->ValueList = VTs.VTs; 9451 N->NumValues = VTs.NumVTs; 9452 9453 // Clear the operands list, updating used nodes to remove this from their 9454 // use list. Keep track of any operands that become dead as a result. 9455 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9456 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9457 SDUse &Use = *I++; 9458 SDNode *Used = Use.getNode(); 9459 Use.set(SDValue()); 9460 if (Used->use_empty()) 9461 DeadNodeSet.insert(Used); 9462 } 9463 9464 // For MachineNode, initialize the memory references information. 9465 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9466 MN->clearMemRefs(); 9467 9468 // Swap for an appropriately sized array from the recycler. 9469 removeOperands(N); 9470 createOperands(N, Ops); 9471 9472 // Delete any nodes that are still dead after adding the uses for the 9473 // new operands. 9474 if (!DeadNodeSet.empty()) { 9475 SmallVector<SDNode *, 16> DeadNodes; 9476 for (SDNode *N : DeadNodeSet) 9477 if (N->use_empty()) 9478 DeadNodes.push_back(N); 9479 RemoveDeadNodes(DeadNodes); 9480 } 9481 9482 if (IP) 9483 CSEMap.InsertNode(N, IP); // Memoize the new node. 9484 return N; 9485 } 9486 9487 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9488 unsigned OrigOpc = Node->getOpcode(); 9489 unsigned NewOpc; 9490 switch (OrigOpc) { 9491 default: 9492 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9493 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9494 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9495 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9496 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9497 #include "llvm/IR/ConstrainedOps.def" 9498 } 9499 9500 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9501 9502 // We're taking this node out of the chain, so we need to re-link things. 9503 SDValue InputChain = Node->getOperand(0); 9504 SDValue OutputChain = SDValue(Node, 1); 9505 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9506 9507 SmallVector<SDValue, 3> Ops; 9508 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9509 Ops.push_back(Node->getOperand(i)); 9510 9511 SDVTList VTs = getVTList(Node->getValueType(0)); 9512 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9513 9514 // MorphNodeTo can operate in two ways: if an existing node with the 9515 // specified operands exists, it can just return it. Otherwise, it 9516 // updates the node in place to have the requested operands. 9517 if (Res == Node) { 9518 // If we updated the node in place, reset the node ID. To the isel, 9519 // this should be just like a newly allocated machine node. 9520 Res->setNodeId(-1); 9521 } else { 9522 ReplaceAllUsesWith(Node, Res); 9523 RemoveDeadNode(Node); 9524 } 9525 9526 return Res; 9527 } 9528 9529 /// getMachineNode - These are used for target selectors to create a new node 9530 /// with specified return type(s), MachineInstr opcode, and operands. 9531 /// 9532 /// Note that getMachineNode returns the resultant node. If there is already a 9533 /// node of the specified opcode and operands, it returns that node instead of 9534 /// the current one. 9535 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9536 EVT VT) { 9537 SDVTList VTs = getVTList(VT); 9538 return getMachineNode(Opcode, dl, VTs, None); 9539 } 9540 9541 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9542 EVT VT, SDValue Op1) { 9543 SDVTList VTs = getVTList(VT); 9544 SDValue Ops[] = { Op1 }; 9545 return getMachineNode(Opcode, dl, VTs, Ops); 9546 } 9547 9548 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9549 EVT VT, SDValue Op1, SDValue Op2) { 9550 SDVTList VTs = getVTList(VT); 9551 SDValue Ops[] = { Op1, Op2 }; 9552 return getMachineNode(Opcode, dl, VTs, Ops); 9553 } 9554 9555 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9556 EVT VT, SDValue Op1, SDValue Op2, 9557 SDValue Op3) { 9558 SDVTList VTs = getVTList(VT); 9559 SDValue Ops[] = { Op1, Op2, Op3 }; 9560 return getMachineNode(Opcode, dl, VTs, Ops); 9561 } 9562 9563 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9564 EVT VT, ArrayRef<SDValue> Ops) { 9565 SDVTList VTs = getVTList(VT); 9566 return getMachineNode(Opcode, dl, VTs, Ops); 9567 } 9568 9569 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9570 EVT VT1, EVT VT2, SDValue Op1, 9571 SDValue Op2) { 9572 SDVTList VTs = getVTList(VT1, VT2); 9573 SDValue Ops[] = { Op1, Op2 }; 9574 return getMachineNode(Opcode, dl, VTs, Ops); 9575 } 9576 9577 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9578 EVT VT1, EVT VT2, SDValue Op1, 9579 SDValue Op2, SDValue Op3) { 9580 SDVTList VTs = getVTList(VT1, VT2); 9581 SDValue Ops[] = { Op1, Op2, Op3 }; 9582 return getMachineNode(Opcode, dl, VTs, Ops); 9583 } 9584 9585 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9586 EVT VT1, EVT VT2, 9587 ArrayRef<SDValue> Ops) { 9588 SDVTList VTs = getVTList(VT1, VT2); 9589 return getMachineNode(Opcode, dl, VTs, Ops); 9590 } 9591 9592 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9593 EVT VT1, EVT VT2, EVT VT3, 9594 SDValue Op1, SDValue Op2) { 9595 SDVTList VTs = getVTList(VT1, VT2, VT3); 9596 SDValue Ops[] = { Op1, Op2 }; 9597 return getMachineNode(Opcode, dl, VTs, Ops); 9598 } 9599 9600 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9601 EVT VT1, EVT VT2, EVT VT3, 9602 SDValue Op1, SDValue Op2, 9603 SDValue Op3) { 9604 SDVTList VTs = getVTList(VT1, VT2, VT3); 9605 SDValue Ops[] = { Op1, Op2, Op3 }; 9606 return getMachineNode(Opcode, dl, VTs, Ops); 9607 } 9608 9609 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9610 EVT VT1, EVT VT2, EVT VT3, 9611 ArrayRef<SDValue> Ops) { 9612 SDVTList VTs = getVTList(VT1, VT2, VT3); 9613 return getMachineNode(Opcode, dl, VTs, Ops); 9614 } 9615 9616 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9617 ArrayRef<EVT> ResultTys, 9618 ArrayRef<SDValue> Ops) { 9619 SDVTList VTs = getVTList(ResultTys); 9620 return getMachineNode(Opcode, dl, VTs, Ops); 9621 } 9622 9623 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9624 SDVTList VTs, 9625 ArrayRef<SDValue> Ops) { 9626 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9627 MachineSDNode *N; 9628 void *IP = nullptr; 9629 9630 if (DoCSE) { 9631 FoldingSetNodeID ID; 9632 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9633 IP = nullptr; 9634 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9635 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9636 } 9637 } 9638 9639 // Allocate a new MachineSDNode. 9640 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9641 createOperands(N, Ops); 9642 9643 if (DoCSE) 9644 CSEMap.InsertNode(N, IP); 9645 9646 InsertNode(N); 9647 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9648 return N; 9649 } 9650 9651 /// getTargetExtractSubreg - A convenience function for creating 9652 /// TargetOpcode::EXTRACT_SUBREG nodes. 9653 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9654 SDValue Operand) { 9655 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9656 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9657 VT, Operand, SRIdxVal); 9658 return SDValue(Subreg, 0); 9659 } 9660 9661 /// getTargetInsertSubreg - A convenience function for creating 9662 /// TargetOpcode::INSERT_SUBREG nodes. 9663 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9664 SDValue Operand, SDValue Subreg) { 9665 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9666 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9667 VT, Operand, Subreg, SRIdxVal); 9668 return SDValue(Result, 0); 9669 } 9670 9671 /// getNodeIfExists - Get the specified node if it's already available, or 9672 /// else return NULL. 9673 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9674 ArrayRef<SDValue> Ops) { 9675 SDNodeFlags Flags; 9676 if (Inserter) 9677 Flags = Inserter->getFlags(); 9678 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9679 } 9680 9681 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9682 ArrayRef<SDValue> Ops, 9683 const SDNodeFlags Flags) { 9684 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9685 FoldingSetNodeID ID; 9686 AddNodeIDNode(ID, Opcode, VTList, Ops); 9687 void *IP = nullptr; 9688 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9689 E->intersectFlagsWith(Flags); 9690 return E; 9691 } 9692 } 9693 return nullptr; 9694 } 9695 9696 /// doesNodeExist - Check if a node exists without modifying its flags. 9697 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9698 ArrayRef<SDValue> Ops) { 9699 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9700 FoldingSetNodeID ID; 9701 AddNodeIDNode(ID, Opcode, VTList, Ops); 9702 void *IP = nullptr; 9703 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9704 return true; 9705 } 9706 return false; 9707 } 9708 9709 /// getDbgValue - Creates a SDDbgValue node. 9710 /// 9711 /// SDNode 9712 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9713 SDNode *N, unsigned R, bool IsIndirect, 9714 const DebugLoc &DL, unsigned O) { 9715 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9716 "Expected inlined-at fields to agree"); 9717 return new (DbgInfo->getAlloc()) 9718 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9719 {}, IsIndirect, DL, O, 9720 /*IsVariadic=*/false); 9721 } 9722 9723 /// Constant 9724 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9725 DIExpression *Expr, 9726 const Value *C, 9727 const DebugLoc &DL, unsigned O) { 9728 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9729 "Expected inlined-at fields to agree"); 9730 return new (DbgInfo->getAlloc()) 9731 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9732 /*IsIndirect=*/false, DL, O, 9733 /*IsVariadic=*/false); 9734 } 9735 9736 /// FrameIndex 9737 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9738 DIExpression *Expr, unsigned FI, 9739 bool IsIndirect, 9740 const DebugLoc &DL, 9741 unsigned O) { 9742 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9743 "Expected inlined-at fields to agree"); 9744 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9745 } 9746 9747 /// FrameIndex with dependencies 9748 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9749 DIExpression *Expr, unsigned FI, 9750 ArrayRef<SDNode *> Dependencies, 9751 bool IsIndirect, 9752 const DebugLoc &DL, 9753 unsigned O) { 9754 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9755 "Expected inlined-at fields to agree"); 9756 return new (DbgInfo->getAlloc()) 9757 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9758 Dependencies, IsIndirect, DL, O, 9759 /*IsVariadic=*/false); 9760 } 9761 9762 /// VReg 9763 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9764 unsigned VReg, bool IsIndirect, 9765 const DebugLoc &DL, unsigned O) { 9766 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9767 "Expected inlined-at fields to agree"); 9768 return new (DbgInfo->getAlloc()) 9769 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9770 {}, IsIndirect, DL, O, 9771 /*IsVariadic=*/false); 9772 } 9773 9774 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9775 ArrayRef<SDDbgOperand> Locs, 9776 ArrayRef<SDNode *> Dependencies, 9777 bool IsIndirect, const DebugLoc &DL, 9778 unsigned O, bool IsVariadic) { 9779 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9780 "Expected inlined-at fields to agree"); 9781 return new (DbgInfo->getAlloc()) 9782 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9783 DL, O, IsVariadic); 9784 } 9785 9786 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9787 unsigned OffsetInBits, unsigned SizeInBits, 9788 bool InvalidateDbg) { 9789 SDNode *FromNode = From.getNode(); 9790 SDNode *ToNode = To.getNode(); 9791 assert(FromNode && ToNode && "Can't modify dbg values"); 9792 9793 // PR35338 9794 // TODO: assert(From != To && "Redundant dbg value transfer"); 9795 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9796 if (From == To || FromNode == ToNode) 9797 return; 9798 9799 if (!FromNode->getHasDebugValue()) 9800 return; 9801 9802 SDDbgOperand FromLocOp = 9803 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9804 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9805 9806 SmallVector<SDDbgValue *, 2> ClonedDVs; 9807 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9808 if (Dbg->isInvalidated()) 9809 continue; 9810 9811 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9812 9813 // Create a new location ops vector that is equal to the old vector, but 9814 // with each instance of FromLocOp replaced with ToLocOp. 9815 bool Changed = false; 9816 auto NewLocOps = Dbg->copyLocationOps(); 9817 std::replace_if( 9818 NewLocOps.begin(), NewLocOps.end(), 9819 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9820 bool Match = Op == FromLocOp; 9821 Changed |= Match; 9822 return Match; 9823 }, 9824 ToLocOp); 9825 // Ignore this SDDbgValue if we didn't find a matching location. 9826 if (!Changed) 9827 continue; 9828 9829 DIVariable *Var = Dbg->getVariable(); 9830 auto *Expr = Dbg->getExpression(); 9831 // If a fragment is requested, update the expression. 9832 if (SizeInBits) { 9833 // When splitting a larger (e.g., sign-extended) value whose 9834 // lower bits are described with an SDDbgValue, do not attempt 9835 // to transfer the SDDbgValue to the upper bits. 9836 if (auto FI = Expr->getFragmentInfo()) 9837 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9838 continue; 9839 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9840 SizeInBits); 9841 if (!Fragment) 9842 continue; 9843 Expr = *Fragment; 9844 } 9845 9846 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9847 // Clone the SDDbgValue and move it to To. 9848 SDDbgValue *Clone = getDbgValueList( 9849 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9850 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9851 Dbg->isVariadic()); 9852 ClonedDVs.push_back(Clone); 9853 9854 if (InvalidateDbg) { 9855 // Invalidate value and indicate the SDDbgValue should not be emitted. 9856 Dbg->setIsInvalidated(); 9857 Dbg->setIsEmitted(); 9858 } 9859 } 9860 9861 for (SDDbgValue *Dbg : ClonedDVs) { 9862 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9863 "Transferred DbgValues should depend on the new SDNode"); 9864 AddDbgValue(Dbg, false); 9865 } 9866 } 9867 9868 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9869 if (!N.getHasDebugValue()) 9870 return; 9871 9872 SmallVector<SDDbgValue *, 2> ClonedDVs; 9873 for (auto DV : GetDbgValues(&N)) { 9874 if (DV->isInvalidated()) 9875 continue; 9876 switch (N.getOpcode()) { 9877 default: 9878 break; 9879 case ISD::ADD: 9880 SDValue N0 = N.getOperand(0); 9881 SDValue N1 = N.getOperand(1); 9882 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9883 isConstantIntBuildVectorOrConstantInt(N1)) { 9884 uint64_t Offset = N.getConstantOperandVal(1); 9885 9886 // Rewrite an ADD constant node into a DIExpression. Since we are 9887 // performing arithmetic to compute the variable's *value* in the 9888 // DIExpression, we need to mark the expression with a 9889 // DW_OP_stack_value. 9890 auto *DIExpr = DV->getExpression(); 9891 auto NewLocOps = DV->copyLocationOps(); 9892 bool Changed = false; 9893 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9894 // We're not given a ResNo to compare against because the whole 9895 // node is going away. We know that any ISD::ADD only has one 9896 // result, so we can assume any node match is using the result. 9897 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9898 NewLocOps[i].getSDNode() != &N) 9899 continue; 9900 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9901 SmallVector<uint64_t, 3> ExprOps; 9902 DIExpression::appendOffset(ExprOps, Offset); 9903 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9904 Changed = true; 9905 } 9906 (void)Changed; 9907 assert(Changed && "Salvage target doesn't use N"); 9908 9909 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9910 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9911 NewLocOps, AdditionalDependencies, 9912 DV->isIndirect(), DV->getDebugLoc(), 9913 DV->getOrder(), DV->isVariadic()); 9914 ClonedDVs.push_back(Clone); 9915 DV->setIsInvalidated(); 9916 DV->setIsEmitted(); 9917 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9918 N0.getNode()->dumprFull(this); 9919 dbgs() << " into " << *DIExpr << '\n'); 9920 } 9921 } 9922 } 9923 9924 for (SDDbgValue *Dbg : ClonedDVs) { 9925 assert(!Dbg->getSDNodes().empty() && 9926 "Salvaged DbgValue should depend on a new SDNode"); 9927 AddDbgValue(Dbg, false); 9928 } 9929 } 9930 9931 /// Creates a SDDbgLabel node. 9932 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9933 const DebugLoc &DL, unsigned O) { 9934 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9935 "Expected inlined-at fields to agree"); 9936 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9937 } 9938 9939 namespace { 9940 9941 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9942 /// pointed to by a use iterator is deleted, increment the use iterator 9943 /// so that it doesn't dangle. 9944 /// 9945 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9946 SDNode::use_iterator &UI; 9947 SDNode::use_iterator &UE; 9948 9949 void NodeDeleted(SDNode *N, SDNode *E) override { 9950 // Increment the iterator as needed. 9951 while (UI != UE && N == *UI) 9952 ++UI; 9953 } 9954 9955 public: 9956 RAUWUpdateListener(SelectionDAG &d, 9957 SDNode::use_iterator &ui, 9958 SDNode::use_iterator &ue) 9959 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9960 }; 9961 9962 } // end anonymous namespace 9963 9964 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9965 /// This can cause recursive merging of nodes in the DAG. 9966 /// 9967 /// This version assumes From has a single result value. 9968 /// 9969 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9970 SDNode *From = FromN.getNode(); 9971 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9972 "Cannot replace with this method!"); 9973 assert(From != To.getNode() && "Cannot replace uses of with self"); 9974 9975 // Preserve Debug Values 9976 transferDbgValues(FromN, To); 9977 9978 // Iterate over all the existing uses of From. New uses will be added 9979 // to the beginning of the use list, which we avoid visiting. 9980 // This specifically avoids visiting uses of From that arise while the 9981 // replacement is happening, because any such uses would be the result 9982 // of CSE: If an existing node looks like From after one of its operands 9983 // is replaced by To, we don't want to replace of all its users with To 9984 // too. See PR3018 for more info. 9985 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9986 RAUWUpdateListener Listener(*this, UI, UE); 9987 while (UI != UE) { 9988 SDNode *User = *UI; 9989 9990 // This node is about to morph, remove its old self from the CSE maps. 9991 RemoveNodeFromCSEMaps(User); 9992 9993 // A user can appear in a use list multiple times, and when this 9994 // happens the uses are usually next to each other in the list. 9995 // To help reduce the number of CSE recomputations, process all 9996 // the uses of this user that we can find this way. 9997 do { 9998 SDUse &Use = UI.getUse(); 9999 ++UI; 10000 Use.set(To); 10001 if (To->isDivergent() != From->isDivergent()) 10002 updateDivergence(User); 10003 } while (UI != UE && *UI == User); 10004 // Now that we have modified User, add it back to the CSE maps. If it 10005 // already exists there, recursively merge the results together. 10006 AddModifiedNodeToCSEMaps(User); 10007 } 10008 10009 // If we just RAUW'd the root, take note. 10010 if (FromN == getRoot()) 10011 setRoot(To); 10012 } 10013 10014 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10015 /// This can cause recursive merging of nodes in the DAG. 10016 /// 10017 /// This version assumes that for each value of From, there is a 10018 /// corresponding value in To in the same position with the same type. 10019 /// 10020 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10021 #ifndef NDEBUG 10022 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10023 assert((!From->hasAnyUseOfValue(i) || 10024 From->getValueType(i) == To->getValueType(i)) && 10025 "Cannot use this version of ReplaceAllUsesWith!"); 10026 #endif 10027 10028 // Handle the trivial case. 10029 if (From == To) 10030 return; 10031 10032 // Preserve Debug Info. Only do this if there's a use. 10033 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10034 if (From->hasAnyUseOfValue(i)) { 10035 assert((i < To->getNumValues()) && "Invalid To location"); 10036 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10037 } 10038 10039 // Iterate over just the existing users of From. See the comments in 10040 // the ReplaceAllUsesWith above. 10041 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10042 RAUWUpdateListener Listener(*this, UI, UE); 10043 while (UI != UE) { 10044 SDNode *User = *UI; 10045 10046 // This node is about to morph, remove its old self from the CSE maps. 10047 RemoveNodeFromCSEMaps(User); 10048 10049 // A user can appear in a use list multiple times, and when this 10050 // happens the uses are usually next to each other in the list. 10051 // To help reduce the number of CSE recomputations, process all 10052 // the uses of this user that we can find this way. 10053 do { 10054 SDUse &Use = UI.getUse(); 10055 ++UI; 10056 Use.setNode(To); 10057 if (To->isDivergent() != From->isDivergent()) 10058 updateDivergence(User); 10059 } while (UI != UE && *UI == User); 10060 10061 // Now that we have modified User, add it back to the CSE maps. If it 10062 // already exists there, recursively merge the results together. 10063 AddModifiedNodeToCSEMaps(User); 10064 } 10065 10066 // If we just RAUW'd the root, take note. 10067 if (From == getRoot().getNode()) 10068 setRoot(SDValue(To, getRoot().getResNo())); 10069 } 10070 10071 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10072 /// This can cause recursive merging of nodes in the DAG. 10073 /// 10074 /// This version can replace From with any result values. To must match the 10075 /// number and types of values returned by From. 10076 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10077 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10078 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10079 10080 // Preserve Debug Info. 10081 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10082 transferDbgValues(SDValue(From, i), To[i]); 10083 10084 // Iterate over just the existing users of From. See the comments in 10085 // the ReplaceAllUsesWith above. 10086 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10087 RAUWUpdateListener Listener(*this, UI, UE); 10088 while (UI != UE) { 10089 SDNode *User = *UI; 10090 10091 // This node is about to morph, remove its old self from the CSE maps. 10092 RemoveNodeFromCSEMaps(User); 10093 10094 // A user can appear in a use list multiple times, and when this happens the 10095 // uses are usually next to each other in the list. To help reduce the 10096 // number of CSE and divergence recomputations, process all the uses of this 10097 // user that we can find this way. 10098 bool To_IsDivergent = false; 10099 do { 10100 SDUse &Use = UI.getUse(); 10101 const SDValue &ToOp = To[Use.getResNo()]; 10102 ++UI; 10103 Use.set(ToOp); 10104 To_IsDivergent |= ToOp->isDivergent(); 10105 } while (UI != UE && *UI == User); 10106 10107 if (To_IsDivergent != From->isDivergent()) 10108 updateDivergence(User); 10109 10110 // Now that we have modified User, add it back to the CSE maps. If it 10111 // already exists there, recursively merge the results together. 10112 AddModifiedNodeToCSEMaps(User); 10113 } 10114 10115 // If we just RAUW'd the root, take note. 10116 if (From == getRoot().getNode()) 10117 setRoot(SDValue(To[getRoot().getResNo()])); 10118 } 10119 10120 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10121 /// uses of other values produced by From.getNode() alone. The Deleted 10122 /// vector is handled the same way as for ReplaceAllUsesWith. 10123 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10124 // Handle the really simple, really trivial case efficiently. 10125 if (From == To) return; 10126 10127 // Handle the simple, trivial, case efficiently. 10128 if (From.getNode()->getNumValues() == 1) { 10129 ReplaceAllUsesWith(From, To); 10130 return; 10131 } 10132 10133 // Preserve Debug Info. 10134 transferDbgValues(From, To); 10135 10136 // Iterate over just the existing users of From. See the comments in 10137 // the ReplaceAllUsesWith above. 10138 SDNode::use_iterator UI = From.getNode()->use_begin(), 10139 UE = From.getNode()->use_end(); 10140 RAUWUpdateListener Listener(*this, UI, UE); 10141 while (UI != UE) { 10142 SDNode *User = *UI; 10143 bool UserRemovedFromCSEMaps = false; 10144 10145 // A user can appear in a use list multiple times, and when this 10146 // happens the uses are usually next to each other in the list. 10147 // To help reduce the number of CSE recomputations, process all 10148 // the uses of this user that we can find this way. 10149 do { 10150 SDUse &Use = UI.getUse(); 10151 10152 // Skip uses of different values from the same node. 10153 if (Use.getResNo() != From.getResNo()) { 10154 ++UI; 10155 continue; 10156 } 10157 10158 // If this node hasn't been modified yet, it's still in the CSE maps, 10159 // so remove its old self from the CSE maps. 10160 if (!UserRemovedFromCSEMaps) { 10161 RemoveNodeFromCSEMaps(User); 10162 UserRemovedFromCSEMaps = true; 10163 } 10164 10165 ++UI; 10166 Use.set(To); 10167 if (To->isDivergent() != From->isDivergent()) 10168 updateDivergence(User); 10169 } while (UI != UE && *UI == User); 10170 // We are iterating over all uses of the From node, so if a use 10171 // doesn't use the specific value, no changes are made. 10172 if (!UserRemovedFromCSEMaps) 10173 continue; 10174 10175 // Now that we have modified User, add it back to the CSE maps. If it 10176 // already exists there, recursively merge the results together. 10177 AddModifiedNodeToCSEMaps(User); 10178 } 10179 10180 // If we just RAUW'd the root, take note. 10181 if (From == getRoot()) 10182 setRoot(To); 10183 } 10184 10185 namespace { 10186 10187 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10188 /// to record information about a use. 10189 struct UseMemo { 10190 SDNode *User; 10191 unsigned Index; 10192 SDUse *Use; 10193 }; 10194 10195 /// operator< - Sort Memos by User. 10196 bool operator<(const UseMemo &L, const UseMemo &R) { 10197 return (intptr_t)L.User < (intptr_t)R.User; 10198 } 10199 10200 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10201 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10202 /// the node already has been taken care of recursively. 10203 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10204 SmallVector<UseMemo, 4> &Uses; 10205 10206 void NodeDeleted(SDNode *N, SDNode *E) override { 10207 for (UseMemo &Memo : Uses) 10208 if (Memo.User == N) 10209 Memo.User = nullptr; 10210 } 10211 10212 public: 10213 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10214 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10215 }; 10216 10217 } // end anonymous namespace 10218 10219 bool SelectionDAG::calculateDivergence(SDNode *N) { 10220 if (TLI->isSDNodeAlwaysUniform(N)) { 10221 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10222 "Conflicting divergence information!"); 10223 return false; 10224 } 10225 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10226 return true; 10227 for (auto &Op : N->ops()) { 10228 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10229 return true; 10230 } 10231 return false; 10232 } 10233 10234 void SelectionDAG::updateDivergence(SDNode *N) { 10235 SmallVector<SDNode *, 16> Worklist(1, N); 10236 do { 10237 N = Worklist.pop_back_val(); 10238 bool IsDivergent = calculateDivergence(N); 10239 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10240 N->SDNodeBits.IsDivergent = IsDivergent; 10241 llvm::append_range(Worklist, N->uses()); 10242 } 10243 } while (!Worklist.empty()); 10244 } 10245 10246 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10247 DenseMap<SDNode *, unsigned> Degree; 10248 Order.reserve(AllNodes.size()); 10249 for (auto &N : allnodes()) { 10250 unsigned NOps = N.getNumOperands(); 10251 Degree[&N] = NOps; 10252 if (0 == NOps) 10253 Order.push_back(&N); 10254 } 10255 for (size_t I = 0; I != Order.size(); ++I) { 10256 SDNode *N = Order[I]; 10257 for (auto U : N->uses()) { 10258 unsigned &UnsortedOps = Degree[U]; 10259 if (0 == --UnsortedOps) 10260 Order.push_back(U); 10261 } 10262 } 10263 } 10264 10265 #ifndef NDEBUG 10266 void SelectionDAG::VerifyDAGDivergence() { 10267 std::vector<SDNode *> TopoOrder; 10268 CreateTopologicalOrder(TopoOrder); 10269 for (auto *N : TopoOrder) { 10270 assert(calculateDivergence(N) == N->isDivergent() && 10271 "Divergence bit inconsistency detected"); 10272 } 10273 } 10274 #endif 10275 10276 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10277 /// uses of other values produced by From.getNode() alone. The same value 10278 /// may appear in both the From and To list. The Deleted vector is 10279 /// handled the same way as for ReplaceAllUsesWith. 10280 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10281 const SDValue *To, 10282 unsigned Num){ 10283 // Handle the simple, trivial case efficiently. 10284 if (Num == 1) 10285 return ReplaceAllUsesOfValueWith(*From, *To); 10286 10287 transferDbgValues(*From, *To); 10288 10289 // Read up all the uses and make records of them. This helps 10290 // processing new uses that are introduced during the 10291 // replacement process. 10292 SmallVector<UseMemo, 4> Uses; 10293 for (unsigned i = 0; i != Num; ++i) { 10294 unsigned FromResNo = From[i].getResNo(); 10295 SDNode *FromNode = From[i].getNode(); 10296 for (SDNode::use_iterator UI = FromNode->use_begin(), 10297 E = FromNode->use_end(); UI != E; ++UI) { 10298 SDUse &Use = UI.getUse(); 10299 if (Use.getResNo() == FromResNo) { 10300 UseMemo Memo = { *UI, i, &Use }; 10301 Uses.push_back(Memo); 10302 } 10303 } 10304 } 10305 10306 // Sort the uses, so that all the uses from a given User are together. 10307 llvm::sort(Uses); 10308 RAUOVWUpdateListener Listener(*this, Uses); 10309 10310 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10311 UseIndex != UseIndexEnd; ) { 10312 // We know that this user uses some value of From. If it is the right 10313 // value, update it. 10314 SDNode *User = Uses[UseIndex].User; 10315 // If the node has been deleted by recursive CSE updates when updating 10316 // another node, then just skip this entry. 10317 if (User == nullptr) { 10318 ++UseIndex; 10319 continue; 10320 } 10321 10322 // This node is about to morph, remove its old self from the CSE maps. 10323 RemoveNodeFromCSEMaps(User); 10324 10325 // The Uses array is sorted, so all the uses for a given User 10326 // are next to each other in the list. 10327 // To help reduce the number of CSE recomputations, process all 10328 // the uses of this user that we can find this way. 10329 do { 10330 unsigned i = Uses[UseIndex].Index; 10331 SDUse &Use = *Uses[UseIndex].Use; 10332 ++UseIndex; 10333 10334 Use.set(To[i]); 10335 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10336 10337 // Now that we have modified User, add it back to the CSE maps. If it 10338 // already exists there, recursively merge the results together. 10339 AddModifiedNodeToCSEMaps(User); 10340 } 10341 } 10342 10343 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10344 /// based on their topological order. It returns the maximum id and a vector 10345 /// of the SDNodes* in assigned order by reference. 10346 unsigned SelectionDAG::AssignTopologicalOrder() { 10347 unsigned DAGSize = 0; 10348 10349 // SortedPos tracks the progress of the algorithm. Nodes before it are 10350 // sorted, nodes after it are unsorted. When the algorithm completes 10351 // it is at the end of the list. 10352 allnodes_iterator SortedPos = allnodes_begin(); 10353 10354 // Visit all the nodes. Move nodes with no operands to the front of 10355 // the list immediately. Annotate nodes that do have operands with their 10356 // operand count. Before we do this, the Node Id fields of the nodes 10357 // may contain arbitrary values. After, the Node Id fields for nodes 10358 // before SortedPos will contain the topological sort index, and the 10359 // Node Id fields for nodes At SortedPos and after will contain the 10360 // count of outstanding operands. 10361 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10362 checkForCycles(&N, this); 10363 unsigned Degree = N.getNumOperands(); 10364 if (Degree == 0) { 10365 // A node with no uses, add it to the result array immediately. 10366 N.setNodeId(DAGSize++); 10367 allnodes_iterator Q(&N); 10368 if (Q != SortedPos) 10369 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10370 assert(SortedPos != AllNodes.end() && "Overran node list"); 10371 ++SortedPos; 10372 } else { 10373 // Temporarily use the Node Id as scratch space for the degree count. 10374 N.setNodeId(Degree); 10375 } 10376 } 10377 10378 // Visit all the nodes. As we iterate, move nodes into sorted order, 10379 // such that by the time the end is reached all nodes will be sorted. 10380 for (SDNode &Node : allnodes()) { 10381 SDNode *N = &Node; 10382 checkForCycles(N, this); 10383 // N is in sorted position, so all its uses have one less operand 10384 // that needs to be sorted. 10385 for (SDNode *P : N->uses()) { 10386 unsigned Degree = P->getNodeId(); 10387 assert(Degree != 0 && "Invalid node degree"); 10388 --Degree; 10389 if (Degree == 0) { 10390 // All of P's operands are sorted, so P may sorted now. 10391 P->setNodeId(DAGSize++); 10392 if (P->getIterator() != SortedPos) 10393 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10394 assert(SortedPos != AllNodes.end() && "Overran node list"); 10395 ++SortedPos; 10396 } else { 10397 // Update P's outstanding operand count. 10398 P->setNodeId(Degree); 10399 } 10400 } 10401 if (Node.getIterator() == SortedPos) { 10402 #ifndef NDEBUG 10403 allnodes_iterator I(N); 10404 SDNode *S = &*++I; 10405 dbgs() << "Overran sorted position:\n"; 10406 S->dumprFull(this); dbgs() << "\n"; 10407 dbgs() << "Checking if this is due to cycles\n"; 10408 checkForCycles(this, true); 10409 #endif 10410 llvm_unreachable(nullptr); 10411 } 10412 } 10413 10414 assert(SortedPos == AllNodes.end() && 10415 "Topological sort incomplete!"); 10416 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10417 "First node in topological sort is not the entry token!"); 10418 assert(AllNodes.front().getNodeId() == 0 && 10419 "First node in topological sort has non-zero id!"); 10420 assert(AllNodes.front().getNumOperands() == 0 && 10421 "First node in topological sort has operands!"); 10422 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10423 "Last node in topologic sort has unexpected id!"); 10424 assert(AllNodes.back().use_empty() && 10425 "Last node in topologic sort has users!"); 10426 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10427 return DAGSize; 10428 } 10429 10430 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10431 /// value is produced by SD. 10432 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10433 for (SDNode *SD : DB->getSDNodes()) { 10434 if (!SD) 10435 continue; 10436 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10437 SD->setHasDebugValue(true); 10438 } 10439 DbgInfo->add(DB, isParameter); 10440 } 10441 10442 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10443 10444 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10445 SDValue NewMemOpChain) { 10446 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10447 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10448 // The new memory operation must have the same position as the old load in 10449 // terms of memory dependency. Create a TokenFactor for the old load and new 10450 // memory operation and update uses of the old load's output chain to use that 10451 // TokenFactor. 10452 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10453 return NewMemOpChain; 10454 10455 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10456 OldChain, NewMemOpChain); 10457 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10458 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10459 return TokenFactor; 10460 } 10461 10462 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10463 SDValue NewMemOp) { 10464 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10465 SDValue OldChain = SDValue(OldLoad, 1); 10466 SDValue NewMemOpChain = NewMemOp.getValue(1); 10467 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10468 } 10469 10470 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10471 Function **OutFunction) { 10472 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10473 10474 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10475 auto *Module = MF->getFunction().getParent(); 10476 auto *Function = Module->getFunction(Symbol); 10477 10478 if (OutFunction != nullptr) 10479 *OutFunction = Function; 10480 10481 if (Function != nullptr) { 10482 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10483 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10484 } 10485 10486 std::string ErrorStr; 10487 raw_string_ostream ErrorFormatter(ErrorStr); 10488 ErrorFormatter << "Undefined external symbol "; 10489 ErrorFormatter << '"' << Symbol << '"'; 10490 report_fatal_error(Twine(ErrorFormatter.str())); 10491 } 10492 10493 //===----------------------------------------------------------------------===// 10494 // SDNode Class 10495 //===----------------------------------------------------------------------===// 10496 10497 bool llvm::isNullConstant(SDValue V) { 10498 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10499 return Const != nullptr && Const->isZero(); 10500 } 10501 10502 bool llvm::isNullFPConstant(SDValue V) { 10503 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10504 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10505 } 10506 10507 bool llvm::isAllOnesConstant(SDValue V) { 10508 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10509 return Const != nullptr && Const->isAllOnes(); 10510 } 10511 10512 bool llvm::isOneConstant(SDValue V) { 10513 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10514 return Const != nullptr && Const->isOne(); 10515 } 10516 10517 bool llvm::isMinSignedConstant(SDValue V) { 10518 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10519 return Const != nullptr && Const->isMinSignedValue(); 10520 } 10521 10522 SDValue llvm::peekThroughBitcasts(SDValue V) { 10523 while (V.getOpcode() == ISD::BITCAST) 10524 V = V.getOperand(0); 10525 return V; 10526 } 10527 10528 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10529 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10530 V = V.getOperand(0); 10531 return V; 10532 } 10533 10534 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10535 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10536 V = V.getOperand(0); 10537 return V; 10538 } 10539 10540 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10541 if (V.getOpcode() != ISD::XOR) 10542 return false; 10543 V = peekThroughBitcasts(V.getOperand(1)); 10544 unsigned NumBits = V.getScalarValueSizeInBits(); 10545 ConstantSDNode *C = 10546 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10547 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10548 } 10549 10550 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10551 bool AllowTruncation) { 10552 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10553 return CN; 10554 10555 // SplatVectors can truncate their operands. Ignore that case here unless 10556 // AllowTruncation is set. 10557 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10558 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10559 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10560 EVT CVT = CN->getValueType(0); 10561 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10562 if (AllowTruncation || CVT == VecEltVT) 10563 return CN; 10564 } 10565 } 10566 10567 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10568 BitVector UndefElements; 10569 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10570 10571 // BuildVectors can truncate their operands. Ignore that case here unless 10572 // AllowTruncation is set. 10573 if (CN && (UndefElements.none() || AllowUndefs)) { 10574 EVT CVT = CN->getValueType(0); 10575 EVT NSVT = N.getValueType().getScalarType(); 10576 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10577 if (AllowTruncation || (CVT == NSVT)) 10578 return CN; 10579 } 10580 } 10581 10582 return nullptr; 10583 } 10584 10585 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10586 bool AllowUndefs, 10587 bool AllowTruncation) { 10588 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10589 return CN; 10590 10591 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10592 BitVector UndefElements; 10593 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10594 10595 // BuildVectors can truncate their operands. Ignore that case here unless 10596 // AllowTruncation is set. 10597 if (CN && (UndefElements.none() || AllowUndefs)) { 10598 EVT CVT = CN->getValueType(0); 10599 EVT NSVT = N.getValueType().getScalarType(); 10600 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10601 if (AllowTruncation || (CVT == NSVT)) 10602 return CN; 10603 } 10604 } 10605 10606 return nullptr; 10607 } 10608 10609 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10610 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10611 return CN; 10612 10613 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10614 BitVector UndefElements; 10615 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10616 if (CN && (UndefElements.none() || AllowUndefs)) 10617 return CN; 10618 } 10619 10620 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10621 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10622 return CN; 10623 10624 return nullptr; 10625 } 10626 10627 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10628 const APInt &DemandedElts, 10629 bool AllowUndefs) { 10630 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10631 return CN; 10632 10633 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10634 BitVector UndefElements; 10635 ConstantFPSDNode *CN = 10636 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10637 if (CN && (UndefElements.none() || AllowUndefs)) 10638 return CN; 10639 } 10640 10641 return nullptr; 10642 } 10643 10644 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10645 // TODO: may want to use peekThroughBitcast() here. 10646 ConstantSDNode *C = 10647 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10648 return C && C->isZero(); 10649 } 10650 10651 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10652 // TODO: may want to use peekThroughBitcast() here. 10653 unsigned BitWidth = N.getScalarValueSizeInBits(); 10654 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10655 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10656 } 10657 10658 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10659 N = peekThroughBitcasts(N); 10660 unsigned BitWidth = N.getScalarValueSizeInBits(); 10661 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10662 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10663 } 10664 10665 HandleSDNode::~HandleSDNode() { 10666 DropOperands(); 10667 } 10668 10669 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10670 const DebugLoc &DL, 10671 const GlobalValue *GA, EVT VT, 10672 int64_t o, unsigned TF) 10673 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10674 TheGlobal = GA; 10675 } 10676 10677 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10678 EVT VT, unsigned SrcAS, 10679 unsigned DestAS) 10680 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10681 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10682 10683 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10684 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10685 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10686 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10687 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10688 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10689 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10690 10691 // We check here that the size of the memory operand fits within the size of 10692 // the MMO. This is because the MMO might indicate only a possible address 10693 // range instead of specifying the affected memory addresses precisely. 10694 // TODO: Make MachineMemOperands aware of scalable vectors. 10695 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10696 "Size mismatch!"); 10697 } 10698 10699 /// Profile - Gather unique data for the node. 10700 /// 10701 void SDNode::Profile(FoldingSetNodeID &ID) const { 10702 AddNodeIDNode(ID, this); 10703 } 10704 10705 namespace { 10706 10707 struct EVTArray { 10708 std::vector<EVT> VTs; 10709 10710 EVTArray() { 10711 VTs.reserve(MVT::VALUETYPE_SIZE); 10712 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10713 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10714 } 10715 }; 10716 10717 } // end anonymous namespace 10718 10719 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10720 static ManagedStatic<EVTArray> SimpleVTArray; 10721 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10722 10723 /// getValueTypeList - Return a pointer to the specified value type. 10724 /// 10725 const EVT *SDNode::getValueTypeList(EVT VT) { 10726 if (VT.isExtended()) { 10727 sys::SmartScopedLock<true> Lock(*VTMutex); 10728 return &(*EVTs->insert(VT).first); 10729 } 10730 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10731 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10732 } 10733 10734 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10735 /// indicated value. This method ignores uses of other values defined by this 10736 /// operation. 10737 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10738 assert(Value < getNumValues() && "Bad value!"); 10739 10740 // TODO: Only iterate over uses of a given value of the node 10741 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10742 if (UI.getUse().getResNo() == Value) { 10743 if (NUses == 0) 10744 return false; 10745 --NUses; 10746 } 10747 } 10748 10749 // Found exactly the right number of uses? 10750 return NUses == 0; 10751 } 10752 10753 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10754 /// value. This method ignores uses of other values defined by this operation. 10755 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10756 assert(Value < getNumValues() && "Bad value!"); 10757 10758 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10759 if (UI.getUse().getResNo() == Value) 10760 return true; 10761 10762 return false; 10763 } 10764 10765 /// isOnlyUserOf - Return true if this node is the only use of N. 10766 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10767 bool Seen = false; 10768 for (const SDNode *User : N->uses()) { 10769 if (User == this) 10770 Seen = true; 10771 else 10772 return false; 10773 } 10774 10775 return Seen; 10776 } 10777 10778 /// Return true if the only users of N are contained in Nodes. 10779 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10780 bool Seen = false; 10781 for (const SDNode *User : N->uses()) { 10782 if (llvm::is_contained(Nodes, User)) 10783 Seen = true; 10784 else 10785 return false; 10786 } 10787 10788 return Seen; 10789 } 10790 10791 /// isOperand - Return true if this node is an operand of N. 10792 bool SDValue::isOperandOf(const SDNode *N) const { 10793 return is_contained(N->op_values(), *this); 10794 } 10795 10796 bool SDNode::isOperandOf(const SDNode *N) const { 10797 return any_of(N->op_values(), 10798 [this](SDValue Op) { return this == Op.getNode(); }); 10799 } 10800 10801 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10802 /// be a chain) reaches the specified operand without crossing any 10803 /// side-effecting instructions on any chain path. In practice, this looks 10804 /// through token factors and non-volatile loads. In order to remain efficient, 10805 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10806 /// 10807 /// Note that we only need to examine chains when we're searching for 10808 /// side-effects; SelectionDAG requires that all side-effects are represented 10809 /// by chains, even if another operand would force a specific ordering. This 10810 /// constraint is necessary to allow transformations like splitting loads. 10811 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10812 unsigned Depth) const { 10813 if (*this == Dest) return true; 10814 10815 // Don't search too deeply, we just want to be able to see through 10816 // TokenFactor's etc. 10817 if (Depth == 0) return false; 10818 10819 // If this is a token factor, all inputs to the TF happen in parallel. 10820 if (getOpcode() == ISD::TokenFactor) { 10821 // First, try a shallow search. 10822 if (is_contained((*this)->ops(), Dest)) { 10823 // We found the chain we want as an operand of this TokenFactor. 10824 // Essentially, we reach the chain without side-effects if we could 10825 // serialize the TokenFactor into a simple chain of operations with 10826 // Dest as the last operation. This is automatically true if the 10827 // chain has one use: there are no other ordering constraints. 10828 // If the chain has more than one use, we give up: some other 10829 // use of Dest might force a side-effect between Dest and the current 10830 // node. 10831 if (Dest.hasOneUse()) 10832 return true; 10833 } 10834 // Next, try a deep search: check whether every operand of the TokenFactor 10835 // reaches Dest. 10836 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10837 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10838 }); 10839 } 10840 10841 // Loads don't have side effects, look through them. 10842 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10843 if (Ld->isUnordered()) 10844 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10845 } 10846 return false; 10847 } 10848 10849 bool SDNode::hasPredecessor(const SDNode *N) const { 10850 SmallPtrSet<const SDNode *, 32> Visited; 10851 SmallVector<const SDNode *, 16> Worklist; 10852 Worklist.push_back(this); 10853 return hasPredecessorHelper(N, Visited, Worklist); 10854 } 10855 10856 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10857 this->Flags.intersectWith(Flags); 10858 } 10859 10860 SDValue 10861 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10862 ArrayRef<ISD::NodeType> CandidateBinOps, 10863 bool AllowPartials) { 10864 // The pattern must end in an extract from index 0. 10865 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10866 !isNullConstant(Extract->getOperand(1))) 10867 return SDValue(); 10868 10869 // Match against one of the candidate binary ops. 10870 SDValue Op = Extract->getOperand(0); 10871 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10872 return Op.getOpcode() == unsigned(BinOp); 10873 })) 10874 return SDValue(); 10875 10876 // Floating-point reductions may require relaxed constraints on the final step 10877 // of the reduction because they may reorder intermediate operations. 10878 unsigned CandidateBinOp = Op.getOpcode(); 10879 if (Op.getValueType().isFloatingPoint()) { 10880 SDNodeFlags Flags = Op->getFlags(); 10881 switch (CandidateBinOp) { 10882 case ISD::FADD: 10883 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10884 return SDValue(); 10885 break; 10886 default: 10887 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10888 } 10889 } 10890 10891 // Matching failed - attempt to see if we did enough stages that a partial 10892 // reduction from a subvector is possible. 10893 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10894 if (!AllowPartials || !Op) 10895 return SDValue(); 10896 EVT OpVT = Op.getValueType(); 10897 EVT OpSVT = OpVT.getScalarType(); 10898 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10899 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10900 return SDValue(); 10901 BinOp = (ISD::NodeType)CandidateBinOp; 10902 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10903 getVectorIdxConstant(0, SDLoc(Op))); 10904 }; 10905 10906 // At each stage, we're looking for something that looks like: 10907 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10908 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10909 // i32 undef, i32 undef, i32 undef, i32 undef> 10910 // %a = binop <8 x i32> %op, %s 10911 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10912 // we expect something like: 10913 // <4,5,6,7,u,u,u,u> 10914 // <2,3,u,u,u,u,u,u> 10915 // <1,u,u,u,u,u,u,u> 10916 // While a partial reduction match would be: 10917 // <2,3,u,u,u,u,u,u> 10918 // <1,u,u,u,u,u,u,u> 10919 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10920 SDValue PrevOp; 10921 for (unsigned i = 0; i < Stages; ++i) { 10922 unsigned MaskEnd = (1 << i); 10923 10924 if (Op.getOpcode() != CandidateBinOp) 10925 return PartialReduction(PrevOp, MaskEnd); 10926 10927 SDValue Op0 = Op.getOperand(0); 10928 SDValue Op1 = Op.getOperand(1); 10929 10930 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10931 if (Shuffle) { 10932 Op = Op1; 10933 } else { 10934 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10935 Op = Op0; 10936 } 10937 10938 // The first operand of the shuffle should be the same as the other operand 10939 // of the binop. 10940 if (!Shuffle || Shuffle->getOperand(0) != Op) 10941 return PartialReduction(PrevOp, MaskEnd); 10942 10943 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10944 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10945 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10946 return PartialReduction(PrevOp, MaskEnd); 10947 10948 PrevOp = Op; 10949 } 10950 10951 // Handle subvector reductions, which tend to appear after the shuffle 10952 // reduction stages. 10953 while (Op.getOpcode() == CandidateBinOp) { 10954 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10955 SDValue Op0 = Op.getOperand(0); 10956 SDValue Op1 = Op.getOperand(1); 10957 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10958 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10959 Op0.getOperand(0) != Op1.getOperand(0)) 10960 break; 10961 SDValue Src = Op0.getOperand(0); 10962 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10963 if (NumSrcElts != (2 * NumElts)) 10964 break; 10965 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10966 Op1.getConstantOperandAPInt(1) == NumElts) && 10967 !(Op1.getConstantOperandAPInt(1) == 0 && 10968 Op0.getConstantOperandAPInt(1) == NumElts)) 10969 break; 10970 Op = Src; 10971 } 10972 10973 BinOp = (ISD::NodeType)CandidateBinOp; 10974 return Op; 10975 } 10976 10977 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10978 assert(N->getNumValues() == 1 && 10979 "Can't unroll a vector with multiple results!"); 10980 10981 EVT VT = N->getValueType(0); 10982 unsigned NE = VT.getVectorNumElements(); 10983 EVT EltVT = VT.getVectorElementType(); 10984 SDLoc dl(N); 10985 10986 SmallVector<SDValue, 8> Scalars; 10987 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10988 10989 // If ResNE is 0, fully unroll the vector op. 10990 if (ResNE == 0) 10991 ResNE = NE; 10992 else if (NE > ResNE) 10993 NE = ResNE; 10994 10995 unsigned i; 10996 for (i= 0; i != NE; ++i) { 10997 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10998 SDValue Operand = N->getOperand(j); 10999 EVT OperandVT = Operand.getValueType(); 11000 if (OperandVT.isVector()) { 11001 // A vector operand; extract a single element. 11002 EVT OperandEltVT = OperandVT.getVectorElementType(); 11003 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11004 Operand, getVectorIdxConstant(i, dl)); 11005 } else { 11006 // A scalar operand; just use it as is. 11007 Operands[j] = Operand; 11008 } 11009 } 11010 11011 switch (N->getOpcode()) { 11012 default: { 11013 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11014 N->getFlags())); 11015 break; 11016 } 11017 case ISD::VSELECT: 11018 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11019 break; 11020 case ISD::SHL: 11021 case ISD::SRA: 11022 case ISD::SRL: 11023 case ISD::ROTL: 11024 case ISD::ROTR: 11025 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11026 getShiftAmountOperand(Operands[0].getValueType(), 11027 Operands[1]))); 11028 break; 11029 case ISD::SIGN_EXTEND_INREG: { 11030 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11031 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11032 Operands[0], 11033 getValueType(ExtVT))); 11034 } 11035 } 11036 } 11037 11038 for (; i < ResNE; ++i) 11039 Scalars.push_back(getUNDEF(EltVT)); 11040 11041 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11042 return getBuildVector(VecVT, dl, Scalars); 11043 } 11044 11045 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11046 SDNode *N, unsigned ResNE) { 11047 unsigned Opcode = N->getOpcode(); 11048 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11049 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11050 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11051 "Expected an overflow opcode"); 11052 11053 EVT ResVT = N->getValueType(0); 11054 EVT OvVT = N->getValueType(1); 11055 EVT ResEltVT = ResVT.getVectorElementType(); 11056 EVT OvEltVT = OvVT.getVectorElementType(); 11057 SDLoc dl(N); 11058 11059 // If ResNE is 0, fully unroll the vector op. 11060 unsigned NE = ResVT.getVectorNumElements(); 11061 if (ResNE == 0) 11062 ResNE = NE; 11063 else if (NE > ResNE) 11064 NE = ResNE; 11065 11066 SmallVector<SDValue, 8> LHSScalars; 11067 SmallVector<SDValue, 8> RHSScalars; 11068 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11069 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11070 11071 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11072 SDVTList VTs = getVTList(ResEltVT, SVT); 11073 SmallVector<SDValue, 8> ResScalars; 11074 SmallVector<SDValue, 8> OvScalars; 11075 for (unsigned i = 0; i < NE; ++i) { 11076 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11077 SDValue Ov = 11078 getSelect(dl, OvEltVT, Res.getValue(1), 11079 getBoolConstant(true, dl, OvEltVT, ResVT), 11080 getConstant(0, dl, OvEltVT)); 11081 11082 ResScalars.push_back(Res); 11083 OvScalars.push_back(Ov); 11084 } 11085 11086 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11087 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11088 11089 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11090 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11091 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11092 getBuildVector(NewOvVT, dl, OvScalars)); 11093 } 11094 11095 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11096 LoadSDNode *Base, 11097 unsigned Bytes, 11098 int Dist) const { 11099 if (LD->isVolatile() || Base->isVolatile()) 11100 return false; 11101 // TODO: probably too restrictive for atomics, revisit 11102 if (!LD->isSimple()) 11103 return false; 11104 if (LD->isIndexed() || Base->isIndexed()) 11105 return false; 11106 if (LD->getChain() != Base->getChain()) 11107 return false; 11108 EVT VT = LD->getValueType(0); 11109 if (VT.getSizeInBits() / 8 != Bytes) 11110 return false; 11111 11112 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11113 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11114 11115 int64_t Offset = 0; 11116 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11117 return (Dist * Bytes == Offset); 11118 return false; 11119 } 11120 11121 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11122 /// if it cannot be inferred. 11123 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11124 // If this is a GlobalAddress + cst, return the alignment. 11125 const GlobalValue *GV = nullptr; 11126 int64_t GVOffset = 0; 11127 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11128 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11129 KnownBits Known(PtrWidth); 11130 llvm::computeKnownBits(GV, Known, getDataLayout()); 11131 unsigned AlignBits = Known.countMinTrailingZeros(); 11132 if (AlignBits) 11133 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11134 } 11135 11136 // If this is a direct reference to a stack slot, use information about the 11137 // stack slot's alignment. 11138 int FrameIdx = INT_MIN; 11139 int64_t FrameOffset = 0; 11140 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11141 FrameIdx = FI->getIndex(); 11142 } else if (isBaseWithConstantOffset(Ptr) && 11143 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11144 // Handle FI+Cst 11145 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11146 FrameOffset = Ptr.getConstantOperandVal(1); 11147 } 11148 11149 if (FrameIdx != INT_MIN) { 11150 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11151 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11152 } 11153 11154 return None; 11155 } 11156 11157 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11158 /// which is split (or expanded) into two not necessarily identical pieces. 11159 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11160 // Currently all types are split in half. 11161 EVT LoVT, HiVT; 11162 if (!VT.isVector()) 11163 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11164 else 11165 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11166 11167 return std::make_pair(LoVT, HiVT); 11168 } 11169 11170 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11171 /// type, dependent on an enveloping VT that has been split into two identical 11172 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11173 std::pair<EVT, EVT> 11174 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11175 bool *HiIsEmpty) const { 11176 EVT EltTp = VT.getVectorElementType(); 11177 // Examples: 11178 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11179 // custom VL=9 with enveloping VL=8/8 yields 8/1 11180 // custom VL=10 with enveloping VL=8/8 yields 8/2 11181 // etc. 11182 ElementCount VTNumElts = VT.getVectorElementCount(); 11183 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11184 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11185 "Mixing fixed width and scalable vectors when enveloping a type"); 11186 EVT LoVT, HiVT; 11187 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11188 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11189 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11190 *HiIsEmpty = false; 11191 } else { 11192 // Flag that hi type has zero storage size, but return split envelop type 11193 // (this would be easier if vector types with zero elements were allowed). 11194 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11195 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11196 *HiIsEmpty = true; 11197 } 11198 return std::make_pair(LoVT, HiVT); 11199 } 11200 11201 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11202 /// low/high part. 11203 std::pair<SDValue, SDValue> 11204 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11205 const EVT &HiVT) { 11206 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11207 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11208 "Splitting vector with an invalid mixture of fixed and scalable " 11209 "vector types"); 11210 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11211 N.getValueType().getVectorMinNumElements() && 11212 "More vector elements requested than available!"); 11213 SDValue Lo, Hi; 11214 Lo = 11215 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11216 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11217 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11218 // IDX with the runtime scaling factor of the result vector type. For 11219 // fixed-width result vectors, that runtime scaling factor is 1. 11220 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11221 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11222 return std::make_pair(Lo, Hi); 11223 } 11224 11225 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11226 const SDLoc &DL) { 11227 // Split the vector length parameter. 11228 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11229 EVT VT = N.getValueType(); 11230 assert(VecVT.getVectorElementCount().isKnownEven() && 11231 "Expecting the mask to be an evenly-sized vector"); 11232 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11233 SDValue HalfNumElts = 11234 VecVT.isFixedLengthVector() 11235 ? getConstant(HalfMinNumElts, DL, VT) 11236 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11237 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11238 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11239 return std::make_pair(Lo, Hi); 11240 } 11241 11242 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11243 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11244 EVT VT = N.getValueType(); 11245 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11246 NextPowerOf2(VT.getVectorNumElements())); 11247 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11248 getVectorIdxConstant(0, DL)); 11249 } 11250 11251 void SelectionDAG::ExtractVectorElements(SDValue Op, 11252 SmallVectorImpl<SDValue> &Args, 11253 unsigned Start, unsigned Count, 11254 EVT EltVT) { 11255 EVT VT = Op.getValueType(); 11256 if (Count == 0) 11257 Count = VT.getVectorNumElements(); 11258 if (EltVT == EVT()) 11259 EltVT = VT.getVectorElementType(); 11260 SDLoc SL(Op); 11261 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11262 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11263 getVectorIdxConstant(i, SL))); 11264 } 11265 } 11266 11267 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11268 unsigned GlobalAddressSDNode::getAddressSpace() const { 11269 return getGlobal()->getType()->getAddressSpace(); 11270 } 11271 11272 Type *ConstantPoolSDNode::getType() const { 11273 if (isMachineConstantPoolEntry()) 11274 return Val.MachineCPVal->getType(); 11275 return Val.ConstVal->getType(); 11276 } 11277 11278 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11279 unsigned &SplatBitSize, 11280 bool &HasAnyUndefs, 11281 unsigned MinSplatBits, 11282 bool IsBigEndian) const { 11283 EVT VT = getValueType(0); 11284 assert(VT.isVector() && "Expected a vector type"); 11285 unsigned VecWidth = VT.getSizeInBits(); 11286 if (MinSplatBits > VecWidth) 11287 return false; 11288 11289 // FIXME: The widths are based on this node's type, but build vectors can 11290 // truncate their operands. 11291 SplatValue = APInt(VecWidth, 0); 11292 SplatUndef = APInt(VecWidth, 0); 11293 11294 // Get the bits. Bits with undefined values (when the corresponding element 11295 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11296 // in SplatValue. If any of the values are not constant, give up and return 11297 // false. 11298 unsigned int NumOps = getNumOperands(); 11299 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11300 unsigned EltWidth = VT.getScalarSizeInBits(); 11301 11302 for (unsigned j = 0; j < NumOps; ++j) { 11303 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11304 SDValue OpVal = getOperand(i); 11305 unsigned BitPos = j * EltWidth; 11306 11307 if (OpVal.isUndef()) 11308 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11309 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11310 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11311 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11312 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11313 else 11314 return false; 11315 } 11316 11317 // The build_vector is all constants or undefs. Find the smallest element 11318 // size that splats the vector. 11319 HasAnyUndefs = (SplatUndef != 0); 11320 11321 // FIXME: This does not work for vectors with elements less than 8 bits. 11322 while (VecWidth > 8) { 11323 unsigned HalfSize = VecWidth / 2; 11324 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11325 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11326 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11327 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11328 11329 // If the two halves do not match (ignoring undef bits), stop here. 11330 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11331 MinSplatBits > HalfSize) 11332 break; 11333 11334 SplatValue = HighValue | LowValue; 11335 SplatUndef = HighUndef & LowUndef; 11336 11337 VecWidth = HalfSize; 11338 } 11339 11340 SplatBitSize = VecWidth; 11341 return true; 11342 } 11343 11344 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11345 BitVector *UndefElements) const { 11346 unsigned NumOps = getNumOperands(); 11347 if (UndefElements) { 11348 UndefElements->clear(); 11349 UndefElements->resize(NumOps); 11350 } 11351 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11352 if (!DemandedElts) 11353 return SDValue(); 11354 SDValue Splatted; 11355 for (unsigned i = 0; i != NumOps; ++i) { 11356 if (!DemandedElts[i]) 11357 continue; 11358 SDValue Op = getOperand(i); 11359 if (Op.isUndef()) { 11360 if (UndefElements) 11361 (*UndefElements)[i] = true; 11362 } else if (!Splatted) { 11363 Splatted = Op; 11364 } else if (Splatted != Op) { 11365 return SDValue(); 11366 } 11367 } 11368 11369 if (!Splatted) { 11370 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11371 assert(getOperand(FirstDemandedIdx).isUndef() && 11372 "Can only have a splat without a constant for all undefs."); 11373 return getOperand(FirstDemandedIdx); 11374 } 11375 11376 return Splatted; 11377 } 11378 11379 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11380 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11381 return getSplatValue(DemandedElts, UndefElements); 11382 } 11383 11384 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11385 SmallVectorImpl<SDValue> &Sequence, 11386 BitVector *UndefElements) const { 11387 unsigned NumOps = getNumOperands(); 11388 Sequence.clear(); 11389 if (UndefElements) { 11390 UndefElements->clear(); 11391 UndefElements->resize(NumOps); 11392 } 11393 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11394 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11395 return false; 11396 11397 // Set the undefs even if we don't find a sequence (like getSplatValue). 11398 if (UndefElements) 11399 for (unsigned I = 0; I != NumOps; ++I) 11400 if (DemandedElts[I] && getOperand(I).isUndef()) 11401 (*UndefElements)[I] = true; 11402 11403 // Iteratively widen the sequence length looking for repetitions. 11404 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11405 Sequence.append(SeqLen, SDValue()); 11406 for (unsigned I = 0; I != NumOps; ++I) { 11407 if (!DemandedElts[I]) 11408 continue; 11409 SDValue &SeqOp = Sequence[I % SeqLen]; 11410 SDValue Op = getOperand(I); 11411 if (Op.isUndef()) { 11412 if (!SeqOp) 11413 SeqOp = Op; 11414 continue; 11415 } 11416 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11417 Sequence.clear(); 11418 break; 11419 } 11420 SeqOp = Op; 11421 } 11422 if (!Sequence.empty()) 11423 return true; 11424 } 11425 11426 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11427 return false; 11428 } 11429 11430 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11431 BitVector *UndefElements) const { 11432 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11433 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11434 } 11435 11436 ConstantSDNode * 11437 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11438 BitVector *UndefElements) const { 11439 return dyn_cast_or_null<ConstantSDNode>( 11440 getSplatValue(DemandedElts, UndefElements)); 11441 } 11442 11443 ConstantSDNode * 11444 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11445 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11446 } 11447 11448 ConstantFPSDNode * 11449 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11450 BitVector *UndefElements) const { 11451 return dyn_cast_or_null<ConstantFPSDNode>( 11452 getSplatValue(DemandedElts, UndefElements)); 11453 } 11454 11455 ConstantFPSDNode * 11456 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11457 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11458 } 11459 11460 int32_t 11461 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11462 uint32_t BitWidth) const { 11463 if (ConstantFPSDNode *CN = 11464 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11465 bool IsExact; 11466 APSInt IntVal(BitWidth); 11467 const APFloat &APF = CN->getValueAPF(); 11468 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11469 APFloat::opOK || 11470 !IsExact) 11471 return -1; 11472 11473 return IntVal.exactLogBase2(); 11474 } 11475 return -1; 11476 } 11477 11478 bool BuildVectorSDNode::getConstantRawBits( 11479 bool IsLittleEndian, unsigned DstEltSizeInBits, 11480 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11481 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11482 if (!isConstant()) 11483 return false; 11484 11485 unsigned NumSrcOps = getNumOperands(); 11486 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11487 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11488 "Invalid bitcast scale"); 11489 11490 // Extract raw src bits. 11491 SmallVector<APInt> SrcBitElements(NumSrcOps, 11492 APInt::getNullValue(SrcEltSizeInBits)); 11493 BitVector SrcUndeElements(NumSrcOps, false); 11494 11495 for (unsigned I = 0; I != NumSrcOps; ++I) { 11496 SDValue Op = getOperand(I); 11497 if (Op.isUndef()) { 11498 SrcUndeElements.set(I); 11499 continue; 11500 } 11501 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11502 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11503 assert((CInt || CFP) && "Unknown constant"); 11504 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11505 : CFP->getValueAPF().bitcastToAPInt(); 11506 } 11507 11508 // Recast to dst width. 11509 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11510 SrcBitElements, UndefElements, SrcUndeElements); 11511 return true; 11512 } 11513 11514 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11515 unsigned DstEltSizeInBits, 11516 SmallVectorImpl<APInt> &DstBitElements, 11517 ArrayRef<APInt> SrcBitElements, 11518 BitVector &DstUndefElements, 11519 const BitVector &SrcUndefElements) { 11520 unsigned NumSrcOps = SrcBitElements.size(); 11521 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11522 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11523 "Invalid bitcast scale"); 11524 assert(NumSrcOps == SrcUndefElements.size() && 11525 "Vector size mismatch"); 11526 11527 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11528 DstUndefElements.clear(); 11529 DstUndefElements.resize(NumDstOps, false); 11530 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11531 11532 // Concatenate src elements constant bits together into dst element. 11533 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11534 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11535 for (unsigned I = 0; I != NumDstOps; ++I) { 11536 DstUndefElements.set(I); 11537 APInt &DstBits = DstBitElements[I]; 11538 for (unsigned J = 0; J != Scale; ++J) { 11539 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11540 if (SrcUndefElements[Idx]) 11541 continue; 11542 DstUndefElements.reset(I); 11543 const APInt &SrcBits = SrcBitElements[Idx]; 11544 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11545 "Illegal constant bitwidths"); 11546 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11547 } 11548 } 11549 return; 11550 } 11551 11552 // Split src element constant bits into dst elements. 11553 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11554 for (unsigned I = 0; I != NumSrcOps; ++I) { 11555 if (SrcUndefElements[I]) { 11556 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11557 continue; 11558 } 11559 const APInt &SrcBits = SrcBitElements[I]; 11560 for (unsigned J = 0; J != Scale; ++J) { 11561 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11562 APInt &DstBits = DstBitElements[Idx]; 11563 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11564 } 11565 } 11566 } 11567 11568 bool BuildVectorSDNode::isConstant() const { 11569 for (const SDValue &Op : op_values()) { 11570 unsigned Opc = Op.getOpcode(); 11571 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11572 return false; 11573 } 11574 return true; 11575 } 11576 11577 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11578 // Find the first non-undef value in the shuffle mask. 11579 unsigned i, e; 11580 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11581 /* search */; 11582 11583 // If all elements are undefined, this shuffle can be considered a splat 11584 // (although it should eventually get simplified away completely). 11585 if (i == e) 11586 return true; 11587 11588 // Make sure all remaining elements are either undef or the same as the first 11589 // non-undef value. 11590 for (int Idx = Mask[i]; i != e; ++i) 11591 if (Mask[i] >= 0 && Mask[i] != Idx) 11592 return false; 11593 return true; 11594 } 11595 11596 // Returns the SDNode if it is a constant integer BuildVector 11597 // or constant integer. 11598 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11599 if (isa<ConstantSDNode>(N)) 11600 return N.getNode(); 11601 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11602 return N.getNode(); 11603 // Treat a GlobalAddress supporting constant offset folding as a 11604 // constant integer. 11605 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11606 if (GA->getOpcode() == ISD::GlobalAddress && 11607 TLI->isOffsetFoldingLegal(GA)) 11608 return GA; 11609 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11610 isa<ConstantSDNode>(N.getOperand(0))) 11611 return N.getNode(); 11612 return nullptr; 11613 } 11614 11615 // Returns the SDNode if it is a constant float BuildVector 11616 // or constant float. 11617 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11618 if (isa<ConstantFPSDNode>(N)) 11619 return N.getNode(); 11620 11621 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11622 return N.getNode(); 11623 11624 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11625 isa<ConstantFPSDNode>(N.getOperand(0))) 11626 return N.getNode(); 11627 11628 return nullptr; 11629 } 11630 11631 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11632 assert(!Node->OperandList && "Node already has operands"); 11633 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11634 "too many operands to fit into SDNode"); 11635 SDUse *Ops = OperandRecycler.allocate( 11636 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11637 11638 bool IsDivergent = false; 11639 for (unsigned I = 0; I != Vals.size(); ++I) { 11640 Ops[I].setUser(Node); 11641 Ops[I].setInitial(Vals[I]); 11642 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11643 IsDivergent |= Ops[I].getNode()->isDivergent(); 11644 } 11645 Node->NumOperands = Vals.size(); 11646 Node->OperandList = Ops; 11647 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11648 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11649 Node->SDNodeBits.IsDivergent = IsDivergent; 11650 } 11651 checkForCycles(Node); 11652 } 11653 11654 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11655 SmallVectorImpl<SDValue> &Vals) { 11656 size_t Limit = SDNode::getMaxNumOperands(); 11657 while (Vals.size() > Limit) { 11658 unsigned SliceIdx = Vals.size() - Limit; 11659 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11660 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11661 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11662 Vals.emplace_back(NewTF); 11663 } 11664 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11665 } 11666 11667 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11668 EVT VT, SDNodeFlags Flags) { 11669 switch (Opcode) { 11670 default: 11671 return SDValue(); 11672 case ISD::ADD: 11673 case ISD::OR: 11674 case ISD::XOR: 11675 case ISD::UMAX: 11676 return getConstant(0, DL, VT); 11677 case ISD::MUL: 11678 return getConstant(1, DL, VT); 11679 case ISD::AND: 11680 case ISD::UMIN: 11681 return getAllOnesConstant(DL, VT); 11682 case ISD::SMAX: 11683 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11684 case ISD::SMIN: 11685 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11686 case ISD::FADD: 11687 return getConstantFP(-0.0, DL, VT); 11688 case ISD::FMUL: 11689 return getConstantFP(1.0, DL, VT); 11690 case ISD::FMINNUM: 11691 case ISD::FMAXNUM: { 11692 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11693 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11694 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11695 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11696 APFloat::getLargest(Semantics); 11697 if (Opcode == ISD::FMAXNUM) 11698 NeutralAF.changeSign(); 11699 11700 return getConstantFP(NeutralAF, DL, VT); 11701 } 11702 } 11703 } 11704 11705 #ifndef NDEBUG 11706 static void checkForCyclesHelper(const SDNode *N, 11707 SmallPtrSetImpl<const SDNode*> &Visited, 11708 SmallPtrSetImpl<const SDNode*> &Checked, 11709 const llvm::SelectionDAG *DAG) { 11710 // If this node has already been checked, don't check it again. 11711 if (Checked.count(N)) 11712 return; 11713 11714 // If a node has already been visited on this depth-first walk, reject it as 11715 // a cycle. 11716 if (!Visited.insert(N).second) { 11717 errs() << "Detected cycle in SelectionDAG\n"; 11718 dbgs() << "Offending node:\n"; 11719 N->dumprFull(DAG); dbgs() << "\n"; 11720 abort(); 11721 } 11722 11723 for (const SDValue &Op : N->op_values()) 11724 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11725 11726 Checked.insert(N); 11727 Visited.erase(N); 11728 } 11729 #endif 11730 11731 void llvm::checkForCycles(const llvm::SDNode *N, 11732 const llvm::SelectionDAG *DAG, 11733 bool force) { 11734 #ifndef NDEBUG 11735 bool check = force; 11736 #ifdef EXPENSIVE_CHECKS 11737 check = true; 11738 #endif // EXPENSIVE_CHECKS 11739 if (check) { 11740 assert(N && "Checking nonexistent SDNode"); 11741 SmallPtrSet<const SDNode*, 32> visited; 11742 SmallPtrSet<const SDNode*, 32> checked; 11743 checkForCyclesHelper(N, visited, checked, DAG); 11744 } 11745 #endif // !NDEBUG 11746 } 11747 11748 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11749 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11750 } 11751