1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 150 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 151 return true; 152 } 153 } 154 155 auto *BV = dyn_cast<BuildVectorSDNode>(N); 156 if (!BV) 157 return false; 158 159 APInt SplatUndef; 160 unsigned SplatBitSize; 161 bool HasUndefs; 162 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 163 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 164 EltSize) && 165 EltSize == SplatBitSize; 166 } 167 168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 169 // specializations of the more general isConstantSplatVector()? 170 171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 172 // Look through a bit convert. 173 while (N->getOpcode() == ISD::BITCAST) 174 N = N->getOperand(0).getNode(); 175 176 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 177 APInt SplatVal; 178 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 179 } 180 181 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 182 183 unsigned i = 0, e = N->getNumOperands(); 184 185 // Skip over all of the undef values. 186 while (i != e && N->getOperand(i).isUndef()) 187 ++i; 188 189 // Do not accept an all-undef vector. 190 if (i == e) return false; 191 192 // Do not accept build_vectors that aren't all constants or which have non-~0 193 // elements. We have to be a bit careful here, as the type of the constant 194 // may not be the same as the type of the vector elements due to type 195 // legalization (the elements are promoted to a legal type for the target and 196 // a vector of a type may be legal when the base element type is not). 197 // We only want to check enough bits to cover the vector elements, because 198 // we care if the resultant vector is all ones, not whether the individual 199 // constants are. 200 SDValue NotZero = N->getOperand(i); 201 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 202 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 203 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 204 return false; 205 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 206 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 207 return false; 208 } else 209 return false; 210 211 // Okay, we have at least one ~0 value, check to see if the rest match or are 212 // undefs. Even with the above element type twiddling, this should be OK, as 213 // the same type legalization should have applied to all the elements. 214 for (++i; i != e; ++i) 215 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 216 return false; 217 return true; 218 } 219 220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 221 // Look through a bit convert. 222 while (N->getOpcode() == ISD::BITCAST) 223 N = N->getOperand(0).getNode(); 224 225 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 226 APInt SplatVal; 227 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 228 } 229 230 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 231 232 bool IsAllUndef = true; 233 for (const SDValue &Op : N->op_values()) { 234 if (Op.isUndef()) 235 continue; 236 IsAllUndef = false; 237 // Do not accept build_vectors that aren't all constants or which have non-0 238 // elements. We have to be a bit careful here, as the type of the constant 239 // may not be the same as the type of the vector elements due to type 240 // legalization (the elements are promoted to a legal type for the target 241 // and a vector of a type may be legal when the base element type is not). 242 // We only want to check enough bits to cover the vector elements, because 243 // we care if the resultant vector is all zeros, not whether the individual 244 // constants are. 245 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 246 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 247 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 248 return false; 249 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 250 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 251 return false; 252 } else 253 return false; 254 } 255 256 // Do not accept an all-undef vector. 257 if (IsAllUndef) 258 return false; 259 return true; 260 } 261 262 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 263 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 267 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 268 } 269 270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 271 if (N->getOpcode() != ISD::BUILD_VECTOR) 272 return false; 273 274 for (const SDValue &Op : N->op_values()) { 275 if (Op.isUndef()) 276 continue; 277 if (!isa<ConstantSDNode>(Op)) 278 return false; 279 } 280 return true; 281 } 282 283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 284 if (N->getOpcode() != ISD::BUILD_VECTOR) 285 return false; 286 287 for (const SDValue &Op : N->op_values()) { 288 if (Op.isUndef()) 289 continue; 290 if (!isa<ConstantFPSDNode>(Op)) 291 return false; 292 } 293 return true; 294 } 295 296 bool ISD::allOperandsUndef(const SDNode *N) { 297 // Return false if the node has no operands. 298 // This is "logically inconsistent" with the definition of "all" but 299 // is probably the desired behavior. 300 if (N->getNumOperands() == 0) 301 return false; 302 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 303 } 304 305 bool ISD::matchUnaryPredicate(SDValue Op, 306 std::function<bool(ConstantSDNode *)> Match, 307 bool AllowUndefs) { 308 // FIXME: Add support for scalar UNDEF cases? 309 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 310 return Match(Cst); 311 312 // FIXME: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != Op.getOpcode() && 314 ISD::SPLAT_VECTOR != Op.getOpcode()) 315 return false; 316 317 EVT SVT = Op.getValueType().getScalarType(); 318 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 319 if (AllowUndefs && Op.getOperand(i).isUndef()) { 320 if (!Match(nullptr)) 321 return false; 322 continue; 323 } 324 325 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 326 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 327 return false; 328 } 329 return true; 330 } 331 332 bool ISD::matchBinaryPredicate( 333 SDValue LHS, SDValue RHS, 334 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 335 bool AllowUndefs, bool AllowTypeMismatch) { 336 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 337 return false; 338 339 // TODO: Add support for scalar UNDEF cases? 340 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 341 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 342 return Match(LHSCst, RHSCst); 343 344 // TODO: Add support for vector UNDEF cases? 345 if (LHS.getOpcode() != RHS.getOpcode() || 346 (LHS.getOpcode() != ISD::BUILD_VECTOR && 347 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 348 return false; 349 350 EVT SVT = LHS.getValueType().getScalarType(); 351 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 352 SDValue LHSOp = LHS.getOperand(i); 353 SDValue RHSOp = RHS.getOperand(i); 354 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 355 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 356 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 357 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 358 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 359 return false; 360 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 361 LHSOp.getValueType() != RHSOp.getValueType())) 362 return false; 363 if (!Match(LHSCst, RHSCst)) 364 return false; 365 } 366 return true; 367 } 368 369 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 370 switch (VecReduceOpcode) { 371 default: 372 llvm_unreachable("Expected VECREDUCE opcode"); 373 case ISD::VECREDUCE_FADD: 374 case ISD::VECREDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 return ISD::FMUL; 379 case ISD::VECREDUCE_ADD: 380 return ISD::ADD; 381 case ISD::VECREDUCE_MUL: 382 return ISD::MUL; 383 case ISD::VECREDUCE_AND: 384 return ISD::AND; 385 case ISD::VECREDUCE_OR: 386 return ISD::OR; 387 case ISD::VECREDUCE_XOR: 388 return ISD::XOR; 389 case ISD::VECREDUCE_SMAX: 390 return ISD::SMAX; 391 case ISD::VECREDUCE_SMIN: 392 return ISD::SMIN; 393 case ISD::VECREDUCE_UMAX: 394 return ISD::UMAX; 395 case ISD::VECREDUCE_UMIN: 396 return ISD::UMIN; 397 case ISD::VECREDUCE_FMAX: 398 return ISD::FMAXNUM; 399 case ISD::VECREDUCE_FMIN: 400 return ISD::FMINNUM; 401 } 402 } 403 404 bool ISD::isVPOpcode(unsigned Opcode) { 405 switch (Opcode) { 406 default: 407 return false; 408 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 409 case ISD::SDOPC: \ 410 return true; 411 #include "llvm/IR/VPIntrinsics.def" 412 } 413 } 414 415 /// The operand position of the vector mask. 416 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 return None; 420 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 421 case ISD::SDOPC: \ 422 return MASKPOS; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 } 426 427 /// The operand position of the explicit vector length parameter. 428 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 return None; 432 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 433 case ISD::SDOPC: \ 434 return EVLPOS; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 } 438 439 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 440 switch (ExtType) { 441 case ISD::EXTLOAD: 442 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 443 case ISD::SEXTLOAD: 444 return ISD::SIGN_EXTEND; 445 case ISD::ZEXTLOAD: 446 return ISD::ZERO_EXTEND; 447 default: 448 break; 449 } 450 451 llvm_unreachable("Invalid LoadExtType"); 452 } 453 454 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 455 // To perform this operation, we just need to swap the L and G bits of the 456 // operation. 457 unsigned OldL = (Operation >> 2) & 1; 458 unsigned OldG = (Operation >> 1) & 1; 459 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 460 (OldL << 1) | // New G bit 461 (OldG << 2)); // New L bit. 462 } 463 464 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 465 unsigned Operation = Op; 466 if (isIntegerLike) 467 Operation ^= 7; // Flip L, G, E bits, but not U. 468 else 469 Operation ^= 15; // Flip all of the condition bits. 470 471 if (Operation > ISD::SETTRUE2) 472 Operation &= ~8; // Don't let N and U bits get set. 473 474 return ISD::CondCode(Operation); 475 } 476 477 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 478 return getSetCCInverseImpl(Op, Type.isInteger()); 479 } 480 481 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 482 bool isIntegerLike) { 483 return getSetCCInverseImpl(Op, isIntegerLike); 484 } 485 486 /// For an integer comparison, return 1 if the comparison is a signed operation 487 /// and 2 if the result is an unsigned comparison. Return zero if the operation 488 /// does not depend on the sign of the input (setne and seteq). 489 static int isSignedOp(ISD::CondCode Opcode) { 490 switch (Opcode) { 491 default: llvm_unreachable("Illegal integer setcc operation!"); 492 case ISD::SETEQ: 493 case ISD::SETNE: return 0; 494 case ISD::SETLT: 495 case ISD::SETLE: 496 case ISD::SETGT: 497 case ISD::SETGE: return 1; 498 case ISD::SETULT: 499 case ISD::SETULE: 500 case ISD::SETUGT: 501 case ISD::SETUGE: return 2; 502 } 503 } 504 505 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 506 EVT Type) { 507 bool IsInteger = Type.isInteger(); 508 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 509 // Cannot fold a signed integer setcc with an unsigned integer setcc. 510 return ISD::SETCC_INVALID; 511 512 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 513 514 // If the N and U bits get set, then the resultant comparison DOES suddenly 515 // care about orderedness, and it is true when ordered. 516 if (Op > ISD::SETTRUE2) 517 Op &= ~16; // Clear the U bit if the N bit is set. 518 519 // Canonicalize illegal integer setcc's. 520 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 521 Op = ISD::SETNE; 522 523 return ISD::CondCode(Op); 524 } 525 526 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 527 EVT Type) { 528 bool IsInteger = Type.isInteger(); 529 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 530 // Cannot fold a signed setcc with an unsigned setcc. 531 return ISD::SETCC_INVALID; 532 533 // Combine all of the condition bits. 534 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 535 536 // Canonicalize illegal integer setcc's. 537 if (IsInteger) { 538 switch (Result) { 539 default: break; 540 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 541 case ISD::SETOEQ: // SETEQ & SETU[LG]E 542 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 543 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 544 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 545 } 546 } 547 548 return Result; 549 } 550 551 //===----------------------------------------------------------------------===// 552 // SDNode Profile Support 553 //===----------------------------------------------------------------------===// 554 555 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 556 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 557 ID.AddInteger(OpC); 558 } 559 560 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 561 /// solely with their pointer. 562 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 563 ID.AddPointer(VTList.VTs); 564 } 565 566 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 567 static void AddNodeIDOperands(FoldingSetNodeID &ID, 568 ArrayRef<SDValue> Ops) { 569 for (auto& Op : Ops) { 570 ID.AddPointer(Op.getNode()); 571 ID.AddInteger(Op.getResNo()); 572 } 573 } 574 575 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 576 static void AddNodeIDOperands(FoldingSetNodeID &ID, 577 ArrayRef<SDUse> Ops) { 578 for (auto& Op : Ops) { 579 ID.AddPointer(Op.getNode()); 580 ID.AddInteger(Op.getResNo()); 581 } 582 } 583 584 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 585 SDVTList VTList, ArrayRef<SDValue> OpList) { 586 AddNodeIDOpcode(ID, OpC); 587 AddNodeIDValueTypes(ID, VTList); 588 AddNodeIDOperands(ID, OpList); 589 } 590 591 /// If this is an SDNode with special info, add this info to the NodeID data. 592 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 593 switch (N->getOpcode()) { 594 case ISD::TargetExternalSymbol: 595 case ISD::ExternalSymbol: 596 case ISD::MCSymbol: 597 llvm_unreachable("Should only be used on nodes with operands"); 598 default: break; // Normal nodes don't need extra info. 599 case ISD::TargetConstant: 600 case ISD::Constant: { 601 const ConstantSDNode *C = cast<ConstantSDNode>(N); 602 ID.AddPointer(C->getConstantIntValue()); 603 ID.AddBoolean(C->isOpaque()); 604 break; 605 } 606 case ISD::TargetConstantFP: 607 case ISD::ConstantFP: 608 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 609 break; 610 case ISD::TargetGlobalAddress: 611 case ISD::GlobalAddress: 612 case ISD::TargetGlobalTLSAddress: 613 case ISD::GlobalTLSAddress: { 614 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 615 ID.AddPointer(GA->getGlobal()); 616 ID.AddInteger(GA->getOffset()); 617 ID.AddInteger(GA->getTargetFlags()); 618 break; 619 } 620 case ISD::BasicBlock: 621 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 622 break; 623 case ISD::Register: 624 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 625 break; 626 case ISD::RegisterMask: 627 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 628 break; 629 case ISD::SRCVALUE: 630 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 631 break; 632 case ISD::FrameIndex: 633 case ISD::TargetFrameIndex: 634 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 635 break; 636 case ISD::LIFETIME_START: 637 case ISD::LIFETIME_END: 638 if (cast<LifetimeSDNode>(N)->hasOffset()) { 639 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 640 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 641 } 642 break; 643 case ISD::PSEUDO_PROBE: 644 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 645 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 646 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 647 break; 648 case ISD::JumpTable: 649 case ISD::TargetJumpTable: 650 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 651 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 652 break; 653 case ISD::ConstantPool: 654 case ISD::TargetConstantPool: { 655 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 656 ID.AddInteger(CP->getAlign().value()); 657 ID.AddInteger(CP->getOffset()); 658 if (CP->isMachineConstantPoolEntry()) 659 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 660 else 661 ID.AddPointer(CP->getConstVal()); 662 ID.AddInteger(CP->getTargetFlags()); 663 break; 664 } 665 case ISD::TargetIndex: { 666 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 667 ID.AddInteger(TI->getIndex()); 668 ID.AddInteger(TI->getOffset()); 669 ID.AddInteger(TI->getTargetFlags()); 670 break; 671 } 672 case ISD::LOAD: { 673 const LoadSDNode *LD = cast<LoadSDNode>(N); 674 ID.AddInteger(LD->getMemoryVT().getRawBits()); 675 ID.AddInteger(LD->getRawSubclassData()); 676 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 677 break; 678 } 679 case ISD::STORE: { 680 const StoreSDNode *ST = cast<StoreSDNode>(N); 681 ID.AddInteger(ST->getMemoryVT().getRawBits()); 682 ID.AddInteger(ST->getRawSubclassData()); 683 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 684 break; 685 } 686 case ISD::VP_LOAD: { 687 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 688 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 689 ID.AddInteger(ELD->getRawSubclassData()); 690 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 691 break; 692 } 693 case ISD::VP_STORE: { 694 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 695 ID.AddInteger(EST->getMemoryVT().getRawBits()); 696 ID.AddInteger(EST->getRawSubclassData()); 697 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 698 break; 699 } 700 case ISD::VP_GATHER: { 701 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 702 ID.AddInteger(EG->getMemoryVT().getRawBits()); 703 ID.AddInteger(EG->getRawSubclassData()); 704 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 705 break; 706 } 707 case ISD::VP_SCATTER: { 708 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 709 ID.AddInteger(ES->getMemoryVT().getRawBits()); 710 ID.AddInteger(ES->getRawSubclassData()); 711 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 712 break; 713 } 714 case ISD::MLOAD: { 715 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 716 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 717 ID.AddInteger(MLD->getRawSubclassData()); 718 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 719 break; 720 } 721 case ISD::MSTORE: { 722 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 723 ID.AddInteger(MST->getMemoryVT().getRawBits()); 724 ID.AddInteger(MST->getRawSubclassData()); 725 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 726 break; 727 } 728 case ISD::MGATHER: { 729 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 730 ID.AddInteger(MG->getMemoryVT().getRawBits()); 731 ID.AddInteger(MG->getRawSubclassData()); 732 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 733 break; 734 } 735 case ISD::MSCATTER: { 736 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 737 ID.AddInteger(MS->getMemoryVT().getRawBits()); 738 ID.AddInteger(MS->getRawSubclassData()); 739 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 740 break; 741 } 742 case ISD::ATOMIC_CMP_SWAP: 743 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 744 case ISD::ATOMIC_SWAP: 745 case ISD::ATOMIC_LOAD_ADD: 746 case ISD::ATOMIC_LOAD_SUB: 747 case ISD::ATOMIC_LOAD_AND: 748 case ISD::ATOMIC_LOAD_CLR: 749 case ISD::ATOMIC_LOAD_OR: 750 case ISD::ATOMIC_LOAD_XOR: 751 case ISD::ATOMIC_LOAD_NAND: 752 case ISD::ATOMIC_LOAD_MIN: 753 case ISD::ATOMIC_LOAD_MAX: 754 case ISD::ATOMIC_LOAD_UMIN: 755 case ISD::ATOMIC_LOAD_UMAX: 756 case ISD::ATOMIC_LOAD: 757 case ISD::ATOMIC_STORE: { 758 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 759 ID.AddInteger(AT->getMemoryVT().getRawBits()); 760 ID.AddInteger(AT->getRawSubclassData()); 761 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 762 break; 763 } 764 case ISD::PREFETCH: { 765 const MemSDNode *PF = cast<MemSDNode>(N); 766 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 767 break; 768 } 769 case ISD::VECTOR_SHUFFLE: { 770 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 771 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 772 i != e; ++i) 773 ID.AddInteger(SVN->getMaskElt(i)); 774 break; 775 } 776 case ISD::TargetBlockAddress: 777 case ISD::BlockAddress: { 778 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 779 ID.AddPointer(BA->getBlockAddress()); 780 ID.AddInteger(BA->getOffset()); 781 ID.AddInteger(BA->getTargetFlags()); 782 break; 783 } 784 } // end switch (N->getOpcode()) 785 786 // Target specific memory nodes could also have address spaces to check. 787 if (N->isTargetMemoryOpcode()) 788 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 789 } 790 791 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 792 /// data. 793 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 794 AddNodeIDOpcode(ID, N->getOpcode()); 795 // Add the return value info. 796 AddNodeIDValueTypes(ID, N->getVTList()); 797 // Add the operand info. 798 AddNodeIDOperands(ID, N->ops()); 799 800 // Handle SDNode leafs with special info. 801 AddNodeIDCustom(ID, N); 802 } 803 804 //===----------------------------------------------------------------------===// 805 // SelectionDAG Class 806 //===----------------------------------------------------------------------===// 807 808 /// doNotCSE - Return true if CSE should not be performed for this node. 809 static bool doNotCSE(SDNode *N) { 810 if (N->getValueType(0) == MVT::Glue) 811 return true; // Never CSE anything that produces a flag. 812 813 switch (N->getOpcode()) { 814 default: break; 815 case ISD::HANDLENODE: 816 case ISD::EH_LABEL: 817 return true; // Never CSE these nodes. 818 } 819 820 // Check that remaining values produced are not flags. 821 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 822 if (N->getValueType(i) == MVT::Glue) 823 return true; // Never CSE anything that produces a flag. 824 825 return false; 826 } 827 828 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 829 /// SelectionDAG. 830 void SelectionDAG::RemoveDeadNodes() { 831 // Create a dummy node (which is not added to allnodes), that adds a reference 832 // to the root node, preventing it from being deleted. 833 HandleSDNode Dummy(getRoot()); 834 835 SmallVector<SDNode*, 128> DeadNodes; 836 837 // Add all obviously-dead nodes to the DeadNodes worklist. 838 for (SDNode &Node : allnodes()) 839 if (Node.use_empty()) 840 DeadNodes.push_back(&Node); 841 842 RemoveDeadNodes(DeadNodes); 843 844 // If the root changed (e.g. it was a dead load, update the root). 845 setRoot(Dummy.getValue()); 846 } 847 848 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 849 /// given list, and any nodes that become unreachable as a result. 850 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 851 852 // Process the worklist, deleting the nodes and adding their uses to the 853 // worklist. 854 while (!DeadNodes.empty()) { 855 SDNode *N = DeadNodes.pop_back_val(); 856 // Skip to next node if we've already managed to delete the node. This could 857 // happen if replacing a node causes a node previously added to the node to 858 // be deleted. 859 if (N->getOpcode() == ISD::DELETED_NODE) 860 continue; 861 862 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 863 DUL->NodeDeleted(N, nullptr); 864 865 // Take the node out of the appropriate CSE map. 866 RemoveNodeFromCSEMaps(N); 867 868 // Next, brutally remove the operand list. This is safe to do, as there are 869 // no cycles in the graph. 870 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 871 SDUse &Use = *I++; 872 SDNode *Operand = Use.getNode(); 873 Use.set(SDValue()); 874 875 // Now that we removed this operand, see if there are no uses of it left. 876 if (Operand->use_empty()) 877 DeadNodes.push_back(Operand); 878 } 879 880 DeallocateNode(N); 881 } 882 } 883 884 void SelectionDAG::RemoveDeadNode(SDNode *N){ 885 SmallVector<SDNode*, 16> DeadNodes(1, N); 886 887 // Create a dummy node that adds a reference to the root node, preventing 888 // it from being deleted. (This matters if the root is an operand of the 889 // dead node.) 890 HandleSDNode Dummy(getRoot()); 891 892 RemoveDeadNodes(DeadNodes); 893 } 894 895 void SelectionDAG::DeleteNode(SDNode *N) { 896 // First take this out of the appropriate CSE map. 897 RemoveNodeFromCSEMaps(N); 898 899 // Finally, remove uses due to operands of this node, remove from the 900 // AllNodes list, and delete the node. 901 DeleteNodeNotInCSEMaps(N); 902 } 903 904 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 905 assert(N->getIterator() != AllNodes.begin() && 906 "Cannot delete the entry node!"); 907 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 908 909 // Drop all of the operands and decrement used node's use counts. 910 N->DropOperands(); 911 912 DeallocateNode(N); 913 } 914 915 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 916 assert(!(V->isVariadic() && isParameter)); 917 if (isParameter) 918 ByvalParmDbgValues.push_back(V); 919 else 920 DbgValues.push_back(V); 921 for (const SDNode *Node : V->getSDNodes()) 922 if (Node) 923 DbgValMap[Node].push_back(V); 924 } 925 926 void SDDbgInfo::erase(const SDNode *Node) { 927 DbgValMapType::iterator I = DbgValMap.find(Node); 928 if (I == DbgValMap.end()) 929 return; 930 for (auto &Val: I->second) 931 Val->setIsInvalidated(); 932 DbgValMap.erase(I); 933 } 934 935 void SelectionDAG::DeallocateNode(SDNode *N) { 936 // If we have operands, deallocate them. 937 removeOperands(N); 938 939 NodeAllocator.Deallocate(AllNodes.remove(N)); 940 941 // Set the opcode to DELETED_NODE to help catch bugs when node 942 // memory is reallocated. 943 // FIXME: There are places in SDag that have grown a dependency on the opcode 944 // value in the released node. 945 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 946 N->NodeType = ISD::DELETED_NODE; 947 948 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 949 // them and forget about that node. 950 DbgInfo->erase(N); 951 } 952 953 #ifndef NDEBUG 954 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 955 static void VerifySDNode(SDNode *N) { 956 switch (N->getOpcode()) { 957 default: 958 break; 959 case ISD::BUILD_PAIR: { 960 EVT VT = N->getValueType(0); 961 assert(N->getNumValues() == 1 && "Too many results!"); 962 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 963 "Wrong return type!"); 964 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 965 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 966 "Mismatched operand types!"); 967 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 968 "Wrong operand type!"); 969 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 970 "Wrong return type size"); 971 break; 972 } 973 case ISD::BUILD_VECTOR: { 974 assert(N->getNumValues() == 1 && "Too many results!"); 975 assert(N->getValueType(0).isVector() && "Wrong return type!"); 976 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 977 "Wrong number of operands!"); 978 EVT EltVT = N->getValueType(0).getVectorElementType(); 979 for (const SDUse &Op : N->ops()) { 980 assert((Op.getValueType() == EltVT || 981 (EltVT.isInteger() && Op.getValueType().isInteger() && 982 EltVT.bitsLE(Op.getValueType()))) && 983 "Wrong operand type!"); 984 assert(Op.getValueType() == N->getOperand(0).getValueType() && 985 "Operands must all have the same type"); 986 } 987 break; 988 } 989 } 990 } 991 #endif // NDEBUG 992 993 /// Insert a newly allocated node into the DAG. 994 /// 995 /// Handles insertion into the all nodes list and CSE map, as well as 996 /// verification and other common operations when a new node is allocated. 997 void SelectionDAG::InsertNode(SDNode *N) { 998 AllNodes.push_back(N); 999 #ifndef NDEBUG 1000 N->PersistentId = NextPersistentId++; 1001 VerifySDNode(N); 1002 #endif 1003 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1004 DUL->NodeInserted(N); 1005 } 1006 1007 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1008 /// correspond to it. This is useful when we're about to delete or repurpose 1009 /// the node. We don't want future request for structurally identical nodes 1010 /// to return N anymore. 1011 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1012 bool Erased = false; 1013 switch (N->getOpcode()) { 1014 case ISD::HANDLENODE: return false; // noop. 1015 case ISD::CONDCODE: 1016 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1017 "Cond code doesn't exist!"); 1018 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1019 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1020 break; 1021 case ISD::ExternalSymbol: 1022 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1023 break; 1024 case ISD::TargetExternalSymbol: { 1025 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1026 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1027 ESN->getSymbol(), ESN->getTargetFlags())); 1028 break; 1029 } 1030 case ISD::MCSymbol: { 1031 auto *MCSN = cast<MCSymbolSDNode>(N); 1032 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1033 break; 1034 } 1035 case ISD::VALUETYPE: { 1036 EVT VT = cast<VTSDNode>(N)->getVT(); 1037 if (VT.isExtended()) { 1038 Erased = ExtendedValueTypeNodes.erase(VT); 1039 } else { 1040 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1041 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1042 } 1043 break; 1044 } 1045 default: 1046 // Remove it from the CSE Map. 1047 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1048 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1049 Erased = CSEMap.RemoveNode(N); 1050 break; 1051 } 1052 #ifndef NDEBUG 1053 // Verify that the node was actually in one of the CSE maps, unless it has a 1054 // flag result (which cannot be CSE'd) or is one of the special cases that are 1055 // not subject to CSE. 1056 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1057 !N->isMachineOpcode() && !doNotCSE(N)) { 1058 N->dump(this); 1059 dbgs() << "\n"; 1060 llvm_unreachable("Node is not in map!"); 1061 } 1062 #endif 1063 return Erased; 1064 } 1065 1066 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1067 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1068 /// node already exists, in which case transfer all its users to the existing 1069 /// node. This transfer can potentially trigger recursive merging. 1070 void 1071 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1072 // For node types that aren't CSE'd, just act as if no identical node 1073 // already exists. 1074 if (!doNotCSE(N)) { 1075 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1076 if (Existing != N) { 1077 // If there was already an existing matching node, use ReplaceAllUsesWith 1078 // to replace the dead one with the existing one. This can cause 1079 // recursive merging of other unrelated nodes down the line. 1080 ReplaceAllUsesWith(N, Existing); 1081 1082 // N is now dead. Inform the listeners and delete it. 1083 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1084 DUL->NodeDeleted(N, Existing); 1085 DeleteNodeNotInCSEMaps(N); 1086 return; 1087 } 1088 } 1089 1090 // If the node doesn't already exist, we updated it. Inform listeners. 1091 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1092 DUL->NodeUpdated(N); 1093 } 1094 1095 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1096 /// were replaced with those specified. If this node is never memoized, 1097 /// return null, otherwise return a pointer to the slot it would take. If a 1098 /// node already exists with these operands, the slot will be non-null. 1099 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1100 void *&InsertPos) { 1101 if (doNotCSE(N)) 1102 return nullptr; 1103 1104 SDValue Ops[] = { Op }; 1105 FoldingSetNodeID ID; 1106 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1107 AddNodeIDCustom(ID, N); 1108 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1109 if (Node) 1110 Node->intersectFlagsWith(N->getFlags()); 1111 return Node; 1112 } 1113 1114 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1115 /// were replaced with those specified. If this node is never memoized, 1116 /// return null, otherwise return a pointer to the slot it would take. If a 1117 /// node already exists with these operands, the slot will be non-null. 1118 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1119 SDValue Op1, SDValue Op2, 1120 void *&InsertPos) { 1121 if (doNotCSE(N)) 1122 return nullptr; 1123 1124 SDValue Ops[] = { Op1, Op2 }; 1125 FoldingSetNodeID ID; 1126 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1127 AddNodeIDCustom(ID, N); 1128 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1129 if (Node) 1130 Node->intersectFlagsWith(N->getFlags()); 1131 return Node; 1132 } 1133 1134 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1135 /// were replaced with those specified. If this node is never memoized, 1136 /// return null, otherwise return a pointer to the slot it would take. If a 1137 /// node already exists with these operands, the slot will be non-null. 1138 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1139 void *&InsertPos) { 1140 if (doNotCSE(N)) 1141 return nullptr; 1142 1143 FoldingSetNodeID ID; 1144 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1145 AddNodeIDCustom(ID, N); 1146 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1147 if (Node) 1148 Node->intersectFlagsWith(N->getFlags()); 1149 return Node; 1150 } 1151 1152 Align SelectionDAG::getEVTAlign(EVT VT) const { 1153 Type *Ty = VT == MVT::iPTR ? 1154 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1155 VT.getTypeForEVT(*getContext()); 1156 1157 return getDataLayout().getABITypeAlign(Ty); 1158 } 1159 1160 // EntryNode could meaningfully have debug info if we can find it... 1161 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1162 : TM(tm), OptLevel(OL), 1163 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1164 Root(getEntryNode()) { 1165 InsertNode(&EntryNode); 1166 DbgInfo = new SDDbgInfo(); 1167 } 1168 1169 void SelectionDAG::init(MachineFunction &NewMF, 1170 OptimizationRemarkEmitter &NewORE, 1171 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1172 LegacyDivergenceAnalysis * Divergence, 1173 ProfileSummaryInfo *PSIin, 1174 BlockFrequencyInfo *BFIin) { 1175 MF = &NewMF; 1176 SDAGISelPass = PassPtr; 1177 ORE = &NewORE; 1178 TLI = getSubtarget().getTargetLowering(); 1179 TSI = getSubtarget().getSelectionDAGInfo(); 1180 LibInfo = LibraryInfo; 1181 Context = &MF->getFunction().getContext(); 1182 DA = Divergence; 1183 PSI = PSIin; 1184 BFI = BFIin; 1185 } 1186 1187 SelectionDAG::~SelectionDAG() { 1188 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1189 allnodes_clear(); 1190 OperandRecycler.clear(OperandAllocator); 1191 delete DbgInfo; 1192 } 1193 1194 bool SelectionDAG::shouldOptForSize() const { 1195 return MF->getFunction().hasOptSize() || 1196 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1197 } 1198 1199 void SelectionDAG::allnodes_clear() { 1200 assert(&*AllNodes.begin() == &EntryNode); 1201 AllNodes.remove(AllNodes.begin()); 1202 while (!AllNodes.empty()) 1203 DeallocateNode(&AllNodes.front()); 1204 #ifndef NDEBUG 1205 NextPersistentId = 0; 1206 #endif 1207 } 1208 1209 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1210 void *&InsertPos) { 1211 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1212 if (N) { 1213 switch (N->getOpcode()) { 1214 default: break; 1215 case ISD::Constant: 1216 case ISD::ConstantFP: 1217 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1218 "debug location. Use another overload."); 1219 } 1220 } 1221 return N; 1222 } 1223 1224 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1225 const SDLoc &DL, void *&InsertPos) { 1226 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1227 if (N) { 1228 switch (N->getOpcode()) { 1229 case ISD::Constant: 1230 case ISD::ConstantFP: 1231 // Erase debug location from the node if the node is used at several 1232 // different places. Do not propagate one location to all uses as it 1233 // will cause a worse single stepping debugging experience. 1234 if (N->getDebugLoc() != DL.getDebugLoc()) 1235 N->setDebugLoc(DebugLoc()); 1236 break; 1237 default: 1238 // When the node's point of use is located earlier in the instruction 1239 // sequence than its prior point of use, update its debug info to the 1240 // earlier location. 1241 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1242 N->setDebugLoc(DL.getDebugLoc()); 1243 break; 1244 } 1245 } 1246 return N; 1247 } 1248 1249 void SelectionDAG::clear() { 1250 allnodes_clear(); 1251 OperandRecycler.clear(OperandAllocator); 1252 OperandAllocator.Reset(); 1253 CSEMap.clear(); 1254 1255 ExtendedValueTypeNodes.clear(); 1256 ExternalSymbols.clear(); 1257 TargetExternalSymbols.clear(); 1258 MCSymbols.clear(); 1259 SDCallSiteDbgInfo.clear(); 1260 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1261 static_cast<CondCodeSDNode*>(nullptr)); 1262 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1263 static_cast<SDNode*>(nullptr)); 1264 1265 EntryNode.UseList = nullptr; 1266 InsertNode(&EntryNode); 1267 Root = getEntryNode(); 1268 DbgInfo->clear(); 1269 } 1270 1271 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1272 return VT.bitsGT(Op.getValueType()) 1273 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1274 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1275 } 1276 1277 std::pair<SDValue, SDValue> 1278 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1279 const SDLoc &DL, EVT VT) { 1280 assert(!VT.bitsEq(Op.getValueType()) && 1281 "Strict no-op FP extend/round not allowed."); 1282 SDValue Res = 1283 VT.bitsGT(Op.getValueType()) 1284 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1285 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1286 {Chain, Op, getIntPtrConstant(0, DL)}); 1287 1288 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1289 } 1290 1291 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1292 return VT.bitsGT(Op.getValueType()) ? 1293 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1294 getNode(ISD::TRUNCATE, DL, VT, Op); 1295 } 1296 1297 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1298 return VT.bitsGT(Op.getValueType()) ? 1299 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1300 getNode(ISD::TRUNCATE, DL, VT, Op); 1301 } 1302 1303 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1304 return VT.bitsGT(Op.getValueType()) ? 1305 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1306 getNode(ISD::TRUNCATE, DL, VT, Op); 1307 } 1308 1309 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1310 EVT OpVT) { 1311 if (VT.bitsLE(Op.getValueType())) 1312 return getNode(ISD::TRUNCATE, SL, VT, Op); 1313 1314 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1315 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1316 } 1317 1318 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1319 EVT OpVT = Op.getValueType(); 1320 assert(VT.isInteger() && OpVT.isInteger() && 1321 "Cannot getZeroExtendInReg FP types"); 1322 assert(VT.isVector() == OpVT.isVector() && 1323 "getZeroExtendInReg type should be vector iff the operand " 1324 "type is vector!"); 1325 assert((!VT.isVector() || 1326 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1327 "Vector element counts must match in getZeroExtendInReg"); 1328 assert(VT.bitsLE(OpVT) && "Not extending!"); 1329 if (OpVT == VT) 1330 return Op; 1331 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1332 VT.getScalarSizeInBits()); 1333 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1334 } 1335 1336 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1337 // Only unsigned pointer semantics are supported right now. In the future this 1338 // might delegate to TLI to check pointer signedness. 1339 return getZExtOrTrunc(Op, DL, VT); 1340 } 1341 1342 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1343 // Only unsigned pointer semantics are supported right now. In the future this 1344 // might delegate to TLI to check pointer signedness. 1345 return getZeroExtendInReg(Op, DL, VT); 1346 } 1347 1348 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1349 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1350 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1351 } 1352 1353 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1354 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1355 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1356 } 1357 1358 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1359 EVT OpVT) { 1360 if (!V) 1361 return getConstant(0, DL, VT); 1362 1363 switch (TLI->getBooleanContents(OpVT)) { 1364 case TargetLowering::ZeroOrOneBooleanContent: 1365 case TargetLowering::UndefinedBooleanContent: 1366 return getConstant(1, DL, VT); 1367 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1368 return getAllOnesConstant(DL, VT); 1369 } 1370 llvm_unreachable("Unexpected boolean content enum!"); 1371 } 1372 1373 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1374 bool isT, bool isO) { 1375 EVT EltVT = VT.getScalarType(); 1376 assert((EltVT.getSizeInBits() >= 64 || 1377 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1378 "getConstant with a uint64_t value that doesn't fit in the type!"); 1379 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1380 } 1381 1382 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1383 bool isT, bool isO) { 1384 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1385 } 1386 1387 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1388 EVT VT, bool isT, bool isO) { 1389 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1390 1391 EVT EltVT = VT.getScalarType(); 1392 const ConstantInt *Elt = &Val; 1393 1394 // In some cases the vector type is legal but the element type is illegal and 1395 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1396 // inserted value (the type does not need to match the vector element type). 1397 // Any extra bits introduced will be truncated away. 1398 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1399 TargetLowering::TypePromoteInteger) { 1400 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1401 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1402 Elt = ConstantInt::get(*getContext(), NewVal); 1403 } 1404 // In other cases the element type is illegal and needs to be expanded, for 1405 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1406 // the value into n parts and use a vector type with n-times the elements. 1407 // Then bitcast to the type requested. 1408 // Legalizing constants too early makes the DAGCombiner's job harder so we 1409 // only legalize if the DAG tells us we must produce legal types. 1410 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1411 TLI->getTypeAction(*getContext(), EltVT) == 1412 TargetLowering::TypeExpandInteger) { 1413 const APInt &NewVal = Elt->getValue(); 1414 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1415 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1416 1417 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1418 if (VT.isScalableVector()) { 1419 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1420 "Can only handle an even split!"); 1421 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1422 1423 SmallVector<SDValue, 2> ScalarParts; 1424 for (unsigned i = 0; i != Parts; ++i) 1425 ScalarParts.push_back(getConstant( 1426 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1427 ViaEltVT, isT, isO)); 1428 1429 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1430 } 1431 1432 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1433 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1434 1435 // Check the temporary vector is the correct size. If this fails then 1436 // getTypeToTransformTo() probably returned a type whose size (in bits) 1437 // isn't a power-of-2 factor of the requested type size. 1438 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1439 1440 SmallVector<SDValue, 2> EltParts; 1441 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1442 EltParts.push_back(getConstant( 1443 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1444 ViaEltVT, isT, isO)); 1445 1446 // EltParts is currently in little endian order. If we actually want 1447 // big-endian order then reverse it now. 1448 if (getDataLayout().isBigEndian()) 1449 std::reverse(EltParts.begin(), EltParts.end()); 1450 1451 // The elements must be reversed when the element order is different 1452 // to the endianness of the elements (because the BITCAST is itself a 1453 // vector shuffle in this situation). However, we do not need any code to 1454 // perform this reversal because getConstant() is producing a vector 1455 // splat. 1456 // This situation occurs in MIPS MSA. 1457 1458 SmallVector<SDValue, 8> Ops; 1459 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1460 llvm::append_range(Ops, EltParts); 1461 1462 SDValue V = 1463 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1464 return V; 1465 } 1466 1467 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1468 "APInt size does not match type size!"); 1469 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1470 FoldingSetNodeID ID; 1471 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1472 ID.AddPointer(Elt); 1473 ID.AddBoolean(isO); 1474 void *IP = nullptr; 1475 SDNode *N = nullptr; 1476 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1477 if (!VT.isVector()) 1478 return SDValue(N, 0); 1479 1480 if (!N) { 1481 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1482 CSEMap.InsertNode(N, IP); 1483 InsertNode(N); 1484 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1485 } 1486 1487 SDValue Result(N, 0); 1488 if (VT.isScalableVector()) 1489 Result = getSplatVector(VT, DL, Result); 1490 else if (VT.isVector()) 1491 Result = getSplatBuildVector(VT, DL, Result); 1492 1493 return Result; 1494 } 1495 1496 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1497 bool isTarget) { 1498 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1499 } 1500 1501 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1502 const SDLoc &DL, bool LegalTypes) { 1503 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1504 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1505 return getConstant(Val, DL, ShiftVT); 1506 } 1507 1508 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1509 bool isTarget) { 1510 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1511 } 1512 1513 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1514 bool isTarget) { 1515 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1516 } 1517 1518 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1519 EVT VT, bool isTarget) { 1520 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1521 1522 EVT EltVT = VT.getScalarType(); 1523 1524 // Do the map lookup using the actual bit pattern for the floating point 1525 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1526 // we don't have issues with SNANs. 1527 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1528 FoldingSetNodeID ID; 1529 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1530 ID.AddPointer(&V); 1531 void *IP = nullptr; 1532 SDNode *N = nullptr; 1533 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1534 if (!VT.isVector()) 1535 return SDValue(N, 0); 1536 1537 if (!N) { 1538 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1539 CSEMap.InsertNode(N, IP); 1540 InsertNode(N); 1541 } 1542 1543 SDValue Result(N, 0); 1544 if (VT.isScalableVector()) 1545 Result = getSplatVector(VT, DL, Result); 1546 else if (VT.isVector()) 1547 Result = getSplatBuildVector(VT, DL, Result); 1548 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1549 return Result; 1550 } 1551 1552 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1553 bool isTarget) { 1554 EVT EltVT = VT.getScalarType(); 1555 if (EltVT == MVT::f32) 1556 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1557 if (EltVT == MVT::f64) 1558 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1559 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1560 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1561 bool Ignored; 1562 APFloat APF = APFloat(Val); 1563 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1564 &Ignored); 1565 return getConstantFP(APF, DL, VT, isTarget); 1566 } 1567 llvm_unreachable("Unsupported type in getConstantFP"); 1568 } 1569 1570 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1571 EVT VT, int64_t Offset, bool isTargetGA, 1572 unsigned TargetFlags) { 1573 assert((TargetFlags == 0 || isTargetGA) && 1574 "Cannot set target flags on target-independent globals"); 1575 1576 // Truncate (with sign-extension) the offset value to the pointer size. 1577 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1578 if (BitWidth < 64) 1579 Offset = SignExtend64(Offset, BitWidth); 1580 1581 unsigned Opc; 1582 if (GV->isThreadLocal()) 1583 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1584 else 1585 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1586 1587 FoldingSetNodeID ID; 1588 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1589 ID.AddPointer(GV); 1590 ID.AddInteger(Offset); 1591 ID.AddInteger(TargetFlags); 1592 void *IP = nullptr; 1593 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1594 return SDValue(E, 0); 1595 1596 auto *N = newSDNode<GlobalAddressSDNode>( 1597 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1598 CSEMap.InsertNode(N, IP); 1599 InsertNode(N); 1600 return SDValue(N, 0); 1601 } 1602 1603 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1604 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1605 FoldingSetNodeID ID; 1606 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1607 ID.AddInteger(FI); 1608 void *IP = nullptr; 1609 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1610 return SDValue(E, 0); 1611 1612 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1613 CSEMap.InsertNode(N, IP); 1614 InsertNode(N); 1615 return SDValue(N, 0); 1616 } 1617 1618 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1619 unsigned TargetFlags) { 1620 assert((TargetFlags == 0 || isTarget) && 1621 "Cannot set target flags on target-independent jump tables"); 1622 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1623 FoldingSetNodeID ID; 1624 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1625 ID.AddInteger(JTI); 1626 ID.AddInteger(TargetFlags); 1627 void *IP = nullptr; 1628 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1629 return SDValue(E, 0); 1630 1631 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1632 CSEMap.InsertNode(N, IP); 1633 InsertNode(N); 1634 return SDValue(N, 0); 1635 } 1636 1637 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1638 MaybeAlign Alignment, int Offset, 1639 bool isTarget, unsigned TargetFlags) { 1640 assert((TargetFlags == 0 || isTarget) && 1641 "Cannot set target flags on target-independent globals"); 1642 if (!Alignment) 1643 Alignment = shouldOptForSize() 1644 ? getDataLayout().getABITypeAlign(C->getType()) 1645 : getDataLayout().getPrefTypeAlign(C->getType()); 1646 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1647 FoldingSetNodeID ID; 1648 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1649 ID.AddInteger(Alignment->value()); 1650 ID.AddInteger(Offset); 1651 ID.AddPointer(C); 1652 ID.AddInteger(TargetFlags); 1653 void *IP = nullptr; 1654 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1655 return SDValue(E, 0); 1656 1657 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1658 TargetFlags); 1659 CSEMap.InsertNode(N, IP); 1660 InsertNode(N); 1661 SDValue V = SDValue(N, 0); 1662 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1663 return V; 1664 } 1665 1666 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1667 MaybeAlign Alignment, int Offset, 1668 bool isTarget, unsigned TargetFlags) { 1669 assert((TargetFlags == 0 || isTarget) && 1670 "Cannot set target flags on target-independent globals"); 1671 if (!Alignment) 1672 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1673 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1674 FoldingSetNodeID ID; 1675 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1676 ID.AddInteger(Alignment->value()); 1677 ID.AddInteger(Offset); 1678 C->addSelectionDAGCSEId(ID); 1679 ID.AddInteger(TargetFlags); 1680 void *IP = nullptr; 1681 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1682 return SDValue(E, 0); 1683 1684 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1685 TargetFlags); 1686 CSEMap.InsertNode(N, IP); 1687 InsertNode(N); 1688 return SDValue(N, 0); 1689 } 1690 1691 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1692 unsigned TargetFlags) { 1693 FoldingSetNodeID ID; 1694 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1695 ID.AddInteger(Index); 1696 ID.AddInteger(Offset); 1697 ID.AddInteger(TargetFlags); 1698 void *IP = nullptr; 1699 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1700 return SDValue(E, 0); 1701 1702 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1703 CSEMap.InsertNode(N, IP); 1704 InsertNode(N); 1705 return SDValue(N, 0); 1706 } 1707 1708 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1709 FoldingSetNodeID ID; 1710 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1711 ID.AddPointer(MBB); 1712 void *IP = nullptr; 1713 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1714 return SDValue(E, 0); 1715 1716 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1717 CSEMap.InsertNode(N, IP); 1718 InsertNode(N); 1719 return SDValue(N, 0); 1720 } 1721 1722 SDValue SelectionDAG::getValueType(EVT VT) { 1723 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1724 ValueTypeNodes.size()) 1725 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1726 1727 SDNode *&N = VT.isExtended() ? 1728 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1729 1730 if (N) return SDValue(N, 0); 1731 N = newSDNode<VTSDNode>(VT); 1732 InsertNode(N); 1733 return SDValue(N, 0); 1734 } 1735 1736 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1737 SDNode *&N = ExternalSymbols[Sym]; 1738 if (N) return SDValue(N, 0); 1739 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1740 InsertNode(N); 1741 return SDValue(N, 0); 1742 } 1743 1744 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1745 SDNode *&N = MCSymbols[Sym]; 1746 if (N) 1747 return SDValue(N, 0); 1748 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1749 InsertNode(N); 1750 return SDValue(N, 0); 1751 } 1752 1753 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1754 unsigned TargetFlags) { 1755 SDNode *&N = 1756 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1757 if (N) return SDValue(N, 0); 1758 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1759 InsertNode(N); 1760 return SDValue(N, 0); 1761 } 1762 1763 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1764 if ((unsigned)Cond >= CondCodeNodes.size()) 1765 CondCodeNodes.resize(Cond+1); 1766 1767 if (!CondCodeNodes[Cond]) { 1768 auto *N = newSDNode<CondCodeSDNode>(Cond); 1769 CondCodeNodes[Cond] = N; 1770 InsertNode(N); 1771 } 1772 1773 return SDValue(CondCodeNodes[Cond], 0); 1774 } 1775 1776 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1777 APInt One(ResVT.getScalarSizeInBits(), 1); 1778 return getStepVector(DL, ResVT, One); 1779 } 1780 1781 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1782 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1783 if (ResVT.isScalableVector()) 1784 return getNode( 1785 ISD::STEP_VECTOR, DL, ResVT, 1786 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1787 1788 SmallVector<SDValue, 16> OpsStepConstants; 1789 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1790 OpsStepConstants.push_back( 1791 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1792 return getBuildVector(ResVT, DL, OpsStepConstants); 1793 } 1794 1795 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1796 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1797 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1798 std::swap(N1, N2); 1799 ShuffleVectorSDNode::commuteMask(M); 1800 } 1801 1802 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1803 SDValue N2, ArrayRef<int> Mask) { 1804 assert(VT.getVectorNumElements() == Mask.size() && 1805 "Must have the same number of vector elements as mask elements!"); 1806 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1807 "Invalid VECTOR_SHUFFLE"); 1808 1809 // Canonicalize shuffle undef, undef -> undef 1810 if (N1.isUndef() && N2.isUndef()) 1811 return getUNDEF(VT); 1812 1813 // Validate that all indices in Mask are within the range of the elements 1814 // input to the shuffle. 1815 int NElts = Mask.size(); 1816 assert(llvm::all_of(Mask, 1817 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1818 "Index out of range"); 1819 1820 // Copy the mask so we can do any needed cleanup. 1821 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1822 1823 // Canonicalize shuffle v, v -> v, undef 1824 if (N1 == N2) { 1825 N2 = getUNDEF(VT); 1826 for (int i = 0; i != NElts; ++i) 1827 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1828 } 1829 1830 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1831 if (N1.isUndef()) 1832 commuteShuffle(N1, N2, MaskVec); 1833 1834 if (TLI->hasVectorBlend()) { 1835 // If shuffling a splat, try to blend the splat instead. We do this here so 1836 // that even when this arises during lowering we don't have to re-handle it. 1837 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1838 BitVector UndefElements; 1839 SDValue Splat = BV->getSplatValue(&UndefElements); 1840 if (!Splat) 1841 return; 1842 1843 for (int i = 0; i < NElts; ++i) { 1844 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1845 continue; 1846 1847 // If this input comes from undef, mark it as such. 1848 if (UndefElements[MaskVec[i] - Offset]) { 1849 MaskVec[i] = -1; 1850 continue; 1851 } 1852 1853 // If we can blend a non-undef lane, use that instead. 1854 if (!UndefElements[i]) 1855 MaskVec[i] = i + Offset; 1856 } 1857 }; 1858 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1859 BlendSplat(N1BV, 0); 1860 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1861 BlendSplat(N2BV, NElts); 1862 } 1863 1864 // Canonicalize all index into lhs, -> shuffle lhs, undef 1865 // Canonicalize all index into rhs, -> shuffle rhs, undef 1866 bool AllLHS = true, AllRHS = true; 1867 bool N2Undef = N2.isUndef(); 1868 for (int i = 0; i != NElts; ++i) { 1869 if (MaskVec[i] >= NElts) { 1870 if (N2Undef) 1871 MaskVec[i] = -1; 1872 else 1873 AllLHS = false; 1874 } else if (MaskVec[i] >= 0) { 1875 AllRHS = false; 1876 } 1877 } 1878 if (AllLHS && AllRHS) 1879 return getUNDEF(VT); 1880 if (AllLHS && !N2Undef) 1881 N2 = getUNDEF(VT); 1882 if (AllRHS) { 1883 N1 = getUNDEF(VT); 1884 commuteShuffle(N1, N2, MaskVec); 1885 } 1886 // Reset our undef status after accounting for the mask. 1887 N2Undef = N2.isUndef(); 1888 // Re-check whether both sides ended up undef. 1889 if (N1.isUndef() && N2Undef) 1890 return getUNDEF(VT); 1891 1892 // If Identity shuffle return that node. 1893 bool Identity = true, AllSame = true; 1894 for (int i = 0; i != NElts; ++i) { 1895 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1896 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1897 } 1898 if (Identity && NElts) 1899 return N1; 1900 1901 // Shuffling a constant splat doesn't change the result. 1902 if (N2Undef) { 1903 SDValue V = N1; 1904 1905 // Look through any bitcasts. We check that these don't change the number 1906 // (and size) of elements and just changes their types. 1907 while (V.getOpcode() == ISD::BITCAST) 1908 V = V->getOperand(0); 1909 1910 // A splat should always show up as a build vector node. 1911 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1912 BitVector UndefElements; 1913 SDValue Splat = BV->getSplatValue(&UndefElements); 1914 // If this is a splat of an undef, shuffling it is also undef. 1915 if (Splat && Splat.isUndef()) 1916 return getUNDEF(VT); 1917 1918 bool SameNumElts = 1919 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1920 1921 // We only have a splat which can skip shuffles if there is a splatted 1922 // value and no undef lanes rearranged by the shuffle. 1923 if (Splat && UndefElements.none()) { 1924 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1925 // number of elements match or the value splatted is a zero constant. 1926 if (SameNumElts) 1927 return N1; 1928 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1929 if (C->isZero()) 1930 return N1; 1931 } 1932 1933 // If the shuffle itself creates a splat, build the vector directly. 1934 if (AllSame && SameNumElts) { 1935 EVT BuildVT = BV->getValueType(0); 1936 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1937 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1938 1939 // We may have jumped through bitcasts, so the type of the 1940 // BUILD_VECTOR may not match the type of the shuffle. 1941 if (BuildVT != VT) 1942 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1943 return NewBV; 1944 } 1945 } 1946 } 1947 1948 FoldingSetNodeID ID; 1949 SDValue Ops[2] = { N1, N2 }; 1950 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1951 for (int i = 0; i != NElts; ++i) 1952 ID.AddInteger(MaskVec[i]); 1953 1954 void* IP = nullptr; 1955 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1956 return SDValue(E, 0); 1957 1958 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1959 // SDNode doesn't have access to it. This memory will be "leaked" when 1960 // the node is deallocated, but recovered when the NodeAllocator is released. 1961 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1962 llvm::copy(MaskVec, MaskAlloc); 1963 1964 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1965 dl.getDebugLoc(), MaskAlloc); 1966 createOperands(N, Ops); 1967 1968 CSEMap.InsertNode(N, IP); 1969 InsertNode(N); 1970 SDValue V = SDValue(N, 0); 1971 NewSDValueDbgMsg(V, "Creating new node: ", this); 1972 return V; 1973 } 1974 1975 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1976 EVT VT = SV.getValueType(0); 1977 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1978 ShuffleVectorSDNode::commuteMask(MaskVec); 1979 1980 SDValue Op0 = SV.getOperand(0); 1981 SDValue Op1 = SV.getOperand(1); 1982 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1983 } 1984 1985 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1986 FoldingSetNodeID ID; 1987 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1988 ID.AddInteger(RegNo); 1989 void *IP = nullptr; 1990 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1991 return SDValue(E, 0); 1992 1993 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1994 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1995 CSEMap.InsertNode(N, IP); 1996 InsertNode(N); 1997 return SDValue(N, 0); 1998 } 1999 2000 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2001 FoldingSetNodeID ID; 2002 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2003 ID.AddPointer(RegMask); 2004 void *IP = nullptr; 2005 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2006 return SDValue(E, 0); 2007 2008 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2009 CSEMap.InsertNode(N, IP); 2010 InsertNode(N); 2011 return SDValue(N, 0); 2012 } 2013 2014 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2015 MCSymbol *Label) { 2016 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2017 } 2018 2019 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2020 SDValue Root, MCSymbol *Label) { 2021 FoldingSetNodeID ID; 2022 SDValue Ops[] = { Root }; 2023 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2024 ID.AddPointer(Label); 2025 void *IP = nullptr; 2026 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2027 return SDValue(E, 0); 2028 2029 auto *N = 2030 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2031 createOperands(N, Ops); 2032 2033 CSEMap.InsertNode(N, IP); 2034 InsertNode(N); 2035 return SDValue(N, 0); 2036 } 2037 2038 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2039 int64_t Offset, bool isTarget, 2040 unsigned TargetFlags) { 2041 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2042 2043 FoldingSetNodeID ID; 2044 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2045 ID.AddPointer(BA); 2046 ID.AddInteger(Offset); 2047 ID.AddInteger(TargetFlags); 2048 void *IP = nullptr; 2049 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2050 return SDValue(E, 0); 2051 2052 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2053 CSEMap.InsertNode(N, IP); 2054 InsertNode(N); 2055 return SDValue(N, 0); 2056 } 2057 2058 SDValue SelectionDAG::getSrcValue(const Value *V) { 2059 FoldingSetNodeID ID; 2060 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2061 ID.AddPointer(V); 2062 2063 void *IP = nullptr; 2064 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2065 return SDValue(E, 0); 2066 2067 auto *N = newSDNode<SrcValueSDNode>(V); 2068 CSEMap.InsertNode(N, IP); 2069 InsertNode(N); 2070 return SDValue(N, 0); 2071 } 2072 2073 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2074 FoldingSetNodeID ID; 2075 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2076 ID.AddPointer(MD); 2077 2078 void *IP = nullptr; 2079 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2080 return SDValue(E, 0); 2081 2082 auto *N = newSDNode<MDNodeSDNode>(MD); 2083 CSEMap.InsertNode(N, IP); 2084 InsertNode(N); 2085 return SDValue(N, 0); 2086 } 2087 2088 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2089 if (VT == V.getValueType()) 2090 return V; 2091 2092 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2093 } 2094 2095 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2096 unsigned SrcAS, unsigned DestAS) { 2097 SDValue Ops[] = {Ptr}; 2098 FoldingSetNodeID ID; 2099 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2100 ID.AddInteger(SrcAS); 2101 ID.AddInteger(DestAS); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2108 VT, SrcAS, DestAS); 2109 createOperands(N, Ops); 2110 2111 CSEMap.InsertNode(N, IP); 2112 InsertNode(N); 2113 return SDValue(N, 0); 2114 } 2115 2116 SDValue SelectionDAG::getFreeze(SDValue V) { 2117 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2118 } 2119 2120 /// getShiftAmountOperand - Return the specified value casted to 2121 /// the target's desired shift amount type. 2122 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2123 EVT OpTy = Op.getValueType(); 2124 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2125 if (OpTy == ShTy || OpTy.isVector()) return Op; 2126 2127 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2128 } 2129 2130 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2131 SDLoc dl(Node); 2132 const TargetLowering &TLI = getTargetLoweringInfo(); 2133 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2134 EVT VT = Node->getValueType(0); 2135 SDValue Tmp1 = Node->getOperand(0); 2136 SDValue Tmp2 = Node->getOperand(1); 2137 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2138 2139 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2140 Tmp2, MachinePointerInfo(V)); 2141 SDValue VAList = VAListLoad; 2142 2143 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2144 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2145 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2146 2147 VAList = 2148 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2149 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2150 } 2151 2152 // Increment the pointer, VAList, to the next vaarg 2153 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2154 getConstant(getDataLayout().getTypeAllocSize( 2155 VT.getTypeForEVT(*getContext())), 2156 dl, VAList.getValueType())); 2157 // Store the incremented VAList to the legalized pointer 2158 Tmp1 = 2159 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2160 // Load the actual argument out of the pointer VAList 2161 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2162 } 2163 2164 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2165 SDLoc dl(Node); 2166 const TargetLowering &TLI = getTargetLoweringInfo(); 2167 // This defaults to loading a pointer from the input and storing it to the 2168 // output, returning the chain. 2169 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2170 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2171 SDValue Tmp1 = 2172 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2173 Node->getOperand(2), MachinePointerInfo(VS)); 2174 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2175 MachinePointerInfo(VD)); 2176 } 2177 2178 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2179 const DataLayout &DL = getDataLayout(); 2180 Type *Ty = VT.getTypeForEVT(*getContext()); 2181 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2182 2183 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2184 return RedAlign; 2185 2186 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2187 const Align StackAlign = TFI->getStackAlign(); 2188 2189 // See if we can choose a smaller ABI alignment in cases where it's an 2190 // illegal vector type that will get broken down. 2191 if (RedAlign > StackAlign) { 2192 EVT IntermediateVT; 2193 MVT RegisterVT; 2194 unsigned NumIntermediates; 2195 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2196 NumIntermediates, RegisterVT); 2197 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2198 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2199 if (RedAlign2 < RedAlign) 2200 RedAlign = RedAlign2; 2201 } 2202 2203 return RedAlign; 2204 } 2205 2206 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2207 MachineFrameInfo &MFI = MF->getFrameInfo(); 2208 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2209 int StackID = 0; 2210 if (Bytes.isScalable()) 2211 StackID = TFI->getStackIDForScalableVectors(); 2212 // The stack id gives an indication of whether the object is scalable or 2213 // not, so it's safe to pass in the minimum size here. 2214 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2215 false, nullptr, StackID); 2216 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2217 } 2218 2219 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2220 Type *Ty = VT.getTypeForEVT(*getContext()); 2221 Align StackAlign = 2222 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2223 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2224 } 2225 2226 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2227 TypeSize VT1Size = VT1.getStoreSize(); 2228 TypeSize VT2Size = VT2.getStoreSize(); 2229 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2230 "Don't know how to choose the maximum size when creating a stack " 2231 "temporary"); 2232 TypeSize Bytes = 2233 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2234 2235 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2236 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2237 const DataLayout &DL = getDataLayout(); 2238 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2239 return CreateStackTemporary(Bytes, Align); 2240 } 2241 2242 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2243 ISD::CondCode Cond, const SDLoc &dl) { 2244 EVT OpVT = N1.getValueType(); 2245 2246 // These setcc operations always fold. 2247 switch (Cond) { 2248 default: break; 2249 case ISD::SETFALSE: 2250 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2251 case ISD::SETTRUE: 2252 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2253 2254 case ISD::SETOEQ: 2255 case ISD::SETOGT: 2256 case ISD::SETOGE: 2257 case ISD::SETOLT: 2258 case ISD::SETOLE: 2259 case ISD::SETONE: 2260 case ISD::SETO: 2261 case ISD::SETUO: 2262 case ISD::SETUEQ: 2263 case ISD::SETUNE: 2264 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2265 break; 2266 } 2267 2268 if (OpVT.isInteger()) { 2269 // For EQ and NE, we can always pick a value for the undef to make the 2270 // predicate pass or fail, so we can return undef. 2271 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2272 // icmp eq/ne X, undef -> undef. 2273 if ((N1.isUndef() || N2.isUndef()) && 2274 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2275 return getUNDEF(VT); 2276 2277 // If both operands are undef, we can return undef for int comparison. 2278 // icmp undef, undef -> undef. 2279 if (N1.isUndef() && N2.isUndef()) 2280 return getUNDEF(VT); 2281 2282 // icmp X, X -> true/false 2283 // icmp X, undef -> true/false because undef could be X. 2284 if (N1 == N2) 2285 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2286 } 2287 2288 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2289 const APInt &C2 = N2C->getAPIntValue(); 2290 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2291 const APInt &C1 = N1C->getAPIntValue(); 2292 2293 switch (Cond) { 2294 default: llvm_unreachable("Unknown integer setcc!"); 2295 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2296 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2297 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2298 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2299 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2300 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2301 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2302 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2303 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2304 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2305 } 2306 } 2307 } 2308 2309 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2310 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2311 2312 if (N1CFP && N2CFP) { 2313 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2314 switch (Cond) { 2315 default: break; 2316 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2317 return getUNDEF(VT); 2318 LLVM_FALLTHROUGH; 2319 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2320 OpVT); 2321 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2322 return getUNDEF(VT); 2323 LLVM_FALLTHROUGH; 2324 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2325 R==APFloat::cmpLessThan, dl, VT, 2326 OpVT); 2327 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2328 return getUNDEF(VT); 2329 LLVM_FALLTHROUGH; 2330 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2331 OpVT); 2332 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2333 return getUNDEF(VT); 2334 LLVM_FALLTHROUGH; 2335 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2336 VT, OpVT); 2337 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2338 return getUNDEF(VT); 2339 LLVM_FALLTHROUGH; 2340 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2341 R==APFloat::cmpEqual, dl, VT, 2342 OpVT); 2343 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2344 return getUNDEF(VT); 2345 LLVM_FALLTHROUGH; 2346 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2347 R==APFloat::cmpEqual, dl, VT, OpVT); 2348 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2349 OpVT); 2350 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2351 OpVT); 2352 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2353 R==APFloat::cmpEqual, dl, VT, 2354 OpVT); 2355 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2356 OpVT); 2357 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2358 R==APFloat::cmpLessThan, dl, VT, 2359 OpVT); 2360 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2361 R==APFloat::cmpUnordered, dl, VT, 2362 OpVT); 2363 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2364 VT, OpVT); 2365 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2366 OpVT); 2367 } 2368 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2369 // Ensure that the constant occurs on the RHS. 2370 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2371 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2372 return SDValue(); 2373 return getSetCC(dl, VT, N2, N1, SwappedCond); 2374 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2375 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2376 // If an operand is known to be a nan (or undef that could be a nan), we can 2377 // fold it. 2378 // Choosing NaN for the undef will always make unordered comparison succeed 2379 // and ordered comparison fails. 2380 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2381 switch (ISD::getUnorderedFlavor(Cond)) { 2382 default: 2383 llvm_unreachable("Unknown flavor!"); 2384 case 0: // Known false. 2385 return getBoolConstant(false, dl, VT, OpVT); 2386 case 1: // Known true. 2387 return getBoolConstant(true, dl, VT, OpVT); 2388 case 2: // Undefined. 2389 return getUNDEF(VT); 2390 } 2391 } 2392 2393 // Could not fold it. 2394 return SDValue(); 2395 } 2396 2397 /// See if the specified operand can be simplified with the knowledge that only 2398 /// the bits specified by DemandedBits are used. 2399 /// TODO: really we should be making this into the DAG equivalent of 2400 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2401 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2402 EVT VT = V.getValueType(); 2403 2404 if (VT.isScalableVector()) 2405 return SDValue(); 2406 2407 APInt DemandedElts = VT.isVector() 2408 ? APInt::getAllOnes(VT.getVectorNumElements()) 2409 : APInt(1, 1); 2410 return GetDemandedBits(V, DemandedBits, DemandedElts); 2411 } 2412 2413 /// See if the specified operand can be simplified with the knowledge that only 2414 /// the bits specified by DemandedBits are used in the elements specified by 2415 /// DemandedElts. 2416 /// TODO: really we should be making this into the DAG equivalent of 2417 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2418 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2419 const APInt &DemandedElts) { 2420 switch (V.getOpcode()) { 2421 default: 2422 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2423 *this, 0); 2424 case ISD::Constant: { 2425 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2426 APInt NewVal = CVal & DemandedBits; 2427 if (NewVal != CVal) 2428 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2429 break; 2430 } 2431 case ISD::SRL: 2432 // Only look at single-use SRLs. 2433 if (!V.getNode()->hasOneUse()) 2434 break; 2435 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2436 // See if we can recursively simplify the LHS. 2437 unsigned Amt = RHSC->getZExtValue(); 2438 2439 // Watch out for shift count overflow though. 2440 if (Amt >= DemandedBits.getBitWidth()) 2441 break; 2442 APInt SrcDemandedBits = DemandedBits << Amt; 2443 if (SDValue SimplifyLHS = 2444 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2445 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2446 V.getOperand(1)); 2447 } 2448 break; 2449 } 2450 return SDValue(); 2451 } 2452 2453 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2454 /// use this predicate to simplify operations downstream. 2455 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2456 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2457 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2458 } 2459 2460 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2461 /// this predicate to simplify operations downstream. Mask is known to be zero 2462 /// for bits that V cannot have. 2463 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2464 unsigned Depth) const { 2465 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2466 } 2467 2468 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2469 /// DemandedElts. We use this predicate to simplify operations downstream. 2470 /// Mask is known to be zero for bits that V cannot have. 2471 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2472 const APInt &DemandedElts, 2473 unsigned Depth) const { 2474 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2475 } 2476 2477 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2478 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2479 unsigned Depth) const { 2480 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2481 } 2482 2483 /// isSplatValue - Return true if the vector V has the same value 2484 /// across all DemandedElts. For scalable vectors it does not make 2485 /// sense to specify which elements are demanded or undefined, therefore 2486 /// they are simply ignored. 2487 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2488 APInt &UndefElts, unsigned Depth) { 2489 EVT VT = V.getValueType(); 2490 assert(VT.isVector() && "Vector type expected"); 2491 2492 if (!VT.isScalableVector() && !DemandedElts) 2493 return false; // No demanded elts, better to assume we don't know anything. 2494 2495 if (Depth >= MaxRecursionDepth) 2496 return false; // Limit search depth. 2497 2498 // Deal with some common cases here that work for both fixed and scalable 2499 // vector types. 2500 switch (V.getOpcode()) { 2501 case ISD::SPLAT_VECTOR: 2502 UndefElts = V.getOperand(0).isUndef() 2503 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2504 : APInt(DemandedElts.getBitWidth(), 0); 2505 return true; 2506 case ISD::ADD: 2507 case ISD::SUB: 2508 case ISD::AND: 2509 case ISD::XOR: 2510 case ISD::OR: { 2511 APInt UndefLHS, UndefRHS; 2512 SDValue LHS = V.getOperand(0); 2513 SDValue RHS = V.getOperand(1); 2514 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2515 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2516 UndefElts = UndefLHS | UndefRHS; 2517 return true; 2518 } 2519 return false; 2520 } 2521 case ISD::ABS: 2522 case ISD::TRUNCATE: 2523 case ISD::SIGN_EXTEND: 2524 case ISD::ZERO_EXTEND: 2525 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2526 } 2527 2528 // We don't support other cases than those above for scalable vectors at 2529 // the moment. 2530 if (VT.isScalableVector()) 2531 return false; 2532 2533 unsigned NumElts = VT.getVectorNumElements(); 2534 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2535 UndefElts = APInt::getZero(NumElts); 2536 2537 switch (V.getOpcode()) { 2538 case ISD::BUILD_VECTOR: { 2539 SDValue Scl; 2540 for (unsigned i = 0; i != NumElts; ++i) { 2541 SDValue Op = V.getOperand(i); 2542 if (Op.isUndef()) { 2543 UndefElts.setBit(i); 2544 continue; 2545 } 2546 if (!DemandedElts[i]) 2547 continue; 2548 if (Scl && Scl != Op) 2549 return false; 2550 Scl = Op; 2551 } 2552 return true; 2553 } 2554 case ISD::VECTOR_SHUFFLE: { 2555 // Check if this is a shuffle node doing a splat. 2556 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2557 int SplatIndex = -1; 2558 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2559 for (int i = 0; i != (int)NumElts; ++i) { 2560 int M = Mask[i]; 2561 if (M < 0) { 2562 UndefElts.setBit(i); 2563 continue; 2564 } 2565 if (!DemandedElts[i]) 2566 continue; 2567 if (0 <= SplatIndex && SplatIndex != M) 2568 return false; 2569 SplatIndex = M; 2570 } 2571 return true; 2572 } 2573 case ISD::EXTRACT_SUBVECTOR: { 2574 // Offset the demanded elts by the subvector index. 2575 SDValue Src = V.getOperand(0); 2576 // We don't support scalable vectors at the moment. 2577 if (Src.getValueType().isScalableVector()) 2578 return false; 2579 uint64_t Idx = V.getConstantOperandVal(1); 2580 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2581 APInt UndefSrcElts; 2582 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2583 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2584 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2585 return true; 2586 } 2587 break; 2588 } 2589 } 2590 2591 return false; 2592 } 2593 2594 /// Helper wrapper to main isSplatValue function. 2595 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2596 EVT VT = V.getValueType(); 2597 assert(VT.isVector() && "Vector type expected"); 2598 2599 APInt UndefElts; 2600 APInt DemandedElts; 2601 2602 // For now we don't support this with scalable vectors. 2603 if (!VT.isScalableVector()) 2604 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2605 return isSplatValue(V, DemandedElts, UndefElts) && 2606 (AllowUndefs || !UndefElts); 2607 } 2608 2609 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2610 V = peekThroughExtractSubvectors(V); 2611 2612 EVT VT = V.getValueType(); 2613 unsigned Opcode = V.getOpcode(); 2614 switch (Opcode) { 2615 default: { 2616 APInt UndefElts; 2617 APInt DemandedElts; 2618 2619 if (!VT.isScalableVector()) 2620 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2621 2622 if (isSplatValue(V, DemandedElts, UndefElts)) { 2623 if (VT.isScalableVector()) { 2624 // DemandedElts and UndefElts are ignored for scalable vectors, since 2625 // the only supported cases are SPLAT_VECTOR nodes. 2626 SplatIdx = 0; 2627 } else { 2628 // Handle case where all demanded elements are UNDEF. 2629 if (DemandedElts.isSubsetOf(UndefElts)) { 2630 SplatIdx = 0; 2631 return getUNDEF(VT); 2632 } 2633 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2634 } 2635 return V; 2636 } 2637 break; 2638 } 2639 case ISD::SPLAT_VECTOR: 2640 SplatIdx = 0; 2641 return V; 2642 case ISD::VECTOR_SHUFFLE: { 2643 if (VT.isScalableVector()) 2644 return SDValue(); 2645 2646 // Check if this is a shuffle node doing a splat. 2647 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2648 // getTargetVShiftNode currently struggles without the splat source. 2649 auto *SVN = cast<ShuffleVectorSDNode>(V); 2650 if (!SVN->isSplat()) 2651 break; 2652 int Idx = SVN->getSplatIndex(); 2653 int NumElts = V.getValueType().getVectorNumElements(); 2654 SplatIdx = Idx % NumElts; 2655 return V.getOperand(Idx / NumElts); 2656 } 2657 } 2658 2659 return SDValue(); 2660 } 2661 2662 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2663 int SplatIdx; 2664 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2665 EVT SVT = SrcVector.getValueType().getScalarType(); 2666 EVT LegalSVT = SVT; 2667 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2668 if (!SVT.isInteger()) 2669 return SDValue(); 2670 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2671 if (LegalSVT.bitsLT(SVT)) 2672 return SDValue(); 2673 } 2674 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2675 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2676 } 2677 return SDValue(); 2678 } 2679 2680 const APInt * 2681 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2682 const APInt &DemandedElts) const { 2683 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2684 V.getOpcode() == ISD::SRA) && 2685 "Unknown shift node"); 2686 unsigned BitWidth = V.getScalarValueSizeInBits(); 2687 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2688 // Shifting more than the bitwidth is not valid. 2689 const APInt &ShAmt = SA->getAPIntValue(); 2690 if (ShAmt.ult(BitWidth)) 2691 return &ShAmt; 2692 } 2693 return nullptr; 2694 } 2695 2696 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2697 SDValue V, const APInt &DemandedElts) const { 2698 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2699 V.getOpcode() == ISD::SRA) && 2700 "Unknown shift node"); 2701 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2702 return ValidAmt; 2703 unsigned BitWidth = V.getScalarValueSizeInBits(); 2704 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2705 if (!BV) 2706 return nullptr; 2707 const APInt *MinShAmt = nullptr; 2708 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2709 if (!DemandedElts[i]) 2710 continue; 2711 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2712 if (!SA) 2713 return nullptr; 2714 // Shifting more than the bitwidth is not valid. 2715 const APInt &ShAmt = SA->getAPIntValue(); 2716 if (ShAmt.uge(BitWidth)) 2717 return nullptr; 2718 if (MinShAmt && MinShAmt->ule(ShAmt)) 2719 continue; 2720 MinShAmt = &ShAmt; 2721 } 2722 return MinShAmt; 2723 } 2724 2725 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2726 SDValue V, const APInt &DemandedElts) const { 2727 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2728 V.getOpcode() == ISD::SRA) && 2729 "Unknown shift node"); 2730 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2731 return ValidAmt; 2732 unsigned BitWidth = V.getScalarValueSizeInBits(); 2733 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2734 if (!BV) 2735 return nullptr; 2736 const APInt *MaxShAmt = nullptr; 2737 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2738 if (!DemandedElts[i]) 2739 continue; 2740 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2741 if (!SA) 2742 return nullptr; 2743 // Shifting more than the bitwidth is not valid. 2744 const APInt &ShAmt = SA->getAPIntValue(); 2745 if (ShAmt.uge(BitWidth)) 2746 return nullptr; 2747 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2748 continue; 2749 MaxShAmt = &ShAmt; 2750 } 2751 return MaxShAmt; 2752 } 2753 2754 /// Determine which bits of Op are known to be either zero or one and return 2755 /// them in Known. For vectors, the known bits are those that are shared by 2756 /// every vector element. 2757 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2758 EVT VT = Op.getValueType(); 2759 2760 // TOOD: Until we have a plan for how to represent demanded elements for 2761 // scalable vectors, we can just bail out for now. 2762 if (Op.getValueType().isScalableVector()) { 2763 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2764 return KnownBits(BitWidth); 2765 } 2766 2767 APInt DemandedElts = VT.isVector() 2768 ? APInt::getAllOnes(VT.getVectorNumElements()) 2769 : APInt(1, 1); 2770 return computeKnownBits(Op, DemandedElts, Depth); 2771 } 2772 2773 /// Determine which bits of Op are known to be either zero or one and return 2774 /// them in Known. The DemandedElts argument allows us to only collect the known 2775 /// bits that are shared by the requested vector elements. 2776 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2777 unsigned Depth) const { 2778 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2779 2780 KnownBits Known(BitWidth); // Don't know anything. 2781 2782 // TOOD: Until we have a plan for how to represent demanded elements for 2783 // scalable vectors, we can just bail out for now. 2784 if (Op.getValueType().isScalableVector()) 2785 return Known; 2786 2787 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2788 // We know all of the bits for a constant! 2789 return KnownBits::makeConstant(C->getAPIntValue()); 2790 } 2791 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2792 // We know all of the bits for a constant fp! 2793 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2794 } 2795 2796 if (Depth >= MaxRecursionDepth) 2797 return Known; // Limit search depth. 2798 2799 KnownBits Known2; 2800 unsigned NumElts = DemandedElts.getBitWidth(); 2801 assert((!Op.getValueType().isVector() || 2802 NumElts == Op.getValueType().getVectorNumElements()) && 2803 "Unexpected vector size"); 2804 2805 if (!DemandedElts) 2806 return Known; // No demanded elts, better to assume we don't know anything. 2807 2808 unsigned Opcode = Op.getOpcode(); 2809 switch (Opcode) { 2810 case ISD::BUILD_VECTOR: 2811 // Collect the known bits that are shared by every demanded vector element. 2812 Known.Zero.setAllBits(); Known.One.setAllBits(); 2813 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2814 if (!DemandedElts[i]) 2815 continue; 2816 2817 SDValue SrcOp = Op.getOperand(i); 2818 Known2 = computeKnownBits(SrcOp, Depth + 1); 2819 2820 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2821 if (SrcOp.getValueSizeInBits() != BitWidth) { 2822 assert(SrcOp.getValueSizeInBits() > BitWidth && 2823 "Expected BUILD_VECTOR implicit truncation"); 2824 Known2 = Known2.trunc(BitWidth); 2825 } 2826 2827 // Known bits are the values that are shared by every demanded element. 2828 Known = KnownBits::commonBits(Known, Known2); 2829 2830 // If we don't know any bits, early out. 2831 if (Known.isUnknown()) 2832 break; 2833 } 2834 break; 2835 case ISD::VECTOR_SHUFFLE: { 2836 // Collect the known bits that are shared by every vector element referenced 2837 // by the shuffle. 2838 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2839 Known.Zero.setAllBits(); Known.One.setAllBits(); 2840 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2841 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2842 for (unsigned i = 0; i != NumElts; ++i) { 2843 if (!DemandedElts[i]) 2844 continue; 2845 2846 int M = SVN->getMaskElt(i); 2847 if (M < 0) { 2848 // For UNDEF elements, we don't know anything about the common state of 2849 // the shuffle result. 2850 Known.resetAll(); 2851 DemandedLHS.clearAllBits(); 2852 DemandedRHS.clearAllBits(); 2853 break; 2854 } 2855 2856 if ((unsigned)M < NumElts) 2857 DemandedLHS.setBit((unsigned)M % NumElts); 2858 else 2859 DemandedRHS.setBit((unsigned)M % NumElts); 2860 } 2861 // Known bits are the values that are shared by every demanded element. 2862 if (!!DemandedLHS) { 2863 SDValue LHS = Op.getOperand(0); 2864 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2865 Known = KnownBits::commonBits(Known, Known2); 2866 } 2867 // If we don't know any bits, early out. 2868 if (Known.isUnknown()) 2869 break; 2870 if (!!DemandedRHS) { 2871 SDValue RHS = Op.getOperand(1); 2872 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2873 Known = KnownBits::commonBits(Known, Known2); 2874 } 2875 break; 2876 } 2877 case ISD::CONCAT_VECTORS: { 2878 // Split DemandedElts and test each of the demanded subvectors. 2879 Known.Zero.setAllBits(); Known.One.setAllBits(); 2880 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2881 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2882 unsigned NumSubVectors = Op.getNumOperands(); 2883 for (unsigned i = 0; i != NumSubVectors; ++i) { 2884 APInt DemandedSub = 2885 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2886 if (!!DemandedSub) { 2887 SDValue Sub = Op.getOperand(i); 2888 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2889 Known = KnownBits::commonBits(Known, Known2); 2890 } 2891 // If we don't know any bits, early out. 2892 if (Known.isUnknown()) 2893 break; 2894 } 2895 break; 2896 } 2897 case ISD::INSERT_SUBVECTOR: { 2898 // Demand any elements from the subvector and the remainder from the src its 2899 // inserted into. 2900 SDValue Src = Op.getOperand(0); 2901 SDValue Sub = Op.getOperand(1); 2902 uint64_t Idx = Op.getConstantOperandVal(2); 2903 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2904 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2905 APInt DemandedSrcElts = DemandedElts; 2906 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2907 2908 Known.One.setAllBits(); 2909 Known.Zero.setAllBits(); 2910 if (!!DemandedSubElts) { 2911 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2912 if (Known.isUnknown()) 2913 break; // early-out. 2914 } 2915 if (!!DemandedSrcElts) { 2916 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2917 Known = KnownBits::commonBits(Known, Known2); 2918 } 2919 break; 2920 } 2921 case ISD::EXTRACT_SUBVECTOR: { 2922 // Offset the demanded elts by the subvector index. 2923 SDValue Src = Op.getOperand(0); 2924 // Bail until we can represent demanded elements for scalable vectors. 2925 if (Src.getValueType().isScalableVector()) 2926 break; 2927 uint64_t Idx = Op.getConstantOperandVal(1); 2928 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2929 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2930 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2931 break; 2932 } 2933 case ISD::SCALAR_TO_VECTOR: { 2934 // We know about scalar_to_vector as much as we know about it source, 2935 // which becomes the first element of otherwise unknown vector. 2936 if (DemandedElts != 1) 2937 break; 2938 2939 SDValue N0 = Op.getOperand(0); 2940 Known = computeKnownBits(N0, Depth + 1); 2941 if (N0.getValueSizeInBits() != BitWidth) 2942 Known = Known.trunc(BitWidth); 2943 2944 break; 2945 } 2946 case ISD::BITCAST: { 2947 SDValue N0 = Op.getOperand(0); 2948 EVT SubVT = N0.getValueType(); 2949 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2950 2951 // Ignore bitcasts from unsupported types. 2952 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2953 break; 2954 2955 // Fast handling of 'identity' bitcasts. 2956 if (BitWidth == SubBitWidth) { 2957 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2958 break; 2959 } 2960 2961 bool IsLE = getDataLayout().isLittleEndian(); 2962 2963 // Bitcast 'small element' vector to 'large element' scalar/vector. 2964 if ((BitWidth % SubBitWidth) == 0) { 2965 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2966 2967 // Collect known bits for the (larger) output by collecting the known 2968 // bits from each set of sub elements and shift these into place. 2969 // We need to separately call computeKnownBits for each set of 2970 // sub elements as the knownbits for each is likely to be different. 2971 unsigned SubScale = BitWidth / SubBitWidth; 2972 APInt SubDemandedElts(NumElts * SubScale, 0); 2973 for (unsigned i = 0; i != NumElts; ++i) 2974 if (DemandedElts[i]) 2975 SubDemandedElts.setBit(i * SubScale); 2976 2977 for (unsigned i = 0; i != SubScale; ++i) { 2978 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2979 Depth + 1); 2980 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2981 Known.insertBits(Known2, SubBitWidth * Shifts); 2982 } 2983 } 2984 2985 // Bitcast 'large element' scalar/vector to 'small element' vector. 2986 if ((SubBitWidth % BitWidth) == 0) { 2987 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2988 2989 // Collect known bits for the (smaller) output by collecting the known 2990 // bits from the overlapping larger input elements and extracting the 2991 // sub sections we actually care about. 2992 unsigned SubScale = SubBitWidth / BitWidth; 2993 APInt SubDemandedElts(NumElts / SubScale, 0); 2994 for (unsigned i = 0; i != NumElts; ++i) 2995 if (DemandedElts[i]) 2996 SubDemandedElts.setBit(i / SubScale); 2997 2998 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2999 3000 Known.Zero.setAllBits(); Known.One.setAllBits(); 3001 for (unsigned i = 0; i != NumElts; ++i) 3002 if (DemandedElts[i]) { 3003 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3004 unsigned Offset = (Shifts % SubScale) * BitWidth; 3005 Known = KnownBits::commonBits(Known, 3006 Known2.extractBits(BitWidth, Offset)); 3007 // If we don't know any bits, early out. 3008 if (Known.isUnknown()) 3009 break; 3010 } 3011 } 3012 break; 3013 } 3014 case ISD::AND: 3015 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3016 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3017 3018 Known &= Known2; 3019 break; 3020 case ISD::OR: 3021 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3022 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3023 3024 Known |= Known2; 3025 break; 3026 case ISD::XOR: 3027 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3028 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3029 3030 Known ^= Known2; 3031 break; 3032 case ISD::MUL: { 3033 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3034 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3035 Known = KnownBits::mul(Known, Known2); 3036 break; 3037 } 3038 case ISD::MULHU: { 3039 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3040 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3041 Known = KnownBits::mulhu(Known, Known2); 3042 break; 3043 } 3044 case ISD::MULHS: { 3045 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3046 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3047 Known = KnownBits::mulhs(Known, Known2); 3048 break; 3049 } 3050 case ISD::UMUL_LOHI: { 3051 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3052 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3053 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3054 if (Op.getResNo() == 0) 3055 Known = KnownBits::mul(Known, Known2); 3056 else 3057 Known = KnownBits::mulhu(Known, Known2); 3058 break; 3059 } 3060 case ISD::SMUL_LOHI: { 3061 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3062 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3063 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3064 if (Op.getResNo() == 0) 3065 Known = KnownBits::mul(Known, Known2); 3066 else 3067 Known = KnownBits::mulhs(Known, Known2); 3068 break; 3069 } 3070 case ISD::UDIV: { 3071 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3072 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3073 Known = KnownBits::udiv(Known, Known2); 3074 break; 3075 } 3076 case ISD::SELECT: 3077 case ISD::VSELECT: 3078 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3079 // If we don't know any bits, early out. 3080 if (Known.isUnknown()) 3081 break; 3082 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3083 3084 // Only known if known in both the LHS and RHS. 3085 Known = KnownBits::commonBits(Known, Known2); 3086 break; 3087 case ISD::SELECT_CC: 3088 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3089 // If we don't know any bits, early out. 3090 if (Known.isUnknown()) 3091 break; 3092 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3093 3094 // Only known if known in both the LHS and RHS. 3095 Known = KnownBits::commonBits(Known, Known2); 3096 break; 3097 case ISD::SMULO: 3098 case ISD::UMULO: 3099 if (Op.getResNo() != 1) 3100 break; 3101 // The boolean result conforms to getBooleanContents. 3102 // If we know the result of a setcc has the top bits zero, use this info. 3103 // We know that we have an integer-based boolean since these operations 3104 // are only available for integer. 3105 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3106 TargetLowering::ZeroOrOneBooleanContent && 3107 BitWidth > 1) 3108 Known.Zero.setBitsFrom(1); 3109 break; 3110 case ISD::SETCC: 3111 case ISD::STRICT_FSETCC: 3112 case ISD::STRICT_FSETCCS: { 3113 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3114 // If we know the result of a setcc has the top bits zero, use this info. 3115 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3116 TargetLowering::ZeroOrOneBooleanContent && 3117 BitWidth > 1) 3118 Known.Zero.setBitsFrom(1); 3119 break; 3120 } 3121 case ISD::SHL: 3122 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3123 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3124 Known = KnownBits::shl(Known, Known2); 3125 3126 // Minimum shift low bits are known zero. 3127 if (const APInt *ShMinAmt = 3128 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3129 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3130 break; 3131 case ISD::SRL: 3132 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3133 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3134 Known = KnownBits::lshr(Known, Known2); 3135 3136 // Minimum shift high bits are known zero. 3137 if (const APInt *ShMinAmt = 3138 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3139 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3140 break; 3141 case ISD::SRA: 3142 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3143 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3144 Known = KnownBits::ashr(Known, Known2); 3145 // TODO: Add minimum shift high known sign bits. 3146 break; 3147 case ISD::FSHL: 3148 case ISD::FSHR: 3149 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3150 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3151 3152 // For fshl, 0-shift returns the 1st arg. 3153 // For fshr, 0-shift returns the 2nd arg. 3154 if (Amt == 0) { 3155 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3156 DemandedElts, Depth + 1); 3157 break; 3158 } 3159 3160 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3161 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3162 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3163 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3164 if (Opcode == ISD::FSHL) { 3165 Known.One <<= Amt; 3166 Known.Zero <<= Amt; 3167 Known2.One.lshrInPlace(BitWidth - Amt); 3168 Known2.Zero.lshrInPlace(BitWidth - Amt); 3169 } else { 3170 Known.One <<= BitWidth - Amt; 3171 Known.Zero <<= BitWidth - Amt; 3172 Known2.One.lshrInPlace(Amt); 3173 Known2.Zero.lshrInPlace(Amt); 3174 } 3175 Known.One |= Known2.One; 3176 Known.Zero |= Known2.Zero; 3177 } 3178 break; 3179 case ISD::SIGN_EXTEND_INREG: { 3180 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3181 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3182 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3183 break; 3184 } 3185 case ISD::CTTZ: 3186 case ISD::CTTZ_ZERO_UNDEF: { 3187 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3188 // If we have a known 1, its position is our upper bound. 3189 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3190 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3191 Known.Zero.setBitsFrom(LowBits); 3192 break; 3193 } 3194 case ISD::CTLZ: 3195 case ISD::CTLZ_ZERO_UNDEF: { 3196 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 // If we have a known 1, its position is our upper bound. 3198 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3199 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3200 Known.Zero.setBitsFrom(LowBits); 3201 break; 3202 } 3203 case ISD::CTPOP: { 3204 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3205 // If we know some of the bits are zero, they can't be one. 3206 unsigned PossibleOnes = Known2.countMaxPopulation(); 3207 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3208 break; 3209 } 3210 case ISD::PARITY: { 3211 // Parity returns 0 everywhere but the LSB. 3212 Known.Zero.setBitsFrom(1); 3213 break; 3214 } 3215 case ISD::LOAD: { 3216 LoadSDNode *LD = cast<LoadSDNode>(Op); 3217 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3218 if (ISD::isNON_EXTLoad(LD) && Cst) { 3219 // Determine any common known bits from the loaded constant pool value. 3220 Type *CstTy = Cst->getType(); 3221 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3222 // If its a vector splat, then we can (quickly) reuse the scalar path. 3223 // NOTE: We assume all elements match and none are UNDEF. 3224 if (CstTy->isVectorTy()) { 3225 if (const Constant *Splat = Cst->getSplatValue()) { 3226 Cst = Splat; 3227 CstTy = Cst->getType(); 3228 } 3229 } 3230 // TODO - do we need to handle different bitwidths? 3231 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3232 // Iterate across all vector elements finding common known bits. 3233 Known.One.setAllBits(); 3234 Known.Zero.setAllBits(); 3235 for (unsigned i = 0; i != NumElts; ++i) { 3236 if (!DemandedElts[i]) 3237 continue; 3238 if (Constant *Elt = Cst->getAggregateElement(i)) { 3239 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3240 const APInt &Value = CInt->getValue(); 3241 Known.One &= Value; 3242 Known.Zero &= ~Value; 3243 continue; 3244 } 3245 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3246 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3247 Known.One &= Value; 3248 Known.Zero &= ~Value; 3249 continue; 3250 } 3251 } 3252 Known.One.clearAllBits(); 3253 Known.Zero.clearAllBits(); 3254 break; 3255 } 3256 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3257 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3258 Known = KnownBits::makeConstant(CInt->getValue()); 3259 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3260 Known = 3261 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3262 } 3263 } 3264 } 3265 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3266 // If this is a ZEXTLoad and we are looking at the loaded value. 3267 EVT VT = LD->getMemoryVT(); 3268 unsigned MemBits = VT.getScalarSizeInBits(); 3269 Known.Zero.setBitsFrom(MemBits); 3270 } else if (const MDNode *Ranges = LD->getRanges()) { 3271 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3272 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3273 } 3274 break; 3275 } 3276 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3277 EVT InVT = Op.getOperand(0).getValueType(); 3278 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3279 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3280 Known = Known.zext(BitWidth); 3281 break; 3282 } 3283 case ISD::ZERO_EXTEND: { 3284 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3285 Known = Known.zext(BitWidth); 3286 break; 3287 } 3288 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3289 EVT InVT = Op.getOperand(0).getValueType(); 3290 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3291 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3292 // If the sign bit is known to be zero or one, then sext will extend 3293 // it to the top bits, else it will just zext. 3294 Known = Known.sext(BitWidth); 3295 break; 3296 } 3297 case ISD::SIGN_EXTEND: { 3298 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3299 // If the sign bit is known to be zero or one, then sext will extend 3300 // it to the top bits, else it will just zext. 3301 Known = Known.sext(BitWidth); 3302 break; 3303 } 3304 case ISD::ANY_EXTEND_VECTOR_INREG: { 3305 EVT InVT = Op.getOperand(0).getValueType(); 3306 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3307 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3308 Known = Known.anyext(BitWidth); 3309 break; 3310 } 3311 case ISD::ANY_EXTEND: { 3312 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3313 Known = Known.anyext(BitWidth); 3314 break; 3315 } 3316 case ISD::TRUNCATE: { 3317 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3318 Known = Known.trunc(BitWidth); 3319 break; 3320 } 3321 case ISD::AssertZext: { 3322 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3323 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3324 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3325 Known.Zero |= (~InMask); 3326 Known.One &= (~Known.Zero); 3327 break; 3328 } 3329 case ISD::AssertAlign: { 3330 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3331 assert(LogOfAlign != 0); 3332 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3333 // well as clearing one bits. 3334 Known.Zero.setLowBits(LogOfAlign); 3335 Known.One.clearLowBits(LogOfAlign); 3336 break; 3337 } 3338 case ISD::FGETSIGN: 3339 // All bits are zero except the low bit. 3340 Known.Zero.setBitsFrom(1); 3341 break; 3342 case ISD::USUBO: 3343 case ISD::SSUBO: 3344 if (Op.getResNo() == 1) { 3345 // If we know the result of a setcc has the top bits zero, use this info. 3346 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3347 TargetLowering::ZeroOrOneBooleanContent && 3348 BitWidth > 1) 3349 Known.Zero.setBitsFrom(1); 3350 break; 3351 } 3352 LLVM_FALLTHROUGH; 3353 case ISD::SUB: 3354 case ISD::SUBC: { 3355 assert(Op.getResNo() == 0 && 3356 "We only compute knownbits for the difference here."); 3357 3358 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3359 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3360 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3361 Known, Known2); 3362 break; 3363 } 3364 case ISD::UADDO: 3365 case ISD::SADDO: 3366 case ISD::ADDCARRY: 3367 if (Op.getResNo() == 1) { 3368 // If we know the result of a setcc has the top bits zero, use this info. 3369 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3370 TargetLowering::ZeroOrOneBooleanContent && 3371 BitWidth > 1) 3372 Known.Zero.setBitsFrom(1); 3373 break; 3374 } 3375 LLVM_FALLTHROUGH; 3376 case ISD::ADD: 3377 case ISD::ADDC: 3378 case ISD::ADDE: { 3379 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3380 3381 // With ADDE and ADDCARRY, a carry bit may be added in. 3382 KnownBits Carry(1); 3383 if (Opcode == ISD::ADDE) 3384 // Can't track carry from glue, set carry to unknown. 3385 Carry.resetAll(); 3386 else if (Opcode == ISD::ADDCARRY) 3387 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3388 // the trouble (how often will we find a known carry bit). And I haven't 3389 // tested this very much yet, but something like this might work: 3390 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3391 // Carry = Carry.zextOrTrunc(1, false); 3392 Carry.resetAll(); 3393 else 3394 Carry.setAllZero(); 3395 3396 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3397 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3398 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3399 break; 3400 } 3401 case ISD::SREM: { 3402 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3403 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3404 Known = KnownBits::srem(Known, Known2); 3405 break; 3406 } 3407 case ISD::UREM: { 3408 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3409 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3410 Known = KnownBits::urem(Known, Known2); 3411 break; 3412 } 3413 case ISD::EXTRACT_ELEMENT: { 3414 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3415 const unsigned Index = Op.getConstantOperandVal(1); 3416 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3417 3418 // Remove low part of known bits mask 3419 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3420 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3421 3422 // Remove high part of known bit mask 3423 Known = Known.trunc(EltBitWidth); 3424 break; 3425 } 3426 case ISD::EXTRACT_VECTOR_ELT: { 3427 SDValue InVec = Op.getOperand(0); 3428 SDValue EltNo = Op.getOperand(1); 3429 EVT VecVT = InVec.getValueType(); 3430 // computeKnownBits not yet implemented for scalable vectors. 3431 if (VecVT.isScalableVector()) 3432 break; 3433 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3434 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3435 3436 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3437 // anything about the extended bits. 3438 if (BitWidth > EltBitWidth) 3439 Known = Known.trunc(EltBitWidth); 3440 3441 // If we know the element index, just demand that vector element, else for 3442 // an unknown element index, ignore DemandedElts and demand them all. 3443 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3444 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3445 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3446 DemandedSrcElts = 3447 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3448 3449 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3450 if (BitWidth > EltBitWidth) 3451 Known = Known.anyext(BitWidth); 3452 break; 3453 } 3454 case ISD::INSERT_VECTOR_ELT: { 3455 // If we know the element index, split the demand between the 3456 // source vector and the inserted element, otherwise assume we need 3457 // the original demanded vector elements and the value. 3458 SDValue InVec = Op.getOperand(0); 3459 SDValue InVal = Op.getOperand(1); 3460 SDValue EltNo = Op.getOperand(2); 3461 bool DemandedVal = true; 3462 APInt DemandedVecElts = DemandedElts; 3463 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3464 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3465 unsigned EltIdx = CEltNo->getZExtValue(); 3466 DemandedVal = !!DemandedElts[EltIdx]; 3467 DemandedVecElts.clearBit(EltIdx); 3468 } 3469 Known.One.setAllBits(); 3470 Known.Zero.setAllBits(); 3471 if (DemandedVal) { 3472 Known2 = computeKnownBits(InVal, Depth + 1); 3473 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3474 } 3475 if (!!DemandedVecElts) { 3476 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3477 Known = KnownBits::commonBits(Known, Known2); 3478 } 3479 break; 3480 } 3481 case ISD::BITREVERSE: { 3482 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3483 Known = Known2.reverseBits(); 3484 break; 3485 } 3486 case ISD::BSWAP: { 3487 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3488 Known = Known2.byteSwap(); 3489 break; 3490 } 3491 case ISD::ABS: { 3492 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3493 Known = Known2.abs(); 3494 break; 3495 } 3496 case ISD::USUBSAT: { 3497 // The result of usubsat will never be larger than the LHS. 3498 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3499 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3500 break; 3501 } 3502 case ISD::UMIN: { 3503 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3504 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3505 Known = KnownBits::umin(Known, Known2); 3506 break; 3507 } 3508 case ISD::UMAX: { 3509 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3510 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3511 Known = KnownBits::umax(Known, Known2); 3512 break; 3513 } 3514 case ISD::SMIN: 3515 case ISD::SMAX: { 3516 // If we have a clamp pattern, we know that the number of sign bits will be 3517 // the minimum of the clamp min/max range. 3518 bool IsMax = (Opcode == ISD::SMAX); 3519 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3520 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3521 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3522 CstHigh = 3523 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3524 if (CstLow && CstHigh) { 3525 if (!IsMax) 3526 std::swap(CstLow, CstHigh); 3527 3528 const APInt &ValueLow = CstLow->getAPIntValue(); 3529 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3530 if (ValueLow.sle(ValueHigh)) { 3531 unsigned LowSignBits = ValueLow.getNumSignBits(); 3532 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3533 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3534 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3535 Known.One.setHighBits(MinSignBits); 3536 break; 3537 } 3538 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3539 Known.Zero.setHighBits(MinSignBits); 3540 break; 3541 } 3542 } 3543 } 3544 3545 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3546 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3547 if (IsMax) 3548 Known = KnownBits::smax(Known, Known2); 3549 else 3550 Known = KnownBits::smin(Known, Known2); 3551 break; 3552 } 3553 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3554 if (Op.getResNo() == 1) { 3555 // The boolean result conforms to getBooleanContents. 3556 // If we know the result of a setcc has the top bits zero, use this info. 3557 // We know that we have an integer-based boolean since these operations 3558 // are only available for integer. 3559 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3560 TargetLowering::ZeroOrOneBooleanContent && 3561 BitWidth > 1) 3562 Known.Zero.setBitsFrom(1); 3563 break; 3564 } 3565 LLVM_FALLTHROUGH; 3566 case ISD::ATOMIC_CMP_SWAP: 3567 case ISD::ATOMIC_SWAP: 3568 case ISD::ATOMIC_LOAD_ADD: 3569 case ISD::ATOMIC_LOAD_SUB: 3570 case ISD::ATOMIC_LOAD_AND: 3571 case ISD::ATOMIC_LOAD_CLR: 3572 case ISD::ATOMIC_LOAD_OR: 3573 case ISD::ATOMIC_LOAD_XOR: 3574 case ISD::ATOMIC_LOAD_NAND: 3575 case ISD::ATOMIC_LOAD_MIN: 3576 case ISD::ATOMIC_LOAD_MAX: 3577 case ISD::ATOMIC_LOAD_UMIN: 3578 case ISD::ATOMIC_LOAD_UMAX: 3579 case ISD::ATOMIC_LOAD: { 3580 unsigned MemBits = 3581 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3582 // If we are looking at the loaded value. 3583 if (Op.getResNo() == 0) { 3584 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3585 Known.Zero.setBitsFrom(MemBits); 3586 } 3587 break; 3588 } 3589 case ISD::FrameIndex: 3590 case ISD::TargetFrameIndex: 3591 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3592 Known, getMachineFunction()); 3593 break; 3594 3595 default: 3596 if (Opcode < ISD::BUILTIN_OP_END) 3597 break; 3598 LLVM_FALLTHROUGH; 3599 case ISD::INTRINSIC_WO_CHAIN: 3600 case ISD::INTRINSIC_W_CHAIN: 3601 case ISD::INTRINSIC_VOID: 3602 // Allow the target to implement this method for its nodes. 3603 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3604 break; 3605 } 3606 3607 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3608 return Known; 3609 } 3610 3611 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3612 SDValue N1) const { 3613 // X + 0 never overflow 3614 if (isNullConstant(N1)) 3615 return OFK_Never; 3616 3617 KnownBits N1Known = computeKnownBits(N1); 3618 if (N1Known.Zero.getBoolValue()) { 3619 KnownBits N0Known = computeKnownBits(N0); 3620 3621 bool overflow; 3622 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3623 if (!overflow) 3624 return OFK_Never; 3625 } 3626 3627 // mulhi + 1 never overflow 3628 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3629 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3630 return OFK_Never; 3631 3632 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3633 KnownBits N0Known = computeKnownBits(N0); 3634 3635 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3636 return OFK_Never; 3637 } 3638 3639 return OFK_Sometime; 3640 } 3641 3642 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3643 EVT OpVT = Val.getValueType(); 3644 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3645 3646 // Is the constant a known power of 2? 3647 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3648 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3649 3650 // A left-shift of a constant one will have exactly one bit set because 3651 // shifting the bit off the end is undefined. 3652 if (Val.getOpcode() == ISD::SHL) { 3653 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3654 if (C && C->getAPIntValue() == 1) 3655 return true; 3656 } 3657 3658 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3659 // one bit set. 3660 if (Val.getOpcode() == ISD::SRL) { 3661 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3662 if (C && C->getAPIntValue().isSignMask()) 3663 return true; 3664 } 3665 3666 // Are all operands of a build vector constant powers of two? 3667 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3668 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3670 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3671 return false; 3672 })) 3673 return true; 3674 3675 // Is the operand of a splat vector a constant power of two? 3676 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3677 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3678 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3679 return true; 3680 3681 // More could be done here, though the above checks are enough 3682 // to handle some common cases. 3683 3684 // Fall back to computeKnownBits to catch other known cases. 3685 KnownBits Known = computeKnownBits(Val); 3686 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3687 } 3688 3689 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3690 EVT VT = Op.getValueType(); 3691 3692 // TODO: Assume we don't know anything for now. 3693 if (VT.isScalableVector()) 3694 return 1; 3695 3696 APInt DemandedElts = VT.isVector() 3697 ? APInt::getAllOnes(VT.getVectorNumElements()) 3698 : APInt(1, 1); 3699 return ComputeNumSignBits(Op, DemandedElts, Depth); 3700 } 3701 3702 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3703 unsigned Depth) const { 3704 EVT VT = Op.getValueType(); 3705 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3706 unsigned VTBits = VT.getScalarSizeInBits(); 3707 unsigned NumElts = DemandedElts.getBitWidth(); 3708 unsigned Tmp, Tmp2; 3709 unsigned FirstAnswer = 1; 3710 3711 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3712 const APInt &Val = C->getAPIntValue(); 3713 return Val.getNumSignBits(); 3714 } 3715 3716 if (Depth >= MaxRecursionDepth) 3717 return 1; // Limit search depth. 3718 3719 if (!DemandedElts || VT.isScalableVector()) 3720 return 1; // No demanded elts, better to assume we don't know anything. 3721 3722 unsigned Opcode = Op.getOpcode(); 3723 switch (Opcode) { 3724 default: break; 3725 case ISD::AssertSext: 3726 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3727 return VTBits-Tmp+1; 3728 case ISD::AssertZext: 3729 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3730 return VTBits-Tmp; 3731 3732 case ISD::BUILD_VECTOR: 3733 Tmp = VTBits; 3734 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3735 if (!DemandedElts[i]) 3736 continue; 3737 3738 SDValue SrcOp = Op.getOperand(i); 3739 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3740 3741 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3742 if (SrcOp.getValueSizeInBits() != VTBits) { 3743 assert(SrcOp.getValueSizeInBits() > VTBits && 3744 "Expected BUILD_VECTOR implicit truncation"); 3745 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3746 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3747 } 3748 Tmp = std::min(Tmp, Tmp2); 3749 } 3750 return Tmp; 3751 3752 case ISD::VECTOR_SHUFFLE: { 3753 // Collect the minimum number of sign bits that are shared by every vector 3754 // element referenced by the shuffle. 3755 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3756 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3757 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3758 for (unsigned i = 0; i != NumElts; ++i) { 3759 int M = SVN->getMaskElt(i); 3760 if (!DemandedElts[i]) 3761 continue; 3762 // For UNDEF elements, we don't know anything about the common state of 3763 // the shuffle result. 3764 if (M < 0) 3765 return 1; 3766 if ((unsigned)M < NumElts) 3767 DemandedLHS.setBit((unsigned)M % NumElts); 3768 else 3769 DemandedRHS.setBit((unsigned)M % NumElts); 3770 } 3771 Tmp = std::numeric_limits<unsigned>::max(); 3772 if (!!DemandedLHS) 3773 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3774 if (!!DemandedRHS) { 3775 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3776 Tmp = std::min(Tmp, Tmp2); 3777 } 3778 // If we don't know anything, early out and try computeKnownBits fall-back. 3779 if (Tmp == 1) 3780 break; 3781 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3782 return Tmp; 3783 } 3784 3785 case ISD::BITCAST: { 3786 SDValue N0 = Op.getOperand(0); 3787 EVT SrcVT = N0.getValueType(); 3788 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3789 3790 // Ignore bitcasts from unsupported types.. 3791 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3792 break; 3793 3794 // Fast handling of 'identity' bitcasts. 3795 if (VTBits == SrcBits) 3796 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3797 3798 bool IsLE = getDataLayout().isLittleEndian(); 3799 3800 // Bitcast 'large element' scalar/vector to 'small element' vector. 3801 if ((SrcBits % VTBits) == 0) { 3802 assert(VT.isVector() && "Expected bitcast to vector"); 3803 3804 unsigned Scale = SrcBits / VTBits; 3805 APInt SrcDemandedElts(NumElts / Scale, 0); 3806 for (unsigned i = 0; i != NumElts; ++i) 3807 if (DemandedElts[i]) 3808 SrcDemandedElts.setBit(i / Scale); 3809 3810 // Fast case - sign splat can be simply split across the small elements. 3811 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3812 if (Tmp == SrcBits) 3813 return VTBits; 3814 3815 // Slow case - determine how far the sign extends into each sub-element. 3816 Tmp2 = VTBits; 3817 for (unsigned i = 0; i != NumElts; ++i) 3818 if (DemandedElts[i]) { 3819 unsigned SubOffset = i % Scale; 3820 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3821 SubOffset = SubOffset * VTBits; 3822 if (Tmp <= SubOffset) 3823 return 1; 3824 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3825 } 3826 return Tmp2; 3827 } 3828 break; 3829 } 3830 3831 case ISD::SIGN_EXTEND: 3832 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3833 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3834 case ISD::SIGN_EXTEND_INREG: 3835 // Max of the input and what this extends. 3836 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3837 Tmp = VTBits-Tmp+1; 3838 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3839 return std::max(Tmp, Tmp2); 3840 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3841 SDValue Src = Op.getOperand(0); 3842 EVT SrcVT = Src.getValueType(); 3843 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3844 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3845 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3846 } 3847 case ISD::SRA: 3848 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3849 // SRA X, C -> adds C sign bits. 3850 if (const APInt *ShAmt = 3851 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3852 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3853 return Tmp; 3854 case ISD::SHL: 3855 if (const APInt *ShAmt = 3856 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3857 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3858 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3859 if (ShAmt->ult(Tmp)) 3860 return Tmp - ShAmt->getZExtValue(); 3861 } 3862 break; 3863 case ISD::AND: 3864 case ISD::OR: 3865 case ISD::XOR: // NOT is handled here. 3866 // Logical binary ops preserve the number of sign bits at the worst. 3867 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3868 if (Tmp != 1) { 3869 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3870 FirstAnswer = std::min(Tmp, Tmp2); 3871 // We computed what we know about the sign bits as our first 3872 // answer. Now proceed to the generic code that uses 3873 // computeKnownBits, and pick whichever answer is better. 3874 } 3875 break; 3876 3877 case ISD::SELECT: 3878 case ISD::VSELECT: 3879 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3880 if (Tmp == 1) return 1; // Early out. 3881 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3882 return std::min(Tmp, Tmp2); 3883 case ISD::SELECT_CC: 3884 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3885 if (Tmp == 1) return 1; // Early out. 3886 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3887 return std::min(Tmp, Tmp2); 3888 3889 case ISD::SMIN: 3890 case ISD::SMAX: { 3891 // If we have a clamp pattern, we know that the number of sign bits will be 3892 // the minimum of the clamp min/max range. 3893 bool IsMax = (Opcode == ISD::SMAX); 3894 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3895 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3896 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3897 CstHigh = 3898 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3899 if (CstLow && CstHigh) { 3900 if (!IsMax) 3901 std::swap(CstLow, CstHigh); 3902 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3903 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3904 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3905 return std::min(Tmp, Tmp2); 3906 } 3907 } 3908 3909 // Fallback - just get the minimum number of sign bits of the operands. 3910 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3911 if (Tmp == 1) 3912 return 1; // Early out. 3913 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3914 return std::min(Tmp, Tmp2); 3915 } 3916 case ISD::UMIN: 3917 case ISD::UMAX: 3918 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3919 if (Tmp == 1) 3920 return 1; // Early out. 3921 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3922 return std::min(Tmp, Tmp2); 3923 case ISD::SADDO: 3924 case ISD::UADDO: 3925 case ISD::SSUBO: 3926 case ISD::USUBO: 3927 case ISD::SMULO: 3928 case ISD::UMULO: 3929 if (Op.getResNo() != 1) 3930 break; 3931 // The boolean result conforms to getBooleanContents. Fall through. 3932 // If setcc returns 0/-1, all bits are sign bits. 3933 // We know that we have an integer-based boolean since these operations 3934 // are only available for integer. 3935 if (TLI->getBooleanContents(VT.isVector(), false) == 3936 TargetLowering::ZeroOrNegativeOneBooleanContent) 3937 return VTBits; 3938 break; 3939 case ISD::SETCC: 3940 case ISD::STRICT_FSETCC: 3941 case ISD::STRICT_FSETCCS: { 3942 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3943 // If setcc returns 0/-1, all bits are sign bits. 3944 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3945 TargetLowering::ZeroOrNegativeOneBooleanContent) 3946 return VTBits; 3947 break; 3948 } 3949 case ISD::ROTL: 3950 case ISD::ROTR: 3951 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3952 3953 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3954 if (Tmp == VTBits) 3955 return VTBits; 3956 3957 if (ConstantSDNode *C = 3958 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3959 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3960 3961 // Handle rotate right by N like a rotate left by 32-N. 3962 if (Opcode == ISD::ROTR) 3963 RotAmt = (VTBits - RotAmt) % VTBits; 3964 3965 // If we aren't rotating out all of the known-in sign bits, return the 3966 // number that are left. This handles rotl(sext(x), 1) for example. 3967 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3968 } 3969 break; 3970 case ISD::ADD: 3971 case ISD::ADDC: 3972 // Add can have at most one carry bit. Thus we know that the output 3973 // is, at worst, one more bit than the inputs. 3974 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3975 if (Tmp == 1) return 1; // Early out. 3976 3977 // Special case decrementing a value (ADD X, -1): 3978 if (ConstantSDNode *CRHS = 3979 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3980 if (CRHS->isAllOnes()) { 3981 KnownBits Known = 3982 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3983 3984 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3985 // sign bits set. 3986 if ((Known.Zero | 1).isAllOnes()) 3987 return VTBits; 3988 3989 // If we are subtracting one from a positive number, there is no carry 3990 // out of the result. 3991 if (Known.isNonNegative()) 3992 return Tmp; 3993 } 3994 3995 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3996 if (Tmp2 == 1) return 1; // Early out. 3997 return std::min(Tmp, Tmp2) - 1; 3998 case ISD::SUB: 3999 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4000 if (Tmp2 == 1) return 1; // Early out. 4001 4002 // Handle NEG. 4003 if (ConstantSDNode *CLHS = 4004 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4005 if (CLHS->isZero()) { 4006 KnownBits Known = 4007 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4008 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4009 // sign bits set. 4010 if ((Known.Zero | 1).isAllOnes()) 4011 return VTBits; 4012 4013 // If the input is known to be positive (the sign bit is known clear), 4014 // the output of the NEG has the same number of sign bits as the input. 4015 if (Known.isNonNegative()) 4016 return Tmp2; 4017 4018 // Otherwise, we treat this like a SUB. 4019 } 4020 4021 // Sub can have at most one carry bit. Thus we know that the output 4022 // is, at worst, one more bit than the inputs. 4023 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4024 if (Tmp == 1) return 1; // Early out. 4025 return std::min(Tmp, Tmp2) - 1; 4026 case ISD::MUL: { 4027 // The output of the Mul can be at most twice the valid bits in the inputs. 4028 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4029 if (SignBitsOp0 == 1) 4030 break; 4031 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4032 if (SignBitsOp1 == 1) 4033 break; 4034 unsigned OutValidBits = 4035 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4036 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4037 } 4038 case ISD::SREM: 4039 // The sign bit is the LHS's sign bit, except when the result of the 4040 // remainder is zero. The magnitude of the result should be less than or 4041 // equal to the magnitude of the LHS. Therefore, the result should have 4042 // at least as many sign bits as the left hand side. 4043 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4044 case ISD::TRUNCATE: { 4045 // Check if the sign bits of source go down as far as the truncated value. 4046 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4047 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4048 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4049 return NumSrcSignBits - (NumSrcBits - VTBits); 4050 break; 4051 } 4052 case ISD::EXTRACT_ELEMENT: { 4053 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4054 const int BitWidth = Op.getValueSizeInBits(); 4055 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4056 4057 // Get reverse index (starting from 1), Op1 value indexes elements from 4058 // little end. Sign starts at big end. 4059 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4060 4061 // If the sign portion ends in our element the subtraction gives correct 4062 // result. Otherwise it gives either negative or > bitwidth result 4063 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4064 } 4065 case ISD::INSERT_VECTOR_ELT: { 4066 // If we know the element index, split the demand between the 4067 // source vector and the inserted element, otherwise assume we need 4068 // the original demanded vector elements and the value. 4069 SDValue InVec = Op.getOperand(0); 4070 SDValue InVal = Op.getOperand(1); 4071 SDValue EltNo = Op.getOperand(2); 4072 bool DemandedVal = true; 4073 APInt DemandedVecElts = DemandedElts; 4074 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4075 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4076 unsigned EltIdx = CEltNo->getZExtValue(); 4077 DemandedVal = !!DemandedElts[EltIdx]; 4078 DemandedVecElts.clearBit(EltIdx); 4079 } 4080 Tmp = std::numeric_limits<unsigned>::max(); 4081 if (DemandedVal) { 4082 // TODO - handle implicit truncation of inserted elements. 4083 if (InVal.getScalarValueSizeInBits() != VTBits) 4084 break; 4085 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4086 Tmp = std::min(Tmp, Tmp2); 4087 } 4088 if (!!DemandedVecElts) { 4089 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4090 Tmp = std::min(Tmp, Tmp2); 4091 } 4092 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4093 return Tmp; 4094 } 4095 case ISD::EXTRACT_VECTOR_ELT: { 4096 SDValue InVec = Op.getOperand(0); 4097 SDValue EltNo = Op.getOperand(1); 4098 EVT VecVT = InVec.getValueType(); 4099 // ComputeNumSignBits not yet implemented for scalable vectors. 4100 if (VecVT.isScalableVector()) 4101 break; 4102 const unsigned BitWidth = Op.getValueSizeInBits(); 4103 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4104 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4105 4106 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4107 // anything about sign bits. But if the sizes match we can derive knowledge 4108 // about sign bits from the vector operand. 4109 if (BitWidth != EltBitWidth) 4110 break; 4111 4112 // If we know the element index, just demand that vector element, else for 4113 // an unknown element index, ignore DemandedElts and demand them all. 4114 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4115 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4116 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4117 DemandedSrcElts = 4118 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4119 4120 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4121 } 4122 case ISD::EXTRACT_SUBVECTOR: { 4123 // Offset the demanded elts by the subvector index. 4124 SDValue Src = Op.getOperand(0); 4125 // Bail until we can represent demanded elements for scalable vectors. 4126 if (Src.getValueType().isScalableVector()) 4127 break; 4128 uint64_t Idx = Op.getConstantOperandVal(1); 4129 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4130 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4131 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4132 } 4133 case ISD::CONCAT_VECTORS: { 4134 // Determine the minimum number of sign bits across all demanded 4135 // elts of the input vectors. Early out if the result is already 1. 4136 Tmp = std::numeric_limits<unsigned>::max(); 4137 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4138 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4139 unsigned NumSubVectors = Op.getNumOperands(); 4140 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4141 APInt DemandedSub = 4142 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4143 if (!DemandedSub) 4144 continue; 4145 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4146 Tmp = std::min(Tmp, Tmp2); 4147 } 4148 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4149 return Tmp; 4150 } 4151 case ISD::INSERT_SUBVECTOR: { 4152 // Demand any elements from the subvector and the remainder from the src its 4153 // inserted into. 4154 SDValue Src = Op.getOperand(0); 4155 SDValue Sub = Op.getOperand(1); 4156 uint64_t Idx = Op.getConstantOperandVal(2); 4157 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4158 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4159 APInt DemandedSrcElts = DemandedElts; 4160 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4161 4162 Tmp = std::numeric_limits<unsigned>::max(); 4163 if (!!DemandedSubElts) { 4164 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4165 if (Tmp == 1) 4166 return 1; // early-out 4167 } 4168 if (!!DemandedSrcElts) { 4169 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4170 Tmp = std::min(Tmp, Tmp2); 4171 } 4172 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4173 return Tmp; 4174 } 4175 case ISD::ATOMIC_CMP_SWAP: 4176 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4177 case ISD::ATOMIC_SWAP: 4178 case ISD::ATOMIC_LOAD_ADD: 4179 case ISD::ATOMIC_LOAD_SUB: 4180 case ISD::ATOMIC_LOAD_AND: 4181 case ISD::ATOMIC_LOAD_CLR: 4182 case ISD::ATOMIC_LOAD_OR: 4183 case ISD::ATOMIC_LOAD_XOR: 4184 case ISD::ATOMIC_LOAD_NAND: 4185 case ISD::ATOMIC_LOAD_MIN: 4186 case ISD::ATOMIC_LOAD_MAX: 4187 case ISD::ATOMIC_LOAD_UMIN: 4188 case ISD::ATOMIC_LOAD_UMAX: 4189 case ISD::ATOMIC_LOAD: { 4190 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4191 // If we are looking at the loaded value. 4192 if (Op.getResNo() == 0) { 4193 if (Tmp == VTBits) 4194 return 1; // early-out 4195 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4196 return VTBits - Tmp + 1; 4197 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4198 return VTBits - Tmp; 4199 } 4200 break; 4201 } 4202 } 4203 4204 // If we are looking at the loaded value of the SDNode. 4205 if (Op.getResNo() == 0) { 4206 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4207 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4208 unsigned ExtType = LD->getExtensionType(); 4209 switch (ExtType) { 4210 default: break; 4211 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4212 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4213 return VTBits - Tmp + 1; 4214 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4215 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4216 return VTBits - Tmp; 4217 case ISD::NON_EXTLOAD: 4218 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4219 // We only need to handle vectors - computeKnownBits should handle 4220 // scalar cases. 4221 Type *CstTy = Cst->getType(); 4222 if (CstTy->isVectorTy() && 4223 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4224 Tmp = VTBits; 4225 for (unsigned i = 0; i != NumElts; ++i) { 4226 if (!DemandedElts[i]) 4227 continue; 4228 if (Constant *Elt = Cst->getAggregateElement(i)) { 4229 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4230 const APInt &Value = CInt->getValue(); 4231 Tmp = std::min(Tmp, Value.getNumSignBits()); 4232 continue; 4233 } 4234 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4235 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4236 Tmp = std::min(Tmp, Value.getNumSignBits()); 4237 continue; 4238 } 4239 } 4240 // Unknown type. Conservatively assume no bits match sign bit. 4241 return 1; 4242 } 4243 return Tmp; 4244 } 4245 } 4246 break; 4247 } 4248 } 4249 } 4250 4251 // Allow the target to implement this method for its nodes. 4252 if (Opcode >= ISD::BUILTIN_OP_END || 4253 Opcode == ISD::INTRINSIC_WO_CHAIN || 4254 Opcode == ISD::INTRINSIC_W_CHAIN || 4255 Opcode == ISD::INTRINSIC_VOID) { 4256 unsigned NumBits = 4257 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4258 if (NumBits > 1) 4259 FirstAnswer = std::max(FirstAnswer, NumBits); 4260 } 4261 4262 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4263 // use this information. 4264 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4265 4266 APInt Mask; 4267 if (Known.isNonNegative()) { // sign bit is 0 4268 Mask = Known.Zero; 4269 } else if (Known.isNegative()) { // sign bit is 1; 4270 Mask = Known.One; 4271 } else { 4272 // Nothing known. 4273 return FirstAnswer; 4274 } 4275 4276 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4277 // the number of identical bits in the top of the input value. 4278 Mask <<= Mask.getBitWidth()-VTBits; 4279 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4280 } 4281 4282 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4283 unsigned Depth) const { 4284 // Early out for FREEZE. 4285 if (Op.getOpcode() == ISD::FREEZE) 4286 return true; 4287 4288 // TODO: Assume we don't know anything for now. 4289 EVT VT = Op.getValueType(); 4290 if (VT.isScalableVector()) 4291 return false; 4292 4293 APInt DemandedElts = VT.isVector() 4294 ? APInt::getAllOnes(VT.getVectorNumElements()) 4295 : APInt(1, 1); 4296 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4297 } 4298 4299 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4300 const APInt &DemandedElts, 4301 bool PoisonOnly, 4302 unsigned Depth) const { 4303 unsigned Opcode = Op.getOpcode(); 4304 4305 // Early out for FREEZE. 4306 if (Opcode == ISD::FREEZE) 4307 return true; 4308 4309 if (Depth >= MaxRecursionDepth) 4310 return false; // Limit search depth. 4311 4312 if (isIntOrFPConstant(Op)) 4313 return true; 4314 4315 switch (Opcode) { 4316 case ISD::UNDEF: 4317 return PoisonOnly; 4318 4319 case ISD::BUILD_VECTOR: 4320 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4321 // this shouldn't affect the result. 4322 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4323 if (!DemandedElts[i]) 4324 continue; 4325 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4326 Depth + 1)) 4327 return false; 4328 } 4329 return true; 4330 4331 // TODO: Search for noundef attributes from library functions. 4332 4333 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4334 4335 default: 4336 // Allow the target to implement this method for its nodes. 4337 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4338 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4339 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4340 Op, DemandedElts, *this, PoisonOnly, Depth); 4341 break; 4342 } 4343 4344 return false; 4345 } 4346 4347 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4348 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4349 !isa<ConstantSDNode>(Op.getOperand(1))) 4350 return false; 4351 4352 if (Op.getOpcode() == ISD::OR && 4353 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4354 return false; 4355 4356 return true; 4357 } 4358 4359 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4360 // If we're told that NaNs won't happen, assume they won't. 4361 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4362 return true; 4363 4364 if (Depth >= MaxRecursionDepth) 4365 return false; // Limit search depth. 4366 4367 // TODO: Handle vectors. 4368 // If the value is a constant, we can obviously see if it is a NaN or not. 4369 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4370 return !C->getValueAPF().isNaN() || 4371 (SNaN && !C->getValueAPF().isSignaling()); 4372 } 4373 4374 unsigned Opcode = Op.getOpcode(); 4375 switch (Opcode) { 4376 case ISD::FADD: 4377 case ISD::FSUB: 4378 case ISD::FMUL: 4379 case ISD::FDIV: 4380 case ISD::FREM: 4381 case ISD::FSIN: 4382 case ISD::FCOS: { 4383 if (SNaN) 4384 return true; 4385 // TODO: Need isKnownNeverInfinity 4386 return false; 4387 } 4388 case ISD::FCANONICALIZE: 4389 case ISD::FEXP: 4390 case ISD::FEXP2: 4391 case ISD::FTRUNC: 4392 case ISD::FFLOOR: 4393 case ISD::FCEIL: 4394 case ISD::FROUND: 4395 case ISD::FROUNDEVEN: 4396 case ISD::FRINT: 4397 case ISD::FNEARBYINT: { 4398 if (SNaN) 4399 return true; 4400 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4401 } 4402 case ISD::FABS: 4403 case ISD::FNEG: 4404 case ISD::FCOPYSIGN: { 4405 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4406 } 4407 case ISD::SELECT: 4408 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4409 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4410 case ISD::FP_EXTEND: 4411 case ISD::FP_ROUND: { 4412 if (SNaN) 4413 return true; 4414 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4415 } 4416 case ISD::SINT_TO_FP: 4417 case ISD::UINT_TO_FP: 4418 return true; 4419 case ISD::FMA: 4420 case ISD::FMAD: { 4421 if (SNaN) 4422 return true; 4423 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4424 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4425 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4426 } 4427 case ISD::FSQRT: // Need is known positive 4428 case ISD::FLOG: 4429 case ISD::FLOG2: 4430 case ISD::FLOG10: 4431 case ISD::FPOWI: 4432 case ISD::FPOW: { 4433 if (SNaN) 4434 return true; 4435 // TODO: Refine on operand 4436 return false; 4437 } 4438 case ISD::FMINNUM: 4439 case ISD::FMAXNUM: { 4440 // Only one needs to be known not-nan, since it will be returned if the 4441 // other ends up being one. 4442 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4443 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4444 } 4445 case ISD::FMINNUM_IEEE: 4446 case ISD::FMAXNUM_IEEE: { 4447 if (SNaN) 4448 return true; 4449 // This can return a NaN if either operand is an sNaN, or if both operands 4450 // are NaN. 4451 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4452 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4453 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4454 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4455 } 4456 case ISD::FMINIMUM: 4457 case ISD::FMAXIMUM: { 4458 // TODO: Does this quiet or return the origina NaN as-is? 4459 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4460 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4461 } 4462 case ISD::EXTRACT_VECTOR_ELT: { 4463 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4464 } 4465 default: 4466 if (Opcode >= ISD::BUILTIN_OP_END || 4467 Opcode == ISD::INTRINSIC_WO_CHAIN || 4468 Opcode == ISD::INTRINSIC_W_CHAIN || 4469 Opcode == ISD::INTRINSIC_VOID) { 4470 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4471 } 4472 4473 return false; 4474 } 4475 } 4476 4477 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4478 assert(Op.getValueType().isFloatingPoint() && 4479 "Floating point type expected"); 4480 4481 // If the value is a constant, we can obviously see if it is a zero or not. 4482 // TODO: Add BuildVector support. 4483 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4484 return !C->isZero(); 4485 return false; 4486 } 4487 4488 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4489 assert(!Op.getValueType().isFloatingPoint() && 4490 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4491 4492 // If the value is a constant, we can obviously see if it is a zero or not. 4493 if (ISD::matchUnaryPredicate(Op, 4494 [](ConstantSDNode *C) { return !C->isZero(); })) 4495 return true; 4496 4497 // TODO: Recognize more cases here. 4498 switch (Op.getOpcode()) { 4499 default: break; 4500 case ISD::OR: 4501 if (isKnownNeverZero(Op.getOperand(1)) || 4502 isKnownNeverZero(Op.getOperand(0))) 4503 return true; 4504 break; 4505 } 4506 4507 return false; 4508 } 4509 4510 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4511 // Check the obvious case. 4512 if (A == B) return true; 4513 4514 // For for negative and positive zero. 4515 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4516 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4517 if (CA->isZero() && CB->isZero()) return true; 4518 4519 // Otherwise they may not be equal. 4520 return false; 4521 } 4522 4523 // FIXME: unify with llvm::haveNoCommonBitsSet. 4524 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4525 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4526 assert(A.getValueType() == B.getValueType() && 4527 "Values must have the same type"); 4528 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4529 computeKnownBits(B)); 4530 } 4531 4532 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4533 SelectionDAG &DAG) { 4534 if (cast<ConstantSDNode>(Step)->isZero()) 4535 return DAG.getConstant(0, DL, VT); 4536 4537 return SDValue(); 4538 } 4539 4540 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4541 ArrayRef<SDValue> Ops, 4542 SelectionDAG &DAG) { 4543 int NumOps = Ops.size(); 4544 assert(NumOps != 0 && "Can't build an empty vector!"); 4545 assert(!VT.isScalableVector() && 4546 "BUILD_VECTOR cannot be used with scalable types"); 4547 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4548 "Incorrect element count in BUILD_VECTOR!"); 4549 4550 // BUILD_VECTOR of UNDEFs is UNDEF. 4551 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4552 return DAG.getUNDEF(VT); 4553 4554 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4555 SDValue IdentitySrc; 4556 bool IsIdentity = true; 4557 for (int i = 0; i != NumOps; ++i) { 4558 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4559 Ops[i].getOperand(0).getValueType() != VT || 4560 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4561 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4562 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4563 IsIdentity = false; 4564 break; 4565 } 4566 IdentitySrc = Ops[i].getOperand(0); 4567 } 4568 if (IsIdentity) 4569 return IdentitySrc; 4570 4571 return SDValue(); 4572 } 4573 4574 /// Try to simplify vector concatenation to an input value, undef, or build 4575 /// vector. 4576 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4577 ArrayRef<SDValue> Ops, 4578 SelectionDAG &DAG) { 4579 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4580 assert(llvm::all_of(Ops, 4581 [Ops](SDValue Op) { 4582 return Ops[0].getValueType() == Op.getValueType(); 4583 }) && 4584 "Concatenation of vectors with inconsistent value types!"); 4585 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4586 VT.getVectorElementCount() && 4587 "Incorrect element count in vector concatenation!"); 4588 4589 if (Ops.size() == 1) 4590 return Ops[0]; 4591 4592 // Concat of UNDEFs is UNDEF. 4593 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4594 return DAG.getUNDEF(VT); 4595 4596 // Scan the operands and look for extract operations from a single source 4597 // that correspond to insertion at the same location via this concatenation: 4598 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4599 SDValue IdentitySrc; 4600 bool IsIdentity = true; 4601 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4602 SDValue Op = Ops[i]; 4603 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4604 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4605 Op.getOperand(0).getValueType() != VT || 4606 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4607 Op.getConstantOperandVal(1) != IdentityIndex) { 4608 IsIdentity = false; 4609 break; 4610 } 4611 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4612 "Unexpected identity source vector for concat of extracts"); 4613 IdentitySrc = Op.getOperand(0); 4614 } 4615 if (IsIdentity) { 4616 assert(IdentitySrc && "Failed to set source vector of extracts"); 4617 return IdentitySrc; 4618 } 4619 4620 // The code below this point is only designed to work for fixed width 4621 // vectors, so we bail out for now. 4622 if (VT.isScalableVector()) 4623 return SDValue(); 4624 4625 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4626 // simplified to one big BUILD_VECTOR. 4627 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4628 EVT SVT = VT.getScalarType(); 4629 SmallVector<SDValue, 16> Elts; 4630 for (SDValue Op : Ops) { 4631 EVT OpVT = Op.getValueType(); 4632 if (Op.isUndef()) 4633 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4634 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4635 Elts.append(Op->op_begin(), Op->op_end()); 4636 else 4637 return SDValue(); 4638 } 4639 4640 // BUILD_VECTOR requires all inputs to be of the same type, find the 4641 // maximum type and extend them all. 4642 for (SDValue Op : Elts) 4643 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4644 4645 if (SVT.bitsGT(VT.getScalarType())) { 4646 for (SDValue &Op : Elts) { 4647 if (Op.isUndef()) 4648 Op = DAG.getUNDEF(SVT); 4649 else 4650 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4651 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4652 : DAG.getSExtOrTrunc(Op, DL, SVT); 4653 } 4654 } 4655 4656 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4657 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4658 return V; 4659 } 4660 4661 /// Gets or creates the specified node. 4662 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4663 FoldingSetNodeID ID; 4664 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4665 void *IP = nullptr; 4666 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4667 return SDValue(E, 0); 4668 4669 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4670 getVTList(VT)); 4671 CSEMap.InsertNode(N, IP); 4672 4673 InsertNode(N); 4674 SDValue V = SDValue(N, 0); 4675 NewSDValueDbgMsg(V, "Creating new node: ", this); 4676 return V; 4677 } 4678 4679 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4680 SDValue Operand) { 4681 SDNodeFlags Flags; 4682 if (Inserter) 4683 Flags = Inserter->getFlags(); 4684 return getNode(Opcode, DL, VT, Operand, Flags); 4685 } 4686 4687 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4688 SDValue Operand, const SDNodeFlags Flags) { 4689 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4690 "Operand is DELETED_NODE!"); 4691 // Constant fold unary operations with an integer constant operand. Even 4692 // opaque constant will be folded, because the folding of unary operations 4693 // doesn't create new constants with different values. Nevertheless, the 4694 // opaque flag is preserved during folding to prevent future folding with 4695 // other constants. 4696 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4697 const APInt &Val = C->getAPIntValue(); 4698 switch (Opcode) { 4699 default: break; 4700 case ISD::SIGN_EXTEND: 4701 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4702 C->isTargetOpcode(), C->isOpaque()); 4703 case ISD::TRUNCATE: 4704 if (C->isOpaque()) 4705 break; 4706 LLVM_FALLTHROUGH; 4707 case ISD::ZERO_EXTEND: 4708 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4709 C->isTargetOpcode(), C->isOpaque()); 4710 case ISD::ANY_EXTEND: 4711 // Some targets like RISCV prefer to sign extend some types. 4712 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4713 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4714 C->isTargetOpcode(), C->isOpaque()); 4715 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4716 C->isTargetOpcode(), C->isOpaque()); 4717 case ISD::UINT_TO_FP: 4718 case ISD::SINT_TO_FP: { 4719 APFloat apf(EVTToAPFloatSemantics(VT), 4720 APInt::getZero(VT.getSizeInBits())); 4721 (void)apf.convertFromAPInt(Val, 4722 Opcode==ISD::SINT_TO_FP, 4723 APFloat::rmNearestTiesToEven); 4724 return getConstantFP(apf, DL, VT); 4725 } 4726 case ISD::BITCAST: 4727 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4728 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4729 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4730 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4731 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4732 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4733 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4734 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4735 break; 4736 case ISD::ABS: 4737 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4738 C->isOpaque()); 4739 case ISD::BITREVERSE: 4740 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4741 C->isOpaque()); 4742 case ISD::BSWAP: 4743 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4744 C->isOpaque()); 4745 case ISD::CTPOP: 4746 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4747 C->isOpaque()); 4748 case ISD::CTLZ: 4749 case ISD::CTLZ_ZERO_UNDEF: 4750 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4751 C->isOpaque()); 4752 case ISD::CTTZ: 4753 case ISD::CTTZ_ZERO_UNDEF: 4754 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4755 C->isOpaque()); 4756 case ISD::FP16_TO_FP: { 4757 bool Ignored; 4758 APFloat FPV(APFloat::IEEEhalf(), 4759 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4760 4761 // This can return overflow, underflow, or inexact; we don't care. 4762 // FIXME need to be more flexible about rounding mode. 4763 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4764 APFloat::rmNearestTiesToEven, &Ignored); 4765 return getConstantFP(FPV, DL, VT); 4766 } 4767 case ISD::STEP_VECTOR: { 4768 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4769 return V; 4770 break; 4771 } 4772 } 4773 } 4774 4775 // Constant fold unary operations with a floating point constant operand. 4776 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4777 APFloat V = C->getValueAPF(); // make copy 4778 switch (Opcode) { 4779 case ISD::FNEG: 4780 V.changeSign(); 4781 return getConstantFP(V, DL, VT); 4782 case ISD::FABS: 4783 V.clearSign(); 4784 return getConstantFP(V, DL, VT); 4785 case ISD::FCEIL: { 4786 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4787 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4788 return getConstantFP(V, DL, VT); 4789 break; 4790 } 4791 case ISD::FTRUNC: { 4792 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4793 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4794 return getConstantFP(V, DL, VT); 4795 break; 4796 } 4797 case ISD::FFLOOR: { 4798 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4799 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4800 return getConstantFP(V, DL, VT); 4801 break; 4802 } 4803 case ISD::FP_EXTEND: { 4804 bool ignored; 4805 // This can return overflow, underflow, or inexact; we don't care. 4806 // FIXME need to be more flexible about rounding mode. 4807 (void)V.convert(EVTToAPFloatSemantics(VT), 4808 APFloat::rmNearestTiesToEven, &ignored); 4809 return getConstantFP(V, DL, VT); 4810 } 4811 case ISD::FP_TO_SINT: 4812 case ISD::FP_TO_UINT: { 4813 bool ignored; 4814 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4815 // FIXME need to be more flexible about rounding mode. 4816 APFloat::opStatus s = 4817 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4818 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4819 break; 4820 return getConstant(IntVal, DL, VT); 4821 } 4822 case ISD::BITCAST: 4823 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4824 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4825 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4826 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4827 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4828 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4829 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4830 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4831 break; 4832 case ISD::FP_TO_FP16: { 4833 bool Ignored; 4834 // This can return overflow, underflow, or inexact; we don't care. 4835 // FIXME need to be more flexible about rounding mode. 4836 (void)V.convert(APFloat::IEEEhalf(), 4837 APFloat::rmNearestTiesToEven, &Ignored); 4838 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4839 } 4840 } 4841 } 4842 4843 // Constant fold unary operations with a vector integer or float operand. 4844 switch (Opcode) { 4845 default: 4846 // FIXME: Entirely reasonable to perform folding of other unary 4847 // operations here as the need arises. 4848 break; 4849 case ISD::FNEG: 4850 case ISD::FABS: 4851 case ISD::FCEIL: 4852 case ISD::FTRUNC: 4853 case ISD::FFLOOR: 4854 case ISD::FP_EXTEND: 4855 case ISD::FP_TO_SINT: 4856 case ISD::FP_TO_UINT: 4857 case ISD::TRUNCATE: 4858 case ISD::ANY_EXTEND: 4859 case ISD::ZERO_EXTEND: 4860 case ISD::SIGN_EXTEND: 4861 case ISD::UINT_TO_FP: 4862 case ISD::SINT_TO_FP: 4863 case ISD::ABS: 4864 case ISD::BITREVERSE: 4865 case ISD::BSWAP: 4866 case ISD::CTLZ: 4867 case ISD::CTLZ_ZERO_UNDEF: 4868 case ISD::CTTZ: 4869 case ISD::CTTZ_ZERO_UNDEF: 4870 case ISD::CTPOP: { 4871 SDValue Ops = {Operand}; 4872 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4873 return Fold; 4874 } 4875 } 4876 4877 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4878 switch (Opcode) { 4879 case ISD::STEP_VECTOR: 4880 assert(VT.isScalableVector() && 4881 "STEP_VECTOR can only be used with scalable types"); 4882 assert(OpOpcode == ISD::TargetConstant && 4883 VT.getVectorElementType() == Operand.getValueType() && 4884 "Unexpected step operand"); 4885 break; 4886 case ISD::FREEZE: 4887 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4888 break; 4889 case ISD::TokenFactor: 4890 case ISD::MERGE_VALUES: 4891 case ISD::CONCAT_VECTORS: 4892 return Operand; // Factor, merge or concat of one node? No need. 4893 case ISD::BUILD_VECTOR: { 4894 // Attempt to simplify BUILD_VECTOR. 4895 SDValue Ops[] = {Operand}; 4896 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4897 return V; 4898 break; 4899 } 4900 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4901 case ISD::FP_EXTEND: 4902 assert(VT.isFloatingPoint() && 4903 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4904 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4905 assert((!VT.isVector() || 4906 VT.getVectorElementCount() == 4907 Operand.getValueType().getVectorElementCount()) && 4908 "Vector element count mismatch!"); 4909 assert(Operand.getValueType().bitsLT(VT) && 4910 "Invalid fpext node, dst < src!"); 4911 if (Operand.isUndef()) 4912 return getUNDEF(VT); 4913 break; 4914 case ISD::FP_TO_SINT: 4915 case ISD::FP_TO_UINT: 4916 if (Operand.isUndef()) 4917 return getUNDEF(VT); 4918 break; 4919 case ISD::SINT_TO_FP: 4920 case ISD::UINT_TO_FP: 4921 // [us]itofp(undef) = 0, because the result value is bounded. 4922 if (Operand.isUndef()) 4923 return getConstantFP(0.0, DL, VT); 4924 break; 4925 case ISD::SIGN_EXTEND: 4926 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4927 "Invalid SIGN_EXTEND!"); 4928 assert(VT.isVector() == Operand.getValueType().isVector() && 4929 "SIGN_EXTEND result type type should be vector iff the operand " 4930 "type is vector!"); 4931 if (Operand.getValueType() == VT) return Operand; // noop extension 4932 assert((!VT.isVector() || 4933 VT.getVectorElementCount() == 4934 Operand.getValueType().getVectorElementCount()) && 4935 "Vector element count mismatch!"); 4936 assert(Operand.getValueType().bitsLT(VT) && 4937 "Invalid sext node, dst < src!"); 4938 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4939 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4940 if (OpOpcode == ISD::UNDEF) 4941 // sext(undef) = 0, because the top bits will all be the same. 4942 return getConstant(0, DL, VT); 4943 break; 4944 case ISD::ZERO_EXTEND: 4945 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4946 "Invalid ZERO_EXTEND!"); 4947 assert(VT.isVector() == Operand.getValueType().isVector() && 4948 "ZERO_EXTEND result type type should be vector iff the operand " 4949 "type is vector!"); 4950 if (Operand.getValueType() == VT) return Operand; // noop extension 4951 assert((!VT.isVector() || 4952 VT.getVectorElementCount() == 4953 Operand.getValueType().getVectorElementCount()) && 4954 "Vector element count mismatch!"); 4955 assert(Operand.getValueType().bitsLT(VT) && 4956 "Invalid zext node, dst < src!"); 4957 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4958 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4959 if (OpOpcode == ISD::UNDEF) 4960 // zext(undef) = 0, because the top bits will be zero. 4961 return getConstant(0, DL, VT); 4962 break; 4963 case ISD::ANY_EXTEND: 4964 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4965 "Invalid ANY_EXTEND!"); 4966 assert(VT.isVector() == Operand.getValueType().isVector() && 4967 "ANY_EXTEND result type type should be vector iff the operand " 4968 "type is vector!"); 4969 if (Operand.getValueType() == VT) return Operand; // noop extension 4970 assert((!VT.isVector() || 4971 VT.getVectorElementCount() == 4972 Operand.getValueType().getVectorElementCount()) && 4973 "Vector element count mismatch!"); 4974 assert(Operand.getValueType().bitsLT(VT) && 4975 "Invalid anyext node, dst < src!"); 4976 4977 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4978 OpOpcode == ISD::ANY_EXTEND) 4979 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4980 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4981 if (OpOpcode == ISD::UNDEF) 4982 return getUNDEF(VT); 4983 4984 // (ext (trunc x)) -> x 4985 if (OpOpcode == ISD::TRUNCATE) { 4986 SDValue OpOp = Operand.getOperand(0); 4987 if (OpOp.getValueType() == VT) { 4988 transferDbgValues(Operand, OpOp); 4989 return OpOp; 4990 } 4991 } 4992 break; 4993 case ISD::TRUNCATE: 4994 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4995 "Invalid TRUNCATE!"); 4996 assert(VT.isVector() == Operand.getValueType().isVector() && 4997 "TRUNCATE result type type should be vector iff the operand " 4998 "type is vector!"); 4999 if (Operand.getValueType() == VT) return Operand; // noop truncate 5000 assert((!VT.isVector() || 5001 VT.getVectorElementCount() == 5002 Operand.getValueType().getVectorElementCount()) && 5003 "Vector element count mismatch!"); 5004 assert(Operand.getValueType().bitsGT(VT) && 5005 "Invalid truncate node, src < dst!"); 5006 if (OpOpcode == ISD::TRUNCATE) 5007 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5008 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5009 OpOpcode == ISD::ANY_EXTEND) { 5010 // If the source is smaller than the dest, we still need an extend. 5011 if (Operand.getOperand(0).getValueType().getScalarType() 5012 .bitsLT(VT.getScalarType())) 5013 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5014 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5015 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5016 return Operand.getOperand(0); 5017 } 5018 if (OpOpcode == ISD::UNDEF) 5019 return getUNDEF(VT); 5020 break; 5021 case ISD::ANY_EXTEND_VECTOR_INREG: 5022 case ISD::ZERO_EXTEND_VECTOR_INREG: 5023 case ISD::SIGN_EXTEND_VECTOR_INREG: 5024 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5025 assert(Operand.getValueType().bitsLE(VT) && 5026 "The input must be the same size or smaller than the result."); 5027 assert(VT.getVectorMinNumElements() < 5028 Operand.getValueType().getVectorMinNumElements() && 5029 "The destination vector type must have fewer lanes than the input."); 5030 break; 5031 case ISD::ABS: 5032 assert(VT.isInteger() && VT == Operand.getValueType() && 5033 "Invalid ABS!"); 5034 if (OpOpcode == ISD::UNDEF) 5035 return getUNDEF(VT); 5036 break; 5037 case ISD::BSWAP: 5038 assert(VT.isInteger() && VT == Operand.getValueType() && 5039 "Invalid BSWAP!"); 5040 assert((VT.getScalarSizeInBits() % 16 == 0) && 5041 "BSWAP types must be a multiple of 16 bits!"); 5042 if (OpOpcode == ISD::UNDEF) 5043 return getUNDEF(VT); 5044 break; 5045 case ISD::BITREVERSE: 5046 assert(VT.isInteger() && VT == Operand.getValueType() && 5047 "Invalid BITREVERSE!"); 5048 if (OpOpcode == ISD::UNDEF) 5049 return getUNDEF(VT); 5050 break; 5051 case ISD::BITCAST: 5052 // Basic sanity checking. 5053 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5054 "Cannot BITCAST between types of different sizes!"); 5055 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5056 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5057 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5058 if (OpOpcode == ISD::UNDEF) 5059 return getUNDEF(VT); 5060 break; 5061 case ISD::SCALAR_TO_VECTOR: 5062 assert(VT.isVector() && !Operand.getValueType().isVector() && 5063 (VT.getVectorElementType() == Operand.getValueType() || 5064 (VT.getVectorElementType().isInteger() && 5065 Operand.getValueType().isInteger() && 5066 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5067 "Illegal SCALAR_TO_VECTOR node!"); 5068 if (OpOpcode == ISD::UNDEF) 5069 return getUNDEF(VT); 5070 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5071 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5072 isa<ConstantSDNode>(Operand.getOperand(1)) && 5073 Operand.getConstantOperandVal(1) == 0 && 5074 Operand.getOperand(0).getValueType() == VT) 5075 return Operand.getOperand(0); 5076 break; 5077 case ISD::FNEG: 5078 // Negation of an unknown bag of bits is still completely undefined. 5079 if (OpOpcode == ISD::UNDEF) 5080 return getUNDEF(VT); 5081 5082 if (OpOpcode == ISD::FNEG) // --X -> X 5083 return Operand.getOperand(0); 5084 break; 5085 case ISD::FABS: 5086 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5087 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5088 break; 5089 case ISD::VSCALE: 5090 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5091 break; 5092 case ISD::CTPOP: 5093 if (Operand.getValueType().getScalarType() == MVT::i1) 5094 return Operand; 5095 break; 5096 case ISD::CTLZ: 5097 case ISD::CTTZ: 5098 if (Operand.getValueType().getScalarType() == MVT::i1) 5099 return getNOT(DL, Operand, Operand.getValueType()); 5100 break; 5101 case ISD::VECREDUCE_SMIN: 5102 case ISD::VECREDUCE_UMAX: 5103 if (Operand.getValueType().getScalarType() == MVT::i1) 5104 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5105 break; 5106 case ISD::VECREDUCE_SMAX: 5107 case ISD::VECREDUCE_UMIN: 5108 if (Operand.getValueType().getScalarType() == MVT::i1) 5109 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5110 break; 5111 } 5112 5113 SDNode *N; 5114 SDVTList VTs = getVTList(VT); 5115 SDValue Ops[] = {Operand}; 5116 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5117 FoldingSetNodeID ID; 5118 AddNodeIDNode(ID, Opcode, VTs, Ops); 5119 void *IP = nullptr; 5120 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5121 E->intersectFlagsWith(Flags); 5122 return SDValue(E, 0); 5123 } 5124 5125 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5126 N->setFlags(Flags); 5127 createOperands(N, Ops); 5128 CSEMap.InsertNode(N, IP); 5129 } else { 5130 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5131 createOperands(N, Ops); 5132 } 5133 5134 InsertNode(N); 5135 SDValue V = SDValue(N, 0); 5136 NewSDValueDbgMsg(V, "Creating new node: ", this); 5137 return V; 5138 } 5139 5140 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5141 const APInt &C2) { 5142 switch (Opcode) { 5143 case ISD::ADD: return C1 + C2; 5144 case ISD::SUB: return C1 - C2; 5145 case ISD::MUL: return C1 * C2; 5146 case ISD::AND: return C1 & C2; 5147 case ISD::OR: return C1 | C2; 5148 case ISD::XOR: return C1 ^ C2; 5149 case ISD::SHL: return C1 << C2; 5150 case ISD::SRL: return C1.lshr(C2); 5151 case ISD::SRA: return C1.ashr(C2); 5152 case ISD::ROTL: return C1.rotl(C2); 5153 case ISD::ROTR: return C1.rotr(C2); 5154 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5155 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5156 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5157 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5158 case ISD::SADDSAT: return C1.sadd_sat(C2); 5159 case ISD::UADDSAT: return C1.uadd_sat(C2); 5160 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5161 case ISD::USUBSAT: return C1.usub_sat(C2); 5162 case ISD::UDIV: 5163 if (!C2.getBoolValue()) 5164 break; 5165 return C1.udiv(C2); 5166 case ISD::UREM: 5167 if (!C2.getBoolValue()) 5168 break; 5169 return C1.urem(C2); 5170 case ISD::SDIV: 5171 if (!C2.getBoolValue()) 5172 break; 5173 return C1.sdiv(C2); 5174 case ISD::SREM: 5175 if (!C2.getBoolValue()) 5176 break; 5177 return C1.srem(C2); 5178 case ISD::MULHS: { 5179 unsigned FullWidth = C1.getBitWidth() * 2; 5180 APInt C1Ext = C1.sext(FullWidth); 5181 APInt C2Ext = C2.sext(FullWidth); 5182 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5183 } 5184 case ISD::MULHU: { 5185 unsigned FullWidth = C1.getBitWidth() * 2; 5186 APInt C1Ext = C1.zext(FullWidth); 5187 APInt C2Ext = C2.zext(FullWidth); 5188 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5189 } 5190 } 5191 return llvm::None; 5192 } 5193 5194 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5195 const GlobalAddressSDNode *GA, 5196 const SDNode *N2) { 5197 if (GA->getOpcode() != ISD::GlobalAddress) 5198 return SDValue(); 5199 if (!TLI->isOffsetFoldingLegal(GA)) 5200 return SDValue(); 5201 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5202 if (!C2) 5203 return SDValue(); 5204 int64_t Offset = C2->getSExtValue(); 5205 switch (Opcode) { 5206 case ISD::ADD: break; 5207 case ISD::SUB: Offset = -uint64_t(Offset); break; 5208 default: return SDValue(); 5209 } 5210 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5211 GA->getOffset() + uint64_t(Offset)); 5212 } 5213 5214 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5215 switch (Opcode) { 5216 case ISD::SDIV: 5217 case ISD::UDIV: 5218 case ISD::SREM: 5219 case ISD::UREM: { 5220 // If a divisor is zero/undef or any element of a divisor vector is 5221 // zero/undef, the whole op is undef. 5222 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5223 SDValue Divisor = Ops[1]; 5224 if (Divisor.isUndef() || isNullConstant(Divisor)) 5225 return true; 5226 5227 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5228 llvm::any_of(Divisor->op_values(), 5229 [](SDValue V) { return V.isUndef() || 5230 isNullConstant(V); }); 5231 // TODO: Handle signed overflow. 5232 } 5233 // TODO: Handle oversized shifts. 5234 default: 5235 return false; 5236 } 5237 } 5238 5239 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5240 EVT VT, ArrayRef<SDValue> Ops) { 5241 // If the opcode is a target-specific ISD node, there's nothing we can 5242 // do here and the operand rules may not line up with the below, so 5243 // bail early. 5244 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5245 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5246 // foldCONCAT_VECTORS in getNode before this is called. 5247 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5248 return SDValue(); 5249 5250 // For now, the array Ops should only contain two values. 5251 // This enforcement will be removed once this function is merged with 5252 // FoldConstantVectorArithmetic 5253 if (Ops.size() != 2) 5254 return SDValue(); 5255 5256 if (isUndef(Opcode, Ops)) 5257 return getUNDEF(VT); 5258 5259 SDNode *N1 = Ops[0].getNode(); 5260 SDNode *N2 = Ops[1].getNode(); 5261 5262 // Handle the case of two scalars. 5263 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5264 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5265 if (C1->isOpaque() || C2->isOpaque()) 5266 return SDValue(); 5267 5268 Optional<APInt> FoldAttempt = 5269 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5270 if (!FoldAttempt) 5271 return SDValue(); 5272 5273 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5274 assert((!Folded || !VT.isVector()) && 5275 "Can't fold vectors ops with scalar operands"); 5276 return Folded; 5277 } 5278 } 5279 5280 // fold (add Sym, c) -> Sym+c 5281 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5282 return FoldSymbolOffset(Opcode, VT, GA, N2); 5283 if (TLI->isCommutativeBinOp(Opcode)) 5284 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5285 return FoldSymbolOffset(Opcode, VT, GA, N1); 5286 5287 // For fixed width vectors, extract each constant element and fold them 5288 // individually. Either input may be an undef value. 5289 bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR || 5290 N1->getOpcode() == ISD::SPLAT_VECTOR; 5291 if (!IsBVOrSV1 && !N1->isUndef()) 5292 return SDValue(); 5293 bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR || 5294 N2->getOpcode() == ISD::SPLAT_VECTOR; 5295 if (!IsBVOrSV2 && !N2->isUndef()) 5296 return SDValue(); 5297 // If both operands are undef, that's handled the same way as scalars. 5298 if (!IsBVOrSV1 && !IsBVOrSV2) 5299 return SDValue(); 5300 5301 EVT SVT = VT.getScalarType(); 5302 EVT LegalSVT = SVT; 5303 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5304 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5305 if (LegalSVT.bitsLT(SVT)) 5306 return SDValue(); 5307 } 5308 5309 SmallVector<SDValue, 4> Outputs; 5310 unsigned NumOps = 0; 5311 if (IsBVOrSV1) 5312 NumOps = std::max(NumOps, N1->getNumOperands()); 5313 if (IsBVOrSV2) 5314 NumOps = std::max(NumOps, N2->getNumOperands()); 5315 assert(NumOps != 0 && "Expected non-zero operands"); 5316 // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need 5317 // one iteration for that. 5318 assert((!VT.isScalableVector() || NumOps == 1) && 5319 "Scalable vector should only have one scalar"); 5320 5321 for (unsigned I = 0; I != NumOps; ++I) { 5322 // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need 5323 // to use operand 0 of the SPLAT_VECTOR for each fixed element. 5324 SDValue V1; 5325 if (N1->getOpcode() == ISD::BUILD_VECTOR) 5326 V1 = N1->getOperand(I); 5327 else if (N1->getOpcode() == ISD::SPLAT_VECTOR) 5328 V1 = N1->getOperand(0); 5329 else 5330 V1 = getUNDEF(SVT); 5331 5332 SDValue V2; 5333 if (N2->getOpcode() == ISD::BUILD_VECTOR) 5334 V2 = N2->getOperand(I); 5335 else if (N2->getOpcode() == ISD::SPLAT_VECTOR) 5336 V2 = N2->getOperand(0); 5337 else 5338 V2 = getUNDEF(SVT); 5339 5340 if (SVT.isInteger()) { 5341 if (V1.getValueType().bitsGT(SVT)) 5342 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5343 if (V2.getValueType().bitsGT(SVT)) 5344 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5345 } 5346 5347 if (V1.getValueType() != SVT || V2.getValueType() != SVT) 5348 return SDValue(); 5349 5350 // Fold one vector element. 5351 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5352 if (LegalSVT != SVT) 5353 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5354 5355 // Scalar folding only succeeded if the result is a constant or UNDEF. 5356 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5357 ScalarResult.getOpcode() != ISD::ConstantFP) 5358 return SDValue(); 5359 Outputs.push_back(ScalarResult); 5360 } 5361 5362 if (N1->getOpcode() == ISD::BUILD_VECTOR || 5363 N2->getOpcode() == ISD::BUILD_VECTOR) { 5364 assert(VT.getVectorNumElements() == Outputs.size() && 5365 "Vector size mismatch!"); 5366 5367 // Build a big vector out of the scalar elements we generated. 5368 return getBuildVector(VT, SDLoc(), Outputs); 5369 } 5370 5371 assert((N1->getOpcode() == ISD::SPLAT_VECTOR || 5372 N2->getOpcode() == ISD::SPLAT_VECTOR) && 5373 "One operand should be a splat vector"); 5374 5375 assert(Outputs.size() == 1 && "Vector size mismatch!"); 5376 return getSplatVector(VT, SDLoc(), Outputs[0]); 5377 } 5378 5379 // TODO: Merge with FoldConstantArithmetic 5380 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5381 const SDLoc &DL, EVT VT, 5382 ArrayRef<SDValue> Ops, 5383 const SDNodeFlags Flags) { 5384 // If the opcode is a target-specific ISD node, there's nothing we can 5385 // do here and the operand rules may not line up with the below, so 5386 // bail early. 5387 if (Opcode >= ISD::BUILTIN_OP_END) 5388 return SDValue(); 5389 5390 if (isUndef(Opcode, Ops)) 5391 return getUNDEF(VT); 5392 5393 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5394 if (!VT.isVector()) 5395 return SDValue(); 5396 5397 ElementCount NumElts = VT.getVectorElementCount(); 5398 5399 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5400 return !Op.getValueType().isVector() || 5401 Op.getValueType().getVectorElementCount() == NumElts; 5402 }; 5403 5404 auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5405 APInt SplatVal; 5406 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5407 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5408 (BV && BV->isConstant()) || 5409 (Op.getOpcode() == ISD::SPLAT_VECTOR && 5410 ISD::isConstantSplatVector(Op.getNode(), SplatVal)); 5411 }; 5412 5413 // All operands must be vector types with the same number of elements as 5414 // the result type and must be either UNDEF or a build vector of constant 5415 // or UNDEF scalars. 5416 if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) || 5417 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5418 return SDValue(); 5419 5420 // If we are comparing vectors, then the result needs to be a i1 boolean 5421 // that is then sign-extended back to the legal result type. 5422 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5423 5424 // Find legal integer scalar type for constant promotion and 5425 // ensure that its scalar size is at least as large as source. 5426 EVT LegalSVT = VT.getScalarType(); 5427 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5428 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5429 if (LegalSVT.bitsLT(VT.getScalarType())) 5430 return SDValue(); 5431 } 5432 5433 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5434 // only have one operand to check. For fixed-length vector types we may have 5435 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5436 unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5437 5438 // Constant fold each scalar lane separately. 5439 SmallVector<SDValue, 4> ScalarResults; 5440 for (unsigned I = 0; I != NumOperands; I++) { 5441 SmallVector<SDValue, 4> ScalarOps; 5442 for (SDValue Op : Ops) { 5443 EVT InSVT = Op.getValueType().getScalarType(); 5444 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5445 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5446 // We've checked that this is UNDEF or a constant of some kind. 5447 if (Op.isUndef()) 5448 ScalarOps.push_back(getUNDEF(InSVT)); 5449 else 5450 ScalarOps.push_back(Op); 5451 continue; 5452 } 5453 5454 SDValue ScalarOp = 5455 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5456 EVT ScalarVT = ScalarOp.getValueType(); 5457 5458 // Build vector (integer) scalar operands may need implicit 5459 // truncation - do this before constant folding. 5460 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5461 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5462 5463 ScalarOps.push_back(ScalarOp); 5464 } 5465 5466 // Constant fold the scalar operands. 5467 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5468 5469 // Legalize the (integer) scalar constant if necessary. 5470 if (LegalSVT != SVT) 5471 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5472 5473 // Scalar folding only succeeded if the result is a constant or UNDEF. 5474 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5475 ScalarResult.getOpcode() != ISD::ConstantFP) 5476 return SDValue(); 5477 ScalarResults.push_back(ScalarResult); 5478 } 5479 5480 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5481 : getBuildVector(VT, DL, ScalarResults); 5482 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5483 return V; 5484 } 5485 5486 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5487 EVT VT, SDValue N1, SDValue N2) { 5488 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5489 // should. That will require dealing with a potentially non-default 5490 // rounding mode, checking the "opStatus" return value from the APFloat 5491 // math calculations, and possibly other variations. 5492 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5493 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5494 if (N1CFP && N2CFP) { 5495 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5496 switch (Opcode) { 5497 case ISD::FADD: 5498 C1.add(C2, APFloat::rmNearestTiesToEven); 5499 return getConstantFP(C1, DL, VT); 5500 case ISD::FSUB: 5501 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5502 return getConstantFP(C1, DL, VT); 5503 case ISD::FMUL: 5504 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5505 return getConstantFP(C1, DL, VT); 5506 case ISD::FDIV: 5507 C1.divide(C2, APFloat::rmNearestTiesToEven); 5508 return getConstantFP(C1, DL, VT); 5509 case ISD::FREM: 5510 C1.mod(C2); 5511 return getConstantFP(C1, DL, VT); 5512 case ISD::FCOPYSIGN: 5513 C1.copySign(C2); 5514 return getConstantFP(C1, DL, VT); 5515 default: break; 5516 } 5517 } 5518 if (N1CFP && Opcode == ISD::FP_ROUND) { 5519 APFloat C1 = N1CFP->getValueAPF(); // make copy 5520 bool Unused; 5521 // This can return overflow, underflow, or inexact; we don't care. 5522 // FIXME need to be more flexible about rounding mode. 5523 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5524 &Unused); 5525 return getConstantFP(C1, DL, VT); 5526 } 5527 5528 switch (Opcode) { 5529 case ISD::FSUB: 5530 // -0.0 - undef --> undef (consistent with "fneg undef") 5531 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5532 return getUNDEF(VT); 5533 LLVM_FALLTHROUGH; 5534 5535 case ISD::FADD: 5536 case ISD::FMUL: 5537 case ISD::FDIV: 5538 case ISD::FREM: 5539 // If both operands are undef, the result is undef. If 1 operand is undef, 5540 // the result is NaN. This should match the behavior of the IR optimizer. 5541 if (N1.isUndef() && N2.isUndef()) 5542 return getUNDEF(VT); 5543 if (N1.isUndef() || N2.isUndef()) 5544 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5545 } 5546 return SDValue(); 5547 } 5548 5549 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5550 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5551 5552 // There's no need to assert on a byte-aligned pointer. All pointers are at 5553 // least byte aligned. 5554 if (A == Align(1)) 5555 return Val; 5556 5557 FoldingSetNodeID ID; 5558 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5559 ID.AddInteger(A.value()); 5560 5561 void *IP = nullptr; 5562 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5563 return SDValue(E, 0); 5564 5565 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5566 Val.getValueType(), A); 5567 createOperands(N, {Val}); 5568 5569 CSEMap.InsertNode(N, IP); 5570 InsertNode(N); 5571 5572 SDValue V(N, 0); 5573 NewSDValueDbgMsg(V, "Creating new node: ", this); 5574 return V; 5575 } 5576 5577 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5578 SDValue N1, SDValue N2) { 5579 SDNodeFlags Flags; 5580 if (Inserter) 5581 Flags = Inserter->getFlags(); 5582 return getNode(Opcode, DL, VT, N1, N2, Flags); 5583 } 5584 5585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5586 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5587 assert(N1.getOpcode() != ISD::DELETED_NODE && 5588 N2.getOpcode() != ISD::DELETED_NODE && 5589 "Operand is DELETED_NODE!"); 5590 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5591 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5592 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5593 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5594 5595 // Canonicalize constant to RHS if commutative. 5596 if (TLI->isCommutativeBinOp(Opcode)) { 5597 if (N1C && !N2C) { 5598 std::swap(N1C, N2C); 5599 std::swap(N1, N2); 5600 } else if (N1CFP && !N2CFP) { 5601 std::swap(N1CFP, N2CFP); 5602 std::swap(N1, N2); 5603 } 5604 } 5605 5606 switch (Opcode) { 5607 default: break; 5608 case ISD::TokenFactor: 5609 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5610 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5611 // Fold trivial token factors. 5612 if (N1.getOpcode() == ISD::EntryToken) return N2; 5613 if (N2.getOpcode() == ISD::EntryToken) return N1; 5614 if (N1 == N2) return N1; 5615 break; 5616 case ISD::BUILD_VECTOR: { 5617 // Attempt to simplify BUILD_VECTOR. 5618 SDValue Ops[] = {N1, N2}; 5619 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5620 return V; 5621 break; 5622 } 5623 case ISD::CONCAT_VECTORS: { 5624 SDValue Ops[] = {N1, N2}; 5625 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5626 return V; 5627 break; 5628 } 5629 case ISD::AND: 5630 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5631 assert(N1.getValueType() == N2.getValueType() && 5632 N1.getValueType() == VT && "Binary operator types must match!"); 5633 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5634 // worth handling here. 5635 if (N2C && N2C->isZero()) 5636 return N2; 5637 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5638 return N1; 5639 break; 5640 case ISD::OR: 5641 case ISD::XOR: 5642 case ISD::ADD: 5643 case ISD::SUB: 5644 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5645 assert(N1.getValueType() == N2.getValueType() && 5646 N1.getValueType() == VT && "Binary operator types must match!"); 5647 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5648 // it's worth handling here. 5649 if (N2C && N2C->isZero()) 5650 return N1; 5651 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5652 VT.getVectorElementType() == MVT::i1) 5653 return getNode(ISD::XOR, DL, VT, N1, N2); 5654 break; 5655 case ISD::MUL: 5656 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5657 assert(N1.getValueType() == N2.getValueType() && 5658 N1.getValueType() == VT && "Binary operator types must match!"); 5659 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5660 return getNode(ISD::AND, DL, VT, N1, N2); 5661 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5662 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5663 const APInt &N2CImm = N2C->getAPIntValue(); 5664 return getVScale(DL, VT, MulImm * N2CImm); 5665 } 5666 break; 5667 case ISD::UDIV: 5668 case ISD::UREM: 5669 case ISD::MULHU: 5670 case ISD::MULHS: 5671 case ISD::SDIV: 5672 case ISD::SREM: 5673 case ISD::SADDSAT: 5674 case ISD::SSUBSAT: 5675 case ISD::UADDSAT: 5676 case ISD::USUBSAT: 5677 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5678 assert(N1.getValueType() == N2.getValueType() && 5679 N1.getValueType() == VT && "Binary operator types must match!"); 5680 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5681 // fold (add_sat x, y) -> (or x, y) for bool types. 5682 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5683 return getNode(ISD::OR, DL, VT, N1, N2); 5684 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5685 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5686 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5687 } 5688 break; 5689 case ISD::SMIN: 5690 case ISD::UMAX: 5691 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5692 assert(N1.getValueType() == N2.getValueType() && 5693 N1.getValueType() == VT && "Binary operator types must match!"); 5694 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5695 return getNode(ISD::OR, DL, VT, N1, N2); 5696 break; 5697 case ISD::SMAX: 5698 case ISD::UMIN: 5699 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5700 assert(N1.getValueType() == N2.getValueType() && 5701 N1.getValueType() == VT && "Binary operator types must match!"); 5702 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5703 return getNode(ISD::AND, DL, VT, N1, N2); 5704 break; 5705 case ISD::FADD: 5706 case ISD::FSUB: 5707 case ISD::FMUL: 5708 case ISD::FDIV: 5709 case ISD::FREM: 5710 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5711 assert(N1.getValueType() == N2.getValueType() && 5712 N1.getValueType() == VT && "Binary operator types must match!"); 5713 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5714 return V; 5715 break; 5716 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5717 assert(N1.getValueType() == VT && 5718 N1.getValueType().isFloatingPoint() && 5719 N2.getValueType().isFloatingPoint() && 5720 "Invalid FCOPYSIGN!"); 5721 break; 5722 case ISD::SHL: 5723 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5724 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5725 const APInt &ShiftImm = N2C->getAPIntValue(); 5726 return getVScale(DL, VT, MulImm << ShiftImm); 5727 } 5728 LLVM_FALLTHROUGH; 5729 case ISD::SRA: 5730 case ISD::SRL: 5731 if (SDValue V = simplifyShift(N1, N2)) 5732 return V; 5733 LLVM_FALLTHROUGH; 5734 case ISD::ROTL: 5735 case ISD::ROTR: 5736 assert(VT == N1.getValueType() && 5737 "Shift operators return type must be the same as their first arg"); 5738 assert(VT.isInteger() && N2.getValueType().isInteger() && 5739 "Shifts only work on integers"); 5740 assert((!VT.isVector() || VT == N2.getValueType()) && 5741 "Vector shift amounts must be in the same as their first arg"); 5742 // Verify that the shift amount VT is big enough to hold valid shift 5743 // amounts. This catches things like trying to shift an i1024 value by an 5744 // i8, which is easy to fall into in generic code that uses 5745 // TLI.getShiftAmount(). 5746 assert(N2.getValueType().getScalarSizeInBits() >= 5747 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5748 "Invalid use of small shift amount with oversized value!"); 5749 5750 // Always fold shifts of i1 values so the code generator doesn't need to 5751 // handle them. Since we know the size of the shift has to be less than the 5752 // size of the value, the shift/rotate count is guaranteed to be zero. 5753 if (VT == MVT::i1) 5754 return N1; 5755 if (N2C && N2C->isZero()) 5756 return N1; 5757 break; 5758 case ISD::FP_ROUND: 5759 assert(VT.isFloatingPoint() && 5760 N1.getValueType().isFloatingPoint() && 5761 VT.bitsLE(N1.getValueType()) && 5762 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5763 "Invalid FP_ROUND!"); 5764 if (N1.getValueType() == VT) return N1; // noop conversion. 5765 break; 5766 case ISD::AssertSext: 5767 case ISD::AssertZext: { 5768 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5769 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5770 assert(VT.isInteger() && EVT.isInteger() && 5771 "Cannot *_EXTEND_INREG FP types"); 5772 assert(!EVT.isVector() && 5773 "AssertSExt/AssertZExt type should be the vector element type " 5774 "rather than the vector type!"); 5775 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5776 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5777 break; 5778 } 5779 case ISD::SIGN_EXTEND_INREG: { 5780 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5781 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5782 assert(VT.isInteger() && EVT.isInteger() && 5783 "Cannot *_EXTEND_INREG FP types"); 5784 assert(EVT.isVector() == VT.isVector() && 5785 "SIGN_EXTEND_INREG type should be vector iff the operand " 5786 "type is vector!"); 5787 assert((!EVT.isVector() || 5788 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5789 "Vector element counts must match in SIGN_EXTEND_INREG"); 5790 assert(EVT.bitsLE(VT) && "Not extending!"); 5791 if (EVT == VT) return N1; // Not actually extending 5792 5793 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5794 unsigned FromBits = EVT.getScalarSizeInBits(); 5795 Val <<= Val.getBitWidth() - FromBits; 5796 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5797 return getConstant(Val, DL, ConstantVT); 5798 }; 5799 5800 if (N1C) { 5801 const APInt &Val = N1C->getAPIntValue(); 5802 return SignExtendInReg(Val, VT); 5803 } 5804 5805 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5806 SmallVector<SDValue, 8> Ops; 5807 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5808 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5809 SDValue Op = N1.getOperand(i); 5810 if (Op.isUndef()) { 5811 Ops.push_back(getUNDEF(OpVT)); 5812 continue; 5813 } 5814 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5815 APInt Val = C->getAPIntValue(); 5816 Ops.push_back(SignExtendInReg(Val, OpVT)); 5817 } 5818 return getBuildVector(VT, DL, Ops); 5819 } 5820 break; 5821 } 5822 case ISD::FP_TO_SINT_SAT: 5823 case ISD::FP_TO_UINT_SAT: { 5824 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5825 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5826 assert(N1.getValueType().isVector() == VT.isVector() && 5827 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5828 "vector!"); 5829 assert((!VT.isVector() || VT.getVectorNumElements() == 5830 N1.getValueType().getVectorNumElements()) && 5831 "Vector element counts must match in FP_TO_*INT_SAT"); 5832 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5833 "Type to saturate to must be a scalar."); 5834 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5835 "Not extending!"); 5836 break; 5837 } 5838 case ISD::EXTRACT_VECTOR_ELT: 5839 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5840 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5841 element type of the vector."); 5842 5843 // Extract from an undefined value or using an undefined index is undefined. 5844 if (N1.isUndef() || N2.isUndef()) 5845 return getUNDEF(VT); 5846 5847 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5848 // vectors. For scalable vectors we will provide appropriate support for 5849 // dealing with arbitrary indices. 5850 if (N2C && N1.getValueType().isFixedLengthVector() && 5851 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5852 return getUNDEF(VT); 5853 5854 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5855 // expanding copies of large vectors from registers. This only works for 5856 // fixed length vectors, since we need to know the exact number of 5857 // elements. 5858 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5859 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5860 unsigned Factor = 5861 N1.getOperand(0).getValueType().getVectorNumElements(); 5862 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5863 N1.getOperand(N2C->getZExtValue() / Factor), 5864 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5865 } 5866 5867 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5868 // lowering is expanding large vector constants. 5869 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5870 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5871 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5872 N1.getValueType().isFixedLengthVector()) && 5873 "BUILD_VECTOR used for scalable vectors"); 5874 unsigned Index = 5875 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5876 SDValue Elt = N1.getOperand(Index); 5877 5878 if (VT != Elt.getValueType()) 5879 // If the vector element type is not legal, the BUILD_VECTOR operands 5880 // are promoted and implicitly truncated, and the result implicitly 5881 // extended. Make that explicit here. 5882 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5883 5884 return Elt; 5885 } 5886 5887 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5888 // operations are lowered to scalars. 5889 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5890 // If the indices are the same, return the inserted element else 5891 // if the indices are known different, extract the element from 5892 // the original vector. 5893 SDValue N1Op2 = N1.getOperand(2); 5894 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5895 5896 if (N1Op2C && N2C) { 5897 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5898 if (VT == N1.getOperand(1).getValueType()) 5899 return N1.getOperand(1); 5900 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5901 } 5902 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5903 } 5904 } 5905 5906 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5907 // when vector types are scalarized and v1iX is legal. 5908 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5909 // Here we are completely ignoring the extract element index (N2), 5910 // which is fine for fixed width vectors, since any index other than 0 5911 // is undefined anyway. However, this cannot be ignored for scalable 5912 // vectors - in theory we could support this, but we don't want to do this 5913 // without a profitability check. 5914 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5915 N1.getValueType().isFixedLengthVector() && 5916 N1.getValueType().getVectorNumElements() == 1) { 5917 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5918 N1.getOperand(1)); 5919 } 5920 break; 5921 case ISD::EXTRACT_ELEMENT: 5922 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5923 assert(!N1.getValueType().isVector() && !VT.isVector() && 5924 (N1.getValueType().isInteger() == VT.isInteger()) && 5925 N1.getValueType() != VT && 5926 "Wrong types for EXTRACT_ELEMENT!"); 5927 5928 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5929 // 64-bit integers into 32-bit parts. Instead of building the extract of 5930 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5931 if (N1.getOpcode() == ISD::BUILD_PAIR) 5932 return N1.getOperand(N2C->getZExtValue()); 5933 5934 // EXTRACT_ELEMENT of a constant int is also very common. 5935 if (N1C) { 5936 unsigned ElementSize = VT.getSizeInBits(); 5937 unsigned Shift = ElementSize * N2C->getZExtValue(); 5938 const APInt &Val = N1C->getAPIntValue(); 5939 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5940 } 5941 break; 5942 case ISD::EXTRACT_SUBVECTOR: { 5943 EVT N1VT = N1.getValueType(); 5944 assert(VT.isVector() && N1VT.isVector() && 5945 "Extract subvector VTs must be vectors!"); 5946 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5947 "Extract subvector VTs must have the same element type!"); 5948 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5949 "Cannot extract a scalable vector from a fixed length vector!"); 5950 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5951 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5952 "Extract subvector must be from larger vector to smaller vector!"); 5953 assert(N2C && "Extract subvector index must be a constant"); 5954 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5955 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5956 N1VT.getVectorMinNumElements()) && 5957 "Extract subvector overflow!"); 5958 assert(N2C->getAPIntValue().getBitWidth() == 5959 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5960 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5961 5962 // Trivial extraction. 5963 if (VT == N1VT) 5964 return N1; 5965 5966 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5967 if (N1.isUndef()) 5968 return getUNDEF(VT); 5969 5970 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5971 // the concat have the same type as the extract. 5972 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5973 VT == N1.getOperand(0).getValueType()) { 5974 unsigned Factor = VT.getVectorMinNumElements(); 5975 return N1.getOperand(N2C->getZExtValue() / Factor); 5976 } 5977 5978 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5979 // during shuffle legalization. 5980 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5981 VT == N1.getOperand(1).getValueType()) 5982 return N1.getOperand(1); 5983 break; 5984 } 5985 } 5986 5987 // Perform trivial constant folding. 5988 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5989 return SV; 5990 5991 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5992 return V; 5993 5994 // Canonicalize an UNDEF to the RHS, even over a constant. 5995 if (N1.isUndef()) { 5996 if (TLI->isCommutativeBinOp(Opcode)) { 5997 std::swap(N1, N2); 5998 } else { 5999 switch (Opcode) { 6000 case ISD::SIGN_EXTEND_INREG: 6001 case ISD::SUB: 6002 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6003 case ISD::UDIV: 6004 case ISD::SDIV: 6005 case ISD::UREM: 6006 case ISD::SREM: 6007 case ISD::SSUBSAT: 6008 case ISD::USUBSAT: 6009 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6010 } 6011 } 6012 } 6013 6014 // Fold a bunch of operators when the RHS is undef. 6015 if (N2.isUndef()) { 6016 switch (Opcode) { 6017 case ISD::XOR: 6018 if (N1.isUndef()) 6019 // Handle undef ^ undef -> 0 special case. This is a common 6020 // idiom (misuse). 6021 return getConstant(0, DL, VT); 6022 LLVM_FALLTHROUGH; 6023 case ISD::ADD: 6024 case ISD::SUB: 6025 case ISD::UDIV: 6026 case ISD::SDIV: 6027 case ISD::UREM: 6028 case ISD::SREM: 6029 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6030 case ISD::MUL: 6031 case ISD::AND: 6032 case ISD::SSUBSAT: 6033 case ISD::USUBSAT: 6034 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6035 case ISD::OR: 6036 case ISD::SADDSAT: 6037 case ISD::UADDSAT: 6038 return getAllOnesConstant(DL, VT); 6039 } 6040 } 6041 6042 // Memoize this node if possible. 6043 SDNode *N; 6044 SDVTList VTs = getVTList(VT); 6045 SDValue Ops[] = {N1, N2}; 6046 if (VT != MVT::Glue) { 6047 FoldingSetNodeID ID; 6048 AddNodeIDNode(ID, Opcode, VTs, Ops); 6049 void *IP = nullptr; 6050 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6051 E->intersectFlagsWith(Flags); 6052 return SDValue(E, 0); 6053 } 6054 6055 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6056 N->setFlags(Flags); 6057 createOperands(N, Ops); 6058 CSEMap.InsertNode(N, IP); 6059 } else { 6060 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6061 createOperands(N, Ops); 6062 } 6063 6064 InsertNode(N); 6065 SDValue V = SDValue(N, 0); 6066 NewSDValueDbgMsg(V, "Creating new node: ", this); 6067 return V; 6068 } 6069 6070 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6071 SDValue N1, SDValue N2, SDValue N3) { 6072 SDNodeFlags Flags; 6073 if (Inserter) 6074 Flags = Inserter->getFlags(); 6075 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6076 } 6077 6078 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6079 SDValue N1, SDValue N2, SDValue N3, 6080 const SDNodeFlags Flags) { 6081 assert(N1.getOpcode() != ISD::DELETED_NODE && 6082 N2.getOpcode() != ISD::DELETED_NODE && 6083 N3.getOpcode() != ISD::DELETED_NODE && 6084 "Operand is DELETED_NODE!"); 6085 // Perform various simplifications. 6086 switch (Opcode) { 6087 case ISD::FMA: { 6088 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6089 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6090 N3.getValueType() == VT && "FMA types must match!"); 6091 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6092 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6093 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6094 if (N1CFP && N2CFP && N3CFP) { 6095 APFloat V1 = N1CFP->getValueAPF(); 6096 const APFloat &V2 = N2CFP->getValueAPF(); 6097 const APFloat &V3 = N3CFP->getValueAPF(); 6098 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6099 return getConstantFP(V1, DL, VT); 6100 } 6101 break; 6102 } 6103 case ISD::BUILD_VECTOR: { 6104 // Attempt to simplify BUILD_VECTOR. 6105 SDValue Ops[] = {N1, N2, N3}; 6106 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6107 return V; 6108 break; 6109 } 6110 case ISD::CONCAT_VECTORS: { 6111 SDValue Ops[] = {N1, N2, N3}; 6112 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6113 return V; 6114 break; 6115 } 6116 case ISD::SETCC: { 6117 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6118 assert(N1.getValueType() == N2.getValueType() && 6119 "SETCC operands must have the same type!"); 6120 assert(VT.isVector() == N1.getValueType().isVector() && 6121 "SETCC type should be vector iff the operand type is vector!"); 6122 assert((!VT.isVector() || VT.getVectorElementCount() == 6123 N1.getValueType().getVectorElementCount()) && 6124 "SETCC vector element counts must match!"); 6125 // Use FoldSetCC to simplify SETCC's. 6126 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6127 return V; 6128 // Vector constant folding. 6129 SDValue Ops[] = {N1, N2, N3}; 6130 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 6131 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6132 return V; 6133 } 6134 break; 6135 } 6136 case ISD::SELECT: 6137 case ISD::VSELECT: 6138 if (SDValue V = simplifySelect(N1, N2, N3)) 6139 return V; 6140 break; 6141 case ISD::VECTOR_SHUFFLE: 6142 llvm_unreachable("should use getVectorShuffle constructor!"); 6143 case ISD::INSERT_VECTOR_ELT: { 6144 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6145 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6146 // for scalable vectors where we will generate appropriate code to 6147 // deal with out-of-bounds cases correctly. 6148 if (N3C && N1.getValueType().isFixedLengthVector() && 6149 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6150 return getUNDEF(VT); 6151 6152 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6153 if (N3.isUndef()) 6154 return getUNDEF(VT); 6155 6156 // If the inserted element is an UNDEF, just use the input vector. 6157 if (N2.isUndef()) 6158 return N1; 6159 6160 break; 6161 } 6162 case ISD::INSERT_SUBVECTOR: { 6163 // Inserting undef into undef is still undef. 6164 if (N1.isUndef() && N2.isUndef()) 6165 return getUNDEF(VT); 6166 6167 EVT N2VT = N2.getValueType(); 6168 assert(VT == N1.getValueType() && 6169 "Dest and insert subvector source types must match!"); 6170 assert(VT.isVector() && N2VT.isVector() && 6171 "Insert subvector VTs must be vectors!"); 6172 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6173 "Cannot insert a scalable vector into a fixed length vector!"); 6174 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6175 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6176 "Insert subvector must be from smaller vector to larger vector!"); 6177 assert(isa<ConstantSDNode>(N3) && 6178 "Insert subvector index must be constant"); 6179 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6180 (N2VT.getVectorMinNumElements() + 6181 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6182 VT.getVectorMinNumElements()) && 6183 "Insert subvector overflow!"); 6184 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6185 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6186 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6187 6188 // Trivial insertion. 6189 if (VT == N2VT) 6190 return N2; 6191 6192 // If this is an insert of an extracted vector into an undef vector, we 6193 // can just use the input to the extract. 6194 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6195 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6196 return N2.getOperand(0); 6197 break; 6198 } 6199 case ISD::BITCAST: 6200 // Fold bit_convert nodes from a type to themselves. 6201 if (N1.getValueType() == VT) 6202 return N1; 6203 break; 6204 } 6205 6206 // Memoize node if it doesn't produce a flag. 6207 SDNode *N; 6208 SDVTList VTs = getVTList(VT); 6209 SDValue Ops[] = {N1, N2, N3}; 6210 if (VT != MVT::Glue) { 6211 FoldingSetNodeID ID; 6212 AddNodeIDNode(ID, Opcode, VTs, Ops); 6213 void *IP = nullptr; 6214 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6215 E->intersectFlagsWith(Flags); 6216 return SDValue(E, 0); 6217 } 6218 6219 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6220 N->setFlags(Flags); 6221 createOperands(N, Ops); 6222 CSEMap.InsertNode(N, IP); 6223 } else { 6224 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6225 createOperands(N, Ops); 6226 } 6227 6228 InsertNode(N); 6229 SDValue V = SDValue(N, 0); 6230 NewSDValueDbgMsg(V, "Creating new node: ", this); 6231 return V; 6232 } 6233 6234 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6235 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6236 SDValue Ops[] = { N1, N2, N3, N4 }; 6237 return getNode(Opcode, DL, VT, Ops); 6238 } 6239 6240 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6241 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6242 SDValue N5) { 6243 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6244 return getNode(Opcode, DL, VT, Ops); 6245 } 6246 6247 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6248 /// the incoming stack arguments to be loaded from the stack. 6249 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6250 SmallVector<SDValue, 8> ArgChains; 6251 6252 // Include the original chain at the beginning of the list. When this is 6253 // used by target LowerCall hooks, this helps legalize find the 6254 // CALLSEQ_BEGIN node. 6255 ArgChains.push_back(Chain); 6256 6257 // Add a chain value for each stack argument. 6258 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6259 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6260 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6261 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6262 if (FI->getIndex() < 0) 6263 ArgChains.push_back(SDValue(L, 1)); 6264 6265 // Build a tokenfactor for all the chains. 6266 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6267 } 6268 6269 /// getMemsetValue - Vectorized representation of the memset value 6270 /// operand. 6271 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6272 const SDLoc &dl) { 6273 assert(!Value.isUndef()); 6274 6275 unsigned NumBits = VT.getScalarSizeInBits(); 6276 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6277 assert(C->getAPIntValue().getBitWidth() == 8); 6278 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6279 if (VT.isInteger()) { 6280 bool IsOpaque = VT.getSizeInBits() > 64 || 6281 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6282 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6283 } 6284 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6285 VT); 6286 } 6287 6288 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6289 EVT IntVT = VT.getScalarType(); 6290 if (!IntVT.isInteger()) 6291 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6292 6293 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6294 if (NumBits > 8) { 6295 // Use a multiplication with 0x010101... to extend the input to the 6296 // required length. 6297 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6298 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6299 DAG.getConstant(Magic, dl, IntVT)); 6300 } 6301 6302 if (VT != Value.getValueType() && !VT.isInteger()) 6303 Value = DAG.getBitcast(VT.getScalarType(), Value); 6304 if (VT != Value.getValueType()) 6305 Value = DAG.getSplatBuildVector(VT, dl, Value); 6306 6307 return Value; 6308 } 6309 6310 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6311 /// used when a memcpy is turned into a memset when the source is a constant 6312 /// string ptr. 6313 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6314 const TargetLowering &TLI, 6315 const ConstantDataArraySlice &Slice) { 6316 // Handle vector with all elements zero. 6317 if (Slice.Array == nullptr) { 6318 if (VT.isInteger()) 6319 return DAG.getConstant(0, dl, VT); 6320 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6321 return DAG.getConstantFP(0.0, dl, VT); 6322 if (VT.isVector()) { 6323 unsigned NumElts = VT.getVectorNumElements(); 6324 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6325 return DAG.getNode(ISD::BITCAST, dl, VT, 6326 DAG.getConstant(0, dl, 6327 EVT::getVectorVT(*DAG.getContext(), 6328 EltVT, NumElts))); 6329 } 6330 llvm_unreachable("Expected type!"); 6331 } 6332 6333 assert(!VT.isVector() && "Can't handle vector type here!"); 6334 unsigned NumVTBits = VT.getSizeInBits(); 6335 unsigned NumVTBytes = NumVTBits / 8; 6336 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6337 6338 APInt Val(NumVTBits, 0); 6339 if (DAG.getDataLayout().isLittleEndian()) { 6340 for (unsigned i = 0; i != NumBytes; ++i) 6341 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6342 } else { 6343 for (unsigned i = 0; i != NumBytes; ++i) 6344 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6345 } 6346 6347 // If the "cost" of materializing the integer immediate is less than the cost 6348 // of a load, then it is cost effective to turn the load into the immediate. 6349 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6350 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6351 return DAG.getConstant(Val, dl, VT); 6352 return SDValue(nullptr, 0); 6353 } 6354 6355 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6356 const SDLoc &DL, 6357 const SDNodeFlags Flags) { 6358 EVT VT = Base.getValueType(); 6359 SDValue Index; 6360 6361 if (Offset.isScalable()) 6362 Index = getVScale(DL, Base.getValueType(), 6363 APInt(Base.getValueSizeInBits().getFixedSize(), 6364 Offset.getKnownMinSize())); 6365 else 6366 Index = getConstant(Offset.getFixedSize(), DL, VT); 6367 6368 return getMemBasePlusOffset(Base, Index, DL, Flags); 6369 } 6370 6371 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6372 const SDLoc &DL, 6373 const SDNodeFlags Flags) { 6374 assert(Offset.getValueType().isInteger()); 6375 EVT BasePtrVT = Ptr.getValueType(); 6376 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6377 } 6378 6379 /// Returns true if memcpy source is constant data. 6380 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6381 uint64_t SrcDelta = 0; 6382 GlobalAddressSDNode *G = nullptr; 6383 if (Src.getOpcode() == ISD::GlobalAddress) 6384 G = cast<GlobalAddressSDNode>(Src); 6385 else if (Src.getOpcode() == ISD::ADD && 6386 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6387 Src.getOperand(1).getOpcode() == ISD::Constant) { 6388 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6389 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6390 } 6391 if (!G) 6392 return false; 6393 6394 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6395 SrcDelta + G->getOffset()); 6396 } 6397 6398 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6399 SelectionDAG &DAG) { 6400 // On Darwin, -Os means optimize for size without hurting performance, so 6401 // only really optimize for size when -Oz (MinSize) is used. 6402 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6403 return MF.getFunction().hasMinSize(); 6404 return DAG.shouldOptForSize(); 6405 } 6406 6407 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6408 SmallVector<SDValue, 32> &OutChains, unsigned From, 6409 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6410 SmallVector<SDValue, 16> &OutStoreChains) { 6411 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6412 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6413 SmallVector<SDValue, 16> GluedLoadChains; 6414 for (unsigned i = From; i < To; ++i) { 6415 OutChains.push_back(OutLoadChains[i]); 6416 GluedLoadChains.push_back(OutLoadChains[i]); 6417 } 6418 6419 // Chain for all loads. 6420 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6421 GluedLoadChains); 6422 6423 for (unsigned i = From; i < To; ++i) { 6424 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6425 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6426 ST->getBasePtr(), ST->getMemoryVT(), 6427 ST->getMemOperand()); 6428 OutChains.push_back(NewStore); 6429 } 6430 } 6431 6432 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6433 SDValue Chain, SDValue Dst, SDValue Src, 6434 uint64_t Size, Align Alignment, 6435 bool isVol, bool AlwaysInline, 6436 MachinePointerInfo DstPtrInfo, 6437 MachinePointerInfo SrcPtrInfo, 6438 const AAMDNodes &AAInfo) { 6439 // Turn a memcpy of undef to nop. 6440 // FIXME: We need to honor volatile even is Src is undef. 6441 if (Src.isUndef()) 6442 return Chain; 6443 6444 // Expand memcpy to a series of load and store ops if the size operand falls 6445 // below a certain threshold. 6446 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6447 // rather than maybe a humongous number of loads and stores. 6448 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6449 const DataLayout &DL = DAG.getDataLayout(); 6450 LLVMContext &C = *DAG.getContext(); 6451 std::vector<EVT> MemOps; 6452 bool DstAlignCanChange = false; 6453 MachineFunction &MF = DAG.getMachineFunction(); 6454 MachineFrameInfo &MFI = MF.getFrameInfo(); 6455 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6456 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6457 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6458 DstAlignCanChange = true; 6459 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6460 if (!SrcAlign || Alignment > *SrcAlign) 6461 SrcAlign = Alignment; 6462 assert(SrcAlign && "SrcAlign must be set"); 6463 ConstantDataArraySlice Slice; 6464 // If marked as volatile, perform a copy even when marked as constant. 6465 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6466 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6467 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6468 const MemOp Op = isZeroConstant 6469 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6470 /*IsZeroMemset*/ true, isVol) 6471 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6472 *SrcAlign, isVol, CopyFromConstant); 6473 if (!TLI.findOptimalMemOpLowering( 6474 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6475 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6476 return SDValue(); 6477 6478 if (DstAlignCanChange) { 6479 Type *Ty = MemOps[0].getTypeForEVT(C); 6480 Align NewAlign = DL.getABITypeAlign(Ty); 6481 6482 // Don't promote to an alignment that would require dynamic stack 6483 // realignment. 6484 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6485 if (!TRI->hasStackRealignment(MF)) 6486 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6487 NewAlign = NewAlign / 2; 6488 6489 if (NewAlign > Alignment) { 6490 // Give the stack frame object a larger alignment if needed. 6491 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6492 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6493 Alignment = NewAlign; 6494 } 6495 } 6496 6497 // Prepare AAInfo for loads/stores after lowering this memcpy. 6498 AAMDNodes NewAAInfo = AAInfo; 6499 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6500 6501 MachineMemOperand::Flags MMOFlags = 6502 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6503 SmallVector<SDValue, 16> OutLoadChains; 6504 SmallVector<SDValue, 16> OutStoreChains; 6505 SmallVector<SDValue, 32> OutChains; 6506 unsigned NumMemOps = MemOps.size(); 6507 uint64_t SrcOff = 0, DstOff = 0; 6508 for (unsigned i = 0; i != NumMemOps; ++i) { 6509 EVT VT = MemOps[i]; 6510 unsigned VTSize = VT.getSizeInBits() / 8; 6511 SDValue Value, Store; 6512 6513 if (VTSize > Size) { 6514 // Issuing an unaligned load / store pair that overlaps with the previous 6515 // pair. Adjust the offset accordingly. 6516 assert(i == NumMemOps-1 && i != 0); 6517 SrcOff -= VTSize - Size; 6518 DstOff -= VTSize - Size; 6519 } 6520 6521 if (CopyFromConstant && 6522 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6523 // It's unlikely a store of a vector immediate can be done in a single 6524 // instruction. It would require a load from a constantpool first. 6525 // We only handle zero vectors here. 6526 // FIXME: Handle other cases where store of vector immediate is done in 6527 // a single instruction. 6528 ConstantDataArraySlice SubSlice; 6529 if (SrcOff < Slice.Length) { 6530 SubSlice = Slice; 6531 SubSlice.move(SrcOff); 6532 } else { 6533 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6534 SubSlice.Array = nullptr; 6535 SubSlice.Offset = 0; 6536 SubSlice.Length = VTSize; 6537 } 6538 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6539 if (Value.getNode()) { 6540 Store = DAG.getStore( 6541 Chain, dl, Value, 6542 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6543 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6544 OutChains.push_back(Store); 6545 } 6546 } 6547 6548 if (!Store.getNode()) { 6549 // The type might not be legal for the target. This should only happen 6550 // if the type is smaller than a legal type, as on PPC, so the right 6551 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6552 // to Load/Store if NVT==VT. 6553 // FIXME does the case above also need this? 6554 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6555 assert(NVT.bitsGE(VT)); 6556 6557 bool isDereferenceable = 6558 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6559 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6560 if (isDereferenceable) 6561 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6562 6563 Value = DAG.getExtLoad( 6564 ISD::EXTLOAD, dl, NVT, Chain, 6565 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6566 SrcPtrInfo.getWithOffset(SrcOff), VT, 6567 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6568 OutLoadChains.push_back(Value.getValue(1)); 6569 6570 Store = DAG.getTruncStore( 6571 Chain, dl, Value, 6572 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6573 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6574 OutStoreChains.push_back(Store); 6575 } 6576 SrcOff += VTSize; 6577 DstOff += VTSize; 6578 Size -= VTSize; 6579 } 6580 6581 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6582 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6583 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6584 6585 if (NumLdStInMemcpy) { 6586 // It may be that memcpy might be converted to memset if it's memcpy 6587 // of constants. In such a case, we won't have loads and stores, but 6588 // just stores. In the absence of loads, there is nothing to gang up. 6589 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6590 // If target does not care, just leave as it. 6591 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6592 OutChains.push_back(OutLoadChains[i]); 6593 OutChains.push_back(OutStoreChains[i]); 6594 } 6595 } else { 6596 // Ld/St less than/equal limit set by target. 6597 if (NumLdStInMemcpy <= GluedLdStLimit) { 6598 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6599 NumLdStInMemcpy, OutLoadChains, 6600 OutStoreChains); 6601 } else { 6602 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6603 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6604 unsigned GlueIter = 0; 6605 6606 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6607 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6608 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6609 6610 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6611 OutLoadChains, OutStoreChains); 6612 GlueIter += GluedLdStLimit; 6613 } 6614 6615 // Residual ld/st. 6616 if (RemainingLdStInMemcpy) { 6617 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6618 RemainingLdStInMemcpy, OutLoadChains, 6619 OutStoreChains); 6620 } 6621 } 6622 } 6623 } 6624 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6625 } 6626 6627 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6628 SDValue Chain, SDValue Dst, SDValue Src, 6629 uint64_t Size, Align Alignment, 6630 bool isVol, bool AlwaysInline, 6631 MachinePointerInfo DstPtrInfo, 6632 MachinePointerInfo SrcPtrInfo, 6633 const AAMDNodes &AAInfo) { 6634 // Turn a memmove of undef to nop. 6635 // FIXME: We need to honor volatile even is Src is undef. 6636 if (Src.isUndef()) 6637 return Chain; 6638 6639 // Expand memmove to a series of load and store ops if the size operand falls 6640 // below a certain threshold. 6641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6642 const DataLayout &DL = DAG.getDataLayout(); 6643 LLVMContext &C = *DAG.getContext(); 6644 std::vector<EVT> MemOps; 6645 bool DstAlignCanChange = false; 6646 MachineFunction &MF = DAG.getMachineFunction(); 6647 MachineFrameInfo &MFI = MF.getFrameInfo(); 6648 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6649 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6650 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6651 DstAlignCanChange = true; 6652 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6653 if (!SrcAlign || Alignment > *SrcAlign) 6654 SrcAlign = Alignment; 6655 assert(SrcAlign && "SrcAlign must be set"); 6656 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6657 if (!TLI.findOptimalMemOpLowering( 6658 MemOps, Limit, 6659 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6660 /*IsVolatile*/ true), 6661 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6662 MF.getFunction().getAttributes())) 6663 return SDValue(); 6664 6665 if (DstAlignCanChange) { 6666 Type *Ty = MemOps[0].getTypeForEVT(C); 6667 Align NewAlign = DL.getABITypeAlign(Ty); 6668 if (NewAlign > Alignment) { 6669 // Give the stack frame object a larger alignment if needed. 6670 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6671 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6672 Alignment = NewAlign; 6673 } 6674 } 6675 6676 // Prepare AAInfo for loads/stores after lowering this memmove. 6677 AAMDNodes NewAAInfo = AAInfo; 6678 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6679 6680 MachineMemOperand::Flags MMOFlags = 6681 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6682 uint64_t SrcOff = 0, DstOff = 0; 6683 SmallVector<SDValue, 8> LoadValues; 6684 SmallVector<SDValue, 8> LoadChains; 6685 SmallVector<SDValue, 8> OutChains; 6686 unsigned NumMemOps = MemOps.size(); 6687 for (unsigned i = 0; i < NumMemOps; i++) { 6688 EVT VT = MemOps[i]; 6689 unsigned VTSize = VT.getSizeInBits() / 8; 6690 SDValue Value; 6691 6692 bool isDereferenceable = 6693 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6694 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6695 if (isDereferenceable) 6696 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6697 6698 Value = DAG.getLoad( 6699 VT, dl, Chain, 6700 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6701 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6702 LoadValues.push_back(Value); 6703 LoadChains.push_back(Value.getValue(1)); 6704 SrcOff += VTSize; 6705 } 6706 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6707 OutChains.clear(); 6708 for (unsigned i = 0; i < NumMemOps; i++) { 6709 EVT VT = MemOps[i]; 6710 unsigned VTSize = VT.getSizeInBits() / 8; 6711 SDValue Store; 6712 6713 Store = DAG.getStore( 6714 Chain, dl, LoadValues[i], 6715 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6716 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6717 OutChains.push_back(Store); 6718 DstOff += VTSize; 6719 } 6720 6721 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6722 } 6723 6724 /// Lower the call to 'memset' intrinsic function into a series of store 6725 /// operations. 6726 /// 6727 /// \param DAG Selection DAG where lowered code is placed. 6728 /// \param dl Link to corresponding IR location. 6729 /// \param Chain Control flow dependency. 6730 /// \param Dst Pointer to destination memory location. 6731 /// \param Src Value of byte to write into the memory. 6732 /// \param Size Number of bytes to write. 6733 /// \param Alignment Alignment of the destination in bytes. 6734 /// \param isVol True if destination is volatile. 6735 /// \param DstPtrInfo IR information on the memory pointer. 6736 /// \returns New head in the control flow, if lowering was successful, empty 6737 /// SDValue otherwise. 6738 /// 6739 /// The function tries to replace 'llvm.memset' intrinsic with several store 6740 /// operations and value calculation code. This is usually profitable for small 6741 /// memory size. 6742 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6743 SDValue Chain, SDValue Dst, SDValue Src, 6744 uint64_t Size, Align Alignment, bool isVol, 6745 MachinePointerInfo DstPtrInfo, 6746 const AAMDNodes &AAInfo) { 6747 // Turn a memset of undef to nop. 6748 // FIXME: We need to honor volatile even is Src is undef. 6749 if (Src.isUndef()) 6750 return Chain; 6751 6752 // Expand memset to a series of load/store ops if the size operand 6753 // falls below a certain threshold. 6754 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6755 std::vector<EVT> MemOps; 6756 bool DstAlignCanChange = false; 6757 MachineFunction &MF = DAG.getMachineFunction(); 6758 MachineFrameInfo &MFI = MF.getFrameInfo(); 6759 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6760 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6761 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6762 DstAlignCanChange = true; 6763 bool IsZeroVal = 6764 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6765 if (!TLI.findOptimalMemOpLowering( 6766 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6767 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6768 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6769 return SDValue(); 6770 6771 if (DstAlignCanChange) { 6772 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6773 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6774 if (NewAlign > Alignment) { 6775 // Give the stack frame object a larger alignment if needed. 6776 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6777 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6778 Alignment = NewAlign; 6779 } 6780 } 6781 6782 SmallVector<SDValue, 8> OutChains; 6783 uint64_t DstOff = 0; 6784 unsigned NumMemOps = MemOps.size(); 6785 6786 // Find the largest store and generate the bit pattern for it. 6787 EVT LargestVT = MemOps[0]; 6788 for (unsigned i = 1; i < NumMemOps; i++) 6789 if (MemOps[i].bitsGT(LargestVT)) 6790 LargestVT = MemOps[i]; 6791 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6792 6793 // Prepare AAInfo for loads/stores after lowering this memset. 6794 AAMDNodes NewAAInfo = AAInfo; 6795 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6796 6797 for (unsigned i = 0; i < NumMemOps; i++) { 6798 EVT VT = MemOps[i]; 6799 unsigned VTSize = VT.getSizeInBits() / 8; 6800 if (VTSize > Size) { 6801 // Issuing an unaligned load / store pair that overlaps with the previous 6802 // pair. Adjust the offset accordingly. 6803 assert(i == NumMemOps-1 && i != 0); 6804 DstOff -= VTSize - Size; 6805 } 6806 6807 // If this store is smaller than the largest store see whether we can get 6808 // the smaller value for free with a truncate. 6809 SDValue Value = MemSetValue; 6810 if (VT.bitsLT(LargestVT)) { 6811 if (!LargestVT.isVector() && !VT.isVector() && 6812 TLI.isTruncateFree(LargestVT, VT)) 6813 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6814 else 6815 Value = getMemsetValue(Src, VT, DAG, dl); 6816 } 6817 assert(Value.getValueType() == VT && "Value with wrong type."); 6818 SDValue Store = DAG.getStore( 6819 Chain, dl, Value, 6820 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6821 DstPtrInfo.getWithOffset(DstOff), Alignment, 6822 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6823 NewAAInfo); 6824 OutChains.push_back(Store); 6825 DstOff += VT.getSizeInBits() / 8; 6826 Size -= VTSize; 6827 } 6828 6829 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6830 } 6831 6832 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6833 unsigned AS) { 6834 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6835 // pointer operands can be losslessly bitcasted to pointers of address space 0 6836 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6837 report_fatal_error("cannot lower memory intrinsic in address space " + 6838 Twine(AS)); 6839 } 6840 } 6841 6842 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6843 SDValue Src, SDValue Size, Align Alignment, 6844 bool isVol, bool AlwaysInline, bool isTailCall, 6845 MachinePointerInfo DstPtrInfo, 6846 MachinePointerInfo SrcPtrInfo, 6847 const AAMDNodes &AAInfo) { 6848 // Check to see if we should lower the memcpy to loads and stores first. 6849 // For cases within the target-specified limits, this is the best choice. 6850 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6851 if (ConstantSize) { 6852 // Memcpy with size zero? Just return the original chain. 6853 if (ConstantSize->isZero()) 6854 return Chain; 6855 6856 SDValue Result = getMemcpyLoadsAndStores( 6857 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6858 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6859 if (Result.getNode()) 6860 return Result; 6861 } 6862 6863 // Then check to see if we should lower the memcpy with target-specific 6864 // code. If the target chooses to do this, this is the next best. 6865 if (TSI) { 6866 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6867 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6868 DstPtrInfo, SrcPtrInfo); 6869 if (Result.getNode()) 6870 return Result; 6871 } 6872 6873 // If we really need inline code and the target declined to provide it, 6874 // use a (potentially long) sequence of loads and stores. 6875 if (AlwaysInline) { 6876 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6877 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6878 ConstantSize->getZExtValue(), Alignment, 6879 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6880 } 6881 6882 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6883 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6884 6885 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6886 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6887 // respect volatile, so they may do things like read or write memory 6888 // beyond the given memory regions. But fixing this isn't easy, and most 6889 // people don't care. 6890 6891 // Emit a library call. 6892 TargetLowering::ArgListTy Args; 6893 TargetLowering::ArgListEntry Entry; 6894 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6895 Entry.Node = Dst; Args.push_back(Entry); 6896 Entry.Node = Src; Args.push_back(Entry); 6897 6898 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6899 Entry.Node = Size; Args.push_back(Entry); 6900 // FIXME: pass in SDLoc 6901 TargetLowering::CallLoweringInfo CLI(*this); 6902 CLI.setDebugLoc(dl) 6903 .setChain(Chain) 6904 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6905 Dst.getValueType().getTypeForEVT(*getContext()), 6906 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6907 TLI->getPointerTy(getDataLayout())), 6908 std::move(Args)) 6909 .setDiscardResult() 6910 .setTailCall(isTailCall); 6911 6912 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6913 return CallResult.second; 6914 } 6915 6916 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6917 SDValue Dst, unsigned DstAlign, 6918 SDValue Src, unsigned SrcAlign, 6919 SDValue Size, Type *SizeTy, 6920 unsigned ElemSz, bool isTailCall, 6921 MachinePointerInfo DstPtrInfo, 6922 MachinePointerInfo SrcPtrInfo) { 6923 // Emit a library call. 6924 TargetLowering::ArgListTy Args; 6925 TargetLowering::ArgListEntry Entry; 6926 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6927 Entry.Node = Dst; 6928 Args.push_back(Entry); 6929 6930 Entry.Node = Src; 6931 Args.push_back(Entry); 6932 6933 Entry.Ty = SizeTy; 6934 Entry.Node = Size; 6935 Args.push_back(Entry); 6936 6937 RTLIB::Libcall LibraryCall = 6938 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6939 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6940 report_fatal_error("Unsupported element size"); 6941 6942 TargetLowering::CallLoweringInfo CLI(*this); 6943 CLI.setDebugLoc(dl) 6944 .setChain(Chain) 6945 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6946 Type::getVoidTy(*getContext()), 6947 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6948 TLI->getPointerTy(getDataLayout())), 6949 std::move(Args)) 6950 .setDiscardResult() 6951 .setTailCall(isTailCall); 6952 6953 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6954 return CallResult.second; 6955 } 6956 6957 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6958 SDValue Src, SDValue Size, Align Alignment, 6959 bool isVol, bool isTailCall, 6960 MachinePointerInfo DstPtrInfo, 6961 MachinePointerInfo SrcPtrInfo, 6962 const AAMDNodes &AAInfo) { 6963 // Check to see if we should lower the memmove to loads and stores first. 6964 // For cases within the target-specified limits, this is the best choice. 6965 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6966 if (ConstantSize) { 6967 // Memmove with size zero? Just return the original chain. 6968 if (ConstantSize->isZero()) 6969 return Chain; 6970 6971 SDValue Result = getMemmoveLoadsAndStores( 6972 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6973 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6974 if (Result.getNode()) 6975 return Result; 6976 } 6977 6978 // Then check to see if we should lower the memmove with target-specific 6979 // code. If the target chooses to do this, this is the next best. 6980 if (TSI) { 6981 SDValue Result = 6982 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6983 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6984 if (Result.getNode()) 6985 return Result; 6986 } 6987 6988 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6989 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6990 6991 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6992 // not be safe. See memcpy above for more details. 6993 6994 // Emit a library call. 6995 TargetLowering::ArgListTy Args; 6996 TargetLowering::ArgListEntry Entry; 6997 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6998 Entry.Node = Dst; Args.push_back(Entry); 6999 Entry.Node = Src; Args.push_back(Entry); 7000 7001 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7002 Entry.Node = Size; Args.push_back(Entry); 7003 // FIXME: pass in SDLoc 7004 TargetLowering::CallLoweringInfo CLI(*this); 7005 CLI.setDebugLoc(dl) 7006 .setChain(Chain) 7007 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7008 Dst.getValueType().getTypeForEVT(*getContext()), 7009 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7010 TLI->getPointerTy(getDataLayout())), 7011 std::move(Args)) 7012 .setDiscardResult() 7013 .setTailCall(isTailCall); 7014 7015 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7016 return CallResult.second; 7017 } 7018 7019 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7020 SDValue Dst, unsigned DstAlign, 7021 SDValue Src, unsigned SrcAlign, 7022 SDValue Size, Type *SizeTy, 7023 unsigned ElemSz, bool isTailCall, 7024 MachinePointerInfo DstPtrInfo, 7025 MachinePointerInfo SrcPtrInfo) { 7026 // Emit a library call. 7027 TargetLowering::ArgListTy Args; 7028 TargetLowering::ArgListEntry Entry; 7029 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7030 Entry.Node = Dst; 7031 Args.push_back(Entry); 7032 7033 Entry.Node = Src; 7034 Args.push_back(Entry); 7035 7036 Entry.Ty = SizeTy; 7037 Entry.Node = Size; 7038 Args.push_back(Entry); 7039 7040 RTLIB::Libcall LibraryCall = 7041 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7042 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7043 report_fatal_error("Unsupported element size"); 7044 7045 TargetLowering::CallLoweringInfo CLI(*this); 7046 CLI.setDebugLoc(dl) 7047 .setChain(Chain) 7048 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7049 Type::getVoidTy(*getContext()), 7050 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7051 TLI->getPointerTy(getDataLayout())), 7052 std::move(Args)) 7053 .setDiscardResult() 7054 .setTailCall(isTailCall); 7055 7056 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7057 return CallResult.second; 7058 } 7059 7060 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7061 SDValue Src, SDValue Size, Align Alignment, 7062 bool isVol, bool isTailCall, 7063 MachinePointerInfo DstPtrInfo, 7064 const AAMDNodes &AAInfo) { 7065 // Check to see if we should lower the memset to stores first. 7066 // For cases within the target-specified limits, this is the best choice. 7067 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7068 if (ConstantSize) { 7069 // Memset with size zero? Just return the original chain. 7070 if (ConstantSize->isZero()) 7071 return Chain; 7072 7073 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7074 ConstantSize->getZExtValue(), Alignment, 7075 isVol, DstPtrInfo, AAInfo); 7076 7077 if (Result.getNode()) 7078 return Result; 7079 } 7080 7081 // Then check to see if we should lower the memset with target-specific 7082 // code. If the target chooses to do this, this is the next best. 7083 if (TSI) { 7084 SDValue Result = TSI->EmitTargetCodeForMemset( 7085 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7086 if (Result.getNode()) 7087 return Result; 7088 } 7089 7090 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7091 7092 // Emit a library call. 7093 TargetLowering::ArgListTy Args; 7094 TargetLowering::ArgListEntry Entry; 7095 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7096 Args.push_back(Entry); 7097 Entry.Node = Src; 7098 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7099 Args.push_back(Entry); 7100 Entry.Node = Size; 7101 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7102 Args.push_back(Entry); 7103 7104 // FIXME: pass in SDLoc 7105 TargetLowering::CallLoweringInfo CLI(*this); 7106 CLI.setDebugLoc(dl) 7107 .setChain(Chain) 7108 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7109 Dst.getValueType().getTypeForEVT(*getContext()), 7110 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7111 TLI->getPointerTy(getDataLayout())), 7112 std::move(Args)) 7113 .setDiscardResult() 7114 .setTailCall(isTailCall); 7115 7116 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7117 return CallResult.second; 7118 } 7119 7120 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7121 SDValue Dst, unsigned DstAlign, 7122 SDValue Value, SDValue Size, Type *SizeTy, 7123 unsigned ElemSz, bool isTailCall, 7124 MachinePointerInfo DstPtrInfo) { 7125 // Emit a library call. 7126 TargetLowering::ArgListTy Args; 7127 TargetLowering::ArgListEntry Entry; 7128 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7129 Entry.Node = Dst; 7130 Args.push_back(Entry); 7131 7132 Entry.Ty = Type::getInt8Ty(*getContext()); 7133 Entry.Node = Value; 7134 Args.push_back(Entry); 7135 7136 Entry.Ty = SizeTy; 7137 Entry.Node = Size; 7138 Args.push_back(Entry); 7139 7140 RTLIB::Libcall LibraryCall = 7141 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7142 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7143 report_fatal_error("Unsupported element size"); 7144 7145 TargetLowering::CallLoweringInfo CLI(*this); 7146 CLI.setDebugLoc(dl) 7147 .setChain(Chain) 7148 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7149 Type::getVoidTy(*getContext()), 7150 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7151 TLI->getPointerTy(getDataLayout())), 7152 std::move(Args)) 7153 .setDiscardResult() 7154 .setTailCall(isTailCall); 7155 7156 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7157 return CallResult.second; 7158 } 7159 7160 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7161 SDVTList VTList, ArrayRef<SDValue> Ops, 7162 MachineMemOperand *MMO) { 7163 FoldingSetNodeID ID; 7164 ID.AddInteger(MemVT.getRawBits()); 7165 AddNodeIDNode(ID, Opcode, VTList, Ops); 7166 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7167 void* IP = nullptr; 7168 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7169 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7170 return SDValue(E, 0); 7171 } 7172 7173 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7174 VTList, MemVT, MMO); 7175 createOperands(N, Ops); 7176 7177 CSEMap.InsertNode(N, IP); 7178 InsertNode(N); 7179 return SDValue(N, 0); 7180 } 7181 7182 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7183 EVT MemVT, SDVTList VTs, SDValue Chain, 7184 SDValue Ptr, SDValue Cmp, SDValue Swp, 7185 MachineMemOperand *MMO) { 7186 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7187 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7188 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7189 7190 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7191 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7192 } 7193 7194 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7195 SDValue Chain, SDValue Ptr, SDValue Val, 7196 MachineMemOperand *MMO) { 7197 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7198 Opcode == ISD::ATOMIC_LOAD_SUB || 7199 Opcode == ISD::ATOMIC_LOAD_AND || 7200 Opcode == ISD::ATOMIC_LOAD_CLR || 7201 Opcode == ISD::ATOMIC_LOAD_OR || 7202 Opcode == ISD::ATOMIC_LOAD_XOR || 7203 Opcode == ISD::ATOMIC_LOAD_NAND || 7204 Opcode == ISD::ATOMIC_LOAD_MIN || 7205 Opcode == ISD::ATOMIC_LOAD_MAX || 7206 Opcode == ISD::ATOMIC_LOAD_UMIN || 7207 Opcode == ISD::ATOMIC_LOAD_UMAX || 7208 Opcode == ISD::ATOMIC_LOAD_FADD || 7209 Opcode == ISD::ATOMIC_LOAD_FSUB || 7210 Opcode == ISD::ATOMIC_SWAP || 7211 Opcode == ISD::ATOMIC_STORE) && 7212 "Invalid Atomic Op"); 7213 7214 EVT VT = Val.getValueType(); 7215 7216 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7217 getVTList(VT, MVT::Other); 7218 SDValue Ops[] = {Chain, Ptr, Val}; 7219 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7220 } 7221 7222 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7223 EVT VT, SDValue Chain, SDValue Ptr, 7224 MachineMemOperand *MMO) { 7225 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7226 7227 SDVTList VTs = getVTList(VT, MVT::Other); 7228 SDValue Ops[] = {Chain, Ptr}; 7229 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7230 } 7231 7232 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7233 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7234 if (Ops.size() == 1) 7235 return Ops[0]; 7236 7237 SmallVector<EVT, 4> VTs; 7238 VTs.reserve(Ops.size()); 7239 for (const SDValue &Op : Ops) 7240 VTs.push_back(Op.getValueType()); 7241 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7242 } 7243 7244 SDValue SelectionDAG::getMemIntrinsicNode( 7245 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7246 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7247 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7248 if (!Size && MemVT.isScalableVector()) 7249 Size = MemoryLocation::UnknownSize; 7250 else if (!Size) 7251 Size = MemVT.getStoreSize(); 7252 7253 MachineFunction &MF = getMachineFunction(); 7254 MachineMemOperand *MMO = 7255 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7256 7257 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7258 } 7259 7260 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7261 SDVTList VTList, 7262 ArrayRef<SDValue> Ops, EVT MemVT, 7263 MachineMemOperand *MMO) { 7264 assert((Opcode == ISD::INTRINSIC_VOID || 7265 Opcode == ISD::INTRINSIC_W_CHAIN || 7266 Opcode == ISD::PREFETCH || 7267 ((int)Opcode <= std::numeric_limits<int>::max() && 7268 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7269 "Opcode is not a memory-accessing opcode!"); 7270 7271 // Memoize the node unless it returns a flag. 7272 MemIntrinsicSDNode *N; 7273 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7274 FoldingSetNodeID ID; 7275 AddNodeIDNode(ID, Opcode, VTList, Ops); 7276 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7277 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7278 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7279 void *IP = nullptr; 7280 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7281 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7282 return SDValue(E, 0); 7283 } 7284 7285 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7286 VTList, MemVT, MMO); 7287 createOperands(N, Ops); 7288 7289 CSEMap.InsertNode(N, IP); 7290 } else { 7291 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7292 VTList, MemVT, MMO); 7293 createOperands(N, Ops); 7294 } 7295 InsertNode(N); 7296 SDValue V(N, 0); 7297 NewSDValueDbgMsg(V, "Creating new node: ", this); 7298 return V; 7299 } 7300 7301 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7302 SDValue Chain, int FrameIndex, 7303 int64_t Size, int64_t Offset) { 7304 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7305 const auto VTs = getVTList(MVT::Other); 7306 SDValue Ops[2] = { 7307 Chain, 7308 getFrameIndex(FrameIndex, 7309 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7310 true)}; 7311 7312 FoldingSetNodeID ID; 7313 AddNodeIDNode(ID, Opcode, VTs, Ops); 7314 ID.AddInteger(FrameIndex); 7315 ID.AddInteger(Size); 7316 ID.AddInteger(Offset); 7317 void *IP = nullptr; 7318 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7319 return SDValue(E, 0); 7320 7321 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7322 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7323 createOperands(N, Ops); 7324 CSEMap.InsertNode(N, IP); 7325 InsertNode(N); 7326 SDValue V(N, 0); 7327 NewSDValueDbgMsg(V, "Creating new node: ", this); 7328 return V; 7329 } 7330 7331 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7332 uint64_t Guid, uint64_t Index, 7333 uint32_t Attr) { 7334 const unsigned Opcode = ISD::PSEUDO_PROBE; 7335 const auto VTs = getVTList(MVT::Other); 7336 SDValue Ops[] = {Chain}; 7337 FoldingSetNodeID ID; 7338 AddNodeIDNode(ID, Opcode, VTs, Ops); 7339 ID.AddInteger(Guid); 7340 ID.AddInteger(Index); 7341 void *IP = nullptr; 7342 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7343 return SDValue(E, 0); 7344 7345 auto *N = newSDNode<PseudoProbeSDNode>( 7346 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7347 createOperands(N, Ops); 7348 CSEMap.InsertNode(N, IP); 7349 InsertNode(N); 7350 SDValue V(N, 0); 7351 NewSDValueDbgMsg(V, "Creating new node: ", this); 7352 return V; 7353 } 7354 7355 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7356 /// MachinePointerInfo record from it. This is particularly useful because the 7357 /// code generator has many cases where it doesn't bother passing in a 7358 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7359 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7360 SelectionDAG &DAG, SDValue Ptr, 7361 int64_t Offset = 0) { 7362 // If this is FI+Offset, we can model it. 7363 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7364 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7365 FI->getIndex(), Offset); 7366 7367 // If this is (FI+Offset1)+Offset2, we can model it. 7368 if (Ptr.getOpcode() != ISD::ADD || 7369 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7370 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7371 return Info; 7372 7373 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7374 return MachinePointerInfo::getFixedStack( 7375 DAG.getMachineFunction(), FI, 7376 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7377 } 7378 7379 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7380 /// MachinePointerInfo record from it. This is particularly useful because the 7381 /// code generator has many cases where it doesn't bother passing in a 7382 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7383 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7384 SelectionDAG &DAG, SDValue Ptr, 7385 SDValue OffsetOp) { 7386 // If the 'Offset' value isn't a constant, we can't handle this. 7387 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7388 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7389 if (OffsetOp.isUndef()) 7390 return InferPointerInfo(Info, DAG, Ptr); 7391 return Info; 7392 } 7393 7394 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7395 EVT VT, const SDLoc &dl, SDValue Chain, 7396 SDValue Ptr, SDValue Offset, 7397 MachinePointerInfo PtrInfo, EVT MemVT, 7398 Align Alignment, 7399 MachineMemOperand::Flags MMOFlags, 7400 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7401 assert(Chain.getValueType() == MVT::Other && 7402 "Invalid chain type"); 7403 7404 MMOFlags |= MachineMemOperand::MOLoad; 7405 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7406 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7407 // clients. 7408 if (PtrInfo.V.isNull()) 7409 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7410 7411 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7412 MachineFunction &MF = getMachineFunction(); 7413 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7414 Alignment, AAInfo, Ranges); 7415 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7416 } 7417 7418 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7419 EVT VT, const SDLoc &dl, SDValue Chain, 7420 SDValue Ptr, SDValue Offset, EVT MemVT, 7421 MachineMemOperand *MMO) { 7422 if (VT == MemVT) { 7423 ExtType = ISD::NON_EXTLOAD; 7424 } else if (ExtType == ISD::NON_EXTLOAD) { 7425 assert(VT == MemVT && "Non-extending load from different memory type!"); 7426 } else { 7427 // Extending load. 7428 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7429 "Should only be an extending load, not truncating!"); 7430 assert(VT.isInteger() == MemVT.isInteger() && 7431 "Cannot convert from FP to Int or Int -> FP!"); 7432 assert(VT.isVector() == MemVT.isVector() && 7433 "Cannot use an ext load to convert to or from a vector!"); 7434 assert((!VT.isVector() || 7435 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7436 "Cannot use an ext load to change the number of vector elements!"); 7437 } 7438 7439 bool Indexed = AM != ISD::UNINDEXED; 7440 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7441 7442 SDVTList VTs = Indexed ? 7443 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7444 SDValue Ops[] = { Chain, Ptr, Offset }; 7445 FoldingSetNodeID ID; 7446 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7447 ID.AddInteger(MemVT.getRawBits()); 7448 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7449 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7450 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7451 void *IP = nullptr; 7452 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7453 cast<LoadSDNode>(E)->refineAlignment(MMO); 7454 return SDValue(E, 0); 7455 } 7456 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7457 ExtType, MemVT, MMO); 7458 createOperands(N, Ops); 7459 7460 CSEMap.InsertNode(N, IP); 7461 InsertNode(N); 7462 SDValue V(N, 0); 7463 NewSDValueDbgMsg(V, "Creating new node: ", this); 7464 return V; 7465 } 7466 7467 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7468 SDValue Ptr, MachinePointerInfo PtrInfo, 7469 MaybeAlign Alignment, 7470 MachineMemOperand::Flags MMOFlags, 7471 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7472 SDValue Undef = getUNDEF(Ptr.getValueType()); 7473 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7474 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7475 } 7476 7477 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7478 SDValue Ptr, MachineMemOperand *MMO) { 7479 SDValue Undef = getUNDEF(Ptr.getValueType()); 7480 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7481 VT, MMO); 7482 } 7483 7484 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7485 EVT VT, SDValue Chain, SDValue Ptr, 7486 MachinePointerInfo PtrInfo, EVT MemVT, 7487 MaybeAlign Alignment, 7488 MachineMemOperand::Flags MMOFlags, 7489 const AAMDNodes &AAInfo) { 7490 SDValue Undef = getUNDEF(Ptr.getValueType()); 7491 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7492 MemVT, Alignment, MMOFlags, AAInfo); 7493 } 7494 7495 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7496 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7497 MachineMemOperand *MMO) { 7498 SDValue Undef = getUNDEF(Ptr.getValueType()); 7499 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7500 MemVT, MMO); 7501 } 7502 7503 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7504 SDValue Base, SDValue Offset, 7505 ISD::MemIndexedMode AM) { 7506 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7507 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7508 // Don't propagate the invariant or dereferenceable flags. 7509 auto MMOFlags = 7510 LD->getMemOperand()->getFlags() & 7511 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7512 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7513 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7514 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7515 } 7516 7517 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7518 SDValue Ptr, MachinePointerInfo PtrInfo, 7519 Align Alignment, 7520 MachineMemOperand::Flags MMOFlags, 7521 const AAMDNodes &AAInfo) { 7522 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7523 7524 MMOFlags |= MachineMemOperand::MOStore; 7525 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7526 7527 if (PtrInfo.V.isNull()) 7528 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7529 7530 MachineFunction &MF = getMachineFunction(); 7531 uint64_t Size = 7532 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7533 MachineMemOperand *MMO = 7534 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7535 return getStore(Chain, dl, Val, Ptr, MMO); 7536 } 7537 7538 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7539 SDValue Ptr, MachineMemOperand *MMO) { 7540 assert(Chain.getValueType() == MVT::Other && 7541 "Invalid chain type"); 7542 EVT VT = Val.getValueType(); 7543 SDVTList VTs = getVTList(MVT::Other); 7544 SDValue Undef = getUNDEF(Ptr.getValueType()); 7545 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7546 FoldingSetNodeID ID; 7547 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7548 ID.AddInteger(VT.getRawBits()); 7549 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7550 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7551 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7552 void *IP = nullptr; 7553 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7554 cast<StoreSDNode>(E)->refineAlignment(MMO); 7555 return SDValue(E, 0); 7556 } 7557 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7558 ISD::UNINDEXED, false, VT, MMO); 7559 createOperands(N, Ops); 7560 7561 CSEMap.InsertNode(N, IP); 7562 InsertNode(N); 7563 SDValue V(N, 0); 7564 NewSDValueDbgMsg(V, "Creating new node: ", this); 7565 return V; 7566 } 7567 7568 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7569 SDValue Ptr, MachinePointerInfo PtrInfo, 7570 EVT SVT, Align Alignment, 7571 MachineMemOperand::Flags MMOFlags, 7572 const AAMDNodes &AAInfo) { 7573 assert(Chain.getValueType() == MVT::Other && 7574 "Invalid chain type"); 7575 7576 MMOFlags |= MachineMemOperand::MOStore; 7577 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7578 7579 if (PtrInfo.V.isNull()) 7580 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7581 7582 MachineFunction &MF = getMachineFunction(); 7583 MachineMemOperand *MMO = MF.getMachineMemOperand( 7584 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7585 Alignment, AAInfo); 7586 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7587 } 7588 7589 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7590 SDValue Ptr, EVT SVT, 7591 MachineMemOperand *MMO) { 7592 EVT VT = Val.getValueType(); 7593 7594 assert(Chain.getValueType() == MVT::Other && 7595 "Invalid chain type"); 7596 if (VT == SVT) 7597 return getStore(Chain, dl, Val, Ptr, MMO); 7598 7599 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7600 "Should only be a truncating store, not extending!"); 7601 assert(VT.isInteger() == SVT.isInteger() && 7602 "Can't do FP-INT conversion!"); 7603 assert(VT.isVector() == SVT.isVector() && 7604 "Cannot use trunc store to convert to or from a vector!"); 7605 assert((!VT.isVector() || 7606 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7607 "Cannot use trunc store to change the number of vector elements!"); 7608 7609 SDVTList VTs = getVTList(MVT::Other); 7610 SDValue Undef = getUNDEF(Ptr.getValueType()); 7611 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7612 FoldingSetNodeID ID; 7613 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7614 ID.AddInteger(SVT.getRawBits()); 7615 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7616 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7617 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7618 void *IP = nullptr; 7619 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7620 cast<StoreSDNode>(E)->refineAlignment(MMO); 7621 return SDValue(E, 0); 7622 } 7623 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7624 ISD::UNINDEXED, true, SVT, MMO); 7625 createOperands(N, Ops); 7626 7627 CSEMap.InsertNode(N, IP); 7628 InsertNode(N); 7629 SDValue V(N, 0); 7630 NewSDValueDbgMsg(V, "Creating new node: ", this); 7631 return V; 7632 } 7633 7634 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7635 SDValue Base, SDValue Offset, 7636 ISD::MemIndexedMode AM) { 7637 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7638 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7639 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7640 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7641 FoldingSetNodeID ID; 7642 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7643 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7644 ID.AddInteger(ST->getRawSubclassData()); 7645 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7646 void *IP = nullptr; 7647 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7648 return SDValue(E, 0); 7649 7650 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7651 ST->isTruncatingStore(), ST->getMemoryVT(), 7652 ST->getMemOperand()); 7653 createOperands(N, Ops); 7654 7655 CSEMap.InsertNode(N, IP); 7656 InsertNode(N); 7657 SDValue V(N, 0); 7658 NewSDValueDbgMsg(V, "Creating new node: ", this); 7659 return V; 7660 } 7661 7662 SDValue SelectionDAG::getLoadVP( 7663 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7664 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7665 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7666 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7667 const MDNode *Ranges, bool IsExpanding) { 7668 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7669 7670 MMOFlags |= MachineMemOperand::MOLoad; 7671 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7672 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7673 // clients. 7674 if (PtrInfo.V.isNull()) 7675 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7676 7677 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7678 MachineFunction &MF = getMachineFunction(); 7679 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7680 Alignment, AAInfo, Ranges); 7681 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7682 MMO, IsExpanding); 7683 } 7684 7685 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7686 ISD::LoadExtType ExtType, EVT VT, 7687 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7688 SDValue Offset, SDValue Mask, SDValue EVL, 7689 EVT MemVT, MachineMemOperand *MMO, 7690 bool IsExpanding) { 7691 if (VT == MemVT) { 7692 ExtType = ISD::NON_EXTLOAD; 7693 } else if (ExtType == ISD::NON_EXTLOAD) { 7694 assert(VT == MemVT && "Non-extending load from different memory type!"); 7695 } else { 7696 // Extending load. 7697 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7698 "Should only be an extending load, not truncating!"); 7699 assert(VT.isInteger() == MemVT.isInteger() && 7700 "Cannot convert from FP to Int or Int -> FP!"); 7701 assert(VT.isVector() == MemVT.isVector() && 7702 "Cannot use an ext load to convert to or from a vector!"); 7703 assert((!VT.isVector() || 7704 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7705 "Cannot use an ext load to change the number of vector elements!"); 7706 } 7707 7708 bool Indexed = AM != ISD::UNINDEXED; 7709 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7710 7711 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7712 : getVTList(VT, MVT::Other); 7713 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7714 FoldingSetNodeID ID; 7715 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7716 ID.AddInteger(VT.getRawBits()); 7717 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7718 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7719 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7720 void *IP = nullptr; 7721 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7722 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7723 return SDValue(E, 0); 7724 } 7725 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7726 ExtType, IsExpanding, MemVT, MMO); 7727 createOperands(N, Ops); 7728 7729 CSEMap.InsertNode(N, IP); 7730 InsertNode(N); 7731 SDValue V(N, 0); 7732 NewSDValueDbgMsg(V, "Creating new node: ", this); 7733 return V; 7734 } 7735 7736 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7737 SDValue Ptr, SDValue Mask, SDValue EVL, 7738 MachinePointerInfo PtrInfo, 7739 MaybeAlign Alignment, 7740 MachineMemOperand::Flags MMOFlags, 7741 const AAMDNodes &AAInfo, const MDNode *Ranges, 7742 bool IsExpanding) { 7743 SDValue Undef = getUNDEF(Ptr.getValueType()); 7744 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7745 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7746 IsExpanding); 7747 } 7748 7749 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7750 SDValue Ptr, SDValue Mask, SDValue EVL, 7751 MachineMemOperand *MMO, bool IsExpanding) { 7752 SDValue Undef = getUNDEF(Ptr.getValueType()); 7753 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7754 Mask, EVL, VT, MMO, IsExpanding); 7755 } 7756 7757 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7758 EVT VT, SDValue Chain, SDValue Ptr, 7759 SDValue Mask, SDValue EVL, 7760 MachinePointerInfo PtrInfo, EVT MemVT, 7761 MaybeAlign Alignment, 7762 MachineMemOperand::Flags MMOFlags, 7763 const AAMDNodes &AAInfo, bool IsExpanding) { 7764 SDValue Undef = getUNDEF(Ptr.getValueType()); 7765 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7766 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7767 IsExpanding); 7768 } 7769 7770 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7771 EVT VT, SDValue Chain, SDValue Ptr, 7772 SDValue Mask, SDValue EVL, EVT MemVT, 7773 MachineMemOperand *MMO, bool IsExpanding) { 7774 SDValue Undef = getUNDEF(Ptr.getValueType()); 7775 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7776 EVL, MemVT, MMO, IsExpanding); 7777 } 7778 7779 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7780 SDValue Base, SDValue Offset, 7781 ISD::MemIndexedMode AM) { 7782 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7783 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7784 // Don't propagate the invariant or dereferenceable flags. 7785 auto MMOFlags = 7786 LD->getMemOperand()->getFlags() & 7787 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7788 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7789 LD->getChain(), Base, Offset, LD->getMask(), 7790 LD->getVectorLength(), LD->getPointerInfo(), 7791 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7792 nullptr, LD->isExpandingLoad()); 7793 } 7794 7795 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7796 SDValue Ptr, SDValue Mask, SDValue EVL, 7797 MachinePointerInfo PtrInfo, Align Alignment, 7798 MachineMemOperand::Flags MMOFlags, 7799 const AAMDNodes &AAInfo, bool IsCompressing) { 7800 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7801 7802 MMOFlags |= MachineMemOperand::MOStore; 7803 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7804 7805 if (PtrInfo.V.isNull()) 7806 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7807 7808 MachineFunction &MF = getMachineFunction(); 7809 uint64_t Size = 7810 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7811 MachineMemOperand *MMO = 7812 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7813 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7814 } 7815 7816 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7817 SDValue Ptr, SDValue Mask, SDValue EVL, 7818 MachineMemOperand *MMO, bool IsCompressing) { 7819 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7820 EVT VT = Val.getValueType(); 7821 SDVTList VTs = getVTList(MVT::Other); 7822 SDValue Undef = getUNDEF(Ptr.getValueType()); 7823 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7824 FoldingSetNodeID ID; 7825 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7826 ID.AddInteger(VT.getRawBits()); 7827 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7828 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7829 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7830 void *IP = nullptr; 7831 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7832 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7833 return SDValue(E, 0); 7834 } 7835 auto *N = 7836 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7837 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7838 createOperands(N, Ops); 7839 7840 CSEMap.InsertNode(N, IP); 7841 InsertNode(N); 7842 SDValue V(N, 0); 7843 NewSDValueDbgMsg(V, "Creating new node: ", this); 7844 return V; 7845 } 7846 7847 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7848 SDValue Val, SDValue Ptr, SDValue Mask, 7849 SDValue EVL, MachinePointerInfo PtrInfo, 7850 EVT SVT, Align Alignment, 7851 MachineMemOperand::Flags MMOFlags, 7852 const AAMDNodes &AAInfo, 7853 bool IsCompressing) { 7854 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7855 7856 MMOFlags |= MachineMemOperand::MOStore; 7857 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7858 7859 if (PtrInfo.V.isNull()) 7860 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7861 7862 MachineFunction &MF = getMachineFunction(); 7863 MachineMemOperand *MMO = MF.getMachineMemOperand( 7864 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7865 Alignment, AAInfo); 7866 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7867 IsCompressing); 7868 } 7869 7870 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7871 SDValue Val, SDValue Ptr, SDValue Mask, 7872 SDValue EVL, EVT SVT, 7873 MachineMemOperand *MMO, 7874 bool IsCompressing) { 7875 EVT VT = Val.getValueType(); 7876 7877 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7878 if (VT == SVT) 7879 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7880 7881 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7882 "Should only be a truncating store, not extending!"); 7883 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7884 assert(VT.isVector() == SVT.isVector() && 7885 "Cannot use trunc store to convert to or from a vector!"); 7886 assert((!VT.isVector() || 7887 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7888 "Cannot use trunc store to change the number of vector elements!"); 7889 7890 SDVTList VTs = getVTList(MVT::Other); 7891 SDValue Undef = getUNDEF(Ptr.getValueType()); 7892 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7893 FoldingSetNodeID ID; 7894 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7895 ID.AddInteger(SVT.getRawBits()); 7896 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7897 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7898 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7899 void *IP = nullptr; 7900 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7901 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7902 return SDValue(E, 0); 7903 } 7904 auto *N = 7905 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7906 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7907 createOperands(N, Ops); 7908 7909 CSEMap.InsertNode(N, IP); 7910 InsertNode(N); 7911 SDValue V(N, 0); 7912 NewSDValueDbgMsg(V, "Creating new node: ", this); 7913 return V; 7914 } 7915 7916 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7917 SDValue Base, SDValue Offset, 7918 ISD::MemIndexedMode AM) { 7919 auto *ST = cast<VPStoreSDNode>(OrigStore); 7920 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7921 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7922 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7923 Offset, ST->getMask(), ST->getVectorLength()}; 7924 FoldingSetNodeID ID; 7925 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7926 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7927 ID.AddInteger(ST->getRawSubclassData()); 7928 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7929 void *IP = nullptr; 7930 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7931 return SDValue(E, 0); 7932 7933 auto *N = newSDNode<VPStoreSDNode>( 7934 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7935 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7936 createOperands(N, Ops); 7937 7938 CSEMap.InsertNode(N, IP); 7939 InsertNode(N); 7940 SDValue V(N, 0); 7941 NewSDValueDbgMsg(V, "Creating new node: ", this); 7942 return V; 7943 } 7944 7945 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7946 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7947 ISD::MemIndexType IndexType) { 7948 assert(Ops.size() == 6 && "Incompatible number of operands"); 7949 7950 FoldingSetNodeID ID; 7951 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7952 ID.AddInteger(VT.getRawBits()); 7953 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7954 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7955 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7956 void *IP = nullptr; 7957 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7958 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7959 return SDValue(E, 0); 7960 } 7961 7962 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7963 VT, MMO, IndexType); 7964 createOperands(N, Ops); 7965 7966 assert(N->getMask().getValueType().getVectorElementCount() == 7967 N->getValueType(0).getVectorElementCount() && 7968 "Vector width mismatch between mask and data"); 7969 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7970 N->getValueType(0).getVectorElementCount().isScalable() && 7971 "Scalable flags of index and data do not match"); 7972 assert(ElementCount::isKnownGE( 7973 N->getIndex().getValueType().getVectorElementCount(), 7974 N->getValueType(0).getVectorElementCount()) && 7975 "Vector width mismatch between index and data"); 7976 assert(isa<ConstantSDNode>(N->getScale()) && 7977 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7978 "Scale should be a constant power of 2"); 7979 7980 CSEMap.InsertNode(N, IP); 7981 InsertNode(N); 7982 SDValue V(N, 0); 7983 NewSDValueDbgMsg(V, "Creating new node: ", this); 7984 return V; 7985 } 7986 7987 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7988 ArrayRef<SDValue> Ops, 7989 MachineMemOperand *MMO, 7990 ISD::MemIndexType IndexType) { 7991 assert(Ops.size() == 7 && "Incompatible number of operands"); 7992 7993 FoldingSetNodeID ID; 7994 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7995 ID.AddInteger(VT.getRawBits()); 7996 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 7997 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7998 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7999 void *IP = nullptr; 8000 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8001 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8002 return SDValue(E, 0); 8003 } 8004 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8005 VT, MMO, IndexType); 8006 createOperands(N, Ops); 8007 8008 assert(N->getMask().getValueType().getVectorElementCount() == 8009 N->getValue().getValueType().getVectorElementCount() && 8010 "Vector width mismatch between mask and data"); 8011 assert( 8012 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8013 N->getValue().getValueType().getVectorElementCount().isScalable() && 8014 "Scalable flags of index and data do not match"); 8015 assert(ElementCount::isKnownGE( 8016 N->getIndex().getValueType().getVectorElementCount(), 8017 N->getValue().getValueType().getVectorElementCount()) && 8018 "Vector width mismatch between index and data"); 8019 assert(isa<ConstantSDNode>(N->getScale()) && 8020 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8021 "Scale should be a constant power of 2"); 8022 8023 CSEMap.InsertNode(N, IP); 8024 InsertNode(N); 8025 SDValue V(N, 0); 8026 NewSDValueDbgMsg(V, "Creating new node: ", this); 8027 return V; 8028 } 8029 8030 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8031 SDValue Base, SDValue Offset, SDValue Mask, 8032 SDValue PassThru, EVT MemVT, 8033 MachineMemOperand *MMO, 8034 ISD::MemIndexedMode AM, 8035 ISD::LoadExtType ExtTy, bool isExpanding) { 8036 bool Indexed = AM != ISD::UNINDEXED; 8037 assert((Indexed || Offset.isUndef()) && 8038 "Unindexed masked load with an offset!"); 8039 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8040 : getVTList(VT, MVT::Other); 8041 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8042 FoldingSetNodeID ID; 8043 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8044 ID.AddInteger(MemVT.getRawBits()); 8045 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8046 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8047 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8048 void *IP = nullptr; 8049 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8050 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8051 return SDValue(E, 0); 8052 } 8053 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8054 AM, ExtTy, isExpanding, MemVT, MMO); 8055 createOperands(N, Ops); 8056 8057 CSEMap.InsertNode(N, IP); 8058 InsertNode(N); 8059 SDValue V(N, 0); 8060 NewSDValueDbgMsg(V, "Creating new node: ", this); 8061 return V; 8062 } 8063 8064 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8065 SDValue Base, SDValue Offset, 8066 ISD::MemIndexedMode AM) { 8067 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8068 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8069 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8070 Offset, LD->getMask(), LD->getPassThru(), 8071 LD->getMemoryVT(), LD->getMemOperand(), AM, 8072 LD->getExtensionType(), LD->isExpandingLoad()); 8073 } 8074 8075 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8076 SDValue Val, SDValue Base, SDValue Offset, 8077 SDValue Mask, EVT MemVT, 8078 MachineMemOperand *MMO, 8079 ISD::MemIndexedMode AM, bool IsTruncating, 8080 bool IsCompressing) { 8081 assert(Chain.getValueType() == MVT::Other && 8082 "Invalid chain type"); 8083 bool Indexed = AM != ISD::UNINDEXED; 8084 assert((Indexed || Offset.isUndef()) && 8085 "Unindexed masked store with an offset!"); 8086 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8087 : getVTList(MVT::Other); 8088 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8089 FoldingSetNodeID ID; 8090 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8091 ID.AddInteger(MemVT.getRawBits()); 8092 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8093 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8094 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8095 void *IP = nullptr; 8096 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8097 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8098 return SDValue(E, 0); 8099 } 8100 auto *N = 8101 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8102 IsTruncating, IsCompressing, MemVT, MMO); 8103 createOperands(N, Ops); 8104 8105 CSEMap.InsertNode(N, IP); 8106 InsertNode(N); 8107 SDValue V(N, 0); 8108 NewSDValueDbgMsg(V, "Creating new node: ", this); 8109 return V; 8110 } 8111 8112 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8113 SDValue Base, SDValue Offset, 8114 ISD::MemIndexedMode AM) { 8115 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8116 assert(ST->getOffset().isUndef() && 8117 "Masked store is already a indexed store!"); 8118 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8119 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8120 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8121 } 8122 8123 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8124 ArrayRef<SDValue> Ops, 8125 MachineMemOperand *MMO, 8126 ISD::MemIndexType IndexType, 8127 ISD::LoadExtType ExtTy) { 8128 assert(Ops.size() == 6 && "Incompatible number of operands"); 8129 8130 FoldingSetNodeID ID; 8131 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8132 ID.AddInteger(MemVT.getRawBits()); 8133 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8134 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8135 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8136 void *IP = nullptr; 8137 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8138 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8139 return SDValue(E, 0); 8140 } 8141 8142 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8143 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8144 VTs, MemVT, MMO, IndexType, ExtTy); 8145 createOperands(N, Ops); 8146 8147 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8148 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8149 assert(N->getMask().getValueType().getVectorElementCount() == 8150 N->getValueType(0).getVectorElementCount() && 8151 "Vector width mismatch between mask and data"); 8152 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8153 N->getValueType(0).getVectorElementCount().isScalable() && 8154 "Scalable flags of index and data do not match"); 8155 assert(ElementCount::isKnownGE( 8156 N->getIndex().getValueType().getVectorElementCount(), 8157 N->getValueType(0).getVectorElementCount()) && 8158 "Vector width mismatch between index and data"); 8159 assert(isa<ConstantSDNode>(N->getScale()) && 8160 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8161 "Scale should be a constant power of 2"); 8162 8163 CSEMap.InsertNode(N, IP); 8164 InsertNode(N); 8165 SDValue V(N, 0); 8166 NewSDValueDbgMsg(V, "Creating new node: ", this); 8167 return V; 8168 } 8169 8170 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8171 ArrayRef<SDValue> Ops, 8172 MachineMemOperand *MMO, 8173 ISD::MemIndexType IndexType, 8174 bool IsTrunc) { 8175 assert(Ops.size() == 6 && "Incompatible number of operands"); 8176 8177 FoldingSetNodeID ID; 8178 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8179 ID.AddInteger(MemVT.getRawBits()); 8180 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8181 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8182 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8183 void *IP = nullptr; 8184 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8185 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8186 return SDValue(E, 0); 8187 } 8188 8189 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8190 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8191 VTs, MemVT, MMO, IndexType, IsTrunc); 8192 createOperands(N, Ops); 8193 8194 assert(N->getMask().getValueType().getVectorElementCount() == 8195 N->getValue().getValueType().getVectorElementCount() && 8196 "Vector width mismatch between mask and data"); 8197 assert( 8198 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8199 N->getValue().getValueType().getVectorElementCount().isScalable() && 8200 "Scalable flags of index and data do not match"); 8201 assert(ElementCount::isKnownGE( 8202 N->getIndex().getValueType().getVectorElementCount(), 8203 N->getValue().getValueType().getVectorElementCount()) && 8204 "Vector width mismatch between index and data"); 8205 assert(isa<ConstantSDNode>(N->getScale()) && 8206 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8207 "Scale should be a constant power of 2"); 8208 8209 CSEMap.InsertNode(N, IP); 8210 InsertNode(N); 8211 SDValue V(N, 0); 8212 NewSDValueDbgMsg(V, "Creating new node: ", this); 8213 return V; 8214 } 8215 8216 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8217 // select undef, T, F --> T (if T is a constant), otherwise F 8218 // select, ?, undef, F --> F 8219 // select, ?, T, undef --> T 8220 if (Cond.isUndef()) 8221 return isConstantValueOfAnyType(T) ? T : F; 8222 if (T.isUndef()) 8223 return F; 8224 if (F.isUndef()) 8225 return T; 8226 8227 // select true, T, F --> T 8228 // select false, T, F --> F 8229 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8230 return CondC->isZero() ? F : T; 8231 8232 // TODO: This should simplify VSELECT with constant condition using something 8233 // like this (but check boolean contents to be complete?): 8234 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8235 // return T; 8236 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8237 // return F; 8238 8239 // select ?, T, T --> T 8240 if (T == F) 8241 return T; 8242 8243 return SDValue(); 8244 } 8245 8246 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8247 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8248 if (X.isUndef()) 8249 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8250 // shift X, undef --> undef (because it may shift by the bitwidth) 8251 if (Y.isUndef()) 8252 return getUNDEF(X.getValueType()); 8253 8254 // shift 0, Y --> 0 8255 // shift X, 0 --> X 8256 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8257 return X; 8258 8259 // shift X, C >= bitwidth(X) --> undef 8260 // All vector elements must be too big (or undef) to avoid partial undefs. 8261 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8262 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8263 }; 8264 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8265 return getUNDEF(X.getValueType()); 8266 8267 return SDValue(); 8268 } 8269 8270 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8271 SDNodeFlags Flags) { 8272 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8273 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8274 // operation is poison. That result can be relaxed to undef. 8275 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8276 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8277 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8278 (YC && YC->getValueAPF().isNaN()); 8279 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8280 (YC && YC->getValueAPF().isInfinity()); 8281 8282 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8283 return getUNDEF(X.getValueType()); 8284 8285 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8286 return getUNDEF(X.getValueType()); 8287 8288 if (!YC) 8289 return SDValue(); 8290 8291 // X + -0.0 --> X 8292 if (Opcode == ISD::FADD) 8293 if (YC->getValueAPF().isNegZero()) 8294 return X; 8295 8296 // X - +0.0 --> X 8297 if (Opcode == ISD::FSUB) 8298 if (YC->getValueAPF().isPosZero()) 8299 return X; 8300 8301 // X * 1.0 --> X 8302 // X / 1.0 --> X 8303 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8304 if (YC->getValueAPF().isExactlyValue(1.0)) 8305 return X; 8306 8307 // X * 0.0 --> 0.0 8308 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8309 if (YC->getValueAPF().isZero()) 8310 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8311 8312 return SDValue(); 8313 } 8314 8315 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8316 SDValue Ptr, SDValue SV, unsigned Align) { 8317 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8318 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8319 } 8320 8321 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8322 ArrayRef<SDUse> Ops) { 8323 switch (Ops.size()) { 8324 case 0: return getNode(Opcode, DL, VT); 8325 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8326 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8327 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8328 default: break; 8329 } 8330 8331 // Copy from an SDUse array into an SDValue array for use with 8332 // the regular getNode logic. 8333 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8334 return getNode(Opcode, DL, VT, NewOps); 8335 } 8336 8337 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8338 ArrayRef<SDValue> Ops) { 8339 SDNodeFlags Flags; 8340 if (Inserter) 8341 Flags = Inserter->getFlags(); 8342 return getNode(Opcode, DL, VT, Ops, Flags); 8343 } 8344 8345 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8346 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8347 unsigned NumOps = Ops.size(); 8348 switch (NumOps) { 8349 case 0: return getNode(Opcode, DL, VT); 8350 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8351 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8352 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8353 default: break; 8354 } 8355 8356 #ifndef NDEBUG 8357 for (auto &Op : Ops) 8358 assert(Op.getOpcode() != ISD::DELETED_NODE && 8359 "Operand is DELETED_NODE!"); 8360 #endif 8361 8362 switch (Opcode) { 8363 default: break; 8364 case ISD::BUILD_VECTOR: 8365 // Attempt to simplify BUILD_VECTOR. 8366 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8367 return V; 8368 break; 8369 case ISD::CONCAT_VECTORS: 8370 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8371 return V; 8372 break; 8373 case ISD::SELECT_CC: 8374 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8375 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8376 "LHS and RHS of condition must have same type!"); 8377 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8378 "True and False arms of SelectCC must have same type!"); 8379 assert(Ops[2].getValueType() == VT && 8380 "select_cc node must be of same type as true and false value!"); 8381 break; 8382 case ISD::BR_CC: 8383 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8384 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8385 "LHS/RHS of comparison should match types!"); 8386 break; 8387 } 8388 8389 // Memoize nodes. 8390 SDNode *N; 8391 SDVTList VTs = getVTList(VT); 8392 8393 if (VT != MVT::Glue) { 8394 FoldingSetNodeID ID; 8395 AddNodeIDNode(ID, Opcode, VTs, Ops); 8396 void *IP = nullptr; 8397 8398 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8399 return SDValue(E, 0); 8400 8401 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8402 createOperands(N, Ops); 8403 8404 CSEMap.InsertNode(N, IP); 8405 } else { 8406 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8407 createOperands(N, Ops); 8408 } 8409 8410 N->setFlags(Flags); 8411 InsertNode(N); 8412 SDValue V(N, 0); 8413 NewSDValueDbgMsg(V, "Creating new node: ", this); 8414 return V; 8415 } 8416 8417 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8418 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8419 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8420 } 8421 8422 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8423 ArrayRef<SDValue> Ops) { 8424 SDNodeFlags Flags; 8425 if (Inserter) 8426 Flags = Inserter->getFlags(); 8427 return getNode(Opcode, DL, VTList, Ops, Flags); 8428 } 8429 8430 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8431 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8432 if (VTList.NumVTs == 1) 8433 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8434 8435 #ifndef NDEBUG 8436 for (auto &Op : Ops) 8437 assert(Op.getOpcode() != ISD::DELETED_NODE && 8438 "Operand is DELETED_NODE!"); 8439 #endif 8440 8441 switch (Opcode) { 8442 case ISD::STRICT_FP_EXTEND: 8443 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8444 "Invalid STRICT_FP_EXTEND!"); 8445 assert(VTList.VTs[0].isFloatingPoint() && 8446 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8447 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8448 "STRICT_FP_EXTEND result type should be vector iff the operand " 8449 "type is vector!"); 8450 assert((!VTList.VTs[0].isVector() || 8451 VTList.VTs[0].getVectorNumElements() == 8452 Ops[1].getValueType().getVectorNumElements()) && 8453 "Vector element count mismatch!"); 8454 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8455 "Invalid fpext node, dst <= src!"); 8456 break; 8457 case ISD::STRICT_FP_ROUND: 8458 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8459 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8460 "STRICT_FP_ROUND result type should be vector iff the operand " 8461 "type is vector!"); 8462 assert((!VTList.VTs[0].isVector() || 8463 VTList.VTs[0].getVectorNumElements() == 8464 Ops[1].getValueType().getVectorNumElements()) && 8465 "Vector element count mismatch!"); 8466 assert(VTList.VTs[0].isFloatingPoint() && 8467 Ops[1].getValueType().isFloatingPoint() && 8468 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8469 isa<ConstantSDNode>(Ops[2]) && 8470 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8471 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8472 "Invalid STRICT_FP_ROUND!"); 8473 break; 8474 #if 0 8475 // FIXME: figure out how to safely handle things like 8476 // int foo(int x) { return 1 << (x & 255); } 8477 // int bar() { return foo(256); } 8478 case ISD::SRA_PARTS: 8479 case ISD::SRL_PARTS: 8480 case ISD::SHL_PARTS: 8481 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8482 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8483 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8484 else if (N3.getOpcode() == ISD::AND) 8485 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8486 // If the and is only masking out bits that cannot effect the shift, 8487 // eliminate the and. 8488 unsigned NumBits = VT.getScalarSizeInBits()*2; 8489 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8490 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8491 } 8492 break; 8493 #endif 8494 } 8495 8496 // Memoize the node unless it returns a flag. 8497 SDNode *N; 8498 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8499 FoldingSetNodeID ID; 8500 AddNodeIDNode(ID, Opcode, VTList, Ops); 8501 void *IP = nullptr; 8502 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8503 return SDValue(E, 0); 8504 8505 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8506 createOperands(N, Ops); 8507 CSEMap.InsertNode(N, IP); 8508 } else { 8509 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8510 createOperands(N, Ops); 8511 } 8512 8513 N->setFlags(Flags); 8514 InsertNode(N); 8515 SDValue V(N, 0); 8516 NewSDValueDbgMsg(V, "Creating new node: ", this); 8517 return V; 8518 } 8519 8520 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8521 SDVTList VTList) { 8522 return getNode(Opcode, DL, VTList, None); 8523 } 8524 8525 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8526 SDValue N1) { 8527 SDValue Ops[] = { N1 }; 8528 return getNode(Opcode, DL, VTList, Ops); 8529 } 8530 8531 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8532 SDValue N1, SDValue N2) { 8533 SDValue Ops[] = { N1, N2 }; 8534 return getNode(Opcode, DL, VTList, Ops); 8535 } 8536 8537 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8538 SDValue N1, SDValue N2, SDValue N3) { 8539 SDValue Ops[] = { N1, N2, N3 }; 8540 return getNode(Opcode, DL, VTList, Ops); 8541 } 8542 8543 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8544 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8545 SDValue Ops[] = { N1, N2, N3, N4 }; 8546 return getNode(Opcode, DL, VTList, Ops); 8547 } 8548 8549 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8550 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8551 SDValue N5) { 8552 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8553 return getNode(Opcode, DL, VTList, Ops); 8554 } 8555 8556 SDVTList SelectionDAG::getVTList(EVT VT) { 8557 return makeVTList(SDNode::getValueTypeList(VT), 1); 8558 } 8559 8560 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8561 FoldingSetNodeID ID; 8562 ID.AddInteger(2U); 8563 ID.AddInteger(VT1.getRawBits()); 8564 ID.AddInteger(VT2.getRawBits()); 8565 8566 void *IP = nullptr; 8567 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8568 if (!Result) { 8569 EVT *Array = Allocator.Allocate<EVT>(2); 8570 Array[0] = VT1; 8571 Array[1] = VT2; 8572 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8573 VTListMap.InsertNode(Result, IP); 8574 } 8575 return Result->getSDVTList(); 8576 } 8577 8578 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8579 FoldingSetNodeID ID; 8580 ID.AddInteger(3U); 8581 ID.AddInteger(VT1.getRawBits()); 8582 ID.AddInteger(VT2.getRawBits()); 8583 ID.AddInteger(VT3.getRawBits()); 8584 8585 void *IP = nullptr; 8586 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8587 if (!Result) { 8588 EVT *Array = Allocator.Allocate<EVT>(3); 8589 Array[0] = VT1; 8590 Array[1] = VT2; 8591 Array[2] = VT3; 8592 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8593 VTListMap.InsertNode(Result, IP); 8594 } 8595 return Result->getSDVTList(); 8596 } 8597 8598 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8599 FoldingSetNodeID ID; 8600 ID.AddInteger(4U); 8601 ID.AddInteger(VT1.getRawBits()); 8602 ID.AddInteger(VT2.getRawBits()); 8603 ID.AddInteger(VT3.getRawBits()); 8604 ID.AddInteger(VT4.getRawBits()); 8605 8606 void *IP = nullptr; 8607 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8608 if (!Result) { 8609 EVT *Array = Allocator.Allocate<EVT>(4); 8610 Array[0] = VT1; 8611 Array[1] = VT2; 8612 Array[2] = VT3; 8613 Array[3] = VT4; 8614 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8615 VTListMap.InsertNode(Result, IP); 8616 } 8617 return Result->getSDVTList(); 8618 } 8619 8620 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8621 unsigned NumVTs = VTs.size(); 8622 FoldingSetNodeID ID; 8623 ID.AddInteger(NumVTs); 8624 for (unsigned index = 0; index < NumVTs; index++) { 8625 ID.AddInteger(VTs[index].getRawBits()); 8626 } 8627 8628 void *IP = nullptr; 8629 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8630 if (!Result) { 8631 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8632 llvm::copy(VTs, Array); 8633 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8634 VTListMap.InsertNode(Result, IP); 8635 } 8636 return Result->getSDVTList(); 8637 } 8638 8639 8640 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8641 /// specified operands. If the resultant node already exists in the DAG, 8642 /// this does not modify the specified node, instead it returns the node that 8643 /// already exists. If the resultant node does not exist in the DAG, the 8644 /// input node is returned. As a degenerate case, if you specify the same 8645 /// input operands as the node already has, the input node is returned. 8646 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8647 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8648 8649 // Check to see if there is no change. 8650 if (Op == N->getOperand(0)) return N; 8651 8652 // See if the modified node already exists. 8653 void *InsertPos = nullptr; 8654 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8655 return Existing; 8656 8657 // Nope it doesn't. Remove the node from its current place in the maps. 8658 if (InsertPos) 8659 if (!RemoveNodeFromCSEMaps(N)) 8660 InsertPos = nullptr; 8661 8662 // Now we update the operands. 8663 N->OperandList[0].set(Op); 8664 8665 updateDivergence(N); 8666 // If this gets put into a CSE map, add it. 8667 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8668 return N; 8669 } 8670 8671 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8672 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8673 8674 // Check to see if there is no change. 8675 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8676 return N; // No operands changed, just return the input node. 8677 8678 // See if the modified node already exists. 8679 void *InsertPos = nullptr; 8680 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8681 return Existing; 8682 8683 // Nope it doesn't. Remove the node from its current place in the maps. 8684 if (InsertPos) 8685 if (!RemoveNodeFromCSEMaps(N)) 8686 InsertPos = nullptr; 8687 8688 // Now we update the operands. 8689 if (N->OperandList[0] != Op1) 8690 N->OperandList[0].set(Op1); 8691 if (N->OperandList[1] != Op2) 8692 N->OperandList[1].set(Op2); 8693 8694 updateDivergence(N); 8695 // If this gets put into a CSE map, add it. 8696 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8697 return N; 8698 } 8699 8700 SDNode *SelectionDAG:: 8701 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8702 SDValue Ops[] = { Op1, Op2, Op3 }; 8703 return UpdateNodeOperands(N, Ops); 8704 } 8705 8706 SDNode *SelectionDAG:: 8707 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8708 SDValue Op3, SDValue Op4) { 8709 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8710 return UpdateNodeOperands(N, Ops); 8711 } 8712 8713 SDNode *SelectionDAG:: 8714 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8715 SDValue Op3, SDValue Op4, SDValue Op5) { 8716 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8717 return UpdateNodeOperands(N, Ops); 8718 } 8719 8720 SDNode *SelectionDAG:: 8721 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8722 unsigned NumOps = Ops.size(); 8723 assert(N->getNumOperands() == NumOps && 8724 "Update with wrong number of operands"); 8725 8726 // If no operands changed just return the input node. 8727 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8728 return N; 8729 8730 // See if the modified node already exists. 8731 void *InsertPos = nullptr; 8732 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8733 return Existing; 8734 8735 // Nope it doesn't. Remove the node from its current place in the maps. 8736 if (InsertPos) 8737 if (!RemoveNodeFromCSEMaps(N)) 8738 InsertPos = nullptr; 8739 8740 // Now we update the operands. 8741 for (unsigned i = 0; i != NumOps; ++i) 8742 if (N->OperandList[i] != Ops[i]) 8743 N->OperandList[i].set(Ops[i]); 8744 8745 updateDivergence(N); 8746 // If this gets put into a CSE map, add it. 8747 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8748 return N; 8749 } 8750 8751 /// DropOperands - Release the operands and set this node to have 8752 /// zero operands. 8753 void SDNode::DropOperands() { 8754 // Unlike the code in MorphNodeTo that does this, we don't need to 8755 // watch for dead nodes here. 8756 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8757 SDUse &Use = *I++; 8758 Use.set(SDValue()); 8759 } 8760 } 8761 8762 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8763 ArrayRef<MachineMemOperand *> NewMemRefs) { 8764 if (NewMemRefs.empty()) { 8765 N->clearMemRefs(); 8766 return; 8767 } 8768 8769 // Check if we can avoid allocating by storing a single reference directly. 8770 if (NewMemRefs.size() == 1) { 8771 N->MemRefs = NewMemRefs[0]; 8772 N->NumMemRefs = 1; 8773 return; 8774 } 8775 8776 MachineMemOperand **MemRefsBuffer = 8777 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8778 llvm::copy(NewMemRefs, MemRefsBuffer); 8779 N->MemRefs = MemRefsBuffer; 8780 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8781 } 8782 8783 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8784 /// machine opcode. 8785 /// 8786 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8787 EVT VT) { 8788 SDVTList VTs = getVTList(VT); 8789 return SelectNodeTo(N, MachineOpc, VTs, None); 8790 } 8791 8792 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8793 EVT VT, SDValue Op1) { 8794 SDVTList VTs = getVTList(VT); 8795 SDValue Ops[] = { Op1 }; 8796 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8797 } 8798 8799 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8800 EVT VT, SDValue Op1, 8801 SDValue Op2) { 8802 SDVTList VTs = getVTList(VT); 8803 SDValue Ops[] = { Op1, Op2 }; 8804 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8805 } 8806 8807 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8808 EVT VT, SDValue Op1, 8809 SDValue Op2, SDValue Op3) { 8810 SDVTList VTs = getVTList(VT); 8811 SDValue Ops[] = { Op1, Op2, Op3 }; 8812 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8813 } 8814 8815 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8816 EVT VT, ArrayRef<SDValue> Ops) { 8817 SDVTList VTs = getVTList(VT); 8818 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8819 } 8820 8821 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8822 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8823 SDVTList VTs = getVTList(VT1, VT2); 8824 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8825 } 8826 8827 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8828 EVT VT1, EVT VT2) { 8829 SDVTList VTs = getVTList(VT1, VT2); 8830 return SelectNodeTo(N, MachineOpc, VTs, None); 8831 } 8832 8833 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8834 EVT VT1, EVT VT2, EVT VT3, 8835 ArrayRef<SDValue> Ops) { 8836 SDVTList VTs = getVTList(VT1, VT2, VT3); 8837 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8838 } 8839 8840 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8841 EVT VT1, EVT VT2, 8842 SDValue Op1, SDValue Op2) { 8843 SDVTList VTs = getVTList(VT1, VT2); 8844 SDValue Ops[] = { Op1, Op2 }; 8845 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8846 } 8847 8848 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8849 SDVTList VTs,ArrayRef<SDValue> Ops) { 8850 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8851 // Reset the NodeID to -1. 8852 New->setNodeId(-1); 8853 if (New != N) { 8854 ReplaceAllUsesWith(N, New); 8855 RemoveDeadNode(N); 8856 } 8857 return New; 8858 } 8859 8860 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8861 /// the line number information on the merged node since it is not possible to 8862 /// preserve the information that operation is associated with multiple lines. 8863 /// This will make the debugger working better at -O0, were there is a higher 8864 /// probability having other instructions associated with that line. 8865 /// 8866 /// For IROrder, we keep the smaller of the two 8867 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8868 DebugLoc NLoc = N->getDebugLoc(); 8869 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8870 N->setDebugLoc(DebugLoc()); 8871 } 8872 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8873 N->setIROrder(Order); 8874 return N; 8875 } 8876 8877 /// MorphNodeTo - This *mutates* the specified node to have the specified 8878 /// return type, opcode, and operands. 8879 /// 8880 /// Note that MorphNodeTo returns the resultant node. If there is already a 8881 /// node of the specified opcode and operands, it returns that node instead of 8882 /// the current one. Note that the SDLoc need not be the same. 8883 /// 8884 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8885 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8886 /// node, and because it doesn't require CSE recalculation for any of 8887 /// the node's users. 8888 /// 8889 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8890 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8891 /// the legalizer which maintain worklists that would need to be updated when 8892 /// deleting things. 8893 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8894 SDVTList VTs, ArrayRef<SDValue> Ops) { 8895 // If an identical node already exists, use it. 8896 void *IP = nullptr; 8897 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8898 FoldingSetNodeID ID; 8899 AddNodeIDNode(ID, Opc, VTs, Ops); 8900 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8901 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8902 } 8903 8904 if (!RemoveNodeFromCSEMaps(N)) 8905 IP = nullptr; 8906 8907 // Start the morphing. 8908 N->NodeType = Opc; 8909 N->ValueList = VTs.VTs; 8910 N->NumValues = VTs.NumVTs; 8911 8912 // Clear the operands list, updating used nodes to remove this from their 8913 // use list. Keep track of any operands that become dead as a result. 8914 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8915 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8916 SDUse &Use = *I++; 8917 SDNode *Used = Use.getNode(); 8918 Use.set(SDValue()); 8919 if (Used->use_empty()) 8920 DeadNodeSet.insert(Used); 8921 } 8922 8923 // For MachineNode, initialize the memory references information. 8924 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8925 MN->clearMemRefs(); 8926 8927 // Swap for an appropriately sized array from the recycler. 8928 removeOperands(N); 8929 createOperands(N, Ops); 8930 8931 // Delete any nodes that are still dead after adding the uses for the 8932 // new operands. 8933 if (!DeadNodeSet.empty()) { 8934 SmallVector<SDNode *, 16> DeadNodes; 8935 for (SDNode *N : DeadNodeSet) 8936 if (N->use_empty()) 8937 DeadNodes.push_back(N); 8938 RemoveDeadNodes(DeadNodes); 8939 } 8940 8941 if (IP) 8942 CSEMap.InsertNode(N, IP); // Memoize the new node. 8943 return N; 8944 } 8945 8946 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8947 unsigned OrigOpc = Node->getOpcode(); 8948 unsigned NewOpc; 8949 switch (OrigOpc) { 8950 default: 8951 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8952 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8953 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8954 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8955 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8956 #include "llvm/IR/ConstrainedOps.def" 8957 } 8958 8959 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8960 8961 // We're taking this node out of the chain, so we need to re-link things. 8962 SDValue InputChain = Node->getOperand(0); 8963 SDValue OutputChain = SDValue(Node, 1); 8964 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8965 8966 SmallVector<SDValue, 3> Ops; 8967 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8968 Ops.push_back(Node->getOperand(i)); 8969 8970 SDVTList VTs = getVTList(Node->getValueType(0)); 8971 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8972 8973 // MorphNodeTo can operate in two ways: if an existing node with the 8974 // specified operands exists, it can just return it. Otherwise, it 8975 // updates the node in place to have the requested operands. 8976 if (Res == Node) { 8977 // If we updated the node in place, reset the node ID. To the isel, 8978 // this should be just like a newly allocated machine node. 8979 Res->setNodeId(-1); 8980 } else { 8981 ReplaceAllUsesWith(Node, Res); 8982 RemoveDeadNode(Node); 8983 } 8984 8985 return Res; 8986 } 8987 8988 /// getMachineNode - These are used for target selectors to create a new node 8989 /// with specified return type(s), MachineInstr opcode, and operands. 8990 /// 8991 /// Note that getMachineNode returns the resultant node. If there is already a 8992 /// node of the specified opcode and operands, it returns that node instead of 8993 /// the current one. 8994 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8995 EVT VT) { 8996 SDVTList VTs = getVTList(VT); 8997 return getMachineNode(Opcode, dl, VTs, None); 8998 } 8999 9000 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9001 EVT VT, SDValue Op1) { 9002 SDVTList VTs = getVTList(VT); 9003 SDValue Ops[] = { Op1 }; 9004 return getMachineNode(Opcode, dl, VTs, Ops); 9005 } 9006 9007 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9008 EVT VT, SDValue Op1, SDValue Op2) { 9009 SDVTList VTs = getVTList(VT); 9010 SDValue Ops[] = { Op1, Op2 }; 9011 return getMachineNode(Opcode, dl, VTs, Ops); 9012 } 9013 9014 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9015 EVT VT, SDValue Op1, SDValue Op2, 9016 SDValue Op3) { 9017 SDVTList VTs = getVTList(VT); 9018 SDValue Ops[] = { Op1, Op2, Op3 }; 9019 return getMachineNode(Opcode, dl, VTs, Ops); 9020 } 9021 9022 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9023 EVT VT, ArrayRef<SDValue> Ops) { 9024 SDVTList VTs = getVTList(VT); 9025 return getMachineNode(Opcode, dl, VTs, Ops); 9026 } 9027 9028 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9029 EVT VT1, EVT VT2, SDValue Op1, 9030 SDValue Op2) { 9031 SDVTList VTs = getVTList(VT1, VT2); 9032 SDValue Ops[] = { Op1, Op2 }; 9033 return getMachineNode(Opcode, dl, VTs, Ops); 9034 } 9035 9036 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9037 EVT VT1, EVT VT2, SDValue Op1, 9038 SDValue Op2, SDValue Op3) { 9039 SDVTList VTs = getVTList(VT1, VT2); 9040 SDValue Ops[] = { Op1, Op2, Op3 }; 9041 return getMachineNode(Opcode, dl, VTs, Ops); 9042 } 9043 9044 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9045 EVT VT1, EVT VT2, 9046 ArrayRef<SDValue> Ops) { 9047 SDVTList VTs = getVTList(VT1, VT2); 9048 return getMachineNode(Opcode, dl, VTs, Ops); 9049 } 9050 9051 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9052 EVT VT1, EVT VT2, EVT VT3, 9053 SDValue Op1, SDValue Op2) { 9054 SDVTList VTs = getVTList(VT1, VT2, VT3); 9055 SDValue Ops[] = { Op1, Op2 }; 9056 return getMachineNode(Opcode, dl, VTs, Ops); 9057 } 9058 9059 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9060 EVT VT1, EVT VT2, EVT VT3, 9061 SDValue Op1, SDValue Op2, 9062 SDValue Op3) { 9063 SDVTList VTs = getVTList(VT1, VT2, VT3); 9064 SDValue Ops[] = { Op1, Op2, Op3 }; 9065 return getMachineNode(Opcode, dl, VTs, Ops); 9066 } 9067 9068 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9069 EVT VT1, EVT VT2, EVT VT3, 9070 ArrayRef<SDValue> Ops) { 9071 SDVTList VTs = getVTList(VT1, VT2, VT3); 9072 return getMachineNode(Opcode, dl, VTs, Ops); 9073 } 9074 9075 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9076 ArrayRef<EVT> ResultTys, 9077 ArrayRef<SDValue> Ops) { 9078 SDVTList VTs = getVTList(ResultTys); 9079 return getMachineNode(Opcode, dl, VTs, Ops); 9080 } 9081 9082 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9083 SDVTList VTs, 9084 ArrayRef<SDValue> Ops) { 9085 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9086 MachineSDNode *N; 9087 void *IP = nullptr; 9088 9089 if (DoCSE) { 9090 FoldingSetNodeID ID; 9091 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9092 IP = nullptr; 9093 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9094 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9095 } 9096 } 9097 9098 // Allocate a new MachineSDNode. 9099 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9100 createOperands(N, Ops); 9101 9102 if (DoCSE) 9103 CSEMap.InsertNode(N, IP); 9104 9105 InsertNode(N); 9106 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9107 return N; 9108 } 9109 9110 /// getTargetExtractSubreg - A convenience function for creating 9111 /// TargetOpcode::EXTRACT_SUBREG nodes. 9112 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9113 SDValue Operand) { 9114 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9115 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9116 VT, Operand, SRIdxVal); 9117 return SDValue(Subreg, 0); 9118 } 9119 9120 /// getTargetInsertSubreg - A convenience function for creating 9121 /// TargetOpcode::INSERT_SUBREG nodes. 9122 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9123 SDValue Operand, SDValue Subreg) { 9124 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9125 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9126 VT, Operand, Subreg, SRIdxVal); 9127 return SDValue(Result, 0); 9128 } 9129 9130 /// getNodeIfExists - Get the specified node if it's already available, or 9131 /// else return NULL. 9132 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9133 ArrayRef<SDValue> Ops) { 9134 SDNodeFlags Flags; 9135 if (Inserter) 9136 Flags = Inserter->getFlags(); 9137 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9138 } 9139 9140 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9141 ArrayRef<SDValue> Ops, 9142 const SDNodeFlags Flags) { 9143 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9144 FoldingSetNodeID ID; 9145 AddNodeIDNode(ID, Opcode, VTList, Ops); 9146 void *IP = nullptr; 9147 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9148 E->intersectFlagsWith(Flags); 9149 return E; 9150 } 9151 } 9152 return nullptr; 9153 } 9154 9155 /// doesNodeExist - Check if a node exists without modifying its flags. 9156 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9157 ArrayRef<SDValue> Ops) { 9158 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9159 FoldingSetNodeID ID; 9160 AddNodeIDNode(ID, Opcode, VTList, Ops); 9161 void *IP = nullptr; 9162 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9163 return true; 9164 } 9165 return false; 9166 } 9167 9168 /// getDbgValue - Creates a SDDbgValue node. 9169 /// 9170 /// SDNode 9171 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9172 SDNode *N, unsigned R, bool IsIndirect, 9173 const DebugLoc &DL, unsigned O) { 9174 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9175 "Expected inlined-at fields to agree"); 9176 return new (DbgInfo->getAlloc()) 9177 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9178 {}, IsIndirect, DL, O, 9179 /*IsVariadic=*/false); 9180 } 9181 9182 /// Constant 9183 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9184 DIExpression *Expr, 9185 const Value *C, 9186 const DebugLoc &DL, unsigned O) { 9187 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9188 "Expected inlined-at fields to agree"); 9189 return new (DbgInfo->getAlloc()) 9190 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9191 /*IsIndirect=*/false, DL, O, 9192 /*IsVariadic=*/false); 9193 } 9194 9195 /// FrameIndex 9196 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9197 DIExpression *Expr, unsigned FI, 9198 bool IsIndirect, 9199 const DebugLoc &DL, 9200 unsigned O) { 9201 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9202 "Expected inlined-at fields to agree"); 9203 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9204 } 9205 9206 /// FrameIndex with dependencies 9207 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9208 DIExpression *Expr, unsigned FI, 9209 ArrayRef<SDNode *> Dependencies, 9210 bool IsIndirect, 9211 const DebugLoc &DL, 9212 unsigned O) { 9213 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9214 "Expected inlined-at fields to agree"); 9215 return new (DbgInfo->getAlloc()) 9216 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9217 Dependencies, IsIndirect, DL, O, 9218 /*IsVariadic=*/false); 9219 } 9220 9221 /// VReg 9222 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9223 unsigned VReg, bool IsIndirect, 9224 const DebugLoc &DL, unsigned O) { 9225 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9226 "Expected inlined-at fields to agree"); 9227 return new (DbgInfo->getAlloc()) 9228 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9229 {}, IsIndirect, DL, O, 9230 /*IsVariadic=*/false); 9231 } 9232 9233 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9234 ArrayRef<SDDbgOperand> Locs, 9235 ArrayRef<SDNode *> Dependencies, 9236 bool IsIndirect, const DebugLoc &DL, 9237 unsigned O, bool IsVariadic) { 9238 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9239 "Expected inlined-at fields to agree"); 9240 return new (DbgInfo->getAlloc()) 9241 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9242 DL, O, IsVariadic); 9243 } 9244 9245 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9246 unsigned OffsetInBits, unsigned SizeInBits, 9247 bool InvalidateDbg) { 9248 SDNode *FromNode = From.getNode(); 9249 SDNode *ToNode = To.getNode(); 9250 assert(FromNode && ToNode && "Can't modify dbg values"); 9251 9252 // PR35338 9253 // TODO: assert(From != To && "Redundant dbg value transfer"); 9254 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9255 if (From == To || FromNode == ToNode) 9256 return; 9257 9258 if (!FromNode->getHasDebugValue()) 9259 return; 9260 9261 SDDbgOperand FromLocOp = 9262 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9263 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9264 9265 SmallVector<SDDbgValue *, 2> ClonedDVs; 9266 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9267 if (Dbg->isInvalidated()) 9268 continue; 9269 9270 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9271 9272 // Create a new location ops vector that is equal to the old vector, but 9273 // with each instance of FromLocOp replaced with ToLocOp. 9274 bool Changed = false; 9275 auto NewLocOps = Dbg->copyLocationOps(); 9276 std::replace_if( 9277 NewLocOps.begin(), NewLocOps.end(), 9278 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9279 bool Match = Op == FromLocOp; 9280 Changed |= Match; 9281 return Match; 9282 }, 9283 ToLocOp); 9284 // Ignore this SDDbgValue if we didn't find a matching location. 9285 if (!Changed) 9286 continue; 9287 9288 DIVariable *Var = Dbg->getVariable(); 9289 auto *Expr = Dbg->getExpression(); 9290 // If a fragment is requested, update the expression. 9291 if (SizeInBits) { 9292 // When splitting a larger (e.g., sign-extended) value whose 9293 // lower bits are described with an SDDbgValue, do not attempt 9294 // to transfer the SDDbgValue to the upper bits. 9295 if (auto FI = Expr->getFragmentInfo()) 9296 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9297 continue; 9298 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9299 SizeInBits); 9300 if (!Fragment) 9301 continue; 9302 Expr = *Fragment; 9303 } 9304 9305 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9306 // Clone the SDDbgValue and move it to To. 9307 SDDbgValue *Clone = getDbgValueList( 9308 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9309 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9310 Dbg->isVariadic()); 9311 ClonedDVs.push_back(Clone); 9312 9313 if (InvalidateDbg) { 9314 // Invalidate value and indicate the SDDbgValue should not be emitted. 9315 Dbg->setIsInvalidated(); 9316 Dbg->setIsEmitted(); 9317 } 9318 } 9319 9320 for (SDDbgValue *Dbg : ClonedDVs) { 9321 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9322 "Transferred DbgValues should depend on the new SDNode"); 9323 AddDbgValue(Dbg, false); 9324 } 9325 } 9326 9327 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9328 if (!N.getHasDebugValue()) 9329 return; 9330 9331 SmallVector<SDDbgValue *, 2> ClonedDVs; 9332 for (auto DV : GetDbgValues(&N)) { 9333 if (DV->isInvalidated()) 9334 continue; 9335 switch (N.getOpcode()) { 9336 default: 9337 break; 9338 case ISD::ADD: 9339 SDValue N0 = N.getOperand(0); 9340 SDValue N1 = N.getOperand(1); 9341 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9342 isConstantIntBuildVectorOrConstantInt(N1)) { 9343 uint64_t Offset = N.getConstantOperandVal(1); 9344 9345 // Rewrite an ADD constant node into a DIExpression. Since we are 9346 // performing arithmetic to compute the variable's *value* in the 9347 // DIExpression, we need to mark the expression with a 9348 // DW_OP_stack_value. 9349 auto *DIExpr = DV->getExpression(); 9350 auto NewLocOps = DV->copyLocationOps(); 9351 bool Changed = false; 9352 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9353 // We're not given a ResNo to compare against because the whole 9354 // node is going away. We know that any ISD::ADD only has one 9355 // result, so we can assume any node match is using the result. 9356 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9357 NewLocOps[i].getSDNode() != &N) 9358 continue; 9359 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9360 SmallVector<uint64_t, 3> ExprOps; 9361 DIExpression::appendOffset(ExprOps, Offset); 9362 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9363 Changed = true; 9364 } 9365 (void)Changed; 9366 assert(Changed && "Salvage target doesn't use N"); 9367 9368 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9369 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9370 NewLocOps, AdditionalDependencies, 9371 DV->isIndirect(), DV->getDebugLoc(), 9372 DV->getOrder(), DV->isVariadic()); 9373 ClonedDVs.push_back(Clone); 9374 DV->setIsInvalidated(); 9375 DV->setIsEmitted(); 9376 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9377 N0.getNode()->dumprFull(this); 9378 dbgs() << " into " << *DIExpr << '\n'); 9379 } 9380 } 9381 } 9382 9383 for (SDDbgValue *Dbg : ClonedDVs) { 9384 assert(!Dbg->getSDNodes().empty() && 9385 "Salvaged DbgValue should depend on a new SDNode"); 9386 AddDbgValue(Dbg, false); 9387 } 9388 } 9389 9390 /// Creates a SDDbgLabel node. 9391 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9392 const DebugLoc &DL, unsigned O) { 9393 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9394 "Expected inlined-at fields to agree"); 9395 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9396 } 9397 9398 namespace { 9399 9400 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9401 /// pointed to by a use iterator is deleted, increment the use iterator 9402 /// so that it doesn't dangle. 9403 /// 9404 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9405 SDNode::use_iterator &UI; 9406 SDNode::use_iterator &UE; 9407 9408 void NodeDeleted(SDNode *N, SDNode *E) override { 9409 // Increment the iterator as needed. 9410 while (UI != UE && N == *UI) 9411 ++UI; 9412 } 9413 9414 public: 9415 RAUWUpdateListener(SelectionDAG &d, 9416 SDNode::use_iterator &ui, 9417 SDNode::use_iterator &ue) 9418 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9419 }; 9420 9421 } // end anonymous namespace 9422 9423 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9424 /// This can cause recursive merging of nodes in the DAG. 9425 /// 9426 /// This version assumes From has a single result value. 9427 /// 9428 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9429 SDNode *From = FromN.getNode(); 9430 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9431 "Cannot replace with this method!"); 9432 assert(From != To.getNode() && "Cannot replace uses of with self"); 9433 9434 // Preserve Debug Values 9435 transferDbgValues(FromN, To); 9436 9437 // Iterate over all the existing uses of From. New uses will be added 9438 // to the beginning of the use list, which we avoid visiting. 9439 // This specifically avoids visiting uses of From that arise while the 9440 // replacement is happening, because any such uses would be the result 9441 // of CSE: If an existing node looks like From after one of its operands 9442 // is replaced by To, we don't want to replace of all its users with To 9443 // too. See PR3018 for more info. 9444 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9445 RAUWUpdateListener Listener(*this, UI, UE); 9446 while (UI != UE) { 9447 SDNode *User = *UI; 9448 9449 // This node is about to morph, remove its old self from the CSE maps. 9450 RemoveNodeFromCSEMaps(User); 9451 9452 // A user can appear in a use list multiple times, and when this 9453 // happens the uses are usually next to each other in the list. 9454 // To help reduce the number of CSE recomputations, process all 9455 // the uses of this user that we can find this way. 9456 do { 9457 SDUse &Use = UI.getUse(); 9458 ++UI; 9459 Use.set(To); 9460 if (To->isDivergent() != From->isDivergent()) 9461 updateDivergence(User); 9462 } while (UI != UE && *UI == User); 9463 // Now that we have modified User, add it back to the CSE maps. If it 9464 // already exists there, recursively merge the results together. 9465 AddModifiedNodeToCSEMaps(User); 9466 } 9467 9468 // If we just RAUW'd the root, take note. 9469 if (FromN == getRoot()) 9470 setRoot(To); 9471 } 9472 9473 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9474 /// This can cause recursive merging of nodes in the DAG. 9475 /// 9476 /// This version assumes that for each value of From, there is a 9477 /// corresponding value in To in the same position with the same type. 9478 /// 9479 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9480 #ifndef NDEBUG 9481 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9482 assert((!From->hasAnyUseOfValue(i) || 9483 From->getValueType(i) == To->getValueType(i)) && 9484 "Cannot use this version of ReplaceAllUsesWith!"); 9485 #endif 9486 9487 // Handle the trivial case. 9488 if (From == To) 9489 return; 9490 9491 // Preserve Debug Info. Only do this if there's a use. 9492 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9493 if (From->hasAnyUseOfValue(i)) { 9494 assert((i < To->getNumValues()) && "Invalid To location"); 9495 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9496 } 9497 9498 // Iterate over just the existing users of From. See the comments in 9499 // the ReplaceAllUsesWith above. 9500 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9501 RAUWUpdateListener Listener(*this, UI, UE); 9502 while (UI != UE) { 9503 SDNode *User = *UI; 9504 9505 // This node is about to morph, remove its old self from the CSE maps. 9506 RemoveNodeFromCSEMaps(User); 9507 9508 // A user can appear in a use list multiple times, and when this 9509 // happens the uses are usually next to each other in the list. 9510 // To help reduce the number of CSE recomputations, process all 9511 // the uses of this user that we can find this way. 9512 do { 9513 SDUse &Use = UI.getUse(); 9514 ++UI; 9515 Use.setNode(To); 9516 if (To->isDivergent() != From->isDivergent()) 9517 updateDivergence(User); 9518 } while (UI != UE && *UI == User); 9519 9520 // Now that we have modified User, add it back to the CSE maps. If it 9521 // already exists there, recursively merge the results together. 9522 AddModifiedNodeToCSEMaps(User); 9523 } 9524 9525 // If we just RAUW'd the root, take note. 9526 if (From == getRoot().getNode()) 9527 setRoot(SDValue(To, getRoot().getResNo())); 9528 } 9529 9530 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9531 /// This can cause recursive merging of nodes in the DAG. 9532 /// 9533 /// This version can replace From with any result values. To must match the 9534 /// number and types of values returned by From. 9535 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9536 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9537 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9538 9539 // Preserve Debug Info. 9540 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9541 transferDbgValues(SDValue(From, i), To[i]); 9542 9543 // Iterate over just the existing users of From. See the comments in 9544 // the ReplaceAllUsesWith above. 9545 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9546 RAUWUpdateListener Listener(*this, UI, UE); 9547 while (UI != UE) { 9548 SDNode *User = *UI; 9549 9550 // This node is about to morph, remove its old self from the CSE maps. 9551 RemoveNodeFromCSEMaps(User); 9552 9553 // A user can appear in a use list multiple times, and when this happens the 9554 // uses are usually next to each other in the list. To help reduce the 9555 // number of CSE and divergence recomputations, process all the uses of this 9556 // user that we can find this way. 9557 bool To_IsDivergent = false; 9558 do { 9559 SDUse &Use = UI.getUse(); 9560 const SDValue &ToOp = To[Use.getResNo()]; 9561 ++UI; 9562 Use.set(ToOp); 9563 To_IsDivergent |= ToOp->isDivergent(); 9564 } while (UI != UE && *UI == User); 9565 9566 if (To_IsDivergent != From->isDivergent()) 9567 updateDivergence(User); 9568 9569 // Now that we have modified User, add it back to the CSE maps. If it 9570 // already exists there, recursively merge the results together. 9571 AddModifiedNodeToCSEMaps(User); 9572 } 9573 9574 // If we just RAUW'd the root, take note. 9575 if (From == getRoot().getNode()) 9576 setRoot(SDValue(To[getRoot().getResNo()])); 9577 } 9578 9579 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9580 /// uses of other values produced by From.getNode() alone. The Deleted 9581 /// vector is handled the same way as for ReplaceAllUsesWith. 9582 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9583 // Handle the really simple, really trivial case efficiently. 9584 if (From == To) return; 9585 9586 // Handle the simple, trivial, case efficiently. 9587 if (From.getNode()->getNumValues() == 1) { 9588 ReplaceAllUsesWith(From, To); 9589 return; 9590 } 9591 9592 // Preserve Debug Info. 9593 transferDbgValues(From, To); 9594 9595 // Iterate over just the existing users of From. See the comments in 9596 // the ReplaceAllUsesWith above. 9597 SDNode::use_iterator UI = From.getNode()->use_begin(), 9598 UE = From.getNode()->use_end(); 9599 RAUWUpdateListener Listener(*this, UI, UE); 9600 while (UI != UE) { 9601 SDNode *User = *UI; 9602 bool UserRemovedFromCSEMaps = false; 9603 9604 // A user can appear in a use list multiple times, and when this 9605 // happens the uses are usually next to each other in the list. 9606 // To help reduce the number of CSE recomputations, process all 9607 // the uses of this user that we can find this way. 9608 do { 9609 SDUse &Use = UI.getUse(); 9610 9611 // Skip uses of different values from the same node. 9612 if (Use.getResNo() != From.getResNo()) { 9613 ++UI; 9614 continue; 9615 } 9616 9617 // If this node hasn't been modified yet, it's still in the CSE maps, 9618 // so remove its old self from the CSE maps. 9619 if (!UserRemovedFromCSEMaps) { 9620 RemoveNodeFromCSEMaps(User); 9621 UserRemovedFromCSEMaps = true; 9622 } 9623 9624 ++UI; 9625 Use.set(To); 9626 if (To->isDivergent() != From->isDivergent()) 9627 updateDivergence(User); 9628 } while (UI != UE && *UI == User); 9629 // We are iterating over all uses of the From node, so if a use 9630 // doesn't use the specific value, no changes are made. 9631 if (!UserRemovedFromCSEMaps) 9632 continue; 9633 9634 // Now that we have modified User, add it back to the CSE maps. If it 9635 // already exists there, recursively merge the results together. 9636 AddModifiedNodeToCSEMaps(User); 9637 } 9638 9639 // If we just RAUW'd the root, take note. 9640 if (From == getRoot()) 9641 setRoot(To); 9642 } 9643 9644 namespace { 9645 9646 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9647 /// to record information about a use. 9648 struct UseMemo { 9649 SDNode *User; 9650 unsigned Index; 9651 SDUse *Use; 9652 }; 9653 9654 /// operator< - Sort Memos by User. 9655 bool operator<(const UseMemo &L, const UseMemo &R) { 9656 return (intptr_t)L.User < (intptr_t)R.User; 9657 } 9658 9659 } // end anonymous namespace 9660 9661 bool SelectionDAG::calculateDivergence(SDNode *N) { 9662 if (TLI->isSDNodeAlwaysUniform(N)) { 9663 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9664 "Conflicting divergence information!"); 9665 return false; 9666 } 9667 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9668 return true; 9669 for (auto &Op : N->ops()) { 9670 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9671 return true; 9672 } 9673 return false; 9674 } 9675 9676 void SelectionDAG::updateDivergence(SDNode *N) { 9677 SmallVector<SDNode *, 16> Worklist(1, N); 9678 do { 9679 N = Worklist.pop_back_val(); 9680 bool IsDivergent = calculateDivergence(N); 9681 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9682 N->SDNodeBits.IsDivergent = IsDivergent; 9683 llvm::append_range(Worklist, N->uses()); 9684 } 9685 } while (!Worklist.empty()); 9686 } 9687 9688 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9689 DenseMap<SDNode *, unsigned> Degree; 9690 Order.reserve(AllNodes.size()); 9691 for (auto &N : allnodes()) { 9692 unsigned NOps = N.getNumOperands(); 9693 Degree[&N] = NOps; 9694 if (0 == NOps) 9695 Order.push_back(&N); 9696 } 9697 for (size_t I = 0; I != Order.size(); ++I) { 9698 SDNode *N = Order[I]; 9699 for (auto U : N->uses()) { 9700 unsigned &UnsortedOps = Degree[U]; 9701 if (0 == --UnsortedOps) 9702 Order.push_back(U); 9703 } 9704 } 9705 } 9706 9707 #ifndef NDEBUG 9708 void SelectionDAG::VerifyDAGDiverence() { 9709 std::vector<SDNode *> TopoOrder; 9710 CreateTopologicalOrder(TopoOrder); 9711 for (auto *N : TopoOrder) { 9712 assert(calculateDivergence(N) == N->isDivergent() && 9713 "Divergence bit inconsistency detected"); 9714 } 9715 } 9716 #endif 9717 9718 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9719 /// uses of other values produced by From.getNode() alone. The same value 9720 /// may appear in both the From and To list. The Deleted vector is 9721 /// handled the same way as for ReplaceAllUsesWith. 9722 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9723 const SDValue *To, 9724 unsigned Num){ 9725 // Handle the simple, trivial case efficiently. 9726 if (Num == 1) 9727 return ReplaceAllUsesOfValueWith(*From, *To); 9728 9729 transferDbgValues(*From, *To); 9730 9731 // Read up all the uses and make records of them. This helps 9732 // processing new uses that are introduced during the 9733 // replacement process. 9734 SmallVector<UseMemo, 4> Uses; 9735 for (unsigned i = 0; i != Num; ++i) { 9736 unsigned FromResNo = From[i].getResNo(); 9737 SDNode *FromNode = From[i].getNode(); 9738 for (SDNode::use_iterator UI = FromNode->use_begin(), 9739 E = FromNode->use_end(); UI != E; ++UI) { 9740 SDUse &Use = UI.getUse(); 9741 if (Use.getResNo() == FromResNo) { 9742 UseMemo Memo = { *UI, i, &Use }; 9743 Uses.push_back(Memo); 9744 } 9745 } 9746 } 9747 9748 // Sort the uses, so that all the uses from a given User are together. 9749 llvm::sort(Uses); 9750 9751 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9752 UseIndex != UseIndexEnd; ) { 9753 // We know that this user uses some value of From. If it is the right 9754 // value, update it. 9755 SDNode *User = Uses[UseIndex].User; 9756 9757 // This node is about to morph, remove its old self from the CSE maps. 9758 RemoveNodeFromCSEMaps(User); 9759 9760 // The Uses array is sorted, so all the uses for a given User 9761 // are next to each other in the list. 9762 // To help reduce the number of CSE recomputations, process all 9763 // the uses of this user that we can find this way. 9764 do { 9765 unsigned i = Uses[UseIndex].Index; 9766 SDUse &Use = *Uses[UseIndex].Use; 9767 ++UseIndex; 9768 9769 Use.set(To[i]); 9770 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9771 9772 // Now that we have modified User, add it back to the CSE maps. If it 9773 // already exists there, recursively merge the results together. 9774 AddModifiedNodeToCSEMaps(User); 9775 } 9776 } 9777 9778 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9779 /// based on their topological order. It returns the maximum id and a vector 9780 /// of the SDNodes* in assigned order by reference. 9781 unsigned SelectionDAG::AssignTopologicalOrder() { 9782 unsigned DAGSize = 0; 9783 9784 // SortedPos tracks the progress of the algorithm. Nodes before it are 9785 // sorted, nodes after it are unsorted. When the algorithm completes 9786 // it is at the end of the list. 9787 allnodes_iterator SortedPos = allnodes_begin(); 9788 9789 // Visit all the nodes. Move nodes with no operands to the front of 9790 // the list immediately. Annotate nodes that do have operands with their 9791 // operand count. Before we do this, the Node Id fields of the nodes 9792 // may contain arbitrary values. After, the Node Id fields for nodes 9793 // before SortedPos will contain the topological sort index, and the 9794 // Node Id fields for nodes At SortedPos and after will contain the 9795 // count of outstanding operands. 9796 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9797 SDNode *N = &*I++; 9798 checkForCycles(N, this); 9799 unsigned Degree = N->getNumOperands(); 9800 if (Degree == 0) { 9801 // A node with no uses, add it to the result array immediately. 9802 N->setNodeId(DAGSize++); 9803 allnodes_iterator Q(N); 9804 if (Q != SortedPos) 9805 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9806 assert(SortedPos != AllNodes.end() && "Overran node list"); 9807 ++SortedPos; 9808 } else { 9809 // Temporarily use the Node Id as scratch space for the degree count. 9810 N->setNodeId(Degree); 9811 } 9812 } 9813 9814 // Visit all the nodes. As we iterate, move nodes into sorted order, 9815 // such that by the time the end is reached all nodes will be sorted. 9816 for (SDNode &Node : allnodes()) { 9817 SDNode *N = &Node; 9818 checkForCycles(N, this); 9819 // N is in sorted position, so all its uses have one less operand 9820 // that needs to be sorted. 9821 for (SDNode *P : N->uses()) { 9822 unsigned Degree = P->getNodeId(); 9823 assert(Degree != 0 && "Invalid node degree"); 9824 --Degree; 9825 if (Degree == 0) { 9826 // All of P's operands are sorted, so P may sorted now. 9827 P->setNodeId(DAGSize++); 9828 if (P->getIterator() != SortedPos) 9829 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9830 assert(SortedPos != AllNodes.end() && "Overran node list"); 9831 ++SortedPos; 9832 } else { 9833 // Update P's outstanding operand count. 9834 P->setNodeId(Degree); 9835 } 9836 } 9837 if (Node.getIterator() == SortedPos) { 9838 #ifndef NDEBUG 9839 allnodes_iterator I(N); 9840 SDNode *S = &*++I; 9841 dbgs() << "Overran sorted position:\n"; 9842 S->dumprFull(this); dbgs() << "\n"; 9843 dbgs() << "Checking if this is due to cycles\n"; 9844 checkForCycles(this, true); 9845 #endif 9846 llvm_unreachable(nullptr); 9847 } 9848 } 9849 9850 assert(SortedPos == AllNodes.end() && 9851 "Topological sort incomplete!"); 9852 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9853 "First node in topological sort is not the entry token!"); 9854 assert(AllNodes.front().getNodeId() == 0 && 9855 "First node in topological sort has non-zero id!"); 9856 assert(AllNodes.front().getNumOperands() == 0 && 9857 "First node in topological sort has operands!"); 9858 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9859 "Last node in topologic sort has unexpected id!"); 9860 assert(AllNodes.back().use_empty() && 9861 "Last node in topologic sort has users!"); 9862 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9863 return DAGSize; 9864 } 9865 9866 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9867 /// value is produced by SD. 9868 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9869 for (SDNode *SD : DB->getSDNodes()) { 9870 if (!SD) 9871 continue; 9872 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9873 SD->setHasDebugValue(true); 9874 } 9875 DbgInfo->add(DB, isParameter); 9876 } 9877 9878 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9879 9880 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9881 SDValue NewMemOpChain) { 9882 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9883 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9884 // The new memory operation must have the same position as the old load in 9885 // terms of memory dependency. Create a TokenFactor for the old load and new 9886 // memory operation and update uses of the old load's output chain to use that 9887 // TokenFactor. 9888 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9889 return NewMemOpChain; 9890 9891 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9892 OldChain, NewMemOpChain); 9893 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9894 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9895 return TokenFactor; 9896 } 9897 9898 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9899 SDValue NewMemOp) { 9900 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9901 SDValue OldChain = SDValue(OldLoad, 1); 9902 SDValue NewMemOpChain = NewMemOp.getValue(1); 9903 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9904 } 9905 9906 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9907 Function **OutFunction) { 9908 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9909 9910 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9911 auto *Module = MF->getFunction().getParent(); 9912 auto *Function = Module->getFunction(Symbol); 9913 9914 if (OutFunction != nullptr) 9915 *OutFunction = Function; 9916 9917 if (Function != nullptr) { 9918 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9919 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9920 } 9921 9922 std::string ErrorStr; 9923 raw_string_ostream ErrorFormatter(ErrorStr); 9924 9925 ErrorFormatter << "Undefined external symbol "; 9926 ErrorFormatter << '"' << Symbol << '"'; 9927 ErrorFormatter.flush(); 9928 9929 report_fatal_error(ErrorStr); 9930 } 9931 9932 //===----------------------------------------------------------------------===// 9933 // SDNode Class 9934 //===----------------------------------------------------------------------===// 9935 9936 bool llvm::isNullConstant(SDValue V) { 9937 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9938 return Const != nullptr && Const->isZero(); 9939 } 9940 9941 bool llvm::isNullFPConstant(SDValue V) { 9942 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9943 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9944 } 9945 9946 bool llvm::isAllOnesConstant(SDValue V) { 9947 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9948 return Const != nullptr && Const->isAllOnes(); 9949 } 9950 9951 bool llvm::isOneConstant(SDValue V) { 9952 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9953 return Const != nullptr && Const->isOne(); 9954 } 9955 9956 SDValue llvm::peekThroughBitcasts(SDValue V) { 9957 while (V.getOpcode() == ISD::BITCAST) 9958 V = V.getOperand(0); 9959 return V; 9960 } 9961 9962 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9963 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9964 V = V.getOperand(0); 9965 return V; 9966 } 9967 9968 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9969 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9970 V = V.getOperand(0); 9971 return V; 9972 } 9973 9974 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9975 if (V.getOpcode() != ISD::XOR) 9976 return false; 9977 V = peekThroughBitcasts(V.getOperand(1)); 9978 unsigned NumBits = V.getScalarValueSizeInBits(); 9979 ConstantSDNode *C = 9980 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9981 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9982 } 9983 9984 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9985 bool AllowTruncation) { 9986 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9987 return CN; 9988 9989 // SplatVectors can truncate their operands. Ignore that case here unless 9990 // AllowTruncation is set. 9991 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9992 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9993 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9994 EVT CVT = CN->getValueType(0); 9995 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9996 if (AllowTruncation || CVT == VecEltVT) 9997 return CN; 9998 } 9999 } 10000 10001 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10002 BitVector UndefElements; 10003 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10004 10005 // BuildVectors can truncate their operands. Ignore that case here unless 10006 // AllowTruncation is set. 10007 if (CN && (UndefElements.none() || AllowUndefs)) { 10008 EVT CVT = CN->getValueType(0); 10009 EVT NSVT = N.getValueType().getScalarType(); 10010 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10011 if (AllowTruncation || (CVT == NSVT)) 10012 return CN; 10013 } 10014 } 10015 10016 return nullptr; 10017 } 10018 10019 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10020 bool AllowUndefs, 10021 bool AllowTruncation) { 10022 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10023 return CN; 10024 10025 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10026 BitVector UndefElements; 10027 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10028 10029 // BuildVectors can truncate their operands. Ignore that case here unless 10030 // AllowTruncation is set. 10031 if (CN && (UndefElements.none() || AllowUndefs)) { 10032 EVT CVT = CN->getValueType(0); 10033 EVT NSVT = N.getValueType().getScalarType(); 10034 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10035 if (AllowTruncation || (CVT == NSVT)) 10036 return CN; 10037 } 10038 } 10039 10040 return nullptr; 10041 } 10042 10043 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10044 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10045 return CN; 10046 10047 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10048 BitVector UndefElements; 10049 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10050 if (CN && (UndefElements.none() || AllowUndefs)) 10051 return CN; 10052 } 10053 10054 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10055 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10056 return CN; 10057 10058 return nullptr; 10059 } 10060 10061 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10062 const APInt &DemandedElts, 10063 bool AllowUndefs) { 10064 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10065 return CN; 10066 10067 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10068 BitVector UndefElements; 10069 ConstantFPSDNode *CN = 10070 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10071 if (CN && (UndefElements.none() || AllowUndefs)) 10072 return CN; 10073 } 10074 10075 return nullptr; 10076 } 10077 10078 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10079 // TODO: may want to use peekThroughBitcast() here. 10080 ConstantSDNode *C = 10081 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10082 return C && C->isZero(); 10083 } 10084 10085 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10086 // TODO: may want to use peekThroughBitcast() here. 10087 unsigned BitWidth = N.getScalarValueSizeInBits(); 10088 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10089 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10090 } 10091 10092 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10093 N = peekThroughBitcasts(N); 10094 unsigned BitWidth = N.getScalarValueSizeInBits(); 10095 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10096 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10097 } 10098 10099 HandleSDNode::~HandleSDNode() { 10100 DropOperands(); 10101 } 10102 10103 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10104 const DebugLoc &DL, 10105 const GlobalValue *GA, EVT VT, 10106 int64_t o, unsigned TF) 10107 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10108 TheGlobal = GA; 10109 } 10110 10111 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10112 EVT VT, unsigned SrcAS, 10113 unsigned DestAS) 10114 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10115 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10116 10117 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10118 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10119 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10120 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10121 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10122 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10123 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10124 10125 // We check here that the size of the memory operand fits within the size of 10126 // the MMO. This is because the MMO might indicate only a possible address 10127 // range instead of specifying the affected memory addresses precisely. 10128 // TODO: Make MachineMemOperands aware of scalable vectors. 10129 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10130 "Size mismatch!"); 10131 } 10132 10133 /// Profile - Gather unique data for the node. 10134 /// 10135 void SDNode::Profile(FoldingSetNodeID &ID) const { 10136 AddNodeIDNode(ID, this); 10137 } 10138 10139 namespace { 10140 10141 struct EVTArray { 10142 std::vector<EVT> VTs; 10143 10144 EVTArray() { 10145 VTs.reserve(MVT::VALUETYPE_SIZE); 10146 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10147 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10148 } 10149 }; 10150 10151 } // end anonymous namespace 10152 10153 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10154 static ManagedStatic<EVTArray> SimpleVTArray; 10155 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10156 10157 /// getValueTypeList - Return a pointer to the specified value type. 10158 /// 10159 const EVT *SDNode::getValueTypeList(EVT VT) { 10160 if (VT.isExtended()) { 10161 sys::SmartScopedLock<true> Lock(*VTMutex); 10162 return &(*EVTs->insert(VT).first); 10163 } 10164 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10165 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10166 } 10167 10168 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10169 /// indicated value. This method ignores uses of other values defined by this 10170 /// operation. 10171 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10172 assert(Value < getNumValues() && "Bad value!"); 10173 10174 // TODO: Only iterate over uses of a given value of the node 10175 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10176 if (UI.getUse().getResNo() == Value) { 10177 if (NUses == 0) 10178 return false; 10179 --NUses; 10180 } 10181 } 10182 10183 // Found exactly the right number of uses? 10184 return NUses == 0; 10185 } 10186 10187 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10188 /// value. This method ignores uses of other values defined by this operation. 10189 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10190 assert(Value < getNumValues() && "Bad value!"); 10191 10192 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10193 if (UI.getUse().getResNo() == Value) 10194 return true; 10195 10196 return false; 10197 } 10198 10199 /// isOnlyUserOf - Return true if this node is the only use of N. 10200 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10201 bool Seen = false; 10202 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 10203 SDNode *User = *I; 10204 if (User == this) 10205 Seen = true; 10206 else 10207 return false; 10208 } 10209 10210 return Seen; 10211 } 10212 10213 /// Return true if the only users of N are contained in Nodes. 10214 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10215 bool Seen = false; 10216 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 10217 SDNode *User = *I; 10218 if (llvm::is_contained(Nodes, User)) 10219 Seen = true; 10220 else 10221 return false; 10222 } 10223 10224 return Seen; 10225 } 10226 10227 /// isOperand - Return true if this node is an operand of N. 10228 bool SDValue::isOperandOf(const SDNode *N) const { 10229 return is_contained(N->op_values(), *this); 10230 } 10231 10232 bool SDNode::isOperandOf(const SDNode *N) const { 10233 return any_of(N->op_values(), 10234 [this](SDValue Op) { return this == Op.getNode(); }); 10235 } 10236 10237 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10238 /// be a chain) reaches the specified operand without crossing any 10239 /// side-effecting instructions on any chain path. In practice, this looks 10240 /// through token factors and non-volatile loads. In order to remain efficient, 10241 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10242 /// 10243 /// Note that we only need to examine chains when we're searching for 10244 /// side-effects; SelectionDAG requires that all side-effects are represented 10245 /// by chains, even if another operand would force a specific ordering. This 10246 /// constraint is necessary to allow transformations like splitting loads. 10247 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10248 unsigned Depth) const { 10249 if (*this == Dest) return true; 10250 10251 // Don't search too deeply, we just want to be able to see through 10252 // TokenFactor's etc. 10253 if (Depth == 0) return false; 10254 10255 // If this is a token factor, all inputs to the TF happen in parallel. 10256 if (getOpcode() == ISD::TokenFactor) { 10257 // First, try a shallow search. 10258 if (is_contained((*this)->ops(), Dest)) { 10259 // We found the chain we want as an operand of this TokenFactor. 10260 // Essentially, we reach the chain without side-effects if we could 10261 // serialize the TokenFactor into a simple chain of operations with 10262 // Dest as the last operation. This is automatically true if the 10263 // chain has one use: there are no other ordering constraints. 10264 // If the chain has more than one use, we give up: some other 10265 // use of Dest might force a side-effect between Dest and the current 10266 // node. 10267 if (Dest.hasOneUse()) 10268 return true; 10269 } 10270 // Next, try a deep search: check whether every operand of the TokenFactor 10271 // reaches Dest. 10272 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10273 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10274 }); 10275 } 10276 10277 // Loads don't have side effects, look through them. 10278 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10279 if (Ld->isUnordered()) 10280 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10281 } 10282 return false; 10283 } 10284 10285 bool SDNode::hasPredecessor(const SDNode *N) const { 10286 SmallPtrSet<const SDNode *, 32> Visited; 10287 SmallVector<const SDNode *, 16> Worklist; 10288 Worklist.push_back(this); 10289 return hasPredecessorHelper(N, Visited, Worklist); 10290 } 10291 10292 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10293 this->Flags.intersectWith(Flags); 10294 } 10295 10296 SDValue 10297 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10298 ArrayRef<ISD::NodeType> CandidateBinOps, 10299 bool AllowPartials) { 10300 // The pattern must end in an extract from index 0. 10301 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10302 !isNullConstant(Extract->getOperand(1))) 10303 return SDValue(); 10304 10305 // Match against one of the candidate binary ops. 10306 SDValue Op = Extract->getOperand(0); 10307 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10308 return Op.getOpcode() == unsigned(BinOp); 10309 })) 10310 return SDValue(); 10311 10312 // Floating-point reductions may require relaxed constraints on the final step 10313 // of the reduction because they may reorder intermediate operations. 10314 unsigned CandidateBinOp = Op.getOpcode(); 10315 if (Op.getValueType().isFloatingPoint()) { 10316 SDNodeFlags Flags = Op->getFlags(); 10317 switch (CandidateBinOp) { 10318 case ISD::FADD: 10319 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10320 return SDValue(); 10321 break; 10322 default: 10323 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10324 } 10325 } 10326 10327 // Matching failed - attempt to see if we did enough stages that a partial 10328 // reduction from a subvector is possible. 10329 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10330 if (!AllowPartials || !Op) 10331 return SDValue(); 10332 EVT OpVT = Op.getValueType(); 10333 EVT OpSVT = OpVT.getScalarType(); 10334 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10335 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10336 return SDValue(); 10337 BinOp = (ISD::NodeType)CandidateBinOp; 10338 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10339 getVectorIdxConstant(0, SDLoc(Op))); 10340 }; 10341 10342 // At each stage, we're looking for something that looks like: 10343 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10344 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10345 // i32 undef, i32 undef, i32 undef, i32 undef> 10346 // %a = binop <8 x i32> %op, %s 10347 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10348 // we expect something like: 10349 // <4,5,6,7,u,u,u,u> 10350 // <2,3,u,u,u,u,u,u> 10351 // <1,u,u,u,u,u,u,u> 10352 // While a partial reduction match would be: 10353 // <2,3,u,u,u,u,u,u> 10354 // <1,u,u,u,u,u,u,u> 10355 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10356 SDValue PrevOp; 10357 for (unsigned i = 0; i < Stages; ++i) { 10358 unsigned MaskEnd = (1 << i); 10359 10360 if (Op.getOpcode() != CandidateBinOp) 10361 return PartialReduction(PrevOp, MaskEnd); 10362 10363 SDValue Op0 = Op.getOperand(0); 10364 SDValue Op1 = Op.getOperand(1); 10365 10366 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10367 if (Shuffle) { 10368 Op = Op1; 10369 } else { 10370 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10371 Op = Op0; 10372 } 10373 10374 // The first operand of the shuffle should be the same as the other operand 10375 // of the binop. 10376 if (!Shuffle || Shuffle->getOperand(0) != Op) 10377 return PartialReduction(PrevOp, MaskEnd); 10378 10379 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10380 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10381 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10382 return PartialReduction(PrevOp, MaskEnd); 10383 10384 PrevOp = Op; 10385 } 10386 10387 // Handle subvector reductions, which tend to appear after the shuffle 10388 // reduction stages. 10389 while (Op.getOpcode() == CandidateBinOp) { 10390 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10391 SDValue Op0 = Op.getOperand(0); 10392 SDValue Op1 = Op.getOperand(1); 10393 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10394 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10395 Op0.getOperand(0) != Op1.getOperand(0)) 10396 break; 10397 SDValue Src = Op0.getOperand(0); 10398 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10399 if (NumSrcElts != (2 * NumElts)) 10400 break; 10401 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10402 Op1.getConstantOperandAPInt(1) == NumElts) && 10403 !(Op1.getConstantOperandAPInt(1) == 0 && 10404 Op0.getConstantOperandAPInt(1) == NumElts)) 10405 break; 10406 Op = Src; 10407 } 10408 10409 BinOp = (ISD::NodeType)CandidateBinOp; 10410 return Op; 10411 } 10412 10413 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10414 assert(N->getNumValues() == 1 && 10415 "Can't unroll a vector with multiple results!"); 10416 10417 EVT VT = N->getValueType(0); 10418 unsigned NE = VT.getVectorNumElements(); 10419 EVT EltVT = VT.getVectorElementType(); 10420 SDLoc dl(N); 10421 10422 SmallVector<SDValue, 8> Scalars; 10423 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10424 10425 // If ResNE is 0, fully unroll the vector op. 10426 if (ResNE == 0) 10427 ResNE = NE; 10428 else if (NE > ResNE) 10429 NE = ResNE; 10430 10431 unsigned i; 10432 for (i= 0; i != NE; ++i) { 10433 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10434 SDValue Operand = N->getOperand(j); 10435 EVT OperandVT = Operand.getValueType(); 10436 if (OperandVT.isVector()) { 10437 // A vector operand; extract a single element. 10438 EVT OperandEltVT = OperandVT.getVectorElementType(); 10439 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10440 Operand, getVectorIdxConstant(i, dl)); 10441 } else { 10442 // A scalar operand; just use it as is. 10443 Operands[j] = Operand; 10444 } 10445 } 10446 10447 switch (N->getOpcode()) { 10448 default: { 10449 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10450 N->getFlags())); 10451 break; 10452 } 10453 case ISD::VSELECT: 10454 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10455 break; 10456 case ISD::SHL: 10457 case ISD::SRA: 10458 case ISD::SRL: 10459 case ISD::ROTL: 10460 case ISD::ROTR: 10461 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10462 getShiftAmountOperand(Operands[0].getValueType(), 10463 Operands[1]))); 10464 break; 10465 case ISD::SIGN_EXTEND_INREG: { 10466 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10467 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10468 Operands[0], 10469 getValueType(ExtVT))); 10470 } 10471 } 10472 } 10473 10474 for (; i < ResNE; ++i) 10475 Scalars.push_back(getUNDEF(EltVT)); 10476 10477 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10478 return getBuildVector(VecVT, dl, Scalars); 10479 } 10480 10481 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10482 SDNode *N, unsigned ResNE) { 10483 unsigned Opcode = N->getOpcode(); 10484 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10485 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10486 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10487 "Expected an overflow opcode"); 10488 10489 EVT ResVT = N->getValueType(0); 10490 EVT OvVT = N->getValueType(1); 10491 EVT ResEltVT = ResVT.getVectorElementType(); 10492 EVT OvEltVT = OvVT.getVectorElementType(); 10493 SDLoc dl(N); 10494 10495 // If ResNE is 0, fully unroll the vector op. 10496 unsigned NE = ResVT.getVectorNumElements(); 10497 if (ResNE == 0) 10498 ResNE = NE; 10499 else if (NE > ResNE) 10500 NE = ResNE; 10501 10502 SmallVector<SDValue, 8> LHSScalars; 10503 SmallVector<SDValue, 8> RHSScalars; 10504 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10505 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10506 10507 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10508 SDVTList VTs = getVTList(ResEltVT, SVT); 10509 SmallVector<SDValue, 8> ResScalars; 10510 SmallVector<SDValue, 8> OvScalars; 10511 for (unsigned i = 0; i < NE; ++i) { 10512 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10513 SDValue Ov = 10514 getSelect(dl, OvEltVT, Res.getValue(1), 10515 getBoolConstant(true, dl, OvEltVT, ResVT), 10516 getConstant(0, dl, OvEltVT)); 10517 10518 ResScalars.push_back(Res); 10519 OvScalars.push_back(Ov); 10520 } 10521 10522 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10523 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10524 10525 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10526 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10527 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10528 getBuildVector(NewOvVT, dl, OvScalars)); 10529 } 10530 10531 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10532 LoadSDNode *Base, 10533 unsigned Bytes, 10534 int Dist) const { 10535 if (LD->isVolatile() || Base->isVolatile()) 10536 return false; 10537 // TODO: probably too restrictive for atomics, revisit 10538 if (!LD->isSimple()) 10539 return false; 10540 if (LD->isIndexed() || Base->isIndexed()) 10541 return false; 10542 if (LD->getChain() != Base->getChain()) 10543 return false; 10544 EVT VT = LD->getValueType(0); 10545 if (VT.getSizeInBits() / 8 != Bytes) 10546 return false; 10547 10548 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10549 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10550 10551 int64_t Offset = 0; 10552 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10553 return (Dist * Bytes == Offset); 10554 return false; 10555 } 10556 10557 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10558 /// if it cannot be inferred. 10559 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10560 // If this is a GlobalAddress + cst, return the alignment. 10561 const GlobalValue *GV = nullptr; 10562 int64_t GVOffset = 0; 10563 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10564 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10565 KnownBits Known(PtrWidth); 10566 llvm::computeKnownBits(GV, Known, getDataLayout()); 10567 unsigned AlignBits = Known.countMinTrailingZeros(); 10568 if (AlignBits) 10569 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10570 } 10571 10572 // If this is a direct reference to a stack slot, use information about the 10573 // stack slot's alignment. 10574 int FrameIdx = INT_MIN; 10575 int64_t FrameOffset = 0; 10576 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10577 FrameIdx = FI->getIndex(); 10578 } else if (isBaseWithConstantOffset(Ptr) && 10579 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10580 // Handle FI+Cst 10581 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10582 FrameOffset = Ptr.getConstantOperandVal(1); 10583 } 10584 10585 if (FrameIdx != INT_MIN) { 10586 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10587 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10588 } 10589 10590 return None; 10591 } 10592 10593 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10594 /// which is split (or expanded) into two not necessarily identical pieces. 10595 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10596 // Currently all types are split in half. 10597 EVT LoVT, HiVT; 10598 if (!VT.isVector()) 10599 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10600 else 10601 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10602 10603 return std::make_pair(LoVT, HiVT); 10604 } 10605 10606 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10607 /// type, dependent on an enveloping VT that has been split into two identical 10608 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10609 std::pair<EVT, EVT> 10610 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10611 bool *HiIsEmpty) const { 10612 EVT EltTp = VT.getVectorElementType(); 10613 // Examples: 10614 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10615 // custom VL=9 with enveloping VL=8/8 yields 8/1 10616 // custom VL=10 with enveloping VL=8/8 yields 8/2 10617 // etc. 10618 ElementCount VTNumElts = VT.getVectorElementCount(); 10619 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10620 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10621 "Mixing fixed width and scalable vectors when enveloping a type"); 10622 EVT LoVT, HiVT; 10623 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10624 LoVT = EnvVT; 10625 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10626 *HiIsEmpty = false; 10627 } else { 10628 // Flag that hi type has zero storage size, but return split envelop type 10629 // (this would be easier if vector types with zero elements were allowed). 10630 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10631 HiVT = EnvVT; 10632 *HiIsEmpty = true; 10633 } 10634 return std::make_pair(LoVT, HiVT); 10635 } 10636 10637 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10638 /// low/high part. 10639 std::pair<SDValue, SDValue> 10640 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10641 const EVT &HiVT) { 10642 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10643 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10644 "Splitting vector with an invalid mixture of fixed and scalable " 10645 "vector types"); 10646 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10647 N.getValueType().getVectorMinNumElements() && 10648 "More vector elements requested than available!"); 10649 SDValue Lo, Hi; 10650 Lo = 10651 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10652 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10653 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10654 // IDX with the runtime scaling factor of the result vector type. For 10655 // fixed-width result vectors, that runtime scaling factor is 1. 10656 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10657 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10658 return std::make_pair(Lo, Hi); 10659 } 10660 10661 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10662 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10663 EVT VT = N.getValueType(); 10664 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10665 NextPowerOf2(VT.getVectorNumElements())); 10666 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10667 getVectorIdxConstant(0, DL)); 10668 } 10669 10670 void SelectionDAG::ExtractVectorElements(SDValue Op, 10671 SmallVectorImpl<SDValue> &Args, 10672 unsigned Start, unsigned Count, 10673 EVT EltVT) { 10674 EVT VT = Op.getValueType(); 10675 if (Count == 0) 10676 Count = VT.getVectorNumElements(); 10677 if (EltVT == EVT()) 10678 EltVT = VT.getVectorElementType(); 10679 SDLoc SL(Op); 10680 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10681 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10682 getVectorIdxConstant(i, SL))); 10683 } 10684 } 10685 10686 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10687 unsigned GlobalAddressSDNode::getAddressSpace() const { 10688 return getGlobal()->getType()->getAddressSpace(); 10689 } 10690 10691 Type *ConstantPoolSDNode::getType() const { 10692 if (isMachineConstantPoolEntry()) 10693 return Val.MachineCPVal->getType(); 10694 return Val.ConstVal->getType(); 10695 } 10696 10697 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10698 unsigned &SplatBitSize, 10699 bool &HasAnyUndefs, 10700 unsigned MinSplatBits, 10701 bool IsBigEndian) const { 10702 EVT VT = getValueType(0); 10703 assert(VT.isVector() && "Expected a vector type"); 10704 unsigned VecWidth = VT.getSizeInBits(); 10705 if (MinSplatBits > VecWidth) 10706 return false; 10707 10708 // FIXME: The widths are based on this node's type, but build vectors can 10709 // truncate their operands. 10710 SplatValue = APInt(VecWidth, 0); 10711 SplatUndef = APInt(VecWidth, 0); 10712 10713 // Get the bits. Bits with undefined values (when the corresponding element 10714 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10715 // in SplatValue. If any of the values are not constant, give up and return 10716 // false. 10717 unsigned int NumOps = getNumOperands(); 10718 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10719 unsigned EltWidth = VT.getScalarSizeInBits(); 10720 10721 for (unsigned j = 0; j < NumOps; ++j) { 10722 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10723 SDValue OpVal = getOperand(i); 10724 unsigned BitPos = j * EltWidth; 10725 10726 if (OpVal.isUndef()) 10727 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10728 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10729 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10730 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10731 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10732 else 10733 return false; 10734 } 10735 10736 // The build_vector is all constants or undefs. Find the smallest element 10737 // size that splats the vector. 10738 HasAnyUndefs = (SplatUndef != 0); 10739 10740 // FIXME: This does not work for vectors with elements less than 8 bits. 10741 while (VecWidth > 8) { 10742 unsigned HalfSize = VecWidth / 2; 10743 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10744 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10745 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10746 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10747 10748 // If the two halves do not match (ignoring undef bits), stop here. 10749 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10750 MinSplatBits > HalfSize) 10751 break; 10752 10753 SplatValue = HighValue | LowValue; 10754 SplatUndef = HighUndef & LowUndef; 10755 10756 VecWidth = HalfSize; 10757 } 10758 10759 SplatBitSize = VecWidth; 10760 return true; 10761 } 10762 10763 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10764 BitVector *UndefElements) const { 10765 unsigned NumOps = getNumOperands(); 10766 if (UndefElements) { 10767 UndefElements->clear(); 10768 UndefElements->resize(NumOps); 10769 } 10770 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10771 if (!DemandedElts) 10772 return SDValue(); 10773 SDValue Splatted; 10774 for (unsigned i = 0; i != NumOps; ++i) { 10775 if (!DemandedElts[i]) 10776 continue; 10777 SDValue Op = getOperand(i); 10778 if (Op.isUndef()) { 10779 if (UndefElements) 10780 (*UndefElements)[i] = true; 10781 } else if (!Splatted) { 10782 Splatted = Op; 10783 } else if (Splatted != Op) { 10784 return SDValue(); 10785 } 10786 } 10787 10788 if (!Splatted) { 10789 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10790 assert(getOperand(FirstDemandedIdx).isUndef() && 10791 "Can only have a splat without a constant for all undefs."); 10792 return getOperand(FirstDemandedIdx); 10793 } 10794 10795 return Splatted; 10796 } 10797 10798 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10799 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10800 return getSplatValue(DemandedElts, UndefElements); 10801 } 10802 10803 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10804 SmallVectorImpl<SDValue> &Sequence, 10805 BitVector *UndefElements) const { 10806 unsigned NumOps = getNumOperands(); 10807 Sequence.clear(); 10808 if (UndefElements) { 10809 UndefElements->clear(); 10810 UndefElements->resize(NumOps); 10811 } 10812 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10813 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10814 return false; 10815 10816 // Set the undefs even if we don't find a sequence (like getSplatValue). 10817 if (UndefElements) 10818 for (unsigned I = 0; I != NumOps; ++I) 10819 if (DemandedElts[I] && getOperand(I).isUndef()) 10820 (*UndefElements)[I] = true; 10821 10822 // Iteratively widen the sequence length looking for repetitions. 10823 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10824 Sequence.append(SeqLen, SDValue()); 10825 for (unsigned I = 0; I != NumOps; ++I) { 10826 if (!DemandedElts[I]) 10827 continue; 10828 SDValue &SeqOp = Sequence[I % SeqLen]; 10829 SDValue Op = getOperand(I); 10830 if (Op.isUndef()) { 10831 if (!SeqOp) 10832 SeqOp = Op; 10833 continue; 10834 } 10835 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10836 Sequence.clear(); 10837 break; 10838 } 10839 SeqOp = Op; 10840 } 10841 if (!Sequence.empty()) 10842 return true; 10843 } 10844 10845 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10846 return false; 10847 } 10848 10849 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10850 BitVector *UndefElements) const { 10851 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10852 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10853 } 10854 10855 ConstantSDNode * 10856 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10857 BitVector *UndefElements) const { 10858 return dyn_cast_or_null<ConstantSDNode>( 10859 getSplatValue(DemandedElts, UndefElements)); 10860 } 10861 10862 ConstantSDNode * 10863 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10864 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10865 } 10866 10867 ConstantFPSDNode * 10868 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10869 BitVector *UndefElements) const { 10870 return dyn_cast_or_null<ConstantFPSDNode>( 10871 getSplatValue(DemandedElts, UndefElements)); 10872 } 10873 10874 ConstantFPSDNode * 10875 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10876 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10877 } 10878 10879 int32_t 10880 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10881 uint32_t BitWidth) const { 10882 if (ConstantFPSDNode *CN = 10883 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10884 bool IsExact; 10885 APSInt IntVal(BitWidth); 10886 const APFloat &APF = CN->getValueAPF(); 10887 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10888 APFloat::opOK || 10889 !IsExact) 10890 return -1; 10891 10892 return IntVal.exactLogBase2(); 10893 } 10894 return -1; 10895 } 10896 10897 bool BuildVectorSDNode::isConstant() const { 10898 for (const SDValue &Op : op_values()) { 10899 unsigned Opc = Op.getOpcode(); 10900 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10901 return false; 10902 } 10903 return true; 10904 } 10905 10906 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10907 // Find the first non-undef value in the shuffle mask. 10908 unsigned i, e; 10909 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10910 /* search */; 10911 10912 // If all elements are undefined, this shuffle can be considered a splat 10913 // (although it should eventually get simplified away completely). 10914 if (i == e) 10915 return true; 10916 10917 // Make sure all remaining elements are either undef or the same as the first 10918 // non-undef value. 10919 for (int Idx = Mask[i]; i != e; ++i) 10920 if (Mask[i] >= 0 && Mask[i] != Idx) 10921 return false; 10922 return true; 10923 } 10924 10925 // Returns the SDNode if it is a constant integer BuildVector 10926 // or constant integer. 10927 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10928 if (isa<ConstantSDNode>(N)) 10929 return N.getNode(); 10930 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10931 return N.getNode(); 10932 // Treat a GlobalAddress supporting constant offset folding as a 10933 // constant integer. 10934 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10935 if (GA->getOpcode() == ISD::GlobalAddress && 10936 TLI->isOffsetFoldingLegal(GA)) 10937 return GA; 10938 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10939 isa<ConstantSDNode>(N.getOperand(0))) 10940 return N.getNode(); 10941 return nullptr; 10942 } 10943 10944 // Returns the SDNode if it is a constant float BuildVector 10945 // or constant float. 10946 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10947 if (isa<ConstantFPSDNode>(N)) 10948 return N.getNode(); 10949 10950 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10951 return N.getNode(); 10952 10953 return nullptr; 10954 } 10955 10956 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10957 assert(!Node->OperandList && "Node already has operands"); 10958 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10959 "too many operands to fit into SDNode"); 10960 SDUse *Ops = OperandRecycler.allocate( 10961 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10962 10963 bool IsDivergent = false; 10964 for (unsigned I = 0; I != Vals.size(); ++I) { 10965 Ops[I].setUser(Node); 10966 Ops[I].setInitial(Vals[I]); 10967 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10968 IsDivergent |= Ops[I].getNode()->isDivergent(); 10969 } 10970 Node->NumOperands = Vals.size(); 10971 Node->OperandList = Ops; 10972 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10973 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10974 Node->SDNodeBits.IsDivergent = IsDivergent; 10975 } 10976 checkForCycles(Node); 10977 } 10978 10979 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10980 SmallVectorImpl<SDValue> &Vals) { 10981 size_t Limit = SDNode::getMaxNumOperands(); 10982 while (Vals.size() > Limit) { 10983 unsigned SliceIdx = Vals.size() - Limit; 10984 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10985 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10986 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10987 Vals.emplace_back(NewTF); 10988 } 10989 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10990 } 10991 10992 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10993 EVT VT, SDNodeFlags Flags) { 10994 switch (Opcode) { 10995 default: 10996 return SDValue(); 10997 case ISD::ADD: 10998 case ISD::OR: 10999 case ISD::XOR: 11000 case ISD::UMAX: 11001 return getConstant(0, DL, VT); 11002 case ISD::MUL: 11003 return getConstant(1, DL, VT); 11004 case ISD::AND: 11005 case ISD::UMIN: 11006 return getAllOnesConstant(DL, VT); 11007 case ISD::SMAX: 11008 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11009 case ISD::SMIN: 11010 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11011 case ISD::FADD: 11012 return getConstantFP(-0.0, DL, VT); 11013 case ISD::FMUL: 11014 return getConstantFP(1.0, DL, VT); 11015 case ISD::FMINNUM: 11016 case ISD::FMAXNUM: { 11017 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11018 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11019 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11020 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11021 APFloat::getLargest(Semantics); 11022 if (Opcode == ISD::FMAXNUM) 11023 NeutralAF.changeSign(); 11024 11025 return getConstantFP(NeutralAF, DL, VT); 11026 } 11027 } 11028 } 11029 11030 #ifndef NDEBUG 11031 static void checkForCyclesHelper(const SDNode *N, 11032 SmallPtrSetImpl<const SDNode*> &Visited, 11033 SmallPtrSetImpl<const SDNode*> &Checked, 11034 const llvm::SelectionDAG *DAG) { 11035 // If this node has already been checked, don't check it again. 11036 if (Checked.count(N)) 11037 return; 11038 11039 // If a node has already been visited on this depth-first walk, reject it as 11040 // a cycle. 11041 if (!Visited.insert(N).second) { 11042 errs() << "Detected cycle in SelectionDAG\n"; 11043 dbgs() << "Offending node:\n"; 11044 N->dumprFull(DAG); dbgs() << "\n"; 11045 abort(); 11046 } 11047 11048 for (const SDValue &Op : N->op_values()) 11049 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11050 11051 Checked.insert(N); 11052 Visited.erase(N); 11053 } 11054 #endif 11055 11056 void llvm::checkForCycles(const llvm::SDNode *N, 11057 const llvm::SelectionDAG *DAG, 11058 bool force) { 11059 #ifndef NDEBUG 11060 bool check = force; 11061 #ifdef EXPENSIVE_CHECKS 11062 check = true; 11063 #endif // EXPENSIVE_CHECKS 11064 if (check) { 11065 assert(N && "Checking nonexistent SDNode"); 11066 SmallPtrSet<const SDNode*, 32> visited; 11067 SmallPtrSet<const SDNode*, 32> checked; 11068 checkForCyclesHelper(N, visited, checked, DAG); 11069 } 11070 #endif // !NDEBUG 11071 } 11072 11073 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11074 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11075 } 11076