1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/TargetLowering.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/CodeGen/ValueTypes.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/KnownBits.h" 61 #include "llvm/Support/ManagedStatic.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/Mutex.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <cstdlib> 71 #include <limits> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 /// makeVTList - Return an instance of the SDVTList struct initialized with the 80 /// specified members. 81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 82 SDVTList Res = {VTs, NumVTs}; 83 return Res; 84 } 85 86 // Default null implementations of the callbacks. 87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 89 90 #define DEBUG_TYPE "selectiondag" 91 92 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 93 DEBUG( 94 dbgs() << Msg; 95 V.getNode()->dump(G); 96 ); 97 } 98 99 //===----------------------------------------------------------------------===// 100 // ConstantFPSDNode Class 101 //===----------------------------------------------------------------------===// 102 103 /// isExactlyValue - We don't rely on operator== working on double values, as 104 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 105 /// As such, this method can be used to do an exact bit-for-bit comparison of 106 /// two floating point values. 107 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 108 return getValueAPF().bitwiseIsEqual(V); 109 } 110 111 bool ConstantFPSDNode::isValueValidForType(EVT VT, 112 const APFloat& Val) { 113 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 114 115 // convert modifies in place, so make a copy. 116 APFloat Val2 = APFloat(Val); 117 bool losesInfo; 118 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 119 APFloat::rmNearestTiesToEven, 120 &losesInfo); 121 return !losesInfo; 122 } 123 124 //===----------------------------------------------------------------------===// 125 // ISD Namespace 126 //===----------------------------------------------------------------------===// 127 128 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 129 auto *BV = dyn_cast<BuildVectorSDNode>(N); 130 if (!BV) 131 return false; 132 133 APInt SplatUndef; 134 unsigned SplatBitSize; 135 bool HasUndefs; 136 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 137 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 138 EltSize) && 139 EltSize == SplatBitSize; 140 } 141 142 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 143 // specializations of the more general isConstantSplatVector()? 144 145 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 146 // Look through a bit convert. 147 while (N->getOpcode() == ISD::BITCAST) 148 N = N->getOperand(0).getNode(); 149 150 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 151 152 unsigned i = 0, e = N->getNumOperands(); 153 154 // Skip over all of the undef values. 155 while (i != e && N->getOperand(i).isUndef()) 156 ++i; 157 158 // Do not accept an all-undef vector. 159 if (i == e) return false; 160 161 // Do not accept build_vectors that aren't all constants or which have non-~0 162 // elements. We have to be a bit careful here, as the type of the constant 163 // may not be the same as the type of the vector elements due to type 164 // legalization (the elements are promoted to a legal type for the target and 165 // a vector of a type may be legal when the base element type is not). 166 // We only want to check enough bits to cover the vector elements, because 167 // we care if the resultant vector is all ones, not whether the individual 168 // constants are. 169 SDValue NotZero = N->getOperand(i); 170 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 171 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 172 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 173 return false; 174 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 175 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 176 return false; 177 } else 178 return false; 179 180 // Okay, we have at least one ~0 value, check to see if the rest match or are 181 // undefs. Even with the above element type twiddling, this should be OK, as 182 // the same type legalization should have applied to all the elements. 183 for (++i; i != e; ++i) 184 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 185 return false; 186 return true; 187 } 188 189 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 190 // Look through a bit convert. 191 while (N->getOpcode() == ISD::BITCAST) 192 N = N->getOperand(0).getNode(); 193 194 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 195 196 bool IsAllUndef = true; 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 IsAllUndef = false; 201 // Do not accept build_vectors that aren't all constants or which have non-0 202 // elements. We have to be a bit careful here, as the type of the constant 203 // may not be the same as the type of the vector elements due to type 204 // legalization (the elements are promoted to a legal type for the target 205 // and a vector of a type may be legal when the base element type is not). 206 // We only want to check enough bits to cover the vector elements, because 207 // we care if the resultant vector is all zeros, not whether the individual 208 // constants are. 209 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 210 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 211 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 212 return false; 213 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 214 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 215 return false; 216 } else 217 return false; 218 } 219 220 // Do not accept an all-undef vector. 221 if (IsAllUndef) 222 return false; 223 return true; 224 } 225 226 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 227 if (N->getOpcode() != ISD::BUILD_VECTOR) 228 return false; 229 230 for (const SDValue &Op : N->op_values()) { 231 if (Op.isUndef()) 232 continue; 233 if (!isa<ConstantSDNode>(Op)) 234 return false; 235 } 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantFPSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::allOperandsUndef(const SDNode *N) { 253 // Return false if the node has no operands. 254 // This is "logically inconsistent" with the definition of "all" but 255 // is probably the desired behavior. 256 if (N->getNumOperands() == 0) 257 return false; 258 259 for (const SDValue &Op : N->op_values()) 260 if (!Op.isUndef()) 261 return false; 262 263 return true; 264 } 265 266 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 267 switch (ExtType) { 268 case ISD::EXTLOAD: 269 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 270 case ISD::SEXTLOAD: 271 return ISD::SIGN_EXTEND; 272 case ISD::ZEXTLOAD: 273 return ISD::ZERO_EXTEND; 274 default: 275 break; 276 } 277 278 llvm_unreachable("Invalid LoadExtType"); 279 } 280 281 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 282 // To perform this operation, we just need to swap the L and G bits of the 283 // operation. 284 unsigned OldL = (Operation >> 2) & 1; 285 unsigned OldG = (Operation >> 1) & 1; 286 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 287 (OldL << 1) | // New G bit 288 (OldG << 2)); // New L bit. 289 } 290 291 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 292 unsigned Operation = Op; 293 if (isInteger) 294 Operation ^= 7; // Flip L, G, E bits, but not U. 295 else 296 Operation ^= 15; // Flip all of the condition bits. 297 298 if (Operation > ISD::SETTRUE2) 299 Operation &= ~8; // Don't let N and U bits get set. 300 301 return ISD::CondCode(Operation); 302 } 303 304 /// For an integer comparison, return 1 if the comparison is a signed operation 305 /// and 2 if the result is an unsigned comparison. Return zero if the operation 306 /// does not depend on the sign of the input (setne and seteq). 307 static int isSignedOp(ISD::CondCode Opcode) { 308 switch (Opcode) { 309 default: llvm_unreachable("Illegal integer setcc operation!"); 310 case ISD::SETEQ: 311 case ISD::SETNE: return 0; 312 case ISD::SETLT: 313 case ISD::SETLE: 314 case ISD::SETGT: 315 case ISD::SETGE: return 1; 316 case ISD::SETULT: 317 case ISD::SETULE: 318 case ISD::SETUGT: 319 case ISD::SETUGE: return 2; 320 } 321 } 322 323 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 324 bool IsInteger) { 325 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 326 // Cannot fold a signed integer setcc with an unsigned integer setcc. 327 return ISD::SETCC_INVALID; 328 329 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 330 331 // If the N and U bits get set, then the resultant comparison DOES suddenly 332 // care about orderedness, and it is true when ordered. 333 if (Op > ISD::SETTRUE2) 334 Op &= ~16; // Clear the U bit if the N bit is set. 335 336 // Canonicalize illegal integer setcc's. 337 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 338 Op = ISD::SETNE; 339 340 return ISD::CondCode(Op); 341 } 342 343 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 344 bool IsInteger) { 345 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 346 // Cannot fold a signed setcc with an unsigned setcc. 347 return ISD::SETCC_INVALID; 348 349 // Combine all of the condition bits. 350 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 351 352 // Canonicalize illegal integer setcc's. 353 if (IsInteger) { 354 switch (Result) { 355 default: break; 356 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 357 case ISD::SETOEQ: // SETEQ & SETU[LG]E 358 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 359 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 360 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 361 } 362 } 363 364 return Result; 365 } 366 367 //===----------------------------------------------------------------------===// 368 // SDNode Profile Support 369 //===----------------------------------------------------------------------===// 370 371 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 372 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 373 ID.AddInteger(OpC); 374 } 375 376 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 377 /// solely with their pointer. 378 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 379 ID.AddPointer(VTList.VTs); 380 } 381 382 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 383 static void AddNodeIDOperands(FoldingSetNodeID &ID, 384 ArrayRef<SDValue> Ops) { 385 for (auto& Op : Ops) { 386 ID.AddPointer(Op.getNode()); 387 ID.AddInteger(Op.getResNo()); 388 } 389 } 390 391 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 392 static void AddNodeIDOperands(FoldingSetNodeID &ID, 393 ArrayRef<SDUse> Ops) { 394 for (auto& Op : Ops) { 395 ID.AddPointer(Op.getNode()); 396 ID.AddInteger(Op.getResNo()); 397 } 398 } 399 400 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 401 SDVTList VTList, ArrayRef<SDValue> OpList) { 402 AddNodeIDOpcode(ID, OpC); 403 AddNodeIDValueTypes(ID, VTList); 404 AddNodeIDOperands(ID, OpList); 405 } 406 407 /// If this is an SDNode with special info, add this info to the NodeID data. 408 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 409 switch (N->getOpcode()) { 410 case ISD::TargetExternalSymbol: 411 case ISD::ExternalSymbol: 412 case ISD::MCSymbol: 413 llvm_unreachable("Should only be used on nodes with operands"); 414 default: break; // Normal nodes don't need extra info. 415 case ISD::TargetConstant: 416 case ISD::Constant: { 417 const ConstantSDNode *C = cast<ConstantSDNode>(N); 418 ID.AddPointer(C->getConstantIntValue()); 419 ID.AddBoolean(C->isOpaque()); 420 break; 421 } 422 case ISD::TargetConstantFP: 423 case ISD::ConstantFP: 424 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 425 break; 426 case ISD::TargetGlobalAddress: 427 case ISD::GlobalAddress: 428 case ISD::TargetGlobalTLSAddress: 429 case ISD::GlobalTLSAddress: { 430 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 431 ID.AddPointer(GA->getGlobal()); 432 ID.AddInteger(GA->getOffset()); 433 ID.AddInteger(GA->getTargetFlags()); 434 break; 435 } 436 case ISD::BasicBlock: 437 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 438 break; 439 case ISD::Register: 440 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 441 break; 442 case ISD::RegisterMask: 443 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 444 break; 445 case ISD::SRCVALUE: 446 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 447 break; 448 case ISD::FrameIndex: 449 case ISD::TargetFrameIndex: 450 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 451 break; 452 case ISD::JumpTable: 453 case ISD::TargetJumpTable: 454 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 455 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 456 break; 457 case ISD::ConstantPool: 458 case ISD::TargetConstantPool: { 459 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 460 ID.AddInteger(CP->getAlignment()); 461 ID.AddInteger(CP->getOffset()); 462 if (CP->isMachineConstantPoolEntry()) 463 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 464 else 465 ID.AddPointer(CP->getConstVal()); 466 ID.AddInteger(CP->getTargetFlags()); 467 break; 468 } 469 case ISD::TargetIndex: { 470 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 471 ID.AddInteger(TI->getIndex()); 472 ID.AddInteger(TI->getOffset()); 473 ID.AddInteger(TI->getTargetFlags()); 474 break; 475 } 476 case ISD::LOAD: { 477 const LoadSDNode *LD = cast<LoadSDNode>(N); 478 ID.AddInteger(LD->getMemoryVT().getRawBits()); 479 ID.AddInteger(LD->getRawSubclassData()); 480 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::STORE: { 484 const StoreSDNode *ST = cast<StoreSDNode>(N); 485 ID.AddInteger(ST->getMemoryVT().getRawBits()); 486 ID.AddInteger(ST->getRawSubclassData()); 487 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 488 break; 489 } 490 case ISD::ATOMIC_CMP_SWAP: 491 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 492 case ISD::ATOMIC_SWAP: 493 case ISD::ATOMIC_LOAD_ADD: 494 case ISD::ATOMIC_LOAD_SUB: 495 case ISD::ATOMIC_LOAD_AND: 496 case ISD::ATOMIC_LOAD_OR: 497 case ISD::ATOMIC_LOAD_XOR: 498 case ISD::ATOMIC_LOAD_NAND: 499 case ISD::ATOMIC_LOAD_MIN: 500 case ISD::ATOMIC_LOAD_MAX: 501 case ISD::ATOMIC_LOAD_UMIN: 502 case ISD::ATOMIC_LOAD_UMAX: 503 case ISD::ATOMIC_LOAD: 504 case ISD::ATOMIC_STORE: { 505 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 506 ID.AddInteger(AT->getMemoryVT().getRawBits()); 507 ID.AddInteger(AT->getRawSubclassData()); 508 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 509 break; 510 } 511 case ISD::PREFETCH: { 512 const MemSDNode *PF = cast<MemSDNode>(N); 513 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 514 break; 515 } 516 case ISD::VECTOR_SHUFFLE: { 517 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 518 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 519 i != e; ++i) 520 ID.AddInteger(SVN->getMaskElt(i)); 521 break; 522 } 523 case ISD::TargetBlockAddress: 524 case ISD::BlockAddress: { 525 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 526 ID.AddPointer(BA->getBlockAddress()); 527 ID.AddInteger(BA->getOffset()); 528 ID.AddInteger(BA->getTargetFlags()); 529 break; 530 } 531 } // end switch (N->getOpcode()) 532 533 // Target specific memory nodes could also have address spaces to check. 534 if (N->isTargetMemoryOpcode()) 535 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 536 } 537 538 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 539 /// data. 540 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 541 AddNodeIDOpcode(ID, N->getOpcode()); 542 // Add the return value info. 543 AddNodeIDValueTypes(ID, N->getVTList()); 544 // Add the operand info. 545 AddNodeIDOperands(ID, N->ops()); 546 547 // Handle SDNode leafs with special info. 548 AddNodeIDCustom(ID, N); 549 } 550 551 //===----------------------------------------------------------------------===// 552 // SelectionDAG Class 553 //===----------------------------------------------------------------------===// 554 555 /// doNotCSE - Return true if CSE should not be performed for this node. 556 static bool doNotCSE(SDNode *N) { 557 if (N->getValueType(0) == MVT::Glue) 558 return true; // Never CSE anything that produces a flag. 559 560 switch (N->getOpcode()) { 561 default: break; 562 case ISD::HANDLENODE: 563 case ISD::EH_LABEL: 564 return true; // Never CSE these nodes. 565 } 566 567 // Check that remaining values produced are not flags. 568 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 569 if (N->getValueType(i) == MVT::Glue) 570 return true; // Never CSE anything that produces a flag. 571 572 return false; 573 } 574 575 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 576 /// SelectionDAG. 577 void SelectionDAG::RemoveDeadNodes() { 578 // Create a dummy node (which is not added to allnodes), that adds a reference 579 // to the root node, preventing it from being deleted. 580 HandleSDNode Dummy(getRoot()); 581 582 SmallVector<SDNode*, 128> DeadNodes; 583 584 // Add all obviously-dead nodes to the DeadNodes worklist. 585 for (SDNode &Node : allnodes()) 586 if (Node.use_empty()) 587 DeadNodes.push_back(&Node); 588 589 RemoveDeadNodes(DeadNodes); 590 591 // If the root changed (e.g. it was a dead load, update the root). 592 setRoot(Dummy.getValue()); 593 } 594 595 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 596 /// given list, and any nodes that become unreachable as a result. 597 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 598 599 // Process the worklist, deleting the nodes and adding their uses to the 600 // worklist. 601 while (!DeadNodes.empty()) { 602 SDNode *N = DeadNodes.pop_back_val(); 603 // Skip to next node if we've already managed to delete the node. This could 604 // happen if replacing a node causes a node previously added to the node to 605 // be deleted. 606 if (N->getOpcode() == ISD::DELETED_NODE) 607 continue; 608 609 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 610 DUL->NodeDeleted(N, nullptr); 611 612 // Take the node out of the appropriate CSE map. 613 RemoveNodeFromCSEMaps(N); 614 615 // Next, brutally remove the operand list. This is safe to do, as there are 616 // no cycles in the graph. 617 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 618 SDUse &Use = *I++; 619 SDNode *Operand = Use.getNode(); 620 Use.set(SDValue()); 621 622 // Now that we removed this operand, see if there are no uses of it left. 623 if (Operand->use_empty()) 624 DeadNodes.push_back(Operand); 625 } 626 627 DeallocateNode(N); 628 } 629 } 630 631 void SelectionDAG::RemoveDeadNode(SDNode *N){ 632 SmallVector<SDNode*, 16> DeadNodes(1, N); 633 634 // Create a dummy node that adds a reference to the root node, preventing 635 // it from being deleted. (This matters if the root is an operand of the 636 // dead node.) 637 HandleSDNode Dummy(getRoot()); 638 639 RemoveDeadNodes(DeadNodes); 640 } 641 642 void SelectionDAG::DeleteNode(SDNode *N) { 643 // First take this out of the appropriate CSE map. 644 RemoveNodeFromCSEMaps(N); 645 646 // Finally, remove uses due to operands of this node, remove from the 647 // AllNodes list, and delete the node. 648 DeleteNodeNotInCSEMaps(N); 649 } 650 651 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 652 assert(N->getIterator() != AllNodes.begin() && 653 "Cannot delete the entry node!"); 654 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 655 656 // Drop all of the operands and decrement used node's use counts. 657 N->DropOperands(); 658 659 DeallocateNode(N); 660 } 661 662 void SDDbgInfo::erase(const SDNode *Node) { 663 DbgValMapType::iterator I = DbgValMap.find(Node); 664 if (I == DbgValMap.end()) 665 return; 666 for (auto &Val: I->second) 667 Val->setIsInvalidated(); 668 DbgValMap.erase(I); 669 } 670 671 void SelectionDAG::DeallocateNode(SDNode *N) { 672 // If we have operands, deallocate them. 673 removeOperands(N); 674 675 NodeAllocator.Deallocate(AllNodes.remove(N)); 676 677 // Set the opcode to DELETED_NODE to help catch bugs when node 678 // memory is reallocated. 679 // FIXME: There are places in SDag that have grown a dependency on the opcode 680 // value in the released node. 681 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 682 N->NodeType = ISD::DELETED_NODE; 683 684 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 685 // them and forget about that node. 686 DbgInfo->erase(N); 687 } 688 689 #ifndef NDEBUG 690 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 691 static void VerifySDNode(SDNode *N) { 692 switch (N->getOpcode()) { 693 default: 694 break; 695 case ISD::BUILD_PAIR: { 696 EVT VT = N->getValueType(0); 697 assert(N->getNumValues() == 1 && "Too many results!"); 698 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 699 "Wrong return type!"); 700 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 701 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 702 "Mismatched operand types!"); 703 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 704 "Wrong operand type!"); 705 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 706 "Wrong return type size"); 707 break; 708 } 709 case ISD::BUILD_VECTOR: { 710 assert(N->getNumValues() == 1 && "Too many results!"); 711 assert(N->getValueType(0).isVector() && "Wrong return type!"); 712 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 713 "Wrong number of operands!"); 714 EVT EltVT = N->getValueType(0).getVectorElementType(); 715 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 716 assert((I->getValueType() == EltVT || 717 (EltVT.isInteger() && I->getValueType().isInteger() && 718 EltVT.bitsLE(I->getValueType()))) && 719 "Wrong operand type!"); 720 assert(I->getValueType() == N->getOperand(0).getValueType() && 721 "Operands must all have the same type"); 722 } 723 break; 724 } 725 } 726 } 727 #endif // NDEBUG 728 729 /// \brief Insert a newly allocated node into the DAG. 730 /// 731 /// Handles insertion into the all nodes list and CSE map, as well as 732 /// verification and other common operations when a new node is allocated. 733 void SelectionDAG::InsertNode(SDNode *N) { 734 AllNodes.push_back(N); 735 #ifndef NDEBUG 736 N->PersistentId = NextPersistentId++; 737 VerifySDNode(N); 738 #endif 739 } 740 741 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 742 /// correspond to it. This is useful when we're about to delete or repurpose 743 /// the node. We don't want future request for structurally identical nodes 744 /// to return N anymore. 745 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 746 bool Erased = false; 747 switch (N->getOpcode()) { 748 case ISD::HANDLENODE: return false; // noop. 749 case ISD::CONDCODE: 750 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 751 "Cond code doesn't exist!"); 752 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 753 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 754 break; 755 case ISD::ExternalSymbol: 756 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 757 break; 758 case ISD::TargetExternalSymbol: { 759 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 760 Erased = TargetExternalSymbols.erase( 761 std::pair<std::string,unsigned char>(ESN->getSymbol(), 762 ESN->getTargetFlags())); 763 break; 764 } 765 case ISD::MCSymbol: { 766 auto *MCSN = cast<MCSymbolSDNode>(N); 767 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 768 break; 769 } 770 case ISD::VALUETYPE: { 771 EVT VT = cast<VTSDNode>(N)->getVT(); 772 if (VT.isExtended()) { 773 Erased = ExtendedValueTypeNodes.erase(VT); 774 } else { 775 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 776 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 777 } 778 break; 779 } 780 default: 781 // Remove it from the CSE Map. 782 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 783 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 784 Erased = CSEMap.RemoveNode(N); 785 break; 786 } 787 #ifndef NDEBUG 788 // Verify that the node was actually in one of the CSE maps, unless it has a 789 // flag result (which cannot be CSE'd) or is one of the special cases that are 790 // not subject to CSE. 791 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 792 !N->isMachineOpcode() && !doNotCSE(N)) { 793 N->dump(this); 794 dbgs() << "\n"; 795 llvm_unreachable("Node is not in map!"); 796 } 797 #endif 798 return Erased; 799 } 800 801 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 802 /// maps and modified in place. Add it back to the CSE maps, unless an identical 803 /// node already exists, in which case transfer all its users to the existing 804 /// node. This transfer can potentially trigger recursive merging. 805 void 806 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 807 // For node types that aren't CSE'd, just act as if no identical node 808 // already exists. 809 if (!doNotCSE(N)) { 810 SDNode *Existing = CSEMap.GetOrInsertNode(N); 811 if (Existing != N) { 812 // If there was already an existing matching node, use ReplaceAllUsesWith 813 // to replace the dead one with the existing one. This can cause 814 // recursive merging of other unrelated nodes down the line. 815 ReplaceAllUsesWith(N, Existing); 816 817 // N is now dead. Inform the listeners and delete it. 818 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 819 DUL->NodeDeleted(N, Existing); 820 DeleteNodeNotInCSEMaps(N); 821 return; 822 } 823 } 824 825 // If the node doesn't already exist, we updated it. Inform listeners. 826 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 827 DUL->NodeUpdated(N); 828 } 829 830 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 831 /// were replaced with those specified. If this node is never memoized, 832 /// return null, otherwise return a pointer to the slot it would take. If a 833 /// node already exists with these operands, the slot will be non-null. 834 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 835 void *&InsertPos) { 836 if (doNotCSE(N)) 837 return nullptr; 838 839 SDValue Ops[] = { Op }; 840 FoldingSetNodeID ID; 841 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 842 AddNodeIDCustom(ID, N); 843 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 844 if (Node) 845 Node->intersectFlagsWith(N->getFlags()); 846 return Node; 847 } 848 849 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 850 /// were replaced with those specified. If this node is never memoized, 851 /// return null, otherwise return a pointer to the slot it would take. If a 852 /// node already exists with these operands, the slot will be non-null. 853 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 854 SDValue Op1, SDValue Op2, 855 void *&InsertPos) { 856 if (doNotCSE(N)) 857 return nullptr; 858 859 SDValue Ops[] = { Op1, Op2 }; 860 FoldingSetNodeID ID; 861 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 862 AddNodeIDCustom(ID, N); 863 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 864 if (Node) 865 Node->intersectFlagsWith(N->getFlags()); 866 return Node; 867 } 868 869 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 870 /// were replaced with those specified. If this node is never memoized, 871 /// return null, otherwise return a pointer to the slot it would take. If a 872 /// node already exists with these operands, the slot will be non-null. 873 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 874 void *&InsertPos) { 875 if (doNotCSE(N)) 876 return nullptr; 877 878 FoldingSetNodeID ID; 879 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 880 AddNodeIDCustom(ID, N); 881 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 882 if (Node) 883 Node->intersectFlagsWith(N->getFlags()); 884 return Node; 885 } 886 887 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 888 Type *Ty = VT == MVT::iPTR ? 889 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 890 VT.getTypeForEVT(*getContext()); 891 892 return getDataLayout().getABITypeAlignment(Ty); 893 } 894 895 // EntryNode could meaningfully have debug info if we can find it... 896 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 897 : TM(tm), OptLevel(OL), 898 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 899 Root(getEntryNode()) { 900 InsertNode(&EntryNode); 901 DbgInfo = new SDDbgInfo(); 902 } 903 904 void SelectionDAG::init(MachineFunction &NewMF, 905 OptimizationRemarkEmitter &NewORE, 906 Pass *PassPtr) { 907 MF = &NewMF; 908 SDAGISelPass = PassPtr; 909 ORE = &NewORE; 910 TLI = getSubtarget().getTargetLowering(); 911 TSI = getSubtarget().getSelectionDAGInfo(); 912 Context = &MF->getFunction()->getContext(); 913 } 914 915 SelectionDAG::~SelectionDAG() { 916 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 917 allnodes_clear(); 918 OperandRecycler.clear(OperandAllocator); 919 delete DbgInfo; 920 } 921 922 void SelectionDAG::allnodes_clear() { 923 assert(&*AllNodes.begin() == &EntryNode); 924 AllNodes.remove(AllNodes.begin()); 925 while (!AllNodes.empty()) 926 DeallocateNode(&AllNodes.front()); 927 #ifndef NDEBUG 928 NextPersistentId = 0; 929 #endif 930 } 931 932 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 933 void *&InsertPos) { 934 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 935 if (N) { 936 switch (N->getOpcode()) { 937 default: break; 938 case ISD::Constant: 939 case ISD::ConstantFP: 940 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 941 "debug location. Use another overload."); 942 } 943 } 944 return N; 945 } 946 947 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 948 const SDLoc &DL, void *&InsertPos) { 949 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 950 if (N) { 951 switch (N->getOpcode()) { 952 case ISD::Constant: 953 case ISD::ConstantFP: 954 // Erase debug location from the node if the node is used at several 955 // different places. Do not propagate one location to all uses as it 956 // will cause a worse single stepping debugging experience. 957 if (N->getDebugLoc() != DL.getDebugLoc()) 958 N->setDebugLoc(DebugLoc()); 959 break; 960 default: 961 // When the node's point of use is located earlier in the instruction 962 // sequence than its prior point of use, update its debug info to the 963 // earlier location. 964 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 965 N->setDebugLoc(DL.getDebugLoc()); 966 break; 967 } 968 } 969 return N; 970 } 971 972 void SelectionDAG::clear() { 973 allnodes_clear(); 974 OperandRecycler.clear(OperandAllocator); 975 OperandAllocator.Reset(); 976 CSEMap.clear(); 977 978 ExtendedValueTypeNodes.clear(); 979 ExternalSymbols.clear(); 980 TargetExternalSymbols.clear(); 981 MCSymbols.clear(); 982 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 983 static_cast<CondCodeSDNode*>(nullptr)); 984 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 985 static_cast<SDNode*>(nullptr)); 986 987 EntryNode.UseList = nullptr; 988 InsertNode(&EntryNode); 989 Root = getEntryNode(); 990 DbgInfo->clear(); 991 } 992 993 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 994 return VT.bitsGT(Op.getValueType()) 995 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 996 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 997 } 998 999 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1000 return VT.bitsGT(Op.getValueType()) ? 1001 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1002 getNode(ISD::TRUNCATE, DL, VT, Op); 1003 } 1004 1005 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1006 return VT.bitsGT(Op.getValueType()) ? 1007 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1008 getNode(ISD::TRUNCATE, DL, VT, Op); 1009 } 1010 1011 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1012 return VT.bitsGT(Op.getValueType()) ? 1013 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1014 getNode(ISD::TRUNCATE, DL, VT, Op); 1015 } 1016 1017 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1018 EVT OpVT) { 1019 if (VT.bitsLE(Op.getValueType())) 1020 return getNode(ISD::TRUNCATE, SL, VT, Op); 1021 1022 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1023 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1024 } 1025 1026 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1027 assert(!VT.isVector() && 1028 "getZeroExtendInReg should use the vector element type instead of " 1029 "the vector type!"); 1030 if (Op.getValueType().getScalarType() == VT) return Op; 1031 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1032 APInt Imm = APInt::getLowBitsSet(BitWidth, 1033 VT.getSizeInBits()); 1034 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1035 getConstant(Imm, DL, Op.getValueType())); 1036 } 1037 1038 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1039 EVT VT) { 1040 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1041 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1042 "The sizes of the input and result must match in order to perform the " 1043 "extend in-register."); 1044 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1045 "The destination vector type must have fewer lanes than the input."); 1046 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1047 } 1048 1049 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1050 EVT VT) { 1051 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1052 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1053 "The sizes of the input and result must match in order to perform the " 1054 "extend in-register."); 1055 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1056 "The destination vector type must have fewer lanes than the input."); 1057 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1058 } 1059 1060 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1061 EVT VT) { 1062 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1063 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1064 "The sizes of the input and result must match in order to perform the " 1065 "extend in-register."); 1066 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1067 "The destination vector type must have fewer lanes than the input."); 1068 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1069 } 1070 1071 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1072 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1073 EVT EltVT = VT.getScalarType(); 1074 SDValue NegOne = 1075 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1076 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1077 } 1078 1079 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1080 EVT EltVT = VT.getScalarType(); 1081 SDValue TrueValue; 1082 switch (TLI->getBooleanContents(VT)) { 1083 case TargetLowering::ZeroOrOneBooleanContent: 1084 case TargetLowering::UndefinedBooleanContent: 1085 TrueValue = getConstant(1, DL, VT); 1086 break; 1087 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1088 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1089 VT); 1090 break; 1091 } 1092 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1093 } 1094 1095 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1096 bool isT, bool isO) { 1097 EVT EltVT = VT.getScalarType(); 1098 assert((EltVT.getSizeInBits() >= 64 || 1099 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1100 "getConstant with a uint64_t value that doesn't fit in the type!"); 1101 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1102 } 1103 1104 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1105 bool isT, bool isO) { 1106 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1107 } 1108 1109 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1110 EVT VT, bool isT, bool isO) { 1111 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1112 1113 EVT EltVT = VT.getScalarType(); 1114 const ConstantInt *Elt = &Val; 1115 1116 // In some cases the vector type is legal but the element type is illegal and 1117 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1118 // inserted value (the type does not need to match the vector element type). 1119 // Any extra bits introduced will be truncated away. 1120 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1121 TargetLowering::TypePromoteInteger) { 1122 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1123 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1124 Elt = ConstantInt::get(*getContext(), NewVal); 1125 } 1126 // In other cases the element type is illegal and needs to be expanded, for 1127 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1128 // the value into n parts and use a vector type with n-times the elements. 1129 // Then bitcast to the type requested. 1130 // Legalizing constants too early makes the DAGCombiner's job harder so we 1131 // only legalize if the DAG tells us we must produce legal types. 1132 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1133 TLI->getTypeAction(*getContext(), EltVT) == 1134 TargetLowering::TypeExpandInteger) { 1135 const APInt &NewVal = Elt->getValue(); 1136 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1137 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1138 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1139 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1140 1141 // Check the temporary vector is the correct size. If this fails then 1142 // getTypeToTransformTo() probably returned a type whose size (in bits) 1143 // isn't a power-of-2 factor of the requested type size. 1144 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1145 1146 SmallVector<SDValue, 2> EltParts; 1147 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1148 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1149 .zextOrTrunc(ViaEltSizeInBits), DL, 1150 ViaEltVT, isT, isO)); 1151 } 1152 1153 // EltParts is currently in little endian order. If we actually want 1154 // big-endian order then reverse it now. 1155 if (getDataLayout().isBigEndian()) 1156 std::reverse(EltParts.begin(), EltParts.end()); 1157 1158 // The elements must be reversed when the element order is different 1159 // to the endianness of the elements (because the BITCAST is itself a 1160 // vector shuffle in this situation). However, we do not need any code to 1161 // perform this reversal because getConstant() is producing a vector 1162 // splat. 1163 // This situation occurs in MIPS MSA. 1164 1165 SmallVector<SDValue, 8> Ops; 1166 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1167 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1168 1169 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1170 NewSDValueDbgMsg(V, "Creating constant: ", this); 1171 return V; 1172 } 1173 1174 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1175 "APInt size does not match type size!"); 1176 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1177 FoldingSetNodeID ID; 1178 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1179 ID.AddPointer(Elt); 1180 ID.AddBoolean(isO); 1181 void *IP = nullptr; 1182 SDNode *N = nullptr; 1183 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1184 if (!VT.isVector()) 1185 return SDValue(N, 0); 1186 1187 if (!N) { 1188 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1189 CSEMap.InsertNode(N, IP); 1190 InsertNode(N); 1191 } 1192 1193 SDValue Result(N, 0); 1194 if (VT.isVector()) 1195 Result = getSplatBuildVector(VT, DL, Result); 1196 1197 NewSDValueDbgMsg(Result, "Creating constant: ", this); 1198 return Result; 1199 } 1200 1201 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1202 bool isTarget) { 1203 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1204 } 1205 1206 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1207 bool isTarget) { 1208 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1209 } 1210 1211 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1212 EVT VT, bool isTarget) { 1213 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1214 1215 EVT EltVT = VT.getScalarType(); 1216 1217 // Do the map lookup using the actual bit pattern for the floating point 1218 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1219 // we don't have issues with SNANs. 1220 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1221 FoldingSetNodeID ID; 1222 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1223 ID.AddPointer(&V); 1224 void *IP = nullptr; 1225 SDNode *N = nullptr; 1226 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1227 if (!VT.isVector()) 1228 return SDValue(N, 0); 1229 1230 if (!N) { 1231 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1232 CSEMap.InsertNode(N, IP); 1233 InsertNode(N); 1234 } 1235 1236 SDValue Result(N, 0); 1237 if (VT.isVector()) 1238 Result = getSplatBuildVector(VT, DL, Result); 1239 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1240 return Result; 1241 } 1242 1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1244 bool isTarget) { 1245 EVT EltVT = VT.getScalarType(); 1246 if (EltVT == MVT::f32) 1247 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1248 else if (EltVT == MVT::f64) 1249 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1250 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1251 EltVT == MVT::f16) { 1252 bool Ignored; 1253 APFloat APF = APFloat(Val); 1254 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1255 &Ignored); 1256 return getConstantFP(APF, DL, VT, isTarget); 1257 } else 1258 llvm_unreachable("Unsupported type in getConstantFP"); 1259 } 1260 1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1262 EVT VT, int64_t Offset, bool isTargetGA, 1263 unsigned char TargetFlags) { 1264 assert((TargetFlags == 0 || isTargetGA) && 1265 "Cannot set target flags on target-independent globals"); 1266 1267 // Truncate (with sign-extension) the offset value to the pointer size. 1268 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1269 if (BitWidth < 64) 1270 Offset = SignExtend64(Offset, BitWidth); 1271 1272 unsigned Opc; 1273 if (GV->isThreadLocal()) 1274 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1275 else 1276 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1277 1278 FoldingSetNodeID ID; 1279 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1280 ID.AddPointer(GV); 1281 ID.AddInteger(Offset); 1282 ID.AddInteger(TargetFlags); 1283 void *IP = nullptr; 1284 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1285 return SDValue(E, 0); 1286 1287 auto *N = newSDNode<GlobalAddressSDNode>( 1288 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1289 CSEMap.InsertNode(N, IP); 1290 InsertNode(N); 1291 return SDValue(N, 0); 1292 } 1293 1294 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1295 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1296 FoldingSetNodeID ID; 1297 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1298 ID.AddInteger(FI); 1299 void *IP = nullptr; 1300 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1301 return SDValue(E, 0); 1302 1303 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1304 CSEMap.InsertNode(N, IP); 1305 InsertNode(N); 1306 return SDValue(N, 0); 1307 } 1308 1309 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1310 unsigned char TargetFlags) { 1311 assert((TargetFlags == 0 || isTarget) && 1312 "Cannot set target flags on target-independent jump tables"); 1313 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1316 ID.AddInteger(JTI); 1317 ID.AddInteger(TargetFlags); 1318 void *IP = nullptr; 1319 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1320 return SDValue(E, 0); 1321 1322 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1323 CSEMap.InsertNode(N, IP); 1324 InsertNode(N); 1325 return SDValue(N, 0); 1326 } 1327 1328 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1329 unsigned Alignment, int Offset, 1330 bool isTarget, 1331 unsigned char TargetFlags) { 1332 assert((TargetFlags == 0 || isTarget) && 1333 "Cannot set target flags on target-independent globals"); 1334 if (Alignment == 0) 1335 Alignment = MF->getFunction()->optForSize() 1336 ? getDataLayout().getABITypeAlignment(C->getType()) 1337 : getDataLayout().getPrefTypeAlignment(C->getType()); 1338 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1339 FoldingSetNodeID ID; 1340 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1341 ID.AddInteger(Alignment); 1342 ID.AddInteger(Offset); 1343 ID.AddPointer(C); 1344 ID.AddInteger(TargetFlags); 1345 void *IP = nullptr; 1346 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1347 return SDValue(E, 0); 1348 1349 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1350 TargetFlags); 1351 CSEMap.InsertNode(N, IP); 1352 InsertNode(N); 1353 return SDValue(N, 0); 1354 } 1355 1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1357 unsigned Alignment, int Offset, 1358 bool isTarget, 1359 unsigned char TargetFlags) { 1360 assert((TargetFlags == 0 || isTarget) && 1361 "Cannot set target flags on target-independent globals"); 1362 if (Alignment == 0) 1363 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1364 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1365 FoldingSetNodeID ID; 1366 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1367 ID.AddInteger(Alignment); 1368 ID.AddInteger(Offset); 1369 C->addSelectionDAGCSEId(ID); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1376 TargetFlags); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 return SDValue(N, 0); 1380 } 1381 1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1383 unsigned char TargetFlags) { 1384 FoldingSetNodeID ID; 1385 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1386 ID.AddInteger(Index); 1387 ID.AddInteger(Offset); 1388 ID.AddInteger(TargetFlags); 1389 void *IP = nullptr; 1390 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1391 return SDValue(E, 0); 1392 1393 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1394 CSEMap.InsertNode(N, IP); 1395 InsertNode(N); 1396 return SDValue(N, 0); 1397 } 1398 1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1400 FoldingSetNodeID ID; 1401 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1402 ID.AddPointer(MBB); 1403 void *IP = nullptr; 1404 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1405 return SDValue(E, 0); 1406 1407 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1408 CSEMap.InsertNode(N, IP); 1409 InsertNode(N); 1410 return SDValue(N, 0); 1411 } 1412 1413 SDValue SelectionDAG::getValueType(EVT VT) { 1414 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1415 ValueTypeNodes.size()) 1416 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1417 1418 SDNode *&N = VT.isExtended() ? 1419 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1420 1421 if (N) return SDValue(N, 0); 1422 N = newSDNode<VTSDNode>(VT); 1423 InsertNode(N); 1424 return SDValue(N, 0); 1425 } 1426 1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1428 SDNode *&N = ExternalSymbols[Sym]; 1429 if (N) return SDValue(N, 0); 1430 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1431 InsertNode(N); 1432 return SDValue(N, 0); 1433 } 1434 1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1436 SDNode *&N = MCSymbols[Sym]; 1437 if (N) 1438 return SDValue(N, 0); 1439 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1440 InsertNode(N); 1441 return SDValue(N, 0); 1442 } 1443 1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1445 unsigned char TargetFlags) { 1446 SDNode *&N = 1447 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1448 TargetFlags)]; 1449 if (N) return SDValue(N, 0); 1450 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1451 InsertNode(N); 1452 return SDValue(N, 0); 1453 } 1454 1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1456 if ((unsigned)Cond >= CondCodeNodes.size()) 1457 CondCodeNodes.resize(Cond+1); 1458 1459 if (!CondCodeNodes[Cond]) { 1460 auto *N = newSDNode<CondCodeSDNode>(Cond); 1461 CondCodeNodes[Cond] = N; 1462 InsertNode(N); 1463 } 1464 1465 return SDValue(CondCodeNodes[Cond], 0); 1466 } 1467 1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1471 std::swap(N1, N2); 1472 ShuffleVectorSDNode::commuteMask(M); 1473 } 1474 1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1476 SDValue N2, ArrayRef<int> Mask) { 1477 assert(VT.getVectorNumElements() == Mask.size() && 1478 "Must have the same number of vector elements as mask elements!"); 1479 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1480 "Invalid VECTOR_SHUFFLE"); 1481 1482 // Canonicalize shuffle undef, undef -> undef 1483 if (N1.isUndef() && N2.isUndef()) 1484 return getUNDEF(VT); 1485 1486 // Validate that all indices in Mask are within the range of the elements 1487 // input to the shuffle. 1488 int NElts = Mask.size(); 1489 assert(llvm::all_of(Mask, 1490 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1491 "Index out of range"); 1492 1493 // Copy the mask so we can do any needed cleanup. 1494 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1495 1496 // Canonicalize shuffle v, v -> v, undef 1497 if (N1 == N2) { 1498 N2 = getUNDEF(VT); 1499 for (int i = 0; i != NElts; ++i) 1500 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1501 } 1502 1503 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1504 if (N1.isUndef()) 1505 commuteShuffle(N1, N2, MaskVec); 1506 1507 // If shuffling a splat, try to blend the splat instead. We do this here so 1508 // that even when this arises during lowering we don't have to re-handle it. 1509 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1510 BitVector UndefElements; 1511 SDValue Splat = BV->getSplatValue(&UndefElements); 1512 if (!Splat) 1513 return; 1514 1515 for (int i = 0; i < NElts; ++i) { 1516 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1517 continue; 1518 1519 // If this input comes from undef, mark it as such. 1520 if (UndefElements[MaskVec[i] - Offset]) { 1521 MaskVec[i] = -1; 1522 continue; 1523 } 1524 1525 // If we can blend a non-undef lane, use that instead. 1526 if (!UndefElements[i]) 1527 MaskVec[i] = i + Offset; 1528 } 1529 }; 1530 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1531 BlendSplat(N1BV, 0); 1532 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1533 BlendSplat(N2BV, NElts); 1534 1535 // Canonicalize all index into lhs, -> shuffle lhs, undef 1536 // Canonicalize all index into rhs, -> shuffle rhs, undef 1537 bool AllLHS = true, AllRHS = true; 1538 bool N2Undef = N2.isUndef(); 1539 for (int i = 0; i != NElts; ++i) { 1540 if (MaskVec[i] >= NElts) { 1541 if (N2Undef) 1542 MaskVec[i] = -1; 1543 else 1544 AllLHS = false; 1545 } else if (MaskVec[i] >= 0) { 1546 AllRHS = false; 1547 } 1548 } 1549 if (AllLHS && AllRHS) 1550 return getUNDEF(VT); 1551 if (AllLHS && !N2Undef) 1552 N2 = getUNDEF(VT); 1553 if (AllRHS) { 1554 N1 = getUNDEF(VT); 1555 commuteShuffle(N1, N2, MaskVec); 1556 } 1557 // Reset our undef status after accounting for the mask. 1558 N2Undef = N2.isUndef(); 1559 // Re-check whether both sides ended up undef. 1560 if (N1.isUndef() && N2Undef) 1561 return getUNDEF(VT); 1562 1563 // If Identity shuffle return that node. 1564 bool Identity = true, AllSame = true; 1565 for (int i = 0; i != NElts; ++i) { 1566 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1567 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1568 } 1569 if (Identity && NElts) 1570 return N1; 1571 1572 // Shuffling a constant splat doesn't change the result. 1573 if (N2Undef) { 1574 SDValue V = N1; 1575 1576 // Look through any bitcasts. We check that these don't change the number 1577 // (and size) of elements and just changes their types. 1578 while (V.getOpcode() == ISD::BITCAST) 1579 V = V->getOperand(0); 1580 1581 // A splat should always show up as a build vector node. 1582 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1583 BitVector UndefElements; 1584 SDValue Splat = BV->getSplatValue(&UndefElements); 1585 // If this is a splat of an undef, shuffling it is also undef. 1586 if (Splat && Splat.isUndef()) 1587 return getUNDEF(VT); 1588 1589 bool SameNumElts = 1590 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1591 1592 // We only have a splat which can skip shuffles if there is a splatted 1593 // value and no undef lanes rearranged by the shuffle. 1594 if (Splat && UndefElements.none()) { 1595 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1596 // number of elements match or the value splatted is a zero constant. 1597 if (SameNumElts) 1598 return N1; 1599 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1600 if (C->isNullValue()) 1601 return N1; 1602 } 1603 1604 // If the shuffle itself creates a splat, build the vector directly. 1605 if (AllSame && SameNumElts) { 1606 EVT BuildVT = BV->getValueType(0); 1607 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1608 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1609 1610 // We may have jumped through bitcasts, so the type of the 1611 // BUILD_VECTOR may not match the type of the shuffle. 1612 if (BuildVT != VT) 1613 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1614 return NewBV; 1615 } 1616 } 1617 } 1618 1619 FoldingSetNodeID ID; 1620 SDValue Ops[2] = { N1, N2 }; 1621 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1622 for (int i = 0; i != NElts; ++i) 1623 ID.AddInteger(MaskVec[i]); 1624 1625 void* IP = nullptr; 1626 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1627 return SDValue(E, 0); 1628 1629 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1630 // SDNode doesn't have access to it. This memory will be "leaked" when 1631 // the node is deallocated, but recovered when the NodeAllocator is released. 1632 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1633 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1634 1635 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1636 dl.getDebugLoc(), MaskAlloc); 1637 createOperands(N, Ops); 1638 1639 CSEMap.InsertNode(N, IP); 1640 InsertNode(N); 1641 SDValue V = SDValue(N, 0); 1642 NewSDValueDbgMsg(V, "Creating new node: ", this); 1643 return V; 1644 } 1645 1646 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1647 MVT VT = SV.getSimpleValueType(0); 1648 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1649 ShuffleVectorSDNode::commuteMask(MaskVec); 1650 1651 SDValue Op0 = SV.getOperand(0); 1652 SDValue Op1 = SV.getOperand(1); 1653 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1654 } 1655 1656 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1657 FoldingSetNodeID ID; 1658 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1659 ID.AddInteger(RegNo); 1660 void *IP = nullptr; 1661 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1662 return SDValue(E, 0); 1663 1664 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1665 CSEMap.InsertNode(N, IP); 1666 InsertNode(N); 1667 return SDValue(N, 0); 1668 } 1669 1670 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1671 FoldingSetNodeID ID; 1672 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1673 ID.AddPointer(RegMask); 1674 void *IP = nullptr; 1675 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1676 return SDValue(E, 0); 1677 1678 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1679 CSEMap.InsertNode(N, IP); 1680 InsertNode(N); 1681 return SDValue(N, 0); 1682 } 1683 1684 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1685 MCSymbol *Label) { 1686 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1687 } 1688 1689 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1690 SDValue Root, MCSymbol *Label) { 1691 FoldingSetNodeID ID; 1692 SDValue Ops[] = { Root }; 1693 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1694 ID.AddPointer(Label); 1695 void *IP = nullptr; 1696 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1697 return SDValue(E, 0); 1698 1699 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1700 createOperands(N, Ops); 1701 1702 CSEMap.InsertNode(N, IP); 1703 InsertNode(N); 1704 return SDValue(N, 0); 1705 } 1706 1707 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1708 int64_t Offset, 1709 bool isTarget, 1710 unsigned char TargetFlags) { 1711 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1712 1713 FoldingSetNodeID ID; 1714 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1715 ID.AddPointer(BA); 1716 ID.AddInteger(Offset); 1717 ID.AddInteger(TargetFlags); 1718 void *IP = nullptr; 1719 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1720 return SDValue(E, 0); 1721 1722 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1723 CSEMap.InsertNode(N, IP); 1724 InsertNode(N); 1725 return SDValue(N, 0); 1726 } 1727 1728 SDValue SelectionDAG::getSrcValue(const Value *V) { 1729 assert((!V || V->getType()->isPointerTy()) && 1730 "SrcValue is not a pointer?"); 1731 1732 FoldingSetNodeID ID; 1733 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1734 ID.AddPointer(V); 1735 1736 void *IP = nullptr; 1737 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1738 return SDValue(E, 0); 1739 1740 auto *N = newSDNode<SrcValueSDNode>(V); 1741 CSEMap.InsertNode(N, IP); 1742 InsertNode(N); 1743 return SDValue(N, 0); 1744 } 1745 1746 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1747 FoldingSetNodeID ID; 1748 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1749 ID.AddPointer(MD); 1750 1751 void *IP = nullptr; 1752 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1753 return SDValue(E, 0); 1754 1755 auto *N = newSDNode<MDNodeSDNode>(MD); 1756 CSEMap.InsertNode(N, IP); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1762 if (VT == V.getValueType()) 1763 return V; 1764 1765 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1766 } 1767 1768 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1769 unsigned SrcAS, unsigned DestAS) { 1770 SDValue Ops[] = {Ptr}; 1771 FoldingSetNodeID ID; 1772 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1773 ID.AddInteger(SrcAS); 1774 ID.AddInteger(DestAS); 1775 1776 void *IP = nullptr; 1777 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1778 return SDValue(E, 0); 1779 1780 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1781 VT, SrcAS, DestAS); 1782 createOperands(N, Ops); 1783 1784 CSEMap.InsertNode(N, IP); 1785 InsertNode(N); 1786 return SDValue(N, 0); 1787 } 1788 1789 /// getShiftAmountOperand - Return the specified value casted to 1790 /// the target's desired shift amount type. 1791 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1792 EVT OpTy = Op.getValueType(); 1793 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1794 if (OpTy == ShTy || OpTy.isVector()) return Op; 1795 1796 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1797 } 1798 1799 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1800 SDLoc dl(Node); 1801 const TargetLowering &TLI = getTargetLoweringInfo(); 1802 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1803 EVT VT = Node->getValueType(0); 1804 SDValue Tmp1 = Node->getOperand(0); 1805 SDValue Tmp2 = Node->getOperand(1); 1806 unsigned Align = Node->getConstantOperandVal(3); 1807 1808 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1809 Tmp2, MachinePointerInfo(V)); 1810 SDValue VAList = VAListLoad; 1811 1812 if (Align > TLI.getMinStackArgumentAlignment()) { 1813 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1814 1815 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1816 getConstant(Align - 1, dl, VAList.getValueType())); 1817 1818 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1819 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1820 } 1821 1822 // Increment the pointer, VAList, to the next vaarg 1823 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1824 getConstant(getDataLayout().getTypeAllocSize( 1825 VT.getTypeForEVT(*getContext())), 1826 dl, VAList.getValueType())); 1827 // Store the incremented VAList to the legalized pointer 1828 Tmp1 = 1829 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1830 // Load the actual argument out of the pointer VAList 1831 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1832 } 1833 1834 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1835 SDLoc dl(Node); 1836 const TargetLowering &TLI = getTargetLoweringInfo(); 1837 // This defaults to loading a pointer from the input and storing it to the 1838 // output, returning the chain. 1839 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1840 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1841 SDValue Tmp1 = 1842 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1843 Node->getOperand(2), MachinePointerInfo(VS)); 1844 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1845 MachinePointerInfo(VD)); 1846 } 1847 1848 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1849 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1850 unsigned ByteSize = VT.getStoreSize(); 1851 Type *Ty = VT.getTypeForEVT(*getContext()); 1852 unsigned StackAlign = 1853 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1854 1855 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1856 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1857 } 1858 1859 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1860 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1861 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1862 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1863 const DataLayout &DL = getDataLayout(); 1864 unsigned Align = 1865 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1866 1867 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1868 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1869 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1870 } 1871 1872 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1873 ISD::CondCode Cond, const SDLoc &dl) { 1874 // These setcc operations always fold. 1875 switch (Cond) { 1876 default: break; 1877 case ISD::SETFALSE: 1878 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1879 case ISD::SETTRUE: 1880 case ISD::SETTRUE2: { 1881 TargetLowering::BooleanContent Cnt = 1882 TLI->getBooleanContents(N1->getValueType(0)); 1883 return getConstant( 1884 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1885 VT); 1886 } 1887 1888 case ISD::SETOEQ: 1889 case ISD::SETOGT: 1890 case ISD::SETOGE: 1891 case ISD::SETOLT: 1892 case ISD::SETOLE: 1893 case ISD::SETONE: 1894 case ISD::SETO: 1895 case ISD::SETUO: 1896 case ISD::SETUEQ: 1897 case ISD::SETUNE: 1898 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1899 break; 1900 } 1901 1902 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1903 const APInt &C2 = N2C->getAPIntValue(); 1904 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1905 const APInt &C1 = N1C->getAPIntValue(); 1906 1907 switch (Cond) { 1908 default: llvm_unreachable("Unknown integer setcc!"); 1909 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1910 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1911 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1912 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1913 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1914 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1915 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1916 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1917 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1918 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1919 } 1920 } 1921 } 1922 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1923 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1924 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1925 switch (Cond) { 1926 default: break; 1927 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1928 return getUNDEF(VT); 1929 LLVM_FALLTHROUGH; 1930 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1931 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1932 return getUNDEF(VT); 1933 LLVM_FALLTHROUGH; 1934 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1935 R==APFloat::cmpLessThan, dl, VT); 1936 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1937 return getUNDEF(VT); 1938 LLVM_FALLTHROUGH; 1939 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1940 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1941 return getUNDEF(VT); 1942 LLVM_FALLTHROUGH; 1943 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1944 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1945 return getUNDEF(VT); 1946 LLVM_FALLTHROUGH; 1947 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1948 R==APFloat::cmpEqual, dl, VT); 1949 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1950 return getUNDEF(VT); 1951 LLVM_FALLTHROUGH; 1952 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1953 R==APFloat::cmpEqual, dl, VT); 1954 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1955 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1956 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1957 R==APFloat::cmpEqual, dl, VT); 1958 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1959 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1960 R==APFloat::cmpLessThan, dl, VT); 1961 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1962 R==APFloat::cmpUnordered, dl, VT); 1963 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1964 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1965 } 1966 } else { 1967 // Ensure that the constant occurs on the RHS. 1968 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1969 MVT CompVT = N1.getValueType().getSimpleVT(); 1970 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1971 return SDValue(); 1972 1973 return getSetCC(dl, VT, N2, N1, SwappedCond); 1974 } 1975 } 1976 1977 // Could not fold it. 1978 return SDValue(); 1979 } 1980 1981 /// See if the specified operand can be simplified with the knowledge that only 1982 /// the bits specified by Mask are used. 1983 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 1984 switch (V.getOpcode()) { 1985 default: 1986 break; 1987 case ISD::Constant: { 1988 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 1989 assert(CV && "Const value should be ConstSDNode."); 1990 const APInt &CVal = CV->getAPIntValue(); 1991 APInt NewVal = CVal & Mask; 1992 if (NewVal != CVal) 1993 return getConstant(NewVal, SDLoc(V), V.getValueType()); 1994 break; 1995 } 1996 case ISD::OR: 1997 case ISD::XOR: 1998 // If the LHS or RHS don't contribute bits to the or, drop them. 1999 if (MaskedValueIsZero(V.getOperand(0), Mask)) 2000 return V.getOperand(1); 2001 if (MaskedValueIsZero(V.getOperand(1), Mask)) 2002 return V.getOperand(0); 2003 break; 2004 case ISD::SRL: 2005 // Only look at single-use SRLs. 2006 if (!V.getNode()->hasOneUse()) 2007 break; 2008 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2009 // See if we can recursively simplify the LHS. 2010 unsigned Amt = RHSC->getZExtValue(); 2011 2012 // Watch out for shift count overflow though. 2013 if (Amt >= Mask.getBitWidth()) 2014 break; 2015 APInt NewMask = Mask << Amt; 2016 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2017 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2018 V.getOperand(1)); 2019 } 2020 break; 2021 case ISD::AND: { 2022 // X & -1 -> X (ignoring bits which aren't demanded). 2023 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); 2024 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) 2025 return V.getOperand(0); 2026 break; 2027 } 2028 case ISD::ANY_EXTEND: { 2029 SDValue Src = V.getOperand(0); 2030 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2031 // Being conservative here - only peek through if we only demand bits in the 2032 // non-extended source (even though the extended bits are technically undef). 2033 if (Mask.getActiveBits() > SrcBitWidth) 2034 break; 2035 APInt SrcMask = Mask.trunc(SrcBitWidth); 2036 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2037 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2038 break; 2039 } 2040 } 2041 return SDValue(); 2042 } 2043 2044 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2045 /// use this predicate to simplify operations downstream. 2046 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2047 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2048 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2049 } 2050 2051 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2052 /// this predicate to simplify operations downstream. Mask is known to be zero 2053 /// for bits that V cannot have. 2054 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2055 unsigned Depth) const { 2056 KnownBits Known; 2057 computeKnownBits(Op, Known, Depth); 2058 return Mask.isSubsetOf(Known.Zero); 2059 } 2060 2061 /// Helper function that checks to see if a node is a constant or a 2062 /// build vector of splat constants at least within the demanded elts. 2063 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N, 2064 const APInt &DemandedElts) { 2065 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 2066 return CN; 2067 if (N.getOpcode() != ISD::BUILD_VECTOR) 2068 return nullptr; 2069 EVT VT = N.getValueType(); 2070 ConstantSDNode *Cst = nullptr; 2071 unsigned NumElts = VT.getVectorNumElements(); 2072 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size"); 2073 for (unsigned i = 0; i != NumElts; ++i) { 2074 if (!DemandedElts[i]) 2075 continue; 2076 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i)); 2077 if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) || 2078 C->getValueType(0) != VT.getScalarType()) 2079 return nullptr; 2080 Cst = C; 2081 } 2082 return Cst; 2083 } 2084 2085 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2086 /// is less than the element bit-width of the shift node, return it. 2087 static const APInt *getValidShiftAmountConstant(SDValue V) { 2088 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2089 // Shifting more than the bitwidth is not valid. 2090 const APInt &ShAmt = SA->getAPIntValue(); 2091 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2092 return &ShAmt; 2093 } 2094 return nullptr; 2095 } 2096 2097 /// Determine which bits of Op are known to be either zero or one and return 2098 /// them in Known. For vectors, the known bits are those that are shared by 2099 /// every vector element. 2100 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2101 unsigned Depth) const { 2102 EVT VT = Op.getValueType(); 2103 APInt DemandedElts = VT.isVector() 2104 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2105 : APInt(1, 1); 2106 computeKnownBits(Op, Known, DemandedElts, Depth); 2107 } 2108 2109 /// Determine which bits of Op are known to be either zero or one and return 2110 /// them in Known. The DemandedElts argument allows us to only collect the known 2111 /// bits that are shared by the requested vector elements. 2112 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2113 const APInt &DemandedElts, 2114 unsigned Depth) const { 2115 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2116 2117 Known = KnownBits(BitWidth); // Don't know anything. 2118 2119 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2120 // We know all of the bits for a constant! 2121 Known.One = C->getAPIntValue(); 2122 Known.Zero = ~Known.One; 2123 return; 2124 } 2125 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2126 // We know all of the bits for a constant fp! 2127 Known.One = C->getValueAPF().bitcastToAPInt(); 2128 Known.Zero = ~Known.One; 2129 return; 2130 } 2131 2132 if (Depth == 6) 2133 return; // Limit search depth. 2134 2135 KnownBits Known2; 2136 unsigned NumElts = DemandedElts.getBitWidth(); 2137 2138 if (!DemandedElts) 2139 return; // No demanded elts, better to assume we don't know anything. 2140 2141 unsigned Opcode = Op.getOpcode(); 2142 switch (Opcode) { 2143 case ISD::BUILD_VECTOR: 2144 // Collect the known bits that are shared by every demanded vector element. 2145 assert(NumElts == Op.getValueType().getVectorNumElements() && 2146 "Unexpected vector size"); 2147 Known.Zero.setAllBits(); Known.One.setAllBits(); 2148 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2149 if (!DemandedElts[i]) 2150 continue; 2151 2152 SDValue SrcOp = Op.getOperand(i); 2153 computeKnownBits(SrcOp, Known2, Depth + 1); 2154 2155 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2156 if (SrcOp.getValueSizeInBits() != BitWidth) { 2157 assert(SrcOp.getValueSizeInBits() > BitWidth && 2158 "Expected BUILD_VECTOR implicit truncation"); 2159 Known2 = Known2.trunc(BitWidth); 2160 } 2161 2162 // Known bits are the values that are shared by every demanded element. 2163 Known.One &= Known2.One; 2164 Known.Zero &= Known2.Zero; 2165 2166 // If we don't know any bits, early out. 2167 if (Known.isUnknown()) 2168 break; 2169 } 2170 break; 2171 case ISD::VECTOR_SHUFFLE: { 2172 // Collect the known bits that are shared by every vector element referenced 2173 // by the shuffle. 2174 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2175 Known.Zero.setAllBits(); Known.One.setAllBits(); 2176 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2177 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2178 for (unsigned i = 0; i != NumElts; ++i) { 2179 if (!DemandedElts[i]) 2180 continue; 2181 2182 int M = SVN->getMaskElt(i); 2183 if (M < 0) { 2184 // For UNDEF elements, we don't know anything about the common state of 2185 // the shuffle result. 2186 Known.resetAll(); 2187 DemandedLHS.clearAllBits(); 2188 DemandedRHS.clearAllBits(); 2189 break; 2190 } 2191 2192 if ((unsigned)M < NumElts) 2193 DemandedLHS.setBit((unsigned)M % NumElts); 2194 else 2195 DemandedRHS.setBit((unsigned)M % NumElts); 2196 } 2197 // Known bits are the values that are shared by every demanded element. 2198 if (!!DemandedLHS) { 2199 SDValue LHS = Op.getOperand(0); 2200 computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1); 2201 Known.One &= Known2.One; 2202 Known.Zero &= Known2.Zero; 2203 } 2204 // If we don't know any bits, early out. 2205 if (Known.isUnknown()) 2206 break; 2207 if (!!DemandedRHS) { 2208 SDValue RHS = Op.getOperand(1); 2209 computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1); 2210 Known.One &= Known2.One; 2211 Known.Zero &= Known2.Zero; 2212 } 2213 break; 2214 } 2215 case ISD::CONCAT_VECTORS: { 2216 // Split DemandedElts and test each of the demanded subvectors. 2217 Known.Zero.setAllBits(); Known.One.setAllBits(); 2218 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2219 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2220 unsigned NumSubVectors = Op.getNumOperands(); 2221 for (unsigned i = 0; i != NumSubVectors; ++i) { 2222 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2223 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2224 if (!!DemandedSub) { 2225 SDValue Sub = Op.getOperand(i); 2226 computeKnownBits(Sub, Known2, DemandedSub, Depth + 1); 2227 Known.One &= Known2.One; 2228 Known.Zero &= Known2.Zero; 2229 } 2230 // If we don't know any bits, early out. 2231 if (Known.isUnknown()) 2232 break; 2233 } 2234 break; 2235 } 2236 case ISD::INSERT_SUBVECTOR: { 2237 // If we know the element index, demand any elements from the subvector and 2238 // the remainder from the src its inserted into, otherwise demand them all. 2239 SDValue Src = Op.getOperand(0); 2240 SDValue Sub = Op.getOperand(1); 2241 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2242 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2243 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2244 Known.One.setAllBits(); 2245 Known.Zero.setAllBits(); 2246 uint64_t Idx = SubIdx->getZExtValue(); 2247 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2248 if (!!DemandedSubElts) { 2249 computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1); 2250 if (Known.isUnknown()) 2251 break; // early-out. 2252 } 2253 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2254 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2255 if (!!DemandedSrcElts) { 2256 computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1); 2257 Known.One &= Known2.One; 2258 Known.Zero &= Known2.Zero; 2259 } 2260 } else { 2261 computeKnownBits(Sub, Known, Depth + 1); 2262 if (Known.isUnknown()) 2263 break; // early-out. 2264 computeKnownBits(Src, Known2, Depth + 1); 2265 Known.One &= Known2.One; 2266 Known.Zero &= Known2.Zero; 2267 } 2268 break; 2269 } 2270 case ISD::EXTRACT_SUBVECTOR: { 2271 // If we know the element index, just demand that subvector elements, 2272 // otherwise demand them all. 2273 SDValue Src = Op.getOperand(0); 2274 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2275 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2276 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2277 // Offset the demanded elts by the subvector index. 2278 uint64_t Idx = SubIdx->getZExtValue(); 2279 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2280 computeKnownBits(Src, Known, DemandedSrc, Depth + 1); 2281 } else { 2282 computeKnownBits(Src, Known, Depth + 1); 2283 } 2284 break; 2285 } 2286 case ISD::BITCAST: { 2287 SDValue N0 = Op.getOperand(0); 2288 EVT SubVT = N0.getValueType(); 2289 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2290 2291 // Ignore bitcasts from unsupported types. 2292 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2293 break; 2294 2295 // Fast handling of 'identity' bitcasts. 2296 if (BitWidth == SubBitWidth) { 2297 computeKnownBits(N0, Known, DemandedElts, Depth + 1); 2298 break; 2299 } 2300 2301 // Support big-endian targets when it becomes useful. 2302 bool IsLE = getDataLayout().isLittleEndian(); 2303 if (!IsLE) 2304 break; 2305 2306 // Bitcast 'small element' vector to 'large element' scalar/vector. 2307 if ((BitWidth % SubBitWidth) == 0) { 2308 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2309 2310 // Collect known bits for the (larger) output by collecting the known 2311 // bits from each set of sub elements and shift these into place. 2312 // We need to separately call computeKnownBits for each set of 2313 // sub elements as the knownbits for each is likely to be different. 2314 unsigned SubScale = BitWidth / SubBitWidth; 2315 APInt SubDemandedElts(NumElts * SubScale, 0); 2316 for (unsigned i = 0; i != NumElts; ++i) 2317 if (DemandedElts[i]) 2318 SubDemandedElts.setBit(i * SubScale); 2319 2320 for (unsigned i = 0; i != SubScale; ++i) { 2321 computeKnownBits(N0, Known2, SubDemandedElts.shl(i), 2322 Depth + 1); 2323 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i); 2324 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i); 2325 } 2326 } 2327 2328 // Bitcast 'large element' scalar/vector to 'small element' vector. 2329 if ((SubBitWidth % BitWidth) == 0) { 2330 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2331 2332 // Collect known bits for the (smaller) output by collecting the known 2333 // bits from the overlapping larger input elements and extracting the 2334 // sub sections we actually care about. 2335 unsigned SubScale = SubBitWidth / BitWidth; 2336 APInt SubDemandedElts(NumElts / SubScale, 0); 2337 for (unsigned i = 0; i != NumElts; ++i) 2338 if (DemandedElts[i]) 2339 SubDemandedElts.setBit(i / SubScale); 2340 2341 computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1); 2342 2343 Known.Zero.setAllBits(); Known.One.setAllBits(); 2344 for (unsigned i = 0; i != NumElts; ++i) 2345 if (DemandedElts[i]) { 2346 unsigned Offset = (i % SubScale) * BitWidth; 2347 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2348 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2349 // If we don't know any bits, early out. 2350 if (Known.isUnknown()) 2351 break; 2352 } 2353 } 2354 break; 2355 } 2356 case ISD::AND: 2357 // If either the LHS or the RHS are Zero, the result is zero. 2358 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2359 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2360 2361 // Output known-1 bits are only known if set in both the LHS & RHS. 2362 Known.One &= Known2.One; 2363 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2364 Known.Zero |= Known2.Zero; 2365 break; 2366 case ISD::OR: 2367 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2368 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2369 2370 // Output known-0 bits are only known if clear in both the LHS & RHS. 2371 Known.Zero &= Known2.Zero; 2372 // Output known-1 are known to be set if set in either the LHS | RHS. 2373 Known.One |= Known2.One; 2374 break; 2375 case ISD::XOR: { 2376 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2377 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2378 2379 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2380 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2381 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2382 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2383 Known.Zero = KnownZeroOut; 2384 break; 2385 } 2386 case ISD::MUL: { 2387 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2388 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2389 2390 // If low bits are zero in either operand, output low known-0 bits. 2391 // Also compute a conservative estimate for high known-0 bits. 2392 // More trickiness is possible, but this is sufficient for the 2393 // interesting case of alignment computation. 2394 unsigned TrailZ = Known.countMinTrailingZeros() + 2395 Known2.countMinTrailingZeros(); 2396 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2397 Known2.countMinLeadingZeros(), 2398 BitWidth) - BitWidth; 2399 2400 Known.resetAll(); 2401 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2402 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2403 break; 2404 } 2405 case ISD::UDIV: { 2406 // For the purposes of computing leading zeros we can conservatively 2407 // treat a udiv as a logical right shift by the power of 2 known to 2408 // be less than the denominator. 2409 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2410 unsigned LeadZ = Known2.countMinLeadingZeros(); 2411 2412 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2413 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2414 if (RHSMaxLeadingZeros != BitWidth) 2415 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2416 2417 Known.Zero.setHighBits(LeadZ); 2418 break; 2419 } 2420 case ISD::SELECT: 2421 case ISD::VSELECT: 2422 computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1); 2423 // If we don't know any bits, early out. 2424 if (Known.isUnknown()) 2425 break; 2426 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1); 2427 2428 // Only known if known in both the LHS and RHS. 2429 Known.One &= Known2.One; 2430 Known.Zero &= Known2.Zero; 2431 break; 2432 case ISD::SELECT_CC: 2433 computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1); 2434 // If we don't know any bits, early out. 2435 if (Known.isUnknown()) 2436 break; 2437 computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1); 2438 2439 // Only known if known in both the LHS and RHS. 2440 Known.One &= Known2.One; 2441 Known.Zero &= Known2.Zero; 2442 break; 2443 case ISD::SMULO: 2444 case ISD::UMULO: 2445 if (Op.getResNo() != 1) 2446 break; 2447 // The boolean result conforms to getBooleanContents. 2448 // If we know the result of a setcc has the top bits zero, use this info. 2449 // We know that we have an integer-based boolean since these operations 2450 // are only available for integer. 2451 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2452 TargetLowering::ZeroOrOneBooleanContent && 2453 BitWidth > 1) 2454 Known.Zero.setBitsFrom(1); 2455 break; 2456 case ISD::SETCC: 2457 // If we know the result of a setcc has the top bits zero, use this info. 2458 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2459 TargetLowering::ZeroOrOneBooleanContent && 2460 BitWidth > 1) 2461 Known.Zero.setBitsFrom(1); 2462 break; 2463 case ISD::SHL: 2464 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2465 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2466 unsigned Shift = ShAmt->getZExtValue(); 2467 Known.Zero <<= Shift; 2468 Known.One <<= Shift; 2469 // Low bits are known zero. 2470 Known.Zero.setLowBits(Shift); 2471 } 2472 break; 2473 case ISD::SRL: 2474 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2475 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2476 unsigned Shift = ShAmt->getZExtValue(); 2477 Known.Zero.lshrInPlace(Shift); 2478 Known.One.lshrInPlace(Shift); 2479 // High bits are known zero. 2480 Known.Zero.setHighBits(Shift); 2481 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2482 // If the shift amount is a vector of constants see if we can bound 2483 // the number of upper zero bits. 2484 unsigned ShiftAmountMin = BitWidth; 2485 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2486 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2487 const APInt &ShAmt = C->getAPIntValue(); 2488 if (ShAmt.ult(BitWidth)) { 2489 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2490 ShAmt.getZExtValue()); 2491 continue; 2492 } 2493 } 2494 // Don't know anything. 2495 ShiftAmountMin = 0; 2496 break; 2497 } 2498 2499 Known.Zero.setHighBits(ShiftAmountMin); 2500 } 2501 break; 2502 case ISD::SRA: 2503 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2504 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2505 unsigned Shift = ShAmt->getZExtValue(); 2506 // Sign extend known zero/one bit (else is unknown). 2507 Known.Zero.ashrInPlace(Shift); 2508 Known.One.ashrInPlace(Shift); 2509 } 2510 break; 2511 case ISD::SIGN_EXTEND_INREG: { 2512 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2513 unsigned EBits = EVT.getScalarSizeInBits(); 2514 2515 // Sign extension. Compute the demanded bits in the result that are not 2516 // present in the input. 2517 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2518 2519 APInt InSignMask = APInt::getSignMask(EBits); 2520 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2521 2522 // If the sign extended bits are demanded, we know that the sign 2523 // bit is demanded. 2524 InSignMask = InSignMask.zext(BitWidth); 2525 if (NewBits.getBoolValue()) 2526 InputDemandedBits |= InSignMask; 2527 2528 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2529 Known.One &= InputDemandedBits; 2530 Known.Zero &= InputDemandedBits; 2531 2532 // If the sign bit of the input is known set or clear, then we know the 2533 // top bits of the result. 2534 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2535 Known.Zero |= NewBits; 2536 Known.One &= ~NewBits; 2537 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2538 Known.One |= NewBits; 2539 Known.Zero &= ~NewBits; 2540 } else { // Input sign bit unknown 2541 Known.Zero &= ~NewBits; 2542 Known.One &= ~NewBits; 2543 } 2544 break; 2545 } 2546 case ISD::CTTZ: 2547 case ISD::CTTZ_ZERO_UNDEF: { 2548 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2549 // If we have a known 1, its position is our upper bound. 2550 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2551 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2552 Known.Zero.setBitsFrom(LowBits); 2553 break; 2554 } 2555 case ISD::CTLZ: 2556 case ISD::CTLZ_ZERO_UNDEF: { 2557 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2558 // If we have a known 1, its position is our upper bound. 2559 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2560 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2561 Known.Zero.setBitsFrom(LowBits); 2562 break; 2563 } 2564 case ISD::CTPOP: { 2565 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2566 // If we know some of the bits are zero, they can't be one. 2567 unsigned PossibleOnes = Known2.countMaxPopulation(); 2568 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2569 break; 2570 } 2571 case ISD::LOAD: { 2572 LoadSDNode *LD = cast<LoadSDNode>(Op); 2573 // If this is a ZEXTLoad and we are looking at the loaded value. 2574 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2575 EVT VT = LD->getMemoryVT(); 2576 unsigned MemBits = VT.getScalarSizeInBits(); 2577 Known.Zero.setBitsFrom(MemBits); 2578 } else if (const MDNode *Ranges = LD->getRanges()) { 2579 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2580 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2581 } 2582 break; 2583 } 2584 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2585 EVT InVT = Op.getOperand(0).getValueType(); 2586 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 2587 computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1); 2588 Known = Known.zext(BitWidth); 2589 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2590 break; 2591 } 2592 case ISD::ZERO_EXTEND: { 2593 EVT InVT = Op.getOperand(0).getValueType(); 2594 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2595 Known = Known.zext(BitWidth); 2596 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2597 break; 2598 } 2599 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2600 case ISD::SIGN_EXTEND: { 2601 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2602 // If the sign bit is known to be zero or one, then sext will extend 2603 // it to the top bits, else it will just zext. 2604 Known = Known.sext(BitWidth); 2605 break; 2606 } 2607 case ISD::ANY_EXTEND: { 2608 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2609 Known = Known.zext(BitWidth); 2610 break; 2611 } 2612 case ISD::TRUNCATE: { 2613 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2614 Known = Known.trunc(BitWidth); 2615 break; 2616 } 2617 case ISD::AssertZext: { 2618 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2619 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2620 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2621 Known.Zero |= (~InMask); 2622 Known.One &= (~Known.Zero); 2623 break; 2624 } 2625 case ISD::FGETSIGN: 2626 // All bits are zero except the low bit. 2627 Known.Zero.setBitsFrom(1); 2628 break; 2629 case ISD::USUBO: 2630 case ISD::SSUBO: 2631 if (Op.getResNo() == 1) { 2632 // If we know the result of a setcc has the top bits zero, use this info. 2633 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2634 TargetLowering::ZeroOrOneBooleanContent && 2635 BitWidth > 1) 2636 Known.Zero.setBitsFrom(1); 2637 break; 2638 } 2639 LLVM_FALLTHROUGH; 2640 case ISD::SUB: 2641 case ISD::SUBC: { 2642 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2643 // We know that the top bits of C-X are clear if X contains less bits 2644 // than C (i.e. no wrap-around can happen). For example, 20-X is 2645 // positive if we can prove that X is >= 0 and < 16. 2646 if (CLHS->getAPIntValue().isNonNegative()) { 2647 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2648 // NLZ can't be BitWidth with no sign bit 2649 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2650 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2651 Depth + 1); 2652 2653 // If all of the MaskV bits are known to be zero, then we know the 2654 // output top bits are zero, because we now know that the output is 2655 // from [0-C]. 2656 if ((Known2.Zero & MaskV) == MaskV) { 2657 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2658 // Top bits known zero. 2659 Known.Zero.setHighBits(NLZ2); 2660 } 2661 } 2662 } 2663 2664 // If low bits are know to be zero in both operands, then we know they are 2665 // going to be 0 in the result. Both addition and complement operations 2666 // preserve the low zero bits. 2667 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2668 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2669 if (KnownZeroLow == 0) 2670 break; 2671 2672 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2673 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2674 Known.Zero.setLowBits(KnownZeroLow); 2675 break; 2676 } 2677 case ISD::UADDO: 2678 case ISD::SADDO: 2679 case ISD::ADDCARRY: 2680 if (Op.getResNo() == 1) { 2681 // If we know the result of a setcc has the top bits zero, use this info. 2682 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2683 TargetLowering::ZeroOrOneBooleanContent && 2684 BitWidth > 1) 2685 Known.Zero.setBitsFrom(1); 2686 break; 2687 } 2688 LLVM_FALLTHROUGH; 2689 case ISD::ADD: 2690 case ISD::ADDC: 2691 case ISD::ADDE: { 2692 // Output known-0 bits are known if clear or set in both the low clear bits 2693 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2694 // low 3 bits clear. 2695 // Output known-0 bits are also known if the top bits of each input are 2696 // known to be clear. For example, if one input has the top 10 bits clear 2697 // and the other has the top 8 bits clear, we know the top 7 bits of the 2698 // output must be clear. 2699 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2700 unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); 2701 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2702 2703 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2704 Depth + 1); 2705 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); 2706 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2707 2708 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { 2709 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only 2710 // use this information if we know (at least) that the low two bits are 2711 // clear. We then return to the caller that the low bit is unknown but 2712 // that other bits are known zero. 2713 if (KnownZeroLow >= 2) 2714 Known.Zero.setBits(1, KnownZeroLow); 2715 break; 2716 } 2717 2718 Known.Zero.setLowBits(KnownZeroLow); 2719 if (KnownZeroHigh > 1) 2720 Known.Zero.setHighBits(KnownZeroHigh - 1); 2721 break; 2722 } 2723 case ISD::SREM: 2724 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2725 const APInt &RA = Rem->getAPIntValue().abs(); 2726 if (RA.isPowerOf2()) { 2727 APInt LowBits = RA - 1; 2728 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2729 2730 // The low bits of the first operand are unchanged by the srem. 2731 Known.Zero = Known2.Zero & LowBits; 2732 Known.One = Known2.One & LowBits; 2733 2734 // If the first operand is non-negative or has all low bits zero, then 2735 // the upper bits are all zero. 2736 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2737 Known.Zero |= ~LowBits; 2738 2739 // If the first operand is negative and not all low bits are zero, then 2740 // the upper bits are all one. 2741 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2742 Known.One |= ~LowBits; 2743 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2744 } 2745 } 2746 break; 2747 case ISD::UREM: { 2748 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2749 const APInt &RA = Rem->getAPIntValue(); 2750 if (RA.isPowerOf2()) { 2751 APInt LowBits = (RA - 1); 2752 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2753 2754 // The upper bits are all zero, the lower ones are unchanged. 2755 Known.Zero = Known2.Zero | ~LowBits; 2756 Known.One = Known2.One & LowBits; 2757 break; 2758 } 2759 } 2760 2761 // Since the result is less than or equal to either operand, any leading 2762 // zero bits in either operand must also exist in the result. 2763 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2764 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2765 2766 uint32_t Leaders = 2767 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2768 Known.resetAll(); 2769 Known.Zero.setHighBits(Leaders); 2770 break; 2771 } 2772 case ISD::EXTRACT_ELEMENT: { 2773 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2774 const unsigned Index = Op.getConstantOperandVal(1); 2775 const unsigned BitWidth = Op.getValueSizeInBits(); 2776 2777 // Remove low part of known bits mask 2778 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 2779 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 2780 2781 // Remove high part of known bit mask 2782 Known = Known.trunc(BitWidth); 2783 break; 2784 } 2785 case ISD::EXTRACT_VECTOR_ELT: { 2786 SDValue InVec = Op.getOperand(0); 2787 SDValue EltNo = Op.getOperand(1); 2788 EVT VecVT = InVec.getValueType(); 2789 const unsigned BitWidth = Op.getValueSizeInBits(); 2790 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2791 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2792 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2793 // anything about the extended bits. 2794 if (BitWidth > EltBitWidth) 2795 Known = Known.trunc(EltBitWidth); 2796 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2797 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2798 // If we know the element index, just demand that vector element. 2799 unsigned Idx = ConstEltNo->getZExtValue(); 2800 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2801 computeKnownBits(InVec, Known, DemandedElt, Depth + 1); 2802 } else { 2803 // Unknown element index, so ignore DemandedElts and demand them all. 2804 computeKnownBits(InVec, Known, Depth + 1); 2805 } 2806 if (BitWidth > EltBitWidth) 2807 Known = Known.zext(BitWidth); 2808 break; 2809 } 2810 case ISD::INSERT_VECTOR_ELT: { 2811 SDValue InVec = Op.getOperand(0); 2812 SDValue InVal = Op.getOperand(1); 2813 SDValue EltNo = Op.getOperand(2); 2814 2815 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2816 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2817 // If we know the element index, split the demand between the 2818 // source vector and the inserted element. 2819 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 2820 unsigned EltIdx = CEltNo->getZExtValue(); 2821 2822 // If we demand the inserted element then add its common known bits. 2823 if (DemandedElts[EltIdx]) { 2824 computeKnownBits(InVal, Known2, Depth + 1); 2825 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2826 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2827 } 2828 2829 // If we demand the source vector then add its common known bits, ensuring 2830 // that we don't demand the inserted element. 2831 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2832 if (!!VectorElts) { 2833 computeKnownBits(InVec, Known2, VectorElts, Depth + 1); 2834 Known.One &= Known2.One; 2835 Known.Zero &= Known2.Zero; 2836 } 2837 } else { 2838 // Unknown element index, so ignore DemandedElts and demand them all. 2839 computeKnownBits(InVec, Known, Depth + 1); 2840 computeKnownBits(InVal, Known2, Depth + 1); 2841 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2842 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2843 } 2844 break; 2845 } 2846 case ISD::BITREVERSE: { 2847 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2848 Known.Zero = Known2.Zero.reverseBits(); 2849 Known.One = Known2.One.reverseBits(); 2850 break; 2851 } 2852 case ISD::BSWAP: { 2853 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2854 Known.Zero = Known2.Zero.byteSwap(); 2855 Known.One = Known2.One.byteSwap(); 2856 break; 2857 } 2858 case ISD::ABS: { 2859 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2860 2861 // If the source's MSB is zero then we know the rest of the bits already. 2862 if (Known2.isNonNegative()) { 2863 Known.Zero = Known2.Zero; 2864 Known.One = Known2.One; 2865 break; 2866 } 2867 2868 // We only know that the absolute values's MSB will be zero iff there is 2869 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 2870 Known2.One.clearSignBit(); 2871 if (Known2.One.getBoolValue()) { 2872 Known.Zero = APInt::getSignMask(BitWidth); 2873 break; 2874 } 2875 break; 2876 } 2877 case ISD::UMIN: { 2878 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2879 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2880 2881 // UMIN - we know that the result will have the maximum of the 2882 // known zero leading bits of the inputs. 2883 unsigned LeadZero = Known.countMinLeadingZeros(); 2884 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 2885 2886 Known.Zero &= Known2.Zero; 2887 Known.One &= Known2.One; 2888 Known.Zero.setHighBits(LeadZero); 2889 break; 2890 } 2891 case ISD::UMAX: { 2892 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2893 Depth + 1); 2894 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2895 2896 // UMAX - we know that the result will have the maximum of the 2897 // known one leading bits of the inputs. 2898 unsigned LeadOne = Known.countMinLeadingOnes(); 2899 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 2900 2901 Known.Zero &= Known2.Zero; 2902 Known.One &= Known2.One; 2903 Known.One.setHighBits(LeadOne); 2904 break; 2905 } 2906 case ISD::SMIN: 2907 case ISD::SMAX: { 2908 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2909 Depth + 1); 2910 // If we don't know any bits, early out. 2911 if (Known.isUnknown()) 2912 break; 2913 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2914 Known.Zero &= Known2.Zero; 2915 Known.One &= Known2.One; 2916 break; 2917 } 2918 case ISD::FrameIndex: 2919 case ISD::TargetFrameIndex: 2920 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 2921 break; 2922 2923 default: 2924 if (Opcode < ISD::BUILTIN_OP_END) 2925 break; 2926 LLVM_FALLTHROUGH; 2927 case ISD::INTRINSIC_WO_CHAIN: 2928 case ISD::INTRINSIC_W_CHAIN: 2929 case ISD::INTRINSIC_VOID: 2930 // Allow the target to implement this method for its nodes. 2931 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 2932 break; 2933 } 2934 2935 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2936 } 2937 2938 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 2939 SDValue N1) const { 2940 // X + 0 never overflow 2941 if (isNullConstant(N1)) 2942 return OFK_Never; 2943 2944 KnownBits N1Known; 2945 computeKnownBits(N1, N1Known); 2946 if (N1Known.Zero.getBoolValue()) { 2947 KnownBits N0Known; 2948 computeKnownBits(N0, N0Known); 2949 2950 bool overflow; 2951 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 2952 if (!overflow) 2953 return OFK_Never; 2954 } 2955 2956 // mulhi + 1 never overflow 2957 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 2958 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 2959 return OFK_Never; 2960 2961 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 2962 KnownBits N0Known; 2963 computeKnownBits(N0, N0Known); 2964 2965 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 2966 return OFK_Never; 2967 } 2968 2969 return OFK_Sometime; 2970 } 2971 2972 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2973 EVT OpVT = Val.getValueType(); 2974 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2975 2976 // Is the constant a known power of 2? 2977 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2978 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2979 2980 // A left-shift of a constant one will have exactly one bit set because 2981 // shifting the bit off the end is undefined. 2982 if (Val.getOpcode() == ISD::SHL) { 2983 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2984 if (C && C->getAPIntValue() == 1) 2985 return true; 2986 } 2987 2988 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2989 // one bit set. 2990 if (Val.getOpcode() == ISD::SRL) { 2991 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2992 if (C && C->getAPIntValue().isSignMask()) 2993 return true; 2994 } 2995 2996 // Are all operands of a build vector constant powers of two? 2997 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2998 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 2999 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3000 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3001 return false; 3002 })) 3003 return true; 3004 3005 // More could be done here, though the above checks are enough 3006 // to handle some common cases. 3007 3008 // Fall back to computeKnownBits to catch other known cases. 3009 KnownBits Known; 3010 computeKnownBits(Val, Known); 3011 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3012 } 3013 3014 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3015 EVT VT = Op.getValueType(); 3016 APInt DemandedElts = VT.isVector() 3017 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3018 : APInt(1, 1); 3019 return ComputeNumSignBits(Op, DemandedElts, Depth); 3020 } 3021 3022 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3023 unsigned Depth) const { 3024 EVT VT = Op.getValueType(); 3025 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3026 unsigned VTBits = VT.getScalarSizeInBits(); 3027 unsigned NumElts = DemandedElts.getBitWidth(); 3028 unsigned Tmp, Tmp2; 3029 unsigned FirstAnswer = 1; 3030 3031 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3032 const APInt &Val = C->getAPIntValue(); 3033 return Val.getNumSignBits(); 3034 } 3035 3036 if (Depth == 6) 3037 return 1; // Limit search depth. 3038 3039 if (!DemandedElts) 3040 return 1; // No demanded elts, better to assume we don't know anything. 3041 3042 switch (Op.getOpcode()) { 3043 default: break; 3044 case ISD::AssertSext: 3045 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3046 return VTBits-Tmp+1; 3047 case ISD::AssertZext: 3048 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3049 return VTBits-Tmp; 3050 3051 case ISD::BUILD_VECTOR: 3052 Tmp = VTBits; 3053 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3054 if (!DemandedElts[i]) 3055 continue; 3056 3057 SDValue SrcOp = Op.getOperand(i); 3058 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3059 3060 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3061 if (SrcOp.getValueSizeInBits() != VTBits) { 3062 assert(SrcOp.getValueSizeInBits() > VTBits && 3063 "Expected BUILD_VECTOR implicit truncation"); 3064 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3065 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3066 } 3067 Tmp = std::min(Tmp, Tmp2); 3068 } 3069 return Tmp; 3070 3071 case ISD::VECTOR_SHUFFLE: { 3072 // Collect the minimum number of sign bits that are shared by every vector 3073 // element referenced by the shuffle. 3074 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3075 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3076 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3077 for (unsigned i = 0; i != NumElts; ++i) { 3078 int M = SVN->getMaskElt(i); 3079 if (!DemandedElts[i]) 3080 continue; 3081 // For UNDEF elements, we don't know anything about the common state of 3082 // the shuffle result. 3083 if (M < 0) 3084 return 1; 3085 if ((unsigned)M < NumElts) 3086 DemandedLHS.setBit((unsigned)M % NumElts); 3087 else 3088 DemandedRHS.setBit((unsigned)M % NumElts); 3089 } 3090 Tmp = std::numeric_limits<unsigned>::max(); 3091 if (!!DemandedLHS) 3092 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3093 if (!!DemandedRHS) { 3094 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3095 Tmp = std::min(Tmp, Tmp2); 3096 } 3097 // If we don't know anything, early out and try computeKnownBits fall-back. 3098 if (Tmp == 1) 3099 break; 3100 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3101 return Tmp; 3102 } 3103 3104 case ISD::BITCAST: { 3105 SDValue N0 = Op.getOperand(0); 3106 EVT SrcVT = N0.getValueType(); 3107 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3108 3109 // Ignore bitcasts from unsupported types.. 3110 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3111 break; 3112 3113 // Fast handling of 'identity' bitcasts. 3114 if (VTBits == SrcBits) 3115 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3116 3117 // Bitcast 'large element' scalar/vector to 'small element' vector. 3118 // TODO: Handle cases other than 'sign splat' when we have a use case. 3119 // Requires handling of DemandedElts and Endianness. 3120 if ((SrcBits % VTBits) == 0) { 3121 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3122 Tmp = ComputeNumSignBits(N0, Depth + 1); 3123 if (Tmp == SrcBits) 3124 return VTBits; 3125 } 3126 break; 3127 } 3128 3129 case ISD::SIGN_EXTEND: 3130 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3131 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3132 case ISD::SIGN_EXTEND_INREG: 3133 // Max of the input and what this extends. 3134 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3135 Tmp = VTBits-Tmp+1; 3136 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3137 return std::max(Tmp, Tmp2); 3138 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3139 SDValue Src = Op.getOperand(0); 3140 EVT SrcVT = Src.getValueType(); 3141 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 3142 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3143 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3144 } 3145 3146 case ISD::SRA: 3147 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3148 // SRA X, C -> adds C sign bits. 3149 if (ConstantSDNode *C = 3150 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3151 APInt ShiftVal = C->getAPIntValue(); 3152 ShiftVal += Tmp; 3153 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3154 } 3155 return Tmp; 3156 case ISD::SHL: 3157 if (ConstantSDNode *C = 3158 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3159 // shl destroys sign bits. 3160 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3161 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3162 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3163 return Tmp - C->getZExtValue(); 3164 } 3165 break; 3166 case ISD::AND: 3167 case ISD::OR: 3168 case ISD::XOR: // NOT is handled here. 3169 // Logical binary ops preserve the number of sign bits at the worst. 3170 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3171 if (Tmp != 1) { 3172 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3173 FirstAnswer = std::min(Tmp, Tmp2); 3174 // We computed what we know about the sign bits as our first 3175 // answer. Now proceed to the generic code that uses 3176 // computeKnownBits, and pick whichever answer is better. 3177 } 3178 break; 3179 3180 case ISD::SELECT: 3181 case ISD::VSELECT: 3182 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3183 if (Tmp == 1) return 1; // Early out. 3184 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3185 return std::min(Tmp, Tmp2); 3186 case ISD::SELECT_CC: 3187 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3188 if (Tmp == 1) return 1; // Early out. 3189 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3190 return std::min(Tmp, Tmp2); 3191 3192 case ISD::SMIN: 3193 case ISD::SMAX: 3194 case ISD::UMIN: 3195 case ISD::UMAX: 3196 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3197 if (Tmp == 1) 3198 return 1; // Early out. 3199 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3200 return std::min(Tmp, Tmp2); 3201 case ISD::SADDO: 3202 case ISD::UADDO: 3203 case ISD::SSUBO: 3204 case ISD::USUBO: 3205 case ISD::SMULO: 3206 case ISD::UMULO: 3207 if (Op.getResNo() != 1) 3208 break; 3209 // The boolean result conforms to getBooleanContents. Fall through. 3210 // If setcc returns 0/-1, all bits are sign bits. 3211 // We know that we have an integer-based boolean since these operations 3212 // are only available for integer. 3213 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3214 TargetLowering::ZeroOrNegativeOneBooleanContent) 3215 return VTBits; 3216 break; 3217 case ISD::SETCC: 3218 // If setcc returns 0/-1, all bits are sign bits. 3219 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3220 TargetLowering::ZeroOrNegativeOneBooleanContent) 3221 return VTBits; 3222 break; 3223 case ISD::ROTL: 3224 case ISD::ROTR: 3225 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3226 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3227 3228 // Handle rotate right by N like a rotate left by 32-N. 3229 if (Op.getOpcode() == ISD::ROTR) 3230 RotAmt = (VTBits - RotAmt) % VTBits; 3231 3232 // If we aren't rotating out all of the known-in sign bits, return the 3233 // number that are left. This handles rotl(sext(x), 1) for example. 3234 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3235 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3236 } 3237 break; 3238 case ISD::ADD: 3239 case ISD::ADDC: 3240 // Add can have at most one carry bit. Thus we know that the output 3241 // is, at worst, one more bit than the inputs. 3242 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3243 if (Tmp == 1) return 1; // Early out. 3244 3245 // Special case decrementing a value (ADD X, -1): 3246 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3247 if (CRHS->isAllOnesValue()) { 3248 KnownBits Known; 3249 computeKnownBits(Op.getOperand(0), Known, Depth+1); 3250 3251 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3252 // sign bits set. 3253 if ((Known.Zero | 1).isAllOnesValue()) 3254 return VTBits; 3255 3256 // If we are subtracting one from a positive number, there is no carry 3257 // out of the result. 3258 if (Known.isNonNegative()) 3259 return Tmp; 3260 } 3261 3262 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3263 if (Tmp2 == 1) return 1; 3264 return std::min(Tmp, Tmp2)-1; 3265 3266 case ISD::SUB: 3267 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3268 if (Tmp2 == 1) return 1; 3269 3270 // Handle NEG. 3271 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3272 if (CLHS->isNullValue()) { 3273 KnownBits Known; 3274 computeKnownBits(Op.getOperand(1), Known, Depth+1); 3275 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3276 // sign bits set. 3277 if ((Known.Zero | 1).isAllOnesValue()) 3278 return VTBits; 3279 3280 // If the input is known to be positive (the sign bit is known clear), 3281 // the output of the NEG has the same number of sign bits as the input. 3282 if (Known.isNonNegative()) 3283 return Tmp2; 3284 3285 // Otherwise, we treat this like a SUB. 3286 } 3287 3288 // Sub can have at most one carry bit. Thus we know that the output 3289 // is, at worst, one more bit than the inputs. 3290 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3291 if (Tmp == 1) return 1; // Early out. 3292 return std::min(Tmp, Tmp2)-1; 3293 case ISD::TRUNCATE: { 3294 // Check if the sign bits of source go down as far as the truncated value. 3295 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3296 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3297 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3298 return NumSrcSignBits - (NumSrcBits - VTBits); 3299 break; 3300 } 3301 case ISD::EXTRACT_ELEMENT: { 3302 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3303 const int BitWidth = Op.getValueSizeInBits(); 3304 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3305 3306 // Get reverse index (starting from 1), Op1 value indexes elements from 3307 // little end. Sign starts at big end. 3308 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3309 3310 // If the sign portion ends in our element the subtraction gives correct 3311 // result. Otherwise it gives either negative or > bitwidth result 3312 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3313 } 3314 case ISD::INSERT_VECTOR_ELT: { 3315 SDValue InVec = Op.getOperand(0); 3316 SDValue InVal = Op.getOperand(1); 3317 SDValue EltNo = Op.getOperand(2); 3318 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3319 3320 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3321 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3322 // If we know the element index, split the demand between the 3323 // source vector and the inserted element. 3324 unsigned EltIdx = CEltNo->getZExtValue(); 3325 3326 // If we demand the inserted element then get its sign bits. 3327 Tmp = std::numeric_limits<unsigned>::max(); 3328 if (DemandedElts[EltIdx]) { 3329 // TODO - handle implicit truncation of inserted elements. 3330 if (InVal.getScalarValueSizeInBits() != VTBits) 3331 break; 3332 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3333 } 3334 3335 // If we demand the source vector then get its sign bits, and determine 3336 // the minimum. 3337 APInt VectorElts = DemandedElts; 3338 VectorElts.clearBit(EltIdx); 3339 if (!!VectorElts) { 3340 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3341 Tmp = std::min(Tmp, Tmp2); 3342 } 3343 } else { 3344 // Unknown element index, so ignore DemandedElts and demand them all. 3345 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3346 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3347 Tmp = std::min(Tmp, Tmp2); 3348 } 3349 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3350 return Tmp; 3351 } 3352 case ISD::EXTRACT_VECTOR_ELT: { 3353 SDValue InVec = Op.getOperand(0); 3354 SDValue EltNo = Op.getOperand(1); 3355 EVT VecVT = InVec.getValueType(); 3356 const unsigned BitWidth = Op.getValueSizeInBits(); 3357 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3358 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3359 3360 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3361 // anything about sign bits. But if the sizes match we can derive knowledge 3362 // about sign bits from the vector operand. 3363 if (BitWidth != EltBitWidth) 3364 break; 3365 3366 // If we know the element index, just demand that vector element, else for 3367 // an unknown element index, ignore DemandedElts and demand them all. 3368 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3369 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3370 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3371 DemandedSrcElts = 3372 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3373 3374 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3375 } 3376 case ISD::EXTRACT_SUBVECTOR: { 3377 // If we know the element index, just demand that subvector elements, 3378 // otherwise demand them all. 3379 SDValue Src = Op.getOperand(0); 3380 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3381 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3382 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3383 // Offset the demanded elts by the subvector index. 3384 uint64_t Idx = SubIdx->getZExtValue(); 3385 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 3386 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3387 } 3388 return ComputeNumSignBits(Src, Depth + 1); 3389 } 3390 case ISD::CONCAT_VECTORS: 3391 // Determine the minimum number of sign bits across all demanded 3392 // elts of the input vectors. Early out if the result is already 1. 3393 Tmp = std::numeric_limits<unsigned>::max(); 3394 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3395 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3396 unsigned NumSubVectors = Op.getNumOperands(); 3397 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3398 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3399 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3400 if (!DemandedSub) 3401 continue; 3402 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3403 Tmp = std::min(Tmp, Tmp2); 3404 } 3405 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3406 return Tmp; 3407 } 3408 3409 // If we are looking at the loaded value of the SDNode. 3410 if (Op.getResNo() == 0) { 3411 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3412 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3413 unsigned ExtType = LD->getExtensionType(); 3414 switch (ExtType) { 3415 default: break; 3416 case ISD::SEXTLOAD: // '17' bits known 3417 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3418 return VTBits-Tmp+1; 3419 case ISD::ZEXTLOAD: // '16' bits known 3420 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3421 return VTBits-Tmp; 3422 } 3423 } 3424 } 3425 3426 // Allow the target to implement this method for its nodes. 3427 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3428 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3429 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3430 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3431 unsigned NumBits = 3432 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3433 if (NumBits > 1) 3434 FirstAnswer = std::max(FirstAnswer, NumBits); 3435 } 3436 3437 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3438 // use this information. 3439 KnownBits Known; 3440 computeKnownBits(Op, Known, DemandedElts, Depth); 3441 3442 APInt Mask; 3443 if (Known.isNonNegative()) { // sign bit is 0 3444 Mask = Known.Zero; 3445 } else if (Known.isNegative()) { // sign bit is 1; 3446 Mask = Known.One; 3447 } else { 3448 // Nothing known. 3449 return FirstAnswer; 3450 } 3451 3452 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3453 // the number of identical bits in the top of the input value. 3454 Mask = ~Mask; 3455 Mask <<= Mask.getBitWidth()-VTBits; 3456 // Return # leading zeros. We use 'min' here in case Val was zero before 3457 // shifting. We don't want to return '64' as for an i32 "0". 3458 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3459 } 3460 3461 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3462 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3463 !isa<ConstantSDNode>(Op.getOperand(1))) 3464 return false; 3465 3466 if (Op.getOpcode() == ISD::OR && 3467 !MaskedValueIsZero(Op.getOperand(0), 3468 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3469 return false; 3470 3471 return true; 3472 } 3473 3474 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3475 // If we're told that NaNs won't happen, assume they won't. 3476 if (getTarget().Options.NoNaNsFPMath) 3477 return true; 3478 3479 if (Op->getFlags().hasNoNaNs()) 3480 return true; 3481 3482 // If the value is a constant, we can obviously see if it is a NaN or not. 3483 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3484 return !C->getValueAPF().isNaN(); 3485 3486 // TODO: Recognize more cases here. 3487 3488 return false; 3489 } 3490 3491 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3492 // If the value is a constant, we can obviously see if it is a zero or not. 3493 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3494 return !C->isZero(); 3495 3496 // TODO: Recognize more cases here. 3497 switch (Op.getOpcode()) { 3498 default: break; 3499 case ISD::OR: 3500 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3501 return !C->isNullValue(); 3502 break; 3503 } 3504 3505 return false; 3506 } 3507 3508 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3509 // Check the obvious case. 3510 if (A == B) return true; 3511 3512 // For for negative and positive zero. 3513 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3514 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3515 if (CA->isZero() && CB->isZero()) return true; 3516 3517 // Otherwise they may not be equal. 3518 return false; 3519 } 3520 3521 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3522 assert(A.getValueType() == B.getValueType() && 3523 "Values must have the same type"); 3524 KnownBits AKnown, BKnown; 3525 computeKnownBits(A, AKnown); 3526 computeKnownBits(B, BKnown); 3527 return (AKnown.Zero | BKnown.Zero).isAllOnesValue(); 3528 } 3529 3530 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3531 ArrayRef<SDValue> Ops, 3532 SelectionDAG &DAG) { 3533 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3534 assert(llvm::all_of(Ops, 3535 [Ops](SDValue Op) { 3536 return Ops[0].getValueType() == Op.getValueType(); 3537 }) && 3538 "Concatenation of vectors with inconsistent value types!"); 3539 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3540 VT.getVectorNumElements() && 3541 "Incorrect element count in vector concatenation!"); 3542 3543 if (Ops.size() == 1) 3544 return Ops[0]; 3545 3546 // Concat of UNDEFs is UNDEF. 3547 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3548 return DAG.getUNDEF(VT); 3549 3550 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3551 // simplified to one big BUILD_VECTOR. 3552 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3553 EVT SVT = VT.getScalarType(); 3554 SmallVector<SDValue, 16> Elts; 3555 for (SDValue Op : Ops) { 3556 EVT OpVT = Op.getValueType(); 3557 if (Op.isUndef()) 3558 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3559 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3560 Elts.append(Op->op_begin(), Op->op_end()); 3561 else 3562 return SDValue(); 3563 } 3564 3565 // BUILD_VECTOR requires all inputs to be of the same type, find the 3566 // maximum type and extend them all. 3567 for (SDValue Op : Elts) 3568 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3569 3570 if (SVT.bitsGT(VT.getScalarType())) 3571 for (SDValue &Op : Elts) 3572 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3573 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3574 : DAG.getSExtOrTrunc(Op, DL, SVT); 3575 3576 SDValue V = DAG.getBuildVector(VT, DL, Elts); 3577 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 3578 return V; 3579 } 3580 3581 /// Gets or creates the specified node. 3582 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3583 FoldingSetNodeID ID; 3584 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3585 void *IP = nullptr; 3586 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3587 return SDValue(E, 0); 3588 3589 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3590 getVTList(VT)); 3591 CSEMap.InsertNode(N, IP); 3592 3593 InsertNode(N); 3594 SDValue V = SDValue(N, 0); 3595 NewSDValueDbgMsg(V, "Creating new node: ", this); 3596 return V; 3597 } 3598 3599 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3600 SDValue Operand, const SDNodeFlags Flags) { 3601 // Constant fold unary operations with an integer constant operand. Even 3602 // opaque constant will be folded, because the folding of unary operations 3603 // doesn't create new constants with different values. Nevertheless, the 3604 // opaque flag is preserved during folding to prevent future folding with 3605 // other constants. 3606 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3607 const APInt &Val = C->getAPIntValue(); 3608 switch (Opcode) { 3609 default: break; 3610 case ISD::SIGN_EXTEND: 3611 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3612 C->isTargetOpcode(), C->isOpaque()); 3613 case ISD::ANY_EXTEND: 3614 case ISD::ZERO_EXTEND: 3615 case ISD::TRUNCATE: 3616 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3617 C->isTargetOpcode(), C->isOpaque()); 3618 case ISD::UINT_TO_FP: 3619 case ISD::SINT_TO_FP: { 3620 APFloat apf(EVTToAPFloatSemantics(VT), 3621 APInt::getNullValue(VT.getSizeInBits())); 3622 (void)apf.convertFromAPInt(Val, 3623 Opcode==ISD::SINT_TO_FP, 3624 APFloat::rmNearestTiesToEven); 3625 return getConstantFP(apf, DL, VT); 3626 } 3627 case ISD::BITCAST: 3628 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3629 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3630 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3631 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3632 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3633 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3634 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3635 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3636 break; 3637 case ISD::ABS: 3638 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3639 C->isOpaque()); 3640 case ISD::BITREVERSE: 3641 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3642 C->isOpaque()); 3643 case ISD::BSWAP: 3644 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3645 C->isOpaque()); 3646 case ISD::CTPOP: 3647 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3648 C->isOpaque()); 3649 case ISD::CTLZ: 3650 case ISD::CTLZ_ZERO_UNDEF: 3651 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3652 C->isOpaque()); 3653 case ISD::CTTZ: 3654 case ISD::CTTZ_ZERO_UNDEF: 3655 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3656 C->isOpaque()); 3657 case ISD::FP16_TO_FP: { 3658 bool Ignored; 3659 APFloat FPV(APFloat::IEEEhalf(), 3660 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3661 3662 // This can return overflow, underflow, or inexact; we don't care. 3663 // FIXME need to be more flexible about rounding mode. 3664 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3665 APFloat::rmNearestTiesToEven, &Ignored); 3666 return getConstantFP(FPV, DL, VT); 3667 } 3668 } 3669 } 3670 3671 // Constant fold unary operations with a floating point constant operand. 3672 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3673 APFloat V = C->getValueAPF(); // make copy 3674 switch (Opcode) { 3675 case ISD::FNEG: 3676 V.changeSign(); 3677 return getConstantFP(V, DL, VT); 3678 case ISD::FABS: 3679 V.clearSign(); 3680 return getConstantFP(V, DL, VT); 3681 case ISD::FCEIL: { 3682 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3683 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3684 return getConstantFP(V, DL, VT); 3685 break; 3686 } 3687 case ISD::FTRUNC: { 3688 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3689 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3690 return getConstantFP(V, DL, VT); 3691 break; 3692 } 3693 case ISD::FFLOOR: { 3694 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3695 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3696 return getConstantFP(V, DL, VT); 3697 break; 3698 } 3699 case ISD::FP_EXTEND: { 3700 bool ignored; 3701 // This can return overflow, underflow, or inexact; we don't care. 3702 // FIXME need to be more flexible about rounding mode. 3703 (void)V.convert(EVTToAPFloatSemantics(VT), 3704 APFloat::rmNearestTiesToEven, &ignored); 3705 return getConstantFP(V, DL, VT); 3706 } 3707 case ISD::FP_TO_SINT: 3708 case ISD::FP_TO_UINT: { 3709 bool ignored; 3710 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 3711 // FIXME need to be more flexible about rounding mode. 3712 APFloat::opStatus s = 3713 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 3714 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 3715 break; 3716 return getConstant(IntVal, DL, VT); 3717 } 3718 case ISD::BITCAST: 3719 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3720 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3721 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3722 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3723 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3724 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3725 break; 3726 case ISD::FP_TO_FP16: { 3727 bool Ignored; 3728 // This can return overflow, underflow, or inexact; we don't care. 3729 // FIXME need to be more flexible about rounding mode. 3730 (void)V.convert(APFloat::IEEEhalf(), 3731 APFloat::rmNearestTiesToEven, &Ignored); 3732 return getConstant(V.bitcastToAPInt(), DL, VT); 3733 } 3734 } 3735 } 3736 3737 // Constant fold unary operations with a vector integer or float operand. 3738 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3739 if (BV->isConstant()) { 3740 switch (Opcode) { 3741 default: 3742 // FIXME: Entirely reasonable to perform folding of other unary 3743 // operations here as the need arises. 3744 break; 3745 case ISD::FNEG: 3746 case ISD::FABS: 3747 case ISD::FCEIL: 3748 case ISD::FTRUNC: 3749 case ISD::FFLOOR: 3750 case ISD::FP_EXTEND: 3751 case ISD::FP_TO_SINT: 3752 case ISD::FP_TO_UINT: 3753 case ISD::TRUNCATE: 3754 case ISD::UINT_TO_FP: 3755 case ISD::SINT_TO_FP: 3756 case ISD::ABS: 3757 case ISD::BITREVERSE: 3758 case ISD::BSWAP: 3759 case ISD::CTLZ: 3760 case ISD::CTLZ_ZERO_UNDEF: 3761 case ISD::CTTZ: 3762 case ISD::CTTZ_ZERO_UNDEF: 3763 case ISD::CTPOP: { 3764 SDValue Ops = { Operand }; 3765 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3766 return Fold; 3767 } 3768 } 3769 } 3770 } 3771 3772 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3773 switch (Opcode) { 3774 case ISD::TokenFactor: 3775 case ISD::MERGE_VALUES: 3776 case ISD::CONCAT_VECTORS: 3777 return Operand; // Factor, merge or concat of one node? No need. 3778 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3779 case ISD::FP_EXTEND: 3780 assert(VT.isFloatingPoint() && 3781 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3782 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3783 assert((!VT.isVector() || 3784 VT.getVectorNumElements() == 3785 Operand.getValueType().getVectorNumElements()) && 3786 "Vector element count mismatch!"); 3787 assert(Operand.getValueType().bitsLT(VT) && 3788 "Invalid fpext node, dst < src!"); 3789 if (Operand.isUndef()) 3790 return getUNDEF(VT); 3791 break; 3792 case ISD::SIGN_EXTEND: 3793 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3794 "Invalid SIGN_EXTEND!"); 3795 if (Operand.getValueType() == VT) return Operand; // noop extension 3796 assert((!VT.isVector() || 3797 VT.getVectorNumElements() == 3798 Operand.getValueType().getVectorNumElements()) && 3799 "Vector element count mismatch!"); 3800 assert(Operand.getValueType().bitsLT(VT) && 3801 "Invalid sext node, dst < src!"); 3802 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3803 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3804 else if (OpOpcode == ISD::UNDEF) 3805 // sext(undef) = 0, because the top bits will all be the same. 3806 return getConstant(0, DL, VT); 3807 break; 3808 case ISD::ZERO_EXTEND: 3809 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3810 "Invalid ZERO_EXTEND!"); 3811 if (Operand.getValueType() == VT) return Operand; // noop extension 3812 assert((!VT.isVector() || 3813 VT.getVectorNumElements() == 3814 Operand.getValueType().getVectorNumElements()) && 3815 "Vector element count mismatch!"); 3816 assert(Operand.getValueType().bitsLT(VT) && 3817 "Invalid zext node, dst < src!"); 3818 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3819 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 3820 else if (OpOpcode == ISD::UNDEF) 3821 // zext(undef) = 0, because the top bits will be zero. 3822 return getConstant(0, DL, VT); 3823 break; 3824 case ISD::ANY_EXTEND: 3825 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3826 "Invalid ANY_EXTEND!"); 3827 if (Operand.getValueType() == VT) return Operand; // noop extension 3828 assert((!VT.isVector() || 3829 VT.getVectorNumElements() == 3830 Operand.getValueType().getVectorNumElements()) && 3831 "Vector element count mismatch!"); 3832 assert(Operand.getValueType().bitsLT(VT) && 3833 "Invalid anyext node, dst < src!"); 3834 3835 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3836 OpOpcode == ISD::ANY_EXTEND) 3837 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3838 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3839 else if (OpOpcode == ISD::UNDEF) 3840 return getUNDEF(VT); 3841 3842 // (ext (trunx x)) -> x 3843 if (OpOpcode == ISD::TRUNCATE) { 3844 SDValue OpOp = Operand.getOperand(0); 3845 if (OpOp.getValueType() == VT) 3846 return OpOp; 3847 } 3848 break; 3849 case ISD::TRUNCATE: 3850 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3851 "Invalid TRUNCATE!"); 3852 if (Operand.getValueType() == VT) return Operand; // noop truncate 3853 assert((!VT.isVector() || 3854 VT.getVectorNumElements() == 3855 Operand.getValueType().getVectorNumElements()) && 3856 "Vector element count mismatch!"); 3857 assert(Operand.getValueType().bitsGT(VT) && 3858 "Invalid truncate node, src < dst!"); 3859 if (OpOpcode == ISD::TRUNCATE) 3860 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3861 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3862 OpOpcode == ISD::ANY_EXTEND) { 3863 // If the source is smaller than the dest, we still need an extend. 3864 if (Operand.getOperand(0).getValueType().getScalarType() 3865 .bitsLT(VT.getScalarType())) 3866 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3867 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 3868 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3869 return Operand.getOperand(0); 3870 } 3871 if (OpOpcode == ISD::UNDEF) 3872 return getUNDEF(VT); 3873 break; 3874 case ISD::ABS: 3875 assert(VT.isInteger() && VT == Operand.getValueType() && 3876 "Invalid ABS!"); 3877 if (OpOpcode == ISD::UNDEF) 3878 return getUNDEF(VT); 3879 break; 3880 case ISD::BSWAP: 3881 assert(VT.isInteger() && VT == Operand.getValueType() && 3882 "Invalid BSWAP!"); 3883 assert((VT.getScalarSizeInBits() % 16 == 0) && 3884 "BSWAP types must be a multiple of 16 bits!"); 3885 if (OpOpcode == ISD::UNDEF) 3886 return getUNDEF(VT); 3887 break; 3888 case ISD::BITREVERSE: 3889 assert(VT.isInteger() && VT == Operand.getValueType() && 3890 "Invalid BITREVERSE!"); 3891 if (OpOpcode == ISD::UNDEF) 3892 return getUNDEF(VT); 3893 break; 3894 case ISD::BITCAST: 3895 // Basic sanity checking. 3896 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3897 "Cannot BITCAST between types of different sizes!"); 3898 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3899 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3900 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3901 if (OpOpcode == ISD::UNDEF) 3902 return getUNDEF(VT); 3903 break; 3904 case ISD::SCALAR_TO_VECTOR: 3905 assert(VT.isVector() && !Operand.getValueType().isVector() && 3906 (VT.getVectorElementType() == Operand.getValueType() || 3907 (VT.getVectorElementType().isInteger() && 3908 Operand.getValueType().isInteger() && 3909 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3910 "Illegal SCALAR_TO_VECTOR node!"); 3911 if (OpOpcode == ISD::UNDEF) 3912 return getUNDEF(VT); 3913 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3914 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3915 isa<ConstantSDNode>(Operand.getOperand(1)) && 3916 Operand.getConstantOperandVal(1) == 0 && 3917 Operand.getOperand(0).getValueType() == VT) 3918 return Operand.getOperand(0); 3919 break; 3920 case ISD::FNEG: 3921 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3922 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3923 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3924 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 3925 Operand.getOperand(0), Operand.getNode()->getFlags()); 3926 if (OpOpcode == ISD::FNEG) // --X -> X 3927 return Operand.getOperand(0); 3928 break; 3929 case ISD::FABS: 3930 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3931 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 3932 break; 3933 } 3934 3935 SDNode *N; 3936 SDVTList VTs = getVTList(VT); 3937 SDValue Ops[] = {Operand}; 3938 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3939 FoldingSetNodeID ID; 3940 AddNodeIDNode(ID, Opcode, VTs, Ops); 3941 void *IP = nullptr; 3942 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3943 E->intersectFlagsWith(Flags); 3944 return SDValue(E, 0); 3945 } 3946 3947 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3948 N->setFlags(Flags); 3949 createOperands(N, Ops); 3950 CSEMap.InsertNode(N, IP); 3951 } else { 3952 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3953 createOperands(N, Ops); 3954 } 3955 3956 InsertNode(N); 3957 SDValue V = SDValue(N, 0); 3958 NewSDValueDbgMsg(V, "Creating new node: ", this); 3959 return V; 3960 } 3961 3962 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3963 const APInt &C2) { 3964 switch (Opcode) { 3965 case ISD::ADD: return std::make_pair(C1 + C2, true); 3966 case ISD::SUB: return std::make_pair(C1 - C2, true); 3967 case ISD::MUL: return std::make_pair(C1 * C2, true); 3968 case ISD::AND: return std::make_pair(C1 & C2, true); 3969 case ISD::OR: return std::make_pair(C1 | C2, true); 3970 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3971 case ISD::SHL: return std::make_pair(C1 << C2, true); 3972 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3973 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3974 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3975 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3976 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3977 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3978 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3979 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3980 case ISD::UDIV: 3981 if (!C2.getBoolValue()) 3982 break; 3983 return std::make_pair(C1.udiv(C2), true); 3984 case ISD::UREM: 3985 if (!C2.getBoolValue()) 3986 break; 3987 return std::make_pair(C1.urem(C2), true); 3988 case ISD::SDIV: 3989 if (!C2.getBoolValue()) 3990 break; 3991 return std::make_pair(C1.sdiv(C2), true); 3992 case ISD::SREM: 3993 if (!C2.getBoolValue()) 3994 break; 3995 return std::make_pair(C1.srem(C2), true); 3996 } 3997 return std::make_pair(APInt(1, 0), false); 3998 } 3999 4000 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4001 EVT VT, const ConstantSDNode *Cst1, 4002 const ConstantSDNode *Cst2) { 4003 if (Cst1->isOpaque() || Cst2->isOpaque()) 4004 return SDValue(); 4005 4006 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 4007 Cst2->getAPIntValue()); 4008 if (!Folded.second) 4009 return SDValue(); 4010 return getConstant(Folded.first, DL, VT); 4011 } 4012 4013 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4014 const GlobalAddressSDNode *GA, 4015 const SDNode *N2) { 4016 if (GA->getOpcode() != ISD::GlobalAddress) 4017 return SDValue(); 4018 if (!TLI->isOffsetFoldingLegal(GA)) 4019 return SDValue(); 4020 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 4021 if (!Cst2) 4022 return SDValue(); 4023 int64_t Offset = Cst2->getSExtValue(); 4024 switch (Opcode) { 4025 case ISD::ADD: break; 4026 case ISD::SUB: Offset = -uint64_t(Offset); break; 4027 default: return SDValue(); 4028 } 4029 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 4030 GA->getOffset() + uint64_t(Offset)); 4031 } 4032 4033 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4034 switch (Opcode) { 4035 case ISD::SDIV: 4036 case ISD::UDIV: 4037 case ISD::SREM: 4038 case ISD::UREM: { 4039 // If a divisor is zero/undef or any element of a divisor vector is 4040 // zero/undef, the whole op is undef. 4041 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4042 SDValue Divisor = Ops[1]; 4043 if (Divisor.isUndef() || isNullConstant(Divisor)) 4044 return true; 4045 4046 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4047 llvm::any_of(Divisor->op_values(), 4048 [](SDValue V) { return V.isUndef() || 4049 isNullConstant(V); }); 4050 // TODO: Handle signed overflow. 4051 } 4052 // TODO: Handle oversized shifts. 4053 default: 4054 return false; 4055 } 4056 } 4057 4058 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4059 EVT VT, SDNode *Cst1, 4060 SDNode *Cst2) { 4061 // If the opcode is a target-specific ISD node, there's nothing we can 4062 // do here and the operand rules may not line up with the below, so 4063 // bail early. 4064 if (Opcode >= ISD::BUILTIN_OP_END) 4065 return SDValue(); 4066 4067 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 4068 return getUNDEF(VT); 4069 4070 // Handle the case of two scalars. 4071 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 4072 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 4073 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 4074 assert((!Folded || !VT.isVector()) && 4075 "Can't fold vectors ops with scalar operands"); 4076 return Folded; 4077 } 4078 } 4079 4080 // fold (add Sym, c) -> Sym+c 4081 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 4082 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 4083 if (TLI->isCommutativeBinOp(Opcode)) 4084 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 4085 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 4086 4087 // For vectors extract each constant element into Inputs so we can constant 4088 // fold them individually. 4089 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 4090 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 4091 if (!BV1 || !BV2) 4092 return SDValue(); 4093 4094 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 4095 4096 EVT SVT = VT.getScalarType(); 4097 EVT LegalSVT = SVT; 4098 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4099 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4100 if (LegalSVT.bitsLT(SVT)) 4101 return SDValue(); 4102 } 4103 SmallVector<SDValue, 4> Outputs; 4104 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 4105 SDValue V1 = BV1->getOperand(I); 4106 SDValue V2 = BV2->getOperand(I); 4107 4108 if (SVT.isInteger()) { 4109 if (V1->getValueType(0).bitsGT(SVT)) 4110 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4111 if (V2->getValueType(0).bitsGT(SVT)) 4112 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4113 } 4114 4115 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4116 return SDValue(); 4117 4118 // Fold one vector element. 4119 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4120 if (LegalSVT != SVT) 4121 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4122 4123 // Scalar folding only succeeded if the result is a constant or UNDEF. 4124 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4125 ScalarResult.getOpcode() != ISD::ConstantFP) 4126 return SDValue(); 4127 Outputs.push_back(ScalarResult); 4128 } 4129 4130 assert(VT.getVectorNumElements() == Outputs.size() && 4131 "Vector size mismatch!"); 4132 4133 // We may have a vector type but a scalar result. Create a splat. 4134 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4135 4136 // Build a big vector out of the scalar elements we generated. 4137 return getBuildVector(VT, SDLoc(), Outputs); 4138 } 4139 4140 // TODO: Merge with FoldConstantArithmetic 4141 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4142 const SDLoc &DL, EVT VT, 4143 ArrayRef<SDValue> Ops, 4144 const SDNodeFlags Flags) { 4145 // If the opcode is a target-specific ISD node, there's nothing we can 4146 // do here and the operand rules may not line up with the below, so 4147 // bail early. 4148 if (Opcode >= ISD::BUILTIN_OP_END) 4149 return SDValue(); 4150 4151 if (isUndef(Opcode, Ops)) 4152 return getUNDEF(VT); 4153 4154 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4155 if (!VT.isVector()) 4156 return SDValue(); 4157 4158 unsigned NumElts = VT.getVectorNumElements(); 4159 4160 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4161 return !Op.getValueType().isVector() || 4162 Op.getValueType().getVectorNumElements() == NumElts; 4163 }; 4164 4165 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4166 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4167 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4168 (BV && BV->isConstant()); 4169 }; 4170 4171 // All operands must be vector types with the same number of elements as 4172 // the result type and must be either UNDEF or a build vector of constant 4173 // or UNDEF scalars. 4174 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4175 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4176 return SDValue(); 4177 4178 // If we are comparing vectors, then the result needs to be a i1 boolean 4179 // that is then sign-extended back to the legal result type. 4180 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4181 4182 // Find legal integer scalar type for constant promotion and 4183 // ensure that its scalar size is at least as large as source. 4184 EVT LegalSVT = VT.getScalarType(); 4185 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4186 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4187 if (LegalSVT.bitsLT(VT.getScalarType())) 4188 return SDValue(); 4189 } 4190 4191 // Constant fold each scalar lane separately. 4192 SmallVector<SDValue, 4> ScalarResults; 4193 for (unsigned i = 0; i != NumElts; i++) { 4194 SmallVector<SDValue, 4> ScalarOps; 4195 for (SDValue Op : Ops) { 4196 EVT InSVT = Op.getValueType().getScalarType(); 4197 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4198 if (!InBV) { 4199 // We've checked that this is UNDEF or a constant of some kind. 4200 if (Op.isUndef()) 4201 ScalarOps.push_back(getUNDEF(InSVT)); 4202 else 4203 ScalarOps.push_back(Op); 4204 continue; 4205 } 4206 4207 SDValue ScalarOp = InBV->getOperand(i); 4208 EVT ScalarVT = ScalarOp.getValueType(); 4209 4210 // Build vector (integer) scalar operands may need implicit 4211 // truncation - do this before constant folding. 4212 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4213 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4214 4215 ScalarOps.push_back(ScalarOp); 4216 } 4217 4218 // Constant fold the scalar operands. 4219 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4220 4221 // Legalize the (integer) scalar constant if necessary. 4222 if (LegalSVT != SVT) 4223 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4224 4225 // Scalar folding only succeeded if the result is a constant or UNDEF. 4226 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4227 ScalarResult.getOpcode() != ISD::ConstantFP) 4228 return SDValue(); 4229 ScalarResults.push_back(ScalarResult); 4230 } 4231 4232 SDValue V = getBuildVector(VT, DL, ScalarResults); 4233 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4234 return V; 4235 } 4236 4237 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4238 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4239 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4240 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4241 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4242 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4243 4244 // Canonicalize constant to RHS if commutative. 4245 if (TLI->isCommutativeBinOp(Opcode)) { 4246 if (N1C && !N2C) { 4247 std::swap(N1C, N2C); 4248 std::swap(N1, N2); 4249 } else if (N1CFP && !N2CFP) { 4250 std::swap(N1CFP, N2CFP); 4251 std::swap(N1, N2); 4252 } 4253 } 4254 4255 switch (Opcode) { 4256 default: break; 4257 case ISD::TokenFactor: 4258 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4259 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4260 // Fold trivial token factors. 4261 if (N1.getOpcode() == ISD::EntryToken) return N2; 4262 if (N2.getOpcode() == ISD::EntryToken) return N1; 4263 if (N1 == N2) return N1; 4264 break; 4265 case ISD::CONCAT_VECTORS: { 4266 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4267 SDValue Ops[] = {N1, N2}; 4268 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4269 return V; 4270 break; 4271 } 4272 case ISD::AND: 4273 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4274 assert(N1.getValueType() == N2.getValueType() && 4275 N1.getValueType() == VT && "Binary operator types must match!"); 4276 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4277 // worth handling here. 4278 if (N2C && N2C->isNullValue()) 4279 return N2; 4280 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4281 return N1; 4282 break; 4283 case ISD::OR: 4284 case ISD::XOR: 4285 case ISD::ADD: 4286 case ISD::SUB: 4287 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4288 assert(N1.getValueType() == N2.getValueType() && 4289 N1.getValueType() == VT && "Binary operator types must match!"); 4290 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4291 // it's worth handling here. 4292 if (N2C && N2C->isNullValue()) 4293 return N1; 4294 break; 4295 case ISD::UDIV: 4296 case ISD::UREM: 4297 case ISD::MULHU: 4298 case ISD::MULHS: 4299 case ISD::MUL: 4300 case ISD::SDIV: 4301 case ISD::SREM: 4302 case ISD::SMIN: 4303 case ISD::SMAX: 4304 case ISD::UMIN: 4305 case ISD::UMAX: 4306 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4307 assert(N1.getValueType() == N2.getValueType() && 4308 N1.getValueType() == VT && "Binary operator types must match!"); 4309 break; 4310 case ISD::FADD: 4311 case ISD::FSUB: 4312 case ISD::FMUL: 4313 case ISD::FDIV: 4314 case ISD::FREM: 4315 if (getTarget().Options.UnsafeFPMath) { 4316 if (Opcode == ISD::FADD) { 4317 // x+0 --> x 4318 if (N2CFP && N2CFP->getValueAPF().isZero()) 4319 return N1; 4320 } else if (Opcode == ISD::FSUB) { 4321 // x-0 --> x 4322 if (N2CFP && N2CFP->getValueAPF().isZero()) 4323 return N1; 4324 } else if (Opcode == ISD::FMUL) { 4325 // x*0 --> 0 4326 if (N2CFP && N2CFP->isZero()) 4327 return N2; 4328 // x*1 --> x 4329 if (N2CFP && N2CFP->isExactlyValue(1.0)) 4330 return N1; 4331 } 4332 } 4333 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4334 assert(N1.getValueType() == N2.getValueType() && 4335 N1.getValueType() == VT && "Binary operator types must match!"); 4336 break; 4337 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4338 assert(N1.getValueType() == VT && 4339 N1.getValueType().isFloatingPoint() && 4340 N2.getValueType().isFloatingPoint() && 4341 "Invalid FCOPYSIGN!"); 4342 break; 4343 case ISD::SHL: 4344 case ISD::SRA: 4345 case ISD::SRL: 4346 case ISD::ROTL: 4347 case ISD::ROTR: 4348 assert(VT == N1.getValueType() && 4349 "Shift operators return type must be the same as their first arg"); 4350 assert(VT.isInteger() && N2.getValueType().isInteger() && 4351 "Shifts only work on integers"); 4352 assert((!VT.isVector() || VT == N2.getValueType()) && 4353 "Vector shift amounts must be in the same as their first arg"); 4354 // Verify that the shift amount VT is bit enough to hold valid shift 4355 // amounts. This catches things like trying to shift an i1024 value by an 4356 // i8, which is easy to fall into in generic code that uses 4357 // TLI.getShiftAmount(). 4358 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4359 "Invalid use of small shift amount with oversized value!"); 4360 4361 // Always fold shifts of i1 values so the code generator doesn't need to 4362 // handle them. Since we know the size of the shift has to be less than the 4363 // size of the value, the shift/rotate count is guaranteed to be zero. 4364 if (VT == MVT::i1) 4365 return N1; 4366 if (N2C && N2C->isNullValue()) 4367 return N1; 4368 break; 4369 case ISD::FP_ROUND_INREG: { 4370 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4371 assert(VT == N1.getValueType() && "Not an inreg round!"); 4372 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4373 "Cannot FP_ROUND_INREG integer types"); 4374 assert(EVT.isVector() == VT.isVector() && 4375 "FP_ROUND_INREG type should be vector iff the operand " 4376 "type is vector!"); 4377 assert((!EVT.isVector() || 4378 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4379 "Vector element counts must match in FP_ROUND_INREG"); 4380 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4381 (void)EVT; 4382 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4383 break; 4384 } 4385 case ISD::FP_ROUND: 4386 assert(VT.isFloatingPoint() && 4387 N1.getValueType().isFloatingPoint() && 4388 VT.bitsLE(N1.getValueType()) && 4389 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4390 "Invalid FP_ROUND!"); 4391 if (N1.getValueType() == VT) return N1; // noop conversion. 4392 break; 4393 case ISD::AssertSext: 4394 case ISD::AssertZext: { 4395 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4396 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4397 assert(VT.isInteger() && EVT.isInteger() && 4398 "Cannot *_EXTEND_INREG FP types"); 4399 assert(!EVT.isVector() && 4400 "AssertSExt/AssertZExt type should be the vector element type " 4401 "rather than the vector type!"); 4402 assert(EVT.bitsLE(VT) && "Not extending!"); 4403 if (VT == EVT) return N1; // noop assertion. 4404 break; 4405 } 4406 case ISD::SIGN_EXTEND_INREG: { 4407 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4408 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4409 assert(VT.isInteger() && EVT.isInteger() && 4410 "Cannot *_EXTEND_INREG FP types"); 4411 assert(EVT.isVector() == VT.isVector() && 4412 "SIGN_EXTEND_INREG type should be vector iff the operand " 4413 "type is vector!"); 4414 assert((!EVT.isVector() || 4415 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4416 "Vector element counts must match in SIGN_EXTEND_INREG"); 4417 assert(EVT.bitsLE(VT) && "Not extending!"); 4418 if (EVT == VT) return N1; // Not actually extending 4419 4420 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4421 unsigned FromBits = EVT.getScalarSizeInBits(); 4422 Val <<= Val.getBitWidth() - FromBits; 4423 Val.ashrInPlace(Val.getBitWidth() - FromBits); 4424 return getConstant(Val, DL, ConstantVT); 4425 }; 4426 4427 if (N1C) { 4428 const APInt &Val = N1C->getAPIntValue(); 4429 return SignExtendInReg(Val, VT); 4430 } 4431 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4432 SmallVector<SDValue, 8> Ops; 4433 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 4434 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4435 SDValue Op = N1.getOperand(i); 4436 if (Op.isUndef()) { 4437 Ops.push_back(getUNDEF(OpVT)); 4438 continue; 4439 } 4440 ConstantSDNode *C = cast<ConstantSDNode>(Op); 4441 APInt Val = C->getAPIntValue(); 4442 Ops.push_back(SignExtendInReg(Val, OpVT)); 4443 } 4444 return getBuildVector(VT, DL, Ops); 4445 } 4446 break; 4447 } 4448 case ISD::EXTRACT_VECTOR_ELT: 4449 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4450 if (N1.isUndef()) 4451 return getUNDEF(VT); 4452 4453 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4454 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4455 return getUNDEF(VT); 4456 4457 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4458 // expanding copies of large vectors from registers. 4459 if (N2C && 4460 N1.getOpcode() == ISD::CONCAT_VECTORS && 4461 N1.getNumOperands() > 0) { 4462 unsigned Factor = 4463 N1.getOperand(0).getValueType().getVectorNumElements(); 4464 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4465 N1.getOperand(N2C->getZExtValue() / Factor), 4466 getConstant(N2C->getZExtValue() % Factor, DL, 4467 N2.getValueType())); 4468 } 4469 4470 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4471 // expanding large vector constants. 4472 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4473 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4474 4475 if (VT != Elt.getValueType()) 4476 // If the vector element type is not legal, the BUILD_VECTOR operands 4477 // are promoted and implicitly truncated, and the result implicitly 4478 // extended. Make that explicit here. 4479 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4480 4481 return Elt; 4482 } 4483 4484 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4485 // operations are lowered to scalars. 4486 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4487 // If the indices are the same, return the inserted element else 4488 // if the indices are known different, extract the element from 4489 // the original vector. 4490 SDValue N1Op2 = N1.getOperand(2); 4491 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4492 4493 if (N1Op2C && N2C) { 4494 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4495 if (VT == N1.getOperand(1).getValueType()) 4496 return N1.getOperand(1); 4497 else 4498 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4499 } 4500 4501 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4502 } 4503 } 4504 4505 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 4506 // when vector types are scalarized and v1iX is legal. 4507 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 4508 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 4509 N1.getValueType().getVectorNumElements() == 1) { 4510 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 4511 N1.getOperand(1)); 4512 } 4513 break; 4514 case ISD::EXTRACT_ELEMENT: 4515 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4516 assert(!N1.getValueType().isVector() && !VT.isVector() && 4517 (N1.getValueType().isInteger() == VT.isInteger()) && 4518 N1.getValueType() != VT && 4519 "Wrong types for EXTRACT_ELEMENT!"); 4520 4521 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4522 // 64-bit integers into 32-bit parts. Instead of building the extract of 4523 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4524 if (N1.getOpcode() == ISD::BUILD_PAIR) 4525 return N1.getOperand(N2C->getZExtValue()); 4526 4527 // EXTRACT_ELEMENT of a constant int is also very common. 4528 if (N1C) { 4529 unsigned ElementSize = VT.getSizeInBits(); 4530 unsigned Shift = ElementSize * N2C->getZExtValue(); 4531 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4532 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4533 } 4534 break; 4535 case ISD::EXTRACT_SUBVECTOR: 4536 if (VT.isSimple() && N1.getValueType().isSimple()) { 4537 assert(VT.isVector() && N1.getValueType().isVector() && 4538 "Extract subvector VTs must be a vectors!"); 4539 assert(VT.getVectorElementType() == 4540 N1.getValueType().getVectorElementType() && 4541 "Extract subvector VTs must have the same element type!"); 4542 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4543 "Extract subvector must be from larger vector to smaller vector!"); 4544 4545 if (N2C) { 4546 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4547 <= N1.getValueType().getVectorNumElements()) 4548 && "Extract subvector overflow!"); 4549 } 4550 4551 // Trivial extraction. 4552 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4553 return N1; 4554 4555 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4556 if (N1.isUndef()) 4557 return getUNDEF(VT); 4558 4559 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4560 // the concat have the same type as the extract. 4561 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4562 N1.getNumOperands() > 0 && 4563 VT == N1.getOperand(0).getValueType()) { 4564 unsigned Factor = VT.getVectorNumElements(); 4565 return N1.getOperand(N2C->getZExtValue() / Factor); 4566 } 4567 4568 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4569 // during shuffle legalization. 4570 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4571 VT == N1.getOperand(1).getValueType()) 4572 return N1.getOperand(1); 4573 } 4574 break; 4575 } 4576 4577 // Perform trivial constant folding. 4578 if (SDValue SV = 4579 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4580 return SV; 4581 4582 // Constant fold FP operations. 4583 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4584 if (N1CFP) { 4585 if (N2CFP) { 4586 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4587 APFloat::opStatus s; 4588 switch (Opcode) { 4589 case ISD::FADD: 4590 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4591 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4592 return getConstantFP(V1, DL, VT); 4593 break; 4594 case ISD::FSUB: 4595 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4596 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4597 return getConstantFP(V1, DL, VT); 4598 break; 4599 case ISD::FMUL: 4600 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4601 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4602 return getConstantFP(V1, DL, VT); 4603 break; 4604 case ISD::FDIV: 4605 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4606 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4607 s!=APFloat::opDivByZero)) { 4608 return getConstantFP(V1, DL, VT); 4609 } 4610 break; 4611 case ISD::FREM : 4612 s = V1.mod(V2); 4613 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4614 s!=APFloat::opDivByZero)) { 4615 return getConstantFP(V1, DL, VT); 4616 } 4617 break; 4618 case ISD::FCOPYSIGN: 4619 V1.copySign(V2); 4620 return getConstantFP(V1, DL, VT); 4621 default: break; 4622 } 4623 } 4624 4625 if (Opcode == ISD::FP_ROUND) { 4626 APFloat V = N1CFP->getValueAPF(); // make copy 4627 bool ignored; 4628 // This can return overflow, underflow, or inexact; we don't care. 4629 // FIXME need to be more flexible about rounding mode. 4630 (void)V.convert(EVTToAPFloatSemantics(VT), 4631 APFloat::rmNearestTiesToEven, &ignored); 4632 return getConstantFP(V, DL, VT); 4633 } 4634 } 4635 4636 // Canonicalize an UNDEF to the RHS, even over a constant. 4637 if (N1.isUndef()) { 4638 if (TLI->isCommutativeBinOp(Opcode)) { 4639 std::swap(N1, N2); 4640 } else { 4641 switch (Opcode) { 4642 case ISD::FP_ROUND_INREG: 4643 case ISD::SIGN_EXTEND_INREG: 4644 case ISD::SUB: 4645 case ISD::FSUB: 4646 case ISD::FDIV: 4647 case ISD::FREM: 4648 case ISD::SRA: 4649 return N1; // fold op(undef, arg2) -> undef 4650 case ISD::UDIV: 4651 case ISD::SDIV: 4652 case ISD::UREM: 4653 case ISD::SREM: 4654 case ISD::SRL: 4655 case ISD::SHL: 4656 if (!VT.isVector()) 4657 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4658 // For vectors, we can't easily build an all zero vector, just return 4659 // the LHS. 4660 return N2; 4661 } 4662 } 4663 } 4664 4665 // Fold a bunch of operators when the RHS is undef. 4666 if (N2.isUndef()) { 4667 switch (Opcode) { 4668 case ISD::XOR: 4669 if (N1.isUndef()) 4670 // Handle undef ^ undef -> 0 special case. This is a common 4671 // idiom (misuse). 4672 return getConstant(0, DL, VT); 4673 LLVM_FALLTHROUGH; 4674 case ISD::ADD: 4675 case ISD::ADDC: 4676 case ISD::ADDE: 4677 case ISD::SUB: 4678 case ISD::UDIV: 4679 case ISD::SDIV: 4680 case ISD::UREM: 4681 case ISD::SREM: 4682 return N2; // fold op(arg1, undef) -> undef 4683 case ISD::FADD: 4684 case ISD::FSUB: 4685 case ISD::FMUL: 4686 case ISD::FDIV: 4687 case ISD::FREM: 4688 if (getTarget().Options.UnsafeFPMath) 4689 return N2; 4690 break; 4691 case ISD::MUL: 4692 case ISD::AND: 4693 case ISD::SRL: 4694 case ISD::SHL: 4695 if (!VT.isVector()) 4696 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4697 // For vectors, we can't easily build an all zero vector, just return 4698 // the LHS. 4699 return N1; 4700 case ISD::OR: 4701 if (!VT.isVector()) 4702 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4703 // For vectors, we can't easily build an all one vector, just return 4704 // the LHS. 4705 return N1; 4706 case ISD::SRA: 4707 return N1; 4708 } 4709 } 4710 4711 // Memoize this node if possible. 4712 SDNode *N; 4713 SDVTList VTs = getVTList(VT); 4714 SDValue Ops[] = {N1, N2}; 4715 if (VT != MVT::Glue) { 4716 FoldingSetNodeID ID; 4717 AddNodeIDNode(ID, Opcode, VTs, Ops); 4718 void *IP = nullptr; 4719 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4720 E->intersectFlagsWith(Flags); 4721 return SDValue(E, 0); 4722 } 4723 4724 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4725 N->setFlags(Flags); 4726 createOperands(N, Ops); 4727 CSEMap.InsertNode(N, IP); 4728 } else { 4729 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4730 createOperands(N, Ops); 4731 } 4732 4733 InsertNode(N); 4734 SDValue V = SDValue(N, 0); 4735 NewSDValueDbgMsg(V, "Creating new node: ", this); 4736 return V; 4737 } 4738 4739 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4740 SDValue N1, SDValue N2, SDValue N3) { 4741 // Perform various simplifications. 4742 switch (Opcode) { 4743 case ISD::FMA: { 4744 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4745 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4746 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4747 if (N1CFP && N2CFP && N3CFP) { 4748 APFloat V1 = N1CFP->getValueAPF(); 4749 const APFloat &V2 = N2CFP->getValueAPF(); 4750 const APFloat &V3 = N3CFP->getValueAPF(); 4751 APFloat::opStatus s = 4752 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4753 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4754 return getConstantFP(V1, DL, VT); 4755 } 4756 break; 4757 } 4758 case ISD::CONCAT_VECTORS: { 4759 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4760 SDValue Ops[] = {N1, N2, N3}; 4761 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4762 return V; 4763 break; 4764 } 4765 case ISD::SETCC: { 4766 // Use FoldSetCC to simplify SETCC's. 4767 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4768 return V; 4769 // Vector constant folding. 4770 SDValue Ops[] = {N1, N2, N3}; 4771 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 4772 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 4773 return V; 4774 } 4775 break; 4776 } 4777 case ISD::SELECT: 4778 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4779 if (N1C->getZExtValue()) 4780 return N2; // select true, X, Y -> X 4781 return N3; // select false, X, Y -> Y 4782 } 4783 4784 if (N2 == N3) return N2; // select C, X, X -> X 4785 break; 4786 case ISD::VECTOR_SHUFFLE: 4787 llvm_unreachable("should use getVectorShuffle constructor!"); 4788 case ISD::INSERT_VECTOR_ELT: { 4789 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4790 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4791 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4792 return getUNDEF(VT); 4793 break; 4794 } 4795 case ISD::INSERT_SUBVECTOR: { 4796 SDValue Index = N3; 4797 if (VT.isSimple() && N1.getValueType().isSimple() 4798 && N2.getValueType().isSimple()) { 4799 assert(VT.isVector() && N1.getValueType().isVector() && 4800 N2.getValueType().isVector() && 4801 "Insert subvector VTs must be a vectors"); 4802 assert(VT == N1.getValueType() && 4803 "Dest and insert subvector source types must match!"); 4804 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4805 "Insert subvector must be from smaller vector to larger vector!"); 4806 if (isa<ConstantSDNode>(Index)) { 4807 assert((N2.getValueType().getVectorNumElements() + 4808 cast<ConstantSDNode>(Index)->getZExtValue() 4809 <= VT.getVectorNumElements()) 4810 && "Insert subvector overflow!"); 4811 } 4812 4813 // Trivial insertion. 4814 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4815 return N2; 4816 } 4817 break; 4818 } 4819 case ISD::BITCAST: 4820 // Fold bit_convert nodes from a type to themselves. 4821 if (N1.getValueType() == VT) 4822 return N1; 4823 break; 4824 } 4825 4826 // Memoize node if it doesn't produce a flag. 4827 SDNode *N; 4828 SDVTList VTs = getVTList(VT); 4829 SDValue Ops[] = {N1, N2, N3}; 4830 if (VT != MVT::Glue) { 4831 FoldingSetNodeID ID; 4832 AddNodeIDNode(ID, Opcode, VTs, Ops); 4833 void *IP = nullptr; 4834 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4835 return SDValue(E, 0); 4836 4837 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4838 createOperands(N, Ops); 4839 CSEMap.InsertNode(N, IP); 4840 } else { 4841 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4842 createOperands(N, Ops); 4843 } 4844 4845 InsertNode(N); 4846 SDValue V = SDValue(N, 0); 4847 NewSDValueDbgMsg(V, "Creating new node: ", this); 4848 return V; 4849 } 4850 4851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4852 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4853 SDValue Ops[] = { N1, N2, N3, N4 }; 4854 return getNode(Opcode, DL, VT, Ops); 4855 } 4856 4857 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4858 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4859 SDValue N5) { 4860 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4861 return getNode(Opcode, DL, VT, Ops); 4862 } 4863 4864 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4865 /// the incoming stack arguments to be loaded from the stack. 4866 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4867 SmallVector<SDValue, 8> ArgChains; 4868 4869 // Include the original chain at the beginning of the list. When this is 4870 // used by target LowerCall hooks, this helps legalize find the 4871 // CALLSEQ_BEGIN node. 4872 ArgChains.push_back(Chain); 4873 4874 // Add a chain value for each stack argument. 4875 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4876 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4877 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4878 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4879 if (FI->getIndex() < 0) 4880 ArgChains.push_back(SDValue(L, 1)); 4881 4882 // Build a tokenfactor for all the chains. 4883 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4884 } 4885 4886 /// getMemsetValue - Vectorized representation of the memset value 4887 /// operand. 4888 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4889 const SDLoc &dl) { 4890 assert(!Value.isUndef()); 4891 4892 unsigned NumBits = VT.getScalarSizeInBits(); 4893 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4894 assert(C->getAPIntValue().getBitWidth() == 8); 4895 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4896 if (VT.isInteger()) 4897 return DAG.getConstant(Val, dl, VT); 4898 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4899 VT); 4900 } 4901 4902 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4903 EVT IntVT = VT.getScalarType(); 4904 if (!IntVT.isInteger()) 4905 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4906 4907 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4908 if (NumBits > 8) { 4909 // Use a multiplication with 0x010101... to extend the input to the 4910 // required length. 4911 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4912 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4913 DAG.getConstant(Magic, dl, IntVT)); 4914 } 4915 4916 if (VT != Value.getValueType() && !VT.isInteger()) 4917 Value = DAG.getBitcast(VT.getScalarType(), Value); 4918 if (VT != Value.getValueType()) 4919 Value = DAG.getSplatBuildVector(VT, dl, Value); 4920 4921 return Value; 4922 } 4923 4924 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4925 /// used when a memcpy is turned into a memset when the source is a constant 4926 /// string ptr. 4927 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4928 const TargetLowering &TLI, 4929 const ConstantDataArraySlice &Slice) { 4930 // Handle vector with all elements zero. 4931 if (Slice.Array == nullptr) { 4932 if (VT.isInteger()) 4933 return DAG.getConstant(0, dl, VT); 4934 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4935 return DAG.getConstantFP(0.0, dl, VT); 4936 else if (VT.isVector()) { 4937 unsigned NumElts = VT.getVectorNumElements(); 4938 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4939 return DAG.getNode(ISD::BITCAST, dl, VT, 4940 DAG.getConstant(0, dl, 4941 EVT::getVectorVT(*DAG.getContext(), 4942 EltVT, NumElts))); 4943 } else 4944 llvm_unreachable("Expected type!"); 4945 } 4946 4947 assert(!VT.isVector() && "Can't handle vector type here!"); 4948 unsigned NumVTBits = VT.getSizeInBits(); 4949 unsigned NumVTBytes = NumVTBits / 8; 4950 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 4951 4952 APInt Val(NumVTBits, 0); 4953 if (DAG.getDataLayout().isLittleEndian()) { 4954 for (unsigned i = 0; i != NumBytes; ++i) 4955 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 4956 } else { 4957 for (unsigned i = 0; i != NumBytes; ++i) 4958 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 4959 } 4960 4961 // If the "cost" of materializing the integer immediate is less than the cost 4962 // of a load, then it is cost effective to turn the load into the immediate. 4963 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4964 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4965 return DAG.getConstant(Val, dl, VT); 4966 return SDValue(nullptr, 0); 4967 } 4968 4969 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4970 const SDLoc &DL) { 4971 EVT VT = Base.getValueType(); 4972 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4973 } 4974 4975 /// Returns true if memcpy source is constant data. 4976 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 4977 uint64_t SrcDelta = 0; 4978 GlobalAddressSDNode *G = nullptr; 4979 if (Src.getOpcode() == ISD::GlobalAddress) 4980 G = cast<GlobalAddressSDNode>(Src); 4981 else if (Src.getOpcode() == ISD::ADD && 4982 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4983 Src.getOperand(1).getOpcode() == ISD::Constant) { 4984 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4985 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4986 } 4987 if (!G) 4988 return false; 4989 4990 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 4991 SrcDelta + G->getOffset()); 4992 } 4993 4994 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4995 /// Return true if the number of memory ops is below the threshold (Limit). 4996 /// It returns the types of the sequence of memory ops to perform 4997 /// memset / memcpy by reference. 4998 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4999 unsigned Limit, uint64_t Size, 5000 unsigned DstAlign, unsigned SrcAlign, 5001 bool IsMemset, 5002 bool ZeroMemset, 5003 bool MemcpyStrSrc, 5004 bool AllowOverlap, 5005 unsigned DstAS, unsigned SrcAS, 5006 SelectionDAG &DAG, 5007 const TargetLowering &TLI) { 5008 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 5009 "Expecting memcpy / memset source to meet alignment requirement!"); 5010 // If 'SrcAlign' is zero, that means the memory operation does not need to 5011 // load the value, i.e. memset or memcpy from constant string. Otherwise, 5012 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 5013 // is the specified alignment of the memory operation. If it is zero, that 5014 // means it's possible to change the alignment of the destination. 5015 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 5016 // not need to be loaded. 5017 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 5018 IsMemset, ZeroMemset, MemcpyStrSrc, 5019 DAG.getMachineFunction()); 5020 5021 if (VT == MVT::Other) { 5022 // Use the largest integer type whose alignment constraints are satisfied. 5023 // We only need to check DstAlign here as SrcAlign is always greater or 5024 // equal to DstAlign (or zero). 5025 VT = MVT::i64; 5026 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 5027 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 5028 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 5029 assert(VT.isInteger()); 5030 5031 // Find the largest legal integer type. 5032 MVT LVT = MVT::i64; 5033 while (!TLI.isTypeLegal(LVT)) 5034 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 5035 assert(LVT.isInteger()); 5036 5037 // If the type we've chosen is larger than the largest legal integer type 5038 // then use that instead. 5039 if (VT.bitsGT(LVT)) 5040 VT = LVT; 5041 } 5042 5043 unsigned NumMemOps = 0; 5044 while (Size != 0) { 5045 unsigned VTSize = VT.getSizeInBits() / 8; 5046 while (VTSize > Size) { 5047 // For now, only use non-vector load / store's for the left-over pieces. 5048 EVT NewVT = VT; 5049 unsigned NewVTSize; 5050 5051 bool Found = false; 5052 if (VT.isVector() || VT.isFloatingPoint()) { 5053 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 5054 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 5055 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 5056 Found = true; 5057 else if (NewVT == MVT::i64 && 5058 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 5059 TLI.isSafeMemOpType(MVT::f64)) { 5060 // i64 is usually not legal on 32-bit targets, but f64 may be. 5061 NewVT = MVT::f64; 5062 Found = true; 5063 } 5064 } 5065 5066 if (!Found) { 5067 do { 5068 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 5069 if (NewVT == MVT::i8) 5070 break; 5071 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 5072 } 5073 NewVTSize = NewVT.getSizeInBits() / 8; 5074 5075 // If the new VT cannot cover all of the remaining bits, then consider 5076 // issuing a (or a pair of) unaligned and overlapping load / store. 5077 // FIXME: Only does this for 64-bit or more since we don't have proper 5078 // cost model for unaligned load / store. 5079 bool Fast; 5080 if (NumMemOps && AllowOverlap && 5081 VTSize >= 8 && NewVTSize < Size && 5082 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 5083 VTSize = Size; 5084 else { 5085 VT = NewVT; 5086 VTSize = NewVTSize; 5087 } 5088 } 5089 5090 if (++NumMemOps > Limit) 5091 return false; 5092 5093 MemOps.push_back(VT); 5094 Size -= VTSize; 5095 } 5096 5097 return true; 5098 } 5099 5100 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5101 // On Darwin, -Os means optimize for size without hurting performance, so 5102 // only really optimize for size when -Oz (MinSize) is used. 5103 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5104 return MF.getFunction()->optForMinSize(); 5105 return MF.getFunction()->optForSize(); 5106 } 5107 5108 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5109 SDValue Chain, SDValue Dst, SDValue Src, 5110 uint64_t Size, unsigned Align, 5111 bool isVol, bool AlwaysInline, 5112 MachinePointerInfo DstPtrInfo, 5113 MachinePointerInfo SrcPtrInfo) { 5114 // Turn a memcpy of undef to nop. 5115 if (Src.isUndef()) 5116 return Chain; 5117 5118 // Expand memcpy to a series of load and store ops if the size operand falls 5119 // below a certain threshold. 5120 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5121 // rather than maybe a humongous number of loads and stores. 5122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5123 const DataLayout &DL = DAG.getDataLayout(); 5124 LLVMContext &C = *DAG.getContext(); 5125 std::vector<EVT> MemOps; 5126 bool DstAlignCanChange = false; 5127 MachineFunction &MF = DAG.getMachineFunction(); 5128 MachineFrameInfo &MFI = MF.getFrameInfo(); 5129 bool OptSize = shouldLowerMemFuncForSize(MF); 5130 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5131 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5132 DstAlignCanChange = true; 5133 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5134 if (Align > SrcAlign) 5135 SrcAlign = Align; 5136 ConstantDataArraySlice Slice; 5137 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5138 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5139 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5140 5141 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5142 (DstAlignCanChange ? 0 : Align), 5143 (isZeroConstant ? 0 : SrcAlign), 5144 false, false, CopyFromConstant, true, 5145 DstPtrInfo.getAddrSpace(), 5146 SrcPtrInfo.getAddrSpace(), 5147 DAG, TLI)) 5148 return SDValue(); 5149 5150 if (DstAlignCanChange) { 5151 Type *Ty = MemOps[0].getTypeForEVT(C); 5152 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5153 5154 // Don't promote to an alignment that would require dynamic stack 5155 // realignment. 5156 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5157 if (!TRI->needsStackRealignment(MF)) 5158 while (NewAlign > Align && 5159 DL.exceedsNaturalStackAlignment(NewAlign)) 5160 NewAlign /= 2; 5161 5162 if (NewAlign > Align) { 5163 // Give the stack frame object a larger alignment if needed. 5164 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5165 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5166 Align = NewAlign; 5167 } 5168 } 5169 5170 MachineMemOperand::Flags MMOFlags = 5171 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5172 SmallVector<SDValue, 8> OutChains; 5173 unsigned NumMemOps = MemOps.size(); 5174 uint64_t SrcOff = 0, DstOff = 0; 5175 for (unsigned i = 0; i != NumMemOps; ++i) { 5176 EVT VT = MemOps[i]; 5177 unsigned VTSize = VT.getSizeInBits() / 8; 5178 SDValue Value, Store; 5179 5180 if (VTSize > Size) { 5181 // Issuing an unaligned load / store pair that overlaps with the previous 5182 // pair. Adjust the offset accordingly. 5183 assert(i == NumMemOps-1 && i != 0); 5184 SrcOff -= VTSize - Size; 5185 DstOff -= VTSize - Size; 5186 } 5187 5188 if (CopyFromConstant && 5189 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5190 // It's unlikely a store of a vector immediate can be done in a single 5191 // instruction. It would require a load from a constantpool first. 5192 // We only handle zero vectors here. 5193 // FIXME: Handle other cases where store of vector immediate is done in 5194 // a single instruction. 5195 ConstantDataArraySlice SubSlice; 5196 if (SrcOff < Slice.Length) { 5197 SubSlice = Slice; 5198 SubSlice.move(SrcOff); 5199 } else { 5200 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5201 SubSlice.Array = nullptr; 5202 SubSlice.Offset = 0; 5203 SubSlice.Length = VTSize; 5204 } 5205 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5206 if (Value.getNode()) 5207 Store = DAG.getStore(Chain, dl, Value, 5208 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5209 DstPtrInfo.getWithOffset(DstOff), Align, 5210 MMOFlags); 5211 } 5212 5213 if (!Store.getNode()) { 5214 // The type might not be legal for the target. This should only happen 5215 // if the type is smaller than a legal type, as on PPC, so the right 5216 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5217 // to Load/Store if NVT==VT. 5218 // FIXME does the case above also need this? 5219 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5220 assert(NVT.bitsGE(VT)); 5221 5222 bool isDereferenceable = 5223 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5224 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5225 if (isDereferenceable) 5226 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5227 5228 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5229 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5230 SrcPtrInfo.getWithOffset(SrcOff), VT, 5231 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5232 OutChains.push_back(Value.getValue(1)); 5233 Store = DAG.getTruncStore( 5234 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5235 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5236 } 5237 OutChains.push_back(Store); 5238 SrcOff += VTSize; 5239 DstOff += VTSize; 5240 Size -= VTSize; 5241 } 5242 5243 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5244 } 5245 5246 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5247 SDValue Chain, SDValue Dst, SDValue Src, 5248 uint64_t Size, unsigned Align, 5249 bool isVol, bool AlwaysInline, 5250 MachinePointerInfo DstPtrInfo, 5251 MachinePointerInfo SrcPtrInfo) { 5252 // Turn a memmove of undef to nop. 5253 if (Src.isUndef()) 5254 return Chain; 5255 5256 // Expand memmove to a series of load and store ops if the size operand falls 5257 // below a certain threshold. 5258 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5259 const DataLayout &DL = DAG.getDataLayout(); 5260 LLVMContext &C = *DAG.getContext(); 5261 std::vector<EVT> MemOps; 5262 bool DstAlignCanChange = false; 5263 MachineFunction &MF = DAG.getMachineFunction(); 5264 MachineFrameInfo &MFI = MF.getFrameInfo(); 5265 bool OptSize = shouldLowerMemFuncForSize(MF); 5266 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5267 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5268 DstAlignCanChange = true; 5269 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5270 if (Align > SrcAlign) 5271 SrcAlign = Align; 5272 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5273 5274 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5275 (DstAlignCanChange ? 0 : Align), SrcAlign, 5276 false, false, false, false, 5277 DstPtrInfo.getAddrSpace(), 5278 SrcPtrInfo.getAddrSpace(), 5279 DAG, TLI)) 5280 return SDValue(); 5281 5282 if (DstAlignCanChange) { 5283 Type *Ty = MemOps[0].getTypeForEVT(C); 5284 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5285 if (NewAlign > Align) { 5286 // Give the stack frame object a larger alignment if needed. 5287 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5288 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5289 Align = NewAlign; 5290 } 5291 } 5292 5293 MachineMemOperand::Flags MMOFlags = 5294 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5295 uint64_t SrcOff = 0, DstOff = 0; 5296 SmallVector<SDValue, 8> LoadValues; 5297 SmallVector<SDValue, 8> LoadChains; 5298 SmallVector<SDValue, 8> OutChains; 5299 unsigned NumMemOps = MemOps.size(); 5300 for (unsigned i = 0; i < NumMemOps; i++) { 5301 EVT VT = MemOps[i]; 5302 unsigned VTSize = VT.getSizeInBits() / 8; 5303 SDValue Value; 5304 5305 bool isDereferenceable = 5306 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5307 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5308 if (isDereferenceable) 5309 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5310 5311 Value = 5312 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5313 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5314 LoadValues.push_back(Value); 5315 LoadChains.push_back(Value.getValue(1)); 5316 SrcOff += VTSize; 5317 } 5318 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5319 OutChains.clear(); 5320 for (unsigned i = 0; i < NumMemOps; i++) { 5321 EVT VT = MemOps[i]; 5322 unsigned VTSize = VT.getSizeInBits() / 8; 5323 SDValue Store; 5324 5325 Store = DAG.getStore(Chain, dl, LoadValues[i], 5326 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5327 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5328 OutChains.push_back(Store); 5329 DstOff += VTSize; 5330 } 5331 5332 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5333 } 5334 5335 /// \brief Lower the call to 'memset' intrinsic function into a series of store 5336 /// operations. 5337 /// 5338 /// \param DAG Selection DAG where lowered code is placed. 5339 /// \param dl Link to corresponding IR location. 5340 /// \param Chain Control flow dependency. 5341 /// \param Dst Pointer to destination memory location. 5342 /// \param Src Value of byte to write into the memory. 5343 /// \param Size Number of bytes to write. 5344 /// \param Align Alignment of the destination in bytes. 5345 /// \param isVol True if destination is volatile. 5346 /// \param DstPtrInfo IR information on the memory pointer. 5347 /// \returns New head in the control flow, if lowering was successful, empty 5348 /// SDValue otherwise. 5349 /// 5350 /// The function tries to replace 'llvm.memset' intrinsic with several store 5351 /// operations and value calculation code. This is usually profitable for small 5352 /// memory size. 5353 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5354 SDValue Chain, SDValue Dst, SDValue Src, 5355 uint64_t Size, unsigned Align, bool isVol, 5356 MachinePointerInfo DstPtrInfo) { 5357 // Turn a memset of undef to nop. 5358 if (Src.isUndef()) 5359 return Chain; 5360 5361 // Expand memset to a series of load/store ops if the size operand 5362 // falls below a certain threshold. 5363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5364 std::vector<EVT> MemOps; 5365 bool DstAlignCanChange = false; 5366 MachineFunction &MF = DAG.getMachineFunction(); 5367 MachineFrameInfo &MFI = MF.getFrameInfo(); 5368 bool OptSize = shouldLowerMemFuncForSize(MF); 5369 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5370 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5371 DstAlignCanChange = true; 5372 bool IsZeroVal = 5373 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5374 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5375 Size, (DstAlignCanChange ? 0 : Align), 0, 5376 true, IsZeroVal, false, true, 5377 DstPtrInfo.getAddrSpace(), ~0u, 5378 DAG, TLI)) 5379 return SDValue(); 5380 5381 if (DstAlignCanChange) { 5382 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5383 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5384 if (NewAlign > Align) { 5385 // Give the stack frame object a larger alignment if needed. 5386 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5387 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5388 Align = NewAlign; 5389 } 5390 } 5391 5392 SmallVector<SDValue, 8> OutChains; 5393 uint64_t DstOff = 0; 5394 unsigned NumMemOps = MemOps.size(); 5395 5396 // Find the largest store and generate the bit pattern for it. 5397 EVT LargestVT = MemOps[0]; 5398 for (unsigned i = 1; i < NumMemOps; i++) 5399 if (MemOps[i].bitsGT(LargestVT)) 5400 LargestVT = MemOps[i]; 5401 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5402 5403 for (unsigned i = 0; i < NumMemOps; i++) { 5404 EVT VT = MemOps[i]; 5405 unsigned VTSize = VT.getSizeInBits() / 8; 5406 if (VTSize > Size) { 5407 // Issuing an unaligned load / store pair that overlaps with the previous 5408 // pair. Adjust the offset accordingly. 5409 assert(i == NumMemOps-1 && i != 0); 5410 DstOff -= VTSize - Size; 5411 } 5412 5413 // If this store is smaller than the largest store see whether we can get 5414 // the smaller value for free with a truncate. 5415 SDValue Value = MemSetValue; 5416 if (VT.bitsLT(LargestVT)) { 5417 if (!LargestVT.isVector() && !VT.isVector() && 5418 TLI.isTruncateFree(LargestVT, VT)) 5419 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5420 else 5421 Value = getMemsetValue(Src, VT, DAG, dl); 5422 } 5423 assert(Value.getValueType() == VT && "Value with wrong type."); 5424 SDValue Store = DAG.getStore( 5425 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5426 DstPtrInfo.getWithOffset(DstOff), Align, 5427 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5428 OutChains.push_back(Store); 5429 DstOff += VT.getSizeInBits() / 8; 5430 Size -= VTSize; 5431 } 5432 5433 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5434 } 5435 5436 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5437 unsigned AS) { 5438 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5439 // pointer operands can be losslessly bitcasted to pointers of address space 0 5440 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5441 report_fatal_error("cannot lower memory intrinsic in address space " + 5442 Twine(AS)); 5443 } 5444 } 5445 5446 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5447 SDValue Src, SDValue Size, unsigned Align, 5448 bool isVol, bool AlwaysInline, bool isTailCall, 5449 MachinePointerInfo DstPtrInfo, 5450 MachinePointerInfo SrcPtrInfo) { 5451 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5452 5453 // Check to see if we should lower the memcpy to loads and stores first. 5454 // For cases within the target-specified limits, this is the best choice. 5455 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5456 if (ConstantSize) { 5457 // Memcpy with size zero? Just return the original chain. 5458 if (ConstantSize->isNullValue()) 5459 return Chain; 5460 5461 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5462 ConstantSize->getZExtValue(),Align, 5463 isVol, false, DstPtrInfo, SrcPtrInfo); 5464 if (Result.getNode()) 5465 return Result; 5466 } 5467 5468 // Then check to see if we should lower the memcpy with target-specific 5469 // code. If the target chooses to do this, this is the next best. 5470 if (TSI) { 5471 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5472 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5473 DstPtrInfo, SrcPtrInfo); 5474 if (Result.getNode()) 5475 return Result; 5476 } 5477 5478 // If we really need inline code and the target declined to provide it, 5479 // use a (potentially long) sequence of loads and stores. 5480 if (AlwaysInline) { 5481 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5482 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5483 ConstantSize->getZExtValue(), Align, isVol, 5484 true, DstPtrInfo, SrcPtrInfo); 5485 } 5486 5487 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5488 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5489 5490 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5491 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5492 // respect volatile, so they may do things like read or write memory 5493 // beyond the given memory regions. But fixing this isn't easy, and most 5494 // people don't care. 5495 5496 // Emit a library call. 5497 TargetLowering::ArgListTy Args; 5498 TargetLowering::ArgListEntry Entry; 5499 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5500 Entry.Node = Dst; Args.push_back(Entry); 5501 Entry.Node = Src; Args.push_back(Entry); 5502 Entry.Node = Size; Args.push_back(Entry); 5503 // FIXME: pass in SDLoc 5504 TargetLowering::CallLoweringInfo CLI(*this); 5505 CLI.setDebugLoc(dl) 5506 .setChain(Chain) 5507 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5508 Dst.getValueType().getTypeForEVT(*getContext()), 5509 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5510 TLI->getPointerTy(getDataLayout())), 5511 std::move(Args)) 5512 .setDiscardResult() 5513 .setTailCall(isTailCall); 5514 5515 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5516 return CallResult.second; 5517 } 5518 5519 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5520 SDValue Src, SDValue Size, unsigned Align, 5521 bool isVol, bool isTailCall, 5522 MachinePointerInfo DstPtrInfo, 5523 MachinePointerInfo SrcPtrInfo) { 5524 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5525 5526 // Check to see if we should lower the memmove to loads and stores first. 5527 // For cases within the target-specified limits, this is the best choice. 5528 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5529 if (ConstantSize) { 5530 // Memmove with size zero? Just return the original chain. 5531 if (ConstantSize->isNullValue()) 5532 return Chain; 5533 5534 SDValue Result = 5535 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5536 ConstantSize->getZExtValue(), Align, isVol, 5537 false, DstPtrInfo, SrcPtrInfo); 5538 if (Result.getNode()) 5539 return Result; 5540 } 5541 5542 // Then check to see if we should lower the memmove with target-specific 5543 // code. If the target chooses to do this, this is the next best. 5544 if (TSI) { 5545 SDValue Result = TSI->EmitTargetCodeForMemmove( 5546 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5547 if (Result.getNode()) 5548 return Result; 5549 } 5550 5551 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5552 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5553 5554 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5555 // not be safe. See memcpy above for more details. 5556 5557 // Emit a library call. 5558 TargetLowering::ArgListTy Args; 5559 TargetLowering::ArgListEntry Entry; 5560 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5561 Entry.Node = Dst; Args.push_back(Entry); 5562 Entry.Node = Src; Args.push_back(Entry); 5563 Entry.Node = Size; Args.push_back(Entry); 5564 // FIXME: pass in SDLoc 5565 TargetLowering::CallLoweringInfo CLI(*this); 5566 CLI.setDebugLoc(dl) 5567 .setChain(Chain) 5568 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5569 Dst.getValueType().getTypeForEVT(*getContext()), 5570 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5571 TLI->getPointerTy(getDataLayout())), 5572 std::move(Args)) 5573 .setDiscardResult() 5574 .setTailCall(isTailCall); 5575 5576 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5577 return CallResult.second; 5578 } 5579 5580 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5581 SDValue Src, SDValue Size, unsigned Align, 5582 bool isVol, bool isTailCall, 5583 MachinePointerInfo DstPtrInfo) { 5584 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5585 5586 // Check to see if we should lower the memset to stores first. 5587 // For cases within the target-specified limits, this is the best choice. 5588 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5589 if (ConstantSize) { 5590 // Memset with size zero? Just return the original chain. 5591 if (ConstantSize->isNullValue()) 5592 return Chain; 5593 5594 SDValue Result = 5595 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5596 Align, isVol, DstPtrInfo); 5597 5598 if (Result.getNode()) 5599 return Result; 5600 } 5601 5602 // Then check to see if we should lower the memset with target-specific 5603 // code. If the target chooses to do this, this is the next best. 5604 if (TSI) { 5605 SDValue Result = TSI->EmitTargetCodeForMemset( 5606 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5607 if (Result.getNode()) 5608 return Result; 5609 } 5610 5611 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5612 5613 // Emit a library call. 5614 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5615 TargetLowering::ArgListTy Args; 5616 TargetLowering::ArgListEntry Entry; 5617 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5618 Args.push_back(Entry); 5619 Entry.Node = Src; 5620 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5621 Args.push_back(Entry); 5622 Entry.Node = Size; 5623 Entry.Ty = IntPtrTy; 5624 Args.push_back(Entry); 5625 5626 // FIXME: pass in SDLoc 5627 TargetLowering::CallLoweringInfo CLI(*this); 5628 CLI.setDebugLoc(dl) 5629 .setChain(Chain) 5630 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5631 Dst.getValueType().getTypeForEVT(*getContext()), 5632 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5633 TLI->getPointerTy(getDataLayout())), 5634 std::move(Args)) 5635 .setDiscardResult() 5636 .setTailCall(isTailCall); 5637 5638 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5639 return CallResult.second; 5640 } 5641 5642 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5643 SDVTList VTList, ArrayRef<SDValue> Ops, 5644 MachineMemOperand *MMO) { 5645 FoldingSetNodeID ID; 5646 ID.AddInteger(MemVT.getRawBits()); 5647 AddNodeIDNode(ID, Opcode, VTList, Ops); 5648 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5649 void* IP = nullptr; 5650 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5651 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5652 return SDValue(E, 0); 5653 } 5654 5655 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5656 VTList, MemVT, MMO); 5657 createOperands(N, Ops); 5658 5659 CSEMap.InsertNode(N, IP); 5660 InsertNode(N); 5661 return SDValue(N, 0); 5662 } 5663 5664 SDValue SelectionDAG::getAtomicCmpSwap( 5665 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5666 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5667 unsigned Alignment, AtomicOrdering SuccessOrdering, 5668 AtomicOrdering FailureOrdering, SyncScope::ID SSID) { 5669 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5670 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5671 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5672 5673 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5674 Alignment = getEVTAlignment(MemVT); 5675 5676 MachineFunction &MF = getMachineFunction(); 5677 5678 // FIXME: Volatile isn't really correct; we should keep track of atomic 5679 // orderings in the memoperand. 5680 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5681 MachineMemOperand::MOStore; 5682 MachineMemOperand *MMO = 5683 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5684 AAMDNodes(), nullptr, SSID, SuccessOrdering, 5685 FailureOrdering); 5686 5687 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5688 } 5689 5690 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5691 EVT MemVT, SDVTList VTs, SDValue Chain, 5692 SDValue Ptr, SDValue Cmp, SDValue Swp, 5693 MachineMemOperand *MMO) { 5694 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5695 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5696 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5697 5698 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5699 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5700 } 5701 5702 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5703 SDValue Chain, SDValue Ptr, SDValue Val, 5704 const Value *PtrVal, unsigned Alignment, 5705 AtomicOrdering Ordering, 5706 SyncScope::ID SSID) { 5707 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5708 Alignment = getEVTAlignment(MemVT); 5709 5710 MachineFunction &MF = getMachineFunction(); 5711 // An atomic store does not load. An atomic load does not store. 5712 // (An atomicrmw obviously both loads and stores.) 5713 // For now, atomics are considered to be volatile always, and they are 5714 // chained as such. 5715 // FIXME: Volatile isn't really correct; we should keep track of atomic 5716 // orderings in the memoperand. 5717 auto Flags = MachineMemOperand::MOVolatile; 5718 if (Opcode != ISD::ATOMIC_STORE) 5719 Flags |= MachineMemOperand::MOLoad; 5720 if (Opcode != ISD::ATOMIC_LOAD) 5721 Flags |= MachineMemOperand::MOStore; 5722 5723 MachineMemOperand *MMO = 5724 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5725 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5726 nullptr, SSID, Ordering); 5727 5728 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5729 } 5730 5731 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5732 SDValue Chain, SDValue Ptr, SDValue Val, 5733 MachineMemOperand *MMO) { 5734 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5735 Opcode == ISD::ATOMIC_LOAD_SUB || 5736 Opcode == ISD::ATOMIC_LOAD_AND || 5737 Opcode == ISD::ATOMIC_LOAD_OR || 5738 Opcode == ISD::ATOMIC_LOAD_XOR || 5739 Opcode == ISD::ATOMIC_LOAD_NAND || 5740 Opcode == ISD::ATOMIC_LOAD_MIN || 5741 Opcode == ISD::ATOMIC_LOAD_MAX || 5742 Opcode == ISD::ATOMIC_LOAD_UMIN || 5743 Opcode == ISD::ATOMIC_LOAD_UMAX || 5744 Opcode == ISD::ATOMIC_SWAP || 5745 Opcode == ISD::ATOMIC_STORE) && 5746 "Invalid Atomic Op"); 5747 5748 EVT VT = Val.getValueType(); 5749 5750 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5751 getVTList(VT, MVT::Other); 5752 SDValue Ops[] = {Chain, Ptr, Val}; 5753 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5754 } 5755 5756 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5757 EVT VT, SDValue Chain, SDValue Ptr, 5758 MachineMemOperand *MMO) { 5759 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5760 5761 SDVTList VTs = getVTList(VT, MVT::Other); 5762 SDValue Ops[] = {Chain, Ptr}; 5763 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5764 } 5765 5766 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5767 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5768 if (Ops.size() == 1) 5769 return Ops[0]; 5770 5771 SmallVector<EVT, 4> VTs; 5772 VTs.reserve(Ops.size()); 5773 for (unsigned i = 0; i < Ops.size(); ++i) 5774 VTs.push_back(Ops[i].getValueType()); 5775 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5776 } 5777 5778 SDValue SelectionDAG::getMemIntrinsicNode( 5779 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5780 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 5781 bool ReadMem, bool WriteMem, unsigned Size) { 5782 if (Align == 0) // Ensure that codegen never sees alignment 0 5783 Align = getEVTAlignment(MemVT); 5784 5785 MachineFunction &MF = getMachineFunction(); 5786 auto Flags = MachineMemOperand::MONone; 5787 if (WriteMem) 5788 Flags |= MachineMemOperand::MOStore; 5789 if (ReadMem) 5790 Flags |= MachineMemOperand::MOLoad; 5791 if (Vol) 5792 Flags |= MachineMemOperand::MOVolatile; 5793 if (!Size) 5794 Size = MemVT.getStoreSize(); 5795 MachineMemOperand *MMO = 5796 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5797 5798 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5799 } 5800 5801 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5802 SDVTList VTList, 5803 ArrayRef<SDValue> Ops, EVT MemVT, 5804 MachineMemOperand *MMO) { 5805 assert((Opcode == ISD::INTRINSIC_VOID || 5806 Opcode == ISD::INTRINSIC_W_CHAIN || 5807 Opcode == ISD::PREFETCH || 5808 Opcode == ISD::LIFETIME_START || 5809 Opcode == ISD::LIFETIME_END || 5810 ((int)Opcode <= std::numeric_limits<int>::max() && 5811 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5812 "Opcode is not a memory-accessing opcode!"); 5813 5814 // Memoize the node unless it returns a flag. 5815 MemIntrinsicSDNode *N; 5816 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5817 FoldingSetNodeID ID; 5818 AddNodeIDNode(ID, Opcode, VTList, Ops); 5819 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 5820 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 5821 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5822 void *IP = nullptr; 5823 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5824 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5825 return SDValue(E, 0); 5826 } 5827 5828 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5829 VTList, MemVT, MMO); 5830 createOperands(N, Ops); 5831 5832 CSEMap.InsertNode(N, IP); 5833 } else { 5834 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5835 VTList, MemVT, MMO); 5836 createOperands(N, Ops); 5837 } 5838 InsertNode(N); 5839 return SDValue(N, 0); 5840 } 5841 5842 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5843 /// MachinePointerInfo record from it. This is particularly useful because the 5844 /// code generator has many cases where it doesn't bother passing in a 5845 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5846 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 5847 SelectionDAG &DAG, SDValue Ptr, 5848 int64_t Offset = 0) { 5849 // If this is FI+Offset, we can model it. 5850 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5851 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5852 FI->getIndex(), Offset); 5853 5854 // If this is (FI+Offset1)+Offset2, we can model it. 5855 if (Ptr.getOpcode() != ISD::ADD || 5856 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5857 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5858 return Info; 5859 5860 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5861 return MachinePointerInfo::getFixedStack( 5862 DAG.getMachineFunction(), FI, 5863 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5864 } 5865 5866 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5867 /// MachinePointerInfo record from it. This is particularly useful because the 5868 /// code generator has many cases where it doesn't bother passing in a 5869 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5870 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 5871 SelectionDAG &DAG, SDValue Ptr, 5872 SDValue OffsetOp) { 5873 // If the 'Offset' value isn't a constant, we can't handle this. 5874 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5875 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 5876 if (OffsetOp.isUndef()) 5877 return InferPointerInfo(Info, DAG, Ptr); 5878 return Info; 5879 } 5880 5881 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5882 EVT VT, const SDLoc &dl, SDValue Chain, 5883 SDValue Ptr, SDValue Offset, 5884 MachinePointerInfo PtrInfo, EVT MemVT, 5885 unsigned Alignment, 5886 MachineMemOperand::Flags MMOFlags, 5887 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5888 assert(Chain.getValueType() == MVT::Other && 5889 "Invalid chain type"); 5890 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5891 Alignment = getEVTAlignment(MemVT); 5892 5893 MMOFlags |= MachineMemOperand::MOLoad; 5894 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5895 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5896 // clients. 5897 if (PtrInfo.V.isNull()) 5898 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 5899 5900 MachineFunction &MF = getMachineFunction(); 5901 MachineMemOperand *MMO = MF.getMachineMemOperand( 5902 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5903 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5904 } 5905 5906 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5907 EVT VT, const SDLoc &dl, SDValue Chain, 5908 SDValue Ptr, SDValue Offset, EVT MemVT, 5909 MachineMemOperand *MMO) { 5910 if (VT == MemVT) { 5911 ExtType = ISD::NON_EXTLOAD; 5912 } else if (ExtType == ISD::NON_EXTLOAD) { 5913 assert(VT == MemVT && "Non-extending load from different memory type!"); 5914 } else { 5915 // Extending load. 5916 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5917 "Should only be an extending load, not truncating!"); 5918 assert(VT.isInteger() == MemVT.isInteger() && 5919 "Cannot convert from FP to Int or Int -> FP!"); 5920 assert(VT.isVector() == MemVT.isVector() && 5921 "Cannot use an ext load to convert to or from a vector!"); 5922 assert((!VT.isVector() || 5923 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5924 "Cannot use an ext load to change the number of vector elements!"); 5925 } 5926 5927 bool Indexed = AM != ISD::UNINDEXED; 5928 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5929 5930 SDVTList VTs = Indexed ? 5931 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5932 SDValue Ops[] = { Chain, Ptr, Offset }; 5933 FoldingSetNodeID ID; 5934 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5935 ID.AddInteger(MemVT.getRawBits()); 5936 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5937 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5938 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5939 void *IP = nullptr; 5940 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5941 cast<LoadSDNode>(E)->refineAlignment(MMO); 5942 return SDValue(E, 0); 5943 } 5944 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5945 ExtType, MemVT, MMO); 5946 createOperands(N, Ops); 5947 5948 CSEMap.InsertNode(N, IP); 5949 InsertNode(N); 5950 return SDValue(N, 0); 5951 } 5952 5953 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5954 SDValue Ptr, MachinePointerInfo PtrInfo, 5955 unsigned Alignment, 5956 MachineMemOperand::Flags MMOFlags, 5957 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5958 SDValue Undef = getUNDEF(Ptr.getValueType()); 5959 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5960 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5961 } 5962 5963 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5964 SDValue Ptr, MachineMemOperand *MMO) { 5965 SDValue Undef = getUNDEF(Ptr.getValueType()); 5966 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5967 VT, MMO); 5968 } 5969 5970 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5971 EVT VT, SDValue Chain, SDValue Ptr, 5972 MachinePointerInfo PtrInfo, EVT MemVT, 5973 unsigned Alignment, 5974 MachineMemOperand::Flags MMOFlags, 5975 const AAMDNodes &AAInfo) { 5976 SDValue Undef = getUNDEF(Ptr.getValueType()); 5977 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5978 MemVT, Alignment, MMOFlags, AAInfo); 5979 } 5980 5981 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5982 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5983 MachineMemOperand *MMO) { 5984 SDValue Undef = getUNDEF(Ptr.getValueType()); 5985 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5986 MemVT, MMO); 5987 } 5988 5989 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5990 SDValue Base, SDValue Offset, 5991 ISD::MemIndexedMode AM) { 5992 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5993 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5994 // Don't propagate the invariant or dereferenceable flags. 5995 auto MMOFlags = 5996 LD->getMemOperand()->getFlags() & 5997 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5998 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5999 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6000 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6001 LD->getAAInfo()); 6002 } 6003 6004 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6005 SDValue Ptr, MachinePointerInfo PtrInfo, 6006 unsigned Alignment, 6007 MachineMemOperand::Flags MMOFlags, 6008 const AAMDNodes &AAInfo) { 6009 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6010 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6011 Alignment = getEVTAlignment(Val.getValueType()); 6012 6013 MMOFlags |= MachineMemOperand::MOStore; 6014 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6015 6016 if (PtrInfo.V.isNull()) 6017 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6018 6019 MachineFunction &MF = getMachineFunction(); 6020 MachineMemOperand *MMO = MF.getMachineMemOperand( 6021 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6022 return getStore(Chain, dl, Val, Ptr, MMO); 6023 } 6024 6025 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6026 SDValue Ptr, MachineMemOperand *MMO) { 6027 assert(Chain.getValueType() == MVT::Other && 6028 "Invalid chain type"); 6029 EVT VT = Val.getValueType(); 6030 SDVTList VTs = getVTList(MVT::Other); 6031 SDValue Undef = getUNDEF(Ptr.getValueType()); 6032 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6033 FoldingSetNodeID ID; 6034 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6035 ID.AddInteger(VT.getRawBits()); 6036 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6037 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6038 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6039 void *IP = nullptr; 6040 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6041 cast<StoreSDNode>(E)->refineAlignment(MMO); 6042 return SDValue(E, 0); 6043 } 6044 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6045 ISD::UNINDEXED, false, VT, MMO); 6046 createOperands(N, Ops); 6047 6048 CSEMap.InsertNode(N, IP); 6049 InsertNode(N); 6050 return SDValue(N, 0); 6051 } 6052 6053 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6054 SDValue Ptr, MachinePointerInfo PtrInfo, 6055 EVT SVT, unsigned Alignment, 6056 MachineMemOperand::Flags MMOFlags, 6057 const AAMDNodes &AAInfo) { 6058 assert(Chain.getValueType() == MVT::Other && 6059 "Invalid chain type"); 6060 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6061 Alignment = getEVTAlignment(SVT); 6062 6063 MMOFlags |= MachineMemOperand::MOStore; 6064 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6065 6066 if (PtrInfo.V.isNull()) 6067 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6068 6069 MachineFunction &MF = getMachineFunction(); 6070 MachineMemOperand *MMO = MF.getMachineMemOperand( 6071 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6072 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6073 } 6074 6075 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6076 SDValue Ptr, EVT SVT, 6077 MachineMemOperand *MMO) { 6078 EVT VT = Val.getValueType(); 6079 6080 assert(Chain.getValueType() == MVT::Other && 6081 "Invalid chain type"); 6082 if (VT == SVT) 6083 return getStore(Chain, dl, Val, Ptr, MMO); 6084 6085 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6086 "Should only be a truncating store, not extending!"); 6087 assert(VT.isInteger() == SVT.isInteger() && 6088 "Can't do FP-INT conversion!"); 6089 assert(VT.isVector() == SVT.isVector() && 6090 "Cannot use trunc store to convert to or from a vector!"); 6091 assert((!VT.isVector() || 6092 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6093 "Cannot use trunc store to change the number of vector elements!"); 6094 6095 SDVTList VTs = getVTList(MVT::Other); 6096 SDValue Undef = getUNDEF(Ptr.getValueType()); 6097 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6098 FoldingSetNodeID ID; 6099 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6100 ID.AddInteger(SVT.getRawBits()); 6101 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6102 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6103 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6104 void *IP = nullptr; 6105 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6106 cast<StoreSDNode>(E)->refineAlignment(MMO); 6107 return SDValue(E, 0); 6108 } 6109 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6110 ISD::UNINDEXED, true, SVT, MMO); 6111 createOperands(N, Ops); 6112 6113 CSEMap.InsertNode(N, IP); 6114 InsertNode(N); 6115 return SDValue(N, 0); 6116 } 6117 6118 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6119 SDValue Base, SDValue Offset, 6120 ISD::MemIndexedMode AM) { 6121 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6122 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6123 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6124 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6125 FoldingSetNodeID ID; 6126 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6127 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6128 ID.AddInteger(ST->getRawSubclassData()); 6129 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6130 void *IP = nullptr; 6131 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6132 return SDValue(E, 0); 6133 6134 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6135 ST->isTruncatingStore(), ST->getMemoryVT(), 6136 ST->getMemOperand()); 6137 createOperands(N, Ops); 6138 6139 CSEMap.InsertNode(N, IP); 6140 InsertNode(N); 6141 return SDValue(N, 0); 6142 } 6143 6144 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6145 SDValue Ptr, SDValue Mask, SDValue Src0, 6146 EVT MemVT, MachineMemOperand *MMO, 6147 ISD::LoadExtType ExtTy, bool isExpanding) { 6148 SDVTList VTs = getVTList(VT, MVT::Other); 6149 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 6150 FoldingSetNodeID ID; 6151 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6152 ID.AddInteger(VT.getRawBits()); 6153 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6154 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6155 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6156 void *IP = nullptr; 6157 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6158 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6159 return SDValue(E, 0); 6160 } 6161 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6162 ExtTy, isExpanding, MemVT, MMO); 6163 createOperands(N, Ops); 6164 6165 CSEMap.InsertNode(N, IP); 6166 InsertNode(N); 6167 return SDValue(N, 0); 6168 } 6169 6170 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6171 SDValue Val, SDValue Ptr, SDValue Mask, 6172 EVT MemVT, MachineMemOperand *MMO, 6173 bool IsTruncating, bool IsCompressing) { 6174 assert(Chain.getValueType() == MVT::Other && 6175 "Invalid chain type"); 6176 EVT VT = Val.getValueType(); 6177 SDVTList VTs = getVTList(MVT::Other); 6178 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 6179 FoldingSetNodeID ID; 6180 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6181 ID.AddInteger(VT.getRawBits()); 6182 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6183 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6184 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6185 void *IP = nullptr; 6186 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6187 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6188 return SDValue(E, 0); 6189 } 6190 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6191 IsTruncating, IsCompressing, MemVT, MMO); 6192 createOperands(N, Ops); 6193 6194 CSEMap.InsertNode(N, IP); 6195 InsertNode(N); 6196 return SDValue(N, 0); 6197 } 6198 6199 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6200 ArrayRef<SDValue> Ops, 6201 MachineMemOperand *MMO) { 6202 assert(Ops.size() == 5 && "Incompatible number of operands"); 6203 6204 FoldingSetNodeID ID; 6205 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6206 ID.AddInteger(VT.getRawBits()); 6207 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6208 dl.getIROrder(), VTs, VT, MMO)); 6209 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6210 void *IP = nullptr; 6211 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6212 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6213 return SDValue(E, 0); 6214 } 6215 6216 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6217 VTs, VT, MMO); 6218 createOperands(N, Ops); 6219 6220 assert(N->getValue().getValueType() == N->getValueType(0) && 6221 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6222 assert(N->getMask().getValueType().getVectorNumElements() == 6223 N->getValueType(0).getVectorNumElements() && 6224 "Vector width mismatch between mask and data"); 6225 assert(N->getIndex().getValueType().getVectorNumElements() == 6226 N->getValueType(0).getVectorNumElements() && 6227 "Vector width mismatch between index and data"); 6228 6229 CSEMap.InsertNode(N, IP); 6230 InsertNode(N); 6231 return SDValue(N, 0); 6232 } 6233 6234 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6235 ArrayRef<SDValue> Ops, 6236 MachineMemOperand *MMO) { 6237 assert(Ops.size() == 5 && "Incompatible number of operands"); 6238 6239 FoldingSetNodeID ID; 6240 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6241 ID.AddInteger(VT.getRawBits()); 6242 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6243 dl.getIROrder(), VTs, VT, MMO)); 6244 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6245 void *IP = nullptr; 6246 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6247 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6248 return SDValue(E, 0); 6249 } 6250 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6251 VTs, VT, MMO); 6252 createOperands(N, Ops); 6253 6254 assert(N->getMask().getValueType().getVectorNumElements() == 6255 N->getValue().getValueType().getVectorNumElements() && 6256 "Vector width mismatch between mask and data"); 6257 assert(N->getIndex().getValueType().getVectorNumElements() == 6258 N->getValue().getValueType().getVectorNumElements() && 6259 "Vector width mismatch between index and data"); 6260 6261 CSEMap.InsertNode(N, IP); 6262 InsertNode(N); 6263 return SDValue(N, 0); 6264 } 6265 6266 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 6267 SDValue Ptr, SDValue SV, unsigned Align) { 6268 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 6269 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 6270 } 6271 6272 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6273 ArrayRef<SDUse> Ops) { 6274 switch (Ops.size()) { 6275 case 0: return getNode(Opcode, DL, VT); 6276 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 6277 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 6278 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6279 default: break; 6280 } 6281 6282 // Copy from an SDUse array into an SDValue array for use with 6283 // the regular getNode logic. 6284 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 6285 return getNode(Opcode, DL, VT, NewOps); 6286 } 6287 6288 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6289 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 6290 unsigned NumOps = Ops.size(); 6291 switch (NumOps) { 6292 case 0: return getNode(Opcode, DL, VT); 6293 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 6294 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 6295 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6296 default: break; 6297 } 6298 6299 switch (Opcode) { 6300 default: break; 6301 case ISD::CONCAT_VECTORS: 6302 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 6303 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 6304 return V; 6305 break; 6306 case ISD::SELECT_CC: 6307 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 6308 assert(Ops[0].getValueType() == Ops[1].getValueType() && 6309 "LHS and RHS of condition must have same type!"); 6310 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6311 "True and False arms of SelectCC must have same type!"); 6312 assert(Ops[2].getValueType() == VT && 6313 "select_cc node must be of same type as true and false value!"); 6314 break; 6315 case ISD::BR_CC: 6316 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 6317 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6318 "LHS/RHS of comparison should match types!"); 6319 break; 6320 } 6321 6322 // Memoize nodes. 6323 SDNode *N; 6324 SDVTList VTs = getVTList(VT); 6325 6326 if (VT != MVT::Glue) { 6327 FoldingSetNodeID ID; 6328 AddNodeIDNode(ID, Opcode, VTs, Ops); 6329 void *IP = nullptr; 6330 6331 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6332 return SDValue(E, 0); 6333 6334 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6335 createOperands(N, Ops); 6336 6337 CSEMap.InsertNode(N, IP); 6338 } else { 6339 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6340 createOperands(N, Ops); 6341 } 6342 6343 InsertNode(N); 6344 return SDValue(N, 0); 6345 } 6346 6347 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6348 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 6349 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 6350 } 6351 6352 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6353 ArrayRef<SDValue> Ops) { 6354 if (VTList.NumVTs == 1) 6355 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6356 6357 #if 0 6358 switch (Opcode) { 6359 // FIXME: figure out how to safely handle things like 6360 // int foo(int x) { return 1 << (x & 255); } 6361 // int bar() { return foo(256); } 6362 case ISD::SRA_PARTS: 6363 case ISD::SRL_PARTS: 6364 case ISD::SHL_PARTS: 6365 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6366 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6367 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6368 else if (N3.getOpcode() == ISD::AND) 6369 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6370 // If the and is only masking out bits that cannot effect the shift, 6371 // eliminate the and. 6372 unsigned NumBits = VT.getScalarSizeInBits()*2; 6373 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6374 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6375 } 6376 break; 6377 } 6378 #endif 6379 6380 // Memoize the node unless it returns a flag. 6381 SDNode *N; 6382 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6383 FoldingSetNodeID ID; 6384 AddNodeIDNode(ID, Opcode, VTList, Ops); 6385 void *IP = nullptr; 6386 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6387 return SDValue(E, 0); 6388 6389 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6390 createOperands(N, Ops); 6391 CSEMap.InsertNode(N, IP); 6392 } else { 6393 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6394 createOperands(N, Ops); 6395 } 6396 InsertNode(N); 6397 return SDValue(N, 0); 6398 } 6399 6400 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6401 SDVTList VTList) { 6402 return getNode(Opcode, DL, VTList, None); 6403 } 6404 6405 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6406 SDValue N1) { 6407 SDValue Ops[] = { N1 }; 6408 return getNode(Opcode, DL, VTList, Ops); 6409 } 6410 6411 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6412 SDValue N1, SDValue N2) { 6413 SDValue Ops[] = { N1, N2 }; 6414 return getNode(Opcode, DL, VTList, Ops); 6415 } 6416 6417 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6418 SDValue N1, SDValue N2, SDValue N3) { 6419 SDValue Ops[] = { N1, N2, N3 }; 6420 return getNode(Opcode, DL, VTList, Ops); 6421 } 6422 6423 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6424 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6425 SDValue Ops[] = { N1, N2, N3, N4 }; 6426 return getNode(Opcode, DL, VTList, Ops); 6427 } 6428 6429 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6430 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6431 SDValue N5) { 6432 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6433 return getNode(Opcode, DL, VTList, Ops); 6434 } 6435 6436 SDVTList SelectionDAG::getVTList(EVT VT) { 6437 return makeVTList(SDNode::getValueTypeList(VT), 1); 6438 } 6439 6440 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6441 FoldingSetNodeID ID; 6442 ID.AddInteger(2U); 6443 ID.AddInteger(VT1.getRawBits()); 6444 ID.AddInteger(VT2.getRawBits()); 6445 6446 void *IP = nullptr; 6447 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6448 if (!Result) { 6449 EVT *Array = Allocator.Allocate<EVT>(2); 6450 Array[0] = VT1; 6451 Array[1] = VT2; 6452 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6453 VTListMap.InsertNode(Result, IP); 6454 } 6455 return Result->getSDVTList(); 6456 } 6457 6458 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6459 FoldingSetNodeID ID; 6460 ID.AddInteger(3U); 6461 ID.AddInteger(VT1.getRawBits()); 6462 ID.AddInteger(VT2.getRawBits()); 6463 ID.AddInteger(VT3.getRawBits()); 6464 6465 void *IP = nullptr; 6466 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6467 if (!Result) { 6468 EVT *Array = Allocator.Allocate<EVT>(3); 6469 Array[0] = VT1; 6470 Array[1] = VT2; 6471 Array[2] = VT3; 6472 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6473 VTListMap.InsertNode(Result, IP); 6474 } 6475 return Result->getSDVTList(); 6476 } 6477 6478 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6479 FoldingSetNodeID ID; 6480 ID.AddInteger(4U); 6481 ID.AddInteger(VT1.getRawBits()); 6482 ID.AddInteger(VT2.getRawBits()); 6483 ID.AddInteger(VT3.getRawBits()); 6484 ID.AddInteger(VT4.getRawBits()); 6485 6486 void *IP = nullptr; 6487 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6488 if (!Result) { 6489 EVT *Array = Allocator.Allocate<EVT>(4); 6490 Array[0] = VT1; 6491 Array[1] = VT2; 6492 Array[2] = VT3; 6493 Array[3] = VT4; 6494 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6495 VTListMap.InsertNode(Result, IP); 6496 } 6497 return Result->getSDVTList(); 6498 } 6499 6500 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6501 unsigned NumVTs = VTs.size(); 6502 FoldingSetNodeID ID; 6503 ID.AddInteger(NumVTs); 6504 for (unsigned index = 0; index < NumVTs; index++) { 6505 ID.AddInteger(VTs[index].getRawBits()); 6506 } 6507 6508 void *IP = nullptr; 6509 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6510 if (!Result) { 6511 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6512 std::copy(VTs.begin(), VTs.end(), Array); 6513 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6514 VTListMap.InsertNode(Result, IP); 6515 } 6516 return Result->getSDVTList(); 6517 } 6518 6519 6520 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6521 /// specified operands. If the resultant node already exists in the DAG, 6522 /// this does not modify the specified node, instead it returns the node that 6523 /// already exists. If the resultant node does not exist in the DAG, the 6524 /// input node is returned. As a degenerate case, if you specify the same 6525 /// input operands as the node already has, the input node is returned. 6526 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6527 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6528 6529 // Check to see if there is no change. 6530 if (Op == N->getOperand(0)) return N; 6531 6532 // See if the modified node already exists. 6533 void *InsertPos = nullptr; 6534 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6535 return Existing; 6536 6537 // Nope it doesn't. Remove the node from its current place in the maps. 6538 if (InsertPos) 6539 if (!RemoveNodeFromCSEMaps(N)) 6540 InsertPos = nullptr; 6541 6542 // Now we update the operands. 6543 N->OperandList[0].set(Op); 6544 6545 // If this gets put into a CSE map, add it. 6546 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6547 return N; 6548 } 6549 6550 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6551 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6552 6553 // Check to see if there is no change. 6554 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6555 return N; // No operands changed, just return the input node. 6556 6557 // See if the modified node already exists. 6558 void *InsertPos = nullptr; 6559 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6560 return Existing; 6561 6562 // Nope it doesn't. Remove the node from its current place in the maps. 6563 if (InsertPos) 6564 if (!RemoveNodeFromCSEMaps(N)) 6565 InsertPos = nullptr; 6566 6567 // Now we update the operands. 6568 if (N->OperandList[0] != Op1) 6569 N->OperandList[0].set(Op1); 6570 if (N->OperandList[1] != Op2) 6571 N->OperandList[1].set(Op2); 6572 6573 // If this gets put into a CSE map, add it. 6574 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6575 return N; 6576 } 6577 6578 SDNode *SelectionDAG:: 6579 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6580 SDValue Ops[] = { Op1, Op2, Op3 }; 6581 return UpdateNodeOperands(N, Ops); 6582 } 6583 6584 SDNode *SelectionDAG:: 6585 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6586 SDValue Op3, SDValue Op4) { 6587 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6588 return UpdateNodeOperands(N, Ops); 6589 } 6590 6591 SDNode *SelectionDAG:: 6592 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6593 SDValue Op3, SDValue Op4, SDValue Op5) { 6594 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6595 return UpdateNodeOperands(N, Ops); 6596 } 6597 6598 SDNode *SelectionDAG:: 6599 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6600 unsigned NumOps = Ops.size(); 6601 assert(N->getNumOperands() == NumOps && 6602 "Update with wrong number of operands"); 6603 6604 // If no operands changed just return the input node. 6605 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6606 return N; 6607 6608 // See if the modified node already exists. 6609 void *InsertPos = nullptr; 6610 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6611 return Existing; 6612 6613 // Nope it doesn't. Remove the node from its current place in the maps. 6614 if (InsertPos) 6615 if (!RemoveNodeFromCSEMaps(N)) 6616 InsertPos = nullptr; 6617 6618 // Now we update the operands. 6619 for (unsigned i = 0; i != NumOps; ++i) 6620 if (N->OperandList[i] != Ops[i]) 6621 N->OperandList[i].set(Ops[i]); 6622 6623 // If this gets put into a CSE map, add it. 6624 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6625 return N; 6626 } 6627 6628 /// DropOperands - Release the operands and set this node to have 6629 /// zero operands. 6630 void SDNode::DropOperands() { 6631 // Unlike the code in MorphNodeTo that does this, we don't need to 6632 // watch for dead nodes here. 6633 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6634 SDUse &Use = *I++; 6635 Use.set(SDValue()); 6636 } 6637 } 6638 6639 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6640 /// machine opcode. 6641 /// 6642 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6643 EVT VT) { 6644 SDVTList VTs = getVTList(VT); 6645 return SelectNodeTo(N, MachineOpc, VTs, None); 6646 } 6647 6648 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6649 EVT VT, SDValue Op1) { 6650 SDVTList VTs = getVTList(VT); 6651 SDValue Ops[] = { Op1 }; 6652 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6653 } 6654 6655 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6656 EVT VT, SDValue Op1, 6657 SDValue Op2) { 6658 SDVTList VTs = getVTList(VT); 6659 SDValue Ops[] = { Op1, Op2 }; 6660 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6661 } 6662 6663 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6664 EVT VT, SDValue Op1, 6665 SDValue Op2, SDValue Op3) { 6666 SDVTList VTs = getVTList(VT); 6667 SDValue Ops[] = { Op1, Op2, Op3 }; 6668 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6669 } 6670 6671 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6672 EVT VT, ArrayRef<SDValue> Ops) { 6673 SDVTList VTs = getVTList(VT); 6674 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6675 } 6676 6677 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6678 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6679 SDVTList VTs = getVTList(VT1, VT2); 6680 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6681 } 6682 6683 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6684 EVT VT1, EVT VT2) { 6685 SDVTList VTs = getVTList(VT1, VT2); 6686 return SelectNodeTo(N, MachineOpc, VTs, None); 6687 } 6688 6689 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6690 EVT VT1, EVT VT2, EVT VT3, 6691 ArrayRef<SDValue> Ops) { 6692 SDVTList VTs = getVTList(VT1, VT2, VT3); 6693 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6694 } 6695 6696 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6697 EVT VT1, EVT VT2, 6698 SDValue Op1, SDValue Op2) { 6699 SDVTList VTs = getVTList(VT1, VT2); 6700 SDValue Ops[] = { Op1, Op2 }; 6701 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6702 } 6703 6704 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6705 SDVTList VTs,ArrayRef<SDValue> Ops) { 6706 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6707 // Reset the NodeID to -1. 6708 New->setNodeId(-1); 6709 if (New != N) { 6710 ReplaceAllUsesWith(N, New); 6711 RemoveDeadNode(N); 6712 } 6713 return New; 6714 } 6715 6716 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6717 /// the line number information on the merged node since it is not possible to 6718 /// preserve the information that operation is associated with multiple lines. 6719 /// This will make the debugger working better at -O0, were there is a higher 6720 /// probability having other instructions associated with that line. 6721 /// 6722 /// For IROrder, we keep the smaller of the two 6723 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6724 DebugLoc NLoc = N->getDebugLoc(); 6725 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6726 N->setDebugLoc(DebugLoc()); 6727 } 6728 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6729 N->setIROrder(Order); 6730 return N; 6731 } 6732 6733 /// MorphNodeTo - This *mutates* the specified node to have the specified 6734 /// return type, opcode, and operands. 6735 /// 6736 /// Note that MorphNodeTo returns the resultant node. If there is already a 6737 /// node of the specified opcode and operands, it returns that node instead of 6738 /// the current one. Note that the SDLoc need not be the same. 6739 /// 6740 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6741 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6742 /// node, and because it doesn't require CSE recalculation for any of 6743 /// the node's users. 6744 /// 6745 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6746 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6747 /// the legalizer which maintain worklists that would need to be updated when 6748 /// deleting things. 6749 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6750 SDVTList VTs, ArrayRef<SDValue> Ops) { 6751 // If an identical node already exists, use it. 6752 void *IP = nullptr; 6753 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6754 FoldingSetNodeID ID; 6755 AddNodeIDNode(ID, Opc, VTs, Ops); 6756 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6757 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6758 } 6759 6760 if (!RemoveNodeFromCSEMaps(N)) 6761 IP = nullptr; 6762 6763 // Start the morphing. 6764 N->NodeType = Opc; 6765 N->ValueList = VTs.VTs; 6766 N->NumValues = VTs.NumVTs; 6767 6768 // Clear the operands list, updating used nodes to remove this from their 6769 // use list. Keep track of any operands that become dead as a result. 6770 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6771 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6772 SDUse &Use = *I++; 6773 SDNode *Used = Use.getNode(); 6774 Use.set(SDValue()); 6775 if (Used->use_empty()) 6776 DeadNodeSet.insert(Used); 6777 } 6778 6779 // For MachineNode, initialize the memory references information. 6780 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6781 MN->setMemRefs(nullptr, nullptr); 6782 6783 // Swap for an appropriately sized array from the recycler. 6784 removeOperands(N); 6785 createOperands(N, Ops); 6786 6787 // Delete any nodes that are still dead after adding the uses for the 6788 // new operands. 6789 if (!DeadNodeSet.empty()) { 6790 SmallVector<SDNode *, 16> DeadNodes; 6791 for (SDNode *N : DeadNodeSet) 6792 if (N->use_empty()) 6793 DeadNodes.push_back(N); 6794 RemoveDeadNodes(DeadNodes); 6795 } 6796 6797 if (IP) 6798 CSEMap.InsertNode(N, IP); // Memoize the new node. 6799 return N; 6800 } 6801 6802 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 6803 unsigned OrigOpc = Node->getOpcode(); 6804 unsigned NewOpc; 6805 bool IsUnary = false; 6806 bool IsTernary = false; 6807 switch (OrigOpc) { 6808 default: 6809 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 6810 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 6811 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 6812 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 6813 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 6814 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 6815 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 6816 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 6817 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 6818 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 6819 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 6820 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 6821 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 6822 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 6823 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 6824 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 6825 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 6826 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 6827 case ISD::STRICT_FNEARBYINT: 6828 NewOpc = ISD::FNEARBYINT; 6829 IsUnary = true; 6830 break; 6831 } 6832 6833 // We're taking this node out of the chain, so we need to re-link things. 6834 SDValue InputChain = Node->getOperand(0); 6835 SDValue OutputChain = SDValue(Node, 1); 6836 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 6837 6838 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 6839 SDNode *Res = nullptr; 6840 if (IsUnary) 6841 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 6842 else if (IsTernary) 6843 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6844 Node->getOperand(2), 6845 Node->getOperand(3)}); 6846 else 6847 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6848 Node->getOperand(2) }); 6849 6850 // MorphNodeTo can operate in two ways: if an existing node with the 6851 // specified operands exists, it can just return it. Otherwise, it 6852 // updates the node in place to have the requested operands. 6853 if (Res == Node) { 6854 // If we updated the node in place, reset the node ID. To the isel, 6855 // this should be just like a newly allocated machine node. 6856 Res->setNodeId(-1); 6857 } else { 6858 ReplaceAllUsesWith(Node, Res); 6859 RemoveDeadNode(Node); 6860 } 6861 6862 return Res; 6863 } 6864 6865 /// getMachineNode - These are used for target selectors to create a new node 6866 /// with specified return type(s), MachineInstr opcode, and operands. 6867 /// 6868 /// Note that getMachineNode returns the resultant node. If there is already a 6869 /// node of the specified opcode and operands, it returns that node instead of 6870 /// the current one. 6871 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6872 EVT VT) { 6873 SDVTList VTs = getVTList(VT); 6874 return getMachineNode(Opcode, dl, VTs, None); 6875 } 6876 6877 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6878 EVT VT, SDValue Op1) { 6879 SDVTList VTs = getVTList(VT); 6880 SDValue Ops[] = { Op1 }; 6881 return getMachineNode(Opcode, dl, VTs, Ops); 6882 } 6883 6884 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6885 EVT VT, SDValue Op1, SDValue Op2) { 6886 SDVTList VTs = getVTList(VT); 6887 SDValue Ops[] = { Op1, Op2 }; 6888 return getMachineNode(Opcode, dl, VTs, Ops); 6889 } 6890 6891 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6892 EVT VT, SDValue Op1, SDValue Op2, 6893 SDValue Op3) { 6894 SDVTList VTs = getVTList(VT); 6895 SDValue Ops[] = { Op1, Op2, Op3 }; 6896 return getMachineNode(Opcode, dl, VTs, Ops); 6897 } 6898 6899 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6900 EVT VT, ArrayRef<SDValue> Ops) { 6901 SDVTList VTs = getVTList(VT); 6902 return getMachineNode(Opcode, dl, VTs, Ops); 6903 } 6904 6905 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6906 EVT VT1, EVT VT2, SDValue Op1, 6907 SDValue Op2) { 6908 SDVTList VTs = getVTList(VT1, VT2); 6909 SDValue Ops[] = { Op1, Op2 }; 6910 return getMachineNode(Opcode, dl, VTs, Ops); 6911 } 6912 6913 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6914 EVT VT1, EVT VT2, SDValue Op1, 6915 SDValue Op2, SDValue Op3) { 6916 SDVTList VTs = getVTList(VT1, VT2); 6917 SDValue Ops[] = { Op1, Op2, Op3 }; 6918 return getMachineNode(Opcode, dl, VTs, Ops); 6919 } 6920 6921 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6922 EVT VT1, EVT VT2, 6923 ArrayRef<SDValue> Ops) { 6924 SDVTList VTs = getVTList(VT1, VT2); 6925 return getMachineNode(Opcode, dl, VTs, Ops); 6926 } 6927 6928 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6929 EVT VT1, EVT VT2, EVT VT3, 6930 SDValue Op1, SDValue Op2) { 6931 SDVTList VTs = getVTList(VT1, VT2, VT3); 6932 SDValue Ops[] = { Op1, Op2 }; 6933 return getMachineNode(Opcode, dl, VTs, Ops); 6934 } 6935 6936 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6937 EVT VT1, EVT VT2, EVT VT3, 6938 SDValue Op1, SDValue Op2, 6939 SDValue Op3) { 6940 SDVTList VTs = getVTList(VT1, VT2, VT3); 6941 SDValue Ops[] = { Op1, Op2, Op3 }; 6942 return getMachineNode(Opcode, dl, VTs, Ops); 6943 } 6944 6945 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6946 EVT VT1, EVT VT2, EVT VT3, 6947 ArrayRef<SDValue> Ops) { 6948 SDVTList VTs = getVTList(VT1, VT2, VT3); 6949 return getMachineNode(Opcode, dl, VTs, Ops); 6950 } 6951 6952 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6953 ArrayRef<EVT> ResultTys, 6954 ArrayRef<SDValue> Ops) { 6955 SDVTList VTs = getVTList(ResultTys); 6956 return getMachineNode(Opcode, dl, VTs, Ops); 6957 } 6958 6959 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6960 SDVTList VTs, 6961 ArrayRef<SDValue> Ops) { 6962 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6963 MachineSDNode *N; 6964 void *IP = nullptr; 6965 6966 if (DoCSE) { 6967 FoldingSetNodeID ID; 6968 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6969 IP = nullptr; 6970 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6971 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 6972 } 6973 } 6974 6975 // Allocate a new MachineSDNode. 6976 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6977 createOperands(N, Ops); 6978 6979 if (DoCSE) 6980 CSEMap.InsertNode(N, IP); 6981 6982 InsertNode(N); 6983 return N; 6984 } 6985 6986 /// getTargetExtractSubreg - A convenience function for creating 6987 /// TargetOpcode::EXTRACT_SUBREG nodes. 6988 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6989 SDValue Operand) { 6990 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6991 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6992 VT, Operand, SRIdxVal); 6993 return SDValue(Subreg, 0); 6994 } 6995 6996 /// getTargetInsertSubreg - A convenience function for creating 6997 /// TargetOpcode::INSERT_SUBREG nodes. 6998 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6999 SDValue Operand, SDValue Subreg) { 7000 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7001 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7002 VT, Operand, Subreg, SRIdxVal); 7003 return SDValue(Result, 0); 7004 } 7005 7006 /// getNodeIfExists - Get the specified node if it's already available, or 7007 /// else return NULL. 7008 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7009 ArrayRef<SDValue> Ops, 7010 const SDNodeFlags Flags) { 7011 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7012 FoldingSetNodeID ID; 7013 AddNodeIDNode(ID, Opcode, VTList, Ops); 7014 void *IP = nullptr; 7015 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7016 E->intersectFlagsWith(Flags); 7017 return E; 7018 } 7019 } 7020 return nullptr; 7021 } 7022 7023 /// getDbgValue - Creates a SDDbgValue node. 7024 /// 7025 /// SDNode 7026 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7027 SDNode *N, unsigned R, bool IsIndirect, 7028 const DebugLoc &DL, unsigned O) { 7029 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7030 "Expected inlined-at fields to agree"); 7031 return new (DbgInfo->getAlloc()) 7032 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7033 } 7034 7035 /// Constant 7036 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7037 DIExpression *Expr, 7038 const Value *C, 7039 const DebugLoc &DL, unsigned O) { 7040 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7041 "Expected inlined-at fields to agree"); 7042 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7043 } 7044 7045 /// FrameIndex 7046 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7047 DIExpression *Expr, unsigned FI, 7048 const DebugLoc &DL, 7049 unsigned O) { 7050 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7051 "Expected inlined-at fields to agree"); 7052 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O); 7053 } 7054 7055 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 7056 unsigned OffsetInBits, unsigned SizeInBits, 7057 bool InvalidateDbg) { 7058 SDNode *FromNode = From.getNode(); 7059 SDNode *ToNode = To.getNode(); 7060 assert(FromNode && ToNode && "Can't modify dbg values"); 7061 7062 // PR35338 7063 // TODO: assert(From != To && "Redundant dbg value transfer"); 7064 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 7065 if (From == To || FromNode == ToNode) 7066 return; 7067 7068 if (!FromNode->getHasDebugValue()) 7069 return; 7070 7071 SmallVector<SDDbgValue *, 2> ClonedDVs; 7072 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 7073 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 7074 continue; 7075 7076 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 7077 7078 // Just transfer the dbg value attached to From. 7079 if (Dbg->getResNo() != From.getResNo()) 7080 continue; 7081 7082 DIVariable *Var = Dbg->getVariable(); 7083 auto *Expr = Dbg->getExpression(); 7084 // If a fragment is requested, update the expression. 7085 if (SizeInBits) { 7086 // When splitting a larger (e.g., sign-extended) value whose 7087 // lower bits are described with an SDDbgValue, do not attempt 7088 // to transfer the SDDbgValue to the upper bits. 7089 if (auto FI = Expr->getFragmentInfo()) 7090 if (OffsetInBits + SizeInBits > FI->SizeInBits) 7091 continue; 7092 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 7093 SizeInBits); 7094 if (!Fragment) 7095 continue; 7096 Expr = *Fragment; 7097 } 7098 // Clone the SDDbgValue and move it to To. 7099 SDDbgValue *Clone = 7100 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 7101 Dbg->getDebugLoc(), Dbg->getOrder()); 7102 ClonedDVs.push_back(Clone); 7103 7104 if (InvalidateDbg) 7105 Dbg->setIsInvalidated(); 7106 } 7107 7108 for (SDDbgValue *Dbg : ClonedDVs) 7109 AddDbgValue(Dbg, ToNode, false); 7110 } 7111 7112 void SelectionDAG::salvageDebugInfo(SDNode &N) { 7113 if (!N.getHasDebugValue()) 7114 return; 7115 for (auto DV : GetDbgValues(&N)) { 7116 if (DV->isInvalidated()) 7117 continue; 7118 switch (N.getOpcode()) { 7119 default: 7120 break; 7121 case ISD::ADD: 7122 SDValue N0 = N.getOperand(0); 7123 SDValue N1 = N.getOperand(1); 7124 if (!isConstantIntBuildVectorOrConstantInt(N0) && 7125 isConstantIntBuildVectorOrConstantInt(N1)) { 7126 uint64_t Offset = N.getConstantOperandVal(1); 7127 // Rewrite an ADD constant node into a DIExpression. Since we are 7128 // performing arithmetic to compute the variable's *value* in the 7129 // DIExpression, we need to mark the expression with a 7130 // DW_OP_stack_value. 7131 auto *DIExpr = DV->getExpression(); 7132 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 7133 DIExpression::WithStackValue); 7134 SDDbgValue *Clone = 7135 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 7136 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 7137 DV->setIsInvalidated(); 7138 AddDbgValue(Clone, N0.getNode(), false); 7139 DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this); 7140 dbgs() << " into " << *DIExpr << '\n'); 7141 } 7142 } 7143 } 7144 } 7145 7146 namespace { 7147 7148 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 7149 /// pointed to by a use iterator is deleted, increment the use iterator 7150 /// so that it doesn't dangle. 7151 /// 7152 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 7153 SDNode::use_iterator &UI; 7154 SDNode::use_iterator &UE; 7155 7156 void NodeDeleted(SDNode *N, SDNode *E) override { 7157 // Increment the iterator as needed. 7158 while (UI != UE && N == *UI) 7159 ++UI; 7160 } 7161 7162 public: 7163 RAUWUpdateListener(SelectionDAG &d, 7164 SDNode::use_iterator &ui, 7165 SDNode::use_iterator &ue) 7166 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 7167 }; 7168 7169 } // end anonymous namespace 7170 7171 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7172 /// This can cause recursive merging of nodes in the DAG. 7173 /// 7174 /// This version assumes From has a single result value. 7175 /// 7176 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 7177 SDNode *From = FromN.getNode(); 7178 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 7179 "Cannot replace with this method!"); 7180 assert(From != To.getNode() && "Cannot replace uses of with self"); 7181 7182 // Preserve Debug Values 7183 transferDbgValues(FromN, To); 7184 7185 // Iterate over all the existing uses of From. New uses will be added 7186 // to the beginning of the use list, which we avoid visiting. 7187 // This specifically avoids visiting uses of From that arise while the 7188 // replacement is happening, because any such uses would be the result 7189 // of CSE: If an existing node looks like From after one of its operands 7190 // is replaced by To, we don't want to replace of all its users with To 7191 // too. See PR3018 for more info. 7192 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7193 RAUWUpdateListener Listener(*this, UI, UE); 7194 while (UI != UE) { 7195 SDNode *User = *UI; 7196 7197 // This node is about to morph, remove its old self from the CSE maps. 7198 RemoveNodeFromCSEMaps(User); 7199 7200 // A user can appear in a use list multiple times, and when this 7201 // happens the uses are usually next to each other in the list. 7202 // To help reduce the number of CSE recomputations, process all 7203 // the uses of this user that we can find this way. 7204 do { 7205 SDUse &Use = UI.getUse(); 7206 ++UI; 7207 Use.set(To); 7208 } while (UI != UE && *UI == User); 7209 7210 // Now that we have modified User, add it back to the CSE maps. If it 7211 // already exists there, recursively merge the results together. 7212 AddModifiedNodeToCSEMaps(User); 7213 } 7214 7215 // If we just RAUW'd the root, take note. 7216 if (FromN == getRoot()) 7217 setRoot(To); 7218 } 7219 7220 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7221 /// This can cause recursive merging of nodes in the DAG. 7222 /// 7223 /// This version assumes that for each value of From, there is a 7224 /// corresponding value in To in the same position with the same type. 7225 /// 7226 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 7227 #ifndef NDEBUG 7228 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7229 assert((!From->hasAnyUseOfValue(i) || 7230 From->getValueType(i) == To->getValueType(i)) && 7231 "Cannot use this version of ReplaceAllUsesWith!"); 7232 #endif 7233 7234 // Handle the trivial case. 7235 if (From == To) 7236 return; 7237 7238 // Preserve Debug Info. Only do this if there's a use. 7239 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7240 if (From->hasAnyUseOfValue(i)) { 7241 assert((i < To->getNumValues()) && "Invalid To location"); 7242 transferDbgValues(SDValue(From, i), SDValue(To, i)); 7243 } 7244 7245 // Iterate over just the existing users of From. See the comments in 7246 // the ReplaceAllUsesWith above. 7247 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7248 RAUWUpdateListener Listener(*this, UI, UE); 7249 while (UI != UE) { 7250 SDNode *User = *UI; 7251 7252 // This node is about to morph, remove its old self from the CSE maps. 7253 RemoveNodeFromCSEMaps(User); 7254 7255 // A user can appear in a use list multiple times, and when this 7256 // happens the uses are usually next to each other in the list. 7257 // To help reduce the number of CSE recomputations, process all 7258 // the uses of this user that we can find this way. 7259 do { 7260 SDUse &Use = UI.getUse(); 7261 ++UI; 7262 Use.setNode(To); 7263 } while (UI != UE && *UI == User); 7264 7265 // Now that we have modified User, add it back to the CSE maps. If it 7266 // already exists there, recursively merge the results together. 7267 AddModifiedNodeToCSEMaps(User); 7268 } 7269 7270 // If we just RAUW'd the root, take note. 7271 if (From == getRoot().getNode()) 7272 setRoot(SDValue(To, getRoot().getResNo())); 7273 } 7274 7275 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7276 /// This can cause recursive merging of nodes in the DAG. 7277 /// 7278 /// This version can replace From with any result values. To must match the 7279 /// number and types of values returned by From. 7280 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 7281 if (From->getNumValues() == 1) // Handle the simple case efficiently. 7282 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 7283 7284 // Preserve Debug Info. 7285 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7286 transferDbgValues(SDValue(From, i), *To); 7287 7288 // Iterate over just the existing users of From. See the comments in 7289 // the ReplaceAllUsesWith above. 7290 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7291 RAUWUpdateListener Listener(*this, UI, UE); 7292 while (UI != UE) { 7293 SDNode *User = *UI; 7294 7295 // This node is about to morph, remove its old self from the CSE maps. 7296 RemoveNodeFromCSEMaps(User); 7297 7298 // A user can appear in a use list multiple times, and when this 7299 // happens the uses are usually next to each other in the list. 7300 // To help reduce the number of CSE recomputations, process all 7301 // the uses of this user that we can find this way. 7302 do { 7303 SDUse &Use = UI.getUse(); 7304 const SDValue &ToOp = To[Use.getResNo()]; 7305 ++UI; 7306 Use.set(ToOp); 7307 } while (UI != UE && *UI == User); 7308 7309 // Now that we have modified User, add it back to the CSE maps. If it 7310 // already exists there, recursively merge the results together. 7311 AddModifiedNodeToCSEMaps(User); 7312 } 7313 7314 // If we just RAUW'd the root, take note. 7315 if (From == getRoot().getNode()) 7316 setRoot(SDValue(To[getRoot().getResNo()])); 7317 } 7318 7319 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 7320 /// uses of other values produced by From.getNode() alone. The Deleted 7321 /// vector is handled the same way as for ReplaceAllUsesWith. 7322 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 7323 // Handle the really simple, really trivial case efficiently. 7324 if (From == To) return; 7325 7326 // Handle the simple, trivial, case efficiently. 7327 if (From.getNode()->getNumValues() == 1) { 7328 ReplaceAllUsesWith(From, To); 7329 return; 7330 } 7331 7332 // Preserve Debug Info. 7333 transferDbgValues(From, To); 7334 7335 // Iterate over just the existing users of From. See the comments in 7336 // the ReplaceAllUsesWith above. 7337 SDNode::use_iterator UI = From.getNode()->use_begin(), 7338 UE = From.getNode()->use_end(); 7339 RAUWUpdateListener Listener(*this, UI, UE); 7340 while (UI != UE) { 7341 SDNode *User = *UI; 7342 bool UserRemovedFromCSEMaps = false; 7343 7344 // A user can appear in a use list multiple times, and when this 7345 // happens the uses are usually next to each other in the list. 7346 // To help reduce the number of CSE recomputations, process all 7347 // the uses of this user that we can find this way. 7348 do { 7349 SDUse &Use = UI.getUse(); 7350 7351 // Skip uses of different values from the same node. 7352 if (Use.getResNo() != From.getResNo()) { 7353 ++UI; 7354 continue; 7355 } 7356 7357 // If this node hasn't been modified yet, it's still in the CSE maps, 7358 // so remove its old self from the CSE maps. 7359 if (!UserRemovedFromCSEMaps) { 7360 RemoveNodeFromCSEMaps(User); 7361 UserRemovedFromCSEMaps = true; 7362 } 7363 7364 ++UI; 7365 Use.set(To); 7366 } while (UI != UE && *UI == User); 7367 7368 // We are iterating over all uses of the From node, so if a use 7369 // doesn't use the specific value, no changes are made. 7370 if (!UserRemovedFromCSEMaps) 7371 continue; 7372 7373 // Now that we have modified User, add it back to the CSE maps. If it 7374 // already exists there, recursively merge the results together. 7375 AddModifiedNodeToCSEMaps(User); 7376 } 7377 7378 // If we just RAUW'd the root, take note. 7379 if (From == getRoot()) 7380 setRoot(To); 7381 } 7382 7383 namespace { 7384 7385 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 7386 /// to record information about a use. 7387 struct UseMemo { 7388 SDNode *User; 7389 unsigned Index; 7390 SDUse *Use; 7391 }; 7392 7393 /// operator< - Sort Memos by User. 7394 bool operator<(const UseMemo &L, const UseMemo &R) { 7395 return (intptr_t)L.User < (intptr_t)R.User; 7396 } 7397 7398 } // end anonymous namespace 7399 7400 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 7401 /// uses of other values produced by From.getNode() alone. The same value 7402 /// may appear in both the From and To list. The Deleted vector is 7403 /// handled the same way as for ReplaceAllUsesWith. 7404 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 7405 const SDValue *To, 7406 unsigned Num){ 7407 // Handle the simple, trivial case efficiently. 7408 if (Num == 1) 7409 return ReplaceAllUsesOfValueWith(*From, *To); 7410 7411 transferDbgValues(*From, *To); 7412 7413 // Read up all the uses and make records of them. This helps 7414 // processing new uses that are introduced during the 7415 // replacement process. 7416 SmallVector<UseMemo, 4> Uses; 7417 for (unsigned i = 0; i != Num; ++i) { 7418 unsigned FromResNo = From[i].getResNo(); 7419 SDNode *FromNode = From[i].getNode(); 7420 for (SDNode::use_iterator UI = FromNode->use_begin(), 7421 E = FromNode->use_end(); UI != E; ++UI) { 7422 SDUse &Use = UI.getUse(); 7423 if (Use.getResNo() == FromResNo) { 7424 UseMemo Memo = { *UI, i, &Use }; 7425 Uses.push_back(Memo); 7426 } 7427 } 7428 } 7429 7430 // Sort the uses, so that all the uses from a given User are together. 7431 std::sort(Uses.begin(), Uses.end()); 7432 7433 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 7434 UseIndex != UseIndexEnd; ) { 7435 // We know that this user uses some value of From. If it is the right 7436 // value, update it. 7437 SDNode *User = Uses[UseIndex].User; 7438 7439 // This node is about to morph, remove its old self from the CSE maps. 7440 RemoveNodeFromCSEMaps(User); 7441 7442 // The Uses array is sorted, so all the uses for a given User 7443 // are next to each other in the list. 7444 // To help reduce the number of CSE recomputations, process all 7445 // the uses of this user that we can find this way. 7446 do { 7447 unsigned i = Uses[UseIndex].Index; 7448 SDUse &Use = *Uses[UseIndex].Use; 7449 ++UseIndex; 7450 7451 Use.set(To[i]); 7452 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 7453 7454 // Now that we have modified User, add it back to the CSE maps. If it 7455 // already exists there, recursively merge the results together. 7456 AddModifiedNodeToCSEMaps(User); 7457 } 7458 } 7459 7460 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 7461 /// based on their topological order. It returns the maximum id and a vector 7462 /// of the SDNodes* in assigned order by reference. 7463 unsigned SelectionDAG::AssignTopologicalOrder() { 7464 unsigned DAGSize = 0; 7465 7466 // SortedPos tracks the progress of the algorithm. Nodes before it are 7467 // sorted, nodes after it are unsorted. When the algorithm completes 7468 // it is at the end of the list. 7469 allnodes_iterator SortedPos = allnodes_begin(); 7470 7471 // Visit all the nodes. Move nodes with no operands to the front of 7472 // the list immediately. Annotate nodes that do have operands with their 7473 // operand count. Before we do this, the Node Id fields of the nodes 7474 // may contain arbitrary values. After, the Node Id fields for nodes 7475 // before SortedPos will contain the topological sort index, and the 7476 // Node Id fields for nodes At SortedPos and after will contain the 7477 // count of outstanding operands. 7478 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 7479 SDNode *N = &*I++; 7480 checkForCycles(N, this); 7481 unsigned Degree = N->getNumOperands(); 7482 if (Degree == 0) { 7483 // A node with no uses, add it to the result array immediately. 7484 N->setNodeId(DAGSize++); 7485 allnodes_iterator Q(N); 7486 if (Q != SortedPos) 7487 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 7488 assert(SortedPos != AllNodes.end() && "Overran node list"); 7489 ++SortedPos; 7490 } else { 7491 // Temporarily use the Node Id as scratch space for the degree count. 7492 N->setNodeId(Degree); 7493 } 7494 } 7495 7496 // Visit all the nodes. As we iterate, move nodes into sorted order, 7497 // such that by the time the end is reached all nodes will be sorted. 7498 for (SDNode &Node : allnodes()) { 7499 SDNode *N = &Node; 7500 checkForCycles(N, this); 7501 // N is in sorted position, so all its uses have one less operand 7502 // that needs to be sorted. 7503 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 7504 UI != UE; ++UI) { 7505 SDNode *P = *UI; 7506 unsigned Degree = P->getNodeId(); 7507 assert(Degree != 0 && "Invalid node degree"); 7508 --Degree; 7509 if (Degree == 0) { 7510 // All of P's operands are sorted, so P may sorted now. 7511 P->setNodeId(DAGSize++); 7512 if (P->getIterator() != SortedPos) 7513 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 7514 assert(SortedPos != AllNodes.end() && "Overran node list"); 7515 ++SortedPos; 7516 } else { 7517 // Update P's outstanding operand count. 7518 P->setNodeId(Degree); 7519 } 7520 } 7521 if (Node.getIterator() == SortedPos) { 7522 #ifndef NDEBUG 7523 allnodes_iterator I(N); 7524 SDNode *S = &*++I; 7525 dbgs() << "Overran sorted position:\n"; 7526 S->dumprFull(this); dbgs() << "\n"; 7527 dbgs() << "Checking if this is due to cycles\n"; 7528 checkForCycles(this, true); 7529 #endif 7530 llvm_unreachable(nullptr); 7531 } 7532 } 7533 7534 assert(SortedPos == AllNodes.end() && 7535 "Topological sort incomplete!"); 7536 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 7537 "First node in topological sort is not the entry token!"); 7538 assert(AllNodes.front().getNodeId() == 0 && 7539 "First node in topological sort has non-zero id!"); 7540 assert(AllNodes.front().getNumOperands() == 0 && 7541 "First node in topological sort has operands!"); 7542 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 7543 "Last node in topologic sort has unexpected id!"); 7544 assert(AllNodes.back().use_empty() && 7545 "Last node in topologic sort has users!"); 7546 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 7547 return DAGSize; 7548 } 7549 7550 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 7551 /// value is produced by SD. 7552 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 7553 if (SD) { 7554 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 7555 SD->setHasDebugValue(true); 7556 } 7557 DbgInfo->add(DB, SD, isParameter); 7558 } 7559 7560 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 7561 SDValue NewMemOp) { 7562 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 7563 // The new memory operation must have the same position as the old load in 7564 // terms of memory dependency. Create a TokenFactor for the old load and new 7565 // memory operation and update uses of the old load's output chain to use that 7566 // TokenFactor. 7567 SDValue OldChain = SDValue(OldLoad, 1); 7568 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 7569 if (!OldLoad->hasAnyUseOfValue(1)) 7570 return NewChain; 7571 7572 SDValue TokenFactor = 7573 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 7574 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 7575 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 7576 return TokenFactor; 7577 } 7578 7579 //===----------------------------------------------------------------------===// 7580 // SDNode Class 7581 //===----------------------------------------------------------------------===// 7582 7583 bool llvm::isNullConstant(SDValue V) { 7584 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7585 return Const != nullptr && Const->isNullValue(); 7586 } 7587 7588 bool llvm::isNullFPConstant(SDValue V) { 7589 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 7590 return Const != nullptr && Const->isZero() && !Const->isNegative(); 7591 } 7592 7593 bool llvm::isAllOnesConstant(SDValue V) { 7594 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7595 return Const != nullptr && Const->isAllOnesValue(); 7596 } 7597 7598 bool llvm::isOneConstant(SDValue V) { 7599 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7600 return Const != nullptr && Const->isOne(); 7601 } 7602 7603 bool llvm::isBitwiseNot(SDValue V) { 7604 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 7605 } 7606 7607 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 7608 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 7609 return CN; 7610 7611 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7612 BitVector UndefElements; 7613 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 7614 7615 // BuildVectors can truncate their operands. Ignore that case here. 7616 // FIXME: We blindly ignore splats which include undef which is overly 7617 // pessimistic. 7618 if (CN && UndefElements.none() && 7619 CN->getValueType(0) == N.getValueType().getScalarType()) 7620 return CN; 7621 } 7622 7623 return nullptr; 7624 } 7625 7626 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 7627 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7628 return CN; 7629 7630 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7631 BitVector UndefElements; 7632 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7633 7634 if (CN && UndefElements.none()) 7635 return CN; 7636 } 7637 7638 return nullptr; 7639 } 7640 7641 HandleSDNode::~HandleSDNode() { 7642 DropOperands(); 7643 } 7644 7645 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7646 const DebugLoc &DL, 7647 const GlobalValue *GA, EVT VT, 7648 int64_t o, unsigned char TF) 7649 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7650 TheGlobal = GA; 7651 } 7652 7653 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7654 EVT VT, unsigned SrcAS, 7655 unsigned DestAS) 7656 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7657 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7658 7659 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7660 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7661 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7662 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7663 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7664 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7665 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7666 7667 // We check here that the size of the memory operand fits within the size of 7668 // the MMO. This is because the MMO might indicate only a possible address 7669 // range instead of specifying the affected memory addresses precisely. 7670 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7671 } 7672 7673 /// Profile - Gather unique data for the node. 7674 /// 7675 void SDNode::Profile(FoldingSetNodeID &ID) const { 7676 AddNodeIDNode(ID, this); 7677 } 7678 7679 namespace { 7680 7681 struct EVTArray { 7682 std::vector<EVT> VTs; 7683 7684 EVTArray() { 7685 VTs.reserve(MVT::LAST_VALUETYPE); 7686 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7687 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7688 } 7689 }; 7690 7691 } // end anonymous namespace 7692 7693 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 7694 static ManagedStatic<EVTArray> SimpleVTArray; 7695 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 7696 7697 /// getValueTypeList - Return a pointer to the specified value type. 7698 /// 7699 const EVT *SDNode::getValueTypeList(EVT VT) { 7700 if (VT.isExtended()) { 7701 sys::SmartScopedLock<true> Lock(*VTMutex); 7702 return &(*EVTs->insert(VT).first); 7703 } else { 7704 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7705 "Value type out of range!"); 7706 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7707 } 7708 } 7709 7710 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7711 /// indicated value. This method ignores uses of other values defined by this 7712 /// operation. 7713 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7714 assert(Value < getNumValues() && "Bad value!"); 7715 7716 // TODO: Only iterate over uses of a given value of the node 7717 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7718 if (UI.getUse().getResNo() == Value) { 7719 if (NUses == 0) 7720 return false; 7721 --NUses; 7722 } 7723 } 7724 7725 // Found exactly the right number of uses? 7726 return NUses == 0; 7727 } 7728 7729 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7730 /// value. This method ignores uses of other values defined by this operation. 7731 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7732 assert(Value < getNumValues() && "Bad value!"); 7733 7734 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7735 if (UI.getUse().getResNo() == Value) 7736 return true; 7737 7738 return false; 7739 } 7740 7741 /// isOnlyUserOf - Return true if this node is the only use of N. 7742 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7743 bool Seen = false; 7744 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7745 SDNode *User = *I; 7746 if (User == this) 7747 Seen = true; 7748 else 7749 return false; 7750 } 7751 7752 return Seen; 7753 } 7754 7755 /// Return true if the only users of N are contained in Nodes. 7756 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 7757 bool Seen = false; 7758 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7759 SDNode *User = *I; 7760 if (llvm::any_of(Nodes, 7761 [&User](const SDNode *Node) { return User == Node; })) 7762 Seen = true; 7763 else 7764 return false; 7765 } 7766 7767 return Seen; 7768 } 7769 7770 /// isOperand - Return true if this node is an operand of N. 7771 bool SDValue::isOperandOf(const SDNode *N) const { 7772 for (const SDValue &Op : N->op_values()) 7773 if (*this == Op) 7774 return true; 7775 return false; 7776 } 7777 7778 bool SDNode::isOperandOf(const SDNode *N) const { 7779 for (const SDValue &Op : N->op_values()) 7780 if (this == Op.getNode()) 7781 return true; 7782 return false; 7783 } 7784 7785 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7786 /// be a chain) reaches the specified operand without crossing any 7787 /// side-effecting instructions on any chain path. In practice, this looks 7788 /// through token factors and non-volatile loads. In order to remain efficient, 7789 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7790 /// 7791 /// Note that we only need to examine chains when we're searching for 7792 /// side-effects; SelectionDAG requires that all side-effects are represented 7793 /// by chains, even if another operand would force a specific ordering. This 7794 /// constraint is necessary to allow transformations like splitting loads. 7795 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7796 unsigned Depth) const { 7797 if (*this == Dest) return true; 7798 7799 // Don't search too deeply, we just want to be able to see through 7800 // TokenFactor's etc. 7801 if (Depth == 0) return false; 7802 7803 // If this is a token factor, all inputs to the TF happen in parallel. 7804 if (getOpcode() == ISD::TokenFactor) { 7805 // First, try a shallow search. 7806 if (is_contained((*this)->ops(), Dest)) { 7807 // We found the chain we want as an operand of this TokenFactor. 7808 // Essentially, we reach the chain without side-effects if we could 7809 // serialize the TokenFactor into a simple chain of operations with 7810 // Dest as the last operation. This is automatically true if the 7811 // chain has one use: there are no other ordering constraints. 7812 // If the chain has more than one use, we give up: some other 7813 // use of Dest might force a side-effect between Dest and the current 7814 // node. 7815 if (Dest.hasOneUse()) 7816 return true; 7817 } 7818 // Next, try a deep search: check whether every operand of the TokenFactor 7819 // reaches Dest. 7820 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 7821 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 7822 }); 7823 } 7824 7825 // Loads don't have side effects, look through them. 7826 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7827 if (!Ld->isVolatile()) 7828 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7829 } 7830 return false; 7831 } 7832 7833 bool SDNode::hasPredecessor(const SDNode *N) const { 7834 SmallPtrSet<const SDNode *, 32> Visited; 7835 SmallVector<const SDNode *, 16> Worklist; 7836 Worklist.push_back(this); 7837 return hasPredecessorHelper(N, Visited, Worklist); 7838 } 7839 7840 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 7841 this->Flags.intersectWith(Flags); 7842 } 7843 7844 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7845 assert(N->getNumValues() == 1 && 7846 "Can't unroll a vector with multiple results!"); 7847 7848 EVT VT = N->getValueType(0); 7849 unsigned NE = VT.getVectorNumElements(); 7850 EVT EltVT = VT.getVectorElementType(); 7851 SDLoc dl(N); 7852 7853 SmallVector<SDValue, 8> Scalars; 7854 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7855 7856 // If ResNE is 0, fully unroll the vector op. 7857 if (ResNE == 0) 7858 ResNE = NE; 7859 else if (NE > ResNE) 7860 NE = ResNE; 7861 7862 unsigned i; 7863 for (i= 0; i != NE; ++i) { 7864 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7865 SDValue Operand = N->getOperand(j); 7866 EVT OperandVT = Operand.getValueType(); 7867 if (OperandVT.isVector()) { 7868 // A vector operand; extract a single element. 7869 EVT OperandEltVT = OperandVT.getVectorElementType(); 7870 Operands[j] = 7871 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7872 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7873 } else { 7874 // A scalar operand; just use it as is. 7875 Operands[j] = Operand; 7876 } 7877 } 7878 7879 switch (N->getOpcode()) { 7880 default: { 7881 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7882 N->getFlags())); 7883 break; 7884 } 7885 case ISD::VSELECT: 7886 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7887 break; 7888 case ISD::SHL: 7889 case ISD::SRA: 7890 case ISD::SRL: 7891 case ISD::ROTL: 7892 case ISD::ROTR: 7893 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7894 getShiftAmountOperand(Operands[0].getValueType(), 7895 Operands[1]))); 7896 break; 7897 case ISD::SIGN_EXTEND_INREG: 7898 case ISD::FP_ROUND_INREG: { 7899 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7900 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7901 Operands[0], 7902 getValueType(ExtVT))); 7903 } 7904 } 7905 } 7906 7907 for (; i < ResNE; ++i) 7908 Scalars.push_back(getUNDEF(EltVT)); 7909 7910 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7911 return getBuildVector(VecVT, dl, Scalars); 7912 } 7913 7914 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7915 LoadSDNode *Base, 7916 unsigned Bytes, 7917 int Dist) const { 7918 if (LD->isVolatile() || Base->isVolatile()) 7919 return false; 7920 if (LD->isIndexed() || Base->isIndexed()) 7921 return false; 7922 if (LD->getChain() != Base->getChain()) 7923 return false; 7924 EVT VT = LD->getValueType(0); 7925 if (VT.getSizeInBits() / 8 != Bytes) 7926 return false; 7927 7928 SDValue Loc = LD->getOperand(1); 7929 SDValue BaseLoc = Base->getOperand(1); 7930 7931 auto BaseLocDecomp = BaseIndexOffset::match(BaseLoc, *this); 7932 auto LocDecomp = BaseIndexOffset::match(Loc, *this); 7933 7934 int64_t Offset = 0; 7935 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 7936 return (Dist * Bytes == Offset); 7937 return false; 7938 } 7939 7940 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7941 /// it cannot be inferred. 7942 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7943 // If this is a GlobalAddress + cst, return the alignment. 7944 const GlobalValue *GV; 7945 int64_t GVOffset = 0; 7946 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7947 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7948 KnownBits Known(PtrWidth); 7949 llvm::computeKnownBits(GV, Known, getDataLayout()); 7950 unsigned AlignBits = Known.countMinTrailingZeros(); 7951 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7952 if (Align) 7953 return MinAlign(Align, GVOffset); 7954 } 7955 7956 // If this is a direct reference to a stack slot, use information about the 7957 // stack slot's alignment. 7958 int FrameIdx = 1 << 31; 7959 int64_t FrameOffset = 0; 7960 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7961 FrameIdx = FI->getIndex(); 7962 } else if (isBaseWithConstantOffset(Ptr) && 7963 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7964 // Handle FI+Cst 7965 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7966 FrameOffset = Ptr.getConstantOperandVal(1); 7967 } 7968 7969 if (FrameIdx != (1 << 31)) { 7970 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7971 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7972 FrameOffset); 7973 return FIInfoAlign; 7974 } 7975 7976 return 0; 7977 } 7978 7979 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7980 /// which is split (or expanded) into two not necessarily identical pieces. 7981 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7982 // Currently all types are split in half. 7983 EVT LoVT, HiVT; 7984 if (!VT.isVector()) 7985 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7986 else 7987 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 7988 7989 return std::make_pair(LoVT, HiVT); 7990 } 7991 7992 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7993 /// low/high part. 7994 std::pair<SDValue, SDValue> 7995 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7996 const EVT &HiVT) { 7997 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7998 N.getValueType().getVectorNumElements() && 7999 "More vector elements requested than available!"); 8000 SDValue Lo, Hi; 8001 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 8002 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 8003 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 8004 getConstant(LoVT.getVectorNumElements(), DL, 8005 TLI->getVectorIdxTy(getDataLayout()))); 8006 return std::make_pair(Lo, Hi); 8007 } 8008 8009 void SelectionDAG::ExtractVectorElements(SDValue Op, 8010 SmallVectorImpl<SDValue> &Args, 8011 unsigned Start, unsigned Count) { 8012 EVT VT = Op.getValueType(); 8013 if (Count == 0) 8014 Count = VT.getVectorNumElements(); 8015 8016 EVT EltVT = VT.getVectorElementType(); 8017 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 8018 SDLoc SL(Op); 8019 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 8020 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 8021 Op, getConstant(i, SL, IdxTy))); 8022 } 8023 } 8024 8025 // getAddressSpace - Return the address space this GlobalAddress belongs to. 8026 unsigned GlobalAddressSDNode::getAddressSpace() const { 8027 return getGlobal()->getType()->getAddressSpace(); 8028 } 8029 8030 Type *ConstantPoolSDNode::getType() const { 8031 if (isMachineConstantPoolEntry()) 8032 return Val.MachineCPVal->getType(); 8033 return Val.ConstVal->getType(); 8034 } 8035 8036 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 8037 unsigned &SplatBitSize, 8038 bool &HasAnyUndefs, 8039 unsigned MinSplatBits, 8040 bool IsBigEndian) const { 8041 EVT VT = getValueType(0); 8042 assert(VT.isVector() && "Expected a vector type"); 8043 unsigned VecWidth = VT.getSizeInBits(); 8044 if (MinSplatBits > VecWidth) 8045 return false; 8046 8047 // FIXME: The widths are based on this node's type, but build vectors can 8048 // truncate their operands. 8049 SplatValue = APInt(VecWidth, 0); 8050 SplatUndef = APInt(VecWidth, 0); 8051 8052 // Get the bits. Bits with undefined values (when the corresponding element 8053 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 8054 // in SplatValue. If any of the values are not constant, give up and return 8055 // false. 8056 unsigned int NumOps = getNumOperands(); 8057 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 8058 unsigned EltWidth = VT.getScalarSizeInBits(); 8059 8060 for (unsigned j = 0; j < NumOps; ++j) { 8061 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 8062 SDValue OpVal = getOperand(i); 8063 unsigned BitPos = j * EltWidth; 8064 8065 if (OpVal.isUndef()) 8066 SplatUndef.setBits(BitPos, BitPos + EltWidth); 8067 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 8068 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 8069 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 8070 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 8071 else 8072 return false; 8073 } 8074 8075 // The build_vector is all constants or undefs. Find the smallest element 8076 // size that splats the vector. 8077 HasAnyUndefs = (SplatUndef != 0); 8078 8079 // FIXME: This does not work for vectors with elements less than 8 bits. 8080 while (VecWidth > 8) { 8081 unsigned HalfSize = VecWidth / 2; 8082 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 8083 APInt LowValue = SplatValue.trunc(HalfSize); 8084 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 8085 APInt LowUndef = SplatUndef.trunc(HalfSize); 8086 8087 // If the two halves do not match (ignoring undef bits), stop here. 8088 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 8089 MinSplatBits > HalfSize) 8090 break; 8091 8092 SplatValue = HighValue | LowValue; 8093 SplatUndef = HighUndef & LowUndef; 8094 8095 VecWidth = HalfSize; 8096 } 8097 8098 SplatBitSize = VecWidth; 8099 return true; 8100 } 8101 8102 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 8103 if (UndefElements) { 8104 UndefElements->clear(); 8105 UndefElements->resize(getNumOperands()); 8106 } 8107 SDValue Splatted; 8108 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 8109 SDValue Op = getOperand(i); 8110 if (Op.isUndef()) { 8111 if (UndefElements) 8112 (*UndefElements)[i] = true; 8113 } else if (!Splatted) { 8114 Splatted = Op; 8115 } else if (Splatted != Op) { 8116 return SDValue(); 8117 } 8118 } 8119 8120 if (!Splatted) { 8121 assert(getOperand(0).isUndef() && 8122 "Can only have a splat without a constant for all undefs."); 8123 return getOperand(0); 8124 } 8125 8126 return Splatted; 8127 } 8128 8129 ConstantSDNode * 8130 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 8131 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 8132 } 8133 8134 ConstantFPSDNode * 8135 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 8136 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 8137 } 8138 8139 int32_t 8140 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 8141 uint32_t BitWidth) const { 8142 if (ConstantFPSDNode *CN = 8143 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 8144 bool IsExact; 8145 APSInt IntVal(BitWidth); 8146 const APFloat &APF = CN->getValueAPF(); 8147 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 8148 APFloat::opOK || 8149 !IsExact) 8150 return -1; 8151 8152 return IntVal.exactLogBase2(); 8153 } 8154 return -1; 8155 } 8156 8157 bool BuildVectorSDNode::isConstant() const { 8158 for (const SDValue &Op : op_values()) { 8159 unsigned Opc = Op.getOpcode(); 8160 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 8161 return false; 8162 } 8163 return true; 8164 } 8165 8166 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 8167 // Find the first non-undef value in the shuffle mask. 8168 unsigned i, e; 8169 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 8170 /* search */; 8171 8172 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 8173 8174 // Make sure all remaining elements are either undef or the same as the first 8175 // non-undef value. 8176 for (int Idx = Mask[i]; i != e; ++i) 8177 if (Mask[i] >= 0 && Mask[i] != Idx) 8178 return false; 8179 return true; 8180 } 8181 8182 // \brief Returns the SDNode if it is a constant integer BuildVector 8183 // or constant integer. 8184 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 8185 if (isa<ConstantSDNode>(N)) 8186 return N.getNode(); 8187 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 8188 return N.getNode(); 8189 // Treat a GlobalAddress supporting constant offset folding as a 8190 // constant integer. 8191 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 8192 if (GA->getOpcode() == ISD::GlobalAddress && 8193 TLI->isOffsetFoldingLegal(GA)) 8194 return GA; 8195 return nullptr; 8196 } 8197 8198 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 8199 if (isa<ConstantFPSDNode>(N)) 8200 return N.getNode(); 8201 8202 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 8203 return N.getNode(); 8204 8205 return nullptr; 8206 } 8207 8208 #ifndef NDEBUG 8209 static void checkForCyclesHelper(const SDNode *N, 8210 SmallPtrSetImpl<const SDNode*> &Visited, 8211 SmallPtrSetImpl<const SDNode*> &Checked, 8212 const llvm::SelectionDAG *DAG) { 8213 // If this node has already been checked, don't check it again. 8214 if (Checked.count(N)) 8215 return; 8216 8217 // If a node has already been visited on this depth-first walk, reject it as 8218 // a cycle. 8219 if (!Visited.insert(N).second) { 8220 errs() << "Detected cycle in SelectionDAG\n"; 8221 dbgs() << "Offending node:\n"; 8222 N->dumprFull(DAG); dbgs() << "\n"; 8223 abort(); 8224 } 8225 8226 for (const SDValue &Op : N->op_values()) 8227 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 8228 8229 Checked.insert(N); 8230 Visited.erase(N); 8231 } 8232 #endif 8233 8234 void llvm::checkForCycles(const llvm::SDNode *N, 8235 const llvm::SelectionDAG *DAG, 8236 bool force) { 8237 #ifndef NDEBUG 8238 bool check = force; 8239 #ifdef EXPENSIVE_CHECKS 8240 check = true; 8241 #endif // EXPENSIVE_CHECKS 8242 if (check) { 8243 assert(N && "Checking nonexistent SDNode"); 8244 SmallPtrSet<const SDNode*, 32> visited; 8245 SmallPtrSet<const SDNode*, 32> checked; 8246 checkForCyclesHelper(N, visited, checked, DAG); 8247 } 8248 #endif // !NDEBUG 8249 } 8250 8251 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 8252 checkForCycles(DAG->getRoot().getNode(), DAG, force); 8253 } 8254