1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/KnownBits.h" 63 #include "llvm/Support/MachineValueType.h" 64 #include "llvm/Support/ManagedStatic.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/Mutex.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetOptions.h" 70 #include "llvm/Transforms/Utils/SizeOpts.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <cstdlib> 75 #include <limits> 76 #include <set> 77 #include <string> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 83 /// makeVTList - Return an instance of the SDVTList struct initialized with the 84 /// specified members. 85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 86 SDVTList Res = {VTs, NumVTs}; 87 return Res; 88 } 89 90 // Default null implementations of the callbacks. 91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 94 95 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 96 97 #define DEBUG_TYPE "selectiondag" 98 99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 100 cl::Hidden, cl::init(true), 101 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 102 103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 104 cl::desc("Number limit for gluing ld/st of memcpy."), 105 cl::Hidden, cl::init(0)); 106 107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 108 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 109 } 110 111 //===----------------------------------------------------------------------===// 112 // ConstantFPSDNode Class 113 //===----------------------------------------------------------------------===// 114 115 /// isExactlyValue - We don't rely on operator== working on double values, as 116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 117 /// As such, this method can be used to do an exact bit-for-bit comparison of 118 /// two floating point values. 119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 120 return getValueAPF().bitwiseIsEqual(V); 121 } 122 123 bool ConstantFPSDNode::isValueValidForType(EVT VT, 124 const APFloat& Val) { 125 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 126 127 // convert modifies in place, so make a copy. 128 APFloat Val2 = APFloat(Val); 129 bool losesInfo; 130 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 131 APFloat::rmNearestTiesToEven, 132 &losesInfo); 133 return !losesInfo; 134 } 135 136 //===----------------------------------------------------------------------===// 137 // ISD Namespace 138 //===----------------------------------------------------------------------===// 139 140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 141 auto *BV = dyn_cast<BuildVectorSDNode>(N); 142 if (!BV) 143 return false; 144 145 APInt SplatUndef; 146 unsigned SplatBitSize; 147 bool HasUndefs; 148 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 149 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 150 EltSize) && 151 EltSize == SplatBitSize; 152 } 153 154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 155 // specializations of the more general isConstantSplatVector()? 156 157 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 158 // Look through a bit convert. 159 while (N->getOpcode() == ISD::BITCAST) 160 N = N->getOperand(0).getNode(); 161 162 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 163 164 unsigned i = 0, e = N->getNumOperands(); 165 166 // Skip over all of the undef values. 167 while (i != e && N->getOperand(i).isUndef()) 168 ++i; 169 170 // Do not accept an all-undef vector. 171 if (i == e) return false; 172 173 // Do not accept build_vectors that aren't all constants or which have non-~0 174 // elements. We have to be a bit careful here, as the type of the constant 175 // may not be the same as the type of the vector elements due to type 176 // legalization (the elements are promoted to a legal type for the target and 177 // a vector of a type may be legal when the base element type is not). 178 // We only want to check enough bits to cover the vector elements, because 179 // we care if the resultant vector is all ones, not whether the individual 180 // constants are. 181 SDValue NotZero = N->getOperand(i); 182 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 183 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 184 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 185 return false; 186 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 187 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 188 return false; 189 } else 190 return false; 191 192 // Okay, we have at least one ~0 value, check to see if the rest match or are 193 // undefs. Even with the above element type twiddling, this should be OK, as 194 // the same type legalization should have applied to all the elements. 195 for (++i; i != e; ++i) 196 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 197 return false; 198 return true; 199 } 200 201 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 202 // Look through a bit convert. 203 while (N->getOpcode() == ISD::BITCAST) 204 N = N->getOperand(0).getNode(); 205 206 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 207 208 bool IsAllUndef = true; 209 for (const SDValue &Op : N->op_values()) { 210 if (Op.isUndef()) 211 continue; 212 IsAllUndef = false; 213 // Do not accept build_vectors that aren't all constants or which have non-0 214 // elements. We have to be a bit careful here, as the type of the constant 215 // may not be the same as the type of the vector elements due to type 216 // legalization (the elements are promoted to a legal type for the target 217 // and a vector of a type may be legal when the base element type is not). 218 // We only want to check enough bits to cover the vector elements, because 219 // we care if the resultant vector is all zeros, not whether the individual 220 // constants are. 221 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 222 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 223 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 224 return false; 225 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 226 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 227 return false; 228 } else 229 return false; 230 } 231 232 // Do not accept an all-undef vector. 233 if (IsAllUndef) 234 return false; 235 return true; 236 } 237 238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 239 if (N->getOpcode() != ISD::BUILD_VECTOR) 240 return false; 241 242 for (const SDValue &Op : N->op_values()) { 243 if (Op.isUndef()) 244 continue; 245 if (!isa<ConstantSDNode>(Op)) 246 return false; 247 } 248 return true; 249 } 250 251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 252 if (N->getOpcode() != ISD::BUILD_VECTOR) 253 return false; 254 255 for (const SDValue &Op : N->op_values()) { 256 if (Op.isUndef()) 257 continue; 258 if (!isa<ConstantFPSDNode>(Op)) 259 return false; 260 } 261 return true; 262 } 263 264 bool ISD::allOperandsUndef(const SDNode *N) { 265 // Return false if the node has no operands. 266 // This is "logically inconsistent" with the definition of "all" but 267 // is probably the desired behavior. 268 if (N->getNumOperands() == 0) 269 return false; 270 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 271 } 272 273 bool ISD::matchUnaryPredicate(SDValue Op, 274 std::function<bool(ConstantSDNode *)> Match, 275 bool AllowUndefs) { 276 // FIXME: Add support for scalar UNDEF cases? 277 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 278 return Match(Cst); 279 280 // FIXME: Add support for vector UNDEF cases? 281 if (ISD::BUILD_VECTOR != Op.getOpcode()) 282 return false; 283 284 EVT SVT = Op.getValueType().getScalarType(); 285 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 286 if (AllowUndefs && Op.getOperand(i).isUndef()) { 287 if (!Match(nullptr)) 288 return false; 289 continue; 290 } 291 292 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 293 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 294 return false; 295 } 296 return true; 297 } 298 299 bool ISD::matchBinaryPredicate( 300 SDValue LHS, SDValue RHS, 301 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 302 bool AllowUndefs, bool AllowTypeMismatch) { 303 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 304 return false; 305 306 // TODO: Add support for scalar UNDEF cases? 307 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 308 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 309 return Match(LHSCst, RHSCst); 310 311 // TODO: Add support for vector UNDEF cases? 312 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 313 ISD::BUILD_VECTOR != RHS.getOpcode()) 314 return false; 315 316 EVT SVT = LHS.getValueType().getScalarType(); 317 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 318 SDValue LHSOp = LHS.getOperand(i); 319 SDValue RHSOp = RHS.getOperand(i); 320 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 321 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 322 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 323 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 324 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 325 return false; 326 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 327 LHSOp.getValueType() != RHSOp.getValueType())) 328 return false; 329 if (!Match(LHSCst, RHSCst)) 330 return false; 331 } 332 return true; 333 } 334 335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 336 switch (ExtType) { 337 case ISD::EXTLOAD: 338 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 339 case ISD::SEXTLOAD: 340 return ISD::SIGN_EXTEND; 341 case ISD::ZEXTLOAD: 342 return ISD::ZERO_EXTEND; 343 default: 344 break; 345 } 346 347 llvm_unreachable("Invalid LoadExtType"); 348 } 349 350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 351 // To perform this operation, we just need to swap the L and G bits of the 352 // operation. 353 unsigned OldL = (Operation >> 2) & 1; 354 unsigned OldG = (Operation >> 1) & 1; 355 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 356 (OldL << 1) | // New G bit 357 (OldG << 2)); // New L bit. 358 } 359 360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 361 unsigned Operation = Op; 362 if (isIntegerLike) 363 Operation ^= 7; // Flip L, G, E bits, but not U. 364 else 365 Operation ^= 15; // Flip all of the condition bits. 366 367 if (Operation > ISD::SETTRUE2) 368 Operation &= ~8; // Don't let N and U bits get set. 369 370 return ISD::CondCode(Operation); 371 } 372 373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 374 return getSetCCInverseImpl(Op, Type.isInteger()); 375 } 376 377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 378 bool isIntegerLike) { 379 return getSetCCInverseImpl(Op, isIntegerLike); 380 } 381 382 /// For an integer comparison, return 1 if the comparison is a signed operation 383 /// and 2 if the result is an unsigned comparison. Return zero if the operation 384 /// does not depend on the sign of the input (setne and seteq). 385 static int isSignedOp(ISD::CondCode Opcode) { 386 switch (Opcode) { 387 default: llvm_unreachable("Illegal integer setcc operation!"); 388 case ISD::SETEQ: 389 case ISD::SETNE: return 0; 390 case ISD::SETLT: 391 case ISD::SETLE: 392 case ISD::SETGT: 393 case ISD::SETGE: return 1; 394 case ISD::SETULT: 395 case ISD::SETULE: 396 case ISD::SETUGT: 397 case ISD::SETUGE: return 2; 398 } 399 } 400 401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 402 EVT Type) { 403 bool IsInteger = Type.isInteger(); 404 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 405 // Cannot fold a signed integer setcc with an unsigned integer setcc. 406 return ISD::SETCC_INVALID; 407 408 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 409 410 // If the N and U bits get set, then the resultant comparison DOES suddenly 411 // care about orderedness, and it is true when ordered. 412 if (Op > ISD::SETTRUE2) 413 Op &= ~16; // Clear the U bit if the N bit is set. 414 415 // Canonicalize illegal integer setcc's. 416 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 417 Op = ISD::SETNE; 418 419 return ISD::CondCode(Op); 420 } 421 422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 423 EVT Type) { 424 bool IsInteger = Type.isInteger(); 425 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 426 // Cannot fold a signed setcc with an unsigned setcc. 427 return ISD::SETCC_INVALID; 428 429 // Combine all of the condition bits. 430 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 431 432 // Canonicalize illegal integer setcc's. 433 if (IsInteger) { 434 switch (Result) { 435 default: break; 436 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 437 case ISD::SETOEQ: // SETEQ & SETU[LG]E 438 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 439 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 440 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 441 } 442 } 443 444 return Result; 445 } 446 447 //===----------------------------------------------------------------------===// 448 // SDNode Profile Support 449 //===----------------------------------------------------------------------===// 450 451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 453 ID.AddInteger(OpC); 454 } 455 456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 457 /// solely with their pointer. 458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 459 ID.AddPointer(VTList.VTs); 460 } 461 462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 463 static void AddNodeIDOperands(FoldingSetNodeID &ID, 464 ArrayRef<SDValue> Ops) { 465 for (auto& Op : Ops) { 466 ID.AddPointer(Op.getNode()); 467 ID.AddInteger(Op.getResNo()); 468 } 469 } 470 471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 472 static void AddNodeIDOperands(FoldingSetNodeID &ID, 473 ArrayRef<SDUse> Ops) { 474 for (auto& Op : Ops) { 475 ID.AddPointer(Op.getNode()); 476 ID.AddInteger(Op.getResNo()); 477 } 478 } 479 480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 481 SDVTList VTList, ArrayRef<SDValue> OpList) { 482 AddNodeIDOpcode(ID, OpC); 483 AddNodeIDValueTypes(ID, VTList); 484 AddNodeIDOperands(ID, OpList); 485 } 486 487 /// If this is an SDNode with special info, add this info to the NodeID data. 488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 489 switch (N->getOpcode()) { 490 case ISD::TargetExternalSymbol: 491 case ISD::ExternalSymbol: 492 case ISD::MCSymbol: 493 llvm_unreachable("Should only be used on nodes with operands"); 494 default: break; // Normal nodes don't need extra info. 495 case ISD::TargetConstant: 496 case ISD::Constant: { 497 const ConstantSDNode *C = cast<ConstantSDNode>(N); 498 ID.AddPointer(C->getConstantIntValue()); 499 ID.AddBoolean(C->isOpaque()); 500 break; 501 } 502 case ISD::TargetConstantFP: 503 case ISD::ConstantFP: 504 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 505 break; 506 case ISD::TargetGlobalAddress: 507 case ISD::GlobalAddress: 508 case ISD::TargetGlobalTLSAddress: 509 case ISD::GlobalTLSAddress: { 510 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 511 ID.AddPointer(GA->getGlobal()); 512 ID.AddInteger(GA->getOffset()); 513 ID.AddInteger(GA->getTargetFlags()); 514 break; 515 } 516 case ISD::BasicBlock: 517 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 518 break; 519 case ISD::Register: 520 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 521 break; 522 case ISD::RegisterMask: 523 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 524 break; 525 case ISD::SRCVALUE: 526 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 527 break; 528 case ISD::FrameIndex: 529 case ISD::TargetFrameIndex: 530 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 531 break; 532 case ISD::LIFETIME_START: 533 case ISD::LIFETIME_END: 534 if (cast<LifetimeSDNode>(N)->hasOffset()) { 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 536 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 537 } 538 break; 539 case ISD::JumpTable: 540 case ISD::TargetJumpTable: 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 542 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 543 break; 544 case ISD::ConstantPool: 545 case ISD::TargetConstantPool: { 546 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 547 ID.AddInteger(CP->getAlign().value()); 548 ID.AddInteger(CP->getOffset()); 549 if (CP->isMachineConstantPoolEntry()) 550 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 551 else 552 ID.AddPointer(CP->getConstVal()); 553 ID.AddInteger(CP->getTargetFlags()); 554 break; 555 } 556 case ISD::TargetIndex: { 557 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 558 ID.AddInteger(TI->getIndex()); 559 ID.AddInteger(TI->getOffset()); 560 ID.AddInteger(TI->getTargetFlags()); 561 break; 562 } 563 case ISD::LOAD: { 564 const LoadSDNode *LD = cast<LoadSDNode>(N); 565 ID.AddInteger(LD->getMemoryVT().getRawBits()); 566 ID.AddInteger(LD->getRawSubclassData()); 567 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 568 break; 569 } 570 case ISD::STORE: { 571 const StoreSDNode *ST = cast<StoreSDNode>(N); 572 ID.AddInteger(ST->getMemoryVT().getRawBits()); 573 ID.AddInteger(ST->getRawSubclassData()); 574 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 575 break; 576 } 577 case ISD::MLOAD: { 578 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 579 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 580 ID.AddInteger(MLD->getRawSubclassData()); 581 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 582 break; 583 } 584 case ISD::MSTORE: { 585 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 586 ID.AddInteger(MST->getMemoryVT().getRawBits()); 587 ID.AddInteger(MST->getRawSubclassData()); 588 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 589 break; 590 } 591 case ISD::MGATHER: { 592 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 593 ID.AddInteger(MG->getMemoryVT().getRawBits()); 594 ID.AddInteger(MG->getRawSubclassData()); 595 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 596 break; 597 } 598 case ISD::MSCATTER: { 599 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 600 ID.AddInteger(MS->getMemoryVT().getRawBits()); 601 ID.AddInteger(MS->getRawSubclassData()); 602 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 603 break; 604 } 605 case ISD::ATOMIC_CMP_SWAP: 606 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 607 case ISD::ATOMIC_SWAP: 608 case ISD::ATOMIC_LOAD_ADD: 609 case ISD::ATOMIC_LOAD_SUB: 610 case ISD::ATOMIC_LOAD_AND: 611 case ISD::ATOMIC_LOAD_CLR: 612 case ISD::ATOMIC_LOAD_OR: 613 case ISD::ATOMIC_LOAD_XOR: 614 case ISD::ATOMIC_LOAD_NAND: 615 case ISD::ATOMIC_LOAD_MIN: 616 case ISD::ATOMIC_LOAD_MAX: 617 case ISD::ATOMIC_LOAD_UMIN: 618 case ISD::ATOMIC_LOAD_UMAX: 619 case ISD::ATOMIC_LOAD: 620 case ISD::ATOMIC_STORE: { 621 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 622 ID.AddInteger(AT->getMemoryVT().getRawBits()); 623 ID.AddInteger(AT->getRawSubclassData()); 624 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 625 break; 626 } 627 case ISD::PREFETCH: { 628 const MemSDNode *PF = cast<MemSDNode>(N); 629 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 630 break; 631 } 632 case ISD::VECTOR_SHUFFLE: { 633 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 634 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 635 i != e; ++i) 636 ID.AddInteger(SVN->getMaskElt(i)); 637 break; 638 } 639 case ISD::TargetBlockAddress: 640 case ISD::BlockAddress: { 641 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 642 ID.AddPointer(BA->getBlockAddress()); 643 ID.AddInteger(BA->getOffset()); 644 ID.AddInteger(BA->getTargetFlags()); 645 break; 646 } 647 } // end switch (N->getOpcode()) 648 649 // Target specific memory nodes could also have address spaces to check. 650 if (N->isTargetMemoryOpcode()) 651 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 652 } 653 654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 655 /// data. 656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 657 AddNodeIDOpcode(ID, N->getOpcode()); 658 // Add the return value info. 659 AddNodeIDValueTypes(ID, N->getVTList()); 660 // Add the operand info. 661 AddNodeIDOperands(ID, N->ops()); 662 663 // Handle SDNode leafs with special info. 664 AddNodeIDCustom(ID, N); 665 } 666 667 //===----------------------------------------------------------------------===// 668 // SelectionDAG Class 669 //===----------------------------------------------------------------------===// 670 671 /// doNotCSE - Return true if CSE should not be performed for this node. 672 static bool doNotCSE(SDNode *N) { 673 if (N->getValueType(0) == MVT::Glue) 674 return true; // Never CSE anything that produces a flag. 675 676 switch (N->getOpcode()) { 677 default: break; 678 case ISD::HANDLENODE: 679 case ISD::EH_LABEL: 680 return true; // Never CSE these nodes. 681 } 682 683 // Check that remaining values produced are not flags. 684 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 685 if (N->getValueType(i) == MVT::Glue) 686 return true; // Never CSE anything that produces a flag. 687 688 return false; 689 } 690 691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 692 /// SelectionDAG. 693 void SelectionDAG::RemoveDeadNodes() { 694 // Create a dummy node (which is not added to allnodes), that adds a reference 695 // to the root node, preventing it from being deleted. 696 HandleSDNode Dummy(getRoot()); 697 698 SmallVector<SDNode*, 128> DeadNodes; 699 700 // Add all obviously-dead nodes to the DeadNodes worklist. 701 for (SDNode &Node : allnodes()) 702 if (Node.use_empty()) 703 DeadNodes.push_back(&Node); 704 705 RemoveDeadNodes(DeadNodes); 706 707 // If the root changed (e.g. it was a dead load, update the root). 708 setRoot(Dummy.getValue()); 709 } 710 711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 712 /// given list, and any nodes that become unreachable as a result. 713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 714 715 // Process the worklist, deleting the nodes and adding their uses to the 716 // worklist. 717 while (!DeadNodes.empty()) { 718 SDNode *N = DeadNodes.pop_back_val(); 719 // Skip to next node if we've already managed to delete the node. This could 720 // happen if replacing a node causes a node previously added to the node to 721 // be deleted. 722 if (N->getOpcode() == ISD::DELETED_NODE) 723 continue; 724 725 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 726 DUL->NodeDeleted(N, nullptr); 727 728 // Take the node out of the appropriate CSE map. 729 RemoveNodeFromCSEMaps(N); 730 731 // Next, brutally remove the operand list. This is safe to do, as there are 732 // no cycles in the graph. 733 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 734 SDUse &Use = *I++; 735 SDNode *Operand = Use.getNode(); 736 Use.set(SDValue()); 737 738 // Now that we removed this operand, see if there are no uses of it left. 739 if (Operand->use_empty()) 740 DeadNodes.push_back(Operand); 741 } 742 743 DeallocateNode(N); 744 } 745 } 746 747 void SelectionDAG::RemoveDeadNode(SDNode *N){ 748 SmallVector<SDNode*, 16> DeadNodes(1, N); 749 750 // Create a dummy node that adds a reference to the root node, preventing 751 // it from being deleted. (This matters if the root is an operand of the 752 // dead node.) 753 HandleSDNode Dummy(getRoot()); 754 755 RemoveDeadNodes(DeadNodes); 756 } 757 758 void SelectionDAG::DeleteNode(SDNode *N) { 759 // First take this out of the appropriate CSE map. 760 RemoveNodeFromCSEMaps(N); 761 762 // Finally, remove uses due to operands of this node, remove from the 763 // AllNodes list, and delete the node. 764 DeleteNodeNotInCSEMaps(N); 765 } 766 767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 768 assert(N->getIterator() != AllNodes.begin() && 769 "Cannot delete the entry node!"); 770 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 771 772 // Drop all of the operands and decrement used node's use counts. 773 N->DropOperands(); 774 775 DeallocateNode(N); 776 } 777 778 void SDDbgInfo::erase(const SDNode *Node) { 779 DbgValMapType::iterator I = DbgValMap.find(Node); 780 if (I == DbgValMap.end()) 781 return; 782 for (auto &Val: I->second) 783 Val->setIsInvalidated(); 784 DbgValMap.erase(I); 785 } 786 787 void SelectionDAG::DeallocateNode(SDNode *N) { 788 // If we have operands, deallocate them. 789 removeOperands(N); 790 791 NodeAllocator.Deallocate(AllNodes.remove(N)); 792 793 // Set the opcode to DELETED_NODE to help catch bugs when node 794 // memory is reallocated. 795 // FIXME: There are places in SDag that have grown a dependency on the opcode 796 // value in the released node. 797 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 798 N->NodeType = ISD::DELETED_NODE; 799 800 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 801 // them and forget about that node. 802 DbgInfo->erase(N); 803 } 804 805 #ifndef NDEBUG 806 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 807 static void VerifySDNode(SDNode *N) { 808 switch (N->getOpcode()) { 809 default: 810 break; 811 case ISD::BUILD_PAIR: { 812 EVT VT = N->getValueType(0); 813 assert(N->getNumValues() == 1 && "Too many results!"); 814 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 815 "Wrong return type!"); 816 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 817 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 818 "Mismatched operand types!"); 819 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 820 "Wrong operand type!"); 821 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 822 "Wrong return type size"); 823 break; 824 } 825 case ISD::BUILD_VECTOR: { 826 assert(N->getNumValues() == 1 && "Too many results!"); 827 assert(N->getValueType(0).isVector() && "Wrong return type!"); 828 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 829 "Wrong number of operands!"); 830 EVT EltVT = N->getValueType(0).getVectorElementType(); 831 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 832 assert((I->getValueType() == EltVT || 833 (EltVT.isInteger() && I->getValueType().isInteger() && 834 EltVT.bitsLE(I->getValueType()))) && 835 "Wrong operand type!"); 836 assert(I->getValueType() == N->getOperand(0).getValueType() && 837 "Operands must all have the same type"); 838 } 839 break; 840 } 841 } 842 } 843 #endif // NDEBUG 844 845 /// Insert a newly allocated node into the DAG. 846 /// 847 /// Handles insertion into the all nodes list and CSE map, as well as 848 /// verification and other common operations when a new node is allocated. 849 void SelectionDAG::InsertNode(SDNode *N) { 850 AllNodes.push_back(N); 851 #ifndef NDEBUG 852 N->PersistentId = NextPersistentId++; 853 VerifySDNode(N); 854 #endif 855 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 856 DUL->NodeInserted(N); 857 } 858 859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 860 /// correspond to it. This is useful when we're about to delete or repurpose 861 /// the node. We don't want future request for structurally identical nodes 862 /// to return N anymore. 863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 864 bool Erased = false; 865 switch (N->getOpcode()) { 866 case ISD::HANDLENODE: return false; // noop. 867 case ISD::CONDCODE: 868 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 869 "Cond code doesn't exist!"); 870 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 871 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 872 break; 873 case ISD::ExternalSymbol: 874 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 875 break; 876 case ISD::TargetExternalSymbol: { 877 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 878 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 879 ESN->getSymbol(), ESN->getTargetFlags())); 880 break; 881 } 882 case ISD::MCSymbol: { 883 auto *MCSN = cast<MCSymbolSDNode>(N); 884 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 885 break; 886 } 887 case ISD::VALUETYPE: { 888 EVT VT = cast<VTSDNode>(N)->getVT(); 889 if (VT.isExtended()) { 890 Erased = ExtendedValueTypeNodes.erase(VT); 891 } else { 892 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 893 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 894 } 895 break; 896 } 897 default: 898 // Remove it from the CSE Map. 899 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 900 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 901 Erased = CSEMap.RemoveNode(N); 902 break; 903 } 904 #ifndef NDEBUG 905 // Verify that the node was actually in one of the CSE maps, unless it has a 906 // flag result (which cannot be CSE'd) or is one of the special cases that are 907 // not subject to CSE. 908 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 909 !N->isMachineOpcode() && !doNotCSE(N)) { 910 N->dump(this); 911 dbgs() << "\n"; 912 llvm_unreachable("Node is not in map!"); 913 } 914 #endif 915 return Erased; 916 } 917 918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 919 /// maps and modified in place. Add it back to the CSE maps, unless an identical 920 /// node already exists, in which case transfer all its users to the existing 921 /// node. This transfer can potentially trigger recursive merging. 922 void 923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 924 // For node types that aren't CSE'd, just act as if no identical node 925 // already exists. 926 if (!doNotCSE(N)) { 927 SDNode *Existing = CSEMap.GetOrInsertNode(N); 928 if (Existing != N) { 929 // If there was already an existing matching node, use ReplaceAllUsesWith 930 // to replace the dead one with the existing one. This can cause 931 // recursive merging of other unrelated nodes down the line. 932 ReplaceAllUsesWith(N, Existing); 933 934 // N is now dead. Inform the listeners and delete it. 935 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 936 DUL->NodeDeleted(N, Existing); 937 DeleteNodeNotInCSEMaps(N); 938 return; 939 } 940 } 941 942 // If the node doesn't already exist, we updated it. Inform listeners. 943 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 944 DUL->NodeUpdated(N); 945 } 946 947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 948 /// were replaced with those specified. If this node is never memoized, 949 /// return null, otherwise return a pointer to the slot it would take. If a 950 /// node already exists with these operands, the slot will be non-null. 951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 952 void *&InsertPos) { 953 if (doNotCSE(N)) 954 return nullptr; 955 956 SDValue Ops[] = { Op }; 957 FoldingSetNodeID ID; 958 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 959 AddNodeIDCustom(ID, N); 960 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 961 if (Node) 962 Node->intersectFlagsWith(N->getFlags()); 963 return Node; 964 } 965 966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 967 /// were replaced with those specified. If this node is never memoized, 968 /// return null, otherwise return a pointer to the slot it would take. If a 969 /// node already exists with these operands, the slot will be non-null. 970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 971 SDValue Op1, SDValue Op2, 972 void *&InsertPos) { 973 if (doNotCSE(N)) 974 return nullptr; 975 976 SDValue Ops[] = { Op1, Op2 }; 977 FoldingSetNodeID ID; 978 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 979 AddNodeIDCustom(ID, N); 980 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 981 if (Node) 982 Node->intersectFlagsWith(N->getFlags()); 983 return Node; 984 } 985 986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 987 /// were replaced with those specified. If this node is never memoized, 988 /// return null, otherwise return a pointer to the slot it would take. If a 989 /// node already exists with these operands, the slot will be non-null. 990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 991 void *&InsertPos) { 992 if (doNotCSE(N)) 993 return nullptr; 994 995 FoldingSetNodeID ID; 996 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 997 AddNodeIDCustom(ID, N); 998 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 999 if (Node) 1000 Node->intersectFlagsWith(N->getFlags()); 1001 return Node; 1002 } 1003 1004 Align SelectionDAG::getEVTAlign(EVT VT) const { 1005 Type *Ty = VT == MVT::iPTR ? 1006 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1007 VT.getTypeForEVT(*getContext()); 1008 1009 return getDataLayout().getABITypeAlign(Ty); 1010 } 1011 1012 // EntryNode could meaningfully have debug info if we can find it... 1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1014 : TM(tm), OptLevel(OL), 1015 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1016 Root(getEntryNode()) { 1017 InsertNode(&EntryNode); 1018 DbgInfo = new SDDbgInfo(); 1019 } 1020 1021 void SelectionDAG::init(MachineFunction &NewMF, 1022 OptimizationRemarkEmitter &NewORE, 1023 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1024 LegacyDivergenceAnalysis * Divergence, 1025 ProfileSummaryInfo *PSIin, 1026 BlockFrequencyInfo *BFIin) { 1027 MF = &NewMF; 1028 SDAGISelPass = PassPtr; 1029 ORE = &NewORE; 1030 TLI = getSubtarget().getTargetLowering(); 1031 TSI = getSubtarget().getSelectionDAGInfo(); 1032 LibInfo = LibraryInfo; 1033 Context = &MF->getFunction().getContext(); 1034 DA = Divergence; 1035 PSI = PSIin; 1036 BFI = BFIin; 1037 } 1038 1039 SelectionDAG::~SelectionDAG() { 1040 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1041 allnodes_clear(); 1042 OperandRecycler.clear(OperandAllocator); 1043 delete DbgInfo; 1044 } 1045 1046 bool SelectionDAG::shouldOptForSize() const { 1047 return MF->getFunction().hasOptSize() || 1048 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1049 } 1050 1051 void SelectionDAG::allnodes_clear() { 1052 assert(&*AllNodes.begin() == &EntryNode); 1053 AllNodes.remove(AllNodes.begin()); 1054 while (!AllNodes.empty()) 1055 DeallocateNode(&AllNodes.front()); 1056 #ifndef NDEBUG 1057 NextPersistentId = 0; 1058 #endif 1059 } 1060 1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1062 void *&InsertPos) { 1063 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1064 if (N) { 1065 switch (N->getOpcode()) { 1066 default: break; 1067 case ISD::Constant: 1068 case ISD::ConstantFP: 1069 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1070 "debug location. Use another overload."); 1071 } 1072 } 1073 return N; 1074 } 1075 1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1077 const SDLoc &DL, void *&InsertPos) { 1078 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1079 if (N) { 1080 switch (N->getOpcode()) { 1081 case ISD::Constant: 1082 case ISD::ConstantFP: 1083 // Erase debug location from the node if the node is used at several 1084 // different places. Do not propagate one location to all uses as it 1085 // will cause a worse single stepping debugging experience. 1086 if (N->getDebugLoc() != DL.getDebugLoc()) 1087 N->setDebugLoc(DebugLoc()); 1088 break; 1089 default: 1090 // When the node's point of use is located earlier in the instruction 1091 // sequence than its prior point of use, update its debug info to the 1092 // earlier location. 1093 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1094 N->setDebugLoc(DL.getDebugLoc()); 1095 break; 1096 } 1097 } 1098 return N; 1099 } 1100 1101 void SelectionDAG::clear() { 1102 allnodes_clear(); 1103 OperandRecycler.clear(OperandAllocator); 1104 OperandAllocator.Reset(); 1105 CSEMap.clear(); 1106 1107 ExtendedValueTypeNodes.clear(); 1108 ExternalSymbols.clear(); 1109 TargetExternalSymbols.clear(); 1110 MCSymbols.clear(); 1111 SDCallSiteDbgInfo.clear(); 1112 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1113 static_cast<CondCodeSDNode*>(nullptr)); 1114 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1115 static_cast<SDNode*>(nullptr)); 1116 1117 EntryNode.UseList = nullptr; 1118 InsertNode(&EntryNode); 1119 Root = getEntryNode(); 1120 DbgInfo->clear(); 1121 } 1122 1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1124 return VT.bitsGT(Op.getValueType()) 1125 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1126 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1127 } 1128 1129 std::pair<SDValue, SDValue> 1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1131 const SDLoc &DL, EVT VT) { 1132 assert(!VT.bitsEq(Op.getValueType()) && 1133 "Strict no-op FP extend/round not allowed."); 1134 SDValue Res = 1135 VT.bitsGT(Op.getValueType()) 1136 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1137 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1138 {Chain, Op, getIntPtrConstant(0, DL)}); 1139 1140 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1141 } 1142 1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 return VT.bitsGT(Op.getValueType()) ? 1145 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1146 getNode(ISD::TRUNCATE, DL, VT, Op); 1147 } 1148 1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1150 return VT.bitsGT(Op.getValueType()) ? 1151 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1152 getNode(ISD::TRUNCATE, DL, VT, Op); 1153 } 1154 1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1156 return VT.bitsGT(Op.getValueType()) ? 1157 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1158 getNode(ISD::TRUNCATE, DL, VT, Op); 1159 } 1160 1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1162 EVT OpVT) { 1163 if (VT.bitsLE(Op.getValueType())) 1164 return getNode(ISD::TRUNCATE, SL, VT, Op); 1165 1166 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1167 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1168 } 1169 1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1171 EVT OpVT = Op.getValueType(); 1172 assert(VT.isInteger() && OpVT.isInteger() && 1173 "Cannot getZeroExtendInReg FP types"); 1174 assert(VT.isVector() == OpVT.isVector() && 1175 "getZeroExtendInReg type should be vector iff the operand " 1176 "type is vector!"); 1177 assert((!VT.isVector() || 1178 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1179 "Vector element counts must match in getZeroExtendInReg"); 1180 assert(VT.bitsLE(OpVT) && "Not extending!"); 1181 if (OpVT == VT) 1182 return Op; 1183 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1184 VT.getScalarSizeInBits()); 1185 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1186 } 1187 1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1189 // Only unsigned pointer semantics are supported right now. In the future this 1190 // might delegate to TLI to check pointer signedness. 1191 return getZExtOrTrunc(Op, DL, VT); 1192 } 1193 1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1195 // Only unsigned pointer semantics are supported right now. In the future this 1196 // might delegate to TLI to check pointer signedness. 1197 return getZeroExtendInReg(Op, DL, VT); 1198 } 1199 1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 EVT EltVT = VT.getScalarType(); 1203 SDValue NegOne = 1204 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1205 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1206 } 1207 1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1209 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1210 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1211 } 1212 1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1214 EVT OpVT) { 1215 if (!V) 1216 return getConstant(0, DL, VT); 1217 1218 switch (TLI->getBooleanContents(OpVT)) { 1219 case TargetLowering::ZeroOrOneBooleanContent: 1220 case TargetLowering::UndefinedBooleanContent: 1221 return getConstant(1, DL, VT); 1222 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1223 return getAllOnesConstant(DL, VT); 1224 } 1225 llvm_unreachable("Unexpected boolean content enum!"); 1226 } 1227 1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1229 bool isT, bool isO) { 1230 EVT EltVT = VT.getScalarType(); 1231 assert((EltVT.getSizeInBits() >= 64 || 1232 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1233 "getConstant with a uint64_t value that doesn't fit in the type!"); 1234 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1235 } 1236 1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1238 bool isT, bool isO) { 1239 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1240 } 1241 1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1243 EVT VT, bool isT, bool isO) { 1244 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1245 1246 EVT EltVT = VT.getScalarType(); 1247 const ConstantInt *Elt = &Val; 1248 1249 // In some cases the vector type is legal but the element type is illegal and 1250 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1251 // inserted value (the type does not need to match the vector element type). 1252 // Any extra bits introduced will be truncated away. 1253 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1254 TargetLowering::TypePromoteInteger) { 1255 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1256 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1257 Elt = ConstantInt::get(*getContext(), NewVal); 1258 } 1259 // In other cases the element type is illegal and needs to be expanded, for 1260 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1261 // the value into n parts and use a vector type with n-times the elements. 1262 // Then bitcast to the type requested. 1263 // Legalizing constants too early makes the DAGCombiner's job harder so we 1264 // only legalize if the DAG tells us we must produce legal types. 1265 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1266 TLI->getTypeAction(*getContext(), EltVT) == 1267 TargetLowering::TypeExpandInteger) { 1268 const APInt &NewVal = Elt->getValue(); 1269 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1270 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1271 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1272 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1273 1274 // Check the temporary vector is the correct size. If this fails then 1275 // getTypeToTransformTo() probably returned a type whose size (in bits) 1276 // isn't a power-of-2 factor of the requested type size. 1277 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1278 1279 SmallVector<SDValue, 2> EltParts; 1280 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1281 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1282 .zextOrTrunc(ViaEltSizeInBits), DL, 1283 ViaEltVT, isT, isO)); 1284 } 1285 1286 // EltParts is currently in little endian order. If we actually want 1287 // big-endian order then reverse it now. 1288 if (getDataLayout().isBigEndian()) 1289 std::reverse(EltParts.begin(), EltParts.end()); 1290 1291 // The elements must be reversed when the element order is different 1292 // to the endianness of the elements (because the BITCAST is itself a 1293 // vector shuffle in this situation). However, we do not need any code to 1294 // perform this reversal because getConstant() is producing a vector 1295 // splat. 1296 // This situation occurs in MIPS MSA. 1297 1298 SmallVector<SDValue, 8> Ops; 1299 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1300 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1301 1302 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1303 return V; 1304 } 1305 1306 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1307 "APInt size does not match type size!"); 1308 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1309 FoldingSetNodeID ID; 1310 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1311 ID.AddPointer(Elt); 1312 ID.AddBoolean(isO); 1313 void *IP = nullptr; 1314 SDNode *N = nullptr; 1315 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1316 if (!VT.isVector()) 1317 return SDValue(N, 0); 1318 1319 if (!N) { 1320 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1321 CSEMap.InsertNode(N, IP); 1322 InsertNode(N); 1323 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1324 } 1325 1326 SDValue Result(N, 0); 1327 if (VT.isScalableVector()) 1328 Result = getSplatVector(VT, DL, Result); 1329 else if (VT.isVector()) 1330 Result = getSplatBuildVector(VT, DL, Result); 1331 1332 return Result; 1333 } 1334 1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1336 bool isTarget) { 1337 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1338 } 1339 1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1341 const SDLoc &DL, bool LegalTypes) { 1342 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1343 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1344 return getConstant(Val, DL, ShiftVT); 1345 } 1346 1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1348 bool isTarget) { 1349 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1350 } 1351 1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1353 bool isTarget) { 1354 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1355 } 1356 1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1358 EVT VT, bool isTarget) { 1359 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1360 1361 EVT EltVT = VT.getScalarType(); 1362 1363 // Do the map lookup using the actual bit pattern for the floating point 1364 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1365 // we don't have issues with SNANs. 1366 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1367 FoldingSetNodeID ID; 1368 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1369 ID.AddPointer(&V); 1370 void *IP = nullptr; 1371 SDNode *N = nullptr; 1372 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1373 if (!VT.isVector()) 1374 return SDValue(N, 0); 1375 1376 if (!N) { 1377 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1378 CSEMap.InsertNode(N, IP); 1379 InsertNode(N); 1380 } 1381 1382 SDValue Result(N, 0); 1383 if (VT.isScalableVector()) 1384 Result = getSplatVector(VT, DL, Result); 1385 else if (VT.isVector()) 1386 Result = getSplatBuildVector(VT, DL, Result); 1387 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1388 return Result; 1389 } 1390 1391 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1392 bool isTarget) { 1393 EVT EltVT = VT.getScalarType(); 1394 if (EltVT == MVT::f32) 1395 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1396 else if (EltVT == MVT::f64) 1397 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1398 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1399 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1400 bool Ignored; 1401 APFloat APF = APFloat(Val); 1402 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1403 &Ignored); 1404 return getConstantFP(APF, DL, VT, isTarget); 1405 } else 1406 llvm_unreachable("Unsupported type in getConstantFP"); 1407 } 1408 1409 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1410 EVT VT, int64_t Offset, bool isTargetGA, 1411 unsigned TargetFlags) { 1412 assert((TargetFlags == 0 || isTargetGA) && 1413 "Cannot set target flags on target-independent globals"); 1414 1415 // Truncate (with sign-extension) the offset value to the pointer size. 1416 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1417 if (BitWidth < 64) 1418 Offset = SignExtend64(Offset, BitWidth); 1419 1420 unsigned Opc; 1421 if (GV->isThreadLocal()) 1422 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1423 else 1424 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1425 1426 FoldingSetNodeID ID; 1427 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1428 ID.AddPointer(GV); 1429 ID.AddInteger(Offset); 1430 ID.AddInteger(TargetFlags); 1431 void *IP = nullptr; 1432 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1433 return SDValue(E, 0); 1434 1435 auto *N = newSDNode<GlobalAddressSDNode>( 1436 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1437 CSEMap.InsertNode(N, IP); 1438 InsertNode(N); 1439 return SDValue(N, 0); 1440 } 1441 1442 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1443 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1444 FoldingSetNodeID ID; 1445 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1446 ID.AddInteger(FI); 1447 void *IP = nullptr; 1448 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1449 return SDValue(E, 0); 1450 1451 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1452 CSEMap.InsertNode(N, IP); 1453 InsertNode(N); 1454 return SDValue(N, 0); 1455 } 1456 1457 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1458 unsigned TargetFlags) { 1459 assert((TargetFlags == 0 || isTarget) && 1460 "Cannot set target flags on target-independent jump tables"); 1461 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1462 FoldingSetNodeID ID; 1463 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1464 ID.AddInteger(JTI); 1465 ID.AddInteger(TargetFlags); 1466 void *IP = nullptr; 1467 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1468 return SDValue(E, 0); 1469 1470 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1471 CSEMap.InsertNode(N, IP); 1472 InsertNode(N); 1473 return SDValue(N, 0); 1474 } 1475 1476 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1477 MaybeAlign Alignment, int Offset, 1478 bool isTarget, unsigned TargetFlags) { 1479 assert((TargetFlags == 0 || isTarget) && 1480 "Cannot set target flags on target-independent globals"); 1481 if (!Alignment) 1482 Alignment = shouldOptForSize() 1483 ? getDataLayout().getABITypeAlign(C->getType()) 1484 : getDataLayout().getPrefTypeAlign(C->getType()); 1485 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1486 FoldingSetNodeID ID; 1487 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1488 ID.AddInteger(Alignment->value()); 1489 ID.AddInteger(Offset); 1490 ID.AddPointer(C); 1491 ID.AddInteger(TargetFlags); 1492 void *IP = nullptr; 1493 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1494 return SDValue(E, 0); 1495 1496 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1497 TargetFlags); 1498 CSEMap.InsertNode(N, IP); 1499 InsertNode(N); 1500 SDValue V = SDValue(N, 0); 1501 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1502 return V; 1503 } 1504 1505 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1506 MaybeAlign Alignment, int Offset, 1507 bool isTarget, unsigned TargetFlags) { 1508 assert((TargetFlags == 0 || isTarget) && 1509 "Cannot set target flags on target-independent globals"); 1510 if (!Alignment) 1511 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1512 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1513 FoldingSetNodeID ID; 1514 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1515 ID.AddInteger(Alignment->value()); 1516 ID.AddInteger(Offset); 1517 C->addSelectionDAGCSEId(ID); 1518 ID.AddInteger(TargetFlags); 1519 void *IP = nullptr; 1520 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1521 return SDValue(E, 0); 1522 1523 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1524 TargetFlags); 1525 CSEMap.InsertNode(N, IP); 1526 InsertNode(N); 1527 return SDValue(N, 0); 1528 } 1529 1530 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1531 unsigned TargetFlags) { 1532 FoldingSetNodeID ID; 1533 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1534 ID.AddInteger(Index); 1535 ID.AddInteger(Offset); 1536 ID.AddInteger(TargetFlags); 1537 void *IP = nullptr; 1538 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1539 return SDValue(E, 0); 1540 1541 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1542 CSEMap.InsertNode(N, IP); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1548 FoldingSetNodeID ID; 1549 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1550 ID.AddPointer(MBB); 1551 void *IP = nullptr; 1552 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1553 return SDValue(E, 0); 1554 1555 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1556 CSEMap.InsertNode(N, IP); 1557 InsertNode(N); 1558 return SDValue(N, 0); 1559 } 1560 1561 SDValue SelectionDAG::getValueType(EVT VT) { 1562 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1563 ValueTypeNodes.size()) 1564 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1565 1566 SDNode *&N = VT.isExtended() ? 1567 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1568 1569 if (N) return SDValue(N, 0); 1570 N = newSDNode<VTSDNode>(VT); 1571 InsertNode(N); 1572 return SDValue(N, 0); 1573 } 1574 1575 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1576 SDNode *&N = ExternalSymbols[Sym]; 1577 if (N) return SDValue(N, 0); 1578 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1579 InsertNode(N); 1580 return SDValue(N, 0); 1581 } 1582 1583 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1584 SDNode *&N = MCSymbols[Sym]; 1585 if (N) 1586 return SDValue(N, 0); 1587 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1588 InsertNode(N); 1589 return SDValue(N, 0); 1590 } 1591 1592 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1593 unsigned TargetFlags) { 1594 SDNode *&N = 1595 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1596 if (N) return SDValue(N, 0); 1597 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1598 InsertNode(N); 1599 return SDValue(N, 0); 1600 } 1601 1602 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1603 if ((unsigned)Cond >= CondCodeNodes.size()) 1604 CondCodeNodes.resize(Cond+1); 1605 1606 if (!CondCodeNodes[Cond]) { 1607 auto *N = newSDNode<CondCodeSDNode>(Cond); 1608 CondCodeNodes[Cond] = N; 1609 InsertNode(N); 1610 } 1611 1612 return SDValue(CondCodeNodes[Cond], 0); 1613 } 1614 1615 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1616 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1617 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1618 std::swap(N1, N2); 1619 ShuffleVectorSDNode::commuteMask(M); 1620 } 1621 1622 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1623 SDValue N2, ArrayRef<int> Mask) { 1624 assert(VT.getVectorNumElements() == Mask.size() && 1625 "Must have the same number of vector elements as mask elements!"); 1626 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1627 "Invalid VECTOR_SHUFFLE"); 1628 1629 // Canonicalize shuffle undef, undef -> undef 1630 if (N1.isUndef() && N2.isUndef()) 1631 return getUNDEF(VT); 1632 1633 // Validate that all indices in Mask are within the range of the elements 1634 // input to the shuffle. 1635 int NElts = Mask.size(); 1636 assert(llvm::all_of(Mask, 1637 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1638 "Index out of range"); 1639 1640 // Copy the mask so we can do any needed cleanup. 1641 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1642 1643 // Canonicalize shuffle v, v -> v, undef 1644 if (N1 == N2) { 1645 N2 = getUNDEF(VT); 1646 for (int i = 0; i != NElts; ++i) 1647 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1648 } 1649 1650 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1651 if (N1.isUndef()) 1652 commuteShuffle(N1, N2, MaskVec); 1653 1654 if (TLI->hasVectorBlend()) { 1655 // If shuffling a splat, try to blend the splat instead. We do this here so 1656 // that even when this arises during lowering we don't have to re-handle it. 1657 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1658 BitVector UndefElements; 1659 SDValue Splat = BV->getSplatValue(&UndefElements); 1660 if (!Splat) 1661 return; 1662 1663 for (int i = 0; i < NElts; ++i) { 1664 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1665 continue; 1666 1667 // If this input comes from undef, mark it as such. 1668 if (UndefElements[MaskVec[i] - Offset]) { 1669 MaskVec[i] = -1; 1670 continue; 1671 } 1672 1673 // If we can blend a non-undef lane, use that instead. 1674 if (!UndefElements[i]) 1675 MaskVec[i] = i + Offset; 1676 } 1677 }; 1678 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1679 BlendSplat(N1BV, 0); 1680 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1681 BlendSplat(N2BV, NElts); 1682 } 1683 1684 // Canonicalize all index into lhs, -> shuffle lhs, undef 1685 // Canonicalize all index into rhs, -> shuffle rhs, undef 1686 bool AllLHS = true, AllRHS = true; 1687 bool N2Undef = N2.isUndef(); 1688 for (int i = 0; i != NElts; ++i) { 1689 if (MaskVec[i] >= NElts) { 1690 if (N2Undef) 1691 MaskVec[i] = -1; 1692 else 1693 AllLHS = false; 1694 } else if (MaskVec[i] >= 0) { 1695 AllRHS = false; 1696 } 1697 } 1698 if (AllLHS && AllRHS) 1699 return getUNDEF(VT); 1700 if (AllLHS && !N2Undef) 1701 N2 = getUNDEF(VT); 1702 if (AllRHS) { 1703 N1 = getUNDEF(VT); 1704 commuteShuffle(N1, N2, MaskVec); 1705 } 1706 // Reset our undef status after accounting for the mask. 1707 N2Undef = N2.isUndef(); 1708 // Re-check whether both sides ended up undef. 1709 if (N1.isUndef() && N2Undef) 1710 return getUNDEF(VT); 1711 1712 // If Identity shuffle return that node. 1713 bool Identity = true, AllSame = true; 1714 for (int i = 0; i != NElts; ++i) { 1715 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1716 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1717 } 1718 if (Identity && NElts) 1719 return N1; 1720 1721 // Shuffling a constant splat doesn't change the result. 1722 if (N2Undef) { 1723 SDValue V = N1; 1724 1725 // Look through any bitcasts. We check that these don't change the number 1726 // (and size) of elements and just changes their types. 1727 while (V.getOpcode() == ISD::BITCAST) 1728 V = V->getOperand(0); 1729 1730 // A splat should always show up as a build vector node. 1731 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1732 BitVector UndefElements; 1733 SDValue Splat = BV->getSplatValue(&UndefElements); 1734 // If this is a splat of an undef, shuffling it is also undef. 1735 if (Splat && Splat.isUndef()) 1736 return getUNDEF(VT); 1737 1738 bool SameNumElts = 1739 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1740 1741 // We only have a splat which can skip shuffles if there is a splatted 1742 // value and no undef lanes rearranged by the shuffle. 1743 if (Splat && UndefElements.none()) { 1744 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1745 // number of elements match or the value splatted is a zero constant. 1746 if (SameNumElts) 1747 return N1; 1748 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1749 if (C->isNullValue()) 1750 return N1; 1751 } 1752 1753 // If the shuffle itself creates a splat, build the vector directly. 1754 if (AllSame && SameNumElts) { 1755 EVT BuildVT = BV->getValueType(0); 1756 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1757 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1758 1759 // We may have jumped through bitcasts, so the type of the 1760 // BUILD_VECTOR may not match the type of the shuffle. 1761 if (BuildVT != VT) 1762 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1763 return NewBV; 1764 } 1765 } 1766 } 1767 1768 FoldingSetNodeID ID; 1769 SDValue Ops[2] = { N1, N2 }; 1770 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1771 for (int i = 0; i != NElts; ++i) 1772 ID.AddInteger(MaskVec[i]); 1773 1774 void* IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1776 return SDValue(E, 0); 1777 1778 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1779 // SDNode doesn't have access to it. This memory will be "leaked" when 1780 // the node is deallocated, but recovered when the NodeAllocator is released. 1781 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1782 llvm::copy(MaskVec, MaskAlloc); 1783 1784 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1785 dl.getDebugLoc(), MaskAlloc); 1786 createOperands(N, Ops); 1787 1788 CSEMap.InsertNode(N, IP); 1789 InsertNode(N); 1790 SDValue V = SDValue(N, 0); 1791 NewSDValueDbgMsg(V, "Creating new node: ", this); 1792 return V; 1793 } 1794 1795 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1796 EVT VT = SV.getValueType(0); 1797 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1798 ShuffleVectorSDNode::commuteMask(MaskVec); 1799 1800 SDValue Op0 = SV.getOperand(0); 1801 SDValue Op1 = SV.getOperand(1); 1802 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1803 } 1804 1805 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1806 FoldingSetNodeID ID; 1807 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1808 ID.AddInteger(RegNo); 1809 void *IP = nullptr; 1810 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1811 return SDValue(E, 0); 1812 1813 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1814 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1815 CSEMap.InsertNode(N, IP); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1821 FoldingSetNodeID ID; 1822 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1823 ID.AddPointer(RegMask); 1824 void *IP = nullptr; 1825 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1826 return SDValue(E, 0); 1827 1828 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1829 CSEMap.InsertNode(N, IP); 1830 InsertNode(N); 1831 return SDValue(N, 0); 1832 } 1833 1834 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1835 MCSymbol *Label) { 1836 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1837 } 1838 1839 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1840 SDValue Root, MCSymbol *Label) { 1841 FoldingSetNodeID ID; 1842 SDValue Ops[] = { Root }; 1843 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1844 ID.AddPointer(Label); 1845 void *IP = nullptr; 1846 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1847 return SDValue(E, 0); 1848 1849 auto *N = 1850 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1851 createOperands(N, Ops); 1852 1853 CSEMap.InsertNode(N, IP); 1854 InsertNode(N); 1855 return SDValue(N, 0); 1856 } 1857 1858 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1859 int64_t Offset, bool isTarget, 1860 unsigned TargetFlags) { 1861 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1862 1863 FoldingSetNodeID ID; 1864 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1865 ID.AddPointer(BA); 1866 ID.AddInteger(Offset); 1867 ID.AddInteger(TargetFlags); 1868 void *IP = nullptr; 1869 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1870 return SDValue(E, 0); 1871 1872 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1873 CSEMap.InsertNode(N, IP); 1874 InsertNode(N); 1875 return SDValue(N, 0); 1876 } 1877 1878 SDValue SelectionDAG::getSrcValue(const Value *V) { 1879 FoldingSetNodeID ID; 1880 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1881 ID.AddPointer(V); 1882 1883 void *IP = nullptr; 1884 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1885 return SDValue(E, 0); 1886 1887 auto *N = newSDNode<SrcValueSDNode>(V); 1888 CSEMap.InsertNode(N, IP); 1889 InsertNode(N); 1890 return SDValue(N, 0); 1891 } 1892 1893 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1894 FoldingSetNodeID ID; 1895 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1896 ID.AddPointer(MD); 1897 1898 void *IP = nullptr; 1899 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1900 return SDValue(E, 0); 1901 1902 auto *N = newSDNode<MDNodeSDNode>(MD); 1903 CSEMap.InsertNode(N, IP); 1904 InsertNode(N); 1905 return SDValue(N, 0); 1906 } 1907 1908 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1909 if (VT == V.getValueType()) 1910 return V; 1911 1912 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1913 } 1914 1915 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1916 unsigned SrcAS, unsigned DestAS) { 1917 SDValue Ops[] = {Ptr}; 1918 FoldingSetNodeID ID; 1919 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1920 ID.AddInteger(SrcAS); 1921 ID.AddInteger(DestAS); 1922 1923 void *IP = nullptr; 1924 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1925 return SDValue(E, 0); 1926 1927 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1928 VT, SrcAS, DestAS); 1929 createOperands(N, Ops); 1930 1931 CSEMap.InsertNode(N, IP); 1932 InsertNode(N); 1933 return SDValue(N, 0); 1934 } 1935 1936 SDValue SelectionDAG::getFreeze(SDValue V) { 1937 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1938 } 1939 1940 /// getShiftAmountOperand - Return the specified value casted to 1941 /// the target's desired shift amount type. 1942 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1943 EVT OpTy = Op.getValueType(); 1944 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1945 if (OpTy == ShTy || OpTy.isVector()) return Op; 1946 1947 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1948 } 1949 1950 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1951 SDLoc dl(Node); 1952 const TargetLowering &TLI = getTargetLoweringInfo(); 1953 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1954 EVT VT = Node->getValueType(0); 1955 SDValue Tmp1 = Node->getOperand(0); 1956 SDValue Tmp2 = Node->getOperand(1); 1957 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1958 1959 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1960 Tmp2, MachinePointerInfo(V)); 1961 SDValue VAList = VAListLoad; 1962 1963 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1964 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1965 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1966 1967 VAList = 1968 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1969 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1970 } 1971 1972 // Increment the pointer, VAList, to the next vaarg 1973 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1974 getConstant(getDataLayout().getTypeAllocSize( 1975 VT.getTypeForEVT(*getContext())), 1976 dl, VAList.getValueType())); 1977 // Store the incremented VAList to the legalized pointer 1978 Tmp1 = 1979 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1980 // Load the actual argument out of the pointer VAList 1981 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1982 } 1983 1984 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1985 SDLoc dl(Node); 1986 const TargetLowering &TLI = getTargetLoweringInfo(); 1987 // This defaults to loading a pointer from the input and storing it to the 1988 // output, returning the chain. 1989 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1990 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1991 SDValue Tmp1 = 1992 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1993 Node->getOperand(2), MachinePointerInfo(VS)); 1994 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1995 MachinePointerInfo(VD)); 1996 } 1997 1998 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 1999 const DataLayout &DL = getDataLayout(); 2000 Type *Ty = VT.getTypeForEVT(*getContext()); 2001 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2002 2003 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2004 return RedAlign; 2005 2006 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2007 const Align StackAlign = TFI->getStackAlign(); 2008 2009 // See if we can choose a smaller ABI alignment in cases where it's an 2010 // illegal vector type that will get broken down. 2011 if (RedAlign > StackAlign) { 2012 EVT IntermediateVT; 2013 MVT RegisterVT; 2014 unsigned NumIntermediates; 2015 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2016 NumIntermediates, RegisterVT); 2017 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2018 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2019 if (RedAlign2 < RedAlign) 2020 RedAlign = RedAlign2; 2021 } 2022 2023 return RedAlign; 2024 } 2025 2026 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2027 MachineFrameInfo &MFI = MF->getFrameInfo(); 2028 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2029 int StackID = 0; 2030 if (Bytes.isScalable()) 2031 StackID = TFI->getStackIDForScalableVectors(); 2032 int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, 2033 false, nullptr, StackID); 2034 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2035 } 2036 2037 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2038 Type *Ty = VT.getTypeForEVT(*getContext()); 2039 Align StackAlign = 2040 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2041 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2042 } 2043 2044 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2045 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2046 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2047 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2048 const DataLayout &DL = getDataLayout(); 2049 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2050 return CreateStackTemporary(Bytes, Align); 2051 } 2052 2053 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2054 ISD::CondCode Cond, const SDLoc &dl) { 2055 EVT OpVT = N1.getValueType(); 2056 2057 // These setcc operations always fold. 2058 switch (Cond) { 2059 default: break; 2060 case ISD::SETFALSE: 2061 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2062 case ISD::SETTRUE: 2063 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2064 2065 case ISD::SETOEQ: 2066 case ISD::SETOGT: 2067 case ISD::SETOGE: 2068 case ISD::SETOLT: 2069 case ISD::SETOLE: 2070 case ISD::SETONE: 2071 case ISD::SETO: 2072 case ISD::SETUO: 2073 case ISD::SETUEQ: 2074 case ISD::SETUNE: 2075 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2076 break; 2077 } 2078 2079 if (OpVT.isInteger()) { 2080 // For EQ and NE, we can always pick a value for the undef to make the 2081 // predicate pass or fail, so we can return undef. 2082 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2083 // icmp eq/ne X, undef -> undef. 2084 if ((N1.isUndef() || N2.isUndef()) && 2085 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2086 return getUNDEF(VT); 2087 2088 // If both operands are undef, we can return undef for int comparison. 2089 // icmp undef, undef -> undef. 2090 if (N1.isUndef() && N2.isUndef()) 2091 return getUNDEF(VT); 2092 2093 // icmp X, X -> true/false 2094 // icmp X, undef -> true/false because undef could be X. 2095 if (N1 == N2) 2096 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2097 } 2098 2099 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2100 const APInt &C2 = N2C->getAPIntValue(); 2101 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2102 const APInt &C1 = N1C->getAPIntValue(); 2103 2104 switch (Cond) { 2105 default: llvm_unreachable("Unknown integer setcc!"); 2106 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2107 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2108 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2109 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2110 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2111 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2112 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2113 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2114 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2115 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2116 } 2117 } 2118 } 2119 2120 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2121 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2122 2123 if (N1CFP && N2CFP) { 2124 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2125 switch (Cond) { 2126 default: break; 2127 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2128 return getUNDEF(VT); 2129 LLVM_FALLTHROUGH; 2130 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2131 OpVT); 2132 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2133 return getUNDEF(VT); 2134 LLVM_FALLTHROUGH; 2135 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2136 R==APFloat::cmpLessThan, dl, VT, 2137 OpVT); 2138 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2139 return getUNDEF(VT); 2140 LLVM_FALLTHROUGH; 2141 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2142 OpVT); 2143 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2144 return getUNDEF(VT); 2145 LLVM_FALLTHROUGH; 2146 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2147 VT, OpVT); 2148 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2149 return getUNDEF(VT); 2150 LLVM_FALLTHROUGH; 2151 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2152 R==APFloat::cmpEqual, dl, VT, 2153 OpVT); 2154 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2155 return getUNDEF(VT); 2156 LLVM_FALLTHROUGH; 2157 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2158 R==APFloat::cmpEqual, dl, VT, OpVT); 2159 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2160 OpVT); 2161 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2162 OpVT); 2163 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2164 R==APFloat::cmpEqual, dl, VT, 2165 OpVT); 2166 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2167 OpVT); 2168 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2169 R==APFloat::cmpLessThan, dl, VT, 2170 OpVT); 2171 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2172 R==APFloat::cmpUnordered, dl, VT, 2173 OpVT); 2174 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2175 VT, OpVT); 2176 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2177 OpVT); 2178 } 2179 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2180 // Ensure that the constant occurs on the RHS. 2181 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2182 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2183 return SDValue(); 2184 return getSetCC(dl, VT, N2, N1, SwappedCond); 2185 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2186 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2187 // If an operand is known to be a nan (or undef that could be a nan), we can 2188 // fold it. 2189 // Choosing NaN for the undef will always make unordered comparison succeed 2190 // and ordered comparison fails. 2191 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2192 switch (ISD::getUnorderedFlavor(Cond)) { 2193 default: 2194 llvm_unreachable("Unknown flavor!"); 2195 case 0: // Known false. 2196 return getBoolConstant(false, dl, VT, OpVT); 2197 case 1: // Known true. 2198 return getBoolConstant(true, dl, VT, OpVT); 2199 case 2: // Undefined. 2200 return getUNDEF(VT); 2201 } 2202 } 2203 2204 // Could not fold it. 2205 return SDValue(); 2206 } 2207 2208 /// See if the specified operand can be simplified with the knowledge that only 2209 /// the bits specified by DemandedBits are used. 2210 /// TODO: really we should be making this into the DAG equivalent of 2211 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2212 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2213 EVT VT = V.getValueType(); 2214 APInt DemandedElts = VT.isVector() 2215 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2216 : APInt(1, 1); 2217 return GetDemandedBits(V, DemandedBits, DemandedElts); 2218 } 2219 2220 /// See if the specified operand can be simplified with the knowledge that only 2221 /// the bits specified by DemandedBits are used in the elements specified by 2222 /// DemandedElts. 2223 /// TODO: really we should be making this into the DAG equivalent of 2224 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2225 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2226 const APInt &DemandedElts) { 2227 switch (V.getOpcode()) { 2228 default: 2229 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2230 *this, 0); 2231 case ISD::Constant: { 2232 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2233 APInt NewVal = CVal & DemandedBits; 2234 if (NewVal != CVal) 2235 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2236 break; 2237 } 2238 case ISD::SRL: 2239 // Only look at single-use SRLs. 2240 if (!V.getNode()->hasOneUse()) 2241 break; 2242 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2243 // See if we can recursively simplify the LHS. 2244 unsigned Amt = RHSC->getZExtValue(); 2245 2246 // Watch out for shift count overflow though. 2247 if (Amt >= DemandedBits.getBitWidth()) 2248 break; 2249 APInt SrcDemandedBits = DemandedBits << Amt; 2250 if (SDValue SimplifyLHS = 2251 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2252 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2253 V.getOperand(1)); 2254 } 2255 break; 2256 } 2257 return SDValue(); 2258 } 2259 2260 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2261 /// use this predicate to simplify operations downstream. 2262 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2263 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2264 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2265 } 2266 2267 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2268 /// this predicate to simplify operations downstream. Mask is known to be zero 2269 /// for bits that V cannot have. 2270 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2271 unsigned Depth) const { 2272 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2273 } 2274 2275 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2276 /// DemandedElts. We use this predicate to simplify operations downstream. 2277 /// Mask is known to be zero for bits that V cannot have. 2278 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2279 const APInt &DemandedElts, 2280 unsigned Depth) const { 2281 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2282 } 2283 2284 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2285 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2286 unsigned Depth) const { 2287 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2288 } 2289 2290 /// isSplatValue - Return true if the vector V has the same value 2291 /// across all DemandedElts. For scalable vectors it does not make 2292 /// sense to specify which elements are demanded or undefined, therefore 2293 /// they are simply ignored. 2294 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2295 APInt &UndefElts) { 2296 EVT VT = V.getValueType(); 2297 assert(VT.isVector() && "Vector type expected"); 2298 2299 if (!VT.isScalableVector() && !DemandedElts) 2300 return false; // No demanded elts, better to assume we don't know anything. 2301 2302 // Deal with some common cases here that work for both fixed and scalable 2303 // vector types. 2304 switch (V.getOpcode()) { 2305 case ISD::SPLAT_VECTOR: 2306 return true; 2307 case ISD::ADD: 2308 case ISD::SUB: 2309 case ISD::AND: { 2310 APInt UndefLHS, UndefRHS; 2311 SDValue LHS = V.getOperand(0); 2312 SDValue RHS = V.getOperand(1); 2313 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2314 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2315 UndefElts = UndefLHS | UndefRHS; 2316 return true; 2317 } 2318 break; 2319 } 2320 case ISD::TRUNCATE: 2321 case ISD::SIGN_EXTEND: 2322 case ISD::ZERO_EXTEND: 2323 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts); 2324 } 2325 2326 // We don't support other cases than those above for scalable vectors at 2327 // the moment. 2328 if (VT.isScalableVector()) 2329 return false; 2330 2331 unsigned NumElts = VT.getVectorNumElements(); 2332 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2333 UndefElts = APInt::getNullValue(NumElts); 2334 2335 switch (V.getOpcode()) { 2336 case ISD::BUILD_VECTOR: { 2337 SDValue Scl; 2338 for (unsigned i = 0; i != NumElts; ++i) { 2339 SDValue Op = V.getOperand(i); 2340 if (Op.isUndef()) { 2341 UndefElts.setBit(i); 2342 continue; 2343 } 2344 if (!DemandedElts[i]) 2345 continue; 2346 if (Scl && Scl != Op) 2347 return false; 2348 Scl = Op; 2349 } 2350 return true; 2351 } 2352 case ISD::VECTOR_SHUFFLE: { 2353 // Check if this is a shuffle node doing a splat. 2354 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2355 int SplatIndex = -1; 2356 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2357 for (int i = 0; i != (int)NumElts; ++i) { 2358 int M = Mask[i]; 2359 if (M < 0) { 2360 UndefElts.setBit(i); 2361 continue; 2362 } 2363 if (!DemandedElts[i]) 2364 continue; 2365 if (0 <= SplatIndex && SplatIndex != M) 2366 return false; 2367 SplatIndex = M; 2368 } 2369 return true; 2370 } 2371 case ISD::EXTRACT_SUBVECTOR: { 2372 // Offset the demanded elts by the subvector index. 2373 SDValue Src = V.getOperand(0); 2374 uint64_t Idx = V.getConstantOperandVal(1); 2375 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2376 APInt UndefSrcElts; 2377 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2378 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { 2379 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2380 return true; 2381 } 2382 break; 2383 } 2384 } 2385 2386 return false; 2387 } 2388 2389 /// Helper wrapper to main isSplatValue function. 2390 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2391 EVT VT = V.getValueType(); 2392 assert(VT.isVector() && "Vector type expected"); 2393 2394 APInt UndefElts; 2395 APInt DemandedElts; 2396 2397 // For now we don't support this with scalable vectors. 2398 if (!VT.isScalableVector()) 2399 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2400 return isSplatValue(V, DemandedElts, UndefElts) && 2401 (AllowUndefs || !UndefElts); 2402 } 2403 2404 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2405 V = peekThroughExtractSubvectors(V); 2406 2407 EVT VT = V.getValueType(); 2408 unsigned Opcode = V.getOpcode(); 2409 switch (Opcode) { 2410 default: { 2411 APInt UndefElts; 2412 APInt DemandedElts; 2413 2414 if (!VT.isScalableVector()) 2415 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2416 2417 if (isSplatValue(V, DemandedElts, UndefElts)) { 2418 if (VT.isScalableVector()) { 2419 // DemandedElts and UndefElts are ignored for scalable vectors, since 2420 // the only supported cases are SPLAT_VECTOR nodes. 2421 SplatIdx = 0; 2422 } else { 2423 // Handle case where all demanded elements are UNDEF. 2424 if (DemandedElts.isSubsetOf(UndefElts)) { 2425 SplatIdx = 0; 2426 return getUNDEF(VT); 2427 } 2428 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2429 } 2430 return V; 2431 } 2432 break; 2433 } 2434 case ISD::SPLAT_VECTOR: 2435 SplatIdx = 0; 2436 return V; 2437 case ISD::VECTOR_SHUFFLE: { 2438 if (VT.isScalableVector()) 2439 return SDValue(); 2440 2441 // Check if this is a shuffle node doing a splat. 2442 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2443 // getTargetVShiftNode currently struggles without the splat source. 2444 auto *SVN = cast<ShuffleVectorSDNode>(V); 2445 if (!SVN->isSplat()) 2446 break; 2447 int Idx = SVN->getSplatIndex(); 2448 int NumElts = V.getValueType().getVectorNumElements(); 2449 SplatIdx = Idx % NumElts; 2450 return V.getOperand(Idx / NumElts); 2451 } 2452 } 2453 2454 return SDValue(); 2455 } 2456 2457 SDValue SelectionDAG::getSplatValue(SDValue V) { 2458 int SplatIdx; 2459 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2460 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2461 SrcVector.getValueType().getScalarType(), SrcVector, 2462 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2463 return SDValue(); 2464 } 2465 2466 const APInt * 2467 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2468 const APInt &DemandedElts) const { 2469 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2470 V.getOpcode() == ISD::SRA) && 2471 "Unknown shift node"); 2472 unsigned BitWidth = V.getScalarValueSizeInBits(); 2473 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2474 // Shifting more than the bitwidth is not valid. 2475 const APInt &ShAmt = SA->getAPIntValue(); 2476 if (ShAmt.ult(BitWidth)) 2477 return &ShAmt; 2478 } 2479 return nullptr; 2480 } 2481 2482 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2483 SDValue V, const APInt &DemandedElts) const { 2484 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2485 V.getOpcode() == ISD::SRA) && 2486 "Unknown shift node"); 2487 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2488 return ValidAmt; 2489 unsigned BitWidth = V.getScalarValueSizeInBits(); 2490 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2491 if (!BV) 2492 return nullptr; 2493 const APInt *MinShAmt = nullptr; 2494 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2495 if (!DemandedElts[i]) 2496 continue; 2497 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2498 if (!SA) 2499 return nullptr; 2500 // Shifting more than the bitwidth is not valid. 2501 const APInt &ShAmt = SA->getAPIntValue(); 2502 if (ShAmt.uge(BitWidth)) 2503 return nullptr; 2504 if (MinShAmt && MinShAmt->ule(ShAmt)) 2505 continue; 2506 MinShAmt = &ShAmt; 2507 } 2508 return MinShAmt; 2509 } 2510 2511 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2512 SDValue V, const APInt &DemandedElts) const { 2513 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2514 V.getOpcode() == ISD::SRA) && 2515 "Unknown shift node"); 2516 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2517 return ValidAmt; 2518 unsigned BitWidth = V.getScalarValueSizeInBits(); 2519 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2520 if (!BV) 2521 return nullptr; 2522 const APInt *MaxShAmt = nullptr; 2523 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2524 if (!DemandedElts[i]) 2525 continue; 2526 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2527 if (!SA) 2528 return nullptr; 2529 // Shifting more than the bitwidth is not valid. 2530 const APInt &ShAmt = SA->getAPIntValue(); 2531 if (ShAmt.uge(BitWidth)) 2532 return nullptr; 2533 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2534 continue; 2535 MaxShAmt = &ShAmt; 2536 } 2537 return MaxShAmt; 2538 } 2539 2540 /// Determine which bits of Op are known to be either zero or one and return 2541 /// them in Known. For vectors, the known bits are those that are shared by 2542 /// every vector element. 2543 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2544 EVT VT = Op.getValueType(); 2545 2546 // TOOD: Until we have a plan for how to represent demanded elements for 2547 // scalable vectors, we can just bail out for now. 2548 if (Op.getValueType().isScalableVector()) { 2549 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2550 return KnownBits(BitWidth); 2551 } 2552 2553 APInt DemandedElts = VT.isVector() 2554 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2555 : APInt(1, 1); 2556 return computeKnownBits(Op, DemandedElts, Depth); 2557 } 2558 2559 /// Determine which bits of Op are known to be either zero or one and return 2560 /// them in Known. The DemandedElts argument allows us to only collect the known 2561 /// bits that are shared by the requested vector elements. 2562 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2563 unsigned Depth) const { 2564 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2565 2566 KnownBits Known(BitWidth); // Don't know anything. 2567 2568 // TOOD: Until we have a plan for how to represent demanded elements for 2569 // scalable vectors, we can just bail out for now. 2570 if (Op.getValueType().isScalableVector()) 2571 return Known; 2572 2573 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2574 // We know all of the bits for a constant! 2575 Known.One = C->getAPIntValue(); 2576 Known.Zero = ~Known.One; 2577 return Known; 2578 } 2579 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2580 // We know all of the bits for a constant fp! 2581 Known.One = C->getValueAPF().bitcastToAPInt(); 2582 Known.Zero = ~Known.One; 2583 return Known; 2584 } 2585 2586 if (Depth >= MaxRecursionDepth) 2587 return Known; // Limit search depth. 2588 2589 KnownBits Known2; 2590 unsigned NumElts = DemandedElts.getBitWidth(); 2591 assert((!Op.getValueType().isVector() || 2592 NumElts == Op.getValueType().getVectorNumElements()) && 2593 "Unexpected vector size"); 2594 2595 if (!DemandedElts) 2596 return Known; // No demanded elts, better to assume we don't know anything. 2597 2598 unsigned Opcode = Op.getOpcode(); 2599 switch (Opcode) { 2600 case ISD::BUILD_VECTOR: 2601 // Collect the known bits that are shared by every demanded vector element. 2602 Known.Zero.setAllBits(); Known.One.setAllBits(); 2603 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2604 if (!DemandedElts[i]) 2605 continue; 2606 2607 SDValue SrcOp = Op.getOperand(i); 2608 Known2 = computeKnownBits(SrcOp, Depth + 1); 2609 2610 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2611 if (SrcOp.getValueSizeInBits() != BitWidth) { 2612 assert(SrcOp.getValueSizeInBits() > BitWidth && 2613 "Expected BUILD_VECTOR implicit truncation"); 2614 Known2 = Known2.trunc(BitWidth); 2615 } 2616 2617 // Known bits are the values that are shared by every demanded element. 2618 Known.One &= Known2.One; 2619 Known.Zero &= Known2.Zero; 2620 2621 // If we don't know any bits, early out. 2622 if (Known.isUnknown()) 2623 break; 2624 } 2625 break; 2626 case ISD::VECTOR_SHUFFLE: { 2627 // Collect the known bits that are shared by every vector element referenced 2628 // by the shuffle. 2629 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2630 Known.Zero.setAllBits(); Known.One.setAllBits(); 2631 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2632 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2633 for (unsigned i = 0; i != NumElts; ++i) { 2634 if (!DemandedElts[i]) 2635 continue; 2636 2637 int M = SVN->getMaskElt(i); 2638 if (M < 0) { 2639 // For UNDEF elements, we don't know anything about the common state of 2640 // the shuffle result. 2641 Known.resetAll(); 2642 DemandedLHS.clearAllBits(); 2643 DemandedRHS.clearAllBits(); 2644 break; 2645 } 2646 2647 if ((unsigned)M < NumElts) 2648 DemandedLHS.setBit((unsigned)M % NumElts); 2649 else 2650 DemandedRHS.setBit((unsigned)M % NumElts); 2651 } 2652 // Known bits are the values that are shared by every demanded element. 2653 if (!!DemandedLHS) { 2654 SDValue LHS = Op.getOperand(0); 2655 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2656 Known.One &= Known2.One; 2657 Known.Zero &= Known2.Zero; 2658 } 2659 // If we don't know any bits, early out. 2660 if (Known.isUnknown()) 2661 break; 2662 if (!!DemandedRHS) { 2663 SDValue RHS = Op.getOperand(1); 2664 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2665 Known.One &= Known2.One; 2666 Known.Zero &= Known2.Zero; 2667 } 2668 break; 2669 } 2670 case ISD::CONCAT_VECTORS: { 2671 // Split DemandedElts and test each of the demanded subvectors. 2672 Known.Zero.setAllBits(); Known.One.setAllBits(); 2673 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2674 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2675 unsigned NumSubVectors = Op.getNumOperands(); 2676 for (unsigned i = 0; i != NumSubVectors; ++i) { 2677 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2678 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2679 if (!!DemandedSub) { 2680 SDValue Sub = Op.getOperand(i); 2681 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2682 Known.One &= Known2.One; 2683 Known.Zero &= Known2.Zero; 2684 } 2685 // If we don't know any bits, early out. 2686 if (Known.isUnknown()) 2687 break; 2688 } 2689 break; 2690 } 2691 case ISD::INSERT_SUBVECTOR: { 2692 // Demand any elements from the subvector and the remainder from the src its 2693 // inserted into. 2694 SDValue Src = Op.getOperand(0); 2695 SDValue Sub = Op.getOperand(1); 2696 uint64_t Idx = Op.getConstantOperandVal(2); 2697 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2698 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2699 APInt DemandedSrcElts = DemandedElts; 2700 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2701 2702 Known.One.setAllBits(); 2703 Known.Zero.setAllBits(); 2704 if (!!DemandedSubElts) { 2705 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2706 if (Known.isUnknown()) 2707 break; // early-out. 2708 } 2709 if (!!DemandedSrcElts) { 2710 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2711 Known.One &= Known2.One; 2712 Known.Zero &= Known2.Zero; 2713 } 2714 break; 2715 } 2716 case ISD::EXTRACT_SUBVECTOR: { 2717 // Offset the demanded elts by the subvector index. 2718 SDValue Src = Op.getOperand(0); 2719 // Bail until we can represent demanded elements for scalable vectors. 2720 if (Src.getValueType().isScalableVector()) 2721 break; 2722 uint64_t Idx = Op.getConstantOperandVal(1); 2723 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2724 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2725 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2726 break; 2727 } 2728 case ISD::SCALAR_TO_VECTOR: { 2729 // We know about scalar_to_vector as much as we know about it source, 2730 // which becomes the first element of otherwise unknown vector. 2731 if (DemandedElts != 1) 2732 break; 2733 2734 SDValue N0 = Op.getOperand(0); 2735 Known = computeKnownBits(N0, Depth + 1); 2736 if (N0.getValueSizeInBits() != BitWidth) 2737 Known = Known.trunc(BitWidth); 2738 2739 break; 2740 } 2741 case ISD::BITCAST: { 2742 SDValue N0 = Op.getOperand(0); 2743 EVT SubVT = N0.getValueType(); 2744 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2745 2746 // Ignore bitcasts from unsupported types. 2747 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2748 break; 2749 2750 // Fast handling of 'identity' bitcasts. 2751 if (BitWidth == SubBitWidth) { 2752 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2753 break; 2754 } 2755 2756 bool IsLE = getDataLayout().isLittleEndian(); 2757 2758 // Bitcast 'small element' vector to 'large element' scalar/vector. 2759 if ((BitWidth % SubBitWidth) == 0) { 2760 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2761 2762 // Collect known bits for the (larger) output by collecting the known 2763 // bits from each set of sub elements and shift these into place. 2764 // We need to separately call computeKnownBits for each set of 2765 // sub elements as the knownbits for each is likely to be different. 2766 unsigned SubScale = BitWidth / SubBitWidth; 2767 APInt SubDemandedElts(NumElts * SubScale, 0); 2768 for (unsigned i = 0; i != NumElts; ++i) 2769 if (DemandedElts[i]) 2770 SubDemandedElts.setBit(i * SubScale); 2771 2772 for (unsigned i = 0; i != SubScale; ++i) { 2773 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2774 Depth + 1); 2775 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2776 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2777 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2778 } 2779 } 2780 2781 // Bitcast 'large element' scalar/vector to 'small element' vector. 2782 if ((SubBitWidth % BitWidth) == 0) { 2783 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2784 2785 // Collect known bits for the (smaller) output by collecting the known 2786 // bits from the overlapping larger input elements and extracting the 2787 // sub sections we actually care about. 2788 unsigned SubScale = SubBitWidth / BitWidth; 2789 APInt SubDemandedElts(NumElts / SubScale, 0); 2790 for (unsigned i = 0; i != NumElts; ++i) 2791 if (DemandedElts[i]) 2792 SubDemandedElts.setBit(i / SubScale); 2793 2794 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2795 2796 Known.Zero.setAllBits(); Known.One.setAllBits(); 2797 for (unsigned i = 0; i != NumElts; ++i) 2798 if (DemandedElts[i]) { 2799 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2800 unsigned Offset = (Shifts % SubScale) * BitWidth; 2801 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2802 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2803 // If we don't know any bits, early out. 2804 if (Known.isUnknown()) 2805 break; 2806 } 2807 } 2808 break; 2809 } 2810 case ISD::AND: 2811 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2812 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2813 2814 Known &= Known2; 2815 break; 2816 case ISD::OR: 2817 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2818 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2819 2820 Known |= Known2; 2821 break; 2822 case ISD::XOR: 2823 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2824 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2825 2826 Known ^= Known2; 2827 break; 2828 case ISD::MUL: { 2829 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2830 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2831 2832 // If low bits are zero in either operand, output low known-0 bits. 2833 // Also compute a conservative estimate for high known-0 bits. 2834 // More trickiness is possible, but this is sufficient for the 2835 // interesting case of alignment computation. 2836 unsigned TrailZ = Known.countMinTrailingZeros() + 2837 Known2.countMinTrailingZeros(); 2838 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2839 Known2.countMinLeadingZeros(), 2840 BitWidth) - BitWidth; 2841 2842 Known.resetAll(); 2843 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2844 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2845 break; 2846 } 2847 case ISD::UDIV: { 2848 // For the purposes of computing leading zeros we can conservatively 2849 // treat a udiv as a logical right shift by the power of 2 known to 2850 // be less than the denominator. 2851 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2852 unsigned LeadZ = Known2.countMinLeadingZeros(); 2853 2854 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2855 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2856 if (RHSMaxLeadingZeros != BitWidth) 2857 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2858 2859 Known.Zero.setHighBits(LeadZ); 2860 break; 2861 } 2862 case ISD::SELECT: 2863 case ISD::VSELECT: 2864 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2865 // If we don't know any bits, early out. 2866 if (Known.isUnknown()) 2867 break; 2868 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2869 2870 // Only known if known in both the LHS and RHS. 2871 Known.One &= Known2.One; 2872 Known.Zero &= Known2.Zero; 2873 break; 2874 case ISD::SELECT_CC: 2875 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2876 // If we don't know any bits, early out. 2877 if (Known.isUnknown()) 2878 break; 2879 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2880 2881 // Only known if known in both the LHS and RHS. 2882 Known.One &= Known2.One; 2883 Known.Zero &= Known2.Zero; 2884 break; 2885 case ISD::SMULO: 2886 case ISD::UMULO: 2887 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2888 if (Op.getResNo() != 1) 2889 break; 2890 // The boolean result conforms to getBooleanContents. 2891 // If we know the result of a setcc has the top bits zero, use this info. 2892 // We know that we have an integer-based boolean since these operations 2893 // are only available for integer. 2894 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2895 TargetLowering::ZeroOrOneBooleanContent && 2896 BitWidth > 1) 2897 Known.Zero.setBitsFrom(1); 2898 break; 2899 case ISD::SETCC: 2900 case ISD::STRICT_FSETCC: 2901 case ISD::STRICT_FSETCCS: { 2902 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2903 // If we know the result of a setcc has the top bits zero, use this info. 2904 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2905 TargetLowering::ZeroOrOneBooleanContent && 2906 BitWidth > 1) 2907 Known.Zero.setBitsFrom(1); 2908 break; 2909 } 2910 case ISD::SHL: 2911 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2912 2913 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2914 unsigned Shift = ShAmt->getZExtValue(); 2915 Known.Zero <<= Shift; 2916 Known.One <<= Shift; 2917 // Low bits are known zero. 2918 Known.Zero.setLowBits(Shift); 2919 break; 2920 } 2921 2922 // No matter the shift amount, the trailing zeros will stay zero. 2923 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2924 Known.One.clearAllBits(); 2925 2926 // Minimum shift low bits are known zero. 2927 if (const APInt *ShMinAmt = 2928 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2929 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2930 break; 2931 case ISD::SRL: 2932 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2933 2934 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2935 unsigned Shift = ShAmt->getZExtValue(); 2936 Known.Zero.lshrInPlace(Shift); 2937 Known.One.lshrInPlace(Shift); 2938 // High bits are known zero. 2939 Known.Zero.setHighBits(Shift); 2940 break; 2941 } 2942 2943 // No matter the shift amount, the leading zeros will stay zero. 2944 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2945 Known.One.clearAllBits(); 2946 2947 // Minimum shift high bits are known zero. 2948 if (const APInt *ShMinAmt = 2949 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2950 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2951 break; 2952 case ISD::SRA: 2953 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2954 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2955 unsigned Shift = ShAmt->getZExtValue(); 2956 // Sign extend known zero/one bit (else is unknown). 2957 Known.Zero.ashrInPlace(Shift); 2958 Known.One.ashrInPlace(Shift); 2959 } 2960 break; 2961 case ISD::FSHL: 2962 case ISD::FSHR: 2963 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2964 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2965 2966 // For fshl, 0-shift returns the 1st arg. 2967 // For fshr, 0-shift returns the 2nd arg. 2968 if (Amt == 0) { 2969 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2970 DemandedElts, Depth + 1); 2971 break; 2972 } 2973 2974 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2975 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2976 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2977 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2978 if (Opcode == ISD::FSHL) { 2979 Known.One <<= Amt; 2980 Known.Zero <<= Amt; 2981 Known2.One.lshrInPlace(BitWidth - Amt); 2982 Known2.Zero.lshrInPlace(BitWidth - Amt); 2983 } else { 2984 Known.One <<= BitWidth - Amt; 2985 Known.Zero <<= BitWidth - Amt; 2986 Known2.One.lshrInPlace(Amt); 2987 Known2.Zero.lshrInPlace(Amt); 2988 } 2989 Known.One |= Known2.One; 2990 Known.Zero |= Known2.Zero; 2991 } 2992 break; 2993 case ISD::SIGN_EXTEND_INREG: { 2994 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2995 unsigned EBits = EVT.getScalarSizeInBits(); 2996 2997 // Sign extension. Compute the demanded bits in the result that are not 2998 // present in the input. 2999 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 3000 3001 APInt InSignMask = APInt::getSignMask(EBits); 3002 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 3003 3004 // If the sign extended bits are demanded, we know that the sign 3005 // bit is demanded. 3006 InSignMask = InSignMask.zext(BitWidth); 3007 if (NewBits.getBoolValue()) 3008 InputDemandedBits |= InSignMask; 3009 3010 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3011 Known.One &= InputDemandedBits; 3012 Known.Zero &= InputDemandedBits; 3013 3014 // If the sign bit of the input is known set or clear, then we know the 3015 // top bits of the result. 3016 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 3017 Known.Zero |= NewBits; 3018 Known.One &= ~NewBits; 3019 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 3020 Known.One |= NewBits; 3021 Known.Zero &= ~NewBits; 3022 } else { // Input sign bit unknown 3023 Known.Zero &= ~NewBits; 3024 Known.One &= ~NewBits; 3025 } 3026 break; 3027 } 3028 case ISD::CTTZ: 3029 case ISD::CTTZ_ZERO_UNDEF: { 3030 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3031 // If we have a known 1, its position is our upper bound. 3032 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3033 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3034 Known.Zero.setBitsFrom(LowBits); 3035 break; 3036 } 3037 case ISD::CTLZ: 3038 case ISD::CTLZ_ZERO_UNDEF: { 3039 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3040 // If we have a known 1, its position is our upper bound. 3041 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3042 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3043 Known.Zero.setBitsFrom(LowBits); 3044 break; 3045 } 3046 case ISD::CTPOP: { 3047 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3048 // If we know some of the bits are zero, they can't be one. 3049 unsigned PossibleOnes = Known2.countMaxPopulation(); 3050 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3051 break; 3052 } 3053 case ISD::LOAD: { 3054 LoadSDNode *LD = cast<LoadSDNode>(Op); 3055 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3056 if (ISD::isNON_EXTLoad(LD) && Cst) { 3057 // Determine any common known bits from the loaded constant pool value. 3058 Type *CstTy = Cst->getType(); 3059 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3060 // If its a vector splat, then we can (quickly) reuse the scalar path. 3061 // NOTE: We assume all elements match and none are UNDEF. 3062 if (CstTy->isVectorTy()) { 3063 if (const Constant *Splat = Cst->getSplatValue()) { 3064 Cst = Splat; 3065 CstTy = Cst->getType(); 3066 } 3067 } 3068 // TODO - do we need to handle different bitwidths? 3069 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3070 // Iterate across all vector elements finding common known bits. 3071 Known.One.setAllBits(); 3072 Known.Zero.setAllBits(); 3073 for (unsigned i = 0; i != NumElts; ++i) { 3074 if (!DemandedElts[i]) 3075 continue; 3076 if (Constant *Elt = Cst->getAggregateElement(i)) { 3077 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3078 const APInt &Value = CInt->getValue(); 3079 Known.One &= Value; 3080 Known.Zero &= ~Value; 3081 continue; 3082 } 3083 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3084 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3085 Known.One &= Value; 3086 Known.Zero &= ~Value; 3087 continue; 3088 } 3089 } 3090 Known.One.clearAllBits(); 3091 Known.Zero.clearAllBits(); 3092 break; 3093 } 3094 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3095 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3096 const APInt &Value = CInt->getValue(); 3097 Known.One = Value; 3098 Known.Zero = ~Value; 3099 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3100 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3101 Known.One = Value; 3102 Known.Zero = ~Value; 3103 } 3104 } 3105 } 3106 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3107 // If this is a ZEXTLoad and we are looking at the loaded value. 3108 EVT VT = LD->getMemoryVT(); 3109 unsigned MemBits = VT.getScalarSizeInBits(); 3110 Known.Zero.setBitsFrom(MemBits); 3111 } else if (const MDNode *Ranges = LD->getRanges()) { 3112 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3113 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3114 } 3115 break; 3116 } 3117 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3118 EVT InVT = Op.getOperand(0).getValueType(); 3119 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3120 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3121 Known = Known.zext(BitWidth); 3122 break; 3123 } 3124 case ISD::ZERO_EXTEND: { 3125 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3126 Known = Known.zext(BitWidth); 3127 break; 3128 } 3129 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3130 EVT InVT = Op.getOperand(0).getValueType(); 3131 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3132 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3133 // If the sign bit is known to be zero or one, then sext will extend 3134 // it to the top bits, else it will just zext. 3135 Known = Known.sext(BitWidth); 3136 break; 3137 } 3138 case ISD::SIGN_EXTEND: { 3139 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3140 // If the sign bit is known to be zero or one, then sext will extend 3141 // it to the top bits, else it will just zext. 3142 Known = Known.sext(BitWidth); 3143 break; 3144 } 3145 case ISD::ANY_EXTEND_VECTOR_INREG: { 3146 EVT InVT = Op.getOperand(0).getValueType(); 3147 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3148 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3149 Known = Known.anyext(BitWidth); 3150 break; 3151 } 3152 case ISD::ANY_EXTEND: { 3153 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 Known = Known.anyext(BitWidth); 3155 break; 3156 } 3157 case ISD::TRUNCATE: { 3158 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3159 Known = Known.trunc(BitWidth); 3160 break; 3161 } 3162 case ISD::AssertZext: { 3163 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3164 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3165 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3166 Known.Zero |= (~InMask); 3167 Known.One &= (~Known.Zero); 3168 break; 3169 } 3170 case ISD::AssertAlign: { 3171 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3172 assert(LogOfAlign != 0); 3173 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3174 // well as clearing one bits. 3175 Known.Zero.setLowBits(LogOfAlign); 3176 Known.One.clearLowBits(LogOfAlign); 3177 break; 3178 } 3179 case ISD::FGETSIGN: 3180 // All bits are zero except the low bit. 3181 Known.Zero.setBitsFrom(1); 3182 break; 3183 case ISD::USUBO: 3184 case ISD::SSUBO: 3185 if (Op.getResNo() == 1) { 3186 // If we know the result of a setcc has the top bits zero, use this info. 3187 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3188 TargetLowering::ZeroOrOneBooleanContent && 3189 BitWidth > 1) 3190 Known.Zero.setBitsFrom(1); 3191 break; 3192 } 3193 LLVM_FALLTHROUGH; 3194 case ISD::SUB: 3195 case ISD::SUBC: { 3196 assert(Op.getResNo() == 0 && 3197 "We only compute knownbits for the difference here."); 3198 3199 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3200 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3201 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3202 Known, Known2); 3203 break; 3204 } 3205 case ISD::UADDO: 3206 case ISD::SADDO: 3207 case ISD::ADDCARRY: 3208 if (Op.getResNo() == 1) { 3209 // If we know the result of a setcc has the top bits zero, use this info. 3210 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3211 TargetLowering::ZeroOrOneBooleanContent && 3212 BitWidth > 1) 3213 Known.Zero.setBitsFrom(1); 3214 break; 3215 } 3216 LLVM_FALLTHROUGH; 3217 case ISD::ADD: 3218 case ISD::ADDC: 3219 case ISD::ADDE: { 3220 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3221 3222 // With ADDE and ADDCARRY, a carry bit may be added in. 3223 KnownBits Carry(1); 3224 if (Opcode == ISD::ADDE) 3225 // Can't track carry from glue, set carry to unknown. 3226 Carry.resetAll(); 3227 else if (Opcode == ISD::ADDCARRY) 3228 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3229 // the trouble (how often will we find a known carry bit). And I haven't 3230 // tested this very much yet, but something like this might work: 3231 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3232 // Carry = Carry.zextOrTrunc(1, false); 3233 Carry.resetAll(); 3234 else 3235 Carry.setAllZero(); 3236 3237 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3238 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3239 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3240 break; 3241 } 3242 case ISD::SREM: 3243 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3244 const APInt &RA = Rem->getAPIntValue().abs(); 3245 if (RA.isPowerOf2()) { 3246 APInt LowBits = RA - 1; 3247 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3248 3249 // The low bits of the first operand are unchanged by the srem. 3250 Known.Zero = Known2.Zero & LowBits; 3251 Known.One = Known2.One & LowBits; 3252 3253 // If the first operand is non-negative or has all low bits zero, then 3254 // the upper bits are all zero. 3255 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3256 Known.Zero |= ~LowBits; 3257 3258 // If the first operand is negative and not all low bits are zero, then 3259 // the upper bits are all one. 3260 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3261 Known.One |= ~LowBits; 3262 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3263 } 3264 } 3265 break; 3266 case ISD::UREM: { 3267 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3268 const APInt &RA = Rem->getAPIntValue(); 3269 if (RA.isPowerOf2()) { 3270 APInt LowBits = (RA - 1); 3271 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3272 3273 // The upper bits are all zero, the lower ones are unchanged. 3274 Known.Zero = Known2.Zero | ~LowBits; 3275 Known.One = Known2.One & LowBits; 3276 break; 3277 } 3278 } 3279 3280 // Since the result is less than or equal to either operand, any leading 3281 // zero bits in either operand must also exist in the result. 3282 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3283 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3284 3285 uint32_t Leaders = 3286 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3287 Known.resetAll(); 3288 Known.Zero.setHighBits(Leaders); 3289 break; 3290 } 3291 case ISD::EXTRACT_ELEMENT: { 3292 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3293 const unsigned Index = Op.getConstantOperandVal(1); 3294 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3295 3296 // Remove low part of known bits mask 3297 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3298 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3299 3300 // Remove high part of known bit mask 3301 Known = Known.trunc(EltBitWidth); 3302 break; 3303 } 3304 case ISD::EXTRACT_VECTOR_ELT: { 3305 SDValue InVec = Op.getOperand(0); 3306 SDValue EltNo = Op.getOperand(1); 3307 EVT VecVT = InVec.getValueType(); 3308 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3309 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3310 3311 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3312 // anything about the extended bits. 3313 if (BitWidth > EltBitWidth) 3314 Known = Known.trunc(EltBitWidth); 3315 3316 // If we know the element index, just demand that vector element, else for 3317 // an unknown element index, ignore DemandedElts and demand them all. 3318 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3319 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3320 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3321 DemandedSrcElts = 3322 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3323 3324 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3325 if (BitWidth > EltBitWidth) 3326 Known = Known.anyext(BitWidth); 3327 break; 3328 } 3329 case ISD::INSERT_VECTOR_ELT: { 3330 // If we know the element index, split the demand between the 3331 // source vector and the inserted element, otherwise assume we need 3332 // the original demanded vector elements and the value. 3333 SDValue InVec = Op.getOperand(0); 3334 SDValue InVal = Op.getOperand(1); 3335 SDValue EltNo = Op.getOperand(2); 3336 bool DemandedVal = true; 3337 APInt DemandedVecElts = DemandedElts; 3338 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3339 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3340 unsigned EltIdx = CEltNo->getZExtValue(); 3341 DemandedVal = !!DemandedElts[EltIdx]; 3342 DemandedVecElts.clearBit(EltIdx); 3343 } 3344 Known.One.setAllBits(); 3345 Known.Zero.setAllBits(); 3346 if (DemandedVal) { 3347 Known2 = computeKnownBits(InVal, Depth + 1); 3348 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3349 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3350 } 3351 if (!!DemandedVecElts) { 3352 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3353 Known.One &= Known2.One; 3354 Known.Zero &= Known2.Zero; 3355 } 3356 break; 3357 } 3358 case ISD::BITREVERSE: { 3359 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3360 Known.Zero = Known2.Zero.reverseBits(); 3361 Known.One = Known2.One.reverseBits(); 3362 break; 3363 } 3364 case ISD::BSWAP: { 3365 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3366 Known.Zero = Known2.Zero.byteSwap(); 3367 Known.One = Known2.One.byteSwap(); 3368 break; 3369 } 3370 case ISD::ABS: { 3371 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3372 3373 // If the source's MSB is zero then we know the rest of the bits already. 3374 if (Known2.isNonNegative()) { 3375 Known.Zero = Known2.Zero; 3376 Known.One = Known2.One; 3377 break; 3378 } 3379 3380 // We only know that the absolute values's MSB will be zero iff there is 3381 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3382 Known2.One.clearSignBit(); 3383 if (Known2.One.getBoolValue()) { 3384 Known.Zero = APInt::getSignMask(BitWidth); 3385 break; 3386 } 3387 break; 3388 } 3389 case ISD::UMIN: { 3390 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3391 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3392 3393 // UMIN - we know that the result will have the maximum of the 3394 // known zero leading bits of the inputs. 3395 unsigned LeadZero = Known.countMinLeadingZeros(); 3396 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3397 3398 Known.Zero &= Known2.Zero; 3399 Known.One &= Known2.One; 3400 Known.Zero.setHighBits(LeadZero); 3401 break; 3402 } 3403 case ISD::UMAX: { 3404 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3405 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3406 3407 // UMAX - we know that the result will have the maximum of the 3408 // known one leading bits of the inputs. 3409 unsigned LeadOne = Known.countMinLeadingOnes(); 3410 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3411 3412 Known.Zero &= Known2.Zero; 3413 Known.One &= Known2.One; 3414 Known.One.setHighBits(LeadOne); 3415 break; 3416 } 3417 case ISD::SMIN: 3418 case ISD::SMAX: { 3419 // If we have a clamp pattern, we know that the number of sign bits will be 3420 // the minimum of the clamp min/max range. 3421 bool IsMax = (Opcode == ISD::SMAX); 3422 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3423 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3424 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3425 CstHigh = 3426 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3427 if (CstLow && CstHigh) { 3428 if (!IsMax) 3429 std::swap(CstLow, CstHigh); 3430 3431 const APInt &ValueLow = CstLow->getAPIntValue(); 3432 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3433 if (ValueLow.sle(ValueHigh)) { 3434 unsigned LowSignBits = ValueLow.getNumSignBits(); 3435 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3436 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3437 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3438 Known.One.setHighBits(MinSignBits); 3439 break; 3440 } 3441 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3442 Known.Zero.setHighBits(MinSignBits); 3443 break; 3444 } 3445 } 3446 } 3447 3448 // Fallback - just get the shared known bits of the operands. 3449 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3450 if (Known.isUnknown()) break; // Early-out 3451 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3452 Known.Zero &= Known2.Zero; 3453 Known.One &= Known2.One; 3454 break; 3455 } 3456 case ISD::FrameIndex: 3457 case ISD::TargetFrameIndex: 3458 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3459 Known, getMachineFunction()); 3460 break; 3461 3462 default: 3463 if (Opcode < ISD::BUILTIN_OP_END) 3464 break; 3465 LLVM_FALLTHROUGH; 3466 case ISD::INTRINSIC_WO_CHAIN: 3467 case ISD::INTRINSIC_W_CHAIN: 3468 case ISD::INTRINSIC_VOID: 3469 // Allow the target to implement this method for its nodes. 3470 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3471 break; 3472 } 3473 3474 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3475 return Known; 3476 } 3477 3478 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3479 SDValue N1) const { 3480 // X + 0 never overflow 3481 if (isNullConstant(N1)) 3482 return OFK_Never; 3483 3484 KnownBits N1Known = computeKnownBits(N1); 3485 if (N1Known.Zero.getBoolValue()) { 3486 KnownBits N0Known = computeKnownBits(N0); 3487 3488 bool overflow; 3489 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3490 if (!overflow) 3491 return OFK_Never; 3492 } 3493 3494 // mulhi + 1 never overflow 3495 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3496 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3497 return OFK_Never; 3498 3499 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3500 KnownBits N0Known = computeKnownBits(N0); 3501 3502 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3503 return OFK_Never; 3504 } 3505 3506 return OFK_Sometime; 3507 } 3508 3509 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3510 EVT OpVT = Val.getValueType(); 3511 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3512 3513 // Is the constant a known power of 2? 3514 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3515 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3516 3517 // A left-shift of a constant one will have exactly one bit set because 3518 // shifting the bit off the end is undefined. 3519 if (Val.getOpcode() == ISD::SHL) { 3520 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3521 if (C && C->getAPIntValue() == 1) 3522 return true; 3523 } 3524 3525 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3526 // one bit set. 3527 if (Val.getOpcode() == ISD::SRL) { 3528 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3529 if (C && C->getAPIntValue().isSignMask()) 3530 return true; 3531 } 3532 3533 // Are all operands of a build vector constant powers of two? 3534 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3535 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3536 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3537 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3538 return false; 3539 })) 3540 return true; 3541 3542 // More could be done here, though the above checks are enough 3543 // to handle some common cases. 3544 3545 // Fall back to computeKnownBits to catch other known cases. 3546 KnownBits Known = computeKnownBits(Val); 3547 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3548 } 3549 3550 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3551 EVT VT = Op.getValueType(); 3552 3553 // TODO: Assume we don't know anything for now. 3554 if (VT.isScalableVector()) 3555 return 1; 3556 3557 APInt DemandedElts = VT.isVector() 3558 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3559 : APInt(1, 1); 3560 return ComputeNumSignBits(Op, DemandedElts, Depth); 3561 } 3562 3563 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3564 unsigned Depth) const { 3565 EVT VT = Op.getValueType(); 3566 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3567 unsigned VTBits = VT.getScalarSizeInBits(); 3568 unsigned NumElts = DemandedElts.getBitWidth(); 3569 unsigned Tmp, Tmp2; 3570 unsigned FirstAnswer = 1; 3571 3572 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3573 const APInt &Val = C->getAPIntValue(); 3574 return Val.getNumSignBits(); 3575 } 3576 3577 if (Depth >= MaxRecursionDepth) 3578 return 1; // Limit search depth. 3579 3580 if (!DemandedElts || VT.isScalableVector()) 3581 return 1; // No demanded elts, better to assume we don't know anything. 3582 3583 unsigned Opcode = Op.getOpcode(); 3584 switch (Opcode) { 3585 default: break; 3586 case ISD::AssertSext: 3587 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3588 return VTBits-Tmp+1; 3589 case ISD::AssertZext: 3590 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3591 return VTBits-Tmp; 3592 3593 case ISD::BUILD_VECTOR: 3594 Tmp = VTBits; 3595 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3596 if (!DemandedElts[i]) 3597 continue; 3598 3599 SDValue SrcOp = Op.getOperand(i); 3600 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3601 3602 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3603 if (SrcOp.getValueSizeInBits() != VTBits) { 3604 assert(SrcOp.getValueSizeInBits() > VTBits && 3605 "Expected BUILD_VECTOR implicit truncation"); 3606 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3607 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3608 } 3609 Tmp = std::min(Tmp, Tmp2); 3610 } 3611 return Tmp; 3612 3613 case ISD::VECTOR_SHUFFLE: { 3614 // Collect the minimum number of sign bits that are shared by every vector 3615 // element referenced by the shuffle. 3616 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3617 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3618 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3619 for (unsigned i = 0; i != NumElts; ++i) { 3620 int M = SVN->getMaskElt(i); 3621 if (!DemandedElts[i]) 3622 continue; 3623 // For UNDEF elements, we don't know anything about the common state of 3624 // the shuffle result. 3625 if (M < 0) 3626 return 1; 3627 if ((unsigned)M < NumElts) 3628 DemandedLHS.setBit((unsigned)M % NumElts); 3629 else 3630 DemandedRHS.setBit((unsigned)M % NumElts); 3631 } 3632 Tmp = std::numeric_limits<unsigned>::max(); 3633 if (!!DemandedLHS) 3634 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3635 if (!!DemandedRHS) { 3636 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3637 Tmp = std::min(Tmp, Tmp2); 3638 } 3639 // If we don't know anything, early out and try computeKnownBits fall-back. 3640 if (Tmp == 1) 3641 break; 3642 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3643 return Tmp; 3644 } 3645 3646 case ISD::BITCAST: { 3647 SDValue N0 = Op.getOperand(0); 3648 EVT SrcVT = N0.getValueType(); 3649 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3650 3651 // Ignore bitcasts from unsupported types.. 3652 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3653 break; 3654 3655 // Fast handling of 'identity' bitcasts. 3656 if (VTBits == SrcBits) 3657 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3658 3659 bool IsLE = getDataLayout().isLittleEndian(); 3660 3661 // Bitcast 'large element' scalar/vector to 'small element' vector. 3662 if ((SrcBits % VTBits) == 0) { 3663 assert(VT.isVector() && "Expected bitcast to vector"); 3664 3665 unsigned Scale = SrcBits / VTBits; 3666 APInt SrcDemandedElts(NumElts / Scale, 0); 3667 for (unsigned i = 0; i != NumElts; ++i) 3668 if (DemandedElts[i]) 3669 SrcDemandedElts.setBit(i / Scale); 3670 3671 // Fast case - sign splat can be simply split across the small elements. 3672 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3673 if (Tmp == SrcBits) 3674 return VTBits; 3675 3676 // Slow case - determine how far the sign extends into each sub-element. 3677 Tmp2 = VTBits; 3678 for (unsigned i = 0; i != NumElts; ++i) 3679 if (DemandedElts[i]) { 3680 unsigned SubOffset = i % Scale; 3681 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3682 SubOffset = SubOffset * VTBits; 3683 if (Tmp <= SubOffset) 3684 return 1; 3685 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3686 } 3687 return Tmp2; 3688 } 3689 break; 3690 } 3691 3692 case ISD::SIGN_EXTEND: 3693 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3694 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3695 case ISD::SIGN_EXTEND_INREG: 3696 // Max of the input and what this extends. 3697 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3698 Tmp = VTBits-Tmp+1; 3699 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3700 return std::max(Tmp, Tmp2); 3701 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3702 SDValue Src = Op.getOperand(0); 3703 EVT SrcVT = Src.getValueType(); 3704 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3705 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3706 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3707 } 3708 case ISD::SRA: 3709 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3710 // SRA X, C -> adds C sign bits. 3711 if (const APInt *ShAmt = 3712 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3713 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3714 return Tmp; 3715 case ISD::SHL: 3716 if (const APInt *ShAmt = 3717 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3718 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3719 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3720 if (ShAmt->ult(Tmp)) 3721 return Tmp - ShAmt->getZExtValue(); 3722 } 3723 break; 3724 case ISD::AND: 3725 case ISD::OR: 3726 case ISD::XOR: // NOT is handled here. 3727 // Logical binary ops preserve the number of sign bits at the worst. 3728 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3729 if (Tmp != 1) { 3730 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3731 FirstAnswer = std::min(Tmp, Tmp2); 3732 // We computed what we know about the sign bits as our first 3733 // answer. Now proceed to the generic code that uses 3734 // computeKnownBits, and pick whichever answer is better. 3735 } 3736 break; 3737 3738 case ISD::SELECT: 3739 case ISD::VSELECT: 3740 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3741 if (Tmp == 1) return 1; // Early out. 3742 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3743 return std::min(Tmp, Tmp2); 3744 case ISD::SELECT_CC: 3745 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3746 if (Tmp == 1) return 1; // Early out. 3747 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3748 return std::min(Tmp, Tmp2); 3749 3750 case ISD::SMIN: 3751 case ISD::SMAX: { 3752 // If we have a clamp pattern, we know that the number of sign bits will be 3753 // the minimum of the clamp min/max range. 3754 bool IsMax = (Opcode == ISD::SMAX); 3755 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3756 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3757 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3758 CstHigh = 3759 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3760 if (CstLow && CstHigh) { 3761 if (!IsMax) 3762 std::swap(CstLow, CstHigh); 3763 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3764 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3765 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3766 return std::min(Tmp, Tmp2); 3767 } 3768 } 3769 3770 // Fallback - just get the minimum number of sign bits of the operands. 3771 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3772 if (Tmp == 1) 3773 return 1; // Early out. 3774 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3775 return std::min(Tmp, Tmp2); 3776 } 3777 case ISD::UMIN: 3778 case ISD::UMAX: 3779 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3780 if (Tmp == 1) 3781 return 1; // Early out. 3782 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3783 return std::min(Tmp, Tmp2); 3784 case ISD::SADDO: 3785 case ISD::UADDO: 3786 case ISD::SSUBO: 3787 case ISD::USUBO: 3788 case ISD::SMULO: 3789 case ISD::UMULO: 3790 if (Op.getResNo() != 1) 3791 break; 3792 // The boolean result conforms to getBooleanContents. Fall through. 3793 // If setcc returns 0/-1, all bits are sign bits. 3794 // We know that we have an integer-based boolean since these operations 3795 // are only available for integer. 3796 if (TLI->getBooleanContents(VT.isVector(), false) == 3797 TargetLowering::ZeroOrNegativeOneBooleanContent) 3798 return VTBits; 3799 break; 3800 case ISD::SETCC: 3801 case ISD::STRICT_FSETCC: 3802 case ISD::STRICT_FSETCCS: { 3803 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3804 // If setcc returns 0/-1, all bits are sign bits. 3805 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3806 TargetLowering::ZeroOrNegativeOneBooleanContent) 3807 return VTBits; 3808 break; 3809 } 3810 case ISD::ROTL: 3811 case ISD::ROTR: 3812 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3813 3814 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3815 if (Tmp == VTBits) 3816 return VTBits; 3817 3818 if (ConstantSDNode *C = 3819 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3820 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3821 3822 // Handle rotate right by N like a rotate left by 32-N. 3823 if (Opcode == ISD::ROTR) 3824 RotAmt = (VTBits - RotAmt) % VTBits; 3825 3826 // If we aren't rotating out all of the known-in sign bits, return the 3827 // number that are left. This handles rotl(sext(x), 1) for example. 3828 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3829 } 3830 break; 3831 case ISD::ADD: 3832 case ISD::ADDC: 3833 // Add can have at most one carry bit. Thus we know that the output 3834 // is, at worst, one more bit than the inputs. 3835 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3836 if (Tmp == 1) return 1; // Early out. 3837 3838 // Special case decrementing a value (ADD X, -1): 3839 if (ConstantSDNode *CRHS = 3840 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3841 if (CRHS->isAllOnesValue()) { 3842 KnownBits Known = 3843 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3844 3845 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3846 // sign bits set. 3847 if ((Known.Zero | 1).isAllOnesValue()) 3848 return VTBits; 3849 3850 // If we are subtracting one from a positive number, there is no carry 3851 // out of the result. 3852 if (Known.isNonNegative()) 3853 return Tmp; 3854 } 3855 3856 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3857 if (Tmp2 == 1) return 1; // Early out. 3858 return std::min(Tmp, Tmp2) - 1; 3859 case ISD::SUB: 3860 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3861 if (Tmp2 == 1) return 1; // Early out. 3862 3863 // Handle NEG. 3864 if (ConstantSDNode *CLHS = 3865 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3866 if (CLHS->isNullValue()) { 3867 KnownBits Known = 3868 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3869 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3870 // sign bits set. 3871 if ((Known.Zero | 1).isAllOnesValue()) 3872 return VTBits; 3873 3874 // If the input is known to be positive (the sign bit is known clear), 3875 // the output of the NEG has the same number of sign bits as the input. 3876 if (Known.isNonNegative()) 3877 return Tmp2; 3878 3879 // Otherwise, we treat this like a SUB. 3880 } 3881 3882 // Sub can have at most one carry bit. Thus we know that the output 3883 // is, at worst, one more bit than the inputs. 3884 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3885 if (Tmp == 1) return 1; // Early out. 3886 return std::min(Tmp, Tmp2) - 1; 3887 case ISD::MUL: { 3888 // The output of the Mul can be at most twice the valid bits in the inputs. 3889 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3890 if (SignBitsOp0 == 1) 3891 break; 3892 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3893 if (SignBitsOp1 == 1) 3894 break; 3895 unsigned OutValidBits = 3896 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3897 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3898 } 3899 case ISD::TRUNCATE: { 3900 // Check if the sign bits of source go down as far as the truncated value. 3901 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3902 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3903 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3904 return NumSrcSignBits - (NumSrcBits - VTBits); 3905 break; 3906 } 3907 case ISD::EXTRACT_ELEMENT: { 3908 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3909 const int BitWidth = Op.getValueSizeInBits(); 3910 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3911 3912 // Get reverse index (starting from 1), Op1 value indexes elements from 3913 // little end. Sign starts at big end. 3914 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3915 3916 // If the sign portion ends in our element the subtraction gives correct 3917 // result. Otherwise it gives either negative or > bitwidth result 3918 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3919 } 3920 case ISD::INSERT_VECTOR_ELT: { 3921 // If we know the element index, split the demand between the 3922 // source vector and the inserted element, otherwise assume we need 3923 // the original demanded vector elements and the value. 3924 SDValue InVec = Op.getOperand(0); 3925 SDValue InVal = Op.getOperand(1); 3926 SDValue EltNo = Op.getOperand(2); 3927 bool DemandedVal = true; 3928 APInt DemandedVecElts = DemandedElts; 3929 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3930 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3931 unsigned EltIdx = CEltNo->getZExtValue(); 3932 DemandedVal = !!DemandedElts[EltIdx]; 3933 DemandedVecElts.clearBit(EltIdx); 3934 } 3935 Tmp = std::numeric_limits<unsigned>::max(); 3936 if (DemandedVal) { 3937 // TODO - handle implicit truncation of inserted elements. 3938 if (InVal.getScalarValueSizeInBits() != VTBits) 3939 break; 3940 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3941 Tmp = std::min(Tmp, Tmp2); 3942 } 3943 if (!!DemandedVecElts) { 3944 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3945 Tmp = std::min(Tmp, Tmp2); 3946 } 3947 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3948 return Tmp; 3949 } 3950 case ISD::EXTRACT_VECTOR_ELT: { 3951 SDValue InVec = Op.getOperand(0); 3952 SDValue EltNo = Op.getOperand(1); 3953 EVT VecVT = InVec.getValueType(); 3954 const unsigned BitWidth = Op.getValueSizeInBits(); 3955 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3956 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3957 3958 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3959 // anything about sign bits. But if the sizes match we can derive knowledge 3960 // about sign bits from the vector operand. 3961 if (BitWidth != EltBitWidth) 3962 break; 3963 3964 // If we know the element index, just demand that vector element, else for 3965 // an unknown element index, ignore DemandedElts and demand them all. 3966 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3967 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3968 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3969 DemandedSrcElts = 3970 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3971 3972 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3973 } 3974 case ISD::EXTRACT_SUBVECTOR: { 3975 // Offset the demanded elts by the subvector index. 3976 SDValue Src = Op.getOperand(0); 3977 // Bail until we can represent demanded elements for scalable vectors. 3978 if (Src.getValueType().isScalableVector()) 3979 break; 3980 uint64_t Idx = Op.getConstantOperandVal(1); 3981 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3982 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3983 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3984 } 3985 case ISD::CONCAT_VECTORS: { 3986 // Determine the minimum number of sign bits across all demanded 3987 // elts of the input vectors. Early out if the result is already 1. 3988 Tmp = std::numeric_limits<unsigned>::max(); 3989 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3990 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3991 unsigned NumSubVectors = Op.getNumOperands(); 3992 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3993 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3994 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3995 if (!DemandedSub) 3996 continue; 3997 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3998 Tmp = std::min(Tmp, Tmp2); 3999 } 4000 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4001 return Tmp; 4002 } 4003 case ISD::INSERT_SUBVECTOR: { 4004 // Demand any elements from the subvector and the remainder from the src its 4005 // inserted into. 4006 SDValue Src = Op.getOperand(0); 4007 SDValue Sub = Op.getOperand(1); 4008 uint64_t Idx = Op.getConstantOperandVal(2); 4009 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4010 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4011 APInt DemandedSrcElts = DemandedElts; 4012 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4013 4014 Tmp = std::numeric_limits<unsigned>::max(); 4015 if (!!DemandedSubElts) { 4016 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4017 if (Tmp == 1) 4018 return 1; // early-out 4019 } 4020 if (!!DemandedSrcElts) { 4021 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4022 Tmp = std::min(Tmp, Tmp2); 4023 } 4024 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4025 return Tmp; 4026 } 4027 } 4028 4029 // If we are looking at the loaded value of the SDNode. 4030 if (Op.getResNo() == 0) { 4031 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4032 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4033 unsigned ExtType = LD->getExtensionType(); 4034 switch (ExtType) { 4035 default: break; 4036 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4037 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4038 return VTBits - Tmp + 1; 4039 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4040 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4041 return VTBits - Tmp; 4042 case ISD::NON_EXTLOAD: 4043 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4044 // We only need to handle vectors - computeKnownBits should handle 4045 // scalar cases. 4046 Type *CstTy = Cst->getType(); 4047 if (CstTy->isVectorTy() && 4048 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4049 Tmp = VTBits; 4050 for (unsigned i = 0; i != NumElts; ++i) { 4051 if (!DemandedElts[i]) 4052 continue; 4053 if (Constant *Elt = Cst->getAggregateElement(i)) { 4054 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4055 const APInt &Value = CInt->getValue(); 4056 Tmp = std::min(Tmp, Value.getNumSignBits()); 4057 continue; 4058 } 4059 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4060 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4061 Tmp = std::min(Tmp, Value.getNumSignBits()); 4062 continue; 4063 } 4064 } 4065 // Unknown type. Conservatively assume no bits match sign bit. 4066 return 1; 4067 } 4068 return Tmp; 4069 } 4070 } 4071 break; 4072 } 4073 } 4074 } 4075 4076 // Allow the target to implement this method for its nodes. 4077 if (Opcode >= ISD::BUILTIN_OP_END || 4078 Opcode == ISD::INTRINSIC_WO_CHAIN || 4079 Opcode == ISD::INTRINSIC_W_CHAIN || 4080 Opcode == ISD::INTRINSIC_VOID) { 4081 unsigned NumBits = 4082 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4083 if (NumBits > 1) 4084 FirstAnswer = std::max(FirstAnswer, NumBits); 4085 } 4086 4087 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4088 // use this information. 4089 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4090 4091 APInt Mask; 4092 if (Known.isNonNegative()) { // sign bit is 0 4093 Mask = Known.Zero; 4094 } else if (Known.isNegative()) { // sign bit is 1; 4095 Mask = Known.One; 4096 } else { 4097 // Nothing known. 4098 return FirstAnswer; 4099 } 4100 4101 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4102 // the number of identical bits in the top of the input value. 4103 Mask <<= Mask.getBitWidth()-VTBits; 4104 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4105 } 4106 4107 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4108 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4109 !isa<ConstantSDNode>(Op.getOperand(1))) 4110 return false; 4111 4112 if (Op.getOpcode() == ISD::OR && 4113 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4114 return false; 4115 4116 return true; 4117 } 4118 4119 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4120 // If we're told that NaNs won't happen, assume they won't. 4121 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4122 return true; 4123 4124 if (Depth >= MaxRecursionDepth) 4125 return false; // Limit search depth. 4126 4127 // TODO: Handle vectors. 4128 // If the value is a constant, we can obviously see if it is a NaN or not. 4129 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4130 return !C->getValueAPF().isNaN() || 4131 (SNaN && !C->getValueAPF().isSignaling()); 4132 } 4133 4134 unsigned Opcode = Op.getOpcode(); 4135 switch (Opcode) { 4136 case ISD::FADD: 4137 case ISD::FSUB: 4138 case ISD::FMUL: 4139 case ISD::FDIV: 4140 case ISD::FREM: 4141 case ISD::FSIN: 4142 case ISD::FCOS: { 4143 if (SNaN) 4144 return true; 4145 // TODO: Need isKnownNeverInfinity 4146 return false; 4147 } 4148 case ISD::FCANONICALIZE: 4149 case ISD::FEXP: 4150 case ISD::FEXP2: 4151 case ISD::FTRUNC: 4152 case ISD::FFLOOR: 4153 case ISD::FCEIL: 4154 case ISD::FROUND: 4155 case ISD::FROUNDEVEN: 4156 case ISD::FRINT: 4157 case ISD::FNEARBYINT: { 4158 if (SNaN) 4159 return true; 4160 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4161 } 4162 case ISD::FABS: 4163 case ISD::FNEG: 4164 case ISD::FCOPYSIGN: { 4165 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4166 } 4167 case ISD::SELECT: 4168 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4169 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4170 case ISD::FP_EXTEND: 4171 case ISD::FP_ROUND: { 4172 if (SNaN) 4173 return true; 4174 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4175 } 4176 case ISD::SINT_TO_FP: 4177 case ISD::UINT_TO_FP: 4178 return true; 4179 case ISD::FMA: 4180 case ISD::FMAD: { 4181 if (SNaN) 4182 return true; 4183 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4184 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4185 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4186 } 4187 case ISD::FSQRT: // Need is known positive 4188 case ISD::FLOG: 4189 case ISD::FLOG2: 4190 case ISD::FLOG10: 4191 case ISD::FPOWI: 4192 case ISD::FPOW: { 4193 if (SNaN) 4194 return true; 4195 // TODO: Refine on operand 4196 return false; 4197 } 4198 case ISD::FMINNUM: 4199 case ISD::FMAXNUM: { 4200 // Only one needs to be known not-nan, since it will be returned if the 4201 // other ends up being one. 4202 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4203 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4204 } 4205 case ISD::FMINNUM_IEEE: 4206 case ISD::FMAXNUM_IEEE: { 4207 if (SNaN) 4208 return true; 4209 // This can return a NaN if either operand is an sNaN, or if both operands 4210 // are NaN. 4211 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4212 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4213 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4214 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4215 } 4216 case ISD::FMINIMUM: 4217 case ISD::FMAXIMUM: { 4218 // TODO: Does this quiet or return the origina NaN as-is? 4219 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4220 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4221 } 4222 case ISD::EXTRACT_VECTOR_ELT: { 4223 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4224 } 4225 default: 4226 if (Opcode >= ISD::BUILTIN_OP_END || 4227 Opcode == ISD::INTRINSIC_WO_CHAIN || 4228 Opcode == ISD::INTRINSIC_W_CHAIN || 4229 Opcode == ISD::INTRINSIC_VOID) { 4230 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4231 } 4232 4233 return false; 4234 } 4235 } 4236 4237 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4238 assert(Op.getValueType().isFloatingPoint() && 4239 "Floating point type expected"); 4240 4241 // If the value is a constant, we can obviously see if it is a zero or not. 4242 // TODO: Add BuildVector support. 4243 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4244 return !C->isZero(); 4245 return false; 4246 } 4247 4248 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4249 assert(!Op.getValueType().isFloatingPoint() && 4250 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4251 4252 // If the value is a constant, we can obviously see if it is a zero or not. 4253 if (ISD::matchUnaryPredicate( 4254 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4255 return true; 4256 4257 // TODO: Recognize more cases here. 4258 switch (Op.getOpcode()) { 4259 default: break; 4260 case ISD::OR: 4261 if (isKnownNeverZero(Op.getOperand(1)) || 4262 isKnownNeverZero(Op.getOperand(0))) 4263 return true; 4264 break; 4265 } 4266 4267 return false; 4268 } 4269 4270 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4271 // Check the obvious case. 4272 if (A == B) return true; 4273 4274 // For for negative and positive zero. 4275 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4276 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4277 if (CA->isZero() && CB->isZero()) return true; 4278 4279 // Otherwise they may not be equal. 4280 return false; 4281 } 4282 4283 // FIXME: unify with llvm::haveNoCommonBitsSet. 4284 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4285 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4286 assert(A.getValueType() == B.getValueType() && 4287 "Values must have the same type"); 4288 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4289 } 4290 4291 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4292 ArrayRef<SDValue> Ops, 4293 SelectionDAG &DAG) { 4294 int NumOps = Ops.size(); 4295 assert(NumOps != 0 && "Can't build an empty vector!"); 4296 assert(!VT.isScalableVector() && 4297 "BUILD_VECTOR cannot be used with scalable types"); 4298 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4299 "Incorrect element count in BUILD_VECTOR!"); 4300 4301 // BUILD_VECTOR of UNDEFs is UNDEF. 4302 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4303 return DAG.getUNDEF(VT); 4304 4305 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4306 SDValue IdentitySrc; 4307 bool IsIdentity = true; 4308 for (int i = 0; i != NumOps; ++i) { 4309 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4310 Ops[i].getOperand(0).getValueType() != VT || 4311 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4312 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4313 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4314 IsIdentity = false; 4315 break; 4316 } 4317 IdentitySrc = Ops[i].getOperand(0); 4318 } 4319 if (IsIdentity) 4320 return IdentitySrc; 4321 4322 return SDValue(); 4323 } 4324 4325 /// Try to simplify vector concatenation to an input value, undef, or build 4326 /// vector. 4327 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4328 ArrayRef<SDValue> Ops, 4329 SelectionDAG &DAG) { 4330 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4331 assert(llvm::all_of(Ops, 4332 [Ops](SDValue Op) { 4333 return Ops[0].getValueType() == Op.getValueType(); 4334 }) && 4335 "Concatenation of vectors with inconsistent value types!"); 4336 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4337 VT.getVectorElementCount() && 4338 "Incorrect element count in vector concatenation!"); 4339 4340 if (Ops.size() == 1) 4341 return Ops[0]; 4342 4343 // Concat of UNDEFs is UNDEF. 4344 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4345 return DAG.getUNDEF(VT); 4346 4347 // Scan the operands and look for extract operations from a single source 4348 // that correspond to insertion at the same location via this concatenation: 4349 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4350 SDValue IdentitySrc; 4351 bool IsIdentity = true; 4352 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4353 SDValue Op = Ops[i]; 4354 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4355 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4356 Op.getOperand(0).getValueType() != VT || 4357 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4358 Op.getConstantOperandVal(1) != IdentityIndex) { 4359 IsIdentity = false; 4360 break; 4361 } 4362 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4363 "Unexpected identity source vector for concat of extracts"); 4364 IdentitySrc = Op.getOperand(0); 4365 } 4366 if (IsIdentity) { 4367 assert(IdentitySrc && "Failed to set source vector of extracts"); 4368 return IdentitySrc; 4369 } 4370 4371 // The code below this point is only designed to work for fixed width 4372 // vectors, so we bail out for now. 4373 if (VT.isScalableVector()) 4374 return SDValue(); 4375 4376 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4377 // simplified to one big BUILD_VECTOR. 4378 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4379 EVT SVT = VT.getScalarType(); 4380 SmallVector<SDValue, 16> Elts; 4381 for (SDValue Op : Ops) { 4382 EVT OpVT = Op.getValueType(); 4383 if (Op.isUndef()) 4384 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4385 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4386 Elts.append(Op->op_begin(), Op->op_end()); 4387 else 4388 return SDValue(); 4389 } 4390 4391 // BUILD_VECTOR requires all inputs to be of the same type, find the 4392 // maximum type and extend them all. 4393 for (SDValue Op : Elts) 4394 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4395 4396 if (SVT.bitsGT(VT.getScalarType())) 4397 for (SDValue &Op : Elts) 4398 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4399 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4400 : DAG.getSExtOrTrunc(Op, DL, SVT); 4401 4402 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4403 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4404 return V; 4405 } 4406 4407 /// Gets or creates the specified node. 4408 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4409 FoldingSetNodeID ID; 4410 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4411 void *IP = nullptr; 4412 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4413 return SDValue(E, 0); 4414 4415 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4416 getVTList(VT)); 4417 CSEMap.InsertNode(N, IP); 4418 4419 InsertNode(N); 4420 SDValue V = SDValue(N, 0); 4421 NewSDValueDbgMsg(V, "Creating new node: ", this); 4422 return V; 4423 } 4424 4425 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4426 SDValue Operand, const SDNodeFlags Flags) { 4427 // Constant fold unary operations with an integer constant operand. Even 4428 // opaque constant will be folded, because the folding of unary operations 4429 // doesn't create new constants with different values. Nevertheless, the 4430 // opaque flag is preserved during folding to prevent future folding with 4431 // other constants. 4432 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4433 const APInt &Val = C->getAPIntValue(); 4434 switch (Opcode) { 4435 default: break; 4436 case ISD::SIGN_EXTEND: 4437 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4438 C->isTargetOpcode(), C->isOpaque()); 4439 case ISD::TRUNCATE: 4440 if (C->isOpaque()) 4441 break; 4442 LLVM_FALLTHROUGH; 4443 case ISD::ANY_EXTEND: 4444 case ISD::ZERO_EXTEND: 4445 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4446 C->isTargetOpcode(), C->isOpaque()); 4447 case ISD::UINT_TO_FP: 4448 case ISD::SINT_TO_FP: { 4449 APFloat apf(EVTToAPFloatSemantics(VT), 4450 APInt::getNullValue(VT.getSizeInBits())); 4451 (void)apf.convertFromAPInt(Val, 4452 Opcode==ISD::SINT_TO_FP, 4453 APFloat::rmNearestTiesToEven); 4454 return getConstantFP(apf, DL, VT); 4455 } 4456 case ISD::BITCAST: 4457 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4458 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4459 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4460 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4461 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4462 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4463 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4464 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4465 break; 4466 case ISD::ABS: 4467 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4468 C->isOpaque()); 4469 case ISD::BITREVERSE: 4470 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4471 C->isOpaque()); 4472 case ISD::BSWAP: 4473 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4474 C->isOpaque()); 4475 case ISD::CTPOP: 4476 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4477 C->isOpaque()); 4478 case ISD::CTLZ: 4479 case ISD::CTLZ_ZERO_UNDEF: 4480 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4481 C->isOpaque()); 4482 case ISD::CTTZ: 4483 case ISD::CTTZ_ZERO_UNDEF: 4484 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4485 C->isOpaque()); 4486 case ISD::FP16_TO_FP: { 4487 bool Ignored; 4488 APFloat FPV(APFloat::IEEEhalf(), 4489 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4490 4491 // This can return overflow, underflow, or inexact; we don't care. 4492 // FIXME need to be more flexible about rounding mode. 4493 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4494 APFloat::rmNearestTiesToEven, &Ignored); 4495 return getConstantFP(FPV, DL, VT); 4496 } 4497 } 4498 } 4499 4500 // Constant fold unary operations with a floating point constant operand. 4501 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4502 APFloat V = C->getValueAPF(); // make copy 4503 switch (Opcode) { 4504 case ISD::FNEG: 4505 V.changeSign(); 4506 return getConstantFP(V, DL, VT); 4507 case ISD::FABS: 4508 V.clearSign(); 4509 return getConstantFP(V, DL, VT); 4510 case ISD::FCEIL: { 4511 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4512 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4513 return getConstantFP(V, DL, VT); 4514 break; 4515 } 4516 case ISD::FTRUNC: { 4517 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4518 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4519 return getConstantFP(V, DL, VT); 4520 break; 4521 } 4522 case ISD::FFLOOR: { 4523 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4524 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4525 return getConstantFP(V, DL, VT); 4526 break; 4527 } 4528 case ISD::FP_EXTEND: { 4529 bool ignored; 4530 // This can return overflow, underflow, or inexact; we don't care. 4531 // FIXME need to be more flexible about rounding mode. 4532 (void)V.convert(EVTToAPFloatSemantics(VT), 4533 APFloat::rmNearestTiesToEven, &ignored); 4534 return getConstantFP(V, DL, VT); 4535 } 4536 case ISD::FP_TO_SINT: 4537 case ISD::FP_TO_UINT: { 4538 bool ignored; 4539 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4540 // FIXME need to be more flexible about rounding mode. 4541 APFloat::opStatus s = 4542 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4543 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4544 break; 4545 return getConstant(IntVal, DL, VT); 4546 } 4547 case ISD::BITCAST: 4548 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4549 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4550 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4551 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4552 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4553 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4554 break; 4555 case ISD::FP_TO_FP16: { 4556 bool Ignored; 4557 // This can return overflow, underflow, or inexact; we don't care. 4558 // FIXME need to be more flexible about rounding mode. 4559 (void)V.convert(APFloat::IEEEhalf(), 4560 APFloat::rmNearestTiesToEven, &Ignored); 4561 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4562 } 4563 } 4564 } 4565 4566 // Constant fold unary operations with a vector integer or float operand. 4567 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4568 if (BV->isConstant()) { 4569 switch (Opcode) { 4570 default: 4571 // FIXME: Entirely reasonable to perform folding of other unary 4572 // operations here as the need arises. 4573 break; 4574 case ISD::FNEG: 4575 case ISD::FABS: 4576 case ISD::FCEIL: 4577 case ISD::FTRUNC: 4578 case ISD::FFLOOR: 4579 case ISD::FP_EXTEND: 4580 case ISD::FP_TO_SINT: 4581 case ISD::FP_TO_UINT: 4582 case ISD::TRUNCATE: 4583 case ISD::ANY_EXTEND: 4584 case ISD::ZERO_EXTEND: 4585 case ISD::SIGN_EXTEND: 4586 case ISD::UINT_TO_FP: 4587 case ISD::SINT_TO_FP: 4588 case ISD::ABS: 4589 case ISD::BITREVERSE: 4590 case ISD::BSWAP: 4591 case ISD::CTLZ: 4592 case ISD::CTLZ_ZERO_UNDEF: 4593 case ISD::CTTZ: 4594 case ISD::CTTZ_ZERO_UNDEF: 4595 case ISD::CTPOP: { 4596 SDValue Ops = { Operand }; 4597 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4598 return Fold; 4599 } 4600 } 4601 } 4602 } 4603 4604 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4605 switch (Opcode) { 4606 case ISD::FREEZE: 4607 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4608 break; 4609 case ISD::TokenFactor: 4610 case ISD::MERGE_VALUES: 4611 case ISD::CONCAT_VECTORS: 4612 return Operand; // Factor, merge or concat of one node? No need. 4613 case ISD::BUILD_VECTOR: { 4614 // Attempt to simplify BUILD_VECTOR. 4615 SDValue Ops[] = {Operand}; 4616 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4617 return V; 4618 break; 4619 } 4620 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4621 case ISD::FP_EXTEND: 4622 assert(VT.isFloatingPoint() && 4623 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4624 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4625 assert((!VT.isVector() || 4626 VT.getVectorNumElements() == 4627 Operand.getValueType().getVectorNumElements()) && 4628 "Vector element count mismatch!"); 4629 assert(Operand.getValueType().bitsLT(VT) && 4630 "Invalid fpext node, dst < src!"); 4631 if (Operand.isUndef()) 4632 return getUNDEF(VT); 4633 break; 4634 case ISD::FP_TO_SINT: 4635 case ISD::FP_TO_UINT: 4636 if (Operand.isUndef()) 4637 return getUNDEF(VT); 4638 break; 4639 case ISD::SINT_TO_FP: 4640 case ISD::UINT_TO_FP: 4641 // [us]itofp(undef) = 0, because the result value is bounded. 4642 if (Operand.isUndef()) 4643 return getConstantFP(0.0, DL, VT); 4644 break; 4645 case ISD::SIGN_EXTEND: 4646 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4647 "Invalid SIGN_EXTEND!"); 4648 assert(VT.isVector() == Operand.getValueType().isVector() && 4649 "SIGN_EXTEND result type type should be vector iff the operand " 4650 "type is vector!"); 4651 if (Operand.getValueType() == VT) return Operand; // noop extension 4652 assert((!VT.isVector() || 4653 VT.getVectorElementCount() == 4654 Operand.getValueType().getVectorElementCount()) && 4655 "Vector element count mismatch!"); 4656 assert(Operand.getValueType().bitsLT(VT) && 4657 "Invalid sext node, dst < src!"); 4658 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4659 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4660 else if (OpOpcode == ISD::UNDEF) 4661 // sext(undef) = 0, because the top bits will all be the same. 4662 return getConstant(0, DL, VT); 4663 break; 4664 case ISD::ZERO_EXTEND: 4665 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4666 "Invalid ZERO_EXTEND!"); 4667 assert(VT.isVector() == Operand.getValueType().isVector() && 4668 "ZERO_EXTEND result type type should be vector iff the operand " 4669 "type is vector!"); 4670 if (Operand.getValueType() == VT) return Operand; // noop extension 4671 assert((!VT.isVector() || 4672 VT.getVectorElementCount() == 4673 Operand.getValueType().getVectorElementCount()) && 4674 "Vector element count mismatch!"); 4675 assert(Operand.getValueType().bitsLT(VT) && 4676 "Invalid zext node, dst < src!"); 4677 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4678 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4679 else if (OpOpcode == ISD::UNDEF) 4680 // zext(undef) = 0, because the top bits will be zero. 4681 return getConstant(0, DL, VT); 4682 break; 4683 case ISD::ANY_EXTEND: 4684 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4685 "Invalid ANY_EXTEND!"); 4686 assert(VT.isVector() == Operand.getValueType().isVector() && 4687 "ANY_EXTEND result type type should be vector iff the operand " 4688 "type is vector!"); 4689 if (Operand.getValueType() == VT) return Operand; // noop extension 4690 assert((!VT.isVector() || 4691 VT.getVectorElementCount() == 4692 Operand.getValueType().getVectorElementCount()) && 4693 "Vector element count mismatch!"); 4694 assert(Operand.getValueType().bitsLT(VT) && 4695 "Invalid anyext node, dst < src!"); 4696 4697 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4698 OpOpcode == ISD::ANY_EXTEND) 4699 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4700 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4701 else if (OpOpcode == ISD::UNDEF) 4702 return getUNDEF(VT); 4703 4704 // (ext (trunc x)) -> x 4705 if (OpOpcode == ISD::TRUNCATE) { 4706 SDValue OpOp = Operand.getOperand(0); 4707 if (OpOp.getValueType() == VT) { 4708 transferDbgValues(Operand, OpOp); 4709 return OpOp; 4710 } 4711 } 4712 break; 4713 case ISD::TRUNCATE: 4714 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4715 "Invalid TRUNCATE!"); 4716 assert(VT.isVector() == Operand.getValueType().isVector() && 4717 "TRUNCATE result type type should be vector iff the operand " 4718 "type is vector!"); 4719 if (Operand.getValueType() == VT) return Operand; // noop truncate 4720 assert((!VT.isVector() || 4721 VT.getVectorElementCount() == 4722 Operand.getValueType().getVectorElementCount()) && 4723 "Vector element count mismatch!"); 4724 assert(Operand.getValueType().bitsGT(VT) && 4725 "Invalid truncate node, src < dst!"); 4726 if (OpOpcode == ISD::TRUNCATE) 4727 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4728 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4729 OpOpcode == ISD::ANY_EXTEND) { 4730 // If the source is smaller than the dest, we still need an extend. 4731 if (Operand.getOperand(0).getValueType().getScalarType() 4732 .bitsLT(VT.getScalarType())) 4733 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4734 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4735 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4736 return Operand.getOperand(0); 4737 } 4738 if (OpOpcode == ISD::UNDEF) 4739 return getUNDEF(VT); 4740 break; 4741 case ISD::ANY_EXTEND_VECTOR_INREG: 4742 case ISD::ZERO_EXTEND_VECTOR_INREG: 4743 case ISD::SIGN_EXTEND_VECTOR_INREG: 4744 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4745 assert(Operand.getValueType().bitsLE(VT) && 4746 "The input must be the same size or smaller than the result."); 4747 assert(VT.getVectorNumElements() < 4748 Operand.getValueType().getVectorNumElements() && 4749 "The destination vector type must have fewer lanes than the input."); 4750 break; 4751 case ISD::ABS: 4752 assert(VT.isInteger() && VT == Operand.getValueType() && 4753 "Invalid ABS!"); 4754 if (OpOpcode == ISD::UNDEF) 4755 return getUNDEF(VT); 4756 break; 4757 case ISD::BSWAP: 4758 assert(VT.isInteger() && VT == Operand.getValueType() && 4759 "Invalid BSWAP!"); 4760 assert((VT.getScalarSizeInBits() % 16 == 0) && 4761 "BSWAP types must be a multiple of 16 bits!"); 4762 if (OpOpcode == ISD::UNDEF) 4763 return getUNDEF(VT); 4764 break; 4765 case ISD::BITREVERSE: 4766 assert(VT.isInteger() && VT == Operand.getValueType() && 4767 "Invalid BITREVERSE!"); 4768 if (OpOpcode == ISD::UNDEF) 4769 return getUNDEF(VT); 4770 break; 4771 case ISD::BITCAST: 4772 // Basic sanity checking. 4773 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4774 "Cannot BITCAST between types of different sizes!"); 4775 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4776 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4777 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4778 if (OpOpcode == ISD::UNDEF) 4779 return getUNDEF(VT); 4780 break; 4781 case ISD::SCALAR_TO_VECTOR: 4782 assert(VT.isVector() && !Operand.getValueType().isVector() && 4783 (VT.getVectorElementType() == Operand.getValueType() || 4784 (VT.getVectorElementType().isInteger() && 4785 Operand.getValueType().isInteger() && 4786 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4787 "Illegal SCALAR_TO_VECTOR node!"); 4788 if (OpOpcode == ISD::UNDEF) 4789 return getUNDEF(VT); 4790 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4791 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4792 isa<ConstantSDNode>(Operand.getOperand(1)) && 4793 Operand.getConstantOperandVal(1) == 0 && 4794 Operand.getOperand(0).getValueType() == VT) 4795 return Operand.getOperand(0); 4796 break; 4797 case ISD::FNEG: 4798 // Negation of an unknown bag of bits is still completely undefined. 4799 if (OpOpcode == ISD::UNDEF) 4800 return getUNDEF(VT); 4801 4802 if (OpOpcode == ISD::FNEG) // --X -> X 4803 return Operand.getOperand(0); 4804 break; 4805 case ISD::FABS: 4806 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4807 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4808 break; 4809 case ISD::VSCALE: 4810 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4811 break; 4812 } 4813 4814 SDNode *N; 4815 SDVTList VTs = getVTList(VT); 4816 SDValue Ops[] = {Operand}; 4817 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4818 FoldingSetNodeID ID; 4819 AddNodeIDNode(ID, Opcode, VTs, Ops); 4820 void *IP = nullptr; 4821 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4822 E->intersectFlagsWith(Flags); 4823 return SDValue(E, 0); 4824 } 4825 4826 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4827 N->setFlags(Flags); 4828 createOperands(N, Ops); 4829 CSEMap.InsertNode(N, IP); 4830 } else { 4831 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4832 createOperands(N, Ops); 4833 } 4834 4835 InsertNode(N); 4836 SDValue V = SDValue(N, 0); 4837 NewSDValueDbgMsg(V, "Creating new node: ", this); 4838 return V; 4839 } 4840 4841 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4842 const APInt &C2) { 4843 switch (Opcode) { 4844 case ISD::ADD: return C1 + C2; 4845 case ISD::SUB: return C1 - C2; 4846 case ISD::MUL: return C1 * C2; 4847 case ISD::AND: return C1 & C2; 4848 case ISD::OR: return C1 | C2; 4849 case ISD::XOR: return C1 ^ C2; 4850 case ISD::SHL: return C1 << C2; 4851 case ISD::SRL: return C1.lshr(C2); 4852 case ISD::SRA: return C1.ashr(C2); 4853 case ISD::ROTL: return C1.rotl(C2); 4854 case ISD::ROTR: return C1.rotr(C2); 4855 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4856 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4857 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4858 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4859 case ISD::SADDSAT: return C1.sadd_sat(C2); 4860 case ISD::UADDSAT: return C1.uadd_sat(C2); 4861 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4862 case ISD::USUBSAT: return C1.usub_sat(C2); 4863 case ISD::UDIV: 4864 if (!C2.getBoolValue()) 4865 break; 4866 return C1.udiv(C2); 4867 case ISD::UREM: 4868 if (!C2.getBoolValue()) 4869 break; 4870 return C1.urem(C2); 4871 case ISD::SDIV: 4872 if (!C2.getBoolValue()) 4873 break; 4874 return C1.sdiv(C2); 4875 case ISD::SREM: 4876 if (!C2.getBoolValue()) 4877 break; 4878 return C1.srem(C2); 4879 } 4880 return llvm::None; 4881 } 4882 4883 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4884 const GlobalAddressSDNode *GA, 4885 const SDNode *N2) { 4886 if (GA->getOpcode() != ISD::GlobalAddress) 4887 return SDValue(); 4888 if (!TLI->isOffsetFoldingLegal(GA)) 4889 return SDValue(); 4890 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4891 if (!C2) 4892 return SDValue(); 4893 int64_t Offset = C2->getSExtValue(); 4894 switch (Opcode) { 4895 case ISD::ADD: break; 4896 case ISD::SUB: Offset = -uint64_t(Offset); break; 4897 default: return SDValue(); 4898 } 4899 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4900 GA->getOffset() + uint64_t(Offset)); 4901 } 4902 4903 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4904 switch (Opcode) { 4905 case ISD::SDIV: 4906 case ISD::UDIV: 4907 case ISD::SREM: 4908 case ISD::UREM: { 4909 // If a divisor is zero/undef or any element of a divisor vector is 4910 // zero/undef, the whole op is undef. 4911 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4912 SDValue Divisor = Ops[1]; 4913 if (Divisor.isUndef() || isNullConstant(Divisor)) 4914 return true; 4915 4916 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4917 llvm::any_of(Divisor->op_values(), 4918 [](SDValue V) { return V.isUndef() || 4919 isNullConstant(V); }); 4920 // TODO: Handle signed overflow. 4921 } 4922 // TODO: Handle oversized shifts. 4923 default: 4924 return false; 4925 } 4926 } 4927 4928 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4929 EVT VT, ArrayRef<SDValue> Ops) { 4930 // If the opcode is a target-specific ISD node, there's nothing we can 4931 // do here and the operand rules may not line up with the below, so 4932 // bail early. 4933 if (Opcode >= ISD::BUILTIN_OP_END) 4934 return SDValue(); 4935 4936 // For now, the array Ops should only contain two values. 4937 // This enforcement will be removed once this function is merged with 4938 // FoldConstantVectorArithmetic 4939 if (Ops.size() != 2) 4940 return SDValue(); 4941 4942 if (isUndef(Opcode, Ops)) 4943 return getUNDEF(VT); 4944 4945 SDNode *N1 = Ops[0].getNode(); 4946 SDNode *N2 = Ops[1].getNode(); 4947 4948 // Handle the case of two scalars. 4949 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4950 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4951 if (C1->isOpaque() || C2->isOpaque()) 4952 return SDValue(); 4953 4954 Optional<APInt> FoldAttempt = 4955 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4956 if (!FoldAttempt) 4957 return SDValue(); 4958 4959 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4960 assert((!Folded || !VT.isVector()) && 4961 "Can't fold vectors ops with scalar operands"); 4962 return Folded; 4963 } 4964 } 4965 4966 // fold (add Sym, c) -> Sym+c 4967 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4968 return FoldSymbolOffset(Opcode, VT, GA, N2); 4969 if (TLI->isCommutativeBinOp(Opcode)) 4970 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4971 return FoldSymbolOffset(Opcode, VT, GA, N1); 4972 4973 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4974 // vector width, however we should be able to do constant folds involving 4975 // splat vector nodes too. 4976 if (VT.isScalableVector()) 4977 return SDValue(); 4978 4979 // For fixed width vectors, extract each constant element and fold them 4980 // individually. Either input may be an undef value. 4981 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4982 if (!BV1 && !N1->isUndef()) 4983 return SDValue(); 4984 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4985 if (!BV2 && !N2->isUndef()) 4986 return SDValue(); 4987 // If both operands are undef, that's handled the same way as scalars. 4988 if (!BV1 && !BV2) 4989 return SDValue(); 4990 4991 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4992 "Vector binop with different number of elements in operands?"); 4993 4994 EVT SVT = VT.getScalarType(); 4995 EVT LegalSVT = SVT; 4996 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4997 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4998 if (LegalSVT.bitsLT(SVT)) 4999 return SDValue(); 5000 } 5001 SmallVector<SDValue, 4> Outputs; 5002 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5003 for (unsigned I = 0; I != NumOps; ++I) { 5004 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5005 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5006 if (SVT.isInteger()) { 5007 if (V1->getValueType(0).bitsGT(SVT)) 5008 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5009 if (V2->getValueType(0).bitsGT(SVT)) 5010 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5011 } 5012 5013 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5014 return SDValue(); 5015 5016 // Fold one vector element. 5017 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5018 if (LegalSVT != SVT) 5019 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5020 5021 // Scalar folding only succeeded if the result is a constant or UNDEF. 5022 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5023 ScalarResult.getOpcode() != ISD::ConstantFP) 5024 return SDValue(); 5025 Outputs.push_back(ScalarResult); 5026 } 5027 5028 assert(VT.getVectorNumElements() == Outputs.size() && 5029 "Vector size mismatch!"); 5030 5031 // We may have a vector type but a scalar result. Create a splat. 5032 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5033 5034 // Build a big vector out of the scalar elements we generated. 5035 return getBuildVector(VT, SDLoc(), Outputs); 5036 } 5037 5038 // TODO: Merge with FoldConstantArithmetic 5039 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5040 const SDLoc &DL, EVT VT, 5041 ArrayRef<SDValue> Ops, 5042 const SDNodeFlags Flags) { 5043 // If the opcode is a target-specific ISD node, there's nothing we can 5044 // do here and the operand rules may not line up with the below, so 5045 // bail early. 5046 if (Opcode >= ISD::BUILTIN_OP_END) 5047 return SDValue(); 5048 5049 if (isUndef(Opcode, Ops)) 5050 return getUNDEF(VT); 5051 5052 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5053 if (!VT.isVector()) 5054 return SDValue(); 5055 5056 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5057 // vector width, however we should be able to do constant folds involving 5058 // splat vector nodes too. 5059 if (VT.isScalableVector()) 5060 return SDValue(); 5061 5062 // From this point onwards all vectors are assumed to be fixed width. 5063 unsigned NumElts = VT.getVectorNumElements(); 5064 5065 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5066 return !Op.getValueType().isVector() || 5067 Op.getValueType().getVectorNumElements() == NumElts; 5068 }; 5069 5070 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5071 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5072 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5073 (BV && BV->isConstant()); 5074 }; 5075 5076 // All operands must be vector types with the same number of elements as 5077 // the result type and must be either UNDEF or a build vector of constant 5078 // or UNDEF scalars. 5079 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5080 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5081 return SDValue(); 5082 5083 // If we are comparing vectors, then the result needs to be a i1 boolean 5084 // that is then sign-extended back to the legal result type. 5085 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5086 5087 // Find legal integer scalar type for constant promotion and 5088 // ensure that its scalar size is at least as large as source. 5089 EVT LegalSVT = VT.getScalarType(); 5090 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5091 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5092 if (LegalSVT.bitsLT(VT.getScalarType())) 5093 return SDValue(); 5094 } 5095 5096 // Constant fold each scalar lane separately. 5097 SmallVector<SDValue, 4> ScalarResults; 5098 for (unsigned i = 0; i != NumElts; i++) { 5099 SmallVector<SDValue, 4> ScalarOps; 5100 for (SDValue Op : Ops) { 5101 EVT InSVT = Op.getValueType().getScalarType(); 5102 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5103 if (!InBV) { 5104 // We've checked that this is UNDEF or a constant of some kind. 5105 if (Op.isUndef()) 5106 ScalarOps.push_back(getUNDEF(InSVT)); 5107 else 5108 ScalarOps.push_back(Op); 5109 continue; 5110 } 5111 5112 SDValue ScalarOp = InBV->getOperand(i); 5113 EVT ScalarVT = ScalarOp.getValueType(); 5114 5115 // Build vector (integer) scalar operands may need implicit 5116 // truncation - do this before constant folding. 5117 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5118 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5119 5120 ScalarOps.push_back(ScalarOp); 5121 } 5122 5123 // Constant fold the scalar operands. 5124 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5125 5126 // Legalize the (integer) scalar constant if necessary. 5127 if (LegalSVT != SVT) 5128 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5129 5130 // Scalar folding only succeeded if the result is a constant or UNDEF. 5131 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5132 ScalarResult.getOpcode() != ISD::ConstantFP) 5133 return SDValue(); 5134 ScalarResults.push_back(ScalarResult); 5135 } 5136 5137 SDValue V = getBuildVector(VT, DL, ScalarResults); 5138 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5139 return V; 5140 } 5141 5142 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5143 EVT VT, SDValue N1, SDValue N2) { 5144 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5145 // should. That will require dealing with a potentially non-default 5146 // rounding mode, checking the "opStatus" return value from the APFloat 5147 // math calculations, and possibly other variations. 5148 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5149 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5150 if (N1CFP && N2CFP) { 5151 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5152 switch (Opcode) { 5153 case ISD::FADD: 5154 C1.add(C2, APFloat::rmNearestTiesToEven); 5155 return getConstantFP(C1, DL, VT); 5156 case ISD::FSUB: 5157 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5158 return getConstantFP(C1, DL, VT); 5159 case ISD::FMUL: 5160 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5161 return getConstantFP(C1, DL, VT); 5162 case ISD::FDIV: 5163 C1.divide(C2, APFloat::rmNearestTiesToEven); 5164 return getConstantFP(C1, DL, VT); 5165 case ISD::FREM: 5166 C1.mod(C2); 5167 return getConstantFP(C1, DL, VT); 5168 case ISD::FCOPYSIGN: 5169 C1.copySign(C2); 5170 return getConstantFP(C1, DL, VT); 5171 default: break; 5172 } 5173 } 5174 if (N1CFP && Opcode == ISD::FP_ROUND) { 5175 APFloat C1 = N1CFP->getValueAPF(); // make copy 5176 bool Unused; 5177 // This can return overflow, underflow, or inexact; we don't care. 5178 // FIXME need to be more flexible about rounding mode. 5179 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5180 &Unused); 5181 return getConstantFP(C1, DL, VT); 5182 } 5183 5184 switch (Opcode) { 5185 case ISD::FSUB: 5186 // -0.0 - undef --> undef (consistent with "fneg undef") 5187 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5188 return getUNDEF(VT); 5189 LLVM_FALLTHROUGH; 5190 5191 case ISD::FADD: 5192 case ISD::FMUL: 5193 case ISD::FDIV: 5194 case ISD::FREM: 5195 // If both operands are undef, the result is undef. If 1 operand is undef, 5196 // the result is NaN. This should match the behavior of the IR optimizer. 5197 if (N1.isUndef() && N2.isUndef()) 5198 return getUNDEF(VT); 5199 if (N1.isUndef() || N2.isUndef()) 5200 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5201 } 5202 return SDValue(); 5203 } 5204 5205 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5206 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5207 5208 // There's no need to assert on a byte-aligned pointer. All pointers are at 5209 // least byte aligned. 5210 if (A == Align(1)) 5211 return Val; 5212 5213 FoldingSetNodeID ID; 5214 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5215 ID.AddInteger(A.value()); 5216 5217 void *IP = nullptr; 5218 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5219 return SDValue(E, 0); 5220 5221 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5222 Val.getValueType(), A); 5223 createOperands(N, {Val}); 5224 5225 CSEMap.InsertNode(N, IP); 5226 InsertNode(N); 5227 5228 SDValue V(N, 0); 5229 NewSDValueDbgMsg(V, "Creating new node: ", this); 5230 return V; 5231 } 5232 5233 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5234 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5235 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5236 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5237 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5238 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5239 5240 // Canonicalize constant to RHS if commutative. 5241 if (TLI->isCommutativeBinOp(Opcode)) { 5242 if (N1C && !N2C) { 5243 std::swap(N1C, N2C); 5244 std::swap(N1, N2); 5245 } else if (N1CFP && !N2CFP) { 5246 std::swap(N1CFP, N2CFP); 5247 std::swap(N1, N2); 5248 } 5249 } 5250 5251 switch (Opcode) { 5252 default: break; 5253 case ISD::TokenFactor: 5254 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5255 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5256 // Fold trivial token factors. 5257 if (N1.getOpcode() == ISD::EntryToken) return N2; 5258 if (N2.getOpcode() == ISD::EntryToken) return N1; 5259 if (N1 == N2) return N1; 5260 break; 5261 case ISD::BUILD_VECTOR: { 5262 // Attempt to simplify BUILD_VECTOR. 5263 SDValue Ops[] = {N1, N2}; 5264 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5265 return V; 5266 break; 5267 } 5268 case ISD::CONCAT_VECTORS: { 5269 SDValue Ops[] = {N1, N2}; 5270 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5271 return V; 5272 break; 5273 } 5274 case ISD::AND: 5275 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5276 assert(N1.getValueType() == N2.getValueType() && 5277 N1.getValueType() == VT && "Binary operator types must match!"); 5278 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5279 // worth handling here. 5280 if (N2C && N2C->isNullValue()) 5281 return N2; 5282 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5283 return N1; 5284 break; 5285 case ISD::OR: 5286 case ISD::XOR: 5287 case ISD::ADD: 5288 case ISD::SUB: 5289 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5290 assert(N1.getValueType() == N2.getValueType() && 5291 N1.getValueType() == VT && "Binary operator types must match!"); 5292 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5293 // it's worth handling here. 5294 if (N2C && N2C->isNullValue()) 5295 return N1; 5296 break; 5297 case ISD::MUL: 5298 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5299 assert(N1.getValueType() == N2.getValueType() && 5300 N1.getValueType() == VT && "Binary operator types must match!"); 5301 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5302 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5303 APInt N2CImm = N2C->getAPIntValue(); 5304 return getVScale(DL, VT, MulImm * N2CImm); 5305 } 5306 break; 5307 case ISD::UDIV: 5308 case ISD::UREM: 5309 case ISD::MULHU: 5310 case ISD::MULHS: 5311 case ISD::SDIV: 5312 case ISD::SREM: 5313 case ISD::SMIN: 5314 case ISD::SMAX: 5315 case ISD::UMIN: 5316 case ISD::UMAX: 5317 case ISD::SADDSAT: 5318 case ISD::SSUBSAT: 5319 case ISD::UADDSAT: 5320 case ISD::USUBSAT: 5321 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5322 assert(N1.getValueType() == N2.getValueType() && 5323 N1.getValueType() == VT && "Binary operator types must match!"); 5324 break; 5325 case ISD::FADD: 5326 case ISD::FSUB: 5327 case ISD::FMUL: 5328 case ISD::FDIV: 5329 case ISD::FREM: 5330 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5331 assert(N1.getValueType() == N2.getValueType() && 5332 N1.getValueType() == VT && "Binary operator types must match!"); 5333 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5334 return V; 5335 break; 5336 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5337 assert(N1.getValueType() == VT && 5338 N1.getValueType().isFloatingPoint() && 5339 N2.getValueType().isFloatingPoint() && 5340 "Invalid FCOPYSIGN!"); 5341 break; 5342 case ISD::SHL: 5343 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5344 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5345 APInt ShiftImm = N2C->getAPIntValue(); 5346 return getVScale(DL, VT, MulImm << ShiftImm); 5347 } 5348 LLVM_FALLTHROUGH; 5349 case ISD::SRA: 5350 case ISD::SRL: 5351 if (SDValue V = simplifyShift(N1, N2)) 5352 return V; 5353 LLVM_FALLTHROUGH; 5354 case ISD::ROTL: 5355 case ISD::ROTR: 5356 assert(VT == N1.getValueType() && 5357 "Shift operators return type must be the same as their first arg"); 5358 assert(VT.isInteger() && N2.getValueType().isInteger() && 5359 "Shifts only work on integers"); 5360 assert((!VT.isVector() || VT == N2.getValueType()) && 5361 "Vector shift amounts must be in the same as their first arg"); 5362 // Verify that the shift amount VT is big enough to hold valid shift 5363 // amounts. This catches things like trying to shift an i1024 value by an 5364 // i8, which is easy to fall into in generic code that uses 5365 // TLI.getShiftAmount(). 5366 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5367 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5368 "Invalid use of small shift amount with oversized value!"); 5369 5370 // Always fold shifts of i1 values so the code generator doesn't need to 5371 // handle them. Since we know the size of the shift has to be less than the 5372 // size of the value, the shift/rotate count is guaranteed to be zero. 5373 if (VT == MVT::i1) 5374 return N1; 5375 if (N2C && N2C->isNullValue()) 5376 return N1; 5377 break; 5378 case ISD::FP_ROUND: 5379 assert(VT.isFloatingPoint() && 5380 N1.getValueType().isFloatingPoint() && 5381 VT.bitsLE(N1.getValueType()) && 5382 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5383 "Invalid FP_ROUND!"); 5384 if (N1.getValueType() == VT) return N1; // noop conversion. 5385 break; 5386 case ISD::AssertSext: 5387 case ISD::AssertZext: { 5388 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5389 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5390 assert(VT.isInteger() && EVT.isInteger() && 5391 "Cannot *_EXTEND_INREG FP types"); 5392 assert(!EVT.isVector() && 5393 "AssertSExt/AssertZExt type should be the vector element type " 5394 "rather than the vector type!"); 5395 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5396 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5397 break; 5398 } 5399 case ISD::SIGN_EXTEND_INREG: { 5400 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5401 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5402 assert(VT.isInteger() && EVT.isInteger() && 5403 "Cannot *_EXTEND_INREG FP types"); 5404 assert(EVT.isVector() == VT.isVector() && 5405 "SIGN_EXTEND_INREG type should be vector iff the operand " 5406 "type is vector!"); 5407 assert((!EVT.isVector() || 5408 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5409 "Vector element counts must match in SIGN_EXTEND_INREG"); 5410 assert(EVT.bitsLE(VT) && "Not extending!"); 5411 if (EVT == VT) return N1; // Not actually extending 5412 5413 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5414 unsigned FromBits = EVT.getScalarSizeInBits(); 5415 Val <<= Val.getBitWidth() - FromBits; 5416 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5417 return getConstant(Val, DL, ConstantVT); 5418 }; 5419 5420 if (N1C) { 5421 const APInt &Val = N1C->getAPIntValue(); 5422 return SignExtendInReg(Val, VT); 5423 } 5424 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5425 SmallVector<SDValue, 8> Ops; 5426 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5427 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5428 SDValue Op = N1.getOperand(i); 5429 if (Op.isUndef()) { 5430 Ops.push_back(getUNDEF(OpVT)); 5431 continue; 5432 } 5433 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5434 APInt Val = C->getAPIntValue(); 5435 Ops.push_back(SignExtendInReg(Val, OpVT)); 5436 } 5437 return getBuildVector(VT, DL, Ops); 5438 } 5439 break; 5440 } 5441 case ISD::EXTRACT_VECTOR_ELT: 5442 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5443 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5444 element type of the vector."); 5445 5446 // Extract from an undefined value or using an undefined index is undefined. 5447 if (N1.isUndef() || N2.isUndef()) 5448 return getUNDEF(VT); 5449 5450 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5451 // vectors. For scalable vectors we will provide appropriate support for 5452 // dealing with arbitrary indices. 5453 if (N2C && N1.getValueType().isFixedLengthVector() && 5454 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5455 return getUNDEF(VT); 5456 5457 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5458 // expanding copies of large vectors from registers. This only works for 5459 // fixed length vectors, since we need to know the exact number of 5460 // elements. 5461 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5462 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5463 unsigned Factor = 5464 N1.getOperand(0).getValueType().getVectorNumElements(); 5465 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5466 N1.getOperand(N2C->getZExtValue() / Factor), 5467 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5468 } 5469 5470 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5471 // lowering is expanding large vector constants. 5472 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5473 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5474 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5475 N1.getValueType().isFixedLengthVector()) && 5476 "BUILD_VECTOR used for scalable vectors"); 5477 unsigned Index = 5478 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5479 SDValue Elt = N1.getOperand(Index); 5480 5481 if (VT != Elt.getValueType()) 5482 // If the vector element type is not legal, the BUILD_VECTOR operands 5483 // are promoted and implicitly truncated, and the result implicitly 5484 // extended. Make that explicit here. 5485 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5486 5487 return Elt; 5488 } 5489 5490 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5491 // operations are lowered to scalars. 5492 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5493 // If the indices are the same, return the inserted element else 5494 // if the indices are known different, extract the element from 5495 // the original vector. 5496 SDValue N1Op2 = N1.getOperand(2); 5497 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5498 5499 if (N1Op2C && N2C) { 5500 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5501 if (VT == N1.getOperand(1).getValueType()) 5502 return N1.getOperand(1); 5503 else 5504 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5505 } 5506 5507 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5508 } 5509 } 5510 5511 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5512 // when vector types are scalarized and v1iX is legal. 5513 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5514 // Here we are completely ignoring the extract element index (N2), 5515 // which is fine for fixed width vectors, since any index other than 0 5516 // is undefined anyway. However, this cannot be ignored for scalable 5517 // vectors - in theory we could support this, but we don't want to do this 5518 // without a profitability check. 5519 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5520 N1.getValueType().isFixedLengthVector() && 5521 N1.getValueType().getVectorNumElements() == 1) { 5522 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5523 N1.getOperand(1)); 5524 } 5525 break; 5526 case ISD::EXTRACT_ELEMENT: 5527 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5528 assert(!N1.getValueType().isVector() && !VT.isVector() && 5529 (N1.getValueType().isInteger() == VT.isInteger()) && 5530 N1.getValueType() != VT && 5531 "Wrong types for EXTRACT_ELEMENT!"); 5532 5533 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5534 // 64-bit integers into 32-bit parts. Instead of building the extract of 5535 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5536 if (N1.getOpcode() == ISD::BUILD_PAIR) 5537 return N1.getOperand(N2C->getZExtValue()); 5538 5539 // EXTRACT_ELEMENT of a constant int is also very common. 5540 if (N1C) { 5541 unsigned ElementSize = VT.getSizeInBits(); 5542 unsigned Shift = ElementSize * N2C->getZExtValue(); 5543 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5544 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5545 } 5546 break; 5547 case ISD::EXTRACT_SUBVECTOR: 5548 EVT N1VT = N1.getValueType(); 5549 assert(VT.isVector() && N1VT.isVector() && 5550 "Extract subvector VTs must be vectors!"); 5551 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5552 "Extract subvector VTs must have the same element type!"); 5553 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5554 "Cannot extract a scalable vector from a fixed length vector!"); 5555 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5556 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5557 "Extract subvector must be from larger vector to smaller vector!"); 5558 assert(N2C && "Extract subvector index must be a constant"); 5559 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5560 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5561 N1VT.getVectorMinNumElements()) && 5562 "Extract subvector overflow!"); 5563 assert(N2C->getAPIntValue().getBitWidth() == 5564 TLI->getVectorIdxTy(getDataLayout()) 5565 .getSizeInBits() 5566 .getFixedSize() && 5567 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5568 5569 // Trivial extraction. 5570 if (VT == N1VT) 5571 return N1; 5572 5573 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5574 if (N1.isUndef()) 5575 return getUNDEF(VT); 5576 5577 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5578 // the concat have the same type as the extract. 5579 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5580 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { 5581 unsigned Factor = VT.getVectorMinNumElements(); 5582 return N1.getOperand(N2C->getZExtValue() / Factor); 5583 } 5584 5585 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5586 // during shuffle legalization. 5587 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5588 VT == N1.getOperand(1).getValueType()) 5589 return N1.getOperand(1); 5590 break; 5591 } 5592 5593 // Perform trivial constant folding. 5594 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5595 return SV; 5596 5597 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5598 return V; 5599 5600 // Canonicalize an UNDEF to the RHS, even over a constant. 5601 if (N1.isUndef()) { 5602 if (TLI->isCommutativeBinOp(Opcode)) { 5603 std::swap(N1, N2); 5604 } else { 5605 switch (Opcode) { 5606 case ISD::SIGN_EXTEND_INREG: 5607 case ISD::SUB: 5608 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5609 case ISD::UDIV: 5610 case ISD::SDIV: 5611 case ISD::UREM: 5612 case ISD::SREM: 5613 case ISD::SSUBSAT: 5614 case ISD::USUBSAT: 5615 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5616 } 5617 } 5618 } 5619 5620 // Fold a bunch of operators when the RHS is undef. 5621 if (N2.isUndef()) { 5622 switch (Opcode) { 5623 case ISD::XOR: 5624 if (N1.isUndef()) 5625 // Handle undef ^ undef -> 0 special case. This is a common 5626 // idiom (misuse). 5627 return getConstant(0, DL, VT); 5628 LLVM_FALLTHROUGH; 5629 case ISD::ADD: 5630 case ISD::SUB: 5631 case ISD::UDIV: 5632 case ISD::SDIV: 5633 case ISD::UREM: 5634 case ISD::SREM: 5635 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5636 case ISD::MUL: 5637 case ISD::AND: 5638 case ISD::SSUBSAT: 5639 case ISD::USUBSAT: 5640 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5641 case ISD::OR: 5642 case ISD::SADDSAT: 5643 case ISD::UADDSAT: 5644 return getAllOnesConstant(DL, VT); 5645 } 5646 } 5647 5648 // Memoize this node if possible. 5649 SDNode *N; 5650 SDVTList VTs = getVTList(VT); 5651 SDValue Ops[] = {N1, N2}; 5652 if (VT != MVT::Glue) { 5653 FoldingSetNodeID ID; 5654 AddNodeIDNode(ID, Opcode, VTs, Ops); 5655 void *IP = nullptr; 5656 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5657 E->intersectFlagsWith(Flags); 5658 return SDValue(E, 0); 5659 } 5660 5661 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5662 N->setFlags(Flags); 5663 createOperands(N, Ops); 5664 CSEMap.InsertNode(N, IP); 5665 } else { 5666 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5667 createOperands(N, Ops); 5668 } 5669 5670 InsertNode(N); 5671 SDValue V = SDValue(N, 0); 5672 NewSDValueDbgMsg(V, "Creating new node: ", this); 5673 return V; 5674 } 5675 5676 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5677 SDValue N1, SDValue N2, SDValue N3, 5678 const SDNodeFlags Flags) { 5679 // Perform various simplifications. 5680 switch (Opcode) { 5681 case ISD::FMA: { 5682 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5683 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5684 N3.getValueType() == VT && "FMA types must match!"); 5685 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5686 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5687 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5688 if (N1CFP && N2CFP && N3CFP) { 5689 APFloat V1 = N1CFP->getValueAPF(); 5690 const APFloat &V2 = N2CFP->getValueAPF(); 5691 const APFloat &V3 = N3CFP->getValueAPF(); 5692 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5693 return getConstantFP(V1, DL, VT); 5694 } 5695 break; 5696 } 5697 case ISD::BUILD_VECTOR: { 5698 // Attempt to simplify BUILD_VECTOR. 5699 SDValue Ops[] = {N1, N2, N3}; 5700 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5701 return V; 5702 break; 5703 } 5704 case ISD::CONCAT_VECTORS: { 5705 SDValue Ops[] = {N1, N2, N3}; 5706 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5707 return V; 5708 break; 5709 } 5710 case ISD::SETCC: { 5711 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5712 assert(N1.getValueType() == N2.getValueType() && 5713 "SETCC operands must have the same type!"); 5714 assert(VT.isVector() == N1.getValueType().isVector() && 5715 "SETCC type should be vector iff the operand type is vector!"); 5716 assert((!VT.isVector() || VT.getVectorElementCount() == 5717 N1.getValueType().getVectorElementCount()) && 5718 "SETCC vector element counts must match!"); 5719 // Use FoldSetCC to simplify SETCC's. 5720 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5721 return V; 5722 // Vector constant folding. 5723 SDValue Ops[] = {N1, N2, N3}; 5724 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5725 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5726 return V; 5727 } 5728 break; 5729 } 5730 case ISD::SELECT: 5731 case ISD::VSELECT: 5732 if (SDValue V = simplifySelect(N1, N2, N3)) 5733 return V; 5734 break; 5735 case ISD::VECTOR_SHUFFLE: 5736 llvm_unreachable("should use getVectorShuffle constructor!"); 5737 case ISD::INSERT_VECTOR_ELT: { 5738 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5739 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5740 // for scalable vectors where we will generate appropriate code to 5741 // deal with out-of-bounds cases correctly. 5742 if (N3C && N1.getValueType().isFixedLengthVector() && 5743 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5744 return getUNDEF(VT); 5745 5746 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5747 if (N3.isUndef()) 5748 return getUNDEF(VT); 5749 5750 // If the inserted element is an UNDEF, just use the input vector. 5751 if (N2.isUndef()) 5752 return N1; 5753 5754 break; 5755 } 5756 case ISD::INSERT_SUBVECTOR: { 5757 // Inserting undef into undef is still undef. 5758 if (N1.isUndef() && N2.isUndef()) 5759 return getUNDEF(VT); 5760 5761 EVT N2VT = N2.getValueType(); 5762 assert(VT == N1.getValueType() && 5763 "Dest and insert subvector source types must match!"); 5764 assert(VT.isVector() && N2VT.isVector() && 5765 "Insert subvector VTs must be vectors!"); 5766 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5767 "Cannot insert a scalable vector into a fixed length vector!"); 5768 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5769 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5770 "Insert subvector must be from smaller vector to larger vector!"); 5771 assert(isa<ConstantSDNode>(N3) && 5772 "Insert subvector index must be constant"); 5773 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5774 (N2VT.getVectorMinNumElements() + 5775 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5776 VT.getVectorMinNumElements()) && 5777 "Insert subvector overflow!"); 5778 5779 // Trivial insertion. 5780 if (VT == N2VT) 5781 return N2; 5782 5783 // If this is an insert of an extracted vector into an undef vector, we 5784 // can just use the input to the extract. 5785 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5786 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5787 return N2.getOperand(0); 5788 break; 5789 } 5790 case ISD::BITCAST: 5791 // Fold bit_convert nodes from a type to themselves. 5792 if (N1.getValueType() == VT) 5793 return N1; 5794 break; 5795 } 5796 5797 // Memoize node if it doesn't produce a flag. 5798 SDNode *N; 5799 SDVTList VTs = getVTList(VT); 5800 SDValue Ops[] = {N1, N2, N3}; 5801 if (VT != MVT::Glue) { 5802 FoldingSetNodeID ID; 5803 AddNodeIDNode(ID, Opcode, VTs, Ops); 5804 void *IP = nullptr; 5805 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5806 E->intersectFlagsWith(Flags); 5807 return SDValue(E, 0); 5808 } 5809 5810 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5811 N->setFlags(Flags); 5812 createOperands(N, Ops); 5813 CSEMap.InsertNode(N, IP); 5814 } else { 5815 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5816 createOperands(N, Ops); 5817 } 5818 5819 InsertNode(N); 5820 SDValue V = SDValue(N, 0); 5821 NewSDValueDbgMsg(V, "Creating new node: ", this); 5822 return V; 5823 } 5824 5825 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5826 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5827 SDValue Ops[] = { N1, N2, N3, N4 }; 5828 return getNode(Opcode, DL, VT, Ops); 5829 } 5830 5831 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5832 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5833 SDValue N5) { 5834 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5835 return getNode(Opcode, DL, VT, Ops); 5836 } 5837 5838 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5839 /// the incoming stack arguments to be loaded from the stack. 5840 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5841 SmallVector<SDValue, 8> ArgChains; 5842 5843 // Include the original chain at the beginning of the list. When this is 5844 // used by target LowerCall hooks, this helps legalize find the 5845 // CALLSEQ_BEGIN node. 5846 ArgChains.push_back(Chain); 5847 5848 // Add a chain value for each stack argument. 5849 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5850 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5851 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5852 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5853 if (FI->getIndex() < 0) 5854 ArgChains.push_back(SDValue(L, 1)); 5855 5856 // Build a tokenfactor for all the chains. 5857 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5858 } 5859 5860 /// getMemsetValue - Vectorized representation of the memset value 5861 /// operand. 5862 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5863 const SDLoc &dl) { 5864 assert(!Value.isUndef()); 5865 5866 unsigned NumBits = VT.getScalarSizeInBits(); 5867 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5868 assert(C->getAPIntValue().getBitWidth() == 8); 5869 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5870 if (VT.isInteger()) { 5871 bool IsOpaque = VT.getSizeInBits() > 64 || 5872 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5873 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5874 } 5875 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5876 VT); 5877 } 5878 5879 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5880 EVT IntVT = VT.getScalarType(); 5881 if (!IntVT.isInteger()) 5882 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5883 5884 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5885 if (NumBits > 8) { 5886 // Use a multiplication with 0x010101... to extend the input to the 5887 // required length. 5888 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5889 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5890 DAG.getConstant(Magic, dl, IntVT)); 5891 } 5892 5893 if (VT != Value.getValueType() && !VT.isInteger()) 5894 Value = DAG.getBitcast(VT.getScalarType(), Value); 5895 if (VT != Value.getValueType()) 5896 Value = DAG.getSplatBuildVector(VT, dl, Value); 5897 5898 return Value; 5899 } 5900 5901 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5902 /// used when a memcpy is turned into a memset when the source is a constant 5903 /// string ptr. 5904 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5905 const TargetLowering &TLI, 5906 const ConstantDataArraySlice &Slice) { 5907 // Handle vector with all elements zero. 5908 if (Slice.Array == nullptr) { 5909 if (VT.isInteger()) 5910 return DAG.getConstant(0, dl, VT); 5911 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5912 return DAG.getConstantFP(0.0, dl, VT); 5913 else if (VT.isVector()) { 5914 unsigned NumElts = VT.getVectorNumElements(); 5915 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5916 return DAG.getNode(ISD::BITCAST, dl, VT, 5917 DAG.getConstant(0, dl, 5918 EVT::getVectorVT(*DAG.getContext(), 5919 EltVT, NumElts))); 5920 } else 5921 llvm_unreachable("Expected type!"); 5922 } 5923 5924 assert(!VT.isVector() && "Can't handle vector type here!"); 5925 unsigned NumVTBits = VT.getSizeInBits(); 5926 unsigned NumVTBytes = NumVTBits / 8; 5927 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5928 5929 APInt Val(NumVTBits, 0); 5930 if (DAG.getDataLayout().isLittleEndian()) { 5931 for (unsigned i = 0; i != NumBytes; ++i) 5932 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5933 } else { 5934 for (unsigned i = 0; i != NumBytes; ++i) 5935 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5936 } 5937 5938 // If the "cost" of materializing the integer immediate is less than the cost 5939 // of a load, then it is cost effective to turn the load into the immediate. 5940 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5941 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5942 return DAG.getConstant(Val, dl, VT); 5943 return SDValue(nullptr, 0); 5944 } 5945 5946 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5947 const SDLoc &DL, 5948 const SDNodeFlags Flags) { 5949 EVT VT = Base.getValueType(); 5950 SDValue Index; 5951 5952 if (Offset.isScalable()) 5953 Index = getVScale(DL, Base.getValueType(), 5954 APInt(Base.getValueSizeInBits().getFixedSize(), 5955 Offset.getKnownMinSize())); 5956 else 5957 Index = getConstant(Offset.getFixedSize(), DL, VT); 5958 5959 return getMemBasePlusOffset(Base, Index, DL, Flags); 5960 } 5961 5962 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5963 const SDLoc &DL, 5964 const SDNodeFlags Flags) { 5965 assert(Offset.getValueType().isInteger()); 5966 EVT BasePtrVT = Ptr.getValueType(); 5967 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5968 } 5969 5970 /// Returns true if memcpy source is constant data. 5971 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5972 uint64_t SrcDelta = 0; 5973 GlobalAddressSDNode *G = nullptr; 5974 if (Src.getOpcode() == ISD::GlobalAddress) 5975 G = cast<GlobalAddressSDNode>(Src); 5976 else if (Src.getOpcode() == ISD::ADD && 5977 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5978 Src.getOperand(1).getOpcode() == ISD::Constant) { 5979 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5980 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5981 } 5982 if (!G) 5983 return false; 5984 5985 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5986 SrcDelta + G->getOffset()); 5987 } 5988 5989 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5990 SelectionDAG &DAG) { 5991 // On Darwin, -Os means optimize for size without hurting performance, so 5992 // only really optimize for size when -Oz (MinSize) is used. 5993 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5994 return MF.getFunction().hasMinSize(); 5995 return DAG.shouldOptForSize(); 5996 } 5997 5998 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5999 SmallVector<SDValue, 32> &OutChains, unsigned From, 6000 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6001 SmallVector<SDValue, 16> &OutStoreChains) { 6002 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6003 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6004 SmallVector<SDValue, 16> GluedLoadChains; 6005 for (unsigned i = From; i < To; ++i) { 6006 OutChains.push_back(OutLoadChains[i]); 6007 GluedLoadChains.push_back(OutLoadChains[i]); 6008 } 6009 6010 // Chain for all loads. 6011 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6012 GluedLoadChains); 6013 6014 for (unsigned i = From; i < To; ++i) { 6015 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6016 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6017 ST->getBasePtr(), ST->getMemoryVT(), 6018 ST->getMemOperand()); 6019 OutChains.push_back(NewStore); 6020 } 6021 } 6022 6023 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6024 SDValue Chain, SDValue Dst, SDValue Src, 6025 uint64_t Size, Align Alignment, 6026 bool isVol, bool AlwaysInline, 6027 MachinePointerInfo DstPtrInfo, 6028 MachinePointerInfo SrcPtrInfo) { 6029 // Turn a memcpy of undef to nop. 6030 // FIXME: We need to honor volatile even is Src is undef. 6031 if (Src.isUndef()) 6032 return Chain; 6033 6034 // Expand memcpy to a series of load and store ops if the size operand falls 6035 // below a certain threshold. 6036 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6037 // rather than maybe a humongous number of loads and stores. 6038 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6039 const DataLayout &DL = DAG.getDataLayout(); 6040 LLVMContext &C = *DAG.getContext(); 6041 std::vector<EVT> MemOps; 6042 bool DstAlignCanChange = false; 6043 MachineFunction &MF = DAG.getMachineFunction(); 6044 MachineFrameInfo &MFI = MF.getFrameInfo(); 6045 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6046 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6047 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6048 DstAlignCanChange = true; 6049 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6050 if (!SrcAlign || Alignment > *SrcAlign) 6051 SrcAlign = Alignment; 6052 assert(SrcAlign && "SrcAlign must be set"); 6053 ConstantDataArraySlice Slice; 6054 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 6055 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6056 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6057 const MemOp Op = isZeroConstant 6058 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6059 /*IsZeroMemset*/ true, isVol) 6060 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6061 *SrcAlign, isVol, CopyFromConstant); 6062 if (!TLI.findOptimalMemOpLowering( 6063 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6064 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6065 return SDValue(); 6066 6067 if (DstAlignCanChange) { 6068 Type *Ty = MemOps[0].getTypeForEVT(C); 6069 Align NewAlign = DL.getABITypeAlign(Ty); 6070 6071 // Don't promote to an alignment that would require dynamic stack 6072 // realignment. 6073 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6074 if (!TRI->needsStackRealignment(MF)) 6075 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6076 NewAlign = NewAlign / 2; 6077 6078 if (NewAlign > Alignment) { 6079 // Give the stack frame object a larger alignment if needed. 6080 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6081 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6082 Alignment = NewAlign; 6083 } 6084 } 6085 6086 MachineMemOperand::Flags MMOFlags = 6087 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6088 SmallVector<SDValue, 16> OutLoadChains; 6089 SmallVector<SDValue, 16> OutStoreChains; 6090 SmallVector<SDValue, 32> OutChains; 6091 unsigned NumMemOps = MemOps.size(); 6092 uint64_t SrcOff = 0, DstOff = 0; 6093 for (unsigned i = 0; i != NumMemOps; ++i) { 6094 EVT VT = MemOps[i]; 6095 unsigned VTSize = VT.getSizeInBits() / 8; 6096 SDValue Value, Store; 6097 6098 if (VTSize > Size) { 6099 // Issuing an unaligned load / store pair that overlaps with the previous 6100 // pair. Adjust the offset accordingly. 6101 assert(i == NumMemOps-1 && i != 0); 6102 SrcOff -= VTSize - Size; 6103 DstOff -= VTSize - Size; 6104 } 6105 6106 if (CopyFromConstant && 6107 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6108 // It's unlikely a store of a vector immediate can be done in a single 6109 // instruction. It would require a load from a constantpool first. 6110 // We only handle zero vectors here. 6111 // FIXME: Handle other cases where store of vector immediate is done in 6112 // a single instruction. 6113 ConstantDataArraySlice SubSlice; 6114 if (SrcOff < Slice.Length) { 6115 SubSlice = Slice; 6116 SubSlice.move(SrcOff); 6117 } else { 6118 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6119 SubSlice.Array = nullptr; 6120 SubSlice.Offset = 0; 6121 SubSlice.Length = VTSize; 6122 } 6123 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6124 if (Value.getNode()) { 6125 Store = DAG.getStore( 6126 Chain, dl, Value, 6127 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6128 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6129 OutChains.push_back(Store); 6130 } 6131 } 6132 6133 if (!Store.getNode()) { 6134 // The type might not be legal for the target. This should only happen 6135 // if the type is smaller than a legal type, as on PPC, so the right 6136 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6137 // to Load/Store if NVT==VT. 6138 // FIXME does the case above also need this? 6139 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6140 assert(NVT.bitsGE(VT)); 6141 6142 bool isDereferenceable = 6143 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6144 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6145 if (isDereferenceable) 6146 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6147 6148 Value = DAG.getExtLoad( 6149 ISD::EXTLOAD, dl, NVT, Chain, 6150 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6151 SrcPtrInfo.getWithOffset(SrcOff), VT, 6152 commonAlignment(*SrcAlign, SrcOff).value(), SrcMMOFlags); 6153 OutLoadChains.push_back(Value.getValue(1)); 6154 6155 Store = DAG.getTruncStore( 6156 Chain, dl, Value, 6157 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6158 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6159 OutStoreChains.push_back(Store); 6160 } 6161 SrcOff += VTSize; 6162 DstOff += VTSize; 6163 Size -= VTSize; 6164 } 6165 6166 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6167 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6168 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6169 6170 if (NumLdStInMemcpy) { 6171 // It may be that memcpy might be converted to memset if it's memcpy 6172 // of constants. In such a case, we won't have loads and stores, but 6173 // just stores. In the absence of loads, there is nothing to gang up. 6174 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6175 // If target does not care, just leave as it. 6176 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6177 OutChains.push_back(OutLoadChains[i]); 6178 OutChains.push_back(OutStoreChains[i]); 6179 } 6180 } else { 6181 // Ld/St less than/equal limit set by target. 6182 if (NumLdStInMemcpy <= GluedLdStLimit) { 6183 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6184 NumLdStInMemcpy, OutLoadChains, 6185 OutStoreChains); 6186 } else { 6187 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6188 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6189 unsigned GlueIter = 0; 6190 6191 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6192 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6193 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6194 6195 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6196 OutLoadChains, OutStoreChains); 6197 GlueIter += GluedLdStLimit; 6198 } 6199 6200 // Residual ld/st. 6201 if (RemainingLdStInMemcpy) { 6202 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6203 RemainingLdStInMemcpy, OutLoadChains, 6204 OutStoreChains); 6205 } 6206 } 6207 } 6208 } 6209 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6210 } 6211 6212 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6213 SDValue Chain, SDValue Dst, SDValue Src, 6214 uint64_t Size, Align Alignment, 6215 bool isVol, bool AlwaysInline, 6216 MachinePointerInfo DstPtrInfo, 6217 MachinePointerInfo SrcPtrInfo) { 6218 // Turn a memmove of undef to nop. 6219 // FIXME: We need to honor volatile even is Src is undef. 6220 if (Src.isUndef()) 6221 return Chain; 6222 6223 // Expand memmove to a series of load and store ops if the size operand falls 6224 // below a certain threshold. 6225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6226 const DataLayout &DL = DAG.getDataLayout(); 6227 LLVMContext &C = *DAG.getContext(); 6228 std::vector<EVT> MemOps; 6229 bool DstAlignCanChange = false; 6230 MachineFunction &MF = DAG.getMachineFunction(); 6231 MachineFrameInfo &MFI = MF.getFrameInfo(); 6232 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6233 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6234 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6235 DstAlignCanChange = true; 6236 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6237 if (!SrcAlign || Alignment > *SrcAlign) 6238 SrcAlign = Alignment; 6239 assert(SrcAlign && "SrcAlign must be set"); 6240 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6241 if (!TLI.findOptimalMemOpLowering( 6242 MemOps, Limit, 6243 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6244 /*IsVolatile*/ true), 6245 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6246 MF.getFunction().getAttributes())) 6247 return SDValue(); 6248 6249 if (DstAlignCanChange) { 6250 Type *Ty = MemOps[0].getTypeForEVT(C); 6251 Align NewAlign = DL.getABITypeAlign(Ty); 6252 if (NewAlign > Alignment) { 6253 // Give the stack frame object a larger alignment if needed. 6254 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6255 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6256 Alignment = NewAlign; 6257 } 6258 } 6259 6260 MachineMemOperand::Flags MMOFlags = 6261 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6262 uint64_t SrcOff = 0, DstOff = 0; 6263 SmallVector<SDValue, 8> LoadValues; 6264 SmallVector<SDValue, 8> LoadChains; 6265 SmallVector<SDValue, 8> OutChains; 6266 unsigned NumMemOps = MemOps.size(); 6267 for (unsigned i = 0; i < NumMemOps; i++) { 6268 EVT VT = MemOps[i]; 6269 unsigned VTSize = VT.getSizeInBits() / 8; 6270 SDValue Value; 6271 6272 bool isDereferenceable = 6273 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6274 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6275 if (isDereferenceable) 6276 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6277 6278 Value = DAG.getLoad( 6279 VT, dl, Chain, 6280 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6281 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6282 LoadValues.push_back(Value); 6283 LoadChains.push_back(Value.getValue(1)); 6284 SrcOff += VTSize; 6285 } 6286 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6287 OutChains.clear(); 6288 for (unsigned i = 0; i < NumMemOps; i++) { 6289 EVT VT = MemOps[i]; 6290 unsigned VTSize = VT.getSizeInBits() / 8; 6291 SDValue Store; 6292 6293 Store = DAG.getStore( 6294 Chain, dl, LoadValues[i], 6295 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6296 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6297 OutChains.push_back(Store); 6298 DstOff += VTSize; 6299 } 6300 6301 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6302 } 6303 6304 /// Lower the call to 'memset' intrinsic function into a series of store 6305 /// operations. 6306 /// 6307 /// \param DAG Selection DAG where lowered code is placed. 6308 /// \param dl Link to corresponding IR location. 6309 /// \param Chain Control flow dependency. 6310 /// \param Dst Pointer to destination memory location. 6311 /// \param Src Value of byte to write into the memory. 6312 /// \param Size Number of bytes to write. 6313 /// \param Alignment Alignment of the destination in bytes. 6314 /// \param isVol True if destination is volatile. 6315 /// \param DstPtrInfo IR information on the memory pointer. 6316 /// \returns New head in the control flow, if lowering was successful, empty 6317 /// SDValue otherwise. 6318 /// 6319 /// The function tries to replace 'llvm.memset' intrinsic with several store 6320 /// operations and value calculation code. This is usually profitable for small 6321 /// memory size. 6322 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6323 SDValue Chain, SDValue Dst, SDValue Src, 6324 uint64_t Size, Align Alignment, bool isVol, 6325 MachinePointerInfo DstPtrInfo) { 6326 // Turn a memset of undef to nop. 6327 // FIXME: We need to honor volatile even is Src is undef. 6328 if (Src.isUndef()) 6329 return Chain; 6330 6331 // Expand memset to a series of load/store ops if the size operand 6332 // falls below a certain threshold. 6333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6334 std::vector<EVT> MemOps; 6335 bool DstAlignCanChange = false; 6336 MachineFunction &MF = DAG.getMachineFunction(); 6337 MachineFrameInfo &MFI = MF.getFrameInfo(); 6338 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6339 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6340 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6341 DstAlignCanChange = true; 6342 bool IsZeroVal = 6343 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6344 if (!TLI.findOptimalMemOpLowering( 6345 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6346 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6347 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6348 return SDValue(); 6349 6350 if (DstAlignCanChange) { 6351 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6352 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6353 if (NewAlign > Alignment) { 6354 // Give the stack frame object a larger alignment if needed. 6355 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6356 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6357 Alignment = NewAlign; 6358 } 6359 } 6360 6361 SmallVector<SDValue, 8> OutChains; 6362 uint64_t DstOff = 0; 6363 unsigned NumMemOps = MemOps.size(); 6364 6365 // Find the largest store and generate the bit pattern for it. 6366 EVT LargestVT = MemOps[0]; 6367 for (unsigned i = 1; i < NumMemOps; i++) 6368 if (MemOps[i].bitsGT(LargestVT)) 6369 LargestVT = MemOps[i]; 6370 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6371 6372 for (unsigned i = 0; i < NumMemOps; i++) { 6373 EVT VT = MemOps[i]; 6374 unsigned VTSize = VT.getSizeInBits() / 8; 6375 if (VTSize > Size) { 6376 // Issuing an unaligned load / store pair that overlaps with the previous 6377 // pair. Adjust the offset accordingly. 6378 assert(i == NumMemOps-1 && i != 0); 6379 DstOff -= VTSize - Size; 6380 } 6381 6382 // If this store is smaller than the largest store see whether we can get 6383 // the smaller value for free with a truncate. 6384 SDValue Value = MemSetValue; 6385 if (VT.bitsLT(LargestVT)) { 6386 if (!LargestVT.isVector() && !VT.isVector() && 6387 TLI.isTruncateFree(LargestVT, VT)) 6388 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6389 else 6390 Value = getMemsetValue(Src, VT, DAG, dl); 6391 } 6392 assert(Value.getValueType() == VT && "Value with wrong type."); 6393 SDValue Store = DAG.getStore( 6394 Chain, dl, Value, 6395 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6396 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6397 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6398 OutChains.push_back(Store); 6399 DstOff += VT.getSizeInBits() / 8; 6400 Size -= VTSize; 6401 } 6402 6403 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6404 } 6405 6406 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6407 unsigned AS) { 6408 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6409 // pointer operands can be losslessly bitcasted to pointers of address space 0 6410 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6411 report_fatal_error("cannot lower memory intrinsic in address space " + 6412 Twine(AS)); 6413 } 6414 } 6415 6416 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6417 SDValue Src, SDValue Size, Align Alignment, 6418 bool isVol, bool AlwaysInline, bool isTailCall, 6419 MachinePointerInfo DstPtrInfo, 6420 MachinePointerInfo SrcPtrInfo) { 6421 // Check to see if we should lower the memcpy to loads and stores first. 6422 // For cases within the target-specified limits, this is the best choice. 6423 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6424 if (ConstantSize) { 6425 // Memcpy with size zero? Just return the original chain. 6426 if (ConstantSize->isNullValue()) 6427 return Chain; 6428 6429 SDValue Result = getMemcpyLoadsAndStores( 6430 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6431 isVol, false, DstPtrInfo, SrcPtrInfo); 6432 if (Result.getNode()) 6433 return Result; 6434 } 6435 6436 // Then check to see if we should lower the memcpy with target-specific 6437 // code. If the target chooses to do this, this is the next best. 6438 if (TSI) { 6439 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6440 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6441 DstPtrInfo, SrcPtrInfo); 6442 if (Result.getNode()) 6443 return Result; 6444 } 6445 6446 // If we really need inline code and the target declined to provide it, 6447 // use a (potentially long) sequence of loads and stores. 6448 if (AlwaysInline) { 6449 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6450 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6451 ConstantSize->getZExtValue(), Alignment, 6452 isVol, true, DstPtrInfo, SrcPtrInfo); 6453 } 6454 6455 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6456 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6457 6458 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6459 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6460 // respect volatile, so they may do things like read or write memory 6461 // beyond the given memory regions. But fixing this isn't easy, and most 6462 // people don't care. 6463 6464 // Emit a library call. 6465 TargetLowering::ArgListTy Args; 6466 TargetLowering::ArgListEntry Entry; 6467 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6468 Entry.Node = Dst; Args.push_back(Entry); 6469 Entry.Node = Src; Args.push_back(Entry); 6470 6471 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6472 Entry.Node = Size; Args.push_back(Entry); 6473 // FIXME: pass in SDLoc 6474 TargetLowering::CallLoweringInfo CLI(*this); 6475 CLI.setDebugLoc(dl) 6476 .setChain(Chain) 6477 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6478 Dst.getValueType().getTypeForEVT(*getContext()), 6479 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6480 TLI->getPointerTy(getDataLayout())), 6481 std::move(Args)) 6482 .setDiscardResult() 6483 .setTailCall(isTailCall); 6484 6485 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6486 return CallResult.second; 6487 } 6488 6489 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6490 SDValue Dst, unsigned DstAlign, 6491 SDValue Src, unsigned SrcAlign, 6492 SDValue Size, Type *SizeTy, 6493 unsigned ElemSz, bool isTailCall, 6494 MachinePointerInfo DstPtrInfo, 6495 MachinePointerInfo SrcPtrInfo) { 6496 // Emit a library call. 6497 TargetLowering::ArgListTy Args; 6498 TargetLowering::ArgListEntry Entry; 6499 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6500 Entry.Node = Dst; 6501 Args.push_back(Entry); 6502 6503 Entry.Node = Src; 6504 Args.push_back(Entry); 6505 6506 Entry.Ty = SizeTy; 6507 Entry.Node = Size; 6508 Args.push_back(Entry); 6509 6510 RTLIB::Libcall LibraryCall = 6511 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6512 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6513 report_fatal_error("Unsupported element size"); 6514 6515 TargetLowering::CallLoweringInfo CLI(*this); 6516 CLI.setDebugLoc(dl) 6517 .setChain(Chain) 6518 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6519 Type::getVoidTy(*getContext()), 6520 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6521 TLI->getPointerTy(getDataLayout())), 6522 std::move(Args)) 6523 .setDiscardResult() 6524 .setTailCall(isTailCall); 6525 6526 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6527 return CallResult.second; 6528 } 6529 6530 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6531 SDValue Src, SDValue Size, Align Alignment, 6532 bool isVol, bool isTailCall, 6533 MachinePointerInfo DstPtrInfo, 6534 MachinePointerInfo SrcPtrInfo) { 6535 // Check to see if we should lower the memmove to loads and stores first. 6536 // For cases within the target-specified limits, this is the best choice. 6537 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6538 if (ConstantSize) { 6539 // Memmove with size zero? Just return the original chain. 6540 if (ConstantSize->isNullValue()) 6541 return Chain; 6542 6543 SDValue Result = getMemmoveLoadsAndStores( 6544 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6545 isVol, false, DstPtrInfo, SrcPtrInfo); 6546 if (Result.getNode()) 6547 return Result; 6548 } 6549 6550 // Then check to see if we should lower the memmove with target-specific 6551 // code. If the target chooses to do this, this is the next best. 6552 if (TSI) { 6553 SDValue Result = 6554 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6555 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6556 if (Result.getNode()) 6557 return Result; 6558 } 6559 6560 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6561 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6562 6563 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6564 // not be safe. See memcpy above for more details. 6565 6566 // Emit a library call. 6567 TargetLowering::ArgListTy Args; 6568 TargetLowering::ArgListEntry Entry; 6569 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6570 Entry.Node = Dst; Args.push_back(Entry); 6571 Entry.Node = Src; Args.push_back(Entry); 6572 6573 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6574 Entry.Node = Size; Args.push_back(Entry); 6575 // FIXME: pass in SDLoc 6576 TargetLowering::CallLoweringInfo CLI(*this); 6577 CLI.setDebugLoc(dl) 6578 .setChain(Chain) 6579 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6580 Dst.getValueType().getTypeForEVT(*getContext()), 6581 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6582 TLI->getPointerTy(getDataLayout())), 6583 std::move(Args)) 6584 .setDiscardResult() 6585 .setTailCall(isTailCall); 6586 6587 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6588 return CallResult.second; 6589 } 6590 6591 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6592 SDValue Dst, unsigned DstAlign, 6593 SDValue Src, unsigned SrcAlign, 6594 SDValue Size, Type *SizeTy, 6595 unsigned ElemSz, bool isTailCall, 6596 MachinePointerInfo DstPtrInfo, 6597 MachinePointerInfo SrcPtrInfo) { 6598 // Emit a library call. 6599 TargetLowering::ArgListTy Args; 6600 TargetLowering::ArgListEntry Entry; 6601 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6602 Entry.Node = Dst; 6603 Args.push_back(Entry); 6604 6605 Entry.Node = Src; 6606 Args.push_back(Entry); 6607 6608 Entry.Ty = SizeTy; 6609 Entry.Node = Size; 6610 Args.push_back(Entry); 6611 6612 RTLIB::Libcall LibraryCall = 6613 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6614 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6615 report_fatal_error("Unsupported element size"); 6616 6617 TargetLowering::CallLoweringInfo CLI(*this); 6618 CLI.setDebugLoc(dl) 6619 .setChain(Chain) 6620 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6621 Type::getVoidTy(*getContext()), 6622 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6623 TLI->getPointerTy(getDataLayout())), 6624 std::move(Args)) 6625 .setDiscardResult() 6626 .setTailCall(isTailCall); 6627 6628 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6629 return CallResult.second; 6630 } 6631 6632 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6633 SDValue Src, SDValue Size, Align Alignment, 6634 bool isVol, bool isTailCall, 6635 MachinePointerInfo DstPtrInfo) { 6636 // Check to see if we should lower the memset to stores first. 6637 // For cases within the target-specified limits, this is the best choice. 6638 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6639 if (ConstantSize) { 6640 // Memset with size zero? Just return the original chain. 6641 if (ConstantSize->isNullValue()) 6642 return Chain; 6643 6644 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6645 ConstantSize->getZExtValue(), Alignment, 6646 isVol, DstPtrInfo); 6647 6648 if (Result.getNode()) 6649 return Result; 6650 } 6651 6652 // Then check to see if we should lower the memset with target-specific 6653 // code. If the target chooses to do this, this is the next best. 6654 if (TSI) { 6655 SDValue Result = TSI->EmitTargetCodeForMemset( 6656 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6657 if (Result.getNode()) 6658 return Result; 6659 } 6660 6661 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6662 6663 // Emit a library call. 6664 TargetLowering::ArgListTy Args; 6665 TargetLowering::ArgListEntry Entry; 6666 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6667 Args.push_back(Entry); 6668 Entry.Node = Src; 6669 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6670 Args.push_back(Entry); 6671 Entry.Node = Size; 6672 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6673 Args.push_back(Entry); 6674 6675 // FIXME: pass in SDLoc 6676 TargetLowering::CallLoweringInfo CLI(*this); 6677 CLI.setDebugLoc(dl) 6678 .setChain(Chain) 6679 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6680 Dst.getValueType().getTypeForEVT(*getContext()), 6681 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6682 TLI->getPointerTy(getDataLayout())), 6683 std::move(Args)) 6684 .setDiscardResult() 6685 .setTailCall(isTailCall); 6686 6687 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6688 return CallResult.second; 6689 } 6690 6691 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6692 SDValue Dst, unsigned DstAlign, 6693 SDValue Value, SDValue Size, Type *SizeTy, 6694 unsigned ElemSz, bool isTailCall, 6695 MachinePointerInfo DstPtrInfo) { 6696 // Emit a library call. 6697 TargetLowering::ArgListTy Args; 6698 TargetLowering::ArgListEntry Entry; 6699 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6700 Entry.Node = Dst; 6701 Args.push_back(Entry); 6702 6703 Entry.Ty = Type::getInt8Ty(*getContext()); 6704 Entry.Node = Value; 6705 Args.push_back(Entry); 6706 6707 Entry.Ty = SizeTy; 6708 Entry.Node = Size; 6709 Args.push_back(Entry); 6710 6711 RTLIB::Libcall LibraryCall = 6712 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6713 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6714 report_fatal_error("Unsupported element size"); 6715 6716 TargetLowering::CallLoweringInfo CLI(*this); 6717 CLI.setDebugLoc(dl) 6718 .setChain(Chain) 6719 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6720 Type::getVoidTy(*getContext()), 6721 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6722 TLI->getPointerTy(getDataLayout())), 6723 std::move(Args)) 6724 .setDiscardResult() 6725 .setTailCall(isTailCall); 6726 6727 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6728 return CallResult.second; 6729 } 6730 6731 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6732 SDVTList VTList, ArrayRef<SDValue> Ops, 6733 MachineMemOperand *MMO) { 6734 FoldingSetNodeID ID; 6735 ID.AddInteger(MemVT.getRawBits()); 6736 AddNodeIDNode(ID, Opcode, VTList, Ops); 6737 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6738 void* IP = nullptr; 6739 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6740 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6741 return SDValue(E, 0); 6742 } 6743 6744 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6745 VTList, MemVT, MMO); 6746 createOperands(N, Ops); 6747 6748 CSEMap.InsertNode(N, IP); 6749 InsertNode(N); 6750 return SDValue(N, 0); 6751 } 6752 6753 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6754 EVT MemVT, SDVTList VTs, SDValue Chain, 6755 SDValue Ptr, SDValue Cmp, SDValue Swp, 6756 MachineMemOperand *MMO) { 6757 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6758 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6759 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6760 6761 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6762 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6763 } 6764 6765 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6766 SDValue Chain, SDValue Ptr, SDValue Val, 6767 MachineMemOperand *MMO) { 6768 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6769 Opcode == ISD::ATOMIC_LOAD_SUB || 6770 Opcode == ISD::ATOMIC_LOAD_AND || 6771 Opcode == ISD::ATOMIC_LOAD_CLR || 6772 Opcode == ISD::ATOMIC_LOAD_OR || 6773 Opcode == ISD::ATOMIC_LOAD_XOR || 6774 Opcode == ISD::ATOMIC_LOAD_NAND || 6775 Opcode == ISD::ATOMIC_LOAD_MIN || 6776 Opcode == ISD::ATOMIC_LOAD_MAX || 6777 Opcode == ISD::ATOMIC_LOAD_UMIN || 6778 Opcode == ISD::ATOMIC_LOAD_UMAX || 6779 Opcode == ISD::ATOMIC_LOAD_FADD || 6780 Opcode == ISD::ATOMIC_LOAD_FSUB || 6781 Opcode == ISD::ATOMIC_SWAP || 6782 Opcode == ISD::ATOMIC_STORE) && 6783 "Invalid Atomic Op"); 6784 6785 EVT VT = Val.getValueType(); 6786 6787 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6788 getVTList(VT, MVT::Other); 6789 SDValue Ops[] = {Chain, Ptr, Val}; 6790 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6791 } 6792 6793 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6794 EVT VT, SDValue Chain, SDValue Ptr, 6795 MachineMemOperand *MMO) { 6796 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6797 6798 SDVTList VTs = getVTList(VT, MVT::Other); 6799 SDValue Ops[] = {Chain, Ptr}; 6800 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6801 } 6802 6803 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6804 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6805 if (Ops.size() == 1) 6806 return Ops[0]; 6807 6808 SmallVector<EVT, 4> VTs; 6809 VTs.reserve(Ops.size()); 6810 for (unsigned i = 0; i < Ops.size(); ++i) 6811 VTs.push_back(Ops[i].getValueType()); 6812 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6813 } 6814 6815 SDValue SelectionDAG::getMemIntrinsicNode( 6816 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6817 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6818 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6819 if (!Size && MemVT.isScalableVector()) 6820 Size = MemoryLocation::UnknownSize; 6821 else if (!Size) 6822 Size = MemVT.getStoreSize(); 6823 6824 MachineFunction &MF = getMachineFunction(); 6825 MachineMemOperand *MMO = 6826 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6827 6828 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6829 } 6830 6831 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6832 SDVTList VTList, 6833 ArrayRef<SDValue> Ops, EVT MemVT, 6834 MachineMemOperand *MMO) { 6835 assert((Opcode == ISD::INTRINSIC_VOID || 6836 Opcode == ISD::INTRINSIC_W_CHAIN || 6837 Opcode == ISD::PREFETCH || 6838 ((int)Opcode <= std::numeric_limits<int>::max() && 6839 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6840 "Opcode is not a memory-accessing opcode!"); 6841 6842 // Memoize the node unless it returns a flag. 6843 MemIntrinsicSDNode *N; 6844 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6845 FoldingSetNodeID ID; 6846 AddNodeIDNode(ID, Opcode, VTList, Ops); 6847 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6848 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6849 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6850 void *IP = nullptr; 6851 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6852 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6853 return SDValue(E, 0); 6854 } 6855 6856 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6857 VTList, MemVT, MMO); 6858 createOperands(N, Ops); 6859 6860 CSEMap.InsertNode(N, IP); 6861 } else { 6862 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6863 VTList, MemVT, MMO); 6864 createOperands(N, Ops); 6865 } 6866 InsertNode(N); 6867 SDValue V(N, 0); 6868 NewSDValueDbgMsg(V, "Creating new node: ", this); 6869 return V; 6870 } 6871 6872 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6873 SDValue Chain, int FrameIndex, 6874 int64_t Size, int64_t Offset) { 6875 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6876 const auto VTs = getVTList(MVT::Other); 6877 SDValue Ops[2] = { 6878 Chain, 6879 getFrameIndex(FrameIndex, 6880 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6881 true)}; 6882 6883 FoldingSetNodeID ID; 6884 AddNodeIDNode(ID, Opcode, VTs, Ops); 6885 ID.AddInteger(FrameIndex); 6886 ID.AddInteger(Size); 6887 ID.AddInteger(Offset); 6888 void *IP = nullptr; 6889 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6890 return SDValue(E, 0); 6891 6892 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6893 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6894 createOperands(N, Ops); 6895 CSEMap.InsertNode(N, IP); 6896 InsertNode(N); 6897 SDValue V(N, 0); 6898 NewSDValueDbgMsg(V, "Creating new node: ", this); 6899 return V; 6900 } 6901 6902 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6903 /// MachinePointerInfo record from it. This is particularly useful because the 6904 /// code generator has many cases where it doesn't bother passing in a 6905 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6906 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6907 SelectionDAG &DAG, SDValue Ptr, 6908 int64_t Offset = 0) { 6909 // If this is FI+Offset, we can model it. 6910 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6911 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6912 FI->getIndex(), Offset); 6913 6914 // If this is (FI+Offset1)+Offset2, we can model it. 6915 if (Ptr.getOpcode() != ISD::ADD || 6916 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6917 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6918 return Info; 6919 6920 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6921 return MachinePointerInfo::getFixedStack( 6922 DAG.getMachineFunction(), FI, 6923 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6924 } 6925 6926 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6927 /// MachinePointerInfo record from it. This is particularly useful because the 6928 /// code generator has many cases where it doesn't bother passing in a 6929 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6930 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6931 SelectionDAG &DAG, SDValue Ptr, 6932 SDValue OffsetOp) { 6933 // If the 'Offset' value isn't a constant, we can't handle this. 6934 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6935 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6936 if (OffsetOp.isUndef()) 6937 return InferPointerInfo(Info, DAG, Ptr); 6938 return Info; 6939 } 6940 6941 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6942 EVT VT, const SDLoc &dl, SDValue Chain, 6943 SDValue Ptr, SDValue Offset, 6944 MachinePointerInfo PtrInfo, EVT MemVT, 6945 Align Alignment, 6946 MachineMemOperand::Flags MMOFlags, 6947 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6948 assert(Chain.getValueType() == MVT::Other && 6949 "Invalid chain type"); 6950 6951 MMOFlags |= MachineMemOperand::MOLoad; 6952 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6953 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6954 // clients. 6955 if (PtrInfo.V.isNull()) 6956 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6957 6958 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6959 MachineFunction &MF = getMachineFunction(); 6960 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6961 Alignment, AAInfo, Ranges); 6962 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6963 } 6964 6965 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6966 EVT VT, const SDLoc &dl, SDValue Chain, 6967 SDValue Ptr, SDValue Offset, EVT MemVT, 6968 MachineMemOperand *MMO) { 6969 if (VT == MemVT) { 6970 ExtType = ISD::NON_EXTLOAD; 6971 } else if (ExtType == ISD::NON_EXTLOAD) { 6972 assert(VT == MemVT && "Non-extending load from different memory type!"); 6973 } else { 6974 // Extending load. 6975 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6976 "Should only be an extending load, not truncating!"); 6977 assert(VT.isInteger() == MemVT.isInteger() && 6978 "Cannot convert from FP to Int or Int -> FP!"); 6979 assert(VT.isVector() == MemVT.isVector() && 6980 "Cannot use an ext load to convert to or from a vector!"); 6981 assert((!VT.isVector() || 6982 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6983 "Cannot use an ext load to change the number of vector elements!"); 6984 } 6985 6986 bool Indexed = AM != ISD::UNINDEXED; 6987 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6988 6989 SDVTList VTs = Indexed ? 6990 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6991 SDValue Ops[] = { Chain, Ptr, Offset }; 6992 FoldingSetNodeID ID; 6993 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6994 ID.AddInteger(MemVT.getRawBits()); 6995 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6996 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6997 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6998 void *IP = nullptr; 6999 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7000 cast<LoadSDNode>(E)->refineAlignment(MMO); 7001 return SDValue(E, 0); 7002 } 7003 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7004 ExtType, MemVT, MMO); 7005 createOperands(N, Ops); 7006 7007 CSEMap.InsertNode(N, IP); 7008 InsertNode(N); 7009 SDValue V(N, 0); 7010 NewSDValueDbgMsg(V, "Creating new node: ", this); 7011 return V; 7012 } 7013 7014 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7015 SDValue Ptr, MachinePointerInfo PtrInfo, 7016 MaybeAlign Alignment, 7017 MachineMemOperand::Flags MMOFlags, 7018 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7019 SDValue Undef = getUNDEF(Ptr.getValueType()); 7020 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7021 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7022 } 7023 7024 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7025 SDValue Ptr, MachineMemOperand *MMO) { 7026 SDValue Undef = getUNDEF(Ptr.getValueType()); 7027 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7028 VT, MMO); 7029 } 7030 7031 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7032 EVT VT, SDValue Chain, SDValue Ptr, 7033 MachinePointerInfo PtrInfo, EVT MemVT, 7034 MaybeAlign Alignment, 7035 MachineMemOperand::Flags MMOFlags, 7036 const AAMDNodes &AAInfo) { 7037 SDValue Undef = getUNDEF(Ptr.getValueType()); 7038 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7039 MemVT, Alignment, MMOFlags, AAInfo); 7040 } 7041 7042 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7043 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7044 MachineMemOperand *MMO) { 7045 SDValue Undef = getUNDEF(Ptr.getValueType()); 7046 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7047 MemVT, MMO); 7048 } 7049 7050 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7051 SDValue Base, SDValue Offset, 7052 ISD::MemIndexedMode AM) { 7053 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7054 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7055 // Don't propagate the invariant or dereferenceable flags. 7056 auto MMOFlags = 7057 LD->getMemOperand()->getFlags() & 7058 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7059 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7060 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7061 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 7062 LD->getAAInfo()); 7063 } 7064 7065 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7066 SDValue Ptr, MachinePointerInfo PtrInfo, 7067 Align Alignment, 7068 MachineMemOperand::Flags MMOFlags, 7069 const AAMDNodes &AAInfo) { 7070 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7071 7072 MMOFlags |= MachineMemOperand::MOStore; 7073 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7074 7075 if (PtrInfo.V.isNull()) 7076 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7077 7078 MachineFunction &MF = getMachineFunction(); 7079 uint64_t Size = 7080 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7081 MachineMemOperand *MMO = 7082 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7083 return getStore(Chain, dl, Val, Ptr, MMO); 7084 } 7085 7086 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7087 SDValue Ptr, MachineMemOperand *MMO) { 7088 assert(Chain.getValueType() == MVT::Other && 7089 "Invalid chain type"); 7090 EVT VT = Val.getValueType(); 7091 SDVTList VTs = getVTList(MVT::Other); 7092 SDValue Undef = getUNDEF(Ptr.getValueType()); 7093 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7094 FoldingSetNodeID ID; 7095 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7096 ID.AddInteger(VT.getRawBits()); 7097 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7098 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7099 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7100 void *IP = nullptr; 7101 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7102 cast<StoreSDNode>(E)->refineAlignment(MMO); 7103 return SDValue(E, 0); 7104 } 7105 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7106 ISD::UNINDEXED, false, VT, MMO); 7107 createOperands(N, Ops); 7108 7109 CSEMap.InsertNode(N, IP); 7110 InsertNode(N); 7111 SDValue V(N, 0); 7112 NewSDValueDbgMsg(V, "Creating new node: ", this); 7113 return V; 7114 } 7115 7116 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7117 SDValue Ptr, MachinePointerInfo PtrInfo, 7118 EVT SVT, Align Alignment, 7119 MachineMemOperand::Flags MMOFlags, 7120 const AAMDNodes &AAInfo) { 7121 assert(Chain.getValueType() == MVT::Other && 7122 "Invalid chain type"); 7123 7124 MMOFlags |= MachineMemOperand::MOStore; 7125 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7126 7127 if (PtrInfo.V.isNull()) 7128 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7129 7130 MachineFunction &MF = getMachineFunction(); 7131 MachineMemOperand *MMO = MF.getMachineMemOperand( 7132 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 7133 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7134 } 7135 7136 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7137 SDValue Ptr, EVT SVT, 7138 MachineMemOperand *MMO) { 7139 EVT VT = Val.getValueType(); 7140 7141 assert(Chain.getValueType() == MVT::Other && 7142 "Invalid chain type"); 7143 if (VT == SVT) 7144 return getStore(Chain, dl, Val, Ptr, MMO); 7145 7146 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7147 "Should only be a truncating store, not extending!"); 7148 assert(VT.isInteger() == SVT.isInteger() && 7149 "Can't do FP-INT conversion!"); 7150 assert(VT.isVector() == SVT.isVector() && 7151 "Cannot use trunc store to convert to or from a vector!"); 7152 assert((!VT.isVector() || 7153 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7154 "Cannot use trunc store to change the number of vector elements!"); 7155 7156 SDVTList VTs = getVTList(MVT::Other); 7157 SDValue Undef = getUNDEF(Ptr.getValueType()); 7158 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7159 FoldingSetNodeID ID; 7160 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7161 ID.AddInteger(SVT.getRawBits()); 7162 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7163 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7164 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7165 void *IP = nullptr; 7166 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7167 cast<StoreSDNode>(E)->refineAlignment(MMO); 7168 return SDValue(E, 0); 7169 } 7170 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7171 ISD::UNINDEXED, true, SVT, MMO); 7172 createOperands(N, Ops); 7173 7174 CSEMap.InsertNode(N, IP); 7175 InsertNode(N); 7176 SDValue V(N, 0); 7177 NewSDValueDbgMsg(V, "Creating new node: ", this); 7178 return V; 7179 } 7180 7181 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7182 SDValue Base, SDValue Offset, 7183 ISD::MemIndexedMode AM) { 7184 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7185 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7186 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7187 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7188 FoldingSetNodeID ID; 7189 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7190 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7191 ID.AddInteger(ST->getRawSubclassData()); 7192 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7193 void *IP = nullptr; 7194 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7195 return SDValue(E, 0); 7196 7197 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7198 ST->isTruncatingStore(), ST->getMemoryVT(), 7199 ST->getMemOperand()); 7200 createOperands(N, Ops); 7201 7202 CSEMap.InsertNode(N, IP); 7203 InsertNode(N); 7204 SDValue V(N, 0); 7205 NewSDValueDbgMsg(V, "Creating new node: ", this); 7206 return V; 7207 } 7208 7209 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7210 SDValue Base, SDValue Offset, SDValue Mask, 7211 SDValue PassThru, EVT MemVT, 7212 MachineMemOperand *MMO, 7213 ISD::MemIndexedMode AM, 7214 ISD::LoadExtType ExtTy, bool isExpanding) { 7215 bool Indexed = AM != ISD::UNINDEXED; 7216 assert((Indexed || Offset.isUndef()) && 7217 "Unindexed masked load with an offset!"); 7218 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7219 : getVTList(VT, MVT::Other); 7220 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7221 FoldingSetNodeID ID; 7222 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7223 ID.AddInteger(MemVT.getRawBits()); 7224 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7225 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7226 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7227 void *IP = nullptr; 7228 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7229 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7230 return SDValue(E, 0); 7231 } 7232 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7233 AM, ExtTy, isExpanding, MemVT, MMO); 7234 createOperands(N, Ops); 7235 7236 CSEMap.InsertNode(N, IP); 7237 InsertNode(N); 7238 SDValue V(N, 0); 7239 NewSDValueDbgMsg(V, "Creating new node: ", this); 7240 return V; 7241 } 7242 7243 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7244 SDValue Base, SDValue Offset, 7245 ISD::MemIndexedMode AM) { 7246 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7247 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7248 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7249 Offset, LD->getMask(), LD->getPassThru(), 7250 LD->getMemoryVT(), LD->getMemOperand(), AM, 7251 LD->getExtensionType(), LD->isExpandingLoad()); 7252 } 7253 7254 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7255 SDValue Val, SDValue Base, SDValue Offset, 7256 SDValue Mask, EVT MemVT, 7257 MachineMemOperand *MMO, 7258 ISD::MemIndexedMode AM, bool IsTruncating, 7259 bool IsCompressing) { 7260 assert(Chain.getValueType() == MVT::Other && 7261 "Invalid chain type"); 7262 bool Indexed = AM != ISD::UNINDEXED; 7263 assert((Indexed || Offset.isUndef()) && 7264 "Unindexed masked store with an offset!"); 7265 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7266 : getVTList(MVT::Other); 7267 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7268 FoldingSetNodeID ID; 7269 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7270 ID.AddInteger(MemVT.getRawBits()); 7271 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7272 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7273 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7274 void *IP = nullptr; 7275 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7276 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7277 return SDValue(E, 0); 7278 } 7279 auto *N = 7280 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7281 IsTruncating, IsCompressing, MemVT, MMO); 7282 createOperands(N, Ops); 7283 7284 CSEMap.InsertNode(N, IP); 7285 InsertNode(N); 7286 SDValue V(N, 0); 7287 NewSDValueDbgMsg(V, "Creating new node: ", this); 7288 return V; 7289 } 7290 7291 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7292 SDValue Base, SDValue Offset, 7293 ISD::MemIndexedMode AM) { 7294 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7295 assert(ST->getOffset().isUndef() && 7296 "Masked store is already a indexed store!"); 7297 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7298 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7299 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7300 } 7301 7302 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7303 ArrayRef<SDValue> Ops, 7304 MachineMemOperand *MMO, 7305 ISD::MemIndexType IndexType) { 7306 assert(Ops.size() == 6 && "Incompatible number of operands"); 7307 7308 FoldingSetNodeID ID; 7309 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7310 ID.AddInteger(VT.getRawBits()); 7311 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7312 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7313 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7314 void *IP = nullptr; 7315 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7316 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7317 return SDValue(E, 0); 7318 } 7319 7320 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7321 VTs, VT, MMO, IndexType); 7322 createOperands(N, Ops); 7323 7324 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7325 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7326 assert(N->getMask().getValueType().getVectorNumElements() == 7327 N->getValueType(0).getVectorNumElements() && 7328 "Vector width mismatch between mask and data"); 7329 assert(N->getIndex().getValueType().getVectorNumElements() >= 7330 N->getValueType(0).getVectorNumElements() && 7331 "Vector width mismatch between index and data"); 7332 assert(isa<ConstantSDNode>(N->getScale()) && 7333 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7334 "Scale should be a constant power of 2"); 7335 7336 CSEMap.InsertNode(N, IP); 7337 InsertNode(N); 7338 SDValue V(N, 0); 7339 NewSDValueDbgMsg(V, "Creating new node: ", this); 7340 return V; 7341 } 7342 7343 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7344 ArrayRef<SDValue> Ops, 7345 MachineMemOperand *MMO, 7346 ISD::MemIndexType IndexType) { 7347 assert(Ops.size() == 6 && "Incompatible number of operands"); 7348 7349 FoldingSetNodeID ID; 7350 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7351 ID.AddInteger(VT.getRawBits()); 7352 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7353 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7354 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7355 void *IP = nullptr; 7356 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7357 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7358 return SDValue(E, 0); 7359 } 7360 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7361 VTs, VT, MMO, IndexType); 7362 createOperands(N, Ops); 7363 7364 assert(N->getMask().getValueType().getVectorNumElements() == 7365 N->getValue().getValueType().getVectorNumElements() && 7366 "Vector width mismatch between mask and data"); 7367 assert(N->getIndex().getValueType().getVectorNumElements() >= 7368 N->getValue().getValueType().getVectorNumElements() && 7369 "Vector width mismatch between index and data"); 7370 assert(isa<ConstantSDNode>(N->getScale()) && 7371 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7372 "Scale should be a constant power of 2"); 7373 7374 CSEMap.InsertNode(N, IP); 7375 InsertNode(N); 7376 SDValue V(N, 0); 7377 NewSDValueDbgMsg(V, "Creating new node: ", this); 7378 return V; 7379 } 7380 7381 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7382 // select undef, T, F --> T (if T is a constant), otherwise F 7383 // select, ?, undef, F --> F 7384 // select, ?, T, undef --> T 7385 if (Cond.isUndef()) 7386 return isConstantValueOfAnyType(T) ? T : F; 7387 if (T.isUndef()) 7388 return F; 7389 if (F.isUndef()) 7390 return T; 7391 7392 // select true, T, F --> T 7393 // select false, T, F --> F 7394 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7395 return CondC->isNullValue() ? F : T; 7396 7397 // TODO: This should simplify VSELECT with constant condition using something 7398 // like this (but check boolean contents to be complete?): 7399 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7400 // return T; 7401 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7402 // return F; 7403 7404 // select ?, T, T --> T 7405 if (T == F) 7406 return T; 7407 7408 return SDValue(); 7409 } 7410 7411 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7412 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7413 if (X.isUndef()) 7414 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7415 // shift X, undef --> undef (because it may shift by the bitwidth) 7416 if (Y.isUndef()) 7417 return getUNDEF(X.getValueType()); 7418 7419 // shift 0, Y --> 0 7420 // shift X, 0 --> X 7421 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7422 return X; 7423 7424 // shift X, C >= bitwidth(X) --> undef 7425 // All vector elements must be too big (or undef) to avoid partial undefs. 7426 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7427 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7428 }; 7429 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7430 return getUNDEF(X.getValueType()); 7431 7432 return SDValue(); 7433 } 7434 7435 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7436 SDNodeFlags Flags) { 7437 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7438 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7439 // operation is poison. That result can be relaxed to undef. 7440 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7441 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7442 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7443 (YC && YC->getValueAPF().isNaN()); 7444 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7445 (YC && YC->getValueAPF().isInfinity()); 7446 7447 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7448 return getUNDEF(X.getValueType()); 7449 7450 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7451 return getUNDEF(X.getValueType()); 7452 7453 if (!YC) 7454 return SDValue(); 7455 7456 // X + -0.0 --> X 7457 if (Opcode == ISD::FADD) 7458 if (YC->getValueAPF().isNegZero()) 7459 return X; 7460 7461 // X - +0.0 --> X 7462 if (Opcode == ISD::FSUB) 7463 if (YC->getValueAPF().isPosZero()) 7464 return X; 7465 7466 // X * 1.0 --> X 7467 // X / 1.0 --> X 7468 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7469 if (YC->getValueAPF().isExactlyValue(1.0)) 7470 return X; 7471 7472 return SDValue(); 7473 } 7474 7475 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7476 SDValue Ptr, SDValue SV, unsigned Align) { 7477 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7478 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7479 } 7480 7481 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7482 ArrayRef<SDUse> Ops) { 7483 switch (Ops.size()) { 7484 case 0: return getNode(Opcode, DL, VT); 7485 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7486 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7487 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7488 default: break; 7489 } 7490 7491 // Copy from an SDUse array into an SDValue array for use with 7492 // the regular getNode logic. 7493 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7494 return getNode(Opcode, DL, VT, NewOps); 7495 } 7496 7497 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7498 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7499 unsigned NumOps = Ops.size(); 7500 switch (NumOps) { 7501 case 0: return getNode(Opcode, DL, VT); 7502 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7503 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7504 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7505 default: break; 7506 } 7507 7508 switch (Opcode) { 7509 default: break; 7510 case ISD::BUILD_VECTOR: 7511 // Attempt to simplify BUILD_VECTOR. 7512 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7513 return V; 7514 break; 7515 case ISD::CONCAT_VECTORS: 7516 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7517 return V; 7518 break; 7519 case ISD::SELECT_CC: 7520 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7521 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7522 "LHS and RHS of condition must have same type!"); 7523 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7524 "True and False arms of SelectCC must have same type!"); 7525 assert(Ops[2].getValueType() == VT && 7526 "select_cc node must be of same type as true and false value!"); 7527 break; 7528 case ISD::BR_CC: 7529 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7530 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7531 "LHS/RHS of comparison should match types!"); 7532 break; 7533 } 7534 7535 // Memoize nodes. 7536 SDNode *N; 7537 SDVTList VTs = getVTList(VT); 7538 7539 if (VT != MVT::Glue) { 7540 FoldingSetNodeID ID; 7541 AddNodeIDNode(ID, Opcode, VTs, Ops); 7542 void *IP = nullptr; 7543 7544 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7545 return SDValue(E, 0); 7546 7547 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7548 createOperands(N, Ops); 7549 7550 CSEMap.InsertNode(N, IP); 7551 } else { 7552 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7553 createOperands(N, Ops); 7554 } 7555 7556 N->setFlags(Flags); 7557 InsertNode(N); 7558 SDValue V(N, 0); 7559 NewSDValueDbgMsg(V, "Creating new node: ", this); 7560 return V; 7561 } 7562 7563 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7564 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7565 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7566 } 7567 7568 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7569 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7570 if (VTList.NumVTs == 1) 7571 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7572 7573 switch (Opcode) { 7574 case ISD::STRICT_FP_EXTEND: 7575 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7576 "Invalid STRICT_FP_EXTEND!"); 7577 assert(VTList.VTs[0].isFloatingPoint() && 7578 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7579 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7580 "STRICT_FP_EXTEND result type should be vector iff the operand " 7581 "type is vector!"); 7582 assert((!VTList.VTs[0].isVector() || 7583 VTList.VTs[0].getVectorNumElements() == 7584 Ops[1].getValueType().getVectorNumElements()) && 7585 "Vector element count mismatch!"); 7586 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7587 "Invalid fpext node, dst <= src!"); 7588 break; 7589 case ISD::STRICT_FP_ROUND: 7590 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7591 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7592 "STRICT_FP_ROUND result type should be vector iff the operand " 7593 "type is vector!"); 7594 assert((!VTList.VTs[0].isVector() || 7595 VTList.VTs[0].getVectorNumElements() == 7596 Ops[1].getValueType().getVectorNumElements()) && 7597 "Vector element count mismatch!"); 7598 assert(VTList.VTs[0].isFloatingPoint() && 7599 Ops[1].getValueType().isFloatingPoint() && 7600 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7601 isa<ConstantSDNode>(Ops[2]) && 7602 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7603 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7604 "Invalid STRICT_FP_ROUND!"); 7605 break; 7606 #if 0 7607 // FIXME: figure out how to safely handle things like 7608 // int foo(int x) { return 1 << (x & 255); } 7609 // int bar() { return foo(256); } 7610 case ISD::SRA_PARTS: 7611 case ISD::SRL_PARTS: 7612 case ISD::SHL_PARTS: 7613 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7614 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7615 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7616 else if (N3.getOpcode() == ISD::AND) 7617 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7618 // If the and is only masking out bits that cannot effect the shift, 7619 // eliminate the and. 7620 unsigned NumBits = VT.getScalarSizeInBits()*2; 7621 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7622 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7623 } 7624 break; 7625 #endif 7626 } 7627 7628 // Memoize the node unless it returns a flag. 7629 SDNode *N; 7630 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7631 FoldingSetNodeID ID; 7632 AddNodeIDNode(ID, Opcode, VTList, Ops); 7633 void *IP = nullptr; 7634 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7635 return SDValue(E, 0); 7636 7637 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7638 createOperands(N, Ops); 7639 CSEMap.InsertNode(N, IP); 7640 } else { 7641 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7642 createOperands(N, Ops); 7643 } 7644 7645 N->setFlags(Flags); 7646 InsertNode(N); 7647 SDValue V(N, 0); 7648 NewSDValueDbgMsg(V, "Creating new node: ", this); 7649 return V; 7650 } 7651 7652 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7653 SDVTList VTList) { 7654 return getNode(Opcode, DL, VTList, None); 7655 } 7656 7657 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7658 SDValue N1) { 7659 SDValue Ops[] = { N1 }; 7660 return getNode(Opcode, DL, VTList, Ops); 7661 } 7662 7663 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7664 SDValue N1, SDValue N2) { 7665 SDValue Ops[] = { N1, N2 }; 7666 return getNode(Opcode, DL, VTList, Ops); 7667 } 7668 7669 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7670 SDValue N1, SDValue N2, SDValue N3) { 7671 SDValue Ops[] = { N1, N2, N3 }; 7672 return getNode(Opcode, DL, VTList, Ops); 7673 } 7674 7675 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7676 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7677 SDValue Ops[] = { N1, N2, N3, N4 }; 7678 return getNode(Opcode, DL, VTList, Ops); 7679 } 7680 7681 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7682 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7683 SDValue N5) { 7684 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7685 return getNode(Opcode, DL, VTList, Ops); 7686 } 7687 7688 SDVTList SelectionDAG::getVTList(EVT VT) { 7689 return makeVTList(SDNode::getValueTypeList(VT), 1); 7690 } 7691 7692 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7693 FoldingSetNodeID ID; 7694 ID.AddInteger(2U); 7695 ID.AddInteger(VT1.getRawBits()); 7696 ID.AddInteger(VT2.getRawBits()); 7697 7698 void *IP = nullptr; 7699 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7700 if (!Result) { 7701 EVT *Array = Allocator.Allocate<EVT>(2); 7702 Array[0] = VT1; 7703 Array[1] = VT2; 7704 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7705 VTListMap.InsertNode(Result, IP); 7706 } 7707 return Result->getSDVTList(); 7708 } 7709 7710 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7711 FoldingSetNodeID ID; 7712 ID.AddInteger(3U); 7713 ID.AddInteger(VT1.getRawBits()); 7714 ID.AddInteger(VT2.getRawBits()); 7715 ID.AddInteger(VT3.getRawBits()); 7716 7717 void *IP = nullptr; 7718 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7719 if (!Result) { 7720 EVT *Array = Allocator.Allocate<EVT>(3); 7721 Array[0] = VT1; 7722 Array[1] = VT2; 7723 Array[2] = VT3; 7724 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7725 VTListMap.InsertNode(Result, IP); 7726 } 7727 return Result->getSDVTList(); 7728 } 7729 7730 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7731 FoldingSetNodeID ID; 7732 ID.AddInteger(4U); 7733 ID.AddInteger(VT1.getRawBits()); 7734 ID.AddInteger(VT2.getRawBits()); 7735 ID.AddInteger(VT3.getRawBits()); 7736 ID.AddInteger(VT4.getRawBits()); 7737 7738 void *IP = nullptr; 7739 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7740 if (!Result) { 7741 EVT *Array = Allocator.Allocate<EVT>(4); 7742 Array[0] = VT1; 7743 Array[1] = VT2; 7744 Array[2] = VT3; 7745 Array[3] = VT4; 7746 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7747 VTListMap.InsertNode(Result, IP); 7748 } 7749 return Result->getSDVTList(); 7750 } 7751 7752 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7753 unsigned NumVTs = VTs.size(); 7754 FoldingSetNodeID ID; 7755 ID.AddInteger(NumVTs); 7756 for (unsigned index = 0; index < NumVTs; index++) { 7757 ID.AddInteger(VTs[index].getRawBits()); 7758 } 7759 7760 void *IP = nullptr; 7761 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7762 if (!Result) { 7763 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7764 llvm::copy(VTs, Array); 7765 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7766 VTListMap.InsertNode(Result, IP); 7767 } 7768 return Result->getSDVTList(); 7769 } 7770 7771 7772 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7773 /// specified operands. If the resultant node already exists in the DAG, 7774 /// this does not modify the specified node, instead it returns the node that 7775 /// already exists. If the resultant node does not exist in the DAG, the 7776 /// input node is returned. As a degenerate case, if you specify the same 7777 /// input operands as the node already has, the input node is returned. 7778 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7779 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7780 7781 // Check to see if there is no change. 7782 if (Op == N->getOperand(0)) return N; 7783 7784 // See if the modified node already exists. 7785 void *InsertPos = nullptr; 7786 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7787 return Existing; 7788 7789 // Nope it doesn't. Remove the node from its current place in the maps. 7790 if (InsertPos) 7791 if (!RemoveNodeFromCSEMaps(N)) 7792 InsertPos = nullptr; 7793 7794 // Now we update the operands. 7795 N->OperandList[0].set(Op); 7796 7797 updateDivergence(N); 7798 // If this gets put into a CSE map, add it. 7799 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7800 return N; 7801 } 7802 7803 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7804 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7805 7806 // Check to see if there is no change. 7807 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7808 return N; // No operands changed, just return the input node. 7809 7810 // See if the modified node already exists. 7811 void *InsertPos = nullptr; 7812 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7813 return Existing; 7814 7815 // Nope it doesn't. Remove the node from its current place in the maps. 7816 if (InsertPos) 7817 if (!RemoveNodeFromCSEMaps(N)) 7818 InsertPos = nullptr; 7819 7820 // Now we update the operands. 7821 if (N->OperandList[0] != Op1) 7822 N->OperandList[0].set(Op1); 7823 if (N->OperandList[1] != Op2) 7824 N->OperandList[1].set(Op2); 7825 7826 updateDivergence(N); 7827 // If this gets put into a CSE map, add it. 7828 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7829 return N; 7830 } 7831 7832 SDNode *SelectionDAG:: 7833 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7834 SDValue Ops[] = { Op1, Op2, Op3 }; 7835 return UpdateNodeOperands(N, Ops); 7836 } 7837 7838 SDNode *SelectionDAG:: 7839 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7840 SDValue Op3, SDValue Op4) { 7841 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7842 return UpdateNodeOperands(N, Ops); 7843 } 7844 7845 SDNode *SelectionDAG:: 7846 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7847 SDValue Op3, SDValue Op4, SDValue Op5) { 7848 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7849 return UpdateNodeOperands(N, Ops); 7850 } 7851 7852 SDNode *SelectionDAG:: 7853 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7854 unsigned NumOps = Ops.size(); 7855 assert(N->getNumOperands() == NumOps && 7856 "Update with wrong number of operands"); 7857 7858 // If no operands changed just return the input node. 7859 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7860 return N; 7861 7862 // See if the modified node already exists. 7863 void *InsertPos = nullptr; 7864 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7865 return Existing; 7866 7867 // Nope it doesn't. Remove the node from its current place in the maps. 7868 if (InsertPos) 7869 if (!RemoveNodeFromCSEMaps(N)) 7870 InsertPos = nullptr; 7871 7872 // Now we update the operands. 7873 for (unsigned i = 0; i != NumOps; ++i) 7874 if (N->OperandList[i] != Ops[i]) 7875 N->OperandList[i].set(Ops[i]); 7876 7877 updateDivergence(N); 7878 // If this gets put into a CSE map, add it. 7879 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7880 return N; 7881 } 7882 7883 /// DropOperands - Release the operands and set this node to have 7884 /// zero operands. 7885 void SDNode::DropOperands() { 7886 // Unlike the code in MorphNodeTo that does this, we don't need to 7887 // watch for dead nodes here. 7888 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7889 SDUse &Use = *I++; 7890 Use.set(SDValue()); 7891 } 7892 } 7893 7894 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7895 ArrayRef<MachineMemOperand *> NewMemRefs) { 7896 if (NewMemRefs.empty()) { 7897 N->clearMemRefs(); 7898 return; 7899 } 7900 7901 // Check if we can avoid allocating by storing a single reference directly. 7902 if (NewMemRefs.size() == 1) { 7903 N->MemRefs = NewMemRefs[0]; 7904 N->NumMemRefs = 1; 7905 return; 7906 } 7907 7908 MachineMemOperand **MemRefsBuffer = 7909 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7910 llvm::copy(NewMemRefs, MemRefsBuffer); 7911 N->MemRefs = MemRefsBuffer; 7912 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7913 } 7914 7915 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7916 /// machine opcode. 7917 /// 7918 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7919 EVT VT) { 7920 SDVTList VTs = getVTList(VT); 7921 return SelectNodeTo(N, MachineOpc, VTs, None); 7922 } 7923 7924 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7925 EVT VT, SDValue Op1) { 7926 SDVTList VTs = getVTList(VT); 7927 SDValue Ops[] = { Op1 }; 7928 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7929 } 7930 7931 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7932 EVT VT, SDValue Op1, 7933 SDValue Op2) { 7934 SDVTList VTs = getVTList(VT); 7935 SDValue Ops[] = { Op1, Op2 }; 7936 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7937 } 7938 7939 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7940 EVT VT, SDValue Op1, 7941 SDValue Op2, SDValue Op3) { 7942 SDVTList VTs = getVTList(VT); 7943 SDValue Ops[] = { Op1, Op2, Op3 }; 7944 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7945 } 7946 7947 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7948 EVT VT, ArrayRef<SDValue> Ops) { 7949 SDVTList VTs = getVTList(VT); 7950 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7951 } 7952 7953 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7954 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7955 SDVTList VTs = getVTList(VT1, VT2); 7956 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7957 } 7958 7959 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7960 EVT VT1, EVT VT2) { 7961 SDVTList VTs = getVTList(VT1, VT2); 7962 return SelectNodeTo(N, MachineOpc, VTs, None); 7963 } 7964 7965 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7966 EVT VT1, EVT VT2, EVT VT3, 7967 ArrayRef<SDValue> Ops) { 7968 SDVTList VTs = getVTList(VT1, VT2, VT3); 7969 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7970 } 7971 7972 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7973 EVT VT1, EVT VT2, 7974 SDValue Op1, SDValue Op2) { 7975 SDVTList VTs = getVTList(VT1, VT2); 7976 SDValue Ops[] = { Op1, Op2 }; 7977 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7978 } 7979 7980 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7981 SDVTList VTs,ArrayRef<SDValue> Ops) { 7982 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7983 // Reset the NodeID to -1. 7984 New->setNodeId(-1); 7985 if (New != N) { 7986 ReplaceAllUsesWith(N, New); 7987 RemoveDeadNode(N); 7988 } 7989 return New; 7990 } 7991 7992 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7993 /// the line number information on the merged node since it is not possible to 7994 /// preserve the information that operation is associated with multiple lines. 7995 /// This will make the debugger working better at -O0, were there is a higher 7996 /// probability having other instructions associated with that line. 7997 /// 7998 /// For IROrder, we keep the smaller of the two 7999 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8000 DebugLoc NLoc = N->getDebugLoc(); 8001 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8002 N->setDebugLoc(DebugLoc()); 8003 } 8004 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8005 N->setIROrder(Order); 8006 return N; 8007 } 8008 8009 /// MorphNodeTo - This *mutates* the specified node to have the specified 8010 /// return type, opcode, and operands. 8011 /// 8012 /// Note that MorphNodeTo returns the resultant node. If there is already a 8013 /// node of the specified opcode and operands, it returns that node instead of 8014 /// the current one. Note that the SDLoc need not be the same. 8015 /// 8016 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8017 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8018 /// node, and because it doesn't require CSE recalculation for any of 8019 /// the node's users. 8020 /// 8021 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8022 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8023 /// the legalizer which maintain worklists that would need to be updated when 8024 /// deleting things. 8025 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8026 SDVTList VTs, ArrayRef<SDValue> Ops) { 8027 // If an identical node already exists, use it. 8028 void *IP = nullptr; 8029 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8030 FoldingSetNodeID ID; 8031 AddNodeIDNode(ID, Opc, VTs, Ops); 8032 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8033 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8034 } 8035 8036 if (!RemoveNodeFromCSEMaps(N)) 8037 IP = nullptr; 8038 8039 // Start the morphing. 8040 N->NodeType = Opc; 8041 N->ValueList = VTs.VTs; 8042 N->NumValues = VTs.NumVTs; 8043 8044 // Clear the operands list, updating used nodes to remove this from their 8045 // use list. Keep track of any operands that become dead as a result. 8046 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8047 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8048 SDUse &Use = *I++; 8049 SDNode *Used = Use.getNode(); 8050 Use.set(SDValue()); 8051 if (Used->use_empty()) 8052 DeadNodeSet.insert(Used); 8053 } 8054 8055 // For MachineNode, initialize the memory references information. 8056 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8057 MN->clearMemRefs(); 8058 8059 // Swap for an appropriately sized array from the recycler. 8060 removeOperands(N); 8061 createOperands(N, Ops); 8062 8063 // Delete any nodes that are still dead after adding the uses for the 8064 // new operands. 8065 if (!DeadNodeSet.empty()) { 8066 SmallVector<SDNode *, 16> DeadNodes; 8067 for (SDNode *N : DeadNodeSet) 8068 if (N->use_empty()) 8069 DeadNodes.push_back(N); 8070 RemoveDeadNodes(DeadNodes); 8071 } 8072 8073 if (IP) 8074 CSEMap.InsertNode(N, IP); // Memoize the new node. 8075 return N; 8076 } 8077 8078 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8079 unsigned OrigOpc = Node->getOpcode(); 8080 unsigned NewOpc; 8081 switch (OrigOpc) { 8082 default: 8083 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8084 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8085 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8086 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8087 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8088 #include "llvm/IR/ConstrainedOps.def" 8089 } 8090 8091 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8092 8093 // We're taking this node out of the chain, so we need to re-link things. 8094 SDValue InputChain = Node->getOperand(0); 8095 SDValue OutputChain = SDValue(Node, 1); 8096 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8097 8098 SmallVector<SDValue, 3> Ops; 8099 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8100 Ops.push_back(Node->getOperand(i)); 8101 8102 SDVTList VTs = getVTList(Node->getValueType(0)); 8103 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8104 8105 // MorphNodeTo can operate in two ways: if an existing node with the 8106 // specified operands exists, it can just return it. Otherwise, it 8107 // updates the node in place to have the requested operands. 8108 if (Res == Node) { 8109 // If we updated the node in place, reset the node ID. To the isel, 8110 // this should be just like a newly allocated machine node. 8111 Res->setNodeId(-1); 8112 } else { 8113 ReplaceAllUsesWith(Node, Res); 8114 RemoveDeadNode(Node); 8115 } 8116 8117 return Res; 8118 } 8119 8120 /// getMachineNode - These are used for target selectors to create a new node 8121 /// with specified return type(s), MachineInstr opcode, and operands. 8122 /// 8123 /// Note that getMachineNode returns the resultant node. If there is already a 8124 /// node of the specified opcode and operands, it returns that node instead of 8125 /// the current one. 8126 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8127 EVT VT) { 8128 SDVTList VTs = getVTList(VT); 8129 return getMachineNode(Opcode, dl, VTs, None); 8130 } 8131 8132 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8133 EVT VT, SDValue Op1) { 8134 SDVTList VTs = getVTList(VT); 8135 SDValue Ops[] = { Op1 }; 8136 return getMachineNode(Opcode, dl, VTs, Ops); 8137 } 8138 8139 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8140 EVT VT, SDValue Op1, SDValue Op2) { 8141 SDVTList VTs = getVTList(VT); 8142 SDValue Ops[] = { Op1, Op2 }; 8143 return getMachineNode(Opcode, dl, VTs, Ops); 8144 } 8145 8146 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8147 EVT VT, SDValue Op1, SDValue Op2, 8148 SDValue Op3) { 8149 SDVTList VTs = getVTList(VT); 8150 SDValue Ops[] = { Op1, Op2, Op3 }; 8151 return getMachineNode(Opcode, dl, VTs, Ops); 8152 } 8153 8154 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8155 EVT VT, ArrayRef<SDValue> Ops) { 8156 SDVTList VTs = getVTList(VT); 8157 return getMachineNode(Opcode, dl, VTs, Ops); 8158 } 8159 8160 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8161 EVT VT1, EVT VT2, SDValue Op1, 8162 SDValue Op2) { 8163 SDVTList VTs = getVTList(VT1, VT2); 8164 SDValue Ops[] = { Op1, Op2 }; 8165 return getMachineNode(Opcode, dl, VTs, Ops); 8166 } 8167 8168 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8169 EVT VT1, EVT VT2, SDValue Op1, 8170 SDValue Op2, SDValue Op3) { 8171 SDVTList VTs = getVTList(VT1, VT2); 8172 SDValue Ops[] = { Op1, Op2, Op3 }; 8173 return getMachineNode(Opcode, dl, VTs, Ops); 8174 } 8175 8176 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8177 EVT VT1, EVT VT2, 8178 ArrayRef<SDValue> Ops) { 8179 SDVTList VTs = getVTList(VT1, VT2); 8180 return getMachineNode(Opcode, dl, VTs, Ops); 8181 } 8182 8183 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8184 EVT VT1, EVT VT2, EVT VT3, 8185 SDValue Op1, SDValue Op2) { 8186 SDVTList VTs = getVTList(VT1, VT2, VT3); 8187 SDValue Ops[] = { Op1, Op2 }; 8188 return getMachineNode(Opcode, dl, VTs, Ops); 8189 } 8190 8191 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8192 EVT VT1, EVT VT2, EVT VT3, 8193 SDValue Op1, SDValue Op2, 8194 SDValue Op3) { 8195 SDVTList VTs = getVTList(VT1, VT2, VT3); 8196 SDValue Ops[] = { Op1, Op2, Op3 }; 8197 return getMachineNode(Opcode, dl, VTs, Ops); 8198 } 8199 8200 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8201 EVT VT1, EVT VT2, EVT VT3, 8202 ArrayRef<SDValue> Ops) { 8203 SDVTList VTs = getVTList(VT1, VT2, VT3); 8204 return getMachineNode(Opcode, dl, VTs, Ops); 8205 } 8206 8207 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8208 ArrayRef<EVT> ResultTys, 8209 ArrayRef<SDValue> Ops) { 8210 SDVTList VTs = getVTList(ResultTys); 8211 return getMachineNode(Opcode, dl, VTs, Ops); 8212 } 8213 8214 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8215 SDVTList VTs, 8216 ArrayRef<SDValue> Ops) { 8217 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8218 MachineSDNode *N; 8219 void *IP = nullptr; 8220 8221 if (DoCSE) { 8222 FoldingSetNodeID ID; 8223 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8224 IP = nullptr; 8225 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8226 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8227 } 8228 } 8229 8230 // Allocate a new MachineSDNode. 8231 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8232 createOperands(N, Ops); 8233 8234 if (DoCSE) 8235 CSEMap.InsertNode(N, IP); 8236 8237 InsertNode(N); 8238 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8239 return N; 8240 } 8241 8242 /// getTargetExtractSubreg - A convenience function for creating 8243 /// TargetOpcode::EXTRACT_SUBREG nodes. 8244 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8245 SDValue Operand) { 8246 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8247 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8248 VT, Operand, SRIdxVal); 8249 return SDValue(Subreg, 0); 8250 } 8251 8252 /// getTargetInsertSubreg - A convenience function for creating 8253 /// TargetOpcode::INSERT_SUBREG nodes. 8254 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8255 SDValue Operand, SDValue Subreg) { 8256 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8257 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8258 VT, Operand, Subreg, SRIdxVal); 8259 return SDValue(Result, 0); 8260 } 8261 8262 /// getNodeIfExists - Get the specified node if it's already available, or 8263 /// else return NULL. 8264 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8265 ArrayRef<SDValue> Ops, 8266 const SDNodeFlags Flags) { 8267 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8268 FoldingSetNodeID ID; 8269 AddNodeIDNode(ID, Opcode, VTList, Ops); 8270 void *IP = nullptr; 8271 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8272 E->intersectFlagsWith(Flags); 8273 return E; 8274 } 8275 } 8276 return nullptr; 8277 } 8278 8279 /// getDbgValue - Creates a SDDbgValue node. 8280 /// 8281 /// SDNode 8282 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8283 SDNode *N, unsigned R, bool IsIndirect, 8284 const DebugLoc &DL, unsigned O) { 8285 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8286 "Expected inlined-at fields to agree"); 8287 return new (DbgInfo->getAlloc()) 8288 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8289 } 8290 8291 /// Constant 8292 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8293 DIExpression *Expr, 8294 const Value *C, 8295 const DebugLoc &DL, unsigned O) { 8296 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8297 "Expected inlined-at fields to agree"); 8298 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8299 } 8300 8301 /// FrameIndex 8302 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8303 DIExpression *Expr, unsigned FI, 8304 bool IsIndirect, 8305 const DebugLoc &DL, 8306 unsigned O) { 8307 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8308 "Expected inlined-at fields to agree"); 8309 return new (DbgInfo->getAlloc()) 8310 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8311 } 8312 8313 /// VReg 8314 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8315 DIExpression *Expr, 8316 unsigned VReg, bool IsIndirect, 8317 const DebugLoc &DL, unsigned O) { 8318 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8319 "Expected inlined-at fields to agree"); 8320 return new (DbgInfo->getAlloc()) 8321 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8322 } 8323 8324 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8325 unsigned OffsetInBits, unsigned SizeInBits, 8326 bool InvalidateDbg) { 8327 SDNode *FromNode = From.getNode(); 8328 SDNode *ToNode = To.getNode(); 8329 assert(FromNode && ToNode && "Can't modify dbg values"); 8330 8331 // PR35338 8332 // TODO: assert(From != To && "Redundant dbg value transfer"); 8333 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8334 if (From == To || FromNode == ToNode) 8335 return; 8336 8337 if (!FromNode->getHasDebugValue()) 8338 return; 8339 8340 SmallVector<SDDbgValue *, 2> ClonedDVs; 8341 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8342 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8343 continue; 8344 8345 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8346 8347 // Just transfer the dbg value attached to From. 8348 if (Dbg->getResNo() != From.getResNo()) 8349 continue; 8350 8351 DIVariable *Var = Dbg->getVariable(); 8352 auto *Expr = Dbg->getExpression(); 8353 // If a fragment is requested, update the expression. 8354 if (SizeInBits) { 8355 // When splitting a larger (e.g., sign-extended) value whose 8356 // lower bits are described with an SDDbgValue, do not attempt 8357 // to transfer the SDDbgValue to the upper bits. 8358 if (auto FI = Expr->getFragmentInfo()) 8359 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8360 continue; 8361 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8362 SizeInBits); 8363 if (!Fragment) 8364 continue; 8365 Expr = *Fragment; 8366 } 8367 // Clone the SDDbgValue and move it to To. 8368 SDDbgValue *Clone = getDbgValue( 8369 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8370 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8371 ClonedDVs.push_back(Clone); 8372 8373 if (InvalidateDbg) { 8374 // Invalidate value and indicate the SDDbgValue should not be emitted. 8375 Dbg->setIsInvalidated(); 8376 Dbg->setIsEmitted(); 8377 } 8378 } 8379 8380 for (SDDbgValue *Dbg : ClonedDVs) 8381 AddDbgValue(Dbg, ToNode, false); 8382 } 8383 8384 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8385 if (!N.getHasDebugValue()) 8386 return; 8387 8388 SmallVector<SDDbgValue *, 2> ClonedDVs; 8389 for (auto DV : GetDbgValues(&N)) { 8390 if (DV->isInvalidated()) 8391 continue; 8392 switch (N.getOpcode()) { 8393 default: 8394 break; 8395 case ISD::ADD: 8396 SDValue N0 = N.getOperand(0); 8397 SDValue N1 = N.getOperand(1); 8398 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8399 isConstantIntBuildVectorOrConstantInt(N1)) { 8400 uint64_t Offset = N.getConstantOperandVal(1); 8401 // Rewrite an ADD constant node into a DIExpression. Since we are 8402 // performing arithmetic to compute the variable's *value* in the 8403 // DIExpression, we need to mark the expression with a 8404 // DW_OP_stack_value. 8405 auto *DIExpr = DV->getExpression(); 8406 DIExpr = 8407 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8408 SDDbgValue *Clone = 8409 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8410 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8411 ClonedDVs.push_back(Clone); 8412 DV->setIsInvalidated(); 8413 DV->setIsEmitted(); 8414 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8415 N0.getNode()->dumprFull(this); 8416 dbgs() << " into " << *DIExpr << '\n'); 8417 } 8418 } 8419 } 8420 8421 for (SDDbgValue *Dbg : ClonedDVs) 8422 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8423 } 8424 8425 /// Creates a SDDbgLabel node. 8426 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8427 const DebugLoc &DL, unsigned O) { 8428 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8429 "Expected inlined-at fields to agree"); 8430 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8431 } 8432 8433 namespace { 8434 8435 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8436 /// pointed to by a use iterator is deleted, increment the use iterator 8437 /// so that it doesn't dangle. 8438 /// 8439 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8440 SDNode::use_iterator &UI; 8441 SDNode::use_iterator &UE; 8442 8443 void NodeDeleted(SDNode *N, SDNode *E) override { 8444 // Increment the iterator as needed. 8445 while (UI != UE && N == *UI) 8446 ++UI; 8447 } 8448 8449 public: 8450 RAUWUpdateListener(SelectionDAG &d, 8451 SDNode::use_iterator &ui, 8452 SDNode::use_iterator &ue) 8453 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8454 }; 8455 8456 } // end anonymous namespace 8457 8458 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8459 /// This can cause recursive merging of nodes in the DAG. 8460 /// 8461 /// This version assumes From has a single result value. 8462 /// 8463 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8464 SDNode *From = FromN.getNode(); 8465 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8466 "Cannot replace with this method!"); 8467 assert(From != To.getNode() && "Cannot replace uses of with self"); 8468 8469 // Preserve Debug Values 8470 transferDbgValues(FromN, To); 8471 8472 // Iterate over all the existing uses of From. New uses will be added 8473 // to the beginning of the use list, which we avoid visiting. 8474 // This specifically avoids visiting uses of From that arise while the 8475 // replacement is happening, because any such uses would be the result 8476 // of CSE: If an existing node looks like From after one of its operands 8477 // is replaced by To, we don't want to replace of all its users with To 8478 // too. See PR3018 for more info. 8479 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8480 RAUWUpdateListener Listener(*this, UI, UE); 8481 while (UI != UE) { 8482 SDNode *User = *UI; 8483 8484 // This node is about to morph, remove its old self from the CSE maps. 8485 RemoveNodeFromCSEMaps(User); 8486 8487 // A user can appear in a use list multiple times, and when this 8488 // happens the uses are usually next to each other in the list. 8489 // To help reduce the number of CSE recomputations, process all 8490 // the uses of this user that we can find this way. 8491 do { 8492 SDUse &Use = UI.getUse(); 8493 ++UI; 8494 Use.set(To); 8495 if (To->isDivergent() != From->isDivergent()) 8496 updateDivergence(User); 8497 } while (UI != UE && *UI == User); 8498 // Now that we have modified User, add it back to the CSE maps. If it 8499 // already exists there, recursively merge the results together. 8500 AddModifiedNodeToCSEMaps(User); 8501 } 8502 8503 // If we just RAUW'd the root, take note. 8504 if (FromN == getRoot()) 8505 setRoot(To); 8506 } 8507 8508 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8509 /// This can cause recursive merging of nodes in the DAG. 8510 /// 8511 /// This version assumes that for each value of From, there is a 8512 /// corresponding value in To in the same position with the same type. 8513 /// 8514 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8515 #ifndef NDEBUG 8516 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8517 assert((!From->hasAnyUseOfValue(i) || 8518 From->getValueType(i) == To->getValueType(i)) && 8519 "Cannot use this version of ReplaceAllUsesWith!"); 8520 #endif 8521 8522 // Handle the trivial case. 8523 if (From == To) 8524 return; 8525 8526 // Preserve Debug Info. Only do this if there's a use. 8527 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8528 if (From->hasAnyUseOfValue(i)) { 8529 assert((i < To->getNumValues()) && "Invalid To location"); 8530 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8531 } 8532 8533 // Iterate over just the existing users of From. See the comments in 8534 // the ReplaceAllUsesWith above. 8535 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8536 RAUWUpdateListener Listener(*this, UI, UE); 8537 while (UI != UE) { 8538 SDNode *User = *UI; 8539 8540 // This node is about to morph, remove its old self from the CSE maps. 8541 RemoveNodeFromCSEMaps(User); 8542 8543 // A user can appear in a use list multiple times, and when this 8544 // happens the uses are usually next to each other in the list. 8545 // To help reduce the number of CSE recomputations, process all 8546 // the uses of this user that we can find this way. 8547 do { 8548 SDUse &Use = UI.getUse(); 8549 ++UI; 8550 Use.setNode(To); 8551 if (To->isDivergent() != From->isDivergent()) 8552 updateDivergence(User); 8553 } while (UI != UE && *UI == User); 8554 8555 // Now that we have modified User, add it back to the CSE maps. If it 8556 // already exists there, recursively merge the results together. 8557 AddModifiedNodeToCSEMaps(User); 8558 } 8559 8560 // If we just RAUW'd the root, take note. 8561 if (From == getRoot().getNode()) 8562 setRoot(SDValue(To, getRoot().getResNo())); 8563 } 8564 8565 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8566 /// This can cause recursive merging of nodes in the DAG. 8567 /// 8568 /// This version can replace From with any result values. To must match the 8569 /// number and types of values returned by From. 8570 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8571 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8572 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8573 8574 // Preserve Debug Info. 8575 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8576 transferDbgValues(SDValue(From, i), To[i]); 8577 8578 // Iterate over just the existing users of From. See the comments in 8579 // the ReplaceAllUsesWith above. 8580 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8581 RAUWUpdateListener Listener(*this, UI, UE); 8582 while (UI != UE) { 8583 SDNode *User = *UI; 8584 8585 // This node is about to morph, remove its old self from the CSE maps. 8586 RemoveNodeFromCSEMaps(User); 8587 8588 // A user can appear in a use list multiple times, and when this happens the 8589 // uses are usually next to each other in the list. To help reduce the 8590 // number of CSE and divergence recomputations, process all the uses of this 8591 // user that we can find this way. 8592 bool To_IsDivergent = false; 8593 do { 8594 SDUse &Use = UI.getUse(); 8595 const SDValue &ToOp = To[Use.getResNo()]; 8596 ++UI; 8597 Use.set(ToOp); 8598 To_IsDivergent |= ToOp->isDivergent(); 8599 } while (UI != UE && *UI == User); 8600 8601 if (To_IsDivergent != From->isDivergent()) 8602 updateDivergence(User); 8603 8604 // Now that we have modified User, add it back to the CSE maps. If it 8605 // already exists there, recursively merge the results together. 8606 AddModifiedNodeToCSEMaps(User); 8607 } 8608 8609 // If we just RAUW'd the root, take note. 8610 if (From == getRoot().getNode()) 8611 setRoot(SDValue(To[getRoot().getResNo()])); 8612 } 8613 8614 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8615 /// uses of other values produced by From.getNode() alone. The Deleted 8616 /// vector is handled the same way as for ReplaceAllUsesWith. 8617 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8618 // Handle the really simple, really trivial case efficiently. 8619 if (From == To) return; 8620 8621 // Handle the simple, trivial, case efficiently. 8622 if (From.getNode()->getNumValues() == 1) { 8623 ReplaceAllUsesWith(From, To); 8624 return; 8625 } 8626 8627 // Preserve Debug Info. 8628 transferDbgValues(From, To); 8629 8630 // Iterate over just the existing users of From. See the comments in 8631 // the ReplaceAllUsesWith above. 8632 SDNode::use_iterator UI = From.getNode()->use_begin(), 8633 UE = From.getNode()->use_end(); 8634 RAUWUpdateListener Listener(*this, UI, UE); 8635 while (UI != UE) { 8636 SDNode *User = *UI; 8637 bool UserRemovedFromCSEMaps = false; 8638 8639 // A user can appear in a use list multiple times, and when this 8640 // happens the uses are usually next to each other in the list. 8641 // To help reduce the number of CSE recomputations, process all 8642 // the uses of this user that we can find this way. 8643 do { 8644 SDUse &Use = UI.getUse(); 8645 8646 // Skip uses of different values from the same node. 8647 if (Use.getResNo() != From.getResNo()) { 8648 ++UI; 8649 continue; 8650 } 8651 8652 // If this node hasn't been modified yet, it's still in the CSE maps, 8653 // so remove its old self from the CSE maps. 8654 if (!UserRemovedFromCSEMaps) { 8655 RemoveNodeFromCSEMaps(User); 8656 UserRemovedFromCSEMaps = true; 8657 } 8658 8659 ++UI; 8660 Use.set(To); 8661 if (To->isDivergent() != From->isDivergent()) 8662 updateDivergence(User); 8663 } while (UI != UE && *UI == User); 8664 // We are iterating over all uses of the From node, so if a use 8665 // doesn't use the specific value, no changes are made. 8666 if (!UserRemovedFromCSEMaps) 8667 continue; 8668 8669 // Now that we have modified User, add it back to the CSE maps. If it 8670 // already exists there, recursively merge the results together. 8671 AddModifiedNodeToCSEMaps(User); 8672 } 8673 8674 // If we just RAUW'd the root, take note. 8675 if (From == getRoot()) 8676 setRoot(To); 8677 } 8678 8679 namespace { 8680 8681 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8682 /// to record information about a use. 8683 struct UseMemo { 8684 SDNode *User; 8685 unsigned Index; 8686 SDUse *Use; 8687 }; 8688 8689 /// operator< - Sort Memos by User. 8690 bool operator<(const UseMemo &L, const UseMemo &R) { 8691 return (intptr_t)L.User < (intptr_t)R.User; 8692 } 8693 8694 } // end anonymous namespace 8695 8696 void SelectionDAG::updateDivergence(SDNode * N) 8697 { 8698 if (TLI->isSDNodeAlwaysUniform(N)) 8699 return; 8700 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8701 for (auto &Op : N->ops()) { 8702 if (Op.Val.getValueType() != MVT::Other) 8703 IsDivergent |= Op.getNode()->isDivergent(); 8704 } 8705 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8706 N->SDNodeBits.IsDivergent = IsDivergent; 8707 for (auto U : N->uses()) { 8708 updateDivergence(U); 8709 } 8710 } 8711 } 8712 8713 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8714 DenseMap<SDNode *, unsigned> Degree; 8715 Order.reserve(AllNodes.size()); 8716 for (auto &N : allnodes()) { 8717 unsigned NOps = N.getNumOperands(); 8718 Degree[&N] = NOps; 8719 if (0 == NOps) 8720 Order.push_back(&N); 8721 } 8722 for (size_t I = 0; I != Order.size(); ++I) { 8723 SDNode *N = Order[I]; 8724 for (auto U : N->uses()) { 8725 unsigned &UnsortedOps = Degree[U]; 8726 if (0 == --UnsortedOps) 8727 Order.push_back(U); 8728 } 8729 } 8730 } 8731 8732 #ifndef NDEBUG 8733 void SelectionDAG::VerifyDAGDiverence() { 8734 std::vector<SDNode *> TopoOrder; 8735 CreateTopologicalOrder(TopoOrder); 8736 const TargetLowering &TLI = getTargetLoweringInfo(); 8737 DenseMap<const SDNode *, bool> DivergenceMap; 8738 for (auto &N : allnodes()) { 8739 DivergenceMap[&N] = false; 8740 } 8741 for (auto N : TopoOrder) { 8742 bool IsDivergent = DivergenceMap[N]; 8743 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8744 for (auto &Op : N->ops()) { 8745 if (Op.Val.getValueType() != MVT::Other) 8746 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8747 } 8748 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8749 DivergenceMap[N] = true; 8750 } 8751 } 8752 for (auto &N : allnodes()) { 8753 (void)N; 8754 assert(DivergenceMap[&N] == N.isDivergent() && 8755 "Divergence bit inconsistency detected\n"); 8756 } 8757 } 8758 #endif 8759 8760 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8761 /// uses of other values produced by From.getNode() alone. The same value 8762 /// may appear in both the From and To list. The Deleted vector is 8763 /// handled the same way as for ReplaceAllUsesWith. 8764 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8765 const SDValue *To, 8766 unsigned Num){ 8767 // Handle the simple, trivial case efficiently. 8768 if (Num == 1) 8769 return ReplaceAllUsesOfValueWith(*From, *To); 8770 8771 transferDbgValues(*From, *To); 8772 8773 // Read up all the uses and make records of them. This helps 8774 // processing new uses that are introduced during the 8775 // replacement process. 8776 SmallVector<UseMemo, 4> Uses; 8777 for (unsigned i = 0; i != Num; ++i) { 8778 unsigned FromResNo = From[i].getResNo(); 8779 SDNode *FromNode = From[i].getNode(); 8780 for (SDNode::use_iterator UI = FromNode->use_begin(), 8781 E = FromNode->use_end(); UI != E; ++UI) { 8782 SDUse &Use = UI.getUse(); 8783 if (Use.getResNo() == FromResNo) { 8784 UseMemo Memo = { *UI, i, &Use }; 8785 Uses.push_back(Memo); 8786 } 8787 } 8788 } 8789 8790 // Sort the uses, so that all the uses from a given User are together. 8791 llvm::sort(Uses); 8792 8793 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8794 UseIndex != UseIndexEnd; ) { 8795 // We know that this user uses some value of From. If it is the right 8796 // value, update it. 8797 SDNode *User = Uses[UseIndex].User; 8798 8799 // This node is about to morph, remove its old self from the CSE maps. 8800 RemoveNodeFromCSEMaps(User); 8801 8802 // The Uses array is sorted, so all the uses for a given User 8803 // are next to each other in the list. 8804 // To help reduce the number of CSE recomputations, process all 8805 // the uses of this user that we can find this way. 8806 do { 8807 unsigned i = Uses[UseIndex].Index; 8808 SDUse &Use = *Uses[UseIndex].Use; 8809 ++UseIndex; 8810 8811 Use.set(To[i]); 8812 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8813 8814 // Now that we have modified User, add it back to the CSE maps. If it 8815 // already exists there, recursively merge the results together. 8816 AddModifiedNodeToCSEMaps(User); 8817 } 8818 } 8819 8820 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8821 /// based on their topological order. It returns the maximum id and a vector 8822 /// of the SDNodes* in assigned order by reference. 8823 unsigned SelectionDAG::AssignTopologicalOrder() { 8824 unsigned DAGSize = 0; 8825 8826 // SortedPos tracks the progress of the algorithm. Nodes before it are 8827 // sorted, nodes after it are unsorted. When the algorithm completes 8828 // it is at the end of the list. 8829 allnodes_iterator SortedPos = allnodes_begin(); 8830 8831 // Visit all the nodes. Move nodes with no operands to the front of 8832 // the list immediately. Annotate nodes that do have operands with their 8833 // operand count. Before we do this, the Node Id fields of the nodes 8834 // may contain arbitrary values. After, the Node Id fields for nodes 8835 // before SortedPos will contain the topological sort index, and the 8836 // Node Id fields for nodes At SortedPos and after will contain the 8837 // count of outstanding operands. 8838 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8839 SDNode *N = &*I++; 8840 checkForCycles(N, this); 8841 unsigned Degree = N->getNumOperands(); 8842 if (Degree == 0) { 8843 // A node with no uses, add it to the result array immediately. 8844 N->setNodeId(DAGSize++); 8845 allnodes_iterator Q(N); 8846 if (Q != SortedPos) 8847 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8848 assert(SortedPos != AllNodes.end() && "Overran node list"); 8849 ++SortedPos; 8850 } else { 8851 // Temporarily use the Node Id as scratch space for the degree count. 8852 N->setNodeId(Degree); 8853 } 8854 } 8855 8856 // Visit all the nodes. As we iterate, move nodes into sorted order, 8857 // such that by the time the end is reached all nodes will be sorted. 8858 for (SDNode &Node : allnodes()) { 8859 SDNode *N = &Node; 8860 checkForCycles(N, this); 8861 // N is in sorted position, so all its uses have one less operand 8862 // that needs to be sorted. 8863 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8864 UI != UE; ++UI) { 8865 SDNode *P = *UI; 8866 unsigned Degree = P->getNodeId(); 8867 assert(Degree != 0 && "Invalid node degree"); 8868 --Degree; 8869 if (Degree == 0) { 8870 // All of P's operands are sorted, so P may sorted now. 8871 P->setNodeId(DAGSize++); 8872 if (P->getIterator() != SortedPos) 8873 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8874 assert(SortedPos != AllNodes.end() && "Overran node list"); 8875 ++SortedPos; 8876 } else { 8877 // Update P's outstanding operand count. 8878 P->setNodeId(Degree); 8879 } 8880 } 8881 if (Node.getIterator() == SortedPos) { 8882 #ifndef NDEBUG 8883 allnodes_iterator I(N); 8884 SDNode *S = &*++I; 8885 dbgs() << "Overran sorted position:\n"; 8886 S->dumprFull(this); dbgs() << "\n"; 8887 dbgs() << "Checking if this is due to cycles\n"; 8888 checkForCycles(this, true); 8889 #endif 8890 llvm_unreachable(nullptr); 8891 } 8892 } 8893 8894 assert(SortedPos == AllNodes.end() && 8895 "Topological sort incomplete!"); 8896 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8897 "First node in topological sort is not the entry token!"); 8898 assert(AllNodes.front().getNodeId() == 0 && 8899 "First node in topological sort has non-zero id!"); 8900 assert(AllNodes.front().getNumOperands() == 0 && 8901 "First node in topological sort has operands!"); 8902 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8903 "Last node in topologic sort has unexpected id!"); 8904 assert(AllNodes.back().use_empty() && 8905 "Last node in topologic sort has users!"); 8906 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8907 return DAGSize; 8908 } 8909 8910 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8911 /// value is produced by SD. 8912 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8913 if (SD) { 8914 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8915 SD->setHasDebugValue(true); 8916 } 8917 DbgInfo->add(DB, SD, isParameter); 8918 } 8919 8920 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8921 DbgInfo->add(DB); 8922 } 8923 8924 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8925 SDValue NewMemOp) { 8926 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8927 // The new memory operation must have the same position as the old load in 8928 // terms of memory dependency. Create a TokenFactor for the old load and new 8929 // memory operation and update uses of the old load's output chain to use that 8930 // TokenFactor. 8931 SDValue OldChain = SDValue(OldLoad, 1); 8932 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8933 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8934 return NewChain; 8935 8936 SDValue TokenFactor = 8937 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8938 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8939 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8940 return TokenFactor; 8941 } 8942 8943 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8944 Function **OutFunction) { 8945 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8946 8947 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8948 auto *Module = MF->getFunction().getParent(); 8949 auto *Function = Module->getFunction(Symbol); 8950 8951 if (OutFunction != nullptr) 8952 *OutFunction = Function; 8953 8954 if (Function != nullptr) { 8955 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8956 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8957 } 8958 8959 std::string ErrorStr; 8960 raw_string_ostream ErrorFormatter(ErrorStr); 8961 8962 ErrorFormatter << "Undefined external symbol "; 8963 ErrorFormatter << '"' << Symbol << '"'; 8964 ErrorFormatter.flush(); 8965 8966 report_fatal_error(ErrorStr); 8967 } 8968 8969 //===----------------------------------------------------------------------===// 8970 // SDNode Class 8971 //===----------------------------------------------------------------------===// 8972 8973 bool llvm::isNullConstant(SDValue V) { 8974 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8975 return Const != nullptr && Const->isNullValue(); 8976 } 8977 8978 bool llvm::isNullFPConstant(SDValue V) { 8979 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8980 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8981 } 8982 8983 bool llvm::isAllOnesConstant(SDValue V) { 8984 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8985 return Const != nullptr && Const->isAllOnesValue(); 8986 } 8987 8988 bool llvm::isOneConstant(SDValue V) { 8989 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8990 return Const != nullptr && Const->isOne(); 8991 } 8992 8993 SDValue llvm::peekThroughBitcasts(SDValue V) { 8994 while (V.getOpcode() == ISD::BITCAST) 8995 V = V.getOperand(0); 8996 return V; 8997 } 8998 8999 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9000 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9001 V = V.getOperand(0); 9002 return V; 9003 } 9004 9005 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9006 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9007 V = V.getOperand(0); 9008 return V; 9009 } 9010 9011 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9012 if (V.getOpcode() != ISD::XOR) 9013 return false; 9014 V = peekThroughBitcasts(V.getOperand(1)); 9015 unsigned NumBits = V.getScalarValueSizeInBits(); 9016 ConstantSDNode *C = 9017 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9018 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9019 } 9020 9021 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9022 bool AllowTruncation) { 9023 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9024 return CN; 9025 9026 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9027 BitVector UndefElements; 9028 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9029 9030 // BuildVectors can truncate their operands. Ignore that case here unless 9031 // AllowTruncation is set. 9032 if (CN && (UndefElements.none() || AllowUndefs)) { 9033 EVT CVT = CN->getValueType(0); 9034 EVT NSVT = N.getValueType().getScalarType(); 9035 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9036 if (AllowTruncation || (CVT == NSVT)) 9037 return CN; 9038 } 9039 } 9040 9041 return nullptr; 9042 } 9043 9044 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9045 bool AllowUndefs, 9046 bool AllowTruncation) { 9047 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9048 return CN; 9049 9050 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9051 BitVector UndefElements; 9052 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9053 9054 // BuildVectors can truncate their operands. Ignore that case here unless 9055 // AllowTruncation is set. 9056 if (CN && (UndefElements.none() || AllowUndefs)) { 9057 EVT CVT = CN->getValueType(0); 9058 EVT NSVT = N.getValueType().getScalarType(); 9059 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9060 if (AllowTruncation || (CVT == NSVT)) 9061 return CN; 9062 } 9063 } 9064 9065 return nullptr; 9066 } 9067 9068 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9069 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9070 return CN; 9071 9072 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9073 BitVector UndefElements; 9074 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9075 if (CN && (UndefElements.none() || AllowUndefs)) 9076 return CN; 9077 } 9078 9079 return nullptr; 9080 } 9081 9082 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9083 const APInt &DemandedElts, 9084 bool AllowUndefs) { 9085 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9086 return CN; 9087 9088 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9089 BitVector UndefElements; 9090 ConstantFPSDNode *CN = 9091 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9092 if (CN && (UndefElements.none() || AllowUndefs)) 9093 return CN; 9094 } 9095 9096 return nullptr; 9097 } 9098 9099 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9100 // TODO: may want to use peekThroughBitcast() here. 9101 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9102 return C && C->isNullValue(); 9103 } 9104 9105 bool llvm::isOneOrOneSplat(SDValue N) { 9106 // TODO: may want to use peekThroughBitcast() here. 9107 unsigned BitWidth = N.getScalarValueSizeInBits(); 9108 ConstantSDNode *C = isConstOrConstSplat(N); 9109 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9110 } 9111 9112 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9113 N = peekThroughBitcasts(N); 9114 unsigned BitWidth = N.getScalarValueSizeInBits(); 9115 ConstantSDNode *C = isConstOrConstSplat(N); 9116 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9117 } 9118 9119 HandleSDNode::~HandleSDNode() { 9120 DropOperands(); 9121 } 9122 9123 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9124 const DebugLoc &DL, 9125 const GlobalValue *GA, EVT VT, 9126 int64_t o, unsigned TF) 9127 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9128 TheGlobal = GA; 9129 } 9130 9131 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9132 EVT VT, unsigned SrcAS, 9133 unsigned DestAS) 9134 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9135 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9136 9137 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9138 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9139 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9140 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9141 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9142 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9143 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9144 9145 // We check here that the size of the memory operand fits within the size of 9146 // the MMO. This is because the MMO might indicate only a possible address 9147 // range instead of specifying the affected memory addresses precisely. 9148 // TODO: Make MachineMemOperands aware of scalable vectors. 9149 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9150 "Size mismatch!"); 9151 } 9152 9153 /// Profile - Gather unique data for the node. 9154 /// 9155 void SDNode::Profile(FoldingSetNodeID &ID) const { 9156 AddNodeIDNode(ID, this); 9157 } 9158 9159 namespace { 9160 9161 struct EVTArray { 9162 std::vector<EVT> VTs; 9163 9164 EVTArray() { 9165 VTs.reserve(MVT::LAST_VALUETYPE); 9166 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9167 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9168 } 9169 }; 9170 9171 } // end anonymous namespace 9172 9173 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9174 static ManagedStatic<EVTArray> SimpleVTArray; 9175 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9176 9177 /// getValueTypeList - Return a pointer to the specified value type. 9178 /// 9179 const EVT *SDNode::getValueTypeList(EVT VT) { 9180 if (VT.isExtended()) { 9181 sys::SmartScopedLock<true> Lock(*VTMutex); 9182 return &(*EVTs->insert(VT).first); 9183 } else { 9184 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9185 "Value type out of range!"); 9186 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9187 } 9188 } 9189 9190 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9191 /// indicated value. This method ignores uses of other values defined by this 9192 /// operation. 9193 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9194 assert(Value < getNumValues() && "Bad value!"); 9195 9196 // TODO: Only iterate over uses of a given value of the node 9197 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9198 if (UI.getUse().getResNo() == Value) { 9199 if (NUses == 0) 9200 return false; 9201 --NUses; 9202 } 9203 } 9204 9205 // Found exactly the right number of uses? 9206 return NUses == 0; 9207 } 9208 9209 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9210 /// value. This method ignores uses of other values defined by this operation. 9211 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9212 assert(Value < getNumValues() && "Bad value!"); 9213 9214 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9215 if (UI.getUse().getResNo() == Value) 9216 return true; 9217 9218 return false; 9219 } 9220 9221 /// isOnlyUserOf - Return true if this node is the only use of N. 9222 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9223 bool Seen = false; 9224 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9225 SDNode *User = *I; 9226 if (User == this) 9227 Seen = true; 9228 else 9229 return false; 9230 } 9231 9232 return Seen; 9233 } 9234 9235 /// Return true if the only users of N are contained in Nodes. 9236 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9237 bool Seen = false; 9238 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9239 SDNode *User = *I; 9240 if (llvm::any_of(Nodes, 9241 [&User](const SDNode *Node) { return User == Node; })) 9242 Seen = true; 9243 else 9244 return false; 9245 } 9246 9247 return Seen; 9248 } 9249 9250 /// isOperand - Return true if this node is an operand of N. 9251 bool SDValue::isOperandOf(const SDNode *N) const { 9252 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9253 } 9254 9255 bool SDNode::isOperandOf(const SDNode *N) const { 9256 return any_of(N->op_values(), 9257 [this](SDValue Op) { return this == Op.getNode(); }); 9258 } 9259 9260 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9261 /// be a chain) reaches the specified operand without crossing any 9262 /// side-effecting instructions on any chain path. In practice, this looks 9263 /// through token factors and non-volatile loads. In order to remain efficient, 9264 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9265 /// 9266 /// Note that we only need to examine chains when we're searching for 9267 /// side-effects; SelectionDAG requires that all side-effects are represented 9268 /// by chains, even if another operand would force a specific ordering. This 9269 /// constraint is necessary to allow transformations like splitting loads. 9270 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9271 unsigned Depth) const { 9272 if (*this == Dest) return true; 9273 9274 // Don't search too deeply, we just want to be able to see through 9275 // TokenFactor's etc. 9276 if (Depth == 0) return false; 9277 9278 // If this is a token factor, all inputs to the TF happen in parallel. 9279 if (getOpcode() == ISD::TokenFactor) { 9280 // First, try a shallow search. 9281 if (is_contained((*this)->ops(), Dest)) { 9282 // We found the chain we want as an operand of this TokenFactor. 9283 // Essentially, we reach the chain without side-effects if we could 9284 // serialize the TokenFactor into a simple chain of operations with 9285 // Dest as the last operation. This is automatically true if the 9286 // chain has one use: there are no other ordering constraints. 9287 // If the chain has more than one use, we give up: some other 9288 // use of Dest might force a side-effect between Dest and the current 9289 // node. 9290 if (Dest.hasOneUse()) 9291 return true; 9292 } 9293 // Next, try a deep search: check whether every operand of the TokenFactor 9294 // reaches Dest. 9295 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9296 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9297 }); 9298 } 9299 9300 // Loads don't have side effects, look through them. 9301 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9302 if (Ld->isUnordered()) 9303 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9304 } 9305 return false; 9306 } 9307 9308 bool SDNode::hasPredecessor(const SDNode *N) const { 9309 SmallPtrSet<const SDNode *, 32> Visited; 9310 SmallVector<const SDNode *, 16> Worklist; 9311 Worklist.push_back(this); 9312 return hasPredecessorHelper(N, Visited, Worklist); 9313 } 9314 9315 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9316 this->Flags.intersectWith(Flags); 9317 } 9318 9319 SDValue 9320 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9321 ArrayRef<ISD::NodeType> CandidateBinOps, 9322 bool AllowPartials) { 9323 // The pattern must end in an extract from index 0. 9324 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9325 !isNullConstant(Extract->getOperand(1))) 9326 return SDValue(); 9327 9328 // Match against one of the candidate binary ops. 9329 SDValue Op = Extract->getOperand(0); 9330 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9331 return Op.getOpcode() == unsigned(BinOp); 9332 })) 9333 return SDValue(); 9334 9335 // Floating-point reductions may require relaxed constraints on the final step 9336 // of the reduction because they may reorder intermediate operations. 9337 unsigned CandidateBinOp = Op.getOpcode(); 9338 if (Op.getValueType().isFloatingPoint()) { 9339 SDNodeFlags Flags = Op->getFlags(); 9340 switch (CandidateBinOp) { 9341 case ISD::FADD: 9342 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9343 return SDValue(); 9344 break; 9345 default: 9346 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9347 } 9348 } 9349 9350 // Matching failed - attempt to see if we did enough stages that a partial 9351 // reduction from a subvector is possible. 9352 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9353 if (!AllowPartials || !Op) 9354 return SDValue(); 9355 EVT OpVT = Op.getValueType(); 9356 EVT OpSVT = OpVT.getScalarType(); 9357 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9358 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9359 return SDValue(); 9360 BinOp = (ISD::NodeType)CandidateBinOp; 9361 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9362 getVectorIdxConstant(0, SDLoc(Op))); 9363 }; 9364 9365 // At each stage, we're looking for something that looks like: 9366 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9367 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9368 // i32 undef, i32 undef, i32 undef, i32 undef> 9369 // %a = binop <8 x i32> %op, %s 9370 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9371 // we expect something like: 9372 // <4,5,6,7,u,u,u,u> 9373 // <2,3,u,u,u,u,u,u> 9374 // <1,u,u,u,u,u,u,u> 9375 // While a partial reduction match would be: 9376 // <2,3,u,u,u,u,u,u> 9377 // <1,u,u,u,u,u,u,u> 9378 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9379 SDValue PrevOp; 9380 for (unsigned i = 0; i < Stages; ++i) { 9381 unsigned MaskEnd = (1 << i); 9382 9383 if (Op.getOpcode() != CandidateBinOp) 9384 return PartialReduction(PrevOp, MaskEnd); 9385 9386 SDValue Op0 = Op.getOperand(0); 9387 SDValue Op1 = Op.getOperand(1); 9388 9389 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9390 if (Shuffle) { 9391 Op = Op1; 9392 } else { 9393 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9394 Op = Op0; 9395 } 9396 9397 // The first operand of the shuffle should be the same as the other operand 9398 // of the binop. 9399 if (!Shuffle || Shuffle->getOperand(0) != Op) 9400 return PartialReduction(PrevOp, MaskEnd); 9401 9402 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9403 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9404 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9405 return PartialReduction(PrevOp, MaskEnd); 9406 9407 PrevOp = Op; 9408 } 9409 9410 // Handle subvector reductions, which tend to appear after the shuffle 9411 // reduction stages. 9412 while (Op.getOpcode() == CandidateBinOp) { 9413 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9414 SDValue Op0 = Op.getOperand(0); 9415 SDValue Op1 = Op.getOperand(1); 9416 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9417 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9418 Op0.getOperand(0) != Op1.getOperand(0)) 9419 break; 9420 SDValue Src = Op0.getOperand(0); 9421 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9422 if (NumSrcElts != (2 * NumElts)) 9423 break; 9424 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9425 Op1.getConstantOperandAPInt(1) == NumElts) && 9426 !(Op1.getConstantOperandAPInt(1) == 0 && 9427 Op0.getConstantOperandAPInt(1) == NumElts)) 9428 break; 9429 Op = Src; 9430 } 9431 9432 BinOp = (ISD::NodeType)CandidateBinOp; 9433 return Op; 9434 } 9435 9436 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9437 assert(N->getNumValues() == 1 && 9438 "Can't unroll a vector with multiple results!"); 9439 9440 EVT VT = N->getValueType(0); 9441 unsigned NE = VT.getVectorNumElements(); 9442 EVT EltVT = VT.getVectorElementType(); 9443 SDLoc dl(N); 9444 9445 SmallVector<SDValue, 8> Scalars; 9446 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9447 9448 // If ResNE is 0, fully unroll the vector op. 9449 if (ResNE == 0) 9450 ResNE = NE; 9451 else if (NE > ResNE) 9452 NE = ResNE; 9453 9454 unsigned i; 9455 for (i= 0; i != NE; ++i) { 9456 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9457 SDValue Operand = N->getOperand(j); 9458 EVT OperandVT = Operand.getValueType(); 9459 if (OperandVT.isVector()) { 9460 // A vector operand; extract a single element. 9461 EVT OperandEltVT = OperandVT.getVectorElementType(); 9462 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9463 Operand, getVectorIdxConstant(i, dl)); 9464 } else { 9465 // A scalar operand; just use it as is. 9466 Operands[j] = Operand; 9467 } 9468 } 9469 9470 switch (N->getOpcode()) { 9471 default: { 9472 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9473 N->getFlags())); 9474 break; 9475 } 9476 case ISD::VSELECT: 9477 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9478 break; 9479 case ISD::SHL: 9480 case ISD::SRA: 9481 case ISD::SRL: 9482 case ISD::ROTL: 9483 case ISD::ROTR: 9484 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9485 getShiftAmountOperand(Operands[0].getValueType(), 9486 Operands[1]))); 9487 break; 9488 case ISD::SIGN_EXTEND_INREG: { 9489 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9490 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9491 Operands[0], 9492 getValueType(ExtVT))); 9493 } 9494 } 9495 } 9496 9497 for (; i < ResNE; ++i) 9498 Scalars.push_back(getUNDEF(EltVT)); 9499 9500 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9501 return getBuildVector(VecVT, dl, Scalars); 9502 } 9503 9504 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9505 SDNode *N, unsigned ResNE) { 9506 unsigned Opcode = N->getOpcode(); 9507 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9508 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9509 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9510 "Expected an overflow opcode"); 9511 9512 EVT ResVT = N->getValueType(0); 9513 EVT OvVT = N->getValueType(1); 9514 EVT ResEltVT = ResVT.getVectorElementType(); 9515 EVT OvEltVT = OvVT.getVectorElementType(); 9516 SDLoc dl(N); 9517 9518 // If ResNE is 0, fully unroll the vector op. 9519 unsigned NE = ResVT.getVectorNumElements(); 9520 if (ResNE == 0) 9521 ResNE = NE; 9522 else if (NE > ResNE) 9523 NE = ResNE; 9524 9525 SmallVector<SDValue, 8> LHSScalars; 9526 SmallVector<SDValue, 8> RHSScalars; 9527 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9528 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9529 9530 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9531 SDVTList VTs = getVTList(ResEltVT, SVT); 9532 SmallVector<SDValue, 8> ResScalars; 9533 SmallVector<SDValue, 8> OvScalars; 9534 for (unsigned i = 0; i < NE; ++i) { 9535 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9536 SDValue Ov = 9537 getSelect(dl, OvEltVT, Res.getValue(1), 9538 getBoolConstant(true, dl, OvEltVT, ResVT), 9539 getConstant(0, dl, OvEltVT)); 9540 9541 ResScalars.push_back(Res); 9542 OvScalars.push_back(Ov); 9543 } 9544 9545 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9546 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9547 9548 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9549 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9550 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9551 getBuildVector(NewOvVT, dl, OvScalars)); 9552 } 9553 9554 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9555 LoadSDNode *Base, 9556 unsigned Bytes, 9557 int Dist) const { 9558 if (LD->isVolatile() || Base->isVolatile()) 9559 return false; 9560 // TODO: probably too restrictive for atomics, revisit 9561 if (!LD->isSimple()) 9562 return false; 9563 if (LD->isIndexed() || Base->isIndexed()) 9564 return false; 9565 if (LD->getChain() != Base->getChain()) 9566 return false; 9567 EVT VT = LD->getValueType(0); 9568 if (VT.getSizeInBits() / 8 != Bytes) 9569 return false; 9570 9571 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9572 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9573 9574 int64_t Offset = 0; 9575 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9576 return (Dist * Bytes == Offset); 9577 return false; 9578 } 9579 9580 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9581 /// if it cannot be inferred. 9582 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9583 // If this is a GlobalAddress + cst, return the alignment. 9584 const GlobalValue *GV = nullptr; 9585 int64_t GVOffset = 0; 9586 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9587 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9588 KnownBits Known(PtrWidth); 9589 llvm::computeKnownBits(GV, Known, getDataLayout()); 9590 unsigned AlignBits = Known.countMinTrailingZeros(); 9591 if (AlignBits) 9592 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9593 } 9594 9595 // If this is a direct reference to a stack slot, use information about the 9596 // stack slot's alignment. 9597 int FrameIdx = INT_MIN; 9598 int64_t FrameOffset = 0; 9599 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9600 FrameIdx = FI->getIndex(); 9601 } else if (isBaseWithConstantOffset(Ptr) && 9602 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9603 // Handle FI+Cst 9604 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9605 FrameOffset = Ptr.getConstantOperandVal(1); 9606 } 9607 9608 if (FrameIdx != INT_MIN) { 9609 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9610 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9611 } 9612 9613 return None; 9614 } 9615 9616 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9617 /// which is split (or expanded) into two not necessarily identical pieces. 9618 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9619 // Currently all types are split in half. 9620 EVT LoVT, HiVT; 9621 if (!VT.isVector()) 9622 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9623 else 9624 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9625 9626 return std::make_pair(LoVT, HiVT); 9627 } 9628 9629 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9630 /// type, dependent on an enveloping VT that has been split into two identical 9631 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9632 std::pair<EVT, EVT> 9633 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9634 bool *HiIsEmpty) const { 9635 EVT EltTp = VT.getVectorElementType(); 9636 bool IsScalable = VT.isScalableVector(); 9637 // Examples: 9638 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9639 // custom VL=9 with enveloping VL=8/8 yields 8/1 9640 // custom VL=10 with enveloping VL=8/8 yields 8/2 9641 // etc. 9642 unsigned VTNumElts = VT.getVectorNumElements(); 9643 unsigned EnvNumElts = EnvVT.getVectorNumElements(); 9644 EVT LoVT, HiVT; 9645 if (VTNumElts > EnvNumElts) { 9646 LoVT = EnvVT; 9647 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, 9648 IsScalable); 9649 *HiIsEmpty = false; 9650 } else { 9651 // Flag that hi type has zero storage size, but return split envelop type 9652 // (this would be easier if vector types with zero elements were allowed). 9653 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); 9654 HiVT = EnvVT; 9655 *HiIsEmpty = true; 9656 } 9657 return std::make_pair(LoVT, HiVT); 9658 } 9659 9660 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9661 /// low/high part. 9662 std::pair<SDValue, SDValue> 9663 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9664 const EVT &HiVT) { 9665 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9666 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9667 "Splitting vector with an invalid mixture of fixed and scalable " 9668 "vector types"); 9669 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9670 N.getValueType().getVectorMinNumElements() && 9671 "More vector elements requested than available!"); 9672 SDValue Lo, Hi; 9673 Lo = 9674 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9675 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9676 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9677 // IDX with the runtime scaling factor of the result vector type. For 9678 // fixed-width result vectors, that runtime scaling factor is 1. 9679 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9680 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9681 return std::make_pair(Lo, Hi); 9682 } 9683 9684 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9685 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9686 EVT VT = N.getValueType(); 9687 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9688 NextPowerOf2(VT.getVectorNumElements())); 9689 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9690 getVectorIdxConstant(0, DL)); 9691 } 9692 9693 void SelectionDAG::ExtractVectorElements(SDValue Op, 9694 SmallVectorImpl<SDValue> &Args, 9695 unsigned Start, unsigned Count, 9696 EVT EltVT) { 9697 EVT VT = Op.getValueType(); 9698 if (Count == 0) 9699 Count = VT.getVectorNumElements(); 9700 if (EltVT == EVT()) 9701 EltVT = VT.getVectorElementType(); 9702 SDLoc SL(Op); 9703 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9704 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9705 getVectorIdxConstant(i, SL))); 9706 } 9707 } 9708 9709 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9710 unsigned GlobalAddressSDNode::getAddressSpace() const { 9711 return getGlobal()->getType()->getAddressSpace(); 9712 } 9713 9714 Type *ConstantPoolSDNode::getType() const { 9715 if (isMachineConstantPoolEntry()) 9716 return Val.MachineCPVal->getType(); 9717 return Val.ConstVal->getType(); 9718 } 9719 9720 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9721 unsigned &SplatBitSize, 9722 bool &HasAnyUndefs, 9723 unsigned MinSplatBits, 9724 bool IsBigEndian) const { 9725 EVT VT = getValueType(0); 9726 assert(VT.isVector() && "Expected a vector type"); 9727 unsigned VecWidth = VT.getSizeInBits(); 9728 if (MinSplatBits > VecWidth) 9729 return false; 9730 9731 // FIXME: The widths are based on this node's type, but build vectors can 9732 // truncate their operands. 9733 SplatValue = APInt(VecWidth, 0); 9734 SplatUndef = APInt(VecWidth, 0); 9735 9736 // Get the bits. Bits with undefined values (when the corresponding element 9737 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9738 // in SplatValue. If any of the values are not constant, give up and return 9739 // false. 9740 unsigned int NumOps = getNumOperands(); 9741 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9742 unsigned EltWidth = VT.getScalarSizeInBits(); 9743 9744 for (unsigned j = 0; j < NumOps; ++j) { 9745 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9746 SDValue OpVal = getOperand(i); 9747 unsigned BitPos = j * EltWidth; 9748 9749 if (OpVal.isUndef()) 9750 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9751 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9752 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9753 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9754 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9755 else 9756 return false; 9757 } 9758 9759 // The build_vector is all constants or undefs. Find the smallest element 9760 // size that splats the vector. 9761 HasAnyUndefs = (SplatUndef != 0); 9762 9763 // FIXME: This does not work for vectors with elements less than 8 bits. 9764 while (VecWidth > 8) { 9765 unsigned HalfSize = VecWidth / 2; 9766 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9767 APInt LowValue = SplatValue.trunc(HalfSize); 9768 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9769 APInt LowUndef = SplatUndef.trunc(HalfSize); 9770 9771 // If the two halves do not match (ignoring undef bits), stop here. 9772 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9773 MinSplatBits > HalfSize) 9774 break; 9775 9776 SplatValue = HighValue | LowValue; 9777 SplatUndef = HighUndef & LowUndef; 9778 9779 VecWidth = HalfSize; 9780 } 9781 9782 SplatBitSize = VecWidth; 9783 return true; 9784 } 9785 9786 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9787 BitVector *UndefElements) const { 9788 if (UndefElements) { 9789 UndefElements->clear(); 9790 UndefElements->resize(getNumOperands()); 9791 } 9792 assert(getNumOperands() == DemandedElts.getBitWidth() && 9793 "Unexpected vector size"); 9794 if (!DemandedElts) 9795 return SDValue(); 9796 SDValue Splatted; 9797 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9798 if (!DemandedElts[i]) 9799 continue; 9800 SDValue Op = getOperand(i); 9801 if (Op.isUndef()) { 9802 if (UndefElements) 9803 (*UndefElements)[i] = true; 9804 } else if (!Splatted) { 9805 Splatted = Op; 9806 } else if (Splatted != Op) { 9807 return SDValue(); 9808 } 9809 } 9810 9811 if (!Splatted) { 9812 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9813 assert(getOperand(FirstDemandedIdx).isUndef() && 9814 "Can only have a splat without a constant for all undefs."); 9815 return getOperand(FirstDemandedIdx); 9816 } 9817 9818 return Splatted; 9819 } 9820 9821 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9822 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9823 return getSplatValue(DemandedElts, UndefElements); 9824 } 9825 9826 ConstantSDNode * 9827 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9828 BitVector *UndefElements) const { 9829 return dyn_cast_or_null<ConstantSDNode>( 9830 getSplatValue(DemandedElts, UndefElements)); 9831 } 9832 9833 ConstantSDNode * 9834 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9835 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9836 } 9837 9838 ConstantFPSDNode * 9839 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9840 BitVector *UndefElements) const { 9841 return dyn_cast_or_null<ConstantFPSDNode>( 9842 getSplatValue(DemandedElts, UndefElements)); 9843 } 9844 9845 ConstantFPSDNode * 9846 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9847 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9848 } 9849 9850 int32_t 9851 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9852 uint32_t BitWidth) const { 9853 if (ConstantFPSDNode *CN = 9854 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9855 bool IsExact; 9856 APSInt IntVal(BitWidth); 9857 const APFloat &APF = CN->getValueAPF(); 9858 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9859 APFloat::opOK || 9860 !IsExact) 9861 return -1; 9862 9863 return IntVal.exactLogBase2(); 9864 } 9865 return -1; 9866 } 9867 9868 bool BuildVectorSDNode::isConstant() const { 9869 for (const SDValue &Op : op_values()) { 9870 unsigned Opc = Op.getOpcode(); 9871 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9872 return false; 9873 } 9874 return true; 9875 } 9876 9877 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9878 // Find the first non-undef value in the shuffle mask. 9879 unsigned i, e; 9880 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9881 /* search */; 9882 9883 // If all elements are undefined, this shuffle can be considered a splat 9884 // (although it should eventually get simplified away completely). 9885 if (i == e) 9886 return true; 9887 9888 // Make sure all remaining elements are either undef or the same as the first 9889 // non-undef value. 9890 for (int Idx = Mask[i]; i != e; ++i) 9891 if (Mask[i] >= 0 && Mask[i] != Idx) 9892 return false; 9893 return true; 9894 } 9895 9896 // Returns the SDNode if it is a constant integer BuildVector 9897 // or constant integer. 9898 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9899 if (isa<ConstantSDNode>(N)) 9900 return N.getNode(); 9901 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9902 return N.getNode(); 9903 // Treat a GlobalAddress supporting constant offset folding as a 9904 // constant integer. 9905 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9906 if (GA->getOpcode() == ISD::GlobalAddress && 9907 TLI->isOffsetFoldingLegal(GA)) 9908 return GA; 9909 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 9910 isa<ConstantSDNode>(N.getOperand(0))) 9911 return N.getNode(); 9912 return nullptr; 9913 } 9914 9915 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9916 if (isa<ConstantFPSDNode>(N)) 9917 return N.getNode(); 9918 9919 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9920 return N.getNode(); 9921 9922 return nullptr; 9923 } 9924 9925 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9926 assert(!Node->OperandList && "Node already has operands"); 9927 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9928 "too many operands to fit into SDNode"); 9929 SDUse *Ops = OperandRecycler.allocate( 9930 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9931 9932 bool IsDivergent = false; 9933 for (unsigned I = 0; I != Vals.size(); ++I) { 9934 Ops[I].setUser(Node); 9935 Ops[I].setInitial(Vals[I]); 9936 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9937 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9938 } 9939 Node->NumOperands = Vals.size(); 9940 Node->OperandList = Ops; 9941 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9942 if (!TLI->isSDNodeAlwaysUniform(Node)) 9943 Node->SDNodeBits.IsDivergent = IsDivergent; 9944 checkForCycles(Node); 9945 } 9946 9947 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9948 SmallVectorImpl<SDValue> &Vals) { 9949 size_t Limit = SDNode::getMaxNumOperands(); 9950 while (Vals.size() > Limit) { 9951 unsigned SliceIdx = Vals.size() - Limit; 9952 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9953 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9954 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9955 Vals.emplace_back(NewTF); 9956 } 9957 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9958 } 9959 9960 #ifndef NDEBUG 9961 static void checkForCyclesHelper(const SDNode *N, 9962 SmallPtrSetImpl<const SDNode*> &Visited, 9963 SmallPtrSetImpl<const SDNode*> &Checked, 9964 const llvm::SelectionDAG *DAG) { 9965 // If this node has already been checked, don't check it again. 9966 if (Checked.count(N)) 9967 return; 9968 9969 // If a node has already been visited on this depth-first walk, reject it as 9970 // a cycle. 9971 if (!Visited.insert(N).second) { 9972 errs() << "Detected cycle in SelectionDAG\n"; 9973 dbgs() << "Offending node:\n"; 9974 N->dumprFull(DAG); dbgs() << "\n"; 9975 abort(); 9976 } 9977 9978 for (const SDValue &Op : N->op_values()) 9979 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9980 9981 Checked.insert(N); 9982 Visited.erase(N); 9983 } 9984 #endif 9985 9986 void llvm::checkForCycles(const llvm::SDNode *N, 9987 const llvm::SelectionDAG *DAG, 9988 bool force) { 9989 #ifndef NDEBUG 9990 bool check = force; 9991 #ifdef EXPENSIVE_CHECKS 9992 check = true; 9993 #endif // EXPENSIVE_CHECKS 9994 if (check) { 9995 assert(N && "Checking nonexistent SDNode"); 9996 SmallPtrSet<const SDNode*, 32> visited; 9997 SmallPtrSet<const SDNode*, 32> checked; 9998 checkForCyclesHelper(N, visited, checked, DAG); 9999 } 10000 #endif // !NDEBUG 10001 } 10002 10003 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10004 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10005 } 10006