1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 APInt DemandedElts = VT.isVector() 2473 ? APInt::getAllOnes(VT.getVectorNumElements()) 2474 : APInt(1, 1); 2475 return GetDemandedBits(V, DemandedBits, DemandedElts); 2476 } 2477 2478 /// See if the specified operand can be simplified with the knowledge that only 2479 /// the bits specified by DemandedBits are used in the elements specified by 2480 /// DemandedElts. 2481 /// TODO: really we should be making this into the DAG equivalent of 2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2484 const APInt &DemandedElts) { 2485 switch (V.getOpcode()) { 2486 default: 2487 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2488 *this); 2489 case ISD::Constant: { 2490 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2491 APInt NewVal = CVal & DemandedBits; 2492 if (NewVal != CVal) 2493 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2494 break; 2495 } 2496 case ISD::SRL: 2497 // Only look at single-use SRLs. 2498 if (!V.getNode()->hasOneUse()) 2499 break; 2500 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2501 // See if we can recursively simplify the LHS. 2502 unsigned Amt = RHSC->getZExtValue(); 2503 2504 // Watch out for shift count overflow though. 2505 if (Amt >= DemandedBits.getBitWidth()) 2506 break; 2507 APInt SrcDemandedBits = DemandedBits << Amt; 2508 if (SDValue SimplifyLHS = 2509 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2510 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2511 V.getOperand(1)); 2512 } 2513 break; 2514 } 2515 return SDValue(); 2516 } 2517 2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2519 /// use this predicate to simplify operations downstream. 2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2521 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2522 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2523 } 2524 2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2526 /// this predicate to simplify operations downstream. Mask is known to be zero 2527 /// for bits that V cannot have. 2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2529 unsigned Depth) const { 2530 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2531 } 2532 2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2534 /// DemandedElts. We use this predicate to simplify operations downstream. 2535 /// Mask is known to be zero for bits that V cannot have. 2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2537 const APInt &DemandedElts, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2540 } 2541 2542 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2543 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2544 unsigned Depth) const { 2545 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2546 } 2547 2548 /// isSplatValue - Return true if the vector V has the same value 2549 /// across all DemandedElts. For scalable vectors it does not make 2550 /// sense to specify which elements are demanded or undefined, therefore 2551 /// they are simply ignored. 2552 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2553 APInt &UndefElts, unsigned Depth) const { 2554 unsigned Opcode = V.getOpcode(); 2555 EVT VT = V.getValueType(); 2556 assert(VT.isVector() && "Vector type expected"); 2557 2558 if (!VT.isScalableVector() && !DemandedElts) 2559 return false; // No demanded elts, better to assume we don't know anything. 2560 2561 if (Depth >= MaxRecursionDepth) 2562 return false; // Limit search depth. 2563 2564 // Deal with some common cases here that work for both fixed and scalable 2565 // vector types. 2566 switch (Opcode) { 2567 case ISD::SPLAT_VECTOR: 2568 UndefElts = V.getOperand(0).isUndef() 2569 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2570 : APInt(DemandedElts.getBitWidth(), 0); 2571 return true; 2572 case ISD::ADD: 2573 case ISD::SUB: 2574 case ISD::AND: 2575 case ISD::XOR: 2576 case ISD::OR: { 2577 APInt UndefLHS, UndefRHS; 2578 SDValue LHS = V.getOperand(0); 2579 SDValue RHS = V.getOperand(1); 2580 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2581 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2582 UndefElts = UndefLHS | UndefRHS; 2583 return true; 2584 } 2585 return false; 2586 } 2587 case ISD::ABS: 2588 case ISD::TRUNCATE: 2589 case ISD::SIGN_EXTEND: 2590 case ISD::ZERO_EXTEND: 2591 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2592 default: 2593 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2594 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2595 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2596 break; 2597 } 2598 2599 // We don't support other cases than those above for scalable vectors at 2600 // the moment. 2601 if (VT.isScalableVector()) 2602 return false; 2603 2604 unsigned NumElts = VT.getVectorNumElements(); 2605 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2606 UndefElts = APInt::getZero(NumElts); 2607 2608 switch (Opcode) { 2609 case ISD::BUILD_VECTOR: { 2610 SDValue Scl; 2611 for (unsigned i = 0; i != NumElts; ++i) { 2612 SDValue Op = V.getOperand(i); 2613 if (Op.isUndef()) { 2614 UndefElts.setBit(i); 2615 continue; 2616 } 2617 if (!DemandedElts[i]) 2618 continue; 2619 if (Scl && Scl != Op) 2620 return false; 2621 Scl = Op; 2622 } 2623 return true; 2624 } 2625 case ISD::VECTOR_SHUFFLE: { 2626 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2627 APInt DemandedLHS = APInt::getNullValue(NumElts); 2628 APInt DemandedRHS = APInt::getNullValue(NumElts); 2629 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2630 for (int i = 0; i != (int)NumElts; ++i) { 2631 int M = Mask[i]; 2632 if (M < 0) { 2633 UndefElts.setBit(i); 2634 continue; 2635 } 2636 if (!DemandedElts[i]) 2637 continue; 2638 if (M < (int)NumElts) 2639 DemandedLHS.setBit(M); 2640 else 2641 DemandedRHS.setBit(M - NumElts); 2642 } 2643 2644 // If we aren't demanding either op, assume there's no splat. 2645 // If we are demanding both ops, assume there's no splat. 2646 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2647 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2648 return false; 2649 2650 // See if the demanded elts of the source op is a splat or we only demand 2651 // one element, which should always be a splat. 2652 // TODO: Handle source ops splats with undefs. 2653 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2654 APInt SrcUndefs; 2655 return (SrcElts.countPopulation() == 1) || 2656 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2657 (SrcElts & SrcUndefs).isZero()); 2658 }; 2659 if (!DemandedLHS.isZero()) 2660 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2661 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2662 } 2663 case ISD::EXTRACT_SUBVECTOR: { 2664 // Offset the demanded elts by the subvector index. 2665 SDValue Src = V.getOperand(0); 2666 // We don't support scalable vectors at the moment. 2667 if (Src.getValueType().isScalableVector()) 2668 return false; 2669 uint64_t Idx = V.getConstantOperandVal(1); 2670 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2671 APInt UndefSrcElts; 2672 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2673 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2674 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2675 return true; 2676 } 2677 break; 2678 } 2679 case ISD::ANY_EXTEND_VECTOR_INREG: 2680 case ISD::SIGN_EXTEND_VECTOR_INREG: 2681 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2682 // Widen the demanded elts by the src element count. 2683 SDValue Src = V.getOperand(0); 2684 // We don't support scalable vectors at the moment. 2685 if (Src.getValueType().isScalableVector()) 2686 return false; 2687 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2688 APInt UndefSrcElts; 2689 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2690 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2691 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2692 return true; 2693 } 2694 break; 2695 } 2696 case ISD::BITCAST: { 2697 SDValue Src = V.getOperand(0); 2698 EVT SrcVT = Src.getValueType(); 2699 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2700 unsigned BitWidth = VT.getScalarSizeInBits(); 2701 2702 // Ignore bitcasts from unsupported types. 2703 // TODO: Add fp support? 2704 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2705 break; 2706 2707 // Bitcast 'small element' vector to 'large element' vector. 2708 if ((BitWidth % SrcBitWidth) == 0) { 2709 // See if each sub element is a splat. 2710 unsigned Scale = BitWidth / SrcBitWidth; 2711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2712 APInt ScaledDemandedElts = 2713 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2714 for (unsigned I = 0; I != Scale; ++I) { 2715 APInt SubUndefElts; 2716 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2717 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2718 SubDemandedElts &= ScaledDemandedElts; 2719 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2720 return false; 2721 // TODO: Add support for merging sub undef elements. 2722 if (SubDemandedElts.isSubsetOf(SubUndefElts)) 2723 return false; 2724 } 2725 return true; 2726 } 2727 break; 2728 } 2729 } 2730 2731 return false; 2732 } 2733 2734 /// Helper wrapper to main isSplatValue function. 2735 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2736 EVT VT = V.getValueType(); 2737 assert(VT.isVector() && "Vector type expected"); 2738 2739 APInt UndefElts; 2740 APInt DemandedElts; 2741 2742 // For now we don't support this with scalable vectors. 2743 if (!VT.isScalableVector()) 2744 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2745 return isSplatValue(V, DemandedElts, UndefElts) && 2746 (AllowUndefs || !UndefElts); 2747 } 2748 2749 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2750 V = peekThroughExtractSubvectors(V); 2751 2752 EVT VT = V.getValueType(); 2753 unsigned Opcode = V.getOpcode(); 2754 switch (Opcode) { 2755 default: { 2756 APInt UndefElts; 2757 APInt DemandedElts; 2758 2759 if (!VT.isScalableVector()) 2760 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2761 2762 if (isSplatValue(V, DemandedElts, UndefElts)) { 2763 if (VT.isScalableVector()) { 2764 // DemandedElts and UndefElts are ignored for scalable vectors, since 2765 // the only supported cases are SPLAT_VECTOR nodes. 2766 SplatIdx = 0; 2767 } else { 2768 // Handle case where all demanded elements are UNDEF. 2769 if (DemandedElts.isSubsetOf(UndefElts)) { 2770 SplatIdx = 0; 2771 return getUNDEF(VT); 2772 } 2773 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2774 } 2775 return V; 2776 } 2777 break; 2778 } 2779 case ISD::SPLAT_VECTOR: 2780 SplatIdx = 0; 2781 return V; 2782 case ISD::VECTOR_SHUFFLE: { 2783 if (VT.isScalableVector()) 2784 return SDValue(); 2785 2786 // Check if this is a shuffle node doing a splat. 2787 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2788 // getTargetVShiftNode currently struggles without the splat source. 2789 auto *SVN = cast<ShuffleVectorSDNode>(V); 2790 if (!SVN->isSplat()) 2791 break; 2792 int Idx = SVN->getSplatIndex(); 2793 int NumElts = V.getValueType().getVectorNumElements(); 2794 SplatIdx = Idx % NumElts; 2795 return V.getOperand(Idx / NumElts); 2796 } 2797 } 2798 2799 return SDValue(); 2800 } 2801 2802 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2803 int SplatIdx; 2804 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2805 EVT SVT = SrcVector.getValueType().getScalarType(); 2806 EVT LegalSVT = SVT; 2807 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2808 if (!SVT.isInteger()) 2809 return SDValue(); 2810 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2811 if (LegalSVT.bitsLT(SVT)) 2812 return SDValue(); 2813 } 2814 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2815 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2816 } 2817 return SDValue(); 2818 } 2819 2820 const APInt * 2821 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2822 const APInt &DemandedElts) const { 2823 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2824 V.getOpcode() == ISD::SRA) && 2825 "Unknown shift node"); 2826 unsigned BitWidth = V.getScalarValueSizeInBits(); 2827 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2828 // Shifting more than the bitwidth is not valid. 2829 const APInt &ShAmt = SA->getAPIntValue(); 2830 if (ShAmt.ult(BitWidth)) 2831 return &ShAmt; 2832 } 2833 return nullptr; 2834 } 2835 2836 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2837 SDValue V, const APInt &DemandedElts) const { 2838 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2839 V.getOpcode() == ISD::SRA) && 2840 "Unknown shift node"); 2841 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2842 return ValidAmt; 2843 unsigned BitWidth = V.getScalarValueSizeInBits(); 2844 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2845 if (!BV) 2846 return nullptr; 2847 const APInt *MinShAmt = nullptr; 2848 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2849 if (!DemandedElts[i]) 2850 continue; 2851 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2852 if (!SA) 2853 return nullptr; 2854 // Shifting more than the bitwidth is not valid. 2855 const APInt &ShAmt = SA->getAPIntValue(); 2856 if (ShAmt.uge(BitWidth)) 2857 return nullptr; 2858 if (MinShAmt && MinShAmt->ule(ShAmt)) 2859 continue; 2860 MinShAmt = &ShAmt; 2861 } 2862 return MinShAmt; 2863 } 2864 2865 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2866 SDValue V, const APInt &DemandedElts) const { 2867 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2868 V.getOpcode() == ISD::SRA) && 2869 "Unknown shift node"); 2870 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2871 return ValidAmt; 2872 unsigned BitWidth = V.getScalarValueSizeInBits(); 2873 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2874 if (!BV) 2875 return nullptr; 2876 const APInt *MaxShAmt = nullptr; 2877 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2878 if (!DemandedElts[i]) 2879 continue; 2880 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2881 if (!SA) 2882 return nullptr; 2883 // Shifting more than the bitwidth is not valid. 2884 const APInt &ShAmt = SA->getAPIntValue(); 2885 if (ShAmt.uge(BitWidth)) 2886 return nullptr; 2887 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2888 continue; 2889 MaxShAmt = &ShAmt; 2890 } 2891 return MaxShAmt; 2892 } 2893 2894 /// Determine which bits of Op are known to be either zero or one and return 2895 /// them in Known. For vectors, the known bits are those that are shared by 2896 /// every vector element. 2897 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2898 EVT VT = Op.getValueType(); 2899 2900 // TOOD: Until we have a plan for how to represent demanded elements for 2901 // scalable vectors, we can just bail out for now. 2902 if (Op.getValueType().isScalableVector()) { 2903 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2904 return KnownBits(BitWidth); 2905 } 2906 2907 APInt DemandedElts = VT.isVector() 2908 ? APInt::getAllOnes(VT.getVectorNumElements()) 2909 : APInt(1, 1); 2910 return computeKnownBits(Op, DemandedElts, Depth); 2911 } 2912 2913 /// Determine which bits of Op are known to be either zero or one and return 2914 /// them in Known. The DemandedElts argument allows us to only collect the known 2915 /// bits that are shared by the requested vector elements. 2916 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2917 unsigned Depth) const { 2918 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2919 2920 KnownBits Known(BitWidth); // Don't know anything. 2921 2922 // TOOD: Until we have a plan for how to represent demanded elements for 2923 // scalable vectors, we can just bail out for now. 2924 if (Op.getValueType().isScalableVector()) 2925 return Known; 2926 2927 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2928 // We know all of the bits for a constant! 2929 return KnownBits::makeConstant(C->getAPIntValue()); 2930 } 2931 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2932 // We know all of the bits for a constant fp! 2933 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2934 } 2935 2936 if (Depth >= MaxRecursionDepth) 2937 return Known; // Limit search depth. 2938 2939 KnownBits Known2; 2940 unsigned NumElts = DemandedElts.getBitWidth(); 2941 assert((!Op.getValueType().isVector() || 2942 NumElts == Op.getValueType().getVectorNumElements()) && 2943 "Unexpected vector size"); 2944 2945 if (!DemandedElts) 2946 return Known; // No demanded elts, better to assume we don't know anything. 2947 2948 unsigned Opcode = Op.getOpcode(); 2949 switch (Opcode) { 2950 case ISD::BUILD_VECTOR: 2951 // Collect the known bits that are shared by every demanded vector element. 2952 Known.Zero.setAllBits(); Known.One.setAllBits(); 2953 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2954 if (!DemandedElts[i]) 2955 continue; 2956 2957 SDValue SrcOp = Op.getOperand(i); 2958 Known2 = computeKnownBits(SrcOp, Depth + 1); 2959 2960 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2961 if (SrcOp.getValueSizeInBits() != BitWidth) { 2962 assert(SrcOp.getValueSizeInBits() > BitWidth && 2963 "Expected BUILD_VECTOR implicit truncation"); 2964 Known2 = Known2.trunc(BitWidth); 2965 } 2966 2967 // Known bits are the values that are shared by every demanded element. 2968 Known = KnownBits::commonBits(Known, Known2); 2969 2970 // If we don't know any bits, early out. 2971 if (Known.isUnknown()) 2972 break; 2973 } 2974 break; 2975 case ISD::VECTOR_SHUFFLE: { 2976 // Collect the known bits that are shared by every vector element referenced 2977 // by the shuffle. 2978 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2979 Known.Zero.setAllBits(); Known.One.setAllBits(); 2980 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2981 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2982 for (unsigned i = 0; i != NumElts; ++i) { 2983 if (!DemandedElts[i]) 2984 continue; 2985 2986 int M = SVN->getMaskElt(i); 2987 if (M < 0) { 2988 // For UNDEF elements, we don't know anything about the common state of 2989 // the shuffle result. 2990 Known.resetAll(); 2991 DemandedLHS.clearAllBits(); 2992 DemandedRHS.clearAllBits(); 2993 break; 2994 } 2995 2996 if ((unsigned)M < NumElts) 2997 DemandedLHS.setBit((unsigned)M % NumElts); 2998 else 2999 DemandedRHS.setBit((unsigned)M % NumElts); 3000 } 3001 // Known bits are the values that are shared by every demanded element. 3002 if (!!DemandedLHS) { 3003 SDValue LHS = Op.getOperand(0); 3004 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3005 Known = KnownBits::commonBits(Known, Known2); 3006 } 3007 // If we don't know any bits, early out. 3008 if (Known.isUnknown()) 3009 break; 3010 if (!!DemandedRHS) { 3011 SDValue RHS = Op.getOperand(1); 3012 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3013 Known = KnownBits::commonBits(Known, Known2); 3014 } 3015 break; 3016 } 3017 case ISD::CONCAT_VECTORS: { 3018 // Split DemandedElts and test each of the demanded subvectors. 3019 Known.Zero.setAllBits(); Known.One.setAllBits(); 3020 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3021 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3022 unsigned NumSubVectors = Op.getNumOperands(); 3023 for (unsigned i = 0; i != NumSubVectors; ++i) { 3024 APInt DemandedSub = 3025 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3026 if (!!DemandedSub) { 3027 SDValue Sub = Op.getOperand(i); 3028 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3029 Known = KnownBits::commonBits(Known, Known2); 3030 } 3031 // If we don't know any bits, early out. 3032 if (Known.isUnknown()) 3033 break; 3034 } 3035 break; 3036 } 3037 case ISD::INSERT_SUBVECTOR: { 3038 // Demand any elements from the subvector and the remainder from the src its 3039 // inserted into. 3040 SDValue Src = Op.getOperand(0); 3041 SDValue Sub = Op.getOperand(1); 3042 uint64_t Idx = Op.getConstantOperandVal(2); 3043 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3044 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3045 APInt DemandedSrcElts = DemandedElts; 3046 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3047 3048 Known.One.setAllBits(); 3049 Known.Zero.setAllBits(); 3050 if (!!DemandedSubElts) { 3051 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3052 if (Known.isUnknown()) 3053 break; // early-out. 3054 } 3055 if (!!DemandedSrcElts) { 3056 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3057 Known = KnownBits::commonBits(Known, Known2); 3058 } 3059 break; 3060 } 3061 case ISD::EXTRACT_SUBVECTOR: { 3062 // Offset the demanded elts by the subvector index. 3063 SDValue Src = Op.getOperand(0); 3064 // Bail until we can represent demanded elements for scalable vectors. 3065 if (Src.getValueType().isScalableVector()) 3066 break; 3067 uint64_t Idx = Op.getConstantOperandVal(1); 3068 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3069 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3070 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3071 break; 3072 } 3073 case ISD::SCALAR_TO_VECTOR: { 3074 // We know about scalar_to_vector as much as we know about it source, 3075 // which becomes the first element of otherwise unknown vector. 3076 if (DemandedElts != 1) 3077 break; 3078 3079 SDValue N0 = Op.getOperand(0); 3080 Known = computeKnownBits(N0, Depth + 1); 3081 if (N0.getValueSizeInBits() != BitWidth) 3082 Known = Known.trunc(BitWidth); 3083 3084 break; 3085 } 3086 case ISD::BITCAST: { 3087 SDValue N0 = Op.getOperand(0); 3088 EVT SubVT = N0.getValueType(); 3089 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3090 3091 // Ignore bitcasts from unsupported types. 3092 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3093 break; 3094 3095 // Fast handling of 'identity' bitcasts. 3096 if (BitWidth == SubBitWidth) { 3097 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3098 break; 3099 } 3100 3101 bool IsLE = getDataLayout().isLittleEndian(); 3102 3103 // Bitcast 'small element' vector to 'large element' scalar/vector. 3104 if ((BitWidth % SubBitWidth) == 0) { 3105 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3106 3107 // Collect known bits for the (larger) output by collecting the known 3108 // bits from each set of sub elements and shift these into place. 3109 // We need to separately call computeKnownBits for each set of 3110 // sub elements as the knownbits for each is likely to be different. 3111 unsigned SubScale = BitWidth / SubBitWidth; 3112 APInt SubDemandedElts(NumElts * SubScale, 0); 3113 for (unsigned i = 0; i != NumElts; ++i) 3114 if (DemandedElts[i]) 3115 SubDemandedElts.setBit(i * SubScale); 3116 3117 for (unsigned i = 0; i != SubScale; ++i) { 3118 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3119 Depth + 1); 3120 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3121 Known.insertBits(Known2, SubBitWidth * Shifts); 3122 } 3123 } 3124 3125 // Bitcast 'large element' scalar/vector to 'small element' vector. 3126 if ((SubBitWidth % BitWidth) == 0) { 3127 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3128 3129 // Collect known bits for the (smaller) output by collecting the known 3130 // bits from the overlapping larger input elements and extracting the 3131 // sub sections we actually care about. 3132 unsigned SubScale = SubBitWidth / BitWidth; 3133 APInt SubDemandedElts = 3134 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3135 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3136 3137 Known.Zero.setAllBits(); Known.One.setAllBits(); 3138 for (unsigned i = 0; i != NumElts; ++i) 3139 if (DemandedElts[i]) { 3140 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3141 unsigned Offset = (Shifts % SubScale) * BitWidth; 3142 Known = KnownBits::commonBits(Known, 3143 Known2.extractBits(BitWidth, Offset)); 3144 // If we don't know any bits, early out. 3145 if (Known.isUnknown()) 3146 break; 3147 } 3148 } 3149 break; 3150 } 3151 case ISD::AND: 3152 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3153 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 3155 Known &= Known2; 3156 break; 3157 case ISD::OR: 3158 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3159 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3160 3161 Known |= Known2; 3162 break; 3163 case ISD::XOR: 3164 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3165 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3166 3167 Known ^= Known2; 3168 break; 3169 case ISD::MUL: { 3170 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3171 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3173 // TODO: SelfMultiply can be poison, but not undef. 3174 if (SelfMultiply) 3175 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3176 Op.getOperand(0), DemandedElts, false, Depth + 1); 3177 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3178 break; 3179 } 3180 case ISD::MULHU: { 3181 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3182 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3183 Known = KnownBits::mulhu(Known, Known2); 3184 break; 3185 } 3186 case ISD::MULHS: { 3187 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3188 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3189 Known = KnownBits::mulhs(Known, Known2); 3190 break; 3191 } 3192 case ISD::UMUL_LOHI: { 3193 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3194 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3195 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3196 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3197 if (Op.getResNo() == 0) 3198 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3199 else 3200 Known = KnownBits::mulhu(Known, Known2); 3201 break; 3202 } 3203 case ISD::SMUL_LOHI: { 3204 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3205 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3206 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3207 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3208 if (Op.getResNo() == 0) 3209 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3210 else 3211 Known = KnownBits::mulhs(Known, Known2); 3212 break; 3213 } 3214 case ISD::UDIV: { 3215 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3216 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3217 Known = KnownBits::udiv(Known, Known2); 3218 break; 3219 } 3220 case ISD::AVGCEILU: { 3221 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3223 Known = Known.zext(BitWidth + 1); 3224 Known2 = Known2.zext(BitWidth + 1); 3225 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3226 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3227 Known = Known.extractBits(BitWidth, 1); 3228 break; 3229 } 3230 case ISD::SELECT: 3231 case ISD::VSELECT: 3232 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3233 // If we don't know any bits, early out. 3234 if (Known.isUnknown()) 3235 break; 3236 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3237 3238 // Only known if known in both the LHS and RHS. 3239 Known = KnownBits::commonBits(Known, Known2); 3240 break; 3241 case ISD::SELECT_CC: 3242 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3243 // If we don't know any bits, early out. 3244 if (Known.isUnknown()) 3245 break; 3246 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3247 3248 // Only known if known in both the LHS and RHS. 3249 Known = KnownBits::commonBits(Known, Known2); 3250 break; 3251 case ISD::SMULO: 3252 case ISD::UMULO: 3253 if (Op.getResNo() != 1) 3254 break; 3255 // The boolean result conforms to getBooleanContents. 3256 // If we know the result of a setcc has the top bits zero, use this info. 3257 // We know that we have an integer-based boolean since these operations 3258 // are only available for integer. 3259 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3260 TargetLowering::ZeroOrOneBooleanContent && 3261 BitWidth > 1) 3262 Known.Zero.setBitsFrom(1); 3263 break; 3264 case ISD::SETCC: 3265 case ISD::STRICT_FSETCC: 3266 case ISD::STRICT_FSETCCS: { 3267 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3268 // If we know the result of a setcc has the top bits zero, use this info. 3269 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3270 TargetLowering::ZeroOrOneBooleanContent && 3271 BitWidth > 1) 3272 Known.Zero.setBitsFrom(1); 3273 break; 3274 } 3275 case ISD::SHL: 3276 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3277 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3278 Known = KnownBits::shl(Known, Known2); 3279 3280 // Minimum shift low bits are known zero. 3281 if (const APInt *ShMinAmt = 3282 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3283 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3284 break; 3285 case ISD::SRL: 3286 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3287 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3288 Known = KnownBits::lshr(Known, Known2); 3289 3290 // Minimum shift high bits are known zero. 3291 if (const APInt *ShMinAmt = 3292 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3293 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3294 break; 3295 case ISD::SRA: 3296 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3297 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3298 Known = KnownBits::ashr(Known, Known2); 3299 // TODO: Add minimum shift high known sign bits. 3300 break; 3301 case ISD::FSHL: 3302 case ISD::FSHR: 3303 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3304 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3305 3306 // For fshl, 0-shift returns the 1st arg. 3307 // For fshr, 0-shift returns the 2nd arg. 3308 if (Amt == 0) { 3309 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3310 DemandedElts, Depth + 1); 3311 break; 3312 } 3313 3314 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3315 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3316 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3317 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3318 if (Opcode == ISD::FSHL) { 3319 Known.One <<= Amt; 3320 Known.Zero <<= Amt; 3321 Known2.One.lshrInPlace(BitWidth - Amt); 3322 Known2.Zero.lshrInPlace(BitWidth - Amt); 3323 } else { 3324 Known.One <<= BitWidth - Amt; 3325 Known.Zero <<= BitWidth - Amt; 3326 Known2.One.lshrInPlace(Amt); 3327 Known2.Zero.lshrInPlace(Amt); 3328 } 3329 Known.One |= Known2.One; 3330 Known.Zero |= Known2.Zero; 3331 } 3332 break; 3333 case ISD::SIGN_EXTEND_INREG: { 3334 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3335 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3336 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3337 break; 3338 } 3339 case ISD::CTTZ: 3340 case ISD::CTTZ_ZERO_UNDEF: { 3341 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3342 // If we have a known 1, its position is our upper bound. 3343 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3344 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3345 Known.Zero.setBitsFrom(LowBits); 3346 break; 3347 } 3348 case ISD::CTLZ: 3349 case ISD::CTLZ_ZERO_UNDEF: { 3350 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 // If we have a known 1, its position is our upper bound. 3352 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3353 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3354 Known.Zero.setBitsFrom(LowBits); 3355 break; 3356 } 3357 case ISD::CTPOP: { 3358 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3359 // If we know some of the bits are zero, they can't be one. 3360 unsigned PossibleOnes = Known2.countMaxPopulation(); 3361 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3362 break; 3363 } 3364 case ISD::PARITY: { 3365 // Parity returns 0 everywhere but the LSB. 3366 Known.Zero.setBitsFrom(1); 3367 break; 3368 } 3369 case ISD::LOAD: { 3370 LoadSDNode *LD = cast<LoadSDNode>(Op); 3371 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3372 if (ISD::isNON_EXTLoad(LD) && Cst) { 3373 // Determine any common known bits from the loaded constant pool value. 3374 Type *CstTy = Cst->getType(); 3375 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3376 // If its a vector splat, then we can (quickly) reuse the scalar path. 3377 // NOTE: We assume all elements match and none are UNDEF. 3378 if (CstTy->isVectorTy()) { 3379 if (const Constant *Splat = Cst->getSplatValue()) { 3380 Cst = Splat; 3381 CstTy = Cst->getType(); 3382 } 3383 } 3384 // TODO - do we need to handle different bitwidths? 3385 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3386 // Iterate across all vector elements finding common known bits. 3387 Known.One.setAllBits(); 3388 Known.Zero.setAllBits(); 3389 for (unsigned i = 0; i != NumElts; ++i) { 3390 if (!DemandedElts[i]) 3391 continue; 3392 if (Constant *Elt = Cst->getAggregateElement(i)) { 3393 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3394 const APInt &Value = CInt->getValue(); 3395 Known.One &= Value; 3396 Known.Zero &= ~Value; 3397 continue; 3398 } 3399 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3400 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3401 Known.One &= Value; 3402 Known.Zero &= ~Value; 3403 continue; 3404 } 3405 } 3406 Known.One.clearAllBits(); 3407 Known.Zero.clearAllBits(); 3408 break; 3409 } 3410 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3411 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3412 Known = KnownBits::makeConstant(CInt->getValue()); 3413 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3414 Known = 3415 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3416 } 3417 } 3418 } 3419 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3420 // If this is a ZEXTLoad and we are looking at the loaded value. 3421 EVT VT = LD->getMemoryVT(); 3422 unsigned MemBits = VT.getScalarSizeInBits(); 3423 Known.Zero.setBitsFrom(MemBits); 3424 } else if (const MDNode *Ranges = LD->getRanges()) { 3425 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3426 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3427 } 3428 break; 3429 } 3430 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3431 EVT InVT = Op.getOperand(0).getValueType(); 3432 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3433 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3434 Known = Known.zext(BitWidth); 3435 break; 3436 } 3437 case ISD::ZERO_EXTEND: { 3438 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3439 Known = Known.zext(BitWidth); 3440 break; 3441 } 3442 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3443 EVT InVT = Op.getOperand(0).getValueType(); 3444 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3445 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3446 // If the sign bit is known to be zero or one, then sext will extend 3447 // it to the top bits, else it will just zext. 3448 Known = Known.sext(BitWidth); 3449 break; 3450 } 3451 case ISD::SIGN_EXTEND: { 3452 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3453 // If the sign bit is known to be zero or one, then sext will extend 3454 // it to the top bits, else it will just zext. 3455 Known = Known.sext(BitWidth); 3456 break; 3457 } 3458 case ISD::ANY_EXTEND_VECTOR_INREG: { 3459 EVT InVT = Op.getOperand(0).getValueType(); 3460 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3461 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3462 Known = Known.anyext(BitWidth); 3463 break; 3464 } 3465 case ISD::ANY_EXTEND: { 3466 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3467 Known = Known.anyext(BitWidth); 3468 break; 3469 } 3470 case ISD::TRUNCATE: { 3471 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3472 Known = Known.trunc(BitWidth); 3473 break; 3474 } 3475 case ISD::AssertZext: { 3476 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3477 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3478 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3479 Known.Zero |= (~InMask); 3480 Known.One &= (~Known.Zero); 3481 break; 3482 } 3483 case ISD::AssertAlign: { 3484 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3485 assert(LogOfAlign != 0); 3486 3487 // TODO: Should use maximum with source 3488 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3489 // well as clearing one bits. 3490 Known.Zero.setLowBits(LogOfAlign); 3491 Known.One.clearLowBits(LogOfAlign); 3492 break; 3493 } 3494 case ISD::FGETSIGN: 3495 // All bits are zero except the low bit. 3496 Known.Zero.setBitsFrom(1); 3497 break; 3498 case ISD::USUBO: 3499 case ISD::SSUBO: 3500 if (Op.getResNo() == 1) { 3501 // If we know the result of a setcc has the top bits zero, use this info. 3502 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3503 TargetLowering::ZeroOrOneBooleanContent && 3504 BitWidth > 1) 3505 Known.Zero.setBitsFrom(1); 3506 break; 3507 } 3508 LLVM_FALLTHROUGH; 3509 case ISD::SUB: 3510 case ISD::SUBC: { 3511 assert(Op.getResNo() == 0 && 3512 "We only compute knownbits for the difference here."); 3513 3514 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3515 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3516 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3517 Known, Known2); 3518 break; 3519 } 3520 case ISD::UADDO: 3521 case ISD::SADDO: 3522 case ISD::ADDCARRY: 3523 if (Op.getResNo() == 1) { 3524 // If we know the result of a setcc has the top bits zero, use this info. 3525 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3526 TargetLowering::ZeroOrOneBooleanContent && 3527 BitWidth > 1) 3528 Known.Zero.setBitsFrom(1); 3529 break; 3530 } 3531 LLVM_FALLTHROUGH; 3532 case ISD::ADD: 3533 case ISD::ADDC: 3534 case ISD::ADDE: { 3535 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3536 3537 // With ADDE and ADDCARRY, a carry bit may be added in. 3538 KnownBits Carry(1); 3539 if (Opcode == ISD::ADDE) 3540 // Can't track carry from glue, set carry to unknown. 3541 Carry.resetAll(); 3542 else if (Opcode == ISD::ADDCARRY) 3543 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3544 // the trouble (how often will we find a known carry bit). And I haven't 3545 // tested this very much yet, but something like this might work: 3546 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3547 // Carry = Carry.zextOrTrunc(1, false); 3548 Carry.resetAll(); 3549 else 3550 Carry.setAllZero(); 3551 3552 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3553 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3554 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3555 break; 3556 } 3557 case ISD::SREM: { 3558 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3559 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3560 Known = KnownBits::srem(Known, Known2); 3561 break; 3562 } 3563 case ISD::UREM: { 3564 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3565 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3566 Known = KnownBits::urem(Known, Known2); 3567 break; 3568 } 3569 case ISD::EXTRACT_ELEMENT: { 3570 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3571 const unsigned Index = Op.getConstantOperandVal(1); 3572 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3573 3574 // Remove low part of known bits mask 3575 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3576 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3577 3578 // Remove high part of known bit mask 3579 Known = Known.trunc(EltBitWidth); 3580 break; 3581 } 3582 case ISD::EXTRACT_VECTOR_ELT: { 3583 SDValue InVec = Op.getOperand(0); 3584 SDValue EltNo = Op.getOperand(1); 3585 EVT VecVT = InVec.getValueType(); 3586 // computeKnownBits not yet implemented for scalable vectors. 3587 if (VecVT.isScalableVector()) 3588 break; 3589 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3590 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3591 3592 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3593 // anything about the extended bits. 3594 if (BitWidth > EltBitWidth) 3595 Known = Known.trunc(EltBitWidth); 3596 3597 // If we know the element index, just demand that vector element, else for 3598 // an unknown element index, ignore DemandedElts and demand them all. 3599 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3600 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3601 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3602 DemandedSrcElts = 3603 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3604 3605 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3606 if (BitWidth > EltBitWidth) 3607 Known = Known.anyext(BitWidth); 3608 break; 3609 } 3610 case ISD::INSERT_VECTOR_ELT: { 3611 // If we know the element index, split the demand between the 3612 // source vector and the inserted element, otherwise assume we need 3613 // the original demanded vector elements and the value. 3614 SDValue InVec = Op.getOperand(0); 3615 SDValue InVal = Op.getOperand(1); 3616 SDValue EltNo = Op.getOperand(2); 3617 bool DemandedVal = true; 3618 APInt DemandedVecElts = DemandedElts; 3619 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3620 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3621 unsigned EltIdx = CEltNo->getZExtValue(); 3622 DemandedVal = !!DemandedElts[EltIdx]; 3623 DemandedVecElts.clearBit(EltIdx); 3624 } 3625 Known.One.setAllBits(); 3626 Known.Zero.setAllBits(); 3627 if (DemandedVal) { 3628 Known2 = computeKnownBits(InVal, Depth + 1); 3629 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3630 } 3631 if (!!DemandedVecElts) { 3632 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3633 Known = KnownBits::commonBits(Known, Known2); 3634 } 3635 break; 3636 } 3637 case ISD::BITREVERSE: { 3638 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3639 Known = Known2.reverseBits(); 3640 break; 3641 } 3642 case ISD::BSWAP: { 3643 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3644 Known = Known2.byteSwap(); 3645 break; 3646 } 3647 case ISD::ABS: { 3648 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3649 Known = Known2.abs(); 3650 break; 3651 } 3652 case ISD::USUBSAT: { 3653 // The result of usubsat will never be larger than the LHS. 3654 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3656 break; 3657 } 3658 case ISD::UMIN: { 3659 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3660 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3661 Known = KnownBits::umin(Known, Known2); 3662 break; 3663 } 3664 case ISD::UMAX: { 3665 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3667 Known = KnownBits::umax(Known, Known2); 3668 break; 3669 } 3670 case ISD::SMIN: 3671 case ISD::SMAX: { 3672 // If we have a clamp pattern, we know that the number of sign bits will be 3673 // the minimum of the clamp min/max range. 3674 bool IsMax = (Opcode == ISD::SMAX); 3675 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3676 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3677 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3678 CstHigh = 3679 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3680 if (CstLow && CstHigh) { 3681 if (!IsMax) 3682 std::swap(CstLow, CstHigh); 3683 3684 const APInt &ValueLow = CstLow->getAPIntValue(); 3685 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3686 if (ValueLow.sle(ValueHigh)) { 3687 unsigned LowSignBits = ValueLow.getNumSignBits(); 3688 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3689 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3690 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3691 Known.One.setHighBits(MinSignBits); 3692 break; 3693 } 3694 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3695 Known.Zero.setHighBits(MinSignBits); 3696 break; 3697 } 3698 } 3699 } 3700 3701 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3702 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3703 if (IsMax) 3704 Known = KnownBits::smax(Known, Known2); 3705 else 3706 Known = KnownBits::smin(Known, Known2); 3707 break; 3708 } 3709 case ISD::FP_TO_UINT_SAT: { 3710 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3711 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3712 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3713 break; 3714 } 3715 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3716 if (Op.getResNo() == 1) { 3717 // The boolean result conforms to getBooleanContents. 3718 // If we know the result of a setcc has the top bits zero, use this info. 3719 // We know that we have an integer-based boolean since these operations 3720 // are only available for integer. 3721 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3722 TargetLowering::ZeroOrOneBooleanContent && 3723 BitWidth > 1) 3724 Known.Zero.setBitsFrom(1); 3725 break; 3726 } 3727 LLVM_FALLTHROUGH; 3728 case ISD::ATOMIC_CMP_SWAP: 3729 case ISD::ATOMIC_SWAP: 3730 case ISD::ATOMIC_LOAD_ADD: 3731 case ISD::ATOMIC_LOAD_SUB: 3732 case ISD::ATOMIC_LOAD_AND: 3733 case ISD::ATOMIC_LOAD_CLR: 3734 case ISD::ATOMIC_LOAD_OR: 3735 case ISD::ATOMIC_LOAD_XOR: 3736 case ISD::ATOMIC_LOAD_NAND: 3737 case ISD::ATOMIC_LOAD_MIN: 3738 case ISD::ATOMIC_LOAD_MAX: 3739 case ISD::ATOMIC_LOAD_UMIN: 3740 case ISD::ATOMIC_LOAD_UMAX: 3741 case ISD::ATOMIC_LOAD: { 3742 unsigned MemBits = 3743 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3744 // If we are looking at the loaded value. 3745 if (Op.getResNo() == 0) { 3746 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3747 Known.Zero.setBitsFrom(MemBits); 3748 } 3749 break; 3750 } 3751 case ISD::FrameIndex: 3752 case ISD::TargetFrameIndex: 3753 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3754 Known, getMachineFunction()); 3755 break; 3756 3757 default: 3758 if (Opcode < ISD::BUILTIN_OP_END) 3759 break; 3760 LLVM_FALLTHROUGH; 3761 case ISD::INTRINSIC_WO_CHAIN: 3762 case ISD::INTRINSIC_W_CHAIN: 3763 case ISD::INTRINSIC_VOID: 3764 // Allow the target to implement this method for its nodes. 3765 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3766 break; 3767 } 3768 3769 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3770 return Known; 3771 } 3772 3773 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3774 SDValue N1) const { 3775 // X + 0 never overflow 3776 if (isNullConstant(N1)) 3777 return OFK_Never; 3778 3779 KnownBits N1Known = computeKnownBits(N1); 3780 if (N1Known.Zero.getBoolValue()) { 3781 KnownBits N0Known = computeKnownBits(N0); 3782 3783 bool overflow; 3784 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3785 if (!overflow) 3786 return OFK_Never; 3787 } 3788 3789 // mulhi + 1 never overflow 3790 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3791 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3792 return OFK_Never; 3793 3794 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3795 KnownBits N0Known = computeKnownBits(N0); 3796 3797 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3798 return OFK_Never; 3799 } 3800 3801 return OFK_Sometime; 3802 } 3803 3804 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3805 EVT OpVT = Val.getValueType(); 3806 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3807 3808 // Is the constant a known power of 2? 3809 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3810 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3811 3812 // A left-shift of a constant one will have exactly one bit set because 3813 // shifting the bit off the end is undefined. 3814 if (Val.getOpcode() == ISD::SHL) { 3815 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3816 if (C && C->getAPIntValue() == 1) 3817 return true; 3818 } 3819 3820 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3821 // one bit set. 3822 if (Val.getOpcode() == ISD::SRL) { 3823 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3824 if (C && C->getAPIntValue().isSignMask()) 3825 return true; 3826 } 3827 3828 // Are all operands of a build vector constant powers of two? 3829 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3830 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3831 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3832 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3833 return false; 3834 })) 3835 return true; 3836 3837 // Is the operand of a splat vector a constant power of two? 3838 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3839 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3840 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3841 return true; 3842 3843 // More could be done here, though the above checks are enough 3844 // to handle some common cases. 3845 3846 // Fall back to computeKnownBits to catch other known cases. 3847 KnownBits Known = computeKnownBits(Val); 3848 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3849 } 3850 3851 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3852 EVT VT = Op.getValueType(); 3853 3854 // TODO: Assume we don't know anything for now. 3855 if (VT.isScalableVector()) 3856 return 1; 3857 3858 APInt DemandedElts = VT.isVector() 3859 ? APInt::getAllOnes(VT.getVectorNumElements()) 3860 : APInt(1, 1); 3861 return ComputeNumSignBits(Op, DemandedElts, Depth); 3862 } 3863 3864 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3865 unsigned Depth) const { 3866 EVT VT = Op.getValueType(); 3867 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3868 unsigned VTBits = VT.getScalarSizeInBits(); 3869 unsigned NumElts = DemandedElts.getBitWidth(); 3870 unsigned Tmp, Tmp2; 3871 unsigned FirstAnswer = 1; 3872 3873 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3874 const APInt &Val = C->getAPIntValue(); 3875 return Val.getNumSignBits(); 3876 } 3877 3878 if (Depth >= MaxRecursionDepth) 3879 return 1; // Limit search depth. 3880 3881 if (!DemandedElts || VT.isScalableVector()) 3882 return 1; // No demanded elts, better to assume we don't know anything. 3883 3884 unsigned Opcode = Op.getOpcode(); 3885 switch (Opcode) { 3886 default: break; 3887 case ISD::AssertSext: 3888 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3889 return VTBits-Tmp+1; 3890 case ISD::AssertZext: 3891 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3892 return VTBits-Tmp; 3893 3894 case ISD::BUILD_VECTOR: 3895 Tmp = VTBits; 3896 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3897 if (!DemandedElts[i]) 3898 continue; 3899 3900 SDValue SrcOp = Op.getOperand(i); 3901 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3902 3903 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3904 if (SrcOp.getValueSizeInBits() != VTBits) { 3905 assert(SrcOp.getValueSizeInBits() > VTBits && 3906 "Expected BUILD_VECTOR implicit truncation"); 3907 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3908 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3909 } 3910 Tmp = std::min(Tmp, Tmp2); 3911 } 3912 return Tmp; 3913 3914 case ISD::VECTOR_SHUFFLE: { 3915 // Collect the minimum number of sign bits that are shared by every vector 3916 // element referenced by the shuffle. 3917 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3918 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3919 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3920 for (unsigned i = 0; i != NumElts; ++i) { 3921 int M = SVN->getMaskElt(i); 3922 if (!DemandedElts[i]) 3923 continue; 3924 // For UNDEF elements, we don't know anything about the common state of 3925 // the shuffle result. 3926 if (M < 0) 3927 return 1; 3928 if ((unsigned)M < NumElts) 3929 DemandedLHS.setBit((unsigned)M % NumElts); 3930 else 3931 DemandedRHS.setBit((unsigned)M % NumElts); 3932 } 3933 Tmp = std::numeric_limits<unsigned>::max(); 3934 if (!!DemandedLHS) 3935 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3936 if (!!DemandedRHS) { 3937 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3938 Tmp = std::min(Tmp, Tmp2); 3939 } 3940 // If we don't know anything, early out and try computeKnownBits fall-back. 3941 if (Tmp == 1) 3942 break; 3943 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3944 return Tmp; 3945 } 3946 3947 case ISD::BITCAST: { 3948 SDValue N0 = Op.getOperand(0); 3949 EVT SrcVT = N0.getValueType(); 3950 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3951 3952 // Ignore bitcasts from unsupported types.. 3953 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3954 break; 3955 3956 // Fast handling of 'identity' bitcasts. 3957 if (VTBits == SrcBits) 3958 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3959 3960 bool IsLE = getDataLayout().isLittleEndian(); 3961 3962 // Bitcast 'large element' scalar/vector to 'small element' vector. 3963 if ((SrcBits % VTBits) == 0) { 3964 assert(VT.isVector() && "Expected bitcast to vector"); 3965 3966 unsigned Scale = SrcBits / VTBits; 3967 APInt SrcDemandedElts = 3968 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3969 3970 // Fast case - sign splat can be simply split across the small elements. 3971 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3972 if (Tmp == SrcBits) 3973 return VTBits; 3974 3975 // Slow case - determine how far the sign extends into each sub-element. 3976 Tmp2 = VTBits; 3977 for (unsigned i = 0; i != NumElts; ++i) 3978 if (DemandedElts[i]) { 3979 unsigned SubOffset = i % Scale; 3980 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3981 SubOffset = SubOffset * VTBits; 3982 if (Tmp <= SubOffset) 3983 return 1; 3984 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3985 } 3986 return Tmp2; 3987 } 3988 break; 3989 } 3990 3991 case ISD::FP_TO_SINT_SAT: 3992 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3993 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3994 return VTBits - Tmp + 1; 3995 case ISD::SIGN_EXTEND: 3996 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3997 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3998 case ISD::SIGN_EXTEND_INREG: 3999 // Max of the input and what this extends. 4000 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4001 Tmp = VTBits-Tmp+1; 4002 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4003 return std::max(Tmp, Tmp2); 4004 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4005 SDValue Src = Op.getOperand(0); 4006 EVT SrcVT = Src.getValueType(); 4007 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 4008 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4009 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4010 } 4011 case ISD::SRA: 4012 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4013 // SRA X, C -> adds C sign bits. 4014 if (const APInt *ShAmt = 4015 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4016 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4017 return Tmp; 4018 case ISD::SHL: 4019 if (const APInt *ShAmt = 4020 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4021 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4022 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4023 if (ShAmt->ult(Tmp)) 4024 return Tmp - ShAmt->getZExtValue(); 4025 } 4026 break; 4027 case ISD::AND: 4028 case ISD::OR: 4029 case ISD::XOR: // NOT is handled here. 4030 // Logical binary ops preserve the number of sign bits at the worst. 4031 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4032 if (Tmp != 1) { 4033 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4034 FirstAnswer = std::min(Tmp, Tmp2); 4035 // We computed what we know about the sign bits as our first 4036 // answer. Now proceed to the generic code that uses 4037 // computeKnownBits, and pick whichever answer is better. 4038 } 4039 break; 4040 4041 case ISD::SELECT: 4042 case ISD::VSELECT: 4043 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4044 if (Tmp == 1) return 1; // Early out. 4045 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4046 return std::min(Tmp, Tmp2); 4047 case ISD::SELECT_CC: 4048 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4049 if (Tmp == 1) return 1; // Early out. 4050 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4051 return std::min(Tmp, Tmp2); 4052 4053 case ISD::SMIN: 4054 case ISD::SMAX: { 4055 // If we have a clamp pattern, we know that the number of sign bits will be 4056 // the minimum of the clamp min/max range. 4057 bool IsMax = (Opcode == ISD::SMAX); 4058 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4059 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4060 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4061 CstHigh = 4062 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4063 if (CstLow && CstHigh) { 4064 if (!IsMax) 4065 std::swap(CstLow, CstHigh); 4066 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4067 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4068 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4069 return std::min(Tmp, Tmp2); 4070 } 4071 } 4072 4073 // Fallback - just get the minimum number of sign bits of the operands. 4074 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4075 if (Tmp == 1) 4076 return 1; // Early out. 4077 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4078 return std::min(Tmp, Tmp2); 4079 } 4080 case ISD::UMIN: 4081 case ISD::UMAX: 4082 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4083 if (Tmp == 1) 4084 return 1; // Early out. 4085 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4086 return std::min(Tmp, Tmp2); 4087 case ISD::SADDO: 4088 case ISD::UADDO: 4089 case ISD::SSUBO: 4090 case ISD::USUBO: 4091 case ISD::SMULO: 4092 case ISD::UMULO: 4093 if (Op.getResNo() != 1) 4094 break; 4095 // The boolean result conforms to getBooleanContents. Fall through. 4096 // If setcc returns 0/-1, all bits are sign bits. 4097 // We know that we have an integer-based boolean since these operations 4098 // are only available for integer. 4099 if (TLI->getBooleanContents(VT.isVector(), false) == 4100 TargetLowering::ZeroOrNegativeOneBooleanContent) 4101 return VTBits; 4102 break; 4103 case ISD::SETCC: 4104 case ISD::STRICT_FSETCC: 4105 case ISD::STRICT_FSETCCS: { 4106 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4107 // If setcc returns 0/-1, all bits are sign bits. 4108 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4109 TargetLowering::ZeroOrNegativeOneBooleanContent) 4110 return VTBits; 4111 break; 4112 } 4113 case ISD::ROTL: 4114 case ISD::ROTR: 4115 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4116 4117 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4118 if (Tmp == VTBits) 4119 return VTBits; 4120 4121 if (ConstantSDNode *C = 4122 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4123 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4124 4125 // Handle rotate right by N like a rotate left by 32-N. 4126 if (Opcode == ISD::ROTR) 4127 RotAmt = (VTBits - RotAmt) % VTBits; 4128 4129 // If we aren't rotating out all of the known-in sign bits, return the 4130 // number that are left. This handles rotl(sext(x), 1) for example. 4131 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4132 } 4133 break; 4134 case ISD::ADD: 4135 case ISD::ADDC: 4136 // Add can have at most one carry bit. Thus we know that the output 4137 // is, at worst, one more bit than the inputs. 4138 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4139 if (Tmp == 1) return 1; // Early out. 4140 4141 // Special case decrementing a value (ADD X, -1): 4142 if (ConstantSDNode *CRHS = 4143 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4144 if (CRHS->isAllOnes()) { 4145 KnownBits Known = 4146 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4147 4148 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4149 // sign bits set. 4150 if ((Known.Zero | 1).isAllOnes()) 4151 return VTBits; 4152 4153 // If we are subtracting one from a positive number, there is no carry 4154 // out of the result. 4155 if (Known.isNonNegative()) 4156 return Tmp; 4157 } 4158 4159 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4160 if (Tmp2 == 1) return 1; // Early out. 4161 return std::min(Tmp, Tmp2) - 1; 4162 case ISD::SUB: 4163 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4164 if (Tmp2 == 1) return 1; // Early out. 4165 4166 // Handle NEG. 4167 if (ConstantSDNode *CLHS = 4168 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4169 if (CLHS->isZero()) { 4170 KnownBits Known = 4171 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4172 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4173 // sign bits set. 4174 if ((Known.Zero | 1).isAllOnes()) 4175 return VTBits; 4176 4177 // If the input is known to be positive (the sign bit is known clear), 4178 // the output of the NEG has the same number of sign bits as the input. 4179 if (Known.isNonNegative()) 4180 return Tmp2; 4181 4182 // Otherwise, we treat this like a SUB. 4183 } 4184 4185 // Sub can have at most one carry bit. Thus we know that the output 4186 // is, at worst, one more bit than the inputs. 4187 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4188 if (Tmp == 1) return 1; // Early out. 4189 return std::min(Tmp, Tmp2) - 1; 4190 case ISD::MUL: { 4191 // The output of the Mul can be at most twice the valid bits in the inputs. 4192 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4193 if (SignBitsOp0 == 1) 4194 break; 4195 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4196 if (SignBitsOp1 == 1) 4197 break; 4198 unsigned OutValidBits = 4199 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4200 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4201 } 4202 case ISD::SREM: 4203 // The sign bit is the LHS's sign bit, except when the result of the 4204 // remainder is zero. The magnitude of the result should be less than or 4205 // equal to the magnitude of the LHS. Therefore, the result should have 4206 // at least as many sign bits as the left hand side. 4207 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4208 case ISD::TRUNCATE: { 4209 // Check if the sign bits of source go down as far as the truncated value. 4210 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4211 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4212 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4213 return NumSrcSignBits - (NumSrcBits - VTBits); 4214 break; 4215 } 4216 case ISD::EXTRACT_ELEMENT: { 4217 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4218 const int BitWidth = Op.getValueSizeInBits(); 4219 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4220 4221 // Get reverse index (starting from 1), Op1 value indexes elements from 4222 // little end. Sign starts at big end. 4223 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4224 4225 // If the sign portion ends in our element the subtraction gives correct 4226 // result. Otherwise it gives either negative or > bitwidth result 4227 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4228 } 4229 case ISD::INSERT_VECTOR_ELT: { 4230 // If we know the element index, split the demand between the 4231 // source vector and the inserted element, otherwise assume we need 4232 // the original demanded vector elements and the value. 4233 SDValue InVec = Op.getOperand(0); 4234 SDValue InVal = Op.getOperand(1); 4235 SDValue EltNo = Op.getOperand(2); 4236 bool DemandedVal = true; 4237 APInt DemandedVecElts = DemandedElts; 4238 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4239 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4240 unsigned EltIdx = CEltNo->getZExtValue(); 4241 DemandedVal = !!DemandedElts[EltIdx]; 4242 DemandedVecElts.clearBit(EltIdx); 4243 } 4244 Tmp = std::numeric_limits<unsigned>::max(); 4245 if (DemandedVal) { 4246 // TODO - handle implicit truncation of inserted elements. 4247 if (InVal.getScalarValueSizeInBits() != VTBits) 4248 break; 4249 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4250 Tmp = std::min(Tmp, Tmp2); 4251 } 4252 if (!!DemandedVecElts) { 4253 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4254 Tmp = std::min(Tmp, Tmp2); 4255 } 4256 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4257 return Tmp; 4258 } 4259 case ISD::EXTRACT_VECTOR_ELT: { 4260 SDValue InVec = Op.getOperand(0); 4261 SDValue EltNo = Op.getOperand(1); 4262 EVT VecVT = InVec.getValueType(); 4263 // ComputeNumSignBits not yet implemented for scalable vectors. 4264 if (VecVT.isScalableVector()) 4265 break; 4266 const unsigned BitWidth = Op.getValueSizeInBits(); 4267 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4268 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4269 4270 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4271 // anything about sign bits. But if the sizes match we can derive knowledge 4272 // about sign bits from the vector operand. 4273 if (BitWidth != EltBitWidth) 4274 break; 4275 4276 // If we know the element index, just demand that vector element, else for 4277 // an unknown element index, ignore DemandedElts and demand them all. 4278 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4279 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4280 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4281 DemandedSrcElts = 4282 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4283 4284 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4285 } 4286 case ISD::EXTRACT_SUBVECTOR: { 4287 // Offset the demanded elts by the subvector index. 4288 SDValue Src = Op.getOperand(0); 4289 // Bail until we can represent demanded elements for scalable vectors. 4290 if (Src.getValueType().isScalableVector()) 4291 break; 4292 uint64_t Idx = Op.getConstantOperandVal(1); 4293 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4294 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4295 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4296 } 4297 case ISD::CONCAT_VECTORS: { 4298 // Determine the minimum number of sign bits across all demanded 4299 // elts of the input vectors. Early out if the result is already 1. 4300 Tmp = std::numeric_limits<unsigned>::max(); 4301 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4302 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4303 unsigned NumSubVectors = Op.getNumOperands(); 4304 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4305 APInt DemandedSub = 4306 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4307 if (!DemandedSub) 4308 continue; 4309 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4310 Tmp = std::min(Tmp, Tmp2); 4311 } 4312 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4313 return Tmp; 4314 } 4315 case ISD::INSERT_SUBVECTOR: { 4316 // Demand any elements from the subvector and the remainder from the src its 4317 // inserted into. 4318 SDValue Src = Op.getOperand(0); 4319 SDValue Sub = Op.getOperand(1); 4320 uint64_t Idx = Op.getConstantOperandVal(2); 4321 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4322 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4323 APInt DemandedSrcElts = DemandedElts; 4324 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4325 4326 Tmp = std::numeric_limits<unsigned>::max(); 4327 if (!!DemandedSubElts) { 4328 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4329 if (Tmp == 1) 4330 return 1; // early-out 4331 } 4332 if (!!DemandedSrcElts) { 4333 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4334 Tmp = std::min(Tmp, Tmp2); 4335 } 4336 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4337 return Tmp; 4338 } 4339 case ISD::ATOMIC_CMP_SWAP: 4340 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4341 case ISD::ATOMIC_SWAP: 4342 case ISD::ATOMIC_LOAD_ADD: 4343 case ISD::ATOMIC_LOAD_SUB: 4344 case ISD::ATOMIC_LOAD_AND: 4345 case ISD::ATOMIC_LOAD_CLR: 4346 case ISD::ATOMIC_LOAD_OR: 4347 case ISD::ATOMIC_LOAD_XOR: 4348 case ISD::ATOMIC_LOAD_NAND: 4349 case ISD::ATOMIC_LOAD_MIN: 4350 case ISD::ATOMIC_LOAD_MAX: 4351 case ISD::ATOMIC_LOAD_UMIN: 4352 case ISD::ATOMIC_LOAD_UMAX: 4353 case ISD::ATOMIC_LOAD: { 4354 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4355 // If we are looking at the loaded value. 4356 if (Op.getResNo() == 0) { 4357 if (Tmp == VTBits) 4358 return 1; // early-out 4359 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4360 return VTBits - Tmp + 1; 4361 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4362 return VTBits - Tmp; 4363 } 4364 break; 4365 } 4366 } 4367 4368 // If we are looking at the loaded value of the SDNode. 4369 if (Op.getResNo() == 0) { 4370 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4371 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4372 unsigned ExtType = LD->getExtensionType(); 4373 switch (ExtType) { 4374 default: break; 4375 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4376 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4377 return VTBits - Tmp + 1; 4378 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4379 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4380 return VTBits - Tmp; 4381 case ISD::NON_EXTLOAD: 4382 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4383 // We only need to handle vectors - computeKnownBits should handle 4384 // scalar cases. 4385 Type *CstTy = Cst->getType(); 4386 if (CstTy->isVectorTy() && 4387 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4388 VTBits == CstTy->getScalarSizeInBits()) { 4389 Tmp = VTBits; 4390 for (unsigned i = 0; i != NumElts; ++i) { 4391 if (!DemandedElts[i]) 4392 continue; 4393 if (Constant *Elt = Cst->getAggregateElement(i)) { 4394 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4395 const APInt &Value = CInt->getValue(); 4396 Tmp = std::min(Tmp, Value.getNumSignBits()); 4397 continue; 4398 } 4399 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4400 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4401 Tmp = std::min(Tmp, Value.getNumSignBits()); 4402 continue; 4403 } 4404 } 4405 // Unknown type. Conservatively assume no bits match sign bit. 4406 return 1; 4407 } 4408 return Tmp; 4409 } 4410 } 4411 break; 4412 } 4413 } 4414 } 4415 4416 // Allow the target to implement this method for its nodes. 4417 if (Opcode >= ISD::BUILTIN_OP_END || 4418 Opcode == ISD::INTRINSIC_WO_CHAIN || 4419 Opcode == ISD::INTRINSIC_W_CHAIN || 4420 Opcode == ISD::INTRINSIC_VOID) { 4421 unsigned NumBits = 4422 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4423 if (NumBits > 1) 4424 FirstAnswer = std::max(FirstAnswer, NumBits); 4425 } 4426 4427 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4428 // use this information. 4429 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4430 return std::max(FirstAnswer, Known.countMinSignBits()); 4431 } 4432 4433 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4434 unsigned Depth) const { 4435 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4436 return Op.getScalarValueSizeInBits() - SignBits + 1; 4437 } 4438 4439 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4440 const APInt &DemandedElts, 4441 unsigned Depth) const { 4442 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4443 return Op.getScalarValueSizeInBits() - SignBits + 1; 4444 } 4445 4446 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4447 unsigned Depth) const { 4448 // Early out for FREEZE. 4449 if (Op.getOpcode() == ISD::FREEZE) 4450 return true; 4451 4452 // TODO: Assume we don't know anything for now. 4453 EVT VT = Op.getValueType(); 4454 if (VT.isScalableVector()) 4455 return false; 4456 4457 APInt DemandedElts = VT.isVector() 4458 ? APInt::getAllOnes(VT.getVectorNumElements()) 4459 : APInt(1, 1); 4460 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4461 } 4462 4463 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4464 const APInt &DemandedElts, 4465 bool PoisonOnly, 4466 unsigned Depth) const { 4467 unsigned Opcode = Op.getOpcode(); 4468 4469 // Early out for FREEZE. 4470 if (Opcode == ISD::FREEZE) 4471 return true; 4472 4473 if (Depth >= MaxRecursionDepth) 4474 return false; // Limit search depth. 4475 4476 if (isIntOrFPConstant(Op)) 4477 return true; 4478 4479 switch (Opcode) { 4480 case ISD::UNDEF: 4481 return PoisonOnly; 4482 4483 case ISD::BUILD_VECTOR: 4484 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4485 // this shouldn't affect the result. 4486 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4487 if (!DemandedElts[i]) 4488 continue; 4489 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4490 Depth + 1)) 4491 return false; 4492 } 4493 return true; 4494 4495 // TODO: Search for noundef attributes from library functions. 4496 4497 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4498 4499 default: 4500 // Allow the target to implement this method for its nodes. 4501 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4502 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4503 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4504 Op, DemandedElts, *this, PoisonOnly, Depth); 4505 break; 4506 } 4507 4508 return false; 4509 } 4510 4511 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4512 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4513 !isa<ConstantSDNode>(Op.getOperand(1))) 4514 return false; 4515 4516 if (Op.getOpcode() == ISD::OR && 4517 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4518 return false; 4519 4520 return true; 4521 } 4522 4523 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4524 // If we're told that NaNs won't happen, assume they won't. 4525 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4526 return true; 4527 4528 if (Depth >= MaxRecursionDepth) 4529 return false; // Limit search depth. 4530 4531 // TODO: Handle vectors. 4532 // If the value is a constant, we can obviously see if it is a NaN or not. 4533 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4534 return !C->getValueAPF().isNaN() || 4535 (SNaN && !C->getValueAPF().isSignaling()); 4536 } 4537 4538 unsigned Opcode = Op.getOpcode(); 4539 switch (Opcode) { 4540 case ISD::FADD: 4541 case ISD::FSUB: 4542 case ISD::FMUL: 4543 case ISD::FDIV: 4544 case ISD::FREM: 4545 case ISD::FSIN: 4546 case ISD::FCOS: { 4547 if (SNaN) 4548 return true; 4549 // TODO: Need isKnownNeverInfinity 4550 return false; 4551 } 4552 case ISD::FCANONICALIZE: 4553 case ISD::FEXP: 4554 case ISD::FEXP2: 4555 case ISD::FTRUNC: 4556 case ISD::FFLOOR: 4557 case ISD::FCEIL: 4558 case ISD::FROUND: 4559 case ISD::FROUNDEVEN: 4560 case ISD::FRINT: 4561 case ISD::FNEARBYINT: { 4562 if (SNaN) 4563 return true; 4564 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4565 } 4566 case ISD::FABS: 4567 case ISD::FNEG: 4568 case ISD::FCOPYSIGN: { 4569 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4570 } 4571 case ISD::SELECT: 4572 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4573 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4574 case ISD::FP_EXTEND: 4575 case ISD::FP_ROUND: { 4576 if (SNaN) 4577 return true; 4578 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4579 } 4580 case ISD::SINT_TO_FP: 4581 case ISD::UINT_TO_FP: 4582 return true; 4583 case ISD::FMA: 4584 case ISD::FMAD: { 4585 if (SNaN) 4586 return true; 4587 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4588 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4589 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4590 } 4591 case ISD::FSQRT: // Need is known positive 4592 case ISD::FLOG: 4593 case ISD::FLOG2: 4594 case ISD::FLOG10: 4595 case ISD::FPOWI: 4596 case ISD::FPOW: { 4597 if (SNaN) 4598 return true; 4599 // TODO: Refine on operand 4600 return false; 4601 } 4602 case ISD::FMINNUM: 4603 case ISD::FMAXNUM: { 4604 // Only one needs to be known not-nan, since it will be returned if the 4605 // other ends up being one. 4606 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4607 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4608 } 4609 case ISD::FMINNUM_IEEE: 4610 case ISD::FMAXNUM_IEEE: { 4611 if (SNaN) 4612 return true; 4613 // This can return a NaN if either operand is an sNaN, or if both operands 4614 // are NaN. 4615 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4616 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4617 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4618 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4619 } 4620 case ISD::FMINIMUM: 4621 case ISD::FMAXIMUM: { 4622 // TODO: Does this quiet or return the origina NaN as-is? 4623 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4624 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4625 } 4626 case ISD::EXTRACT_VECTOR_ELT: { 4627 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4628 } 4629 default: 4630 if (Opcode >= ISD::BUILTIN_OP_END || 4631 Opcode == ISD::INTRINSIC_WO_CHAIN || 4632 Opcode == ISD::INTRINSIC_W_CHAIN || 4633 Opcode == ISD::INTRINSIC_VOID) { 4634 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4635 } 4636 4637 return false; 4638 } 4639 } 4640 4641 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4642 assert(Op.getValueType().isFloatingPoint() && 4643 "Floating point type expected"); 4644 4645 // If the value is a constant, we can obviously see if it is a zero or not. 4646 // TODO: Add BuildVector support. 4647 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4648 return !C->isZero(); 4649 return false; 4650 } 4651 4652 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4653 assert(!Op.getValueType().isFloatingPoint() && 4654 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4655 4656 // If the value is a constant, we can obviously see if it is a zero or not. 4657 if (ISD::matchUnaryPredicate(Op, 4658 [](ConstantSDNode *C) { return !C->isZero(); })) 4659 return true; 4660 4661 // TODO: Recognize more cases here. 4662 switch (Op.getOpcode()) { 4663 default: break; 4664 case ISD::OR: 4665 if (isKnownNeverZero(Op.getOperand(1)) || 4666 isKnownNeverZero(Op.getOperand(0))) 4667 return true; 4668 break; 4669 } 4670 4671 return false; 4672 } 4673 4674 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4675 // Check the obvious case. 4676 if (A == B) return true; 4677 4678 // For for negative and positive zero. 4679 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4680 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4681 if (CA->isZero() && CB->isZero()) return true; 4682 4683 // Otherwise they may not be equal. 4684 return false; 4685 } 4686 4687 // FIXME: unify with llvm::haveNoCommonBitsSet. 4688 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4689 assert(A.getValueType() == B.getValueType() && 4690 "Values must have the same type"); 4691 // Match masked merge pattern (X & ~M) op (Y & M) 4692 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4693 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4694 if (isBitwiseNot(NotM, true)) { 4695 SDValue NotOperand = NotM->getOperand(0); 4696 return NotOperand == And->getOperand(0) || 4697 NotOperand == And->getOperand(1); 4698 } 4699 return false; 4700 }; 4701 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4702 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4703 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4704 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4705 return true; 4706 } 4707 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4708 computeKnownBits(B)); 4709 } 4710 4711 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4712 SelectionDAG &DAG) { 4713 if (cast<ConstantSDNode>(Step)->isZero()) 4714 return DAG.getConstant(0, DL, VT); 4715 4716 return SDValue(); 4717 } 4718 4719 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4720 ArrayRef<SDValue> Ops, 4721 SelectionDAG &DAG) { 4722 int NumOps = Ops.size(); 4723 assert(NumOps != 0 && "Can't build an empty vector!"); 4724 assert(!VT.isScalableVector() && 4725 "BUILD_VECTOR cannot be used with scalable types"); 4726 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4727 "Incorrect element count in BUILD_VECTOR!"); 4728 4729 // BUILD_VECTOR of UNDEFs is UNDEF. 4730 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4731 return DAG.getUNDEF(VT); 4732 4733 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4734 SDValue IdentitySrc; 4735 bool IsIdentity = true; 4736 for (int i = 0; i != NumOps; ++i) { 4737 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4738 Ops[i].getOperand(0).getValueType() != VT || 4739 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4740 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4741 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4742 IsIdentity = false; 4743 break; 4744 } 4745 IdentitySrc = Ops[i].getOperand(0); 4746 } 4747 if (IsIdentity) 4748 return IdentitySrc; 4749 4750 return SDValue(); 4751 } 4752 4753 /// Try to simplify vector concatenation to an input value, undef, or build 4754 /// vector. 4755 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4756 ArrayRef<SDValue> Ops, 4757 SelectionDAG &DAG) { 4758 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4759 assert(llvm::all_of(Ops, 4760 [Ops](SDValue Op) { 4761 return Ops[0].getValueType() == Op.getValueType(); 4762 }) && 4763 "Concatenation of vectors with inconsistent value types!"); 4764 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4765 VT.getVectorElementCount() && 4766 "Incorrect element count in vector concatenation!"); 4767 4768 if (Ops.size() == 1) 4769 return Ops[0]; 4770 4771 // Concat of UNDEFs is UNDEF. 4772 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4773 return DAG.getUNDEF(VT); 4774 4775 // Scan the operands and look for extract operations from a single source 4776 // that correspond to insertion at the same location via this concatenation: 4777 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4778 SDValue IdentitySrc; 4779 bool IsIdentity = true; 4780 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4781 SDValue Op = Ops[i]; 4782 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4783 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4784 Op.getOperand(0).getValueType() != VT || 4785 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4786 Op.getConstantOperandVal(1) != IdentityIndex) { 4787 IsIdentity = false; 4788 break; 4789 } 4790 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4791 "Unexpected identity source vector for concat of extracts"); 4792 IdentitySrc = Op.getOperand(0); 4793 } 4794 if (IsIdentity) { 4795 assert(IdentitySrc && "Failed to set source vector of extracts"); 4796 return IdentitySrc; 4797 } 4798 4799 // The code below this point is only designed to work for fixed width 4800 // vectors, so we bail out for now. 4801 if (VT.isScalableVector()) 4802 return SDValue(); 4803 4804 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4805 // simplified to one big BUILD_VECTOR. 4806 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4807 EVT SVT = VT.getScalarType(); 4808 SmallVector<SDValue, 16> Elts; 4809 for (SDValue Op : Ops) { 4810 EVT OpVT = Op.getValueType(); 4811 if (Op.isUndef()) 4812 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4813 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4814 Elts.append(Op->op_begin(), Op->op_end()); 4815 else 4816 return SDValue(); 4817 } 4818 4819 // BUILD_VECTOR requires all inputs to be of the same type, find the 4820 // maximum type and extend them all. 4821 for (SDValue Op : Elts) 4822 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4823 4824 if (SVT.bitsGT(VT.getScalarType())) { 4825 for (SDValue &Op : Elts) { 4826 if (Op.isUndef()) 4827 Op = DAG.getUNDEF(SVT); 4828 else 4829 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4830 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4831 : DAG.getSExtOrTrunc(Op, DL, SVT); 4832 } 4833 } 4834 4835 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4836 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4837 return V; 4838 } 4839 4840 /// Gets or creates the specified node. 4841 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4842 FoldingSetNodeID ID; 4843 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4844 void *IP = nullptr; 4845 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4846 return SDValue(E, 0); 4847 4848 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4849 getVTList(VT)); 4850 CSEMap.InsertNode(N, IP); 4851 4852 InsertNode(N); 4853 SDValue V = SDValue(N, 0); 4854 NewSDValueDbgMsg(V, "Creating new node: ", this); 4855 return V; 4856 } 4857 4858 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4859 SDValue Operand) { 4860 SDNodeFlags Flags; 4861 if (Inserter) 4862 Flags = Inserter->getFlags(); 4863 return getNode(Opcode, DL, VT, Operand, Flags); 4864 } 4865 4866 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4867 SDValue Operand, const SDNodeFlags Flags) { 4868 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4869 "Operand is DELETED_NODE!"); 4870 // Constant fold unary operations with an integer constant operand. Even 4871 // opaque constant will be folded, because the folding of unary operations 4872 // doesn't create new constants with different values. Nevertheless, the 4873 // opaque flag is preserved during folding to prevent future folding with 4874 // other constants. 4875 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4876 const APInt &Val = C->getAPIntValue(); 4877 switch (Opcode) { 4878 default: break; 4879 case ISD::SIGN_EXTEND: 4880 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4881 C->isTargetOpcode(), C->isOpaque()); 4882 case ISD::TRUNCATE: 4883 if (C->isOpaque()) 4884 break; 4885 LLVM_FALLTHROUGH; 4886 case ISD::ZERO_EXTEND: 4887 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4888 C->isTargetOpcode(), C->isOpaque()); 4889 case ISD::ANY_EXTEND: 4890 // Some targets like RISCV prefer to sign extend some types. 4891 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4892 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4893 C->isTargetOpcode(), C->isOpaque()); 4894 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4895 C->isTargetOpcode(), C->isOpaque()); 4896 case ISD::UINT_TO_FP: 4897 case ISD::SINT_TO_FP: { 4898 APFloat apf(EVTToAPFloatSemantics(VT), 4899 APInt::getZero(VT.getSizeInBits())); 4900 (void)apf.convertFromAPInt(Val, 4901 Opcode==ISD::SINT_TO_FP, 4902 APFloat::rmNearestTiesToEven); 4903 return getConstantFP(apf, DL, VT); 4904 } 4905 case ISD::BITCAST: 4906 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4907 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4908 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4909 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4910 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4911 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4912 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4913 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4914 break; 4915 case ISD::ABS: 4916 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4917 C->isOpaque()); 4918 case ISD::BITREVERSE: 4919 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4920 C->isOpaque()); 4921 case ISD::BSWAP: 4922 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4923 C->isOpaque()); 4924 case ISD::CTPOP: 4925 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4926 C->isOpaque()); 4927 case ISD::CTLZ: 4928 case ISD::CTLZ_ZERO_UNDEF: 4929 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4930 C->isOpaque()); 4931 case ISD::CTTZ: 4932 case ISD::CTTZ_ZERO_UNDEF: 4933 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4934 C->isOpaque()); 4935 case ISD::FP16_TO_FP: { 4936 bool Ignored; 4937 APFloat FPV(APFloat::IEEEhalf(), 4938 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4939 4940 // This can return overflow, underflow, or inexact; we don't care. 4941 // FIXME need to be more flexible about rounding mode. 4942 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4943 APFloat::rmNearestTiesToEven, &Ignored); 4944 return getConstantFP(FPV, DL, VT); 4945 } 4946 case ISD::STEP_VECTOR: { 4947 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4948 return V; 4949 break; 4950 } 4951 } 4952 } 4953 4954 // Constant fold unary operations with a floating point constant operand. 4955 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4956 APFloat V = C->getValueAPF(); // make copy 4957 switch (Opcode) { 4958 case ISD::FNEG: 4959 V.changeSign(); 4960 return getConstantFP(V, DL, VT); 4961 case ISD::FABS: 4962 V.clearSign(); 4963 return getConstantFP(V, DL, VT); 4964 case ISD::FCEIL: { 4965 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4966 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4967 return getConstantFP(V, DL, VT); 4968 break; 4969 } 4970 case ISD::FTRUNC: { 4971 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4972 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4973 return getConstantFP(V, DL, VT); 4974 break; 4975 } 4976 case ISD::FFLOOR: { 4977 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4978 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4979 return getConstantFP(V, DL, VT); 4980 break; 4981 } 4982 case ISD::FP_EXTEND: { 4983 bool ignored; 4984 // This can return overflow, underflow, or inexact; we don't care. 4985 // FIXME need to be more flexible about rounding mode. 4986 (void)V.convert(EVTToAPFloatSemantics(VT), 4987 APFloat::rmNearestTiesToEven, &ignored); 4988 return getConstantFP(V, DL, VT); 4989 } 4990 case ISD::FP_TO_SINT: 4991 case ISD::FP_TO_UINT: { 4992 bool ignored; 4993 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4994 // FIXME need to be more flexible about rounding mode. 4995 APFloat::opStatus s = 4996 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4997 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4998 break; 4999 return getConstant(IntVal, DL, VT); 5000 } 5001 case ISD::BITCAST: 5002 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5003 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5004 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5005 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5006 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5007 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5008 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5009 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5010 break; 5011 case ISD::FP_TO_FP16: { 5012 bool Ignored; 5013 // This can return overflow, underflow, or inexact; we don't care. 5014 // FIXME need to be more flexible about rounding mode. 5015 (void)V.convert(APFloat::IEEEhalf(), 5016 APFloat::rmNearestTiesToEven, &Ignored); 5017 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5018 } 5019 } 5020 } 5021 5022 // Constant fold unary operations with a vector integer or float operand. 5023 switch (Opcode) { 5024 default: 5025 // FIXME: Entirely reasonable to perform folding of other unary 5026 // operations here as the need arises. 5027 break; 5028 case ISD::FNEG: 5029 case ISD::FABS: 5030 case ISD::FCEIL: 5031 case ISD::FTRUNC: 5032 case ISD::FFLOOR: 5033 case ISD::FP_EXTEND: 5034 case ISD::FP_TO_SINT: 5035 case ISD::FP_TO_UINT: 5036 case ISD::TRUNCATE: 5037 case ISD::ANY_EXTEND: 5038 case ISD::ZERO_EXTEND: 5039 case ISD::SIGN_EXTEND: 5040 case ISD::UINT_TO_FP: 5041 case ISD::SINT_TO_FP: 5042 case ISD::ABS: 5043 case ISD::BITREVERSE: 5044 case ISD::BSWAP: 5045 case ISD::CTLZ: 5046 case ISD::CTLZ_ZERO_UNDEF: 5047 case ISD::CTTZ: 5048 case ISD::CTTZ_ZERO_UNDEF: 5049 case ISD::CTPOP: { 5050 SDValue Ops = {Operand}; 5051 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5052 return Fold; 5053 } 5054 } 5055 5056 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5057 switch (Opcode) { 5058 case ISD::STEP_VECTOR: 5059 assert(VT.isScalableVector() && 5060 "STEP_VECTOR can only be used with scalable types"); 5061 assert(OpOpcode == ISD::TargetConstant && 5062 VT.getVectorElementType() == Operand.getValueType() && 5063 "Unexpected step operand"); 5064 break; 5065 case ISD::FREEZE: 5066 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5067 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5068 return Operand; 5069 break; 5070 case ISD::TokenFactor: 5071 case ISD::MERGE_VALUES: 5072 case ISD::CONCAT_VECTORS: 5073 return Operand; // Factor, merge or concat of one node? No need. 5074 case ISD::BUILD_VECTOR: { 5075 // Attempt to simplify BUILD_VECTOR. 5076 SDValue Ops[] = {Operand}; 5077 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5078 return V; 5079 break; 5080 } 5081 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5082 case ISD::FP_EXTEND: 5083 assert(VT.isFloatingPoint() && 5084 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5085 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5086 assert((!VT.isVector() || 5087 VT.getVectorElementCount() == 5088 Operand.getValueType().getVectorElementCount()) && 5089 "Vector element count mismatch!"); 5090 assert(Operand.getValueType().bitsLT(VT) && 5091 "Invalid fpext node, dst < src!"); 5092 if (Operand.isUndef()) 5093 return getUNDEF(VT); 5094 break; 5095 case ISD::FP_TO_SINT: 5096 case ISD::FP_TO_UINT: 5097 if (Operand.isUndef()) 5098 return getUNDEF(VT); 5099 break; 5100 case ISD::SINT_TO_FP: 5101 case ISD::UINT_TO_FP: 5102 // [us]itofp(undef) = 0, because the result value is bounded. 5103 if (Operand.isUndef()) 5104 return getConstantFP(0.0, DL, VT); 5105 break; 5106 case ISD::SIGN_EXTEND: 5107 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5108 "Invalid SIGN_EXTEND!"); 5109 assert(VT.isVector() == Operand.getValueType().isVector() && 5110 "SIGN_EXTEND result type type should be vector iff the operand " 5111 "type is vector!"); 5112 if (Operand.getValueType() == VT) return Operand; // noop extension 5113 assert((!VT.isVector() || 5114 VT.getVectorElementCount() == 5115 Operand.getValueType().getVectorElementCount()) && 5116 "Vector element count mismatch!"); 5117 assert(Operand.getValueType().bitsLT(VT) && 5118 "Invalid sext node, dst < src!"); 5119 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5120 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5121 if (OpOpcode == ISD::UNDEF) 5122 // sext(undef) = 0, because the top bits will all be the same. 5123 return getConstant(0, DL, VT); 5124 break; 5125 case ISD::ZERO_EXTEND: 5126 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5127 "Invalid ZERO_EXTEND!"); 5128 assert(VT.isVector() == Operand.getValueType().isVector() && 5129 "ZERO_EXTEND result type type should be vector iff the operand " 5130 "type is vector!"); 5131 if (Operand.getValueType() == VT) return Operand; // noop extension 5132 assert((!VT.isVector() || 5133 VT.getVectorElementCount() == 5134 Operand.getValueType().getVectorElementCount()) && 5135 "Vector element count mismatch!"); 5136 assert(Operand.getValueType().bitsLT(VT) && 5137 "Invalid zext node, dst < src!"); 5138 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5139 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5140 if (OpOpcode == ISD::UNDEF) 5141 // zext(undef) = 0, because the top bits will be zero. 5142 return getConstant(0, DL, VT); 5143 break; 5144 case ISD::ANY_EXTEND: 5145 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5146 "Invalid ANY_EXTEND!"); 5147 assert(VT.isVector() == Operand.getValueType().isVector() && 5148 "ANY_EXTEND result type type should be vector iff the operand " 5149 "type is vector!"); 5150 if (Operand.getValueType() == VT) return Operand; // noop extension 5151 assert((!VT.isVector() || 5152 VT.getVectorElementCount() == 5153 Operand.getValueType().getVectorElementCount()) && 5154 "Vector element count mismatch!"); 5155 assert(Operand.getValueType().bitsLT(VT) && 5156 "Invalid anyext node, dst < src!"); 5157 5158 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5159 OpOpcode == ISD::ANY_EXTEND) 5160 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5161 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5162 if (OpOpcode == ISD::UNDEF) 5163 return getUNDEF(VT); 5164 5165 // (ext (trunc x)) -> x 5166 if (OpOpcode == ISD::TRUNCATE) { 5167 SDValue OpOp = Operand.getOperand(0); 5168 if (OpOp.getValueType() == VT) { 5169 transferDbgValues(Operand, OpOp); 5170 return OpOp; 5171 } 5172 } 5173 break; 5174 case ISD::TRUNCATE: 5175 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5176 "Invalid TRUNCATE!"); 5177 assert(VT.isVector() == Operand.getValueType().isVector() && 5178 "TRUNCATE result type type should be vector iff the operand " 5179 "type is vector!"); 5180 if (Operand.getValueType() == VT) return Operand; // noop truncate 5181 assert((!VT.isVector() || 5182 VT.getVectorElementCount() == 5183 Operand.getValueType().getVectorElementCount()) && 5184 "Vector element count mismatch!"); 5185 assert(Operand.getValueType().bitsGT(VT) && 5186 "Invalid truncate node, src < dst!"); 5187 if (OpOpcode == ISD::TRUNCATE) 5188 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5189 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5190 OpOpcode == ISD::ANY_EXTEND) { 5191 // If the source is smaller than the dest, we still need an extend. 5192 if (Operand.getOperand(0).getValueType().getScalarType() 5193 .bitsLT(VT.getScalarType())) 5194 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5195 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5196 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5197 return Operand.getOperand(0); 5198 } 5199 if (OpOpcode == ISD::UNDEF) 5200 return getUNDEF(VT); 5201 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5202 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5203 break; 5204 case ISD::ANY_EXTEND_VECTOR_INREG: 5205 case ISD::ZERO_EXTEND_VECTOR_INREG: 5206 case ISD::SIGN_EXTEND_VECTOR_INREG: 5207 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5208 assert(Operand.getValueType().bitsLE(VT) && 5209 "The input must be the same size or smaller than the result."); 5210 assert(VT.getVectorMinNumElements() < 5211 Operand.getValueType().getVectorMinNumElements() && 5212 "The destination vector type must have fewer lanes than the input."); 5213 break; 5214 case ISD::ABS: 5215 assert(VT.isInteger() && VT == Operand.getValueType() && 5216 "Invalid ABS!"); 5217 if (OpOpcode == ISD::UNDEF) 5218 return getUNDEF(VT); 5219 break; 5220 case ISD::BSWAP: 5221 assert(VT.isInteger() && VT == Operand.getValueType() && 5222 "Invalid BSWAP!"); 5223 assert((VT.getScalarSizeInBits() % 16 == 0) && 5224 "BSWAP types must be a multiple of 16 bits!"); 5225 if (OpOpcode == ISD::UNDEF) 5226 return getUNDEF(VT); 5227 // bswap(bswap(X)) -> X. 5228 if (OpOpcode == ISD::BSWAP) 5229 return Operand.getOperand(0); 5230 break; 5231 case ISD::BITREVERSE: 5232 assert(VT.isInteger() && VT == Operand.getValueType() && 5233 "Invalid BITREVERSE!"); 5234 if (OpOpcode == ISD::UNDEF) 5235 return getUNDEF(VT); 5236 break; 5237 case ISD::BITCAST: 5238 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5239 "Cannot BITCAST between types of different sizes!"); 5240 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5241 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5242 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5243 if (OpOpcode == ISD::UNDEF) 5244 return getUNDEF(VT); 5245 break; 5246 case ISD::SCALAR_TO_VECTOR: 5247 assert(VT.isVector() && !Operand.getValueType().isVector() && 5248 (VT.getVectorElementType() == Operand.getValueType() || 5249 (VT.getVectorElementType().isInteger() && 5250 Operand.getValueType().isInteger() && 5251 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5252 "Illegal SCALAR_TO_VECTOR node!"); 5253 if (OpOpcode == ISD::UNDEF) 5254 return getUNDEF(VT); 5255 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5256 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5257 isa<ConstantSDNode>(Operand.getOperand(1)) && 5258 Operand.getConstantOperandVal(1) == 0 && 5259 Operand.getOperand(0).getValueType() == VT) 5260 return Operand.getOperand(0); 5261 break; 5262 case ISD::FNEG: 5263 // Negation of an unknown bag of bits is still completely undefined. 5264 if (OpOpcode == ISD::UNDEF) 5265 return getUNDEF(VT); 5266 5267 if (OpOpcode == ISD::FNEG) // --X -> X 5268 return Operand.getOperand(0); 5269 break; 5270 case ISD::FABS: 5271 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5272 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5273 break; 5274 case ISD::VSCALE: 5275 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5276 break; 5277 case ISD::CTPOP: 5278 if (Operand.getValueType().getScalarType() == MVT::i1) 5279 return Operand; 5280 break; 5281 case ISD::CTLZ: 5282 case ISD::CTTZ: 5283 if (Operand.getValueType().getScalarType() == MVT::i1) 5284 return getNOT(DL, Operand, Operand.getValueType()); 5285 break; 5286 case ISD::VECREDUCE_SMIN: 5287 case ISD::VECREDUCE_UMAX: 5288 if (Operand.getValueType().getScalarType() == MVT::i1) 5289 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5290 break; 5291 case ISD::VECREDUCE_SMAX: 5292 case ISD::VECREDUCE_UMIN: 5293 if (Operand.getValueType().getScalarType() == MVT::i1) 5294 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5295 break; 5296 } 5297 5298 SDNode *N; 5299 SDVTList VTs = getVTList(VT); 5300 SDValue Ops[] = {Operand}; 5301 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5302 FoldingSetNodeID ID; 5303 AddNodeIDNode(ID, Opcode, VTs, Ops); 5304 void *IP = nullptr; 5305 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5306 E->intersectFlagsWith(Flags); 5307 return SDValue(E, 0); 5308 } 5309 5310 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5311 N->setFlags(Flags); 5312 createOperands(N, Ops); 5313 CSEMap.InsertNode(N, IP); 5314 } else { 5315 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5316 createOperands(N, Ops); 5317 } 5318 5319 InsertNode(N); 5320 SDValue V = SDValue(N, 0); 5321 NewSDValueDbgMsg(V, "Creating new node: ", this); 5322 return V; 5323 } 5324 5325 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5326 const APInt &C2) { 5327 switch (Opcode) { 5328 case ISD::ADD: return C1 + C2; 5329 case ISD::SUB: return C1 - C2; 5330 case ISD::MUL: return C1 * C2; 5331 case ISD::AND: return C1 & C2; 5332 case ISD::OR: return C1 | C2; 5333 case ISD::XOR: return C1 ^ C2; 5334 case ISD::SHL: return C1 << C2; 5335 case ISD::SRL: return C1.lshr(C2); 5336 case ISD::SRA: return C1.ashr(C2); 5337 case ISD::ROTL: return C1.rotl(C2); 5338 case ISD::ROTR: return C1.rotr(C2); 5339 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5340 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5341 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5342 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5343 case ISD::SADDSAT: return C1.sadd_sat(C2); 5344 case ISD::UADDSAT: return C1.uadd_sat(C2); 5345 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5346 case ISD::USUBSAT: return C1.usub_sat(C2); 5347 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5348 case ISD::USHLSAT: return C1.ushl_sat(C2); 5349 case ISD::UDIV: 5350 if (!C2.getBoolValue()) 5351 break; 5352 return C1.udiv(C2); 5353 case ISD::UREM: 5354 if (!C2.getBoolValue()) 5355 break; 5356 return C1.urem(C2); 5357 case ISD::SDIV: 5358 if (!C2.getBoolValue()) 5359 break; 5360 return C1.sdiv(C2); 5361 case ISD::SREM: 5362 if (!C2.getBoolValue()) 5363 break; 5364 return C1.srem(C2); 5365 case ISD::MULHS: { 5366 unsigned FullWidth = C1.getBitWidth() * 2; 5367 APInt C1Ext = C1.sext(FullWidth); 5368 APInt C2Ext = C2.sext(FullWidth); 5369 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5370 } 5371 case ISD::MULHU: { 5372 unsigned FullWidth = C1.getBitWidth() * 2; 5373 APInt C1Ext = C1.zext(FullWidth); 5374 APInt C2Ext = C2.zext(FullWidth); 5375 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5376 } 5377 case ISD::AVGFLOORS: { 5378 unsigned FullWidth = C1.getBitWidth() + 1; 5379 APInt C1Ext = C1.sext(FullWidth); 5380 APInt C2Ext = C2.sext(FullWidth); 5381 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5382 } 5383 case ISD::AVGFLOORU: { 5384 unsigned FullWidth = C1.getBitWidth() + 1; 5385 APInt C1Ext = C1.zext(FullWidth); 5386 APInt C2Ext = C2.zext(FullWidth); 5387 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5388 } 5389 case ISD::AVGCEILS: { 5390 unsigned FullWidth = C1.getBitWidth() + 1; 5391 APInt C1Ext = C1.sext(FullWidth); 5392 APInt C2Ext = C2.sext(FullWidth); 5393 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5394 } 5395 case ISD::AVGCEILU: { 5396 unsigned FullWidth = C1.getBitWidth() + 1; 5397 APInt C1Ext = C1.zext(FullWidth); 5398 APInt C2Ext = C2.zext(FullWidth); 5399 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5400 } 5401 } 5402 return llvm::None; 5403 } 5404 5405 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5406 const GlobalAddressSDNode *GA, 5407 const SDNode *N2) { 5408 if (GA->getOpcode() != ISD::GlobalAddress) 5409 return SDValue(); 5410 if (!TLI->isOffsetFoldingLegal(GA)) 5411 return SDValue(); 5412 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5413 if (!C2) 5414 return SDValue(); 5415 int64_t Offset = C2->getSExtValue(); 5416 switch (Opcode) { 5417 case ISD::ADD: break; 5418 case ISD::SUB: Offset = -uint64_t(Offset); break; 5419 default: return SDValue(); 5420 } 5421 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5422 GA->getOffset() + uint64_t(Offset)); 5423 } 5424 5425 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5426 switch (Opcode) { 5427 case ISD::SDIV: 5428 case ISD::UDIV: 5429 case ISD::SREM: 5430 case ISD::UREM: { 5431 // If a divisor is zero/undef or any element of a divisor vector is 5432 // zero/undef, the whole op is undef. 5433 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5434 SDValue Divisor = Ops[1]; 5435 if (Divisor.isUndef() || isNullConstant(Divisor)) 5436 return true; 5437 5438 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5439 llvm::any_of(Divisor->op_values(), 5440 [](SDValue V) { return V.isUndef() || 5441 isNullConstant(V); }); 5442 // TODO: Handle signed overflow. 5443 } 5444 // TODO: Handle oversized shifts. 5445 default: 5446 return false; 5447 } 5448 } 5449 5450 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5451 EVT VT, ArrayRef<SDValue> Ops) { 5452 // If the opcode is a target-specific ISD node, there's nothing we can 5453 // do here and the operand rules may not line up with the below, so 5454 // bail early. 5455 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5456 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5457 // foldCONCAT_VECTORS in getNode before this is called. 5458 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5459 return SDValue(); 5460 5461 unsigned NumOps = Ops.size(); 5462 if (NumOps == 0) 5463 return SDValue(); 5464 5465 if (isUndef(Opcode, Ops)) 5466 return getUNDEF(VT); 5467 5468 // Handle binops special cases. 5469 if (NumOps == 2) { 5470 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5471 return CFP; 5472 5473 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5474 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5475 if (C1->isOpaque() || C2->isOpaque()) 5476 return SDValue(); 5477 5478 Optional<APInt> FoldAttempt = 5479 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5480 if (!FoldAttempt) 5481 return SDValue(); 5482 5483 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5484 assert((!Folded || !VT.isVector()) && 5485 "Can't fold vectors ops with scalar operands"); 5486 return Folded; 5487 } 5488 } 5489 5490 // fold (add Sym, c) -> Sym+c 5491 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5492 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5493 if (TLI->isCommutativeBinOp(Opcode)) 5494 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5495 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5496 } 5497 5498 // This is for vector folding only from here on. 5499 if (!VT.isVector()) 5500 return SDValue(); 5501 5502 ElementCount NumElts = VT.getVectorElementCount(); 5503 5504 // See if we can fold through bitcasted integer ops. 5505 // TODO: Can we handle undef elements? 5506 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5507 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5508 Ops[0].getOpcode() == ISD::BITCAST && 5509 Ops[1].getOpcode() == ISD::BITCAST) { 5510 SDValue N1 = peekThroughBitcasts(Ops[0]); 5511 SDValue N2 = peekThroughBitcasts(Ops[1]); 5512 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5513 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5514 EVT BVVT = N1.getValueType(); 5515 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5516 bool IsLE = getDataLayout().isLittleEndian(); 5517 unsigned EltBits = VT.getScalarSizeInBits(); 5518 SmallVector<APInt> RawBits1, RawBits2; 5519 BitVector UndefElts1, UndefElts2; 5520 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5521 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5522 UndefElts1.none() && UndefElts2.none()) { 5523 SmallVector<APInt> RawBits; 5524 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5525 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5526 if (!Fold) 5527 break; 5528 RawBits.push_back(Fold.getValue()); 5529 } 5530 if (RawBits.size() == NumElts.getFixedValue()) { 5531 // We have constant folded, but we need to cast this again back to 5532 // the original (possibly legalized) type. 5533 SmallVector<APInt> DstBits; 5534 BitVector DstUndefs; 5535 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5536 DstBits, RawBits, DstUndefs, 5537 BitVector(RawBits.size(), false)); 5538 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5539 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5540 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5541 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5542 if (DstUndefs[I]) 5543 continue; 5544 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5545 } 5546 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5547 } 5548 } 5549 } 5550 } 5551 5552 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5553 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5554 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5555 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5556 APInt RHSVal; 5557 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5558 APInt NewStep = Opcode == ISD::MUL 5559 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5560 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5561 return getStepVector(DL, VT, NewStep); 5562 } 5563 } 5564 5565 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5566 return !Op.getValueType().isVector() || 5567 Op.getValueType().getVectorElementCount() == NumElts; 5568 }; 5569 5570 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5571 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5572 Op.getOpcode() == ISD::BUILD_VECTOR || 5573 Op.getOpcode() == ISD::SPLAT_VECTOR; 5574 }; 5575 5576 // All operands must be vector types with the same number of elements as 5577 // the result type and must be either UNDEF or a build/splat vector 5578 // or UNDEF scalars. 5579 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5580 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5581 return SDValue(); 5582 5583 // If we are comparing vectors, then the result needs to be a i1 boolean 5584 // that is then sign-extended back to the legal result type. 5585 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5586 5587 // Find legal integer scalar type for constant promotion and 5588 // ensure that its scalar size is at least as large as source. 5589 EVT LegalSVT = VT.getScalarType(); 5590 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5591 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5592 if (LegalSVT.bitsLT(VT.getScalarType())) 5593 return SDValue(); 5594 } 5595 5596 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5597 // only have one operand to check. For fixed-length vector types we may have 5598 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5599 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5600 5601 // Constant fold each scalar lane separately. 5602 SmallVector<SDValue, 4> ScalarResults; 5603 for (unsigned I = 0; I != NumVectorElts; I++) { 5604 SmallVector<SDValue, 4> ScalarOps; 5605 for (SDValue Op : Ops) { 5606 EVT InSVT = Op.getValueType().getScalarType(); 5607 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5608 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5609 if (Op.isUndef()) 5610 ScalarOps.push_back(getUNDEF(InSVT)); 5611 else 5612 ScalarOps.push_back(Op); 5613 continue; 5614 } 5615 5616 SDValue ScalarOp = 5617 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5618 EVT ScalarVT = ScalarOp.getValueType(); 5619 5620 // Build vector (integer) scalar operands may need implicit 5621 // truncation - do this before constant folding. 5622 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5623 // Don't create illegally-typed nodes unless they're constants or undef 5624 // - if we fail to constant fold we can't guarantee the (dead) nodes 5625 // we're creating will be cleaned up before being visited for 5626 // legalization. 5627 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5628 !isa<ConstantSDNode>(ScalarOp) && 5629 TLI->getTypeAction(*getContext(), InSVT) != 5630 TargetLowering::TypeLegal) 5631 return SDValue(); 5632 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5633 } 5634 5635 ScalarOps.push_back(ScalarOp); 5636 } 5637 5638 // Constant fold the scalar operands. 5639 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5640 5641 // Legalize the (integer) scalar constant if necessary. 5642 if (LegalSVT != SVT) 5643 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5644 5645 // Scalar folding only succeeded if the result is a constant or UNDEF. 5646 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5647 ScalarResult.getOpcode() != ISD::ConstantFP) 5648 return SDValue(); 5649 ScalarResults.push_back(ScalarResult); 5650 } 5651 5652 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5653 : getBuildVector(VT, DL, ScalarResults); 5654 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5655 return V; 5656 } 5657 5658 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5659 EVT VT, SDValue N1, SDValue N2) { 5660 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5661 // should. That will require dealing with a potentially non-default 5662 // rounding mode, checking the "opStatus" return value from the APFloat 5663 // math calculations, and possibly other variations. 5664 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5665 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5666 if (N1CFP && N2CFP) { 5667 APFloat C1 = N1CFP->getValueAPF(); // make copy 5668 const APFloat &C2 = N2CFP->getValueAPF(); 5669 switch (Opcode) { 5670 case ISD::FADD: 5671 C1.add(C2, APFloat::rmNearestTiesToEven); 5672 return getConstantFP(C1, DL, VT); 5673 case ISD::FSUB: 5674 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5675 return getConstantFP(C1, DL, VT); 5676 case ISD::FMUL: 5677 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5678 return getConstantFP(C1, DL, VT); 5679 case ISD::FDIV: 5680 C1.divide(C2, APFloat::rmNearestTiesToEven); 5681 return getConstantFP(C1, DL, VT); 5682 case ISD::FREM: 5683 C1.mod(C2); 5684 return getConstantFP(C1, DL, VT); 5685 case ISD::FCOPYSIGN: 5686 C1.copySign(C2); 5687 return getConstantFP(C1, DL, VT); 5688 case ISD::FMINNUM: 5689 return getConstantFP(minnum(C1, C2), DL, VT); 5690 case ISD::FMAXNUM: 5691 return getConstantFP(maxnum(C1, C2), DL, VT); 5692 case ISD::FMINIMUM: 5693 return getConstantFP(minimum(C1, C2), DL, VT); 5694 case ISD::FMAXIMUM: 5695 return getConstantFP(maximum(C1, C2), DL, VT); 5696 default: break; 5697 } 5698 } 5699 if (N1CFP && Opcode == ISD::FP_ROUND) { 5700 APFloat C1 = N1CFP->getValueAPF(); // make copy 5701 bool Unused; 5702 // This can return overflow, underflow, or inexact; we don't care. 5703 // FIXME need to be more flexible about rounding mode. 5704 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5705 &Unused); 5706 return getConstantFP(C1, DL, VT); 5707 } 5708 5709 switch (Opcode) { 5710 case ISD::FSUB: 5711 // -0.0 - undef --> undef (consistent with "fneg undef") 5712 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5713 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5714 return getUNDEF(VT); 5715 LLVM_FALLTHROUGH; 5716 5717 case ISD::FADD: 5718 case ISD::FMUL: 5719 case ISD::FDIV: 5720 case ISD::FREM: 5721 // If both operands are undef, the result is undef. If 1 operand is undef, 5722 // the result is NaN. This should match the behavior of the IR optimizer. 5723 if (N1.isUndef() && N2.isUndef()) 5724 return getUNDEF(VT); 5725 if (N1.isUndef() || N2.isUndef()) 5726 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5727 } 5728 return SDValue(); 5729 } 5730 5731 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5732 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5733 5734 // There's no need to assert on a byte-aligned pointer. All pointers are at 5735 // least byte aligned. 5736 if (A == Align(1)) 5737 return Val; 5738 5739 FoldingSetNodeID ID; 5740 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5741 ID.AddInteger(A.value()); 5742 5743 void *IP = nullptr; 5744 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5745 return SDValue(E, 0); 5746 5747 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5748 Val.getValueType(), A); 5749 createOperands(N, {Val}); 5750 5751 CSEMap.InsertNode(N, IP); 5752 InsertNode(N); 5753 5754 SDValue V(N, 0); 5755 NewSDValueDbgMsg(V, "Creating new node: ", this); 5756 return V; 5757 } 5758 5759 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5760 SDValue N1, SDValue N2) { 5761 SDNodeFlags Flags; 5762 if (Inserter) 5763 Flags = Inserter->getFlags(); 5764 return getNode(Opcode, DL, VT, N1, N2, Flags); 5765 } 5766 5767 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5768 SDValue &N2) const { 5769 if (!TLI->isCommutativeBinOp(Opcode)) 5770 return; 5771 5772 // Canonicalize: 5773 // binop(const, nonconst) -> binop(nonconst, const) 5774 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5775 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5776 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5777 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5778 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5779 std::swap(N1, N2); 5780 5781 // Canonicalize: 5782 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5783 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5784 N2.getOpcode() == ISD::STEP_VECTOR) 5785 std::swap(N1, N2); 5786 } 5787 5788 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5789 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5790 assert(N1.getOpcode() != ISD::DELETED_NODE && 5791 N2.getOpcode() != ISD::DELETED_NODE && 5792 "Operand is DELETED_NODE!"); 5793 5794 canonicalizeCommutativeBinop(Opcode, N1, N2); 5795 5796 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5797 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5798 5799 // Don't allow undefs in vector splats - we might be returning N2 when folding 5800 // to zero etc. 5801 ConstantSDNode *N2CV = 5802 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5803 5804 switch (Opcode) { 5805 default: break; 5806 case ISD::TokenFactor: 5807 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5808 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5809 // Fold trivial token factors. 5810 if (N1.getOpcode() == ISD::EntryToken) return N2; 5811 if (N2.getOpcode() == ISD::EntryToken) return N1; 5812 if (N1 == N2) return N1; 5813 break; 5814 case ISD::BUILD_VECTOR: { 5815 // Attempt to simplify BUILD_VECTOR. 5816 SDValue Ops[] = {N1, N2}; 5817 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5818 return V; 5819 break; 5820 } 5821 case ISD::CONCAT_VECTORS: { 5822 SDValue Ops[] = {N1, N2}; 5823 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5824 return V; 5825 break; 5826 } 5827 case ISD::AND: 5828 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5829 assert(N1.getValueType() == N2.getValueType() && 5830 N1.getValueType() == VT && "Binary operator types must match!"); 5831 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5832 // worth handling here. 5833 if (N2CV && N2CV->isZero()) 5834 return N2; 5835 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5836 return N1; 5837 break; 5838 case ISD::OR: 5839 case ISD::XOR: 5840 case ISD::ADD: 5841 case ISD::SUB: 5842 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5843 assert(N1.getValueType() == N2.getValueType() && 5844 N1.getValueType() == VT && "Binary operator types must match!"); 5845 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5846 // it's worth handling here. 5847 if (N2CV && N2CV->isZero()) 5848 return N1; 5849 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5850 VT.getVectorElementType() == MVT::i1) 5851 return getNode(ISD::XOR, DL, VT, N1, N2); 5852 break; 5853 case ISD::MUL: 5854 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5855 assert(N1.getValueType() == N2.getValueType() && 5856 N1.getValueType() == VT && "Binary operator types must match!"); 5857 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5858 return getNode(ISD::AND, DL, VT, N1, N2); 5859 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5860 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5861 const APInt &N2CImm = N2C->getAPIntValue(); 5862 return getVScale(DL, VT, MulImm * N2CImm); 5863 } 5864 break; 5865 case ISD::UDIV: 5866 case ISD::UREM: 5867 case ISD::MULHU: 5868 case ISD::MULHS: 5869 case ISD::SDIV: 5870 case ISD::SREM: 5871 case ISD::SADDSAT: 5872 case ISD::SSUBSAT: 5873 case ISD::UADDSAT: 5874 case ISD::USUBSAT: 5875 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5876 assert(N1.getValueType() == N2.getValueType() && 5877 N1.getValueType() == VT && "Binary operator types must match!"); 5878 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5879 // fold (add_sat x, y) -> (or x, y) for bool types. 5880 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5881 return getNode(ISD::OR, DL, VT, N1, N2); 5882 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5883 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5884 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5885 } 5886 break; 5887 case ISD::SMIN: 5888 case ISD::UMAX: 5889 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5890 assert(N1.getValueType() == N2.getValueType() && 5891 N1.getValueType() == VT && "Binary operator types must match!"); 5892 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5893 return getNode(ISD::OR, DL, VT, N1, N2); 5894 break; 5895 case ISD::SMAX: 5896 case ISD::UMIN: 5897 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5898 assert(N1.getValueType() == N2.getValueType() && 5899 N1.getValueType() == VT && "Binary operator types must match!"); 5900 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5901 return getNode(ISD::AND, DL, VT, N1, N2); 5902 break; 5903 case ISD::FADD: 5904 case ISD::FSUB: 5905 case ISD::FMUL: 5906 case ISD::FDIV: 5907 case ISD::FREM: 5908 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5909 assert(N1.getValueType() == N2.getValueType() && 5910 N1.getValueType() == VT && "Binary operator types must match!"); 5911 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5912 return V; 5913 break; 5914 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5915 assert(N1.getValueType() == VT && 5916 N1.getValueType().isFloatingPoint() && 5917 N2.getValueType().isFloatingPoint() && 5918 "Invalid FCOPYSIGN!"); 5919 break; 5920 case ISD::SHL: 5921 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5922 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5923 const APInt &ShiftImm = N2C->getAPIntValue(); 5924 return getVScale(DL, VT, MulImm << ShiftImm); 5925 } 5926 LLVM_FALLTHROUGH; 5927 case ISD::SRA: 5928 case ISD::SRL: 5929 if (SDValue V = simplifyShift(N1, N2)) 5930 return V; 5931 LLVM_FALLTHROUGH; 5932 case ISD::ROTL: 5933 case ISD::ROTR: 5934 assert(VT == N1.getValueType() && 5935 "Shift operators return type must be the same as their first arg"); 5936 assert(VT.isInteger() && N2.getValueType().isInteger() && 5937 "Shifts only work on integers"); 5938 assert((!VT.isVector() || VT == N2.getValueType()) && 5939 "Vector shift amounts must be in the same as their first arg"); 5940 // Verify that the shift amount VT is big enough to hold valid shift 5941 // amounts. This catches things like trying to shift an i1024 value by an 5942 // i8, which is easy to fall into in generic code that uses 5943 // TLI.getShiftAmount(). 5944 assert(N2.getValueType().getScalarSizeInBits() >= 5945 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5946 "Invalid use of small shift amount with oversized value!"); 5947 5948 // Always fold shifts of i1 values so the code generator doesn't need to 5949 // handle them. Since we know the size of the shift has to be less than the 5950 // size of the value, the shift/rotate count is guaranteed to be zero. 5951 if (VT == MVT::i1) 5952 return N1; 5953 if (N2CV && N2CV->isZero()) 5954 return N1; 5955 break; 5956 case ISD::FP_ROUND: 5957 assert(VT.isFloatingPoint() && 5958 N1.getValueType().isFloatingPoint() && 5959 VT.bitsLE(N1.getValueType()) && 5960 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5961 "Invalid FP_ROUND!"); 5962 if (N1.getValueType() == VT) return N1; // noop conversion. 5963 break; 5964 case ISD::AssertSext: 5965 case ISD::AssertZext: { 5966 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5967 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5968 assert(VT.isInteger() && EVT.isInteger() && 5969 "Cannot *_EXTEND_INREG FP types"); 5970 assert(!EVT.isVector() && 5971 "AssertSExt/AssertZExt type should be the vector element type " 5972 "rather than the vector type!"); 5973 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5974 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5975 break; 5976 } 5977 case ISD::SIGN_EXTEND_INREG: { 5978 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5979 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5980 assert(VT.isInteger() && EVT.isInteger() && 5981 "Cannot *_EXTEND_INREG FP types"); 5982 assert(EVT.isVector() == VT.isVector() && 5983 "SIGN_EXTEND_INREG type should be vector iff the operand " 5984 "type is vector!"); 5985 assert((!EVT.isVector() || 5986 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5987 "Vector element counts must match in SIGN_EXTEND_INREG"); 5988 assert(EVT.bitsLE(VT) && "Not extending!"); 5989 if (EVT == VT) return N1; // Not actually extending 5990 5991 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5992 unsigned FromBits = EVT.getScalarSizeInBits(); 5993 Val <<= Val.getBitWidth() - FromBits; 5994 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5995 return getConstant(Val, DL, ConstantVT); 5996 }; 5997 5998 if (N1C) { 5999 const APInt &Val = N1C->getAPIntValue(); 6000 return SignExtendInReg(Val, VT); 6001 } 6002 6003 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6004 SmallVector<SDValue, 8> Ops; 6005 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6006 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6007 SDValue Op = N1.getOperand(i); 6008 if (Op.isUndef()) { 6009 Ops.push_back(getUNDEF(OpVT)); 6010 continue; 6011 } 6012 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6013 APInt Val = C->getAPIntValue(); 6014 Ops.push_back(SignExtendInReg(Val, OpVT)); 6015 } 6016 return getBuildVector(VT, DL, Ops); 6017 } 6018 break; 6019 } 6020 case ISD::FP_TO_SINT_SAT: 6021 case ISD::FP_TO_UINT_SAT: { 6022 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6023 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6024 assert(N1.getValueType().isVector() == VT.isVector() && 6025 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6026 "vector!"); 6027 assert((!VT.isVector() || VT.getVectorNumElements() == 6028 N1.getValueType().getVectorNumElements()) && 6029 "Vector element counts must match in FP_TO_*INT_SAT"); 6030 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6031 "Type to saturate to must be a scalar."); 6032 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6033 "Not extending!"); 6034 break; 6035 } 6036 case ISD::EXTRACT_VECTOR_ELT: 6037 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6038 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6039 element type of the vector."); 6040 6041 // Extract from an undefined value or using an undefined index is undefined. 6042 if (N1.isUndef() || N2.isUndef()) 6043 return getUNDEF(VT); 6044 6045 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6046 // vectors. For scalable vectors we will provide appropriate support for 6047 // dealing with arbitrary indices. 6048 if (N2C && N1.getValueType().isFixedLengthVector() && 6049 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6050 return getUNDEF(VT); 6051 6052 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6053 // expanding copies of large vectors from registers. This only works for 6054 // fixed length vectors, since we need to know the exact number of 6055 // elements. 6056 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6057 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6058 unsigned Factor = 6059 N1.getOperand(0).getValueType().getVectorNumElements(); 6060 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6061 N1.getOperand(N2C->getZExtValue() / Factor), 6062 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6063 } 6064 6065 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6066 // lowering is expanding large vector constants. 6067 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6068 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6069 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6070 N1.getValueType().isFixedLengthVector()) && 6071 "BUILD_VECTOR used for scalable vectors"); 6072 unsigned Index = 6073 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6074 SDValue Elt = N1.getOperand(Index); 6075 6076 if (VT != Elt.getValueType()) 6077 // If the vector element type is not legal, the BUILD_VECTOR operands 6078 // are promoted and implicitly truncated, and the result implicitly 6079 // extended. Make that explicit here. 6080 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6081 6082 return Elt; 6083 } 6084 6085 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6086 // operations are lowered to scalars. 6087 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6088 // If the indices are the same, return the inserted element else 6089 // if the indices are known different, extract the element from 6090 // the original vector. 6091 SDValue N1Op2 = N1.getOperand(2); 6092 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6093 6094 if (N1Op2C && N2C) { 6095 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6096 if (VT == N1.getOperand(1).getValueType()) 6097 return N1.getOperand(1); 6098 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6099 } 6100 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6101 } 6102 } 6103 6104 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6105 // when vector types are scalarized and v1iX is legal. 6106 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6107 // Here we are completely ignoring the extract element index (N2), 6108 // which is fine for fixed width vectors, since any index other than 0 6109 // is undefined anyway. However, this cannot be ignored for scalable 6110 // vectors - in theory we could support this, but we don't want to do this 6111 // without a profitability check. 6112 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6113 N1.getValueType().isFixedLengthVector() && 6114 N1.getValueType().getVectorNumElements() == 1) { 6115 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6116 N1.getOperand(1)); 6117 } 6118 break; 6119 case ISD::EXTRACT_ELEMENT: 6120 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6121 assert(!N1.getValueType().isVector() && !VT.isVector() && 6122 (N1.getValueType().isInteger() == VT.isInteger()) && 6123 N1.getValueType() != VT && 6124 "Wrong types for EXTRACT_ELEMENT!"); 6125 6126 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6127 // 64-bit integers into 32-bit parts. Instead of building the extract of 6128 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6129 if (N1.getOpcode() == ISD::BUILD_PAIR) 6130 return N1.getOperand(N2C->getZExtValue()); 6131 6132 // EXTRACT_ELEMENT of a constant int is also very common. 6133 if (N1C) { 6134 unsigned ElementSize = VT.getSizeInBits(); 6135 unsigned Shift = ElementSize * N2C->getZExtValue(); 6136 const APInt &Val = N1C->getAPIntValue(); 6137 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6138 } 6139 break; 6140 case ISD::EXTRACT_SUBVECTOR: { 6141 EVT N1VT = N1.getValueType(); 6142 assert(VT.isVector() && N1VT.isVector() && 6143 "Extract subvector VTs must be vectors!"); 6144 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6145 "Extract subvector VTs must have the same element type!"); 6146 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6147 "Cannot extract a scalable vector from a fixed length vector!"); 6148 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6149 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6150 "Extract subvector must be from larger vector to smaller vector!"); 6151 assert(N2C && "Extract subvector index must be a constant"); 6152 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6153 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6154 N1VT.getVectorMinNumElements()) && 6155 "Extract subvector overflow!"); 6156 assert(N2C->getAPIntValue().getBitWidth() == 6157 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6158 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6159 6160 // Trivial extraction. 6161 if (VT == N1VT) 6162 return N1; 6163 6164 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6165 if (N1.isUndef()) 6166 return getUNDEF(VT); 6167 6168 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6169 // the concat have the same type as the extract. 6170 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6171 VT == N1.getOperand(0).getValueType()) { 6172 unsigned Factor = VT.getVectorMinNumElements(); 6173 return N1.getOperand(N2C->getZExtValue() / Factor); 6174 } 6175 6176 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6177 // during shuffle legalization. 6178 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6179 VT == N1.getOperand(1).getValueType()) 6180 return N1.getOperand(1); 6181 break; 6182 } 6183 } 6184 6185 // Perform trivial constant folding. 6186 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6187 return SV; 6188 6189 // Canonicalize an UNDEF to the RHS, even over a constant. 6190 if (N1.isUndef()) { 6191 if (TLI->isCommutativeBinOp(Opcode)) { 6192 std::swap(N1, N2); 6193 } else { 6194 switch (Opcode) { 6195 case ISD::SIGN_EXTEND_INREG: 6196 case ISD::SUB: 6197 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6198 case ISD::UDIV: 6199 case ISD::SDIV: 6200 case ISD::UREM: 6201 case ISD::SREM: 6202 case ISD::SSUBSAT: 6203 case ISD::USUBSAT: 6204 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6205 } 6206 } 6207 } 6208 6209 // Fold a bunch of operators when the RHS is undef. 6210 if (N2.isUndef()) { 6211 switch (Opcode) { 6212 case ISD::XOR: 6213 if (N1.isUndef()) 6214 // Handle undef ^ undef -> 0 special case. This is a common 6215 // idiom (misuse). 6216 return getConstant(0, DL, VT); 6217 LLVM_FALLTHROUGH; 6218 case ISD::ADD: 6219 case ISD::SUB: 6220 case ISD::UDIV: 6221 case ISD::SDIV: 6222 case ISD::UREM: 6223 case ISD::SREM: 6224 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6225 case ISD::MUL: 6226 case ISD::AND: 6227 case ISD::SSUBSAT: 6228 case ISD::USUBSAT: 6229 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6230 case ISD::OR: 6231 case ISD::SADDSAT: 6232 case ISD::UADDSAT: 6233 return getAllOnesConstant(DL, VT); 6234 } 6235 } 6236 6237 // Memoize this node if possible. 6238 SDNode *N; 6239 SDVTList VTs = getVTList(VT); 6240 SDValue Ops[] = {N1, N2}; 6241 if (VT != MVT::Glue) { 6242 FoldingSetNodeID ID; 6243 AddNodeIDNode(ID, Opcode, VTs, Ops); 6244 void *IP = nullptr; 6245 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6246 E->intersectFlagsWith(Flags); 6247 return SDValue(E, 0); 6248 } 6249 6250 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6251 N->setFlags(Flags); 6252 createOperands(N, Ops); 6253 CSEMap.InsertNode(N, IP); 6254 } else { 6255 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6256 createOperands(N, Ops); 6257 } 6258 6259 InsertNode(N); 6260 SDValue V = SDValue(N, 0); 6261 NewSDValueDbgMsg(V, "Creating new node: ", this); 6262 return V; 6263 } 6264 6265 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6266 SDValue N1, SDValue N2, SDValue N3) { 6267 SDNodeFlags Flags; 6268 if (Inserter) 6269 Flags = Inserter->getFlags(); 6270 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6271 } 6272 6273 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6274 SDValue N1, SDValue N2, SDValue N3, 6275 const SDNodeFlags Flags) { 6276 assert(N1.getOpcode() != ISD::DELETED_NODE && 6277 N2.getOpcode() != ISD::DELETED_NODE && 6278 N3.getOpcode() != ISD::DELETED_NODE && 6279 "Operand is DELETED_NODE!"); 6280 // Perform various simplifications. 6281 switch (Opcode) { 6282 case ISD::FMA: { 6283 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6284 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6285 N3.getValueType() == VT && "FMA types must match!"); 6286 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6287 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6288 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6289 if (N1CFP && N2CFP && N3CFP) { 6290 APFloat V1 = N1CFP->getValueAPF(); 6291 const APFloat &V2 = N2CFP->getValueAPF(); 6292 const APFloat &V3 = N3CFP->getValueAPF(); 6293 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6294 return getConstantFP(V1, DL, VT); 6295 } 6296 break; 6297 } 6298 case ISD::BUILD_VECTOR: { 6299 // Attempt to simplify BUILD_VECTOR. 6300 SDValue Ops[] = {N1, N2, N3}; 6301 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6302 return V; 6303 break; 6304 } 6305 case ISD::CONCAT_VECTORS: { 6306 SDValue Ops[] = {N1, N2, N3}; 6307 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6308 return V; 6309 break; 6310 } 6311 case ISD::SETCC: { 6312 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6313 assert(N1.getValueType() == N2.getValueType() && 6314 "SETCC operands must have the same type!"); 6315 assert(VT.isVector() == N1.getValueType().isVector() && 6316 "SETCC type should be vector iff the operand type is vector!"); 6317 assert((!VT.isVector() || VT.getVectorElementCount() == 6318 N1.getValueType().getVectorElementCount()) && 6319 "SETCC vector element counts must match!"); 6320 // Use FoldSetCC to simplify SETCC's. 6321 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6322 return V; 6323 // Vector constant folding. 6324 SDValue Ops[] = {N1, N2, N3}; 6325 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6326 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6327 return V; 6328 } 6329 break; 6330 } 6331 case ISD::SELECT: 6332 case ISD::VSELECT: 6333 if (SDValue V = simplifySelect(N1, N2, N3)) 6334 return V; 6335 break; 6336 case ISD::VECTOR_SHUFFLE: 6337 llvm_unreachable("should use getVectorShuffle constructor!"); 6338 case ISD::VECTOR_SPLICE: { 6339 if (cast<ConstantSDNode>(N3)->isNullValue()) 6340 return N1; 6341 break; 6342 } 6343 case ISD::INSERT_VECTOR_ELT: { 6344 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6345 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6346 // for scalable vectors where we will generate appropriate code to 6347 // deal with out-of-bounds cases correctly. 6348 if (N3C && N1.getValueType().isFixedLengthVector() && 6349 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6350 return getUNDEF(VT); 6351 6352 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6353 if (N3.isUndef()) 6354 return getUNDEF(VT); 6355 6356 // If the inserted element is an UNDEF, just use the input vector. 6357 if (N2.isUndef()) 6358 return N1; 6359 6360 break; 6361 } 6362 case ISD::INSERT_SUBVECTOR: { 6363 // Inserting undef into undef is still undef. 6364 if (N1.isUndef() && N2.isUndef()) 6365 return getUNDEF(VT); 6366 6367 EVT N2VT = N2.getValueType(); 6368 assert(VT == N1.getValueType() && 6369 "Dest and insert subvector source types must match!"); 6370 assert(VT.isVector() && N2VT.isVector() && 6371 "Insert subvector VTs must be vectors!"); 6372 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6373 "Cannot insert a scalable vector into a fixed length vector!"); 6374 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6375 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6376 "Insert subvector must be from smaller vector to larger vector!"); 6377 assert(isa<ConstantSDNode>(N3) && 6378 "Insert subvector index must be constant"); 6379 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6380 (N2VT.getVectorMinNumElements() + 6381 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6382 VT.getVectorMinNumElements()) && 6383 "Insert subvector overflow!"); 6384 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6385 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6386 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6387 6388 // Trivial insertion. 6389 if (VT == N2VT) 6390 return N2; 6391 6392 // If this is an insert of an extracted vector into an undef vector, we 6393 // can just use the input to the extract. 6394 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6395 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6396 return N2.getOperand(0); 6397 break; 6398 } 6399 case ISD::BITCAST: 6400 // Fold bit_convert nodes from a type to themselves. 6401 if (N1.getValueType() == VT) 6402 return N1; 6403 break; 6404 } 6405 6406 // Memoize node if it doesn't produce a flag. 6407 SDNode *N; 6408 SDVTList VTs = getVTList(VT); 6409 SDValue Ops[] = {N1, N2, N3}; 6410 if (VT != MVT::Glue) { 6411 FoldingSetNodeID ID; 6412 AddNodeIDNode(ID, Opcode, VTs, Ops); 6413 void *IP = nullptr; 6414 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6415 E->intersectFlagsWith(Flags); 6416 return SDValue(E, 0); 6417 } 6418 6419 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6420 N->setFlags(Flags); 6421 createOperands(N, Ops); 6422 CSEMap.InsertNode(N, IP); 6423 } else { 6424 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6425 createOperands(N, Ops); 6426 } 6427 6428 InsertNode(N); 6429 SDValue V = SDValue(N, 0); 6430 NewSDValueDbgMsg(V, "Creating new node: ", this); 6431 return V; 6432 } 6433 6434 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6435 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6436 SDValue Ops[] = { N1, N2, N3, N4 }; 6437 return getNode(Opcode, DL, VT, Ops); 6438 } 6439 6440 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6441 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6442 SDValue N5) { 6443 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6444 return getNode(Opcode, DL, VT, Ops); 6445 } 6446 6447 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6448 /// the incoming stack arguments to be loaded from the stack. 6449 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6450 SmallVector<SDValue, 8> ArgChains; 6451 6452 // Include the original chain at the beginning of the list. When this is 6453 // used by target LowerCall hooks, this helps legalize find the 6454 // CALLSEQ_BEGIN node. 6455 ArgChains.push_back(Chain); 6456 6457 // Add a chain value for each stack argument. 6458 for (SDNode *U : getEntryNode().getNode()->uses()) 6459 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6460 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6461 if (FI->getIndex() < 0) 6462 ArgChains.push_back(SDValue(L, 1)); 6463 6464 // Build a tokenfactor for all the chains. 6465 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6466 } 6467 6468 /// getMemsetValue - Vectorized representation of the memset value 6469 /// operand. 6470 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6471 const SDLoc &dl) { 6472 assert(!Value.isUndef()); 6473 6474 unsigned NumBits = VT.getScalarSizeInBits(); 6475 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6476 assert(C->getAPIntValue().getBitWidth() == 8); 6477 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6478 if (VT.isInteger()) { 6479 bool IsOpaque = VT.getSizeInBits() > 64 || 6480 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6481 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6482 } 6483 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6484 VT); 6485 } 6486 6487 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6488 EVT IntVT = VT.getScalarType(); 6489 if (!IntVT.isInteger()) 6490 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6491 6492 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6493 if (NumBits > 8) { 6494 // Use a multiplication with 0x010101... to extend the input to the 6495 // required length. 6496 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6497 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6498 DAG.getConstant(Magic, dl, IntVT)); 6499 } 6500 6501 if (VT != Value.getValueType() && !VT.isInteger()) 6502 Value = DAG.getBitcast(VT.getScalarType(), Value); 6503 if (VT != Value.getValueType()) 6504 Value = DAG.getSplatBuildVector(VT, dl, Value); 6505 6506 return Value; 6507 } 6508 6509 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6510 /// used when a memcpy is turned into a memset when the source is a constant 6511 /// string ptr. 6512 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6513 const TargetLowering &TLI, 6514 const ConstantDataArraySlice &Slice) { 6515 // Handle vector with all elements zero. 6516 if (Slice.Array == nullptr) { 6517 if (VT.isInteger()) 6518 return DAG.getConstant(0, dl, VT); 6519 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6520 return DAG.getConstantFP(0.0, dl, VT); 6521 if (VT.isVector()) { 6522 unsigned NumElts = VT.getVectorNumElements(); 6523 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6524 return DAG.getNode(ISD::BITCAST, dl, VT, 6525 DAG.getConstant(0, dl, 6526 EVT::getVectorVT(*DAG.getContext(), 6527 EltVT, NumElts))); 6528 } 6529 llvm_unreachable("Expected type!"); 6530 } 6531 6532 assert(!VT.isVector() && "Can't handle vector type here!"); 6533 unsigned NumVTBits = VT.getSizeInBits(); 6534 unsigned NumVTBytes = NumVTBits / 8; 6535 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6536 6537 APInt Val(NumVTBits, 0); 6538 if (DAG.getDataLayout().isLittleEndian()) { 6539 for (unsigned i = 0; i != NumBytes; ++i) 6540 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6541 } else { 6542 for (unsigned i = 0; i != NumBytes; ++i) 6543 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6544 } 6545 6546 // If the "cost" of materializing the integer immediate is less than the cost 6547 // of a load, then it is cost effective to turn the load into the immediate. 6548 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6549 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6550 return DAG.getConstant(Val, dl, VT); 6551 return SDValue(); 6552 } 6553 6554 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6555 const SDLoc &DL, 6556 const SDNodeFlags Flags) { 6557 EVT VT = Base.getValueType(); 6558 SDValue Index; 6559 6560 if (Offset.isScalable()) 6561 Index = getVScale(DL, Base.getValueType(), 6562 APInt(Base.getValueSizeInBits().getFixedSize(), 6563 Offset.getKnownMinSize())); 6564 else 6565 Index = getConstant(Offset.getFixedSize(), DL, VT); 6566 6567 return getMemBasePlusOffset(Base, Index, DL, Flags); 6568 } 6569 6570 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6571 const SDLoc &DL, 6572 const SDNodeFlags Flags) { 6573 assert(Offset.getValueType().isInteger()); 6574 EVT BasePtrVT = Ptr.getValueType(); 6575 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6576 } 6577 6578 /// Returns true if memcpy source is constant data. 6579 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6580 uint64_t SrcDelta = 0; 6581 GlobalAddressSDNode *G = nullptr; 6582 if (Src.getOpcode() == ISD::GlobalAddress) 6583 G = cast<GlobalAddressSDNode>(Src); 6584 else if (Src.getOpcode() == ISD::ADD && 6585 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6586 Src.getOperand(1).getOpcode() == ISD::Constant) { 6587 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6588 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6589 } 6590 if (!G) 6591 return false; 6592 6593 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6594 SrcDelta + G->getOffset()); 6595 } 6596 6597 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6598 SelectionDAG &DAG) { 6599 // On Darwin, -Os means optimize for size without hurting performance, so 6600 // only really optimize for size when -Oz (MinSize) is used. 6601 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6602 return MF.getFunction().hasMinSize(); 6603 return DAG.shouldOptForSize(); 6604 } 6605 6606 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6607 SmallVector<SDValue, 32> &OutChains, unsigned From, 6608 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6609 SmallVector<SDValue, 16> &OutStoreChains) { 6610 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6611 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6612 SmallVector<SDValue, 16> GluedLoadChains; 6613 for (unsigned i = From; i < To; ++i) { 6614 OutChains.push_back(OutLoadChains[i]); 6615 GluedLoadChains.push_back(OutLoadChains[i]); 6616 } 6617 6618 // Chain for all loads. 6619 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6620 GluedLoadChains); 6621 6622 for (unsigned i = From; i < To; ++i) { 6623 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6624 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6625 ST->getBasePtr(), ST->getMemoryVT(), 6626 ST->getMemOperand()); 6627 OutChains.push_back(NewStore); 6628 } 6629 } 6630 6631 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6632 SDValue Chain, SDValue Dst, SDValue Src, 6633 uint64_t Size, Align Alignment, 6634 bool isVol, bool AlwaysInline, 6635 MachinePointerInfo DstPtrInfo, 6636 MachinePointerInfo SrcPtrInfo, 6637 const AAMDNodes &AAInfo) { 6638 // Turn a memcpy of undef to nop. 6639 // FIXME: We need to honor volatile even is Src is undef. 6640 if (Src.isUndef()) 6641 return Chain; 6642 6643 // Expand memcpy to a series of load and store ops if the size operand falls 6644 // below a certain threshold. 6645 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6646 // rather than maybe a humongous number of loads and stores. 6647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6648 const DataLayout &DL = DAG.getDataLayout(); 6649 LLVMContext &C = *DAG.getContext(); 6650 std::vector<EVT> MemOps; 6651 bool DstAlignCanChange = false; 6652 MachineFunction &MF = DAG.getMachineFunction(); 6653 MachineFrameInfo &MFI = MF.getFrameInfo(); 6654 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6655 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6656 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6657 DstAlignCanChange = true; 6658 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6659 if (!SrcAlign || Alignment > *SrcAlign) 6660 SrcAlign = Alignment; 6661 assert(SrcAlign && "SrcAlign must be set"); 6662 ConstantDataArraySlice Slice; 6663 // If marked as volatile, perform a copy even when marked as constant. 6664 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6665 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6666 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6667 const MemOp Op = isZeroConstant 6668 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6669 /*IsZeroMemset*/ true, isVol) 6670 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6671 *SrcAlign, isVol, CopyFromConstant); 6672 if (!TLI.findOptimalMemOpLowering( 6673 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6674 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6675 return SDValue(); 6676 6677 if (DstAlignCanChange) { 6678 Type *Ty = MemOps[0].getTypeForEVT(C); 6679 Align NewAlign = DL.getABITypeAlign(Ty); 6680 6681 // Don't promote to an alignment that would require dynamic stack 6682 // realignment. 6683 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6684 if (!TRI->hasStackRealignment(MF)) 6685 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6686 NewAlign = NewAlign / 2; 6687 6688 if (NewAlign > Alignment) { 6689 // Give the stack frame object a larger alignment if needed. 6690 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6691 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6692 Alignment = NewAlign; 6693 } 6694 } 6695 6696 // Prepare AAInfo for loads/stores after lowering this memcpy. 6697 AAMDNodes NewAAInfo = AAInfo; 6698 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6699 6700 MachineMemOperand::Flags MMOFlags = 6701 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6702 SmallVector<SDValue, 16> OutLoadChains; 6703 SmallVector<SDValue, 16> OutStoreChains; 6704 SmallVector<SDValue, 32> OutChains; 6705 unsigned NumMemOps = MemOps.size(); 6706 uint64_t SrcOff = 0, DstOff = 0; 6707 for (unsigned i = 0; i != NumMemOps; ++i) { 6708 EVT VT = MemOps[i]; 6709 unsigned VTSize = VT.getSizeInBits() / 8; 6710 SDValue Value, Store; 6711 6712 if (VTSize > Size) { 6713 // Issuing an unaligned load / store pair that overlaps with the previous 6714 // pair. Adjust the offset accordingly. 6715 assert(i == NumMemOps-1 && i != 0); 6716 SrcOff -= VTSize - Size; 6717 DstOff -= VTSize - Size; 6718 } 6719 6720 if (CopyFromConstant && 6721 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6722 // It's unlikely a store of a vector immediate can be done in a single 6723 // instruction. It would require a load from a constantpool first. 6724 // We only handle zero vectors here. 6725 // FIXME: Handle other cases where store of vector immediate is done in 6726 // a single instruction. 6727 ConstantDataArraySlice SubSlice; 6728 if (SrcOff < Slice.Length) { 6729 SubSlice = Slice; 6730 SubSlice.move(SrcOff); 6731 } else { 6732 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6733 SubSlice.Array = nullptr; 6734 SubSlice.Offset = 0; 6735 SubSlice.Length = VTSize; 6736 } 6737 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6738 if (Value.getNode()) { 6739 Store = DAG.getStore( 6740 Chain, dl, Value, 6741 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6742 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6743 OutChains.push_back(Store); 6744 } 6745 } 6746 6747 if (!Store.getNode()) { 6748 // The type might not be legal for the target. This should only happen 6749 // if the type is smaller than a legal type, as on PPC, so the right 6750 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6751 // to Load/Store if NVT==VT. 6752 // FIXME does the case above also need this? 6753 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6754 assert(NVT.bitsGE(VT)); 6755 6756 bool isDereferenceable = 6757 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6758 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6759 if (isDereferenceable) 6760 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6761 6762 Value = DAG.getExtLoad( 6763 ISD::EXTLOAD, dl, NVT, Chain, 6764 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6765 SrcPtrInfo.getWithOffset(SrcOff), VT, 6766 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6767 OutLoadChains.push_back(Value.getValue(1)); 6768 6769 Store = DAG.getTruncStore( 6770 Chain, dl, Value, 6771 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6772 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6773 OutStoreChains.push_back(Store); 6774 } 6775 SrcOff += VTSize; 6776 DstOff += VTSize; 6777 Size -= VTSize; 6778 } 6779 6780 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6781 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6782 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6783 6784 if (NumLdStInMemcpy) { 6785 // It may be that memcpy might be converted to memset if it's memcpy 6786 // of constants. In such a case, we won't have loads and stores, but 6787 // just stores. In the absence of loads, there is nothing to gang up. 6788 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6789 // If target does not care, just leave as it. 6790 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6791 OutChains.push_back(OutLoadChains[i]); 6792 OutChains.push_back(OutStoreChains[i]); 6793 } 6794 } else { 6795 // Ld/St less than/equal limit set by target. 6796 if (NumLdStInMemcpy <= GluedLdStLimit) { 6797 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6798 NumLdStInMemcpy, OutLoadChains, 6799 OutStoreChains); 6800 } else { 6801 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6802 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6803 unsigned GlueIter = 0; 6804 6805 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6806 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6807 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6808 6809 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6810 OutLoadChains, OutStoreChains); 6811 GlueIter += GluedLdStLimit; 6812 } 6813 6814 // Residual ld/st. 6815 if (RemainingLdStInMemcpy) { 6816 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6817 RemainingLdStInMemcpy, OutLoadChains, 6818 OutStoreChains); 6819 } 6820 } 6821 } 6822 } 6823 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6824 } 6825 6826 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6827 SDValue Chain, SDValue Dst, SDValue Src, 6828 uint64_t Size, Align Alignment, 6829 bool isVol, bool AlwaysInline, 6830 MachinePointerInfo DstPtrInfo, 6831 MachinePointerInfo SrcPtrInfo, 6832 const AAMDNodes &AAInfo) { 6833 // Turn a memmove of undef to nop. 6834 // FIXME: We need to honor volatile even is Src is undef. 6835 if (Src.isUndef()) 6836 return Chain; 6837 6838 // Expand memmove to a series of load and store ops if the size operand falls 6839 // below a certain threshold. 6840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6841 const DataLayout &DL = DAG.getDataLayout(); 6842 LLVMContext &C = *DAG.getContext(); 6843 std::vector<EVT> MemOps; 6844 bool DstAlignCanChange = false; 6845 MachineFunction &MF = DAG.getMachineFunction(); 6846 MachineFrameInfo &MFI = MF.getFrameInfo(); 6847 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6848 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6849 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6850 DstAlignCanChange = true; 6851 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6852 if (!SrcAlign || Alignment > *SrcAlign) 6853 SrcAlign = Alignment; 6854 assert(SrcAlign && "SrcAlign must be set"); 6855 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6856 if (!TLI.findOptimalMemOpLowering( 6857 MemOps, Limit, 6858 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6859 /*IsVolatile*/ true), 6860 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6861 MF.getFunction().getAttributes())) 6862 return SDValue(); 6863 6864 if (DstAlignCanChange) { 6865 Type *Ty = MemOps[0].getTypeForEVT(C); 6866 Align NewAlign = DL.getABITypeAlign(Ty); 6867 if (NewAlign > Alignment) { 6868 // Give the stack frame object a larger alignment if needed. 6869 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6870 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6871 Alignment = NewAlign; 6872 } 6873 } 6874 6875 // Prepare AAInfo for loads/stores after lowering this memmove. 6876 AAMDNodes NewAAInfo = AAInfo; 6877 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6878 6879 MachineMemOperand::Flags MMOFlags = 6880 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6881 uint64_t SrcOff = 0, DstOff = 0; 6882 SmallVector<SDValue, 8> LoadValues; 6883 SmallVector<SDValue, 8> LoadChains; 6884 SmallVector<SDValue, 8> OutChains; 6885 unsigned NumMemOps = MemOps.size(); 6886 for (unsigned i = 0; i < NumMemOps; i++) { 6887 EVT VT = MemOps[i]; 6888 unsigned VTSize = VT.getSizeInBits() / 8; 6889 SDValue Value; 6890 6891 bool isDereferenceable = 6892 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6893 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6894 if (isDereferenceable) 6895 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6896 6897 Value = DAG.getLoad( 6898 VT, dl, Chain, 6899 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6900 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6901 LoadValues.push_back(Value); 6902 LoadChains.push_back(Value.getValue(1)); 6903 SrcOff += VTSize; 6904 } 6905 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6906 OutChains.clear(); 6907 for (unsigned i = 0; i < NumMemOps; i++) { 6908 EVT VT = MemOps[i]; 6909 unsigned VTSize = VT.getSizeInBits() / 8; 6910 SDValue Store; 6911 6912 Store = DAG.getStore( 6913 Chain, dl, LoadValues[i], 6914 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6915 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6916 OutChains.push_back(Store); 6917 DstOff += VTSize; 6918 } 6919 6920 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6921 } 6922 6923 /// Lower the call to 'memset' intrinsic function into a series of store 6924 /// operations. 6925 /// 6926 /// \param DAG Selection DAG where lowered code is placed. 6927 /// \param dl Link to corresponding IR location. 6928 /// \param Chain Control flow dependency. 6929 /// \param Dst Pointer to destination memory location. 6930 /// \param Src Value of byte to write into the memory. 6931 /// \param Size Number of bytes to write. 6932 /// \param Alignment Alignment of the destination in bytes. 6933 /// \param isVol True if destination is volatile. 6934 /// \param DstPtrInfo IR information on the memory pointer. 6935 /// \returns New head in the control flow, if lowering was successful, empty 6936 /// SDValue otherwise. 6937 /// 6938 /// The function tries to replace 'llvm.memset' intrinsic with several store 6939 /// operations and value calculation code. This is usually profitable for small 6940 /// memory size. 6941 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6942 SDValue Chain, SDValue Dst, SDValue Src, 6943 uint64_t Size, Align Alignment, bool isVol, 6944 MachinePointerInfo DstPtrInfo, 6945 const AAMDNodes &AAInfo) { 6946 // Turn a memset of undef to nop. 6947 // FIXME: We need to honor volatile even is Src is undef. 6948 if (Src.isUndef()) 6949 return Chain; 6950 6951 // Expand memset to a series of load/store ops if the size operand 6952 // falls below a certain threshold. 6953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6954 std::vector<EVT> MemOps; 6955 bool DstAlignCanChange = false; 6956 MachineFunction &MF = DAG.getMachineFunction(); 6957 MachineFrameInfo &MFI = MF.getFrameInfo(); 6958 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6959 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6960 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6961 DstAlignCanChange = true; 6962 bool IsZeroVal = 6963 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6964 if (!TLI.findOptimalMemOpLowering( 6965 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6966 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6967 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6968 return SDValue(); 6969 6970 if (DstAlignCanChange) { 6971 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6972 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6973 if (NewAlign > Alignment) { 6974 // Give the stack frame object a larger alignment if needed. 6975 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6976 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6977 Alignment = NewAlign; 6978 } 6979 } 6980 6981 SmallVector<SDValue, 8> OutChains; 6982 uint64_t DstOff = 0; 6983 unsigned NumMemOps = MemOps.size(); 6984 6985 // Find the largest store and generate the bit pattern for it. 6986 EVT LargestVT = MemOps[0]; 6987 for (unsigned i = 1; i < NumMemOps; i++) 6988 if (MemOps[i].bitsGT(LargestVT)) 6989 LargestVT = MemOps[i]; 6990 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6991 6992 // Prepare AAInfo for loads/stores after lowering this memset. 6993 AAMDNodes NewAAInfo = AAInfo; 6994 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6995 6996 for (unsigned i = 0; i < NumMemOps; i++) { 6997 EVT VT = MemOps[i]; 6998 unsigned VTSize = VT.getSizeInBits() / 8; 6999 if (VTSize > Size) { 7000 // Issuing an unaligned load / store pair that overlaps with the previous 7001 // pair. Adjust the offset accordingly. 7002 assert(i == NumMemOps-1 && i != 0); 7003 DstOff -= VTSize - Size; 7004 } 7005 7006 // If this store is smaller than the largest store see whether we can get 7007 // the smaller value for free with a truncate. 7008 SDValue Value = MemSetValue; 7009 if (VT.bitsLT(LargestVT)) { 7010 if (!LargestVT.isVector() && !VT.isVector() && 7011 TLI.isTruncateFree(LargestVT, VT)) 7012 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7013 else 7014 Value = getMemsetValue(Src, VT, DAG, dl); 7015 } 7016 assert(Value.getValueType() == VT && "Value with wrong type."); 7017 SDValue Store = DAG.getStore( 7018 Chain, dl, Value, 7019 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7020 DstPtrInfo.getWithOffset(DstOff), Alignment, 7021 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7022 NewAAInfo); 7023 OutChains.push_back(Store); 7024 DstOff += VT.getSizeInBits() / 8; 7025 Size -= VTSize; 7026 } 7027 7028 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7029 } 7030 7031 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7032 unsigned AS) { 7033 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7034 // pointer operands can be losslessly bitcasted to pointers of address space 0 7035 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7036 report_fatal_error("cannot lower memory intrinsic in address space " + 7037 Twine(AS)); 7038 } 7039 } 7040 7041 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7042 SDValue Src, SDValue Size, Align Alignment, 7043 bool isVol, bool AlwaysInline, bool isTailCall, 7044 MachinePointerInfo DstPtrInfo, 7045 MachinePointerInfo SrcPtrInfo, 7046 const AAMDNodes &AAInfo) { 7047 // Check to see if we should lower the memcpy to loads and stores first. 7048 // For cases within the target-specified limits, this is the best choice. 7049 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7050 if (ConstantSize) { 7051 // Memcpy with size zero? Just return the original chain. 7052 if (ConstantSize->isZero()) 7053 return Chain; 7054 7055 SDValue Result = getMemcpyLoadsAndStores( 7056 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7057 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7058 if (Result.getNode()) 7059 return Result; 7060 } 7061 7062 // Then check to see if we should lower the memcpy with target-specific 7063 // code. If the target chooses to do this, this is the next best. 7064 if (TSI) { 7065 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7066 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7067 DstPtrInfo, SrcPtrInfo); 7068 if (Result.getNode()) 7069 return Result; 7070 } 7071 7072 // If we really need inline code and the target declined to provide it, 7073 // use a (potentially long) sequence of loads and stores. 7074 if (AlwaysInline) { 7075 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7076 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7077 ConstantSize->getZExtValue(), Alignment, 7078 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7079 } 7080 7081 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7082 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7083 7084 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7085 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7086 // respect volatile, so they may do things like read or write memory 7087 // beyond the given memory regions. But fixing this isn't easy, and most 7088 // people don't care. 7089 7090 // Emit a library call. 7091 TargetLowering::ArgListTy Args; 7092 TargetLowering::ArgListEntry Entry; 7093 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7094 Entry.Node = Dst; Args.push_back(Entry); 7095 Entry.Node = Src; Args.push_back(Entry); 7096 7097 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7098 Entry.Node = Size; Args.push_back(Entry); 7099 // FIXME: pass in SDLoc 7100 TargetLowering::CallLoweringInfo CLI(*this); 7101 CLI.setDebugLoc(dl) 7102 .setChain(Chain) 7103 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7104 Dst.getValueType().getTypeForEVT(*getContext()), 7105 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7106 TLI->getPointerTy(getDataLayout())), 7107 std::move(Args)) 7108 .setDiscardResult() 7109 .setTailCall(isTailCall); 7110 7111 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7112 return CallResult.second; 7113 } 7114 7115 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7116 SDValue Dst, unsigned DstAlign, 7117 SDValue Src, unsigned SrcAlign, 7118 SDValue Size, Type *SizeTy, 7119 unsigned ElemSz, bool isTailCall, 7120 MachinePointerInfo DstPtrInfo, 7121 MachinePointerInfo SrcPtrInfo) { 7122 // Emit a library call. 7123 TargetLowering::ArgListTy Args; 7124 TargetLowering::ArgListEntry Entry; 7125 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7126 Entry.Node = Dst; 7127 Args.push_back(Entry); 7128 7129 Entry.Node = Src; 7130 Args.push_back(Entry); 7131 7132 Entry.Ty = SizeTy; 7133 Entry.Node = Size; 7134 Args.push_back(Entry); 7135 7136 RTLIB::Libcall LibraryCall = 7137 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7138 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7139 report_fatal_error("Unsupported element size"); 7140 7141 TargetLowering::CallLoweringInfo CLI(*this); 7142 CLI.setDebugLoc(dl) 7143 .setChain(Chain) 7144 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7145 Type::getVoidTy(*getContext()), 7146 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7147 TLI->getPointerTy(getDataLayout())), 7148 std::move(Args)) 7149 .setDiscardResult() 7150 .setTailCall(isTailCall); 7151 7152 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7153 return CallResult.second; 7154 } 7155 7156 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7157 SDValue Src, SDValue Size, Align Alignment, 7158 bool isVol, bool isTailCall, 7159 MachinePointerInfo DstPtrInfo, 7160 MachinePointerInfo SrcPtrInfo, 7161 const AAMDNodes &AAInfo) { 7162 // Check to see if we should lower the memmove to loads and stores first. 7163 // For cases within the target-specified limits, this is the best choice. 7164 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7165 if (ConstantSize) { 7166 // Memmove with size zero? Just return the original chain. 7167 if (ConstantSize->isZero()) 7168 return Chain; 7169 7170 SDValue Result = getMemmoveLoadsAndStores( 7171 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7172 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7173 if (Result.getNode()) 7174 return Result; 7175 } 7176 7177 // Then check to see if we should lower the memmove with target-specific 7178 // code. If the target chooses to do this, this is the next best. 7179 if (TSI) { 7180 SDValue Result = 7181 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7182 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7183 if (Result.getNode()) 7184 return Result; 7185 } 7186 7187 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7188 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7189 7190 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7191 // not be safe. See memcpy above for more details. 7192 7193 // Emit a library call. 7194 TargetLowering::ArgListTy Args; 7195 TargetLowering::ArgListEntry Entry; 7196 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7197 Entry.Node = Dst; Args.push_back(Entry); 7198 Entry.Node = Src; Args.push_back(Entry); 7199 7200 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7201 Entry.Node = Size; Args.push_back(Entry); 7202 // FIXME: pass in SDLoc 7203 TargetLowering::CallLoweringInfo CLI(*this); 7204 CLI.setDebugLoc(dl) 7205 .setChain(Chain) 7206 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7207 Dst.getValueType().getTypeForEVT(*getContext()), 7208 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7209 TLI->getPointerTy(getDataLayout())), 7210 std::move(Args)) 7211 .setDiscardResult() 7212 .setTailCall(isTailCall); 7213 7214 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7215 return CallResult.second; 7216 } 7217 7218 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7219 SDValue Dst, unsigned DstAlign, 7220 SDValue Src, unsigned SrcAlign, 7221 SDValue Size, Type *SizeTy, 7222 unsigned ElemSz, bool isTailCall, 7223 MachinePointerInfo DstPtrInfo, 7224 MachinePointerInfo SrcPtrInfo) { 7225 // Emit a library call. 7226 TargetLowering::ArgListTy Args; 7227 TargetLowering::ArgListEntry Entry; 7228 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7229 Entry.Node = Dst; 7230 Args.push_back(Entry); 7231 7232 Entry.Node = Src; 7233 Args.push_back(Entry); 7234 7235 Entry.Ty = SizeTy; 7236 Entry.Node = Size; 7237 Args.push_back(Entry); 7238 7239 RTLIB::Libcall LibraryCall = 7240 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7241 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7242 report_fatal_error("Unsupported element size"); 7243 7244 TargetLowering::CallLoweringInfo CLI(*this); 7245 CLI.setDebugLoc(dl) 7246 .setChain(Chain) 7247 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7248 Type::getVoidTy(*getContext()), 7249 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7250 TLI->getPointerTy(getDataLayout())), 7251 std::move(Args)) 7252 .setDiscardResult() 7253 .setTailCall(isTailCall); 7254 7255 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7256 return CallResult.second; 7257 } 7258 7259 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7260 SDValue Src, SDValue Size, Align Alignment, 7261 bool isVol, bool isTailCall, 7262 MachinePointerInfo DstPtrInfo, 7263 const AAMDNodes &AAInfo) { 7264 // Check to see if we should lower the memset to stores first. 7265 // For cases within the target-specified limits, this is the best choice. 7266 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7267 if (ConstantSize) { 7268 // Memset with size zero? Just return the original chain. 7269 if (ConstantSize->isZero()) 7270 return Chain; 7271 7272 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7273 ConstantSize->getZExtValue(), Alignment, 7274 isVol, DstPtrInfo, AAInfo); 7275 7276 if (Result.getNode()) 7277 return Result; 7278 } 7279 7280 // Then check to see if we should lower the memset with target-specific 7281 // code. If the target chooses to do this, this is the next best. 7282 if (TSI) { 7283 SDValue Result = TSI->EmitTargetCodeForMemset( 7284 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7285 if (Result.getNode()) 7286 return Result; 7287 } 7288 7289 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7290 7291 // Emit a library call. 7292 TargetLowering::ArgListTy Args; 7293 TargetLowering::ArgListEntry Entry; 7294 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7295 Args.push_back(Entry); 7296 Entry.Node = Src; 7297 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7298 Args.push_back(Entry); 7299 Entry.Node = Size; 7300 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7301 Args.push_back(Entry); 7302 7303 // FIXME: pass in SDLoc 7304 TargetLowering::CallLoweringInfo CLI(*this); 7305 CLI.setDebugLoc(dl) 7306 .setChain(Chain) 7307 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7308 Dst.getValueType().getTypeForEVT(*getContext()), 7309 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7310 TLI->getPointerTy(getDataLayout())), 7311 std::move(Args)) 7312 .setDiscardResult() 7313 .setTailCall(isTailCall); 7314 7315 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7316 return CallResult.second; 7317 } 7318 7319 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7320 SDValue Dst, unsigned DstAlign, 7321 SDValue Value, SDValue Size, Type *SizeTy, 7322 unsigned ElemSz, bool isTailCall, 7323 MachinePointerInfo DstPtrInfo) { 7324 // Emit a library call. 7325 TargetLowering::ArgListTy Args; 7326 TargetLowering::ArgListEntry Entry; 7327 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7328 Entry.Node = Dst; 7329 Args.push_back(Entry); 7330 7331 Entry.Ty = Type::getInt8Ty(*getContext()); 7332 Entry.Node = Value; 7333 Args.push_back(Entry); 7334 7335 Entry.Ty = SizeTy; 7336 Entry.Node = Size; 7337 Args.push_back(Entry); 7338 7339 RTLIB::Libcall LibraryCall = 7340 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7341 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7342 report_fatal_error("Unsupported element size"); 7343 7344 TargetLowering::CallLoweringInfo CLI(*this); 7345 CLI.setDebugLoc(dl) 7346 .setChain(Chain) 7347 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7348 Type::getVoidTy(*getContext()), 7349 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7350 TLI->getPointerTy(getDataLayout())), 7351 std::move(Args)) 7352 .setDiscardResult() 7353 .setTailCall(isTailCall); 7354 7355 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7356 return CallResult.second; 7357 } 7358 7359 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7360 SDVTList VTList, ArrayRef<SDValue> Ops, 7361 MachineMemOperand *MMO) { 7362 FoldingSetNodeID ID; 7363 ID.AddInteger(MemVT.getRawBits()); 7364 AddNodeIDNode(ID, Opcode, VTList, Ops); 7365 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7366 ID.AddInteger(MMO->getFlags()); 7367 void* IP = nullptr; 7368 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7369 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7370 return SDValue(E, 0); 7371 } 7372 7373 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7374 VTList, MemVT, MMO); 7375 createOperands(N, Ops); 7376 7377 CSEMap.InsertNode(N, IP); 7378 InsertNode(N); 7379 return SDValue(N, 0); 7380 } 7381 7382 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7383 EVT MemVT, SDVTList VTs, SDValue Chain, 7384 SDValue Ptr, SDValue Cmp, SDValue Swp, 7385 MachineMemOperand *MMO) { 7386 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7387 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7388 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7389 7390 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7391 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7392 } 7393 7394 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7395 SDValue Chain, SDValue Ptr, SDValue Val, 7396 MachineMemOperand *MMO) { 7397 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7398 Opcode == ISD::ATOMIC_LOAD_SUB || 7399 Opcode == ISD::ATOMIC_LOAD_AND || 7400 Opcode == ISD::ATOMIC_LOAD_CLR || 7401 Opcode == ISD::ATOMIC_LOAD_OR || 7402 Opcode == ISD::ATOMIC_LOAD_XOR || 7403 Opcode == ISD::ATOMIC_LOAD_NAND || 7404 Opcode == ISD::ATOMIC_LOAD_MIN || 7405 Opcode == ISD::ATOMIC_LOAD_MAX || 7406 Opcode == ISD::ATOMIC_LOAD_UMIN || 7407 Opcode == ISD::ATOMIC_LOAD_UMAX || 7408 Opcode == ISD::ATOMIC_LOAD_FADD || 7409 Opcode == ISD::ATOMIC_LOAD_FSUB || 7410 Opcode == ISD::ATOMIC_SWAP || 7411 Opcode == ISD::ATOMIC_STORE) && 7412 "Invalid Atomic Op"); 7413 7414 EVT VT = Val.getValueType(); 7415 7416 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7417 getVTList(VT, MVT::Other); 7418 SDValue Ops[] = {Chain, Ptr, Val}; 7419 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7420 } 7421 7422 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7423 EVT VT, SDValue Chain, SDValue Ptr, 7424 MachineMemOperand *MMO) { 7425 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7426 7427 SDVTList VTs = getVTList(VT, MVT::Other); 7428 SDValue Ops[] = {Chain, Ptr}; 7429 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7430 } 7431 7432 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7433 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7434 if (Ops.size() == 1) 7435 return Ops[0]; 7436 7437 SmallVector<EVT, 4> VTs; 7438 VTs.reserve(Ops.size()); 7439 for (const SDValue &Op : Ops) 7440 VTs.push_back(Op.getValueType()); 7441 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7442 } 7443 7444 SDValue SelectionDAG::getMemIntrinsicNode( 7445 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7446 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7447 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7448 if (!Size && MemVT.isScalableVector()) 7449 Size = MemoryLocation::UnknownSize; 7450 else if (!Size) 7451 Size = MemVT.getStoreSize(); 7452 7453 MachineFunction &MF = getMachineFunction(); 7454 MachineMemOperand *MMO = 7455 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7456 7457 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7458 } 7459 7460 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7461 SDVTList VTList, 7462 ArrayRef<SDValue> Ops, EVT MemVT, 7463 MachineMemOperand *MMO) { 7464 assert((Opcode == ISD::INTRINSIC_VOID || 7465 Opcode == ISD::INTRINSIC_W_CHAIN || 7466 Opcode == ISD::PREFETCH || 7467 ((int)Opcode <= std::numeric_limits<int>::max() && 7468 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7469 "Opcode is not a memory-accessing opcode!"); 7470 7471 // Memoize the node unless it returns a flag. 7472 MemIntrinsicSDNode *N; 7473 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7474 FoldingSetNodeID ID; 7475 AddNodeIDNode(ID, Opcode, VTList, Ops); 7476 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7477 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7478 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7479 ID.AddInteger(MMO->getFlags()); 7480 void *IP = nullptr; 7481 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7482 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7483 return SDValue(E, 0); 7484 } 7485 7486 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7487 VTList, MemVT, MMO); 7488 createOperands(N, Ops); 7489 7490 CSEMap.InsertNode(N, IP); 7491 } else { 7492 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7493 VTList, MemVT, MMO); 7494 createOperands(N, Ops); 7495 } 7496 InsertNode(N); 7497 SDValue V(N, 0); 7498 NewSDValueDbgMsg(V, "Creating new node: ", this); 7499 return V; 7500 } 7501 7502 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7503 SDValue Chain, int FrameIndex, 7504 int64_t Size, int64_t Offset) { 7505 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7506 const auto VTs = getVTList(MVT::Other); 7507 SDValue Ops[2] = { 7508 Chain, 7509 getFrameIndex(FrameIndex, 7510 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7511 true)}; 7512 7513 FoldingSetNodeID ID; 7514 AddNodeIDNode(ID, Opcode, VTs, Ops); 7515 ID.AddInteger(FrameIndex); 7516 ID.AddInteger(Size); 7517 ID.AddInteger(Offset); 7518 void *IP = nullptr; 7519 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7520 return SDValue(E, 0); 7521 7522 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7523 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7524 createOperands(N, Ops); 7525 CSEMap.InsertNode(N, IP); 7526 InsertNode(N); 7527 SDValue V(N, 0); 7528 NewSDValueDbgMsg(V, "Creating new node: ", this); 7529 return V; 7530 } 7531 7532 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7533 uint64_t Guid, uint64_t Index, 7534 uint32_t Attr) { 7535 const unsigned Opcode = ISD::PSEUDO_PROBE; 7536 const auto VTs = getVTList(MVT::Other); 7537 SDValue Ops[] = {Chain}; 7538 FoldingSetNodeID ID; 7539 AddNodeIDNode(ID, Opcode, VTs, Ops); 7540 ID.AddInteger(Guid); 7541 ID.AddInteger(Index); 7542 void *IP = nullptr; 7543 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7544 return SDValue(E, 0); 7545 7546 auto *N = newSDNode<PseudoProbeSDNode>( 7547 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7548 createOperands(N, Ops); 7549 CSEMap.InsertNode(N, IP); 7550 InsertNode(N); 7551 SDValue V(N, 0); 7552 NewSDValueDbgMsg(V, "Creating new node: ", this); 7553 return V; 7554 } 7555 7556 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7557 /// MachinePointerInfo record from it. This is particularly useful because the 7558 /// code generator has many cases where it doesn't bother passing in a 7559 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7560 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7561 SelectionDAG &DAG, SDValue Ptr, 7562 int64_t Offset = 0) { 7563 // If this is FI+Offset, we can model it. 7564 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7565 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7566 FI->getIndex(), Offset); 7567 7568 // If this is (FI+Offset1)+Offset2, we can model it. 7569 if (Ptr.getOpcode() != ISD::ADD || 7570 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7571 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7572 return Info; 7573 7574 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7575 return MachinePointerInfo::getFixedStack( 7576 DAG.getMachineFunction(), FI, 7577 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7578 } 7579 7580 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7581 /// MachinePointerInfo record from it. This is particularly useful because the 7582 /// code generator has many cases where it doesn't bother passing in a 7583 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7584 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7585 SelectionDAG &DAG, SDValue Ptr, 7586 SDValue OffsetOp) { 7587 // If the 'Offset' value isn't a constant, we can't handle this. 7588 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7589 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7590 if (OffsetOp.isUndef()) 7591 return InferPointerInfo(Info, DAG, Ptr); 7592 return Info; 7593 } 7594 7595 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7596 EVT VT, const SDLoc &dl, SDValue Chain, 7597 SDValue Ptr, SDValue Offset, 7598 MachinePointerInfo PtrInfo, EVT MemVT, 7599 Align Alignment, 7600 MachineMemOperand::Flags MMOFlags, 7601 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7602 assert(Chain.getValueType() == MVT::Other && 7603 "Invalid chain type"); 7604 7605 MMOFlags |= MachineMemOperand::MOLoad; 7606 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7607 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7608 // clients. 7609 if (PtrInfo.V.isNull()) 7610 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7611 7612 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7613 MachineFunction &MF = getMachineFunction(); 7614 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7615 Alignment, AAInfo, Ranges); 7616 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7617 } 7618 7619 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7620 EVT VT, const SDLoc &dl, SDValue Chain, 7621 SDValue Ptr, SDValue Offset, EVT MemVT, 7622 MachineMemOperand *MMO) { 7623 if (VT == MemVT) { 7624 ExtType = ISD::NON_EXTLOAD; 7625 } else if (ExtType == ISD::NON_EXTLOAD) { 7626 assert(VT == MemVT && "Non-extending load from different memory type!"); 7627 } else { 7628 // Extending load. 7629 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7630 "Should only be an extending load, not truncating!"); 7631 assert(VT.isInteger() == MemVT.isInteger() && 7632 "Cannot convert from FP to Int or Int -> FP!"); 7633 assert(VT.isVector() == MemVT.isVector() && 7634 "Cannot use an ext load to convert to or from a vector!"); 7635 assert((!VT.isVector() || 7636 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7637 "Cannot use an ext load to change the number of vector elements!"); 7638 } 7639 7640 bool Indexed = AM != ISD::UNINDEXED; 7641 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7642 7643 SDVTList VTs = Indexed ? 7644 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7645 SDValue Ops[] = { Chain, Ptr, Offset }; 7646 FoldingSetNodeID ID; 7647 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7648 ID.AddInteger(MemVT.getRawBits()); 7649 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7650 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7651 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7652 ID.AddInteger(MMO->getFlags()); 7653 void *IP = nullptr; 7654 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7655 cast<LoadSDNode>(E)->refineAlignment(MMO); 7656 return SDValue(E, 0); 7657 } 7658 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7659 ExtType, MemVT, MMO); 7660 createOperands(N, Ops); 7661 7662 CSEMap.InsertNode(N, IP); 7663 InsertNode(N); 7664 SDValue V(N, 0); 7665 NewSDValueDbgMsg(V, "Creating new node: ", this); 7666 return V; 7667 } 7668 7669 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7670 SDValue Ptr, MachinePointerInfo PtrInfo, 7671 MaybeAlign Alignment, 7672 MachineMemOperand::Flags MMOFlags, 7673 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7674 SDValue Undef = getUNDEF(Ptr.getValueType()); 7675 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7676 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7677 } 7678 7679 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7680 SDValue Ptr, MachineMemOperand *MMO) { 7681 SDValue Undef = getUNDEF(Ptr.getValueType()); 7682 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7683 VT, MMO); 7684 } 7685 7686 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7687 EVT VT, SDValue Chain, SDValue Ptr, 7688 MachinePointerInfo PtrInfo, EVT MemVT, 7689 MaybeAlign Alignment, 7690 MachineMemOperand::Flags MMOFlags, 7691 const AAMDNodes &AAInfo) { 7692 SDValue Undef = getUNDEF(Ptr.getValueType()); 7693 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7694 MemVT, Alignment, MMOFlags, AAInfo); 7695 } 7696 7697 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7698 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7699 MachineMemOperand *MMO) { 7700 SDValue Undef = getUNDEF(Ptr.getValueType()); 7701 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7702 MemVT, MMO); 7703 } 7704 7705 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7706 SDValue Base, SDValue Offset, 7707 ISD::MemIndexedMode AM) { 7708 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7709 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7710 // Don't propagate the invariant or dereferenceable flags. 7711 auto MMOFlags = 7712 LD->getMemOperand()->getFlags() & 7713 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7714 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7715 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7716 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7717 } 7718 7719 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7720 SDValue Ptr, MachinePointerInfo PtrInfo, 7721 Align Alignment, 7722 MachineMemOperand::Flags MMOFlags, 7723 const AAMDNodes &AAInfo) { 7724 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7725 7726 MMOFlags |= MachineMemOperand::MOStore; 7727 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7728 7729 if (PtrInfo.V.isNull()) 7730 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7731 7732 MachineFunction &MF = getMachineFunction(); 7733 uint64_t Size = 7734 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7735 MachineMemOperand *MMO = 7736 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7737 return getStore(Chain, dl, Val, Ptr, MMO); 7738 } 7739 7740 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7741 SDValue Ptr, MachineMemOperand *MMO) { 7742 assert(Chain.getValueType() == MVT::Other && 7743 "Invalid chain type"); 7744 EVT VT = Val.getValueType(); 7745 SDVTList VTs = getVTList(MVT::Other); 7746 SDValue Undef = getUNDEF(Ptr.getValueType()); 7747 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7748 FoldingSetNodeID ID; 7749 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7750 ID.AddInteger(VT.getRawBits()); 7751 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7752 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7753 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7754 ID.AddInteger(MMO->getFlags()); 7755 void *IP = nullptr; 7756 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7757 cast<StoreSDNode>(E)->refineAlignment(MMO); 7758 return SDValue(E, 0); 7759 } 7760 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7761 ISD::UNINDEXED, false, VT, MMO); 7762 createOperands(N, Ops); 7763 7764 CSEMap.InsertNode(N, IP); 7765 InsertNode(N); 7766 SDValue V(N, 0); 7767 NewSDValueDbgMsg(V, "Creating new node: ", this); 7768 return V; 7769 } 7770 7771 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7772 SDValue Ptr, MachinePointerInfo PtrInfo, 7773 EVT SVT, Align Alignment, 7774 MachineMemOperand::Flags MMOFlags, 7775 const AAMDNodes &AAInfo) { 7776 assert(Chain.getValueType() == MVT::Other && 7777 "Invalid chain type"); 7778 7779 MMOFlags |= MachineMemOperand::MOStore; 7780 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7781 7782 if (PtrInfo.V.isNull()) 7783 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7784 7785 MachineFunction &MF = getMachineFunction(); 7786 MachineMemOperand *MMO = MF.getMachineMemOperand( 7787 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7788 Alignment, AAInfo); 7789 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7790 } 7791 7792 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7793 SDValue Ptr, EVT SVT, 7794 MachineMemOperand *MMO) { 7795 EVT VT = Val.getValueType(); 7796 7797 assert(Chain.getValueType() == MVT::Other && 7798 "Invalid chain type"); 7799 if (VT == SVT) 7800 return getStore(Chain, dl, Val, Ptr, MMO); 7801 7802 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7803 "Should only be a truncating store, not extending!"); 7804 assert(VT.isInteger() == SVT.isInteger() && 7805 "Can't do FP-INT conversion!"); 7806 assert(VT.isVector() == SVT.isVector() && 7807 "Cannot use trunc store to convert to or from a vector!"); 7808 assert((!VT.isVector() || 7809 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7810 "Cannot use trunc store to change the number of vector elements!"); 7811 7812 SDVTList VTs = getVTList(MVT::Other); 7813 SDValue Undef = getUNDEF(Ptr.getValueType()); 7814 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7815 FoldingSetNodeID ID; 7816 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7817 ID.AddInteger(SVT.getRawBits()); 7818 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7819 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7820 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7821 ID.AddInteger(MMO->getFlags()); 7822 void *IP = nullptr; 7823 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7824 cast<StoreSDNode>(E)->refineAlignment(MMO); 7825 return SDValue(E, 0); 7826 } 7827 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7828 ISD::UNINDEXED, true, SVT, MMO); 7829 createOperands(N, Ops); 7830 7831 CSEMap.InsertNode(N, IP); 7832 InsertNode(N); 7833 SDValue V(N, 0); 7834 NewSDValueDbgMsg(V, "Creating new node: ", this); 7835 return V; 7836 } 7837 7838 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7839 SDValue Base, SDValue Offset, 7840 ISD::MemIndexedMode AM) { 7841 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7842 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7843 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7844 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7845 FoldingSetNodeID ID; 7846 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7847 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7848 ID.AddInteger(ST->getRawSubclassData()); 7849 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7850 ID.AddInteger(ST->getMemOperand()->getFlags()); 7851 void *IP = nullptr; 7852 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7853 return SDValue(E, 0); 7854 7855 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7856 ST->isTruncatingStore(), ST->getMemoryVT(), 7857 ST->getMemOperand()); 7858 createOperands(N, Ops); 7859 7860 CSEMap.InsertNode(N, IP); 7861 InsertNode(N); 7862 SDValue V(N, 0); 7863 NewSDValueDbgMsg(V, "Creating new node: ", this); 7864 return V; 7865 } 7866 7867 SDValue SelectionDAG::getLoadVP( 7868 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7869 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7870 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7871 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7872 const MDNode *Ranges, bool IsExpanding) { 7873 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7874 7875 MMOFlags |= MachineMemOperand::MOLoad; 7876 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7877 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7878 // clients. 7879 if (PtrInfo.V.isNull()) 7880 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7881 7882 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7883 MachineFunction &MF = getMachineFunction(); 7884 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7885 Alignment, AAInfo, Ranges); 7886 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7887 MMO, IsExpanding); 7888 } 7889 7890 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7891 ISD::LoadExtType ExtType, EVT VT, 7892 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7893 SDValue Offset, SDValue Mask, SDValue EVL, 7894 EVT MemVT, MachineMemOperand *MMO, 7895 bool IsExpanding) { 7896 bool Indexed = AM != ISD::UNINDEXED; 7897 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7898 7899 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7900 : getVTList(VT, MVT::Other); 7901 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7902 FoldingSetNodeID ID; 7903 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7904 ID.AddInteger(VT.getRawBits()); 7905 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7906 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7907 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7908 ID.AddInteger(MMO->getFlags()); 7909 void *IP = nullptr; 7910 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7911 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7912 return SDValue(E, 0); 7913 } 7914 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7915 ExtType, IsExpanding, MemVT, MMO); 7916 createOperands(N, Ops); 7917 7918 CSEMap.InsertNode(N, IP); 7919 InsertNode(N); 7920 SDValue V(N, 0); 7921 NewSDValueDbgMsg(V, "Creating new node: ", this); 7922 return V; 7923 } 7924 7925 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7926 SDValue Ptr, SDValue Mask, SDValue EVL, 7927 MachinePointerInfo PtrInfo, 7928 MaybeAlign Alignment, 7929 MachineMemOperand::Flags MMOFlags, 7930 const AAMDNodes &AAInfo, const MDNode *Ranges, 7931 bool IsExpanding) { 7932 SDValue Undef = getUNDEF(Ptr.getValueType()); 7933 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7934 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7935 IsExpanding); 7936 } 7937 7938 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7939 SDValue Ptr, SDValue Mask, SDValue EVL, 7940 MachineMemOperand *MMO, bool IsExpanding) { 7941 SDValue Undef = getUNDEF(Ptr.getValueType()); 7942 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7943 Mask, EVL, VT, MMO, IsExpanding); 7944 } 7945 7946 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7947 EVT VT, SDValue Chain, SDValue Ptr, 7948 SDValue Mask, SDValue EVL, 7949 MachinePointerInfo PtrInfo, EVT MemVT, 7950 MaybeAlign Alignment, 7951 MachineMemOperand::Flags MMOFlags, 7952 const AAMDNodes &AAInfo, bool IsExpanding) { 7953 SDValue Undef = getUNDEF(Ptr.getValueType()); 7954 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7955 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7956 IsExpanding); 7957 } 7958 7959 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7960 EVT VT, SDValue Chain, SDValue Ptr, 7961 SDValue Mask, SDValue EVL, EVT MemVT, 7962 MachineMemOperand *MMO, bool IsExpanding) { 7963 SDValue Undef = getUNDEF(Ptr.getValueType()); 7964 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7965 EVL, MemVT, MMO, IsExpanding); 7966 } 7967 7968 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7969 SDValue Base, SDValue Offset, 7970 ISD::MemIndexedMode AM) { 7971 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7972 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7973 // Don't propagate the invariant or dereferenceable flags. 7974 auto MMOFlags = 7975 LD->getMemOperand()->getFlags() & 7976 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7977 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7978 LD->getChain(), Base, Offset, LD->getMask(), 7979 LD->getVectorLength(), LD->getPointerInfo(), 7980 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7981 nullptr, LD->isExpandingLoad()); 7982 } 7983 7984 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7985 SDValue Ptr, SDValue Offset, SDValue Mask, 7986 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 7987 ISD::MemIndexedMode AM, bool IsTruncating, 7988 bool IsCompressing) { 7989 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7990 bool Indexed = AM != ISD::UNINDEXED; 7991 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 7992 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 7993 : getVTList(MVT::Other); 7994 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 7995 FoldingSetNodeID ID; 7996 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7997 ID.AddInteger(MemVT.getRawBits()); 7998 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7999 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8000 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8001 ID.AddInteger(MMO->getFlags()); 8002 void *IP = nullptr; 8003 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8004 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8005 return SDValue(E, 0); 8006 } 8007 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8008 IsTruncating, IsCompressing, MemVT, MMO); 8009 createOperands(N, Ops); 8010 8011 CSEMap.InsertNode(N, IP); 8012 InsertNode(N); 8013 SDValue V(N, 0); 8014 NewSDValueDbgMsg(V, "Creating new node: ", this); 8015 return V; 8016 } 8017 8018 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8019 SDValue Val, SDValue Ptr, SDValue Mask, 8020 SDValue EVL, MachinePointerInfo PtrInfo, 8021 EVT SVT, Align Alignment, 8022 MachineMemOperand::Flags MMOFlags, 8023 const AAMDNodes &AAInfo, 8024 bool IsCompressing) { 8025 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8026 8027 MMOFlags |= MachineMemOperand::MOStore; 8028 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8029 8030 if (PtrInfo.V.isNull()) 8031 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8032 8033 MachineFunction &MF = getMachineFunction(); 8034 MachineMemOperand *MMO = MF.getMachineMemOperand( 8035 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8036 Alignment, AAInfo); 8037 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8038 IsCompressing); 8039 } 8040 8041 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8042 SDValue Val, SDValue Ptr, SDValue Mask, 8043 SDValue EVL, EVT SVT, 8044 MachineMemOperand *MMO, 8045 bool IsCompressing) { 8046 EVT VT = Val.getValueType(); 8047 8048 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8049 if (VT == SVT) 8050 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8051 EVL, VT, MMO, ISD::UNINDEXED, 8052 /*IsTruncating*/ false, IsCompressing); 8053 8054 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8055 "Should only be a truncating store, not extending!"); 8056 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8057 assert(VT.isVector() == SVT.isVector() && 8058 "Cannot use trunc store to convert to or from a vector!"); 8059 assert((!VT.isVector() || 8060 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8061 "Cannot use trunc store to change the number of vector elements!"); 8062 8063 SDVTList VTs = getVTList(MVT::Other); 8064 SDValue Undef = getUNDEF(Ptr.getValueType()); 8065 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8066 FoldingSetNodeID ID; 8067 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8068 ID.AddInteger(SVT.getRawBits()); 8069 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8070 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8071 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8072 ID.AddInteger(MMO->getFlags()); 8073 void *IP = nullptr; 8074 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8075 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8076 return SDValue(E, 0); 8077 } 8078 auto *N = 8079 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8080 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8081 createOperands(N, Ops); 8082 8083 CSEMap.InsertNode(N, IP); 8084 InsertNode(N); 8085 SDValue V(N, 0); 8086 NewSDValueDbgMsg(V, "Creating new node: ", this); 8087 return V; 8088 } 8089 8090 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8091 SDValue Base, SDValue Offset, 8092 ISD::MemIndexedMode AM) { 8093 auto *ST = cast<VPStoreSDNode>(OrigStore); 8094 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8095 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8096 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8097 Offset, ST->getMask(), ST->getVectorLength()}; 8098 FoldingSetNodeID ID; 8099 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8100 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8101 ID.AddInteger(ST->getRawSubclassData()); 8102 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8103 ID.AddInteger(ST->getMemOperand()->getFlags()); 8104 void *IP = nullptr; 8105 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8106 return SDValue(E, 0); 8107 8108 auto *N = newSDNode<VPStoreSDNode>( 8109 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8110 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8111 createOperands(N, Ops); 8112 8113 CSEMap.InsertNode(N, IP); 8114 InsertNode(N); 8115 SDValue V(N, 0); 8116 NewSDValueDbgMsg(V, "Creating new node: ", this); 8117 return V; 8118 } 8119 8120 SDValue SelectionDAG::getStridedLoadVP( 8121 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8122 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8123 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8124 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8125 const MDNode *Ranges, bool IsExpanding) { 8126 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8127 8128 MMOFlags |= MachineMemOperand::MOLoad; 8129 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8130 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8131 // clients. 8132 if (PtrInfo.V.isNull()) 8133 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8134 8135 uint64_t Size = MemoryLocation::UnknownSize; 8136 MachineFunction &MF = getMachineFunction(); 8137 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8138 Alignment, AAInfo, Ranges); 8139 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8140 EVL, MemVT, MMO, IsExpanding); 8141 } 8142 8143 SDValue SelectionDAG::getStridedLoadVP( 8144 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8145 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8146 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8147 bool Indexed = AM != ISD::UNINDEXED; 8148 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8149 8150 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8151 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8152 : getVTList(VT, MVT::Other); 8153 FoldingSetNodeID ID; 8154 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8155 ID.AddInteger(VT.getRawBits()); 8156 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8157 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8158 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8159 8160 void *IP = nullptr; 8161 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8162 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8163 return SDValue(E, 0); 8164 } 8165 8166 auto *N = 8167 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8168 ExtType, IsExpanding, MemVT, MMO); 8169 createOperands(N, Ops); 8170 CSEMap.InsertNode(N, IP); 8171 InsertNode(N); 8172 SDValue V(N, 0); 8173 NewSDValueDbgMsg(V, "Creating new node: ", this); 8174 return V; 8175 } 8176 8177 SDValue SelectionDAG::getStridedLoadVP( 8178 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8179 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8180 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8181 const MDNode *Ranges, bool IsExpanding) { 8182 SDValue Undef = getUNDEF(Ptr.getValueType()); 8183 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8184 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8185 MMOFlags, AAInfo, Ranges, IsExpanding); 8186 } 8187 8188 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8189 SDValue Ptr, SDValue Stride, 8190 SDValue Mask, SDValue EVL, 8191 MachineMemOperand *MMO, 8192 bool IsExpanding) { 8193 SDValue Undef = getUNDEF(Ptr.getValueType()); 8194 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8195 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8196 } 8197 8198 SDValue SelectionDAG::getExtStridedLoadVP( 8199 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8200 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8201 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8202 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8203 bool IsExpanding) { 8204 SDValue Undef = getUNDEF(Ptr.getValueType()); 8205 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8206 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8207 MMOFlags, AAInfo, nullptr, IsExpanding); 8208 } 8209 8210 SDValue SelectionDAG::getExtStridedLoadVP( 8211 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8212 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8213 MachineMemOperand *MMO, bool IsExpanding) { 8214 SDValue Undef = getUNDEF(Ptr.getValueType()); 8215 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8216 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8217 } 8218 8219 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8220 SDValue Base, SDValue Offset, 8221 ISD::MemIndexedMode AM) { 8222 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8223 assert(SLD->getOffset().isUndef() && 8224 "Strided load is already a indexed load!"); 8225 // Don't propagate the invariant or dereferenceable flags. 8226 auto MMOFlags = 8227 SLD->getMemOperand()->getFlags() & 8228 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8229 return getStridedLoadVP( 8230 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8231 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8232 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8233 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8234 } 8235 8236 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8237 SDValue Val, SDValue Ptr, 8238 SDValue Offset, SDValue Stride, 8239 SDValue Mask, SDValue EVL, EVT MemVT, 8240 MachineMemOperand *MMO, 8241 ISD::MemIndexedMode AM, 8242 bool IsTruncating, bool IsCompressing) { 8243 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8244 bool Indexed = AM != ISD::UNINDEXED; 8245 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8246 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8247 : getVTList(MVT::Other); 8248 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8249 FoldingSetNodeID ID; 8250 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8251 ID.AddInteger(MemVT.getRawBits()); 8252 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8253 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8254 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8255 void *IP = nullptr; 8256 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8257 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8258 return SDValue(E, 0); 8259 } 8260 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8261 VTs, AM, IsTruncating, 8262 IsCompressing, MemVT, MMO); 8263 createOperands(N, Ops); 8264 8265 CSEMap.InsertNode(N, IP); 8266 InsertNode(N); 8267 SDValue V(N, 0); 8268 NewSDValueDbgMsg(V, "Creating new node: ", this); 8269 return V; 8270 } 8271 8272 SDValue SelectionDAG::getTruncStridedStoreVP( 8273 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8274 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8275 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8276 bool IsCompressing) { 8277 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8278 8279 MMOFlags |= MachineMemOperand::MOStore; 8280 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8281 8282 if (PtrInfo.V.isNull()) 8283 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8284 8285 MachineFunction &MF = getMachineFunction(); 8286 MachineMemOperand *MMO = MF.getMachineMemOperand( 8287 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8288 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8289 MMO, IsCompressing); 8290 } 8291 8292 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8293 SDValue Val, SDValue Ptr, 8294 SDValue Stride, SDValue Mask, 8295 SDValue EVL, EVT SVT, 8296 MachineMemOperand *MMO, 8297 bool IsCompressing) { 8298 EVT VT = Val.getValueType(); 8299 8300 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8301 if (VT == SVT) 8302 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8303 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8304 /*IsTruncating*/ false, IsCompressing); 8305 8306 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8307 "Should only be a truncating store, not extending!"); 8308 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8309 assert(VT.isVector() == SVT.isVector() && 8310 "Cannot use trunc store to convert to or from a vector!"); 8311 assert((!VT.isVector() || 8312 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8313 "Cannot use trunc store to change the number of vector elements!"); 8314 8315 SDVTList VTs = getVTList(MVT::Other); 8316 SDValue Undef = getUNDEF(Ptr.getValueType()); 8317 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8318 FoldingSetNodeID ID; 8319 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8320 ID.AddInteger(SVT.getRawBits()); 8321 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8322 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8323 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8324 void *IP = nullptr; 8325 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8326 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8327 return SDValue(E, 0); 8328 } 8329 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8330 VTs, ISD::UNINDEXED, true, 8331 IsCompressing, SVT, MMO); 8332 createOperands(N, Ops); 8333 8334 CSEMap.InsertNode(N, IP); 8335 InsertNode(N); 8336 SDValue V(N, 0); 8337 NewSDValueDbgMsg(V, "Creating new node: ", this); 8338 return V; 8339 } 8340 8341 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8342 const SDLoc &DL, SDValue Base, 8343 SDValue Offset, 8344 ISD::MemIndexedMode AM) { 8345 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8346 assert(SST->getOffset().isUndef() && 8347 "Strided store is already an indexed store!"); 8348 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8349 SDValue Ops[] = { 8350 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8351 SST->getMask(), SST->getVectorLength()}; 8352 FoldingSetNodeID ID; 8353 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8354 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8355 ID.AddInteger(SST->getRawSubclassData()); 8356 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8357 void *IP = nullptr; 8358 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8359 return SDValue(E, 0); 8360 8361 auto *N = newSDNode<VPStridedStoreSDNode>( 8362 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8363 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8364 createOperands(N, Ops); 8365 8366 CSEMap.InsertNode(N, IP); 8367 InsertNode(N); 8368 SDValue V(N, 0); 8369 NewSDValueDbgMsg(V, "Creating new node: ", this); 8370 return V; 8371 } 8372 8373 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8374 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8375 ISD::MemIndexType IndexType) { 8376 assert(Ops.size() == 6 && "Incompatible number of operands"); 8377 8378 FoldingSetNodeID ID; 8379 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8380 ID.AddInteger(VT.getRawBits()); 8381 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8382 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8383 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8384 ID.AddInteger(MMO->getFlags()); 8385 void *IP = nullptr; 8386 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8387 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8388 return SDValue(E, 0); 8389 } 8390 8391 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8392 VT, MMO, IndexType); 8393 createOperands(N, Ops); 8394 8395 assert(N->getMask().getValueType().getVectorElementCount() == 8396 N->getValueType(0).getVectorElementCount() && 8397 "Vector width mismatch between mask and data"); 8398 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8399 N->getValueType(0).getVectorElementCount().isScalable() && 8400 "Scalable flags of index and data do not match"); 8401 assert(ElementCount::isKnownGE( 8402 N->getIndex().getValueType().getVectorElementCount(), 8403 N->getValueType(0).getVectorElementCount()) && 8404 "Vector width mismatch between index and data"); 8405 assert(isa<ConstantSDNode>(N->getScale()) && 8406 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8407 "Scale should be a constant power of 2"); 8408 8409 CSEMap.InsertNode(N, IP); 8410 InsertNode(N); 8411 SDValue V(N, 0); 8412 NewSDValueDbgMsg(V, "Creating new node: ", this); 8413 return V; 8414 } 8415 8416 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8417 ArrayRef<SDValue> Ops, 8418 MachineMemOperand *MMO, 8419 ISD::MemIndexType IndexType) { 8420 assert(Ops.size() == 7 && "Incompatible number of operands"); 8421 8422 FoldingSetNodeID ID; 8423 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8424 ID.AddInteger(VT.getRawBits()); 8425 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8426 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8427 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8428 ID.AddInteger(MMO->getFlags()); 8429 void *IP = nullptr; 8430 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8431 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8432 return SDValue(E, 0); 8433 } 8434 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8435 VT, MMO, IndexType); 8436 createOperands(N, Ops); 8437 8438 assert(N->getMask().getValueType().getVectorElementCount() == 8439 N->getValue().getValueType().getVectorElementCount() && 8440 "Vector width mismatch between mask and data"); 8441 assert( 8442 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8443 N->getValue().getValueType().getVectorElementCount().isScalable() && 8444 "Scalable flags of index and data do not match"); 8445 assert(ElementCount::isKnownGE( 8446 N->getIndex().getValueType().getVectorElementCount(), 8447 N->getValue().getValueType().getVectorElementCount()) && 8448 "Vector width mismatch between index and data"); 8449 assert(isa<ConstantSDNode>(N->getScale()) && 8450 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8451 "Scale should be a constant power of 2"); 8452 8453 CSEMap.InsertNode(N, IP); 8454 InsertNode(N); 8455 SDValue V(N, 0); 8456 NewSDValueDbgMsg(V, "Creating new node: ", this); 8457 return V; 8458 } 8459 8460 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8461 SDValue Base, SDValue Offset, SDValue Mask, 8462 SDValue PassThru, EVT MemVT, 8463 MachineMemOperand *MMO, 8464 ISD::MemIndexedMode AM, 8465 ISD::LoadExtType ExtTy, bool isExpanding) { 8466 bool Indexed = AM != ISD::UNINDEXED; 8467 assert((Indexed || Offset.isUndef()) && 8468 "Unindexed masked load with an offset!"); 8469 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8470 : getVTList(VT, MVT::Other); 8471 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8472 FoldingSetNodeID ID; 8473 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8474 ID.AddInteger(MemVT.getRawBits()); 8475 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8476 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8477 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8478 ID.AddInteger(MMO->getFlags()); 8479 void *IP = nullptr; 8480 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8481 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8482 return SDValue(E, 0); 8483 } 8484 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8485 AM, ExtTy, isExpanding, MemVT, MMO); 8486 createOperands(N, Ops); 8487 8488 CSEMap.InsertNode(N, IP); 8489 InsertNode(N); 8490 SDValue V(N, 0); 8491 NewSDValueDbgMsg(V, "Creating new node: ", this); 8492 return V; 8493 } 8494 8495 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8496 SDValue Base, SDValue Offset, 8497 ISD::MemIndexedMode AM) { 8498 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8499 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8500 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8501 Offset, LD->getMask(), LD->getPassThru(), 8502 LD->getMemoryVT(), LD->getMemOperand(), AM, 8503 LD->getExtensionType(), LD->isExpandingLoad()); 8504 } 8505 8506 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8507 SDValue Val, SDValue Base, SDValue Offset, 8508 SDValue Mask, EVT MemVT, 8509 MachineMemOperand *MMO, 8510 ISD::MemIndexedMode AM, bool IsTruncating, 8511 bool IsCompressing) { 8512 assert(Chain.getValueType() == MVT::Other && 8513 "Invalid chain type"); 8514 bool Indexed = AM != ISD::UNINDEXED; 8515 assert((Indexed || Offset.isUndef()) && 8516 "Unindexed masked store with an offset!"); 8517 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8518 : getVTList(MVT::Other); 8519 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8520 FoldingSetNodeID ID; 8521 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8522 ID.AddInteger(MemVT.getRawBits()); 8523 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8524 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8525 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8526 ID.AddInteger(MMO->getFlags()); 8527 void *IP = nullptr; 8528 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8529 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8530 return SDValue(E, 0); 8531 } 8532 auto *N = 8533 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8534 IsTruncating, IsCompressing, MemVT, MMO); 8535 createOperands(N, Ops); 8536 8537 CSEMap.InsertNode(N, IP); 8538 InsertNode(N); 8539 SDValue V(N, 0); 8540 NewSDValueDbgMsg(V, "Creating new node: ", this); 8541 return V; 8542 } 8543 8544 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8545 SDValue Base, SDValue Offset, 8546 ISD::MemIndexedMode AM) { 8547 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8548 assert(ST->getOffset().isUndef() && 8549 "Masked store is already a indexed store!"); 8550 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8551 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8552 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8553 } 8554 8555 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8556 ArrayRef<SDValue> Ops, 8557 MachineMemOperand *MMO, 8558 ISD::MemIndexType IndexType, 8559 ISD::LoadExtType ExtTy) { 8560 assert(Ops.size() == 6 && "Incompatible number of operands"); 8561 8562 FoldingSetNodeID ID; 8563 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8564 ID.AddInteger(MemVT.getRawBits()); 8565 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8566 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8567 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8568 ID.AddInteger(MMO->getFlags()); 8569 void *IP = nullptr; 8570 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8571 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8572 return SDValue(E, 0); 8573 } 8574 8575 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8576 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8577 VTs, MemVT, MMO, IndexType, ExtTy); 8578 createOperands(N, Ops); 8579 8580 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8581 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8582 assert(N->getMask().getValueType().getVectorElementCount() == 8583 N->getValueType(0).getVectorElementCount() && 8584 "Vector width mismatch between mask and data"); 8585 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8586 N->getValueType(0).getVectorElementCount().isScalable() && 8587 "Scalable flags of index and data do not match"); 8588 assert(ElementCount::isKnownGE( 8589 N->getIndex().getValueType().getVectorElementCount(), 8590 N->getValueType(0).getVectorElementCount()) && 8591 "Vector width mismatch between index and data"); 8592 assert(isa<ConstantSDNode>(N->getScale()) && 8593 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8594 "Scale should be a constant power of 2"); 8595 8596 CSEMap.InsertNode(N, IP); 8597 InsertNode(N); 8598 SDValue V(N, 0); 8599 NewSDValueDbgMsg(V, "Creating new node: ", this); 8600 return V; 8601 } 8602 8603 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8604 ArrayRef<SDValue> Ops, 8605 MachineMemOperand *MMO, 8606 ISD::MemIndexType IndexType, 8607 bool IsTrunc) { 8608 assert(Ops.size() == 6 && "Incompatible number of operands"); 8609 8610 FoldingSetNodeID ID; 8611 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8612 ID.AddInteger(MemVT.getRawBits()); 8613 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8614 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8615 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8616 ID.AddInteger(MMO->getFlags()); 8617 void *IP = nullptr; 8618 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8619 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8620 return SDValue(E, 0); 8621 } 8622 8623 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8624 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8625 VTs, MemVT, MMO, IndexType, IsTrunc); 8626 createOperands(N, Ops); 8627 8628 assert(N->getMask().getValueType().getVectorElementCount() == 8629 N->getValue().getValueType().getVectorElementCount() && 8630 "Vector width mismatch between mask and data"); 8631 assert( 8632 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8633 N->getValue().getValueType().getVectorElementCount().isScalable() && 8634 "Scalable flags of index and data do not match"); 8635 assert(ElementCount::isKnownGE( 8636 N->getIndex().getValueType().getVectorElementCount(), 8637 N->getValue().getValueType().getVectorElementCount()) && 8638 "Vector width mismatch between index and data"); 8639 assert(isa<ConstantSDNode>(N->getScale()) && 8640 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8641 "Scale should be a constant power of 2"); 8642 8643 CSEMap.InsertNode(N, IP); 8644 InsertNode(N); 8645 SDValue V(N, 0); 8646 NewSDValueDbgMsg(V, "Creating new node: ", this); 8647 return V; 8648 } 8649 8650 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8651 // select undef, T, F --> T (if T is a constant), otherwise F 8652 // select, ?, undef, F --> F 8653 // select, ?, T, undef --> T 8654 if (Cond.isUndef()) 8655 return isConstantValueOfAnyType(T) ? T : F; 8656 if (T.isUndef()) 8657 return F; 8658 if (F.isUndef()) 8659 return T; 8660 8661 // select true, T, F --> T 8662 // select false, T, F --> F 8663 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8664 return CondC->isZero() ? F : T; 8665 8666 // TODO: This should simplify VSELECT with constant condition using something 8667 // like this (but check boolean contents to be complete?): 8668 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8669 // return T; 8670 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8671 // return F; 8672 8673 // select ?, T, T --> T 8674 if (T == F) 8675 return T; 8676 8677 return SDValue(); 8678 } 8679 8680 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8681 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8682 if (X.isUndef()) 8683 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8684 // shift X, undef --> undef (because it may shift by the bitwidth) 8685 if (Y.isUndef()) 8686 return getUNDEF(X.getValueType()); 8687 8688 // shift 0, Y --> 0 8689 // shift X, 0 --> X 8690 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8691 return X; 8692 8693 // shift X, C >= bitwidth(X) --> undef 8694 // All vector elements must be too big (or undef) to avoid partial undefs. 8695 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8696 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8697 }; 8698 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8699 return getUNDEF(X.getValueType()); 8700 8701 return SDValue(); 8702 } 8703 8704 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8705 SDNodeFlags Flags) { 8706 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8707 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8708 // operation is poison. That result can be relaxed to undef. 8709 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8710 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8711 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8712 (YC && YC->getValueAPF().isNaN()); 8713 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8714 (YC && YC->getValueAPF().isInfinity()); 8715 8716 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8717 return getUNDEF(X.getValueType()); 8718 8719 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8720 return getUNDEF(X.getValueType()); 8721 8722 if (!YC) 8723 return SDValue(); 8724 8725 // X + -0.0 --> X 8726 if (Opcode == ISD::FADD) 8727 if (YC->getValueAPF().isNegZero()) 8728 return X; 8729 8730 // X - +0.0 --> X 8731 if (Opcode == ISD::FSUB) 8732 if (YC->getValueAPF().isPosZero()) 8733 return X; 8734 8735 // X * 1.0 --> X 8736 // X / 1.0 --> X 8737 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8738 if (YC->getValueAPF().isExactlyValue(1.0)) 8739 return X; 8740 8741 // X * 0.0 --> 0.0 8742 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8743 if (YC->getValueAPF().isZero()) 8744 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8745 8746 return SDValue(); 8747 } 8748 8749 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8750 SDValue Ptr, SDValue SV, unsigned Align) { 8751 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8752 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8753 } 8754 8755 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8756 ArrayRef<SDUse> Ops) { 8757 switch (Ops.size()) { 8758 case 0: return getNode(Opcode, DL, VT); 8759 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8760 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8761 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8762 default: break; 8763 } 8764 8765 // Copy from an SDUse array into an SDValue array for use with 8766 // the regular getNode logic. 8767 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8768 return getNode(Opcode, DL, VT, NewOps); 8769 } 8770 8771 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8772 ArrayRef<SDValue> Ops) { 8773 SDNodeFlags Flags; 8774 if (Inserter) 8775 Flags = Inserter->getFlags(); 8776 return getNode(Opcode, DL, VT, Ops, Flags); 8777 } 8778 8779 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8780 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8781 unsigned NumOps = Ops.size(); 8782 switch (NumOps) { 8783 case 0: return getNode(Opcode, DL, VT); 8784 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8785 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8786 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8787 default: break; 8788 } 8789 8790 #ifndef NDEBUG 8791 for (auto &Op : Ops) 8792 assert(Op.getOpcode() != ISD::DELETED_NODE && 8793 "Operand is DELETED_NODE!"); 8794 #endif 8795 8796 switch (Opcode) { 8797 default: break; 8798 case ISD::BUILD_VECTOR: 8799 // Attempt to simplify BUILD_VECTOR. 8800 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8801 return V; 8802 break; 8803 case ISD::CONCAT_VECTORS: 8804 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8805 return V; 8806 break; 8807 case ISD::SELECT_CC: 8808 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8809 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8810 "LHS and RHS of condition must have same type!"); 8811 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8812 "True and False arms of SelectCC must have same type!"); 8813 assert(Ops[2].getValueType() == VT && 8814 "select_cc node must be of same type as true and false value!"); 8815 break; 8816 case ISD::BR_CC: 8817 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8818 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8819 "LHS/RHS of comparison should match types!"); 8820 break; 8821 } 8822 8823 // Memoize nodes. 8824 SDNode *N; 8825 SDVTList VTs = getVTList(VT); 8826 8827 if (VT != MVT::Glue) { 8828 FoldingSetNodeID ID; 8829 AddNodeIDNode(ID, Opcode, VTs, Ops); 8830 void *IP = nullptr; 8831 8832 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8833 return SDValue(E, 0); 8834 8835 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8836 createOperands(N, Ops); 8837 8838 CSEMap.InsertNode(N, IP); 8839 } else { 8840 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8841 createOperands(N, Ops); 8842 } 8843 8844 N->setFlags(Flags); 8845 InsertNode(N); 8846 SDValue V(N, 0); 8847 NewSDValueDbgMsg(V, "Creating new node: ", this); 8848 return V; 8849 } 8850 8851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8852 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8853 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8854 } 8855 8856 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8857 ArrayRef<SDValue> Ops) { 8858 SDNodeFlags Flags; 8859 if (Inserter) 8860 Flags = Inserter->getFlags(); 8861 return getNode(Opcode, DL, VTList, Ops, Flags); 8862 } 8863 8864 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8865 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8866 if (VTList.NumVTs == 1) 8867 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8868 8869 #ifndef NDEBUG 8870 for (auto &Op : Ops) 8871 assert(Op.getOpcode() != ISD::DELETED_NODE && 8872 "Operand is DELETED_NODE!"); 8873 #endif 8874 8875 switch (Opcode) { 8876 case ISD::STRICT_FP_EXTEND: 8877 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8878 "Invalid STRICT_FP_EXTEND!"); 8879 assert(VTList.VTs[0].isFloatingPoint() && 8880 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8881 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8882 "STRICT_FP_EXTEND result type should be vector iff the operand " 8883 "type is vector!"); 8884 assert((!VTList.VTs[0].isVector() || 8885 VTList.VTs[0].getVectorNumElements() == 8886 Ops[1].getValueType().getVectorNumElements()) && 8887 "Vector element count mismatch!"); 8888 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8889 "Invalid fpext node, dst <= src!"); 8890 break; 8891 case ISD::STRICT_FP_ROUND: 8892 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8893 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8894 "STRICT_FP_ROUND result type should be vector iff the operand " 8895 "type is vector!"); 8896 assert((!VTList.VTs[0].isVector() || 8897 VTList.VTs[0].getVectorNumElements() == 8898 Ops[1].getValueType().getVectorNumElements()) && 8899 "Vector element count mismatch!"); 8900 assert(VTList.VTs[0].isFloatingPoint() && 8901 Ops[1].getValueType().isFloatingPoint() && 8902 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8903 isa<ConstantSDNode>(Ops[2]) && 8904 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8905 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8906 "Invalid STRICT_FP_ROUND!"); 8907 break; 8908 #if 0 8909 // FIXME: figure out how to safely handle things like 8910 // int foo(int x) { return 1 << (x & 255); } 8911 // int bar() { return foo(256); } 8912 case ISD::SRA_PARTS: 8913 case ISD::SRL_PARTS: 8914 case ISD::SHL_PARTS: 8915 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8916 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8917 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8918 else if (N3.getOpcode() == ISD::AND) 8919 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8920 // If the and is only masking out bits that cannot effect the shift, 8921 // eliminate the and. 8922 unsigned NumBits = VT.getScalarSizeInBits()*2; 8923 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8924 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8925 } 8926 break; 8927 #endif 8928 } 8929 8930 // Memoize the node unless it returns a flag. 8931 SDNode *N; 8932 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8933 FoldingSetNodeID ID; 8934 AddNodeIDNode(ID, Opcode, VTList, Ops); 8935 void *IP = nullptr; 8936 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8937 return SDValue(E, 0); 8938 8939 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8940 createOperands(N, Ops); 8941 CSEMap.InsertNode(N, IP); 8942 } else { 8943 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8944 createOperands(N, Ops); 8945 } 8946 8947 N->setFlags(Flags); 8948 InsertNode(N); 8949 SDValue V(N, 0); 8950 NewSDValueDbgMsg(V, "Creating new node: ", this); 8951 return V; 8952 } 8953 8954 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8955 SDVTList VTList) { 8956 return getNode(Opcode, DL, VTList, None); 8957 } 8958 8959 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8960 SDValue N1) { 8961 SDValue Ops[] = { N1 }; 8962 return getNode(Opcode, DL, VTList, Ops); 8963 } 8964 8965 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8966 SDValue N1, SDValue N2) { 8967 SDValue Ops[] = { N1, N2 }; 8968 return getNode(Opcode, DL, VTList, Ops); 8969 } 8970 8971 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8972 SDValue N1, SDValue N2, SDValue N3) { 8973 SDValue Ops[] = { N1, N2, N3 }; 8974 return getNode(Opcode, DL, VTList, Ops); 8975 } 8976 8977 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8978 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8979 SDValue Ops[] = { N1, N2, N3, N4 }; 8980 return getNode(Opcode, DL, VTList, Ops); 8981 } 8982 8983 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8984 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8985 SDValue N5) { 8986 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8987 return getNode(Opcode, DL, VTList, Ops); 8988 } 8989 8990 SDVTList SelectionDAG::getVTList(EVT VT) { 8991 return makeVTList(SDNode::getValueTypeList(VT), 1); 8992 } 8993 8994 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8995 FoldingSetNodeID ID; 8996 ID.AddInteger(2U); 8997 ID.AddInteger(VT1.getRawBits()); 8998 ID.AddInteger(VT2.getRawBits()); 8999 9000 void *IP = nullptr; 9001 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9002 if (!Result) { 9003 EVT *Array = Allocator.Allocate<EVT>(2); 9004 Array[0] = VT1; 9005 Array[1] = VT2; 9006 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9007 VTListMap.InsertNode(Result, IP); 9008 } 9009 return Result->getSDVTList(); 9010 } 9011 9012 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9013 FoldingSetNodeID ID; 9014 ID.AddInteger(3U); 9015 ID.AddInteger(VT1.getRawBits()); 9016 ID.AddInteger(VT2.getRawBits()); 9017 ID.AddInteger(VT3.getRawBits()); 9018 9019 void *IP = nullptr; 9020 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9021 if (!Result) { 9022 EVT *Array = Allocator.Allocate<EVT>(3); 9023 Array[0] = VT1; 9024 Array[1] = VT2; 9025 Array[2] = VT3; 9026 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9027 VTListMap.InsertNode(Result, IP); 9028 } 9029 return Result->getSDVTList(); 9030 } 9031 9032 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9033 FoldingSetNodeID ID; 9034 ID.AddInteger(4U); 9035 ID.AddInteger(VT1.getRawBits()); 9036 ID.AddInteger(VT2.getRawBits()); 9037 ID.AddInteger(VT3.getRawBits()); 9038 ID.AddInteger(VT4.getRawBits()); 9039 9040 void *IP = nullptr; 9041 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9042 if (!Result) { 9043 EVT *Array = Allocator.Allocate<EVT>(4); 9044 Array[0] = VT1; 9045 Array[1] = VT2; 9046 Array[2] = VT3; 9047 Array[3] = VT4; 9048 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9049 VTListMap.InsertNode(Result, IP); 9050 } 9051 return Result->getSDVTList(); 9052 } 9053 9054 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9055 unsigned NumVTs = VTs.size(); 9056 FoldingSetNodeID ID; 9057 ID.AddInteger(NumVTs); 9058 for (unsigned index = 0; index < NumVTs; index++) { 9059 ID.AddInteger(VTs[index].getRawBits()); 9060 } 9061 9062 void *IP = nullptr; 9063 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9064 if (!Result) { 9065 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9066 llvm::copy(VTs, Array); 9067 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9068 VTListMap.InsertNode(Result, IP); 9069 } 9070 return Result->getSDVTList(); 9071 } 9072 9073 9074 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9075 /// specified operands. If the resultant node already exists in the DAG, 9076 /// this does not modify the specified node, instead it returns the node that 9077 /// already exists. If the resultant node does not exist in the DAG, the 9078 /// input node is returned. As a degenerate case, if you specify the same 9079 /// input operands as the node already has, the input node is returned. 9080 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9081 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9082 9083 // Check to see if there is no change. 9084 if (Op == N->getOperand(0)) return N; 9085 9086 // See if the modified node already exists. 9087 void *InsertPos = nullptr; 9088 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9089 return Existing; 9090 9091 // Nope it doesn't. Remove the node from its current place in the maps. 9092 if (InsertPos) 9093 if (!RemoveNodeFromCSEMaps(N)) 9094 InsertPos = nullptr; 9095 9096 // Now we update the operands. 9097 N->OperandList[0].set(Op); 9098 9099 updateDivergence(N); 9100 // If this gets put into a CSE map, add it. 9101 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9102 return N; 9103 } 9104 9105 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9106 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9107 9108 // Check to see if there is no change. 9109 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9110 return N; // No operands changed, just return the input node. 9111 9112 // See if the modified node already exists. 9113 void *InsertPos = nullptr; 9114 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9115 return Existing; 9116 9117 // Nope it doesn't. Remove the node from its current place in the maps. 9118 if (InsertPos) 9119 if (!RemoveNodeFromCSEMaps(N)) 9120 InsertPos = nullptr; 9121 9122 // Now we update the operands. 9123 if (N->OperandList[0] != Op1) 9124 N->OperandList[0].set(Op1); 9125 if (N->OperandList[1] != Op2) 9126 N->OperandList[1].set(Op2); 9127 9128 updateDivergence(N); 9129 // If this gets put into a CSE map, add it. 9130 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9131 return N; 9132 } 9133 9134 SDNode *SelectionDAG:: 9135 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9136 SDValue Ops[] = { Op1, Op2, Op3 }; 9137 return UpdateNodeOperands(N, Ops); 9138 } 9139 9140 SDNode *SelectionDAG:: 9141 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9142 SDValue Op3, SDValue Op4) { 9143 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9144 return UpdateNodeOperands(N, Ops); 9145 } 9146 9147 SDNode *SelectionDAG:: 9148 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9149 SDValue Op3, SDValue Op4, SDValue Op5) { 9150 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9151 return UpdateNodeOperands(N, Ops); 9152 } 9153 9154 SDNode *SelectionDAG:: 9155 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9156 unsigned NumOps = Ops.size(); 9157 assert(N->getNumOperands() == NumOps && 9158 "Update with wrong number of operands"); 9159 9160 // If no operands changed just return the input node. 9161 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9162 return N; 9163 9164 // See if the modified node already exists. 9165 void *InsertPos = nullptr; 9166 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9167 return Existing; 9168 9169 // Nope it doesn't. Remove the node from its current place in the maps. 9170 if (InsertPos) 9171 if (!RemoveNodeFromCSEMaps(N)) 9172 InsertPos = nullptr; 9173 9174 // Now we update the operands. 9175 for (unsigned i = 0; i != NumOps; ++i) 9176 if (N->OperandList[i] != Ops[i]) 9177 N->OperandList[i].set(Ops[i]); 9178 9179 updateDivergence(N); 9180 // If this gets put into a CSE map, add it. 9181 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9182 return N; 9183 } 9184 9185 /// DropOperands - Release the operands and set this node to have 9186 /// zero operands. 9187 void SDNode::DropOperands() { 9188 // Unlike the code in MorphNodeTo that does this, we don't need to 9189 // watch for dead nodes here. 9190 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9191 SDUse &Use = *I++; 9192 Use.set(SDValue()); 9193 } 9194 } 9195 9196 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9197 ArrayRef<MachineMemOperand *> NewMemRefs) { 9198 if (NewMemRefs.empty()) { 9199 N->clearMemRefs(); 9200 return; 9201 } 9202 9203 // Check if we can avoid allocating by storing a single reference directly. 9204 if (NewMemRefs.size() == 1) { 9205 N->MemRefs = NewMemRefs[0]; 9206 N->NumMemRefs = 1; 9207 return; 9208 } 9209 9210 MachineMemOperand **MemRefsBuffer = 9211 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9212 llvm::copy(NewMemRefs, MemRefsBuffer); 9213 N->MemRefs = MemRefsBuffer; 9214 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9215 } 9216 9217 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9218 /// machine opcode. 9219 /// 9220 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9221 EVT VT) { 9222 SDVTList VTs = getVTList(VT); 9223 return SelectNodeTo(N, MachineOpc, VTs, None); 9224 } 9225 9226 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9227 EVT VT, SDValue Op1) { 9228 SDVTList VTs = getVTList(VT); 9229 SDValue Ops[] = { Op1 }; 9230 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9231 } 9232 9233 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9234 EVT VT, SDValue Op1, 9235 SDValue Op2) { 9236 SDVTList VTs = getVTList(VT); 9237 SDValue Ops[] = { Op1, Op2 }; 9238 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9239 } 9240 9241 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9242 EVT VT, SDValue Op1, 9243 SDValue Op2, SDValue Op3) { 9244 SDVTList VTs = getVTList(VT); 9245 SDValue Ops[] = { Op1, Op2, Op3 }; 9246 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9247 } 9248 9249 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9250 EVT VT, ArrayRef<SDValue> Ops) { 9251 SDVTList VTs = getVTList(VT); 9252 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9253 } 9254 9255 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9256 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9257 SDVTList VTs = getVTList(VT1, VT2); 9258 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9259 } 9260 9261 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9262 EVT VT1, EVT VT2) { 9263 SDVTList VTs = getVTList(VT1, VT2); 9264 return SelectNodeTo(N, MachineOpc, VTs, None); 9265 } 9266 9267 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9268 EVT VT1, EVT VT2, EVT VT3, 9269 ArrayRef<SDValue> Ops) { 9270 SDVTList VTs = getVTList(VT1, VT2, VT3); 9271 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9272 } 9273 9274 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9275 EVT VT1, EVT VT2, 9276 SDValue Op1, SDValue Op2) { 9277 SDVTList VTs = getVTList(VT1, VT2); 9278 SDValue Ops[] = { Op1, Op2 }; 9279 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9280 } 9281 9282 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9283 SDVTList VTs,ArrayRef<SDValue> Ops) { 9284 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9285 // Reset the NodeID to -1. 9286 New->setNodeId(-1); 9287 if (New != N) { 9288 ReplaceAllUsesWith(N, New); 9289 RemoveDeadNode(N); 9290 } 9291 return New; 9292 } 9293 9294 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9295 /// the line number information on the merged node since it is not possible to 9296 /// preserve the information that operation is associated with multiple lines. 9297 /// This will make the debugger working better at -O0, were there is a higher 9298 /// probability having other instructions associated with that line. 9299 /// 9300 /// For IROrder, we keep the smaller of the two 9301 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9302 DebugLoc NLoc = N->getDebugLoc(); 9303 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9304 N->setDebugLoc(DebugLoc()); 9305 } 9306 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9307 N->setIROrder(Order); 9308 return N; 9309 } 9310 9311 /// MorphNodeTo - This *mutates* the specified node to have the specified 9312 /// return type, opcode, and operands. 9313 /// 9314 /// Note that MorphNodeTo returns the resultant node. If there is already a 9315 /// node of the specified opcode and operands, it returns that node instead of 9316 /// the current one. Note that the SDLoc need not be the same. 9317 /// 9318 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9319 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9320 /// node, and because it doesn't require CSE recalculation for any of 9321 /// the node's users. 9322 /// 9323 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9324 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9325 /// the legalizer which maintain worklists that would need to be updated when 9326 /// deleting things. 9327 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9328 SDVTList VTs, ArrayRef<SDValue> Ops) { 9329 // If an identical node already exists, use it. 9330 void *IP = nullptr; 9331 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9332 FoldingSetNodeID ID; 9333 AddNodeIDNode(ID, Opc, VTs, Ops); 9334 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9335 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9336 } 9337 9338 if (!RemoveNodeFromCSEMaps(N)) 9339 IP = nullptr; 9340 9341 // Start the morphing. 9342 N->NodeType = Opc; 9343 N->ValueList = VTs.VTs; 9344 N->NumValues = VTs.NumVTs; 9345 9346 // Clear the operands list, updating used nodes to remove this from their 9347 // use list. Keep track of any operands that become dead as a result. 9348 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9349 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9350 SDUse &Use = *I++; 9351 SDNode *Used = Use.getNode(); 9352 Use.set(SDValue()); 9353 if (Used->use_empty()) 9354 DeadNodeSet.insert(Used); 9355 } 9356 9357 // For MachineNode, initialize the memory references information. 9358 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9359 MN->clearMemRefs(); 9360 9361 // Swap for an appropriately sized array from the recycler. 9362 removeOperands(N); 9363 createOperands(N, Ops); 9364 9365 // Delete any nodes that are still dead after adding the uses for the 9366 // new operands. 9367 if (!DeadNodeSet.empty()) { 9368 SmallVector<SDNode *, 16> DeadNodes; 9369 for (SDNode *N : DeadNodeSet) 9370 if (N->use_empty()) 9371 DeadNodes.push_back(N); 9372 RemoveDeadNodes(DeadNodes); 9373 } 9374 9375 if (IP) 9376 CSEMap.InsertNode(N, IP); // Memoize the new node. 9377 return N; 9378 } 9379 9380 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9381 unsigned OrigOpc = Node->getOpcode(); 9382 unsigned NewOpc; 9383 switch (OrigOpc) { 9384 default: 9385 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9386 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9387 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9388 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9389 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9390 #include "llvm/IR/ConstrainedOps.def" 9391 } 9392 9393 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9394 9395 // We're taking this node out of the chain, so we need to re-link things. 9396 SDValue InputChain = Node->getOperand(0); 9397 SDValue OutputChain = SDValue(Node, 1); 9398 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9399 9400 SmallVector<SDValue, 3> Ops; 9401 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9402 Ops.push_back(Node->getOperand(i)); 9403 9404 SDVTList VTs = getVTList(Node->getValueType(0)); 9405 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9406 9407 // MorphNodeTo can operate in two ways: if an existing node with the 9408 // specified operands exists, it can just return it. Otherwise, it 9409 // updates the node in place to have the requested operands. 9410 if (Res == Node) { 9411 // If we updated the node in place, reset the node ID. To the isel, 9412 // this should be just like a newly allocated machine node. 9413 Res->setNodeId(-1); 9414 } else { 9415 ReplaceAllUsesWith(Node, Res); 9416 RemoveDeadNode(Node); 9417 } 9418 9419 return Res; 9420 } 9421 9422 /// getMachineNode - These are used for target selectors to create a new node 9423 /// with specified return type(s), MachineInstr opcode, and operands. 9424 /// 9425 /// Note that getMachineNode returns the resultant node. If there is already a 9426 /// node of the specified opcode and operands, it returns that node instead of 9427 /// the current one. 9428 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9429 EVT VT) { 9430 SDVTList VTs = getVTList(VT); 9431 return getMachineNode(Opcode, dl, VTs, None); 9432 } 9433 9434 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9435 EVT VT, SDValue Op1) { 9436 SDVTList VTs = getVTList(VT); 9437 SDValue Ops[] = { Op1 }; 9438 return getMachineNode(Opcode, dl, VTs, Ops); 9439 } 9440 9441 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9442 EVT VT, SDValue Op1, SDValue Op2) { 9443 SDVTList VTs = getVTList(VT); 9444 SDValue Ops[] = { Op1, Op2 }; 9445 return getMachineNode(Opcode, dl, VTs, Ops); 9446 } 9447 9448 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9449 EVT VT, SDValue Op1, SDValue Op2, 9450 SDValue Op3) { 9451 SDVTList VTs = getVTList(VT); 9452 SDValue Ops[] = { Op1, Op2, Op3 }; 9453 return getMachineNode(Opcode, dl, VTs, Ops); 9454 } 9455 9456 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9457 EVT VT, ArrayRef<SDValue> Ops) { 9458 SDVTList VTs = getVTList(VT); 9459 return getMachineNode(Opcode, dl, VTs, Ops); 9460 } 9461 9462 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9463 EVT VT1, EVT VT2, SDValue Op1, 9464 SDValue Op2) { 9465 SDVTList VTs = getVTList(VT1, VT2); 9466 SDValue Ops[] = { Op1, Op2 }; 9467 return getMachineNode(Opcode, dl, VTs, Ops); 9468 } 9469 9470 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9471 EVT VT1, EVT VT2, SDValue Op1, 9472 SDValue Op2, SDValue Op3) { 9473 SDVTList VTs = getVTList(VT1, VT2); 9474 SDValue Ops[] = { Op1, Op2, Op3 }; 9475 return getMachineNode(Opcode, dl, VTs, Ops); 9476 } 9477 9478 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9479 EVT VT1, EVT VT2, 9480 ArrayRef<SDValue> Ops) { 9481 SDVTList VTs = getVTList(VT1, VT2); 9482 return getMachineNode(Opcode, dl, VTs, Ops); 9483 } 9484 9485 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9486 EVT VT1, EVT VT2, EVT VT3, 9487 SDValue Op1, SDValue Op2) { 9488 SDVTList VTs = getVTList(VT1, VT2, VT3); 9489 SDValue Ops[] = { Op1, Op2 }; 9490 return getMachineNode(Opcode, dl, VTs, Ops); 9491 } 9492 9493 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9494 EVT VT1, EVT VT2, EVT VT3, 9495 SDValue Op1, SDValue Op2, 9496 SDValue Op3) { 9497 SDVTList VTs = getVTList(VT1, VT2, VT3); 9498 SDValue Ops[] = { Op1, Op2, Op3 }; 9499 return getMachineNode(Opcode, dl, VTs, Ops); 9500 } 9501 9502 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9503 EVT VT1, EVT VT2, EVT VT3, 9504 ArrayRef<SDValue> Ops) { 9505 SDVTList VTs = getVTList(VT1, VT2, VT3); 9506 return getMachineNode(Opcode, dl, VTs, Ops); 9507 } 9508 9509 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9510 ArrayRef<EVT> ResultTys, 9511 ArrayRef<SDValue> Ops) { 9512 SDVTList VTs = getVTList(ResultTys); 9513 return getMachineNode(Opcode, dl, VTs, Ops); 9514 } 9515 9516 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9517 SDVTList VTs, 9518 ArrayRef<SDValue> Ops) { 9519 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9520 MachineSDNode *N; 9521 void *IP = nullptr; 9522 9523 if (DoCSE) { 9524 FoldingSetNodeID ID; 9525 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9526 IP = nullptr; 9527 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9528 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9529 } 9530 } 9531 9532 // Allocate a new MachineSDNode. 9533 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9534 createOperands(N, Ops); 9535 9536 if (DoCSE) 9537 CSEMap.InsertNode(N, IP); 9538 9539 InsertNode(N); 9540 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9541 return N; 9542 } 9543 9544 /// getTargetExtractSubreg - A convenience function for creating 9545 /// TargetOpcode::EXTRACT_SUBREG nodes. 9546 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9547 SDValue Operand) { 9548 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9549 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9550 VT, Operand, SRIdxVal); 9551 return SDValue(Subreg, 0); 9552 } 9553 9554 /// getTargetInsertSubreg - A convenience function for creating 9555 /// TargetOpcode::INSERT_SUBREG nodes. 9556 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9557 SDValue Operand, SDValue Subreg) { 9558 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9559 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9560 VT, Operand, Subreg, SRIdxVal); 9561 return SDValue(Result, 0); 9562 } 9563 9564 /// getNodeIfExists - Get the specified node if it's already available, or 9565 /// else return NULL. 9566 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9567 ArrayRef<SDValue> Ops) { 9568 SDNodeFlags Flags; 9569 if (Inserter) 9570 Flags = Inserter->getFlags(); 9571 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9572 } 9573 9574 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9575 ArrayRef<SDValue> Ops, 9576 const SDNodeFlags Flags) { 9577 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9578 FoldingSetNodeID ID; 9579 AddNodeIDNode(ID, Opcode, VTList, Ops); 9580 void *IP = nullptr; 9581 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9582 E->intersectFlagsWith(Flags); 9583 return E; 9584 } 9585 } 9586 return nullptr; 9587 } 9588 9589 /// doesNodeExist - Check if a node exists without modifying its flags. 9590 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9591 ArrayRef<SDValue> Ops) { 9592 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9593 FoldingSetNodeID ID; 9594 AddNodeIDNode(ID, Opcode, VTList, Ops); 9595 void *IP = nullptr; 9596 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9597 return true; 9598 } 9599 return false; 9600 } 9601 9602 /// getDbgValue - Creates a SDDbgValue node. 9603 /// 9604 /// SDNode 9605 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9606 SDNode *N, unsigned R, bool IsIndirect, 9607 const DebugLoc &DL, unsigned O) { 9608 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9609 "Expected inlined-at fields to agree"); 9610 return new (DbgInfo->getAlloc()) 9611 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9612 {}, IsIndirect, DL, O, 9613 /*IsVariadic=*/false); 9614 } 9615 9616 /// Constant 9617 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9618 DIExpression *Expr, 9619 const Value *C, 9620 const DebugLoc &DL, unsigned O) { 9621 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9622 "Expected inlined-at fields to agree"); 9623 return new (DbgInfo->getAlloc()) 9624 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9625 /*IsIndirect=*/false, DL, O, 9626 /*IsVariadic=*/false); 9627 } 9628 9629 /// FrameIndex 9630 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9631 DIExpression *Expr, unsigned FI, 9632 bool IsIndirect, 9633 const DebugLoc &DL, 9634 unsigned O) { 9635 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9636 "Expected inlined-at fields to agree"); 9637 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9638 } 9639 9640 /// FrameIndex with dependencies 9641 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9642 DIExpression *Expr, unsigned FI, 9643 ArrayRef<SDNode *> Dependencies, 9644 bool IsIndirect, 9645 const DebugLoc &DL, 9646 unsigned O) { 9647 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9648 "Expected inlined-at fields to agree"); 9649 return new (DbgInfo->getAlloc()) 9650 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9651 Dependencies, IsIndirect, DL, O, 9652 /*IsVariadic=*/false); 9653 } 9654 9655 /// VReg 9656 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9657 unsigned VReg, bool IsIndirect, 9658 const DebugLoc &DL, unsigned O) { 9659 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9660 "Expected inlined-at fields to agree"); 9661 return new (DbgInfo->getAlloc()) 9662 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9663 {}, IsIndirect, DL, O, 9664 /*IsVariadic=*/false); 9665 } 9666 9667 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9668 ArrayRef<SDDbgOperand> Locs, 9669 ArrayRef<SDNode *> Dependencies, 9670 bool IsIndirect, const DebugLoc &DL, 9671 unsigned O, bool IsVariadic) { 9672 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9673 "Expected inlined-at fields to agree"); 9674 return new (DbgInfo->getAlloc()) 9675 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9676 DL, O, IsVariadic); 9677 } 9678 9679 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9680 unsigned OffsetInBits, unsigned SizeInBits, 9681 bool InvalidateDbg) { 9682 SDNode *FromNode = From.getNode(); 9683 SDNode *ToNode = To.getNode(); 9684 assert(FromNode && ToNode && "Can't modify dbg values"); 9685 9686 // PR35338 9687 // TODO: assert(From != To && "Redundant dbg value transfer"); 9688 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9689 if (From == To || FromNode == ToNode) 9690 return; 9691 9692 if (!FromNode->getHasDebugValue()) 9693 return; 9694 9695 SDDbgOperand FromLocOp = 9696 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9697 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9698 9699 SmallVector<SDDbgValue *, 2> ClonedDVs; 9700 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9701 if (Dbg->isInvalidated()) 9702 continue; 9703 9704 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9705 9706 // Create a new location ops vector that is equal to the old vector, but 9707 // with each instance of FromLocOp replaced with ToLocOp. 9708 bool Changed = false; 9709 auto NewLocOps = Dbg->copyLocationOps(); 9710 std::replace_if( 9711 NewLocOps.begin(), NewLocOps.end(), 9712 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9713 bool Match = Op == FromLocOp; 9714 Changed |= Match; 9715 return Match; 9716 }, 9717 ToLocOp); 9718 // Ignore this SDDbgValue if we didn't find a matching location. 9719 if (!Changed) 9720 continue; 9721 9722 DIVariable *Var = Dbg->getVariable(); 9723 auto *Expr = Dbg->getExpression(); 9724 // If a fragment is requested, update the expression. 9725 if (SizeInBits) { 9726 // When splitting a larger (e.g., sign-extended) value whose 9727 // lower bits are described with an SDDbgValue, do not attempt 9728 // to transfer the SDDbgValue to the upper bits. 9729 if (auto FI = Expr->getFragmentInfo()) 9730 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9731 continue; 9732 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9733 SizeInBits); 9734 if (!Fragment) 9735 continue; 9736 Expr = *Fragment; 9737 } 9738 9739 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9740 // Clone the SDDbgValue and move it to To. 9741 SDDbgValue *Clone = getDbgValueList( 9742 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9743 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9744 Dbg->isVariadic()); 9745 ClonedDVs.push_back(Clone); 9746 9747 if (InvalidateDbg) { 9748 // Invalidate value and indicate the SDDbgValue should not be emitted. 9749 Dbg->setIsInvalidated(); 9750 Dbg->setIsEmitted(); 9751 } 9752 } 9753 9754 for (SDDbgValue *Dbg : ClonedDVs) { 9755 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9756 "Transferred DbgValues should depend on the new SDNode"); 9757 AddDbgValue(Dbg, false); 9758 } 9759 } 9760 9761 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9762 if (!N.getHasDebugValue()) 9763 return; 9764 9765 SmallVector<SDDbgValue *, 2> ClonedDVs; 9766 for (auto DV : GetDbgValues(&N)) { 9767 if (DV->isInvalidated()) 9768 continue; 9769 switch (N.getOpcode()) { 9770 default: 9771 break; 9772 case ISD::ADD: 9773 SDValue N0 = N.getOperand(0); 9774 SDValue N1 = N.getOperand(1); 9775 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9776 isConstantIntBuildVectorOrConstantInt(N1)) { 9777 uint64_t Offset = N.getConstantOperandVal(1); 9778 9779 // Rewrite an ADD constant node into a DIExpression. Since we are 9780 // performing arithmetic to compute the variable's *value* in the 9781 // DIExpression, we need to mark the expression with a 9782 // DW_OP_stack_value. 9783 auto *DIExpr = DV->getExpression(); 9784 auto NewLocOps = DV->copyLocationOps(); 9785 bool Changed = false; 9786 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9787 // We're not given a ResNo to compare against because the whole 9788 // node is going away. We know that any ISD::ADD only has one 9789 // result, so we can assume any node match is using the result. 9790 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9791 NewLocOps[i].getSDNode() != &N) 9792 continue; 9793 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9794 SmallVector<uint64_t, 3> ExprOps; 9795 DIExpression::appendOffset(ExprOps, Offset); 9796 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9797 Changed = true; 9798 } 9799 (void)Changed; 9800 assert(Changed && "Salvage target doesn't use N"); 9801 9802 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9803 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9804 NewLocOps, AdditionalDependencies, 9805 DV->isIndirect(), DV->getDebugLoc(), 9806 DV->getOrder(), DV->isVariadic()); 9807 ClonedDVs.push_back(Clone); 9808 DV->setIsInvalidated(); 9809 DV->setIsEmitted(); 9810 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9811 N0.getNode()->dumprFull(this); 9812 dbgs() << " into " << *DIExpr << '\n'); 9813 } 9814 } 9815 } 9816 9817 for (SDDbgValue *Dbg : ClonedDVs) { 9818 assert(!Dbg->getSDNodes().empty() && 9819 "Salvaged DbgValue should depend on a new SDNode"); 9820 AddDbgValue(Dbg, false); 9821 } 9822 } 9823 9824 /// Creates a SDDbgLabel node. 9825 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9826 const DebugLoc &DL, unsigned O) { 9827 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9828 "Expected inlined-at fields to agree"); 9829 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9830 } 9831 9832 namespace { 9833 9834 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9835 /// pointed to by a use iterator is deleted, increment the use iterator 9836 /// so that it doesn't dangle. 9837 /// 9838 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9839 SDNode::use_iterator &UI; 9840 SDNode::use_iterator &UE; 9841 9842 void NodeDeleted(SDNode *N, SDNode *E) override { 9843 // Increment the iterator as needed. 9844 while (UI != UE && N == *UI) 9845 ++UI; 9846 } 9847 9848 public: 9849 RAUWUpdateListener(SelectionDAG &d, 9850 SDNode::use_iterator &ui, 9851 SDNode::use_iterator &ue) 9852 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9853 }; 9854 9855 } // end anonymous namespace 9856 9857 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9858 /// This can cause recursive merging of nodes in the DAG. 9859 /// 9860 /// This version assumes From has a single result value. 9861 /// 9862 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9863 SDNode *From = FromN.getNode(); 9864 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9865 "Cannot replace with this method!"); 9866 assert(From != To.getNode() && "Cannot replace uses of with self"); 9867 9868 // Preserve Debug Values 9869 transferDbgValues(FromN, To); 9870 9871 // Iterate over all the existing uses of From. New uses will be added 9872 // to the beginning of the use list, which we avoid visiting. 9873 // This specifically avoids visiting uses of From that arise while the 9874 // replacement is happening, because any such uses would be the result 9875 // of CSE: If an existing node looks like From after one of its operands 9876 // is replaced by To, we don't want to replace of all its users with To 9877 // too. See PR3018 for more info. 9878 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9879 RAUWUpdateListener Listener(*this, UI, UE); 9880 while (UI != UE) { 9881 SDNode *User = *UI; 9882 9883 // This node is about to morph, remove its old self from the CSE maps. 9884 RemoveNodeFromCSEMaps(User); 9885 9886 // A user can appear in a use list multiple times, and when this 9887 // happens the uses are usually next to each other in the list. 9888 // To help reduce the number of CSE recomputations, process all 9889 // the uses of this user that we can find this way. 9890 do { 9891 SDUse &Use = UI.getUse(); 9892 ++UI; 9893 Use.set(To); 9894 if (To->isDivergent() != From->isDivergent()) 9895 updateDivergence(User); 9896 } while (UI != UE && *UI == User); 9897 // Now that we have modified User, add it back to the CSE maps. If it 9898 // already exists there, recursively merge the results together. 9899 AddModifiedNodeToCSEMaps(User); 9900 } 9901 9902 // If we just RAUW'd the root, take note. 9903 if (FromN == getRoot()) 9904 setRoot(To); 9905 } 9906 9907 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9908 /// This can cause recursive merging of nodes in the DAG. 9909 /// 9910 /// This version assumes that for each value of From, there is a 9911 /// corresponding value in To in the same position with the same type. 9912 /// 9913 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9914 #ifndef NDEBUG 9915 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9916 assert((!From->hasAnyUseOfValue(i) || 9917 From->getValueType(i) == To->getValueType(i)) && 9918 "Cannot use this version of ReplaceAllUsesWith!"); 9919 #endif 9920 9921 // Handle the trivial case. 9922 if (From == To) 9923 return; 9924 9925 // Preserve Debug Info. Only do this if there's a use. 9926 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9927 if (From->hasAnyUseOfValue(i)) { 9928 assert((i < To->getNumValues()) && "Invalid To location"); 9929 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9930 } 9931 9932 // Iterate over just the existing users of From. See the comments in 9933 // the ReplaceAllUsesWith above. 9934 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9935 RAUWUpdateListener Listener(*this, UI, UE); 9936 while (UI != UE) { 9937 SDNode *User = *UI; 9938 9939 // This node is about to morph, remove its old self from the CSE maps. 9940 RemoveNodeFromCSEMaps(User); 9941 9942 // A user can appear in a use list multiple times, and when this 9943 // happens the uses are usually next to each other in the list. 9944 // To help reduce the number of CSE recomputations, process all 9945 // the uses of this user that we can find this way. 9946 do { 9947 SDUse &Use = UI.getUse(); 9948 ++UI; 9949 Use.setNode(To); 9950 if (To->isDivergent() != From->isDivergent()) 9951 updateDivergence(User); 9952 } while (UI != UE && *UI == User); 9953 9954 // Now that we have modified User, add it back to the CSE maps. If it 9955 // already exists there, recursively merge the results together. 9956 AddModifiedNodeToCSEMaps(User); 9957 } 9958 9959 // If we just RAUW'd the root, take note. 9960 if (From == getRoot().getNode()) 9961 setRoot(SDValue(To, getRoot().getResNo())); 9962 } 9963 9964 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9965 /// This can cause recursive merging of nodes in the DAG. 9966 /// 9967 /// This version can replace From with any result values. To must match the 9968 /// number and types of values returned by From. 9969 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9970 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9971 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9972 9973 // Preserve Debug Info. 9974 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9975 transferDbgValues(SDValue(From, i), To[i]); 9976 9977 // Iterate over just the existing users of From. See the comments in 9978 // the ReplaceAllUsesWith above. 9979 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9980 RAUWUpdateListener Listener(*this, UI, UE); 9981 while (UI != UE) { 9982 SDNode *User = *UI; 9983 9984 // This node is about to morph, remove its old self from the CSE maps. 9985 RemoveNodeFromCSEMaps(User); 9986 9987 // A user can appear in a use list multiple times, and when this happens the 9988 // uses are usually next to each other in the list. To help reduce the 9989 // number of CSE and divergence recomputations, process all the uses of this 9990 // user that we can find this way. 9991 bool To_IsDivergent = false; 9992 do { 9993 SDUse &Use = UI.getUse(); 9994 const SDValue &ToOp = To[Use.getResNo()]; 9995 ++UI; 9996 Use.set(ToOp); 9997 To_IsDivergent |= ToOp->isDivergent(); 9998 } while (UI != UE && *UI == User); 9999 10000 if (To_IsDivergent != From->isDivergent()) 10001 updateDivergence(User); 10002 10003 // Now that we have modified User, add it back to the CSE maps. If it 10004 // already exists there, recursively merge the results together. 10005 AddModifiedNodeToCSEMaps(User); 10006 } 10007 10008 // If we just RAUW'd the root, take note. 10009 if (From == getRoot().getNode()) 10010 setRoot(SDValue(To[getRoot().getResNo()])); 10011 } 10012 10013 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10014 /// uses of other values produced by From.getNode() alone. The Deleted 10015 /// vector is handled the same way as for ReplaceAllUsesWith. 10016 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10017 // Handle the really simple, really trivial case efficiently. 10018 if (From == To) return; 10019 10020 // Handle the simple, trivial, case efficiently. 10021 if (From.getNode()->getNumValues() == 1) { 10022 ReplaceAllUsesWith(From, To); 10023 return; 10024 } 10025 10026 // Preserve Debug Info. 10027 transferDbgValues(From, To); 10028 10029 // Iterate over just the existing users of From. See the comments in 10030 // the ReplaceAllUsesWith above. 10031 SDNode::use_iterator UI = From.getNode()->use_begin(), 10032 UE = From.getNode()->use_end(); 10033 RAUWUpdateListener Listener(*this, UI, UE); 10034 while (UI != UE) { 10035 SDNode *User = *UI; 10036 bool UserRemovedFromCSEMaps = false; 10037 10038 // A user can appear in a use list multiple times, and when this 10039 // happens the uses are usually next to each other in the list. 10040 // To help reduce the number of CSE recomputations, process all 10041 // the uses of this user that we can find this way. 10042 do { 10043 SDUse &Use = UI.getUse(); 10044 10045 // Skip uses of different values from the same node. 10046 if (Use.getResNo() != From.getResNo()) { 10047 ++UI; 10048 continue; 10049 } 10050 10051 // If this node hasn't been modified yet, it's still in the CSE maps, 10052 // so remove its old self from the CSE maps. 10053 if (!UserRemovedFromCSEMaps) { 10054 RemoveNodeFromCSEMaps(User); 10055 UserRemovedFromCSEMaps = true; 10056 } 10057 10058 ++UI; 10059 Use.set(To); 10060 if (To->isDivergent() != From->isDivergent()) 10061 updateDivergence(User); 10062 } while (UI != UE && *UI == User); 10063 // We are iterating over all uses of the From node, so if a use 10064 // doesn't use the specific value, no changes are made. 10065 if (!UserRemovedFromCSEMaps) 10066 continue; 10067 10068 // Now that we have modified User, add it back to the CSE maps. If it 10069 // already exists there, recursively merge the results together. 10070 AddModifiedNodeToCSEMaps(User); 10071 } 10072 10073 // If we just RAUW'd the root, take note. 10074 if (From == getRoot()) 10075 setRoot(To); 10076 } 10077 10078 namespace { 10079 10080 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10081 /// to record information about a use. 10082 struct UseMemo { 10083 SDNode *User; 10084 unsigned Index; 10085 SDUse *Use; 10086 }; 10087 10088 /// operator< - Sort Memos by User. 10089 bool operator<(const UseMemo &L, const UseMemo &R) { 10090 return (intptr_t)L.User < (intptr_t)R.User; 10091 } 10092 10093 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10094 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10095 /// the node already has been taken care of recursively. 10096 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10097 SmallVector<UseMemo, 4> &Uses; 10098 10099 void NodeDeleted(SDNode *N, SDNode *E) override { 10100 for (UseMemo &Memo : Uses) 10101 if (Memo.User == N) 10102 Memo.User = nullptr; 10103 } 10104 10105 public: 10106 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10107 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10108 }; 10109 10110 } // end anonymous namespace 10111 10112 bool SelectionDAG::calculateDivergence(SDNode *N) { 10113 if (TLI->isSDNodeAlwaysUniform(N)) { 10114 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10115 "Conflicting divergence information!"); 10116 return false; 10117 } 10118 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10119 return true; 10120 for (auto &Op : N->ops()) { 10121 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10122 return true; 10123 } 10124 return false; 10125 } 10126 10127 void SelectionDAG::updateDivergence(SDNode *N) { 10128 SmallVector<SDNode *, 16> Worklist(1, N); 10129 do { 10130 N = Worklist.pop_back_val(); 10131 bool IsDivergent = calculateDivergence(N); 10132 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10133 N->SDNodeBits.IsDivergent = IsDivergent; 10134 llvm::append_range(Worklist, N->uses()); 10135 } 10136 } while (!Worklist.empty()); 10137 } 10138 10139 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10140 DenseMap<SDNode *, unsigned> Degree; 10141 Order.reserve(AllNodes.size()); 10142 for (auto &N : allnodes()) { 10143 unsigned NOps = N.getNumOperands(); 10144 Degree[&N] = NOps; 10145 if (0 == NOps) 10146 Order.push_back(&N); 10147 } 10148 for (size_t I = 0; I != Order.size(); ++I) { 10149 SDNode *N = Order[I]; 10150 for (auto U : N->uses()) { 10151 unsigned &UnsortedOps = Degree[U]; 10152 if (0 == --UnsortedOps) 10153 Order.push_back(U); 10154 } 10155 } 10156 } 10157 10158 #ifndef NDEBUG 10159 void SelectionDAG::VerifyDAGDivergence() { 10160 std::vector<SDNode *> TopoOrder; 10161 CreateTopologicalOrder(TopoOrder); 10162 for (auto *N : TopoOrder) { 10163 assert(calculateDivergence(N) == N->isDivergent() && 10164 "Divergence bit inconsistency detected"); 10165 } 10166 } 10167 #endif 10168 10169 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10170 /// uses of other values produced by From.getNode() alone. The same value 10171 /// may appear in both the From and To list. The Deleted vector is 10172 /// handled the same way as for ReplaceAllUsesWith. 10173 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10174 const SDValue *To, 10175 unsigned Num){ 10176 // Handle the simple, trivial case efficiently. 10177 if (Num == 1) 10178 return ReplaceAllUsesOfValueWith(*From, *To); 10179 10180 transferDbgValues(*From, *To); 10181 10182 // Read up all the uses and make records of them. This helps 10183 // processing new uses that are introduced during the 10184 // replacement process. 10185 SmallVector<UseMemo, 4> Uses; 10186 for (unsigned i = 0; i != Num; ++i) { 10187 unsigned FromResNo = From[i].getResNo(); 10188 SDNode *FromNode = From[i].getNode(); 10189 for (SDNode::use_iterator UI = FromNode->use_begin(), 10190 E = FromNode->use_end(); UI != E; ++UI) { 10191 SDUse &Use = UI.getUse(); 10192 if (Use.getResNo() == FromResNo) { 10193 UseMemo Memo = { *UI, i, &Use }; 10194 Uses.push_back(Memo); 10195 } 10196 } 10197 } 10198 10199 // Sort the uses, so that all the uses from a given User are together. 10200 llvm::sort(Uses); 10201 RAUOVWUpdateListener Listener(*this, Uses); 10202 10203 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10204 UseIndex != UseIndexEnd; ) { 10205 // We know that this user uses some value of From. If it is the right 10206 // value, update it. 10207 SDNode *User = Uses[UseIndex].User; 10208 // If the node has been deleted by recursive CSE updates when updating 10209 // another node, then just skip this entry. 10210 if (User == nullptr) { 10211 ++UseIndex; 10212 continue; 10213 } 10214 10215 // This node is about to morph, remove its old self from the CSE maps. 10216 RemoveNodeFromCSEMaps(User); 10217 10218 // The Uses array is sorted, so all the uses for a given User 10219 // are next to each other in the list. 10220 // To help reduce the number of CSE recomputations, process all 10221 // the uses of this user that we can find this way. 10222 do { 10223 unsigned i = Uses[UseIndex].Index; 10224 SDUse &Use = *Uses[UseIndex].Use; 10225 ++UseIndex; 10226 10227 Use.set(To[i]); 10228 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10229 10230 // Now that we have modified User, add it back to the CSE maps. If it 10231 // already exists there, recursively merge the results together. 10232 AddModifiedNodeToCSEMaps(User); 10233 } 10234 } 10235 10236 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10237 /// based on their topological order. It returns the maximum id and a vector 10238 /// of the SDNodes* in assigned order by reference. 10239 unsigned SelectionDAG::AssignTopologicalOrder() { 10240 unsigned DAGSize = 0; 10241 10242 // SortedPos tracks the progress of the algorithm. Nodes before it are 10243 // sorted, nodes after it are unsorted. When the algorithm completes 10244 // it is at the end of the list. 10245 allnodes_iterator SortedPos = allnodes_begin(); 10246 10247 // Visit all the nodes. Move nodes with no operands to the front of 10248 // the list immediately. Annotate nodes that do have operands with their 10249 // operand count. Before we do this, the Node Id fields of the nodes 10250 // may contain arbitrary values. After, the Node Id fields for nodes 10251 // before SortedPos will contain the topological sort index, and the 10252 // Node Id fields for nodes At SortedPos and after will contain the 10253 // count of outstanding operands. 10254 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10255 checkForCycles(&N, this); 10256 unsigned Degree = N.getNumOperands(); 10257 if (Degree == 0) { 10258 // A node with no uses, add it to the result array immediately. 10259 N.setNodeId(DAGSize++); 10260 allnodes_iterator Q(&N); 10261 if (Q != SortedPos) 10262 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10263 assert(SortedPos != AllNodes.end() && "Overran node list"); 10264 ++SortedPos; 10265 } else { 10266 // Temporarily use the Node Id as scratch space for the degree count. 10267 N.setNodeId(Degree); 10268 } 10269 } 10270 10271 // Visit all the nodes. As we iterate, move nodes into sorted order, 10272 // such that by the time the end is reached all nodes will be sorted. 10273 for (SDNode &Node : allnodes()) { 10274 SDNode *N = &Node; 10275 checkForCycles(N, this); 10276 // N is in sorted position, so all its uses have one less operand 10277 // that needs to be sorted. 10278 for (SDNode *P : N->uses()) { 10279 unsigned Degree = P->getNodeId(); 10280 assert(Degree != 0 && "Invalid node degree"); 10281 --Degree; 10282 if (Degree == 0) { 10283 // All of P's operands are sorted, so P may sorted now. 10284 P->setNodeId(DAGSize++); 10285 if (P->getIterator() != SortedPos) 10286 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10287 assert(SortedPos != AllNodes.end() && "Overran node list"); 10288 ++SortedPos; 10289 } else { 10290 // Update P's outstanding operand count. 10291 P->setNodeId(Degree); 10292 } 10293 } 10294 if (Node.getIterator() == SortedPos) { 10295 #ifndef NDEBUG 10296 allnodes_iterator I(N); 10297 SDNode *S = &*++I; 10298 dbgs() << "Overran sorted position:\n"; 10299 S->dumprFull(this); dbgs() << "\n"; 10300 dbgs() << "Checking if this is due to cycles\n"; 10301 checkForCycles(this, true); 10302 #endif 10303 llvm_unreachable(nullptr); 10304 } 10305 } 10306 10307 assert(SortedPos == AllNodes.end() && 10308 "Topological sort incomplete!"); 10309 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10310 "First node in topological sort is not the entry token!"); 10311 assert(AllNodes.front().getNodeId() == 0 && 10312 "First node in topological sort has non-zero id!"); 10313 assert(AllNodes.front().getNumOperands() == 0 && 10314 "First node in topological sort has operands!"); 10315 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10316 "Last node in topologic sort has unexpected id!"); 10317 assert(AllNodes.back().use_empty() && 10318 "Last node in topologic sort has users!"); 10319 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10320 return DAGSize; 10321 } 10322 10323 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10324 /// value is produced by SD. 10325 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10326 for (SDNode *SD : DB->getSDNodes()) { 10327 if (!SD) 10328 continue; 10329 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10330 SD->setHasDebugValue(true); 10331 } 10332 DbgInfo->add(DB, isParameter); 10333 } 10334 10335 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10336 10337 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10338 SDValue NewMemOpChain) { 10339 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10340 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10341 // The new memory operation must have the same position as the old load in 10342 // terms of memory dependency. Create a TokenFactor for the old load and new 10343 // memory operation and update uses of the old load's output chain to use that 10344 // TokenFactor. 10345 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10346 return NewMemOpChain; 10347 10348 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10349 OldChain, NewMemOpChain); 10350 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10351 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10352 return TokenFactor; 10353 } 10354 10355 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10356 SDValue NewMemOp) { 10357 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10358 SDValue OldChain = SDValue(OldLoad, 1); 10359 SDValue NewMemOpChain = NewMemOp.getValue(1); 10360 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10361 } 10362 10363 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10364 Function **OutFunction) { 10365 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10366 10367 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10368 auto *Module = MF->getFunction().getParent(); 10369 auto *Function = Module->getFunction(Symbol); 10370 10371 if (OutFunction != nullptr) 10372 *OutFunction = Function; 10373 10374 if (Function != nullptr) { 10375 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10376 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10377 } 10378 10379 std::string ErrorStr; 10380 raw_string_ostream ErrorFormatter(ErrorStr); 10381 ErrorFormatter << "Undefined external symbol "; 10382 ErrorFormatter << '"' << Symbol << '"'; 10383 report_fatal_error(Twine(ErrorFormatter.str())); 10384 } 10385 10386 //===----------------------------------------------------------------------===// 10387 // SDNode Class 10388 //===----------------------------------------------------------------------===// 10389 10390 bool llvm::isNullConstant(SDValue V) { 10391 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10392 return Const != nullptr && Const->isZero(); 10393 } 10394 10395 bool llvm::isNullFPConstant(SDValue V) { 10396 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10397 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10398 } 10399 10400 bool llvm::isAllOnesConstant(SDValue V) { 10401 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10402 return Const != nullptr && Const->isAllOnes(); 10403 } 10404 10405 bool llvm::isOneConstant(SDValue V) { 10406 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10407 return Const != nullptr && Const->isOne(); 10408 } 10409 10410 bool llvm::isMinSignedConstant(SDValue V) { 10411 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10412 return Const != nullptr && Const->isMinSignedValue(); 10413 } 10414 10415 SDValue llvm::peekThroughBitcasts(SDValue V) { 10416 while (V.getOpcode() == ISD::BITCAST) 10417 V = V.getOperand(0); 10418 return V; 10419 } 10420 10421 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10422 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10423 V = V.getOperand(0); 10424 return V; 10425 } 10426 10427 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10428 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10429 V = V.getOperand(0); 10430 return V; 10431 } 10432 10433 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10434 if (V.getOpcode() != ISD::XOR) 10435 return false; 10436 V = peekThroughBitcasts(V.getOperand(1)); 10437 unsigned NumBits = V.getScalarValueSizeInBits(); 10438 ConstantSDNode *C = 10439 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10440 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10441 } 10442 10443 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10444 bool AllowTruncation) { 10445 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10446 return CN; 10447 10448 // SplatVectors can truncate their operands. Ignore that case here unless 10449 // AllowTruncation is set. 10450 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10451 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10452 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10453 EVT CVT = CN->getValueType(0); 10454 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10455 if (AllowTruncation || CVT == VecEltVT) 10456 return CN; 10457 } 10458 } 10459 10460 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10461 BitVector UndefElements; 10462 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10463 10464 // BuildVectors can truncate their operands. Ignore that case here unless 10465 // AllowTruncation is set. 10466 if (CN && (UndefElements.none() || AllowUndefs)) { 10467 EVT CVT = CN->getValueType(0); 10468 EVT NSVT = N.getValueType().getScalarType(); 10469 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10470 if (AllowTruncation || (CVT == NSVT)) 10471 return CN; 10472 } 10473 } 10474 10475 return nullptr; 10476 } 10477 10478 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10479 bool AllowUndefs, 10480 bool AllowTruncation) { 10481 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10482 return CN; 10483 10484 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10485 BitVector UndefElements; 10486 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10487 10488 // BuildVectors can truncate their operands. Ignore that case here unless 10489 // AllowTruncation is set. 10490 if (CN && (UndefElements.none() || AllowUndefs)) { 10491 EVT CVT = CN->getValueType(0); 10492 EVT NSVT = N.getValueType().getScalarType(); 10493 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10494 if (AllowTruncation || (CVT == NSVT)) 10495 return CN; 10496 } 10497 } 10498 10499 return nullptr; 10500 } 10501 10502 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10503 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10504 return CN; 10505 10506 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10507 BitVector UndefElements; 10508 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10509 if (CN && (UndefElements.none() || AllowUndefs)) 10510 return CN; 10511 } 10512 10513 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10514 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10515 return CN; 10516 10517 return nullptr; 10518 } 10519 10520 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10521 const APInt &DemandedElts, 10522 bool AllowUndefs) { 10523 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10524 return CN; 10525 10526 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10527 BitVector UndefElements; 10528 ConstantFPSDNode *CN = 10529 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10530 if (CN && (UndefElements.none() || AllowUndefs)) 10531 return CN; 10532 } 10533 10534 return nullptr; 10535 } 10536 10537 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10538 // TODO: may want to use peekThroughBitcast() here. 10539 ConstantSDNode *C = 10540 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10541 return C && C->isZero(); 10542 } 10543 10544 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10545 // TODO: may want to use peekThroughBitcast() here. 10546 unsigned BitWidth = N.getScalarValueSizeInBits(); 10547 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10548 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10549 } 10550 10551 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10552 N = peekThroughBitcasts(N); 10553 unsigned BitWidth = N.getScalarValueSizeInBits(); 10554 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10555 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10556 } 10557 10558 HandleSDNode::~HandleSDNode() { 10559 DropOperands(); 10560 } 10561 10562 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10563 const DebugLoc &DL, 10564 const GlobalValue *GA, EVT VT, 10565 int64_t o, unsigned TF) 10566 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10567 TheGlobal = GA; 10568 } 10569 10570 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10571 EVT VT, unsigned SrcAS, 10572 unsigned DestAS) 10573 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10574 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10575 10576 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10577 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10578 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10579 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10580 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10581 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10582 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10583 10584 // We check here that the size of the memory operand fits within the size of 10585 // the MMO. This is because the MMO might indicate only a possible address 10586 // range instead of specifying the affected memory addresses precisely. 10587 // TODO: Make MachineMemOperands aware of scalable vectors. 10588 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10589 "Size mismatch!"); 10590 } 10591 10592 /// Profile - Gather unique data for the node. 10593 /// 10594 void SDNode::Profile(FoldingSetNodeID &ID) const { 10595 AddNodeIDNode(ID, this); 10596 } 10597 10598 namespace { 10599 10600 struct EVTArray { 10601 std::vector<EVT> VTs; 10602 10603 EVTArray() { 10604 VTs.reserve(MVT::VALUETYPE_SIZE); 10605 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10606 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10607 } 10608 }; 10609 10610 } // end anonymous namespace 10611 10612 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10613 static ManagedStatic<EVTArray> SimpleVTArray; 10614 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10615 10616 /// getValueTypeList - Return a pointer to the specified value type. 10617 /// 10618 const EVT *SDNode::getValueTypeList(EVT VT) { 10619 if (VT.isExtended()) { 10620 sys::SmartScopedLock<true> Lock(*VTMutex); 10621 return &(*EVTs->insert(VT).first); 10622 } 10623 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10624 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10625 } 10626 10627 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10628 /// indicated value. This method ignores uses of other values defined by this 10629 /// operation. 10630 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10631 assert(Value < getNumValues() && "Bad value!"); 10632 10633 // TODO: Only iterate over uses of a given value of the node 10634 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10635 if (UI.getUse().getResNo() == Value) { 10636 if (NUses == 0) 10637 return false; 10638 --NUses; 10639 } 10640 } 10641 10642 // Found exactly the right number of uses? 10643 return NUses == 0; 10644 } 10645 10646 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10647 /// value. This method ignores uses of other values defined by this operation. 10648 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10649 assert(Value < getNumValues() && "Bad value!"); 10650 10651 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10652 if (UI.getUse().getResNo() == Value) 10653 return true; 10654 10655 return false; 10656 } 10657 10658 /// isOnlyUserOf - Return true if this node is the only use of N. 10659 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10660 bool Seen = false; 10661 for (const SDNode *User : N->uses()) { 10662 if (User == this) 10663 Seen = true; 10664 else 10665 return false; 10666 } 10667 10668 return Seen; 10669 } 10670 10671 /// Return true if the only users of N are contained in Nodes. 10672 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10673 bool Seen = false; 10674 for (const SDNode *User : N->uses()) { 10675 if (llvm::is_contained(Nodes, User)) 10676 Seen = true; 10677 else 10678 return false; 10679 } 10680 10681 return Seen; 10682 } 10683 10684 /// isOperand - Return true if this node is an operand of N. 10685 bool SDValue::isOperandOf(const SDNode *N) const { 10686 return is_contained(N->op_values(), *this); 10687 } 10688 10689 bool SDNode::isOperandOf(const SDNode *N) const { 10690 return any_of(N->op_values(), 10691 [this](SDValue Op) { return this == Op.getNode(); }); 10692 } 10693 10694 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10695 /// be a chain) reaches the specified operand without crossing any 10696 /// side-effecting instructions on any chain path. In practice, this looks 10697 /// through token factors and non-volatile loads. In order to remain efficient, 10698 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10699 /// 10700 /// Note that we only need to examine chains when we're searching for 10701 /// side-effects; SelectionDAG requires that all side-effects are represented 10702 /// by chains, even if another operand would force a specific ordering. This 10703 /// constraint is necessary to allow transformations like splitting loads. 10704 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10705 unsigned Depth) const { 10706 if (*this == Dest) return true; 10707 10708 // Don't search too deeply, we just want to be able to see through 10709 // TokenFactor's etc. 10710 if (Depth == 0) return false; 10711 10712 // If this is a token factor, all inputs to the TF happen in parallel. 10713 if (getOpcode() == ISD::TokenFactor) { 10714 // First, try a shallow search. 10715 if (is_contained((*this)->ops(), Dest)) { 10716 // We found the chain we want as an operand of this TokenFactor. 10717 // Essentially, we reach the chain without side-effects if we could 10718 // serialize the TokenFactor into a simple chain of operations with 10719 // Dest as the last operation. This is automatically true if the 10720 // chain has one use: there are no other ordering constraints. 10721 // If the chain has more than one use, we give up: some other 10722 // use of Dest might force a side-effect between Dest and the current 10723 // node. 10724 if (Dest.hasOneUse()) 10725 return true; 10726 } 10727 // Next, try a deep search: check whether every operand of the TokenFactor 10728 // reaches Dest. 10729 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10730 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10731 }); 10732 } 10733 10734 // Loads don't have side effects, look through them. 10735 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10736 if (Ld->isUnordered()) 10737 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10738 } 10739 return false; 10740 } 10741 10742 bool SDNode::hasPredecessor(const SDNode *N) const { 10743 SmallPtrSet<const SDNode *, 32> Visited; 10744 SmallVector<const SDNode *, 16> Worklist; 10745 Worklist.push_back(this); 10746 return hasPredecessorHelper(N, Visited, Worklist); 10747 } 10748 10749 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10750 this->Flags.intersectWith(Flags); 10751 } 10752 10753 SDValue 10754 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10755 ArrayRef<ISD::NodeType> CandidateBinOps, 10756 bool AllowPartials) { 10757 // The pattern must end in an extract from index 0. 10758 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10759 !isNullConstant(Extract->getOperand(1))) 10760 return SDValue(); 10761 10762 // Match against one of the candidate binary ops. 10763 SDValue Op = Extract->getOperand(0); 10764 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10765 return Op.getOpcode() == unsigned(BinOp); 10766 })) 10767 return SDValue(); 10768 10769 // Floating-point reductions may require relaxed constraints on the final step 10770 // of the reduction because they may reorder intermediate operations. 10771 unsigned CandidateBinOp = Op.getOpcode(); 10772 if (Op.getValueType().isFloatingPoint()) { 10773 SDNodeFlags Flags = Op->getFlags(); 10774 switch (CandidateBinOp) { 10775 case ISD::FADD: 10776 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10777 return SDValue(); 10778 break; 10779 default: 10780 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10781 } 10782 } 10783 10784 // Matching failed - attempt to see if we did enough stages that a partial 10785 // reduction from a subvector is possible. 10786 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10787 if (!AllowPartials || !Op) 10788 return SDValue(); 10789 EVT OpVT = Op.getValueType(); 10790 EVT OpSVT = OpVT.getScalarType(); 10791 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10792 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10793 return SDValue(); 10794 BinOp = (ISD::NodeType)CandidateBinOp; 10795 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10796 getVectorIdxConstant(0, SDLoc(Op))); 10797 }; 10798 10799 // At each stage, we're looking for something that looks like: 10800 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10801 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10802 // i32 undef, i32 undef, i32 undef, i32 undef> 10803 // %a = binop <8 x i32> %op, %s 10804 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10805 // we expect something like: 10806 // <4,5,6,7,u,u,u,u> 10807 // <2,3,u,u,u,u,u,u> 10808 // <1,u,u,u,u,u,u,u> 10809 // While a partial reduction match would be: 10810 // <2,3,u,u,u,u,u,u> 10811 // <1,u,u,u,u,u,u,u> 10812 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10813 SDValue PrevOp; 10814 for (unsigned i = 0; i < Stages; ++i) { 10815 unsigned MaskEnd = (1 << i); 10816 10817 if (Op.getOpcode() != CandidateBinOp) 10818 return PartialReduction(PrevOp, MaskEnd); 10819 10820 SDValue Op0 = Op.getOperand(0); 10821 SDValue Op1 = Op.getOperand(1); 10822 10823 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10824 if (Shuffle) { 10825 Op = Op1; 10826 } else { 10827 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10828 Op = Op0; 10829 } 10830 10831 // The first operand of the shuffle should be the same as the other operand 10832 // of the binop. 10833 if (!Shuffle || Shuffle->getOperand(0) != Op) 10834 return PartialReduction(PrevOp, MaskEnd); 10835 10836 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10837 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10838 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10839 return PartialReduction(PrevOp, MaskEnd); 10840 10841 PrevOp = Op; 10842 } 10843 10844 // Handle subvector reductions, which tend to appear after the shuffle 10845 // reduction stages. 10846 while (Op.getOpcode() == CandidateBinOp) { 10847 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10848 SDValue Op0 = Op.getOperand(0); 10849 SDValue Op1 = Op.getOperand(1); 10850 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10851 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10852 Op0.getOperand(0) != Op1.getOperand(0)) 10853 break; 10854 SDValue Src = Op0.getOperand(0); 10855 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10856 if (NumSrcElts != (2 * NumElts)) 10857 break; 10858 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10859 Op1.getConstantOperandAPInt(1) == NumElts) && 10860 !(Op1.getConstantOperandAPInt(1) == 0 && 10861 Op0.getConstantOperandAPInt(1) == NumElts)) 10862 break; 10863 Op = Src; 10864 } 10865 10866 BinOp = (ISD::NodeType)CandidateBinOp; 10867 return Op; 10868 } 10869 10870 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10871 assert(N->getNumValues() == 1 && 10872 "Can't unroll a vector with multiple results!"); 10873 10874 EVT VT = N->getValueType(0); 10875 unsigned NE = VT.getVectorNumElements(); 10876 EVT EltVT = VT.getVectorElementType(); 10877 SDLoc dl(N); 10878 10879 SmallVector<SDValue, 8> Scalars; 10880 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10881 10882 // If ResNE is 0, fully unroll the vector op. 10883 if (ResNE == 0) 10884 ResNE = NE; 10885 else if (NE > ResNE) 10886 NE = ResNE; 10887 10888 unsigned i; 10889 for (i= 0; i != NE; ++i) { 10890 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10891 SDValue Operand = N->getOperand(j); 10892 EVT OperandVT = Operand.getValueType(); 10893 if (OperandVT.isVector()) { 10894 // A vector operand; extract a single element. 10895 EVT OperandEltVT = OperandVT.getVectorElementType(); 10896 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10897 Operand, getVectorIdxConstant(i, dl)); 10898 } else { 10899 // A scalar operand; just use it as is. 10900 Operands[j] = Operand; 10901 } 10902 } 10903 10904 switch (N->getOpcode()) { 10905 default: { 10906 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10907 N->getFlags())); 10908 break; 10909 } 10910 case ISD::VSELECT: 10911 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10912 break; 10913 case ISD::SHL: 10914 case ISD::SRA: 10915 case ISD::SRL: 10916 case ISD::ROTL: 10917 case ISD::ROTR: 10918 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10919 getShiftAmountOperand(Operands[0].getValueType(), 10920 Operands[1]))); 10921 break; 10922 case ISD::SIGN_EXTEND_INREG: { 10923 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10924 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10925 Operands[0], 10926 getValueType(ExtVT))); 10927 } 10928 } 10929 } 10930 10931 for (; i < ResNE; ++i) 10932 Scalars.push_back(getUNDEF(EltVT)); 10933 10934 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10935 return getBuildVector(VecVT, dl, Scalars); 10936 } 10937 10938 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10939 SDNode *N, unsigned ResNE) { 10940 unsigned Opcode = N->getOpcode(); 10941 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10942 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10943 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10944 "Expected an overflow opcode"); 10945 10946 EVT ResVT = N->getValueType(0); 10947 EVT OvVT = N->getValueType(1); 10948 EVT ResEltVT = ResVT.getVectorElementType(); 10949 EVT OvEltVT = OvVT.getVectorElementType(); 10950 SDLoc dl(N); 10951 10952 // If ResNE is 0, fully unroll the vector op. 10953 unsigned NE = ResVT.getVectorNumElements(); 10954 if (ResNE == 0) 10955 ResNE = NE; 10956 else if (NE > ResNE) 10957 NE = ResNE; 10958 10959 SmallVector<SDValue, 8> LHSScalars; 10960 SmallVector<SDValue, 8> RHSScalars; 10961 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10962 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10963 10964 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10965 SDVTList VTs = getVTList(ResEltVT, SVT); 10966 SmallVector<SDValue, 8> ResScalars; 10967 SmallVector<SDValue, 8> OvScalars; 10968 for (unsigned i = 0; i < NE; ++i) { 10969 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10970 SDValue Ov = 10971 getSelect(dl, OvEltVT, Res.getValue(1), 10972 getBoolConstant(true, dl, OvEltVT, ResVT), 10973 getConstant(0, dl, OvEltVT)); 10974 10975 ResScalars.push_back(Res); 10976 OvScalars.push_back(Ov); 10977 } 10978 10979 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10980 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10981 10982 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10983 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10984 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10985 getBuildVector(NewOvVT, dl, OvScalars)); 10986 } 10987 10988 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10989 LoadSDNode *Base, 10990 unsigned Bytes, 10991 int Dist) const { 10992 if (LD->isVolatile() || Base->isVolatile()) 10993 return false; 10994 // TODO: probably too restrictive for atomics, revisit 10995 if (!LD->isSimple()) 10996 return false; 10997 if (LD->isIndexed() || Base->isIndexed()) 10998 return false; 10999 if (LD->getChain() != Base->getChain()) 11000 return false; 11001 EVT VT = LD->getValueType(0); 11002 if (VT.getSizeInBits() / 8 != Bytes) 11003 return false; 11004 11005 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11006 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11007 11008 int64_t Offset = 0; 11009 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11010 return (Dist * Bytes == Offset); 11011 return false; 11012 } 11013 11014 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11015 /// if it cannot be inferred. 11016 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11017 // If this is a GlobalAddress + cst, return the alignment. 11018 const GlobalValue *GV = nullptr; 11019 int64_t GVOffset = 0; 11020 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11021 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11022 KnownBits Known(PtrWidth); 11023 llvm::computeKnownBits(GV, Known, getDataLayout()); 11024 unsigned AlignBits = Known.countMinTrailingZeros(); 11025 if (AlignBits) 11026 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11027 } 11028 11029 // If this is a direct reference to a stack slot, use information about the 11030 // stack slot's alignment. 11031 int FrameIdx = INT_MIN; 11032 int64_t FrameOffset = 0; 11033 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11034 FrameIdx = FI->getIndex(); 11035 } else if (isBaseWithConstantOffset(Ptr) && 11036 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11037 // Handle FI+Cst 11038 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11039 FrameOffset = Ptr.getConstantOperandVal(1); 11040 } 11041 11042 if (FrameIdx != INT_MIN) { 11043 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11044 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11045 } 11046 11047 return None; 11048 } 11049 11050 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11051 /// which is split (or expanded) into two not necessarily identical pieces. 11052 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11053 // Currently all types are split in half. 11054 EVT LoVT, HiVT; 11055 if (!VT.isVector()) 11056 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11057 else 11058 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11059 11060 return std::make_pair(LoVT, HiVT); 11061 } 11062 11063 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11064 /// type, dependent on an enveloping VT that has been split into two identical 11065 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11066 std::pair<EVT, EVT> 11067 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11068 bool *HiIsEmpty) const { 11069 EVT EltTp = VT.getVectorElementType(); 11070 // Examples: 11071 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11072 // custom VL=9 with enveloping VL=8/8 yields 8/1 11073 // custom VL=10 with enveloping VL=8/8 yields 8/2 11074 // etc. 11075 ElementCount VTNumElts = VT.getVectorElementCount(); 11076 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11077 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11078 "Mixing fixed width and scalable vectors when enveloping a type"); 11079 EVT LoVT, HiVT; 11080 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11081 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11082 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11083 *HiIsEmpty = false; 11084 } else { 11085 // Flag that hi type has zero storage size, but return split envelop type 11086 // (this would be easier if vector types with zero elements were allowed). 11087 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11088 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11089 *HiIsEmpty = true; 11090 } 11091 return std::make_pair(LoVT, HiVT); 11092 } 11093 11094 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11095 /// low/high part. 11096 std::pair<SDValue, SDValue> 11097 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11098 const EVT &HiVT) { 11099 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11100 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11101 "Splitting vector with an invalid mixture of fixed and scalable " 11102 "vector types"); 11103 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11104 N.getValueType().getVectorMinNumElements() && 11105 "More vector elements requested than available!"); 11106 SDValue Lo, Hi; 11107 Lo = 11108 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11109 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11110 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11111 // IDX with the runtime scaling factor of the result vector type. For 11112 // fixed-width result vectors, that runtime scaling factor is 1. 11113 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11114 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11115 return std::make_pair(Lo, Hi); 11116 } 11117 11118 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11119 const SDLoc &DL) { 11120 // Split the vector length parameter. 11121 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11122 EVT VT = N.getValueType(); 11123 assert(VecVT.getVectorElementCount().isKnownEven() && 11124 "Expecting the mask to be an evenly-sized vector"); 11125 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11126 SDValue HalfNumElts = 11127 VecVT.isFixedLengthVector() 11128 ? getConstant(HalfMinNumElts, DL, VT) 11129 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11130 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11131 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11132 return std::make_pair(Lo, Hi); 11133 } 11134 11135 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11136 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11137 EVT VT = N.getValueType(); 11138 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11139 NextPowerOf2(VT.getVectorNumElements())); 11140 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11141 getVectorIdxConstant(0, DL)); 11142 } 11143 11144 void SelectionDAG::ExtractVectorElements(SDValue Op, 11145 SmallVectorImpl<SDValue> &Args, 11146 unsigned Start, unsigned Count, 11147 EVT EltVT) { 11148 EVT VT = Op.getValueType(); 11149 if (Count == 0) 11150 Count = VT.getVectorNumElements(); 11151 if (EltVT == EVT()) 11152 EltVT = VT.getVectorElementType(); 11153 SDLoc SL(Op); 11154 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11155 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11156 getVectorIdxConstant(i, SL))); 11157 } 11158 } 11159 11160 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11161 unsigned GlobalAddressSDNode::getAddressSpace() const { 11162 return getGlobal()->getType()->getAddressSpace(); 11163 } 11164 11165 Type *ConstantPoolSDNode::getType() const { 11166 if (isMachineConstantPoolEntry()) 11167 return Val.MachineCPVal->getType(); 11168 return Val.ConstVal->getType(); 11169 } 11170 11171 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11172 unsigned &SplatBitSize, 11173 bool &HasAnyUndefs, 11174 unsigned MinSplatBits, 11175 bool IsBigEndian) const { 11176 EVT VT = getValueType(0); 11177 assert(VT.isVector() && "Expected a vector type"); 11178 unsigned VecWidth = VT.getSizeInBits(); 11179 if (MinSplatBits > VecWidth) 11180 return false; 11181 11182 // FIXME: The widths are based on this node's type, but build vectors can 11183 // truncate their operands. 11184 SplatValue = APInt(VecWidth, 0); 11185 SplatUndef = APInt(VecWidth, 0); 11186 11187 // Get the bits. Bits with undefined values (when the corresponding element 11188 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11189 // in SplatValue. If any of the values are not constant, give up and return 11190 // false. 11191 unsigned int NumOps = getNumOperands(); 11192 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11193 unsigned EltWidth = VT.getScalarSizeInBits(); 11194 11195 for (unsigned j = 0; j < NumOps; ++j) { 11196 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11197 SDValue OpVal = getOperand(i); 11198 unsigned BitPos = j * EltWidth; 11199 11200 if (OpVal.isUndef()) 11201 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11202 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11203 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11204 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11205 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11206 else 11207 return false; 11208 } 11209 11210 // The build_vector is all constants or undefs. Find the smallest element 11211 // size that splats the vector. 11212 HasAnyUndefs = (SplatUndef != 0); 11213 11214 // FIXME: This does not work for vectors with elements less than 8 bits. 11215 while (VecWidth > 8) { 11216 unsigned HalfSize = VecWidth / 2; 11217 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11218 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11219 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11220 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11221 11222 // If the two halves do not match (ignoring undef bits), stop here. 11223 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11224 MinSplatBits > HalfSize) 11225 break; 11226 11227 SplatValue = HighValue | LowValue; 11228 SplatUndef = HighUndef & LowUndef; 11229 11230 VecWidth = HalfSize; 11231 } 11232 11233 SplatBitSize = VecWidth; 11234 return true; 11235 } 11236 11237 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11238 BitVector *UndefElements) const { 11239 unsigned NumOps = getNumOperands(); 11240 if (UndefElements) { 11241 UndefElements->clear(); 11242 UndefElements->resize(NumOps); 11243 } 11244 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11245 if (!DemandedElts) 11246 return SDValue(); 11247 SDValue Splatted; 11248 for (unsigned i = 0; i != NumOps; ++i) { 11249 if (!DemandedElts[i]) 11250 continue; 11251 SDValue Op = getOperand(i); 11252 if (Op.isUndef()) { 11253 if (UndefElements) 11254 (*UndefElements)[i] = true; 11255 } else if (!Splatted) { 11256 Splatted = Op; 11257 } else if (Splatted != Op) { 11258 return SDValue(); 11259 } 11260 } 11261 11262 if (!Splatted) { 11263 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11264 assert(getOperand(FirstDemandedIdx).isUndef() && 11265 "Can only have a splat without a constant for all undefs."); 11266 return getOperand(FirstDemandedIdx); 11267 } 11268 11269 return Splatted; 11270 } 11271 11272 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11273 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11274 return getSplatValue(DemandedElts, UndefElements); 11275 } 11276 11277 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11278 SmallVectorImpl<SDValue> &Sequence, 11279 BitVector *UndefElements) const { 11280 unsigned NumOps = getNumOperands(); 11281 Sequence.clear(); 11282 if (UndefElements) { 11283 UndefElements->clear(); 11284 UndefElements->resize(NumOps); 11285 } 11286 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11287 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11288 return false; 11289 11290 // Set the undefs even if we don't find a sequence (like getSplatValue). 11291 if (UndefElements) 11292 for (unsigned I = 0; I != NumOps; ++I) 11293 if (DemandedElts[I] && getOperand(I).isUndef()) 11294 (*UndefElements)[I] = true; 11295 11296 // Iteratively widen the sequence length looking for repetitions. 11297 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11298 Sequence.append(SeqLen, SDValue()); 11299 for (unsigned I = 0; I != NumOps; ++I) { 11300 if (!DemandedElts[I]) 11301 continue; 11302 SDValue &SeqOp = Sequence[I % SeqLen]; 11303 SDValue Op = getOperand(I); 11304 if (Op.isUndef()) { 11305 if (!SeqOp) 11306 SeqOp = Op; 11307 continue; 11308 } 11309 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11310 Sequence.clear(); 11311 break; 11312 } 11313 SeqOp = Op; 11314 } 11315 if (!Sequence.empty()) 11316 return true; 11317 } 11318 11319 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11320 return false; 11321 } 11322 11323 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11324 BitVector *UndefElements) const { 11325 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11326 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11327 } 11328 11329 ConstantSDNode * 11330 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11331 BitVector *UndefElements) const { 11332 return dyn_cast_or_null<ConstantSDNode>( 11333 getSplatValue(DemandedElts, UndefElements)); 11334 } 11335 11336 ConstantSDNode * 11337 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11338 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11339 } 11340 11341 ConstantFPSDNode * 11342 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11343 BitVector *UndefElements) const { 11344 return dyn_cast_or_null<ConstantFPSDNode>( 11345 getSplatValue(DemandedElts, UndefElements)); 11346 } 11347 11348 ConstantFPSDNode * 11349 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11350 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11351 } 11352 11353 int32_t 11354 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11355 uint32_t BitWidth) const { 11356 if (ConstantFPSDNode *CN = 11357 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11358 bool IsExact; 11359 APSInt IntVal(BitWidth); 11360 const APFloat &APF = CN->getValueAPF(); 11361 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11362 APFloat::opOK || 11363 !IsExact) 11364 return -1; 11365 11366 return IntVal.exactLogBase2(); 11367 } 11368 return -1; 11369 } 11370 11371 bool BuildVectorSDNode::getConstantRawBits( 11372 bool IsLittleEndian, unsigned DstEltSizeInBits, 11373 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11374 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11375 if (!isConstant()) 11376 return false; 11377 11378 unsigned NumSrcOps = getNumOperands(); 11379 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11380 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11381 "Invalid bitcast scale"); 11382 11383 // Extract raw src bits. 11384 SmallVector<APInt> SrcBitElements(NumSrcOps, 11385 APInt::getNullValue(SrcEltSizeInBits)); 11386 BitVector SrcUndeElements(NumSrcOps, false); 11387 11388 for (unsigned I = 0; I != NumSrcOps; ++I) { 11389 SDValue Op = getOperand(I); 11390 if (Op.isUndef()) { 11391 SrcUndeElements.set(I); 11392 continue; 11393 } 11394 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11395 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11396 assert((CInt || CFP) && "Unknown constant"); 11397 SrcBitElements[I] = 11398 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 11399 : CFP->getValueAPF().bitcastToAPInt(); 11400 } 11401 11402 // Recast to dst width. 11403 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11404 SrcBitElements, UndefElements, SrcUndeElements); 11405 return true; 11406 } 11407 11408 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11409 unsigned DstEltSizeInBits, 11410 SmallVectorImpl<APInt> &DstBitElements, 11411 ArrayRef<APInt> SrcBitElements, 11412 BitVector &DstUndefElements, 11413 const BitVector &SrcUndefElements) { 11414 unsigned NumSrcOps = SrcBitElements.size(); 11415 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11416 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11417 "Invalid bitcast scale"); 11418 assert(NumSrcOps == SrcUndefElements.size() && 11419 "Vector size mismatch"); 11420 11421 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11422 DstUndefElements.clear(); 11423 DstUndefElements.resize(NumDstOps, false); 11424 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11425 11426 // Concatenate src elements constant bits together into dst element. 11427 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11428 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11429 for (unsigned I = 0; I != NumDstOps; ++I) { 11430 DstUndefElements.set(I); 11431 APInt &DstBits = DstBitElements[I]; 11432 for (unsigned J = 0; J != Scale; ++J) { 11433 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11434 if (SrcUndefElements[Idx]) 11435 continue; 11436 DstUndefElements.reset(I); 11437 const APInt &SrcBits = SrcBitElements[Idx]; 11438 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11439 "Illegal constant bitwidths"); 11440 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11441 } 11442 } 11443 return; 11444 } 11445 11446 // Split src element constant bits into dst elements. 11447 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11448 for (unsigned I = 0; I != NumSrcOps; ++I) { 11449 if (SrcUndefElements[I]) { 11450 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11451 continue; 11452 } 11453 const APInt &SrcBits = SrcBitElements[I]; 11454 for (unsigned J = 0; J != Scale; ++J) { 11455 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11456 APInt &DstBits = DstBitElements[Idx]; 11457 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11458 } 11459 } 11460 } 11461 11462 bool BuildVectorSDNode::isConstant() const { 11463 for (const SDValue &Op : op_values()) { 11464 unsigned Opc = Op.getOpcode(); 11465 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11466 return false; 11467 } 11468 return true; 11469 } 11470 11471 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11472 // Find the first non-undef value in the shuffle mask. 11473 unsigned i, e; 11474 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11475 /* search */; 11476 11477 // If all elements are undefined, this shuffle can be considered a splat 11478 // (although it should eventually get simplified away completely). 11479 if (i == e) 11480 return true; 11481 11482 // Make sure all remaining elements are either undef or the same as the first 11483 // non-undef value. 11484 for (int Idx = Mask[i]; i != e; ++i) 11485 if (Mask[i] >= 0 && Mask[i] != Idx) 11486 return false; 11487 return true; 11488 } 11489 11490 // Returns the SDNode if it is a constant integer BuildVector 11491 // or constant integer. 11492 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11493 if (isa<ConstantSDNode>(N)) 11494 return N.getNode(); 11495 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11496 return N.getNode(); 11497 // Treat a GlobalAddress supporting constant offset folding as a 11498 // constant integer. 11499 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11500 if (GA->getOpcode() == ISD::GlobalAddress && 11501 TLI->isOffsetFoldingLegal(GA)) 11502 return GA; 11503 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11504 isa<ConstantSDNode>(N.getOperand(0))) 11505 return N.getNode(); 11506 return nullptr; 11507 } 11508 11509 // Returns the SDNode if it is a constant float BuildVector 11510 // or constant float. 11511 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11512 if (isa<ConstantFPSDNode>(N)) 11513 return N.getNode(); 11514 11515 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11516 return N.getNode(); 11517 11518 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11519 isa<ConstantFPSDNode>(N.getOperand(0))) 11520 return N.getNode(); 11521 11522 return nullptr; 11523 } 11524 11525 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11526 assert(!Node->OperandList && "Node already has operands"); 11527 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11528 "too many operands to fit into SDNode"); 11529 SDUse *Ops = OperandRecycler.allocate( 11530 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11531 11532 bool IsDivergent = false; 11533 for (unsigned I = 0; I != Vals.size(); ++I) { 11534 Ops[I].setUser(Node); 11535 Ops[I].setInitial(Vals[I]); 11536 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11537 IsDivergent |= Ops[I].getNode()->isDivergent(); 11538 } 11539 Node->NumOperands = Vals.size(); 11540 Node->OperandList = Ops; 11541 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11542 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11543 Node->SDNodeBits.IsDivergent = IsDivergent; 11544 } 11545 checkForCycles(Node); 11546 } 11547 11548 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11549 SmallVectorImpl<SDValue> &Vals) { 11550 size_t Limit = SDNode::getMaxNumOperands(); 11551 while (Vals.size() > Limit) { 11552 unsigned SliceIdx = Vals.size() - Limit; 11553 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11554 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11555 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11556 Vals.emplace_back(NewTF); 11557 } 11558 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11559 } 11560 11561 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11562 EVT VT, SDNodeFlags Flags) { 11563 switch (Opcode) { 11564 default: 11565 return SDValue(); 11566 case ISD::ADD: 11567 case ISD::OR: 11568 case ISD::XOR: 11569 case ISD::UMAX: 11570 return getConstant(0, DL, VT); 11571 case ISD::MUL: 11572 return getConstant(1, DL, VT); 11573 case ISD::AND: 11574 case ISD::UMIN: 11575 return getAllOnesConstant(DL, VT); 11576 case ISD::SMAX: 11577 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11578 case ISD::SMIN: 11579 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11580 case ISD::FADD: 11581 return getConstantFP(-0.0, DL, VT); 11582 case ISD::FMUL: 11583 return getConstantFP(1.0, DL, VT); 11584 case ISD::FMINNUM: 11585 case ISD::FMAXNUM: { 11586 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11587 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11588 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11589 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11590 APFloat::getLargest(Semantics); 11591 if (Opcode == ISD::FMAXNUM) 11592 NeutralAF.changeSign(); 11593 11594 return getConstantFP(NeutralAF, DL, VT); 11595 } 11596 } 11597 } 11598 11599 #ifndef NDEBUG 11600 static void checkForCyclesHelper(const SDNode *N, 11601 SmallPtrSetImpl<const SDNode*> &Visited, 11602 SmallPtrSetImpl<const SDNode*> &Checked, 11603 const llvm::SelectionDAG *DAG) { 11604 // If this node has already been checked, don't check it again. 11605 if (Checked.count(N)) 11606 return; 11607 11608 // If a node has already been visited on this depth-first walk, reject it as 11609 // a cycle. 11610 if (!Visited.insert(N).second) { 11611 errs() << "Detected cycle in SelectionDAG\n"; 11612 dbgs() << "Offending node:\n"; 11613 N->dumprFull(DAG); dbgs() << "\n"; 11614 abort(); 11615 } 11616 11617 for (const SDValue &Op : N->op_values()) 11618 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11619 11620 Checked.insert(N); 11621 Visited.erase(N); 11622 } 11623 #endif 11624 11625 void llvm::checkForCycles(const llvm::SDNode *N, 11626 const llvm::SelectionDAG *DAG, 11627 bool force) { 11628 #ifndef NDEBUG 11629 bool check = force; 11630 #ifdef EXPENSIVE_CHECKS 11631 check = true; 11632 #endif // EXPENSIVE_CHECKS 11633 if (check) { 11634 assert(N && "Checking nonexistent SDNode"); 11635 SmallPtrSet<const SDNode*, 32> visited; 11636 SmallPtrSet<const SDNode*, 32> checked; 11637 checkForCyclesHelper(N, visited, checked, DAG); 11638 } 11639 #endif // !NDEBUG 11640 } 11641 11642 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11643 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11644 } 11645