1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MachineValueType.h"
66 #include "llvm/Support/ManagedStatic.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88   SDVTList Res = {VTs, NumVTs};
89   return Res;
90 }
91 
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96 
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98 
99 #define DEBUG_TYPE "selectiondag"
100 
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102        cl::Hidden, cl::init(true),
103        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104 
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106        cl::desc("Number limit for gluing ld/st of memcpy."),
107        cl::Hidden, cl::init(0));
108 
109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                              ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116 
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122   return getValueAPF().bitwiseIsEqual(V);
123 }
124 
125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126                                            const APFloat& Val) {
127   assert(VT.isFloatingPoint() && "Can only convert between FP types");
128 
129   // convert modifies in place, so make a copy.
130   APFloat Val2 = APFloat(Val);
131   bool losesInfo;
132   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133                       APFloat::rmNearestTiesToEven,
134                       &losesInfo);
135   return !losesInfo;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 //                              ISD Namespace
140 //===----------------------------------------------------------------------===//
141 
142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
144     unsigned EltSize =
145         N->getValueType(0).getVectorElementType().getSizeInBits();
146     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
147       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
148       return true;
149     }
150     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
151       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
152       return true;
153     }
154   }
155 
156   auto *BV = dyn_cast<BuildVectorSDNode>(N);
157   if (!BV)
158     return false;
159 
160   APInt SplatUndef;
161   unsigned SplatBitSize;
162   bool HasUndefs;
163   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
164   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
165                              EltSize) &&
166          EltSize == SplatBitSize;
167 }
168 
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
171 
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
173   // Look through a bit convert.
174   while (N->getOpcode() == ISD::BITCAST)
175     N = N->getOperand(0).getNode();
176 
177   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
178     APInt SplatVal;
179     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
180   }
181 
182   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
183 
184   unsigned i = 0, e = N->getNumOperands();
185 
186   // Skip over all of the undef values.
187   while (i != e && N->getOperand(i).isUndef())
188     ++i;
189 
190   // Do not accept an all-undef vector.
191   if (i == e) return false;
192 
193   // Do not accept build_vectors that aren't all constants or which have non-~0
194   // elements. We have to be a bit careful here, as the type of the constant
195   // may not be the same as the type of the vector elements due to type
196   // legalization (the elements are promoted to a legal type for the target and
197   // a vector of a type may be legal when the base element type is not).
198   // We only want to check enough bits to cover the vector elements, because
199   // we care if the resultant vector is all ones, not whether the individual
200   // constants are.
201   SDValue NotZero = N->getOperand(i);
202   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
204     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
205       return false;
206   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
207     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
208       return false;
209   } else
210     return false;
211 
212   // Okay, we have at least one ~0 value, check to see if the rest match or are
213   // undefs. Even with the above element type twiddling, this should be OK, as
214   // the same type legalization should have applied to all the elements.
215   for (++i; i != e; ++i)
216     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
217       return false;
218   return true;
219 }
220 
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
222   // Look through a bit convert.
223   while (N->getOpcode() == ISD::BITCAST)
224     N = N->getOperand(0).getNode();
225 
226   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
227     APInt SplatVal;
228     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
229   }
230 
231   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
232 
233   bool IsAllUndef = true;
234   for (const SDValue &Op : N->op_values()) {
235     if (Op.isUndef())
236       continue;
237     IsAllUndef = false;
238     // Do not accept build_vectors that aren't all constants or which have non-0
239     // elements. We have to be a bit careful here, as the type of the constant
240     // may not be the same as the type of the vector elements due to type
241     // legalization (the elements are promoted to a legal type for the target
242     // and a vector of a type may be legal when the base element type is not).
243     // We only want to check enough bits to cover the vector elements, because
244     // we care if the resultant vector is all zeros, not whether the individual
245     // constants are.
246     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
247     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
248       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
249         return false;
250     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
251       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
252         return false;
253     } else
254       return false;
255   }
256 
257   // Do not accept an all-undef vector.
258   if (IsAllUndef)
259     return false;
260   return true;
261 }
262 
263 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
264   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
265 }
266 
267 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
268   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
269 }
270 
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
272   if (N->getOpcode() != ISD::BUILD_VECTOR)
273     return false;
274 
275   for (const SDValue &Op : N->op_values()) {
276     if (Op.isUndef())
277       continue;
278     if (!isa<ConstantSDNode>(Op))
279       return false;
280   }
281   return true;
282 }
283 
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
285   if (N->getOpcode() != ISD::BUILD_VECTOR)
286     return false;
287 
288   for (const SDValue &Op : N->op_values()) {
289     if (Op.isUndef())
290       continue;
291     if (!isa<ConstantFPSDNode>(Op))
292       return false;
293   }
294   return true;
295 }
296 
297 bool ISD::allOperandsUndef(const SDNode *N) {
298   // Return false if the node has no operands.
299   // This is "logically inconsistent" with the definition of "all" but
300   // is probably the desired behavior.
301   if (N->getNumOperands() == 0)
302     return false;
303   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
304 }
305 
306 bool ISD::matchUnaryPredicate(SDValue Op,
307                               std::function<bool(ConstantSDNode *)> Match,
308                               bool AllowUndefs) {
309   // FIXME: Add support for scalar UNDEF cases?
310   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
311     return Match(Cst);
312 
313   // FIXME: Add support for vector UNDEF cases?
314   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
315       ISD::SPLAT_VECTOR != Op.getOpcode())
316     return false;
317 
318   EVT SVT = Op.getValueType().getScalarType();
319   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
320     if (AllowUndefs && Op.getOperand(i).isUndef()) {
321       if (!Match(nullptr))
322         return false;
323       continue;
324     }
325 
326     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
327     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
328       return false;
329   }
330   return true;
331 }
332 
333 bool ISD::matchBinaryPredicate(
334     SDValue LHS, SDValue RHS,
335     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
336     bool AllowUndefs, bool AllowTypeMismatch) {
337   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
338     return false;
339 
340   // TODO: Add support for scalar UNDEF cases?
341   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
342     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
343       return Match(LHSCst, RHSCst);
344 
345   // TODO: Add support for vector UNDEF cases?
346   if (LHS.getOpcode() != RHS.getOpcode() ||
347       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
348        LHS.getOpcode() != ISD::SPLAT_VECTOR))
349     return false;
350 
351   EVT SVT = LHS.getValueType().getScalarType();
352   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
353     SDValue LHSOp = LHS.getOperand(i);
354     SDValue RHSOp = RHS.getOperand(i);
355     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
356     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
357     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
358     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
359     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
360       return false;
361     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
362                                LHSOp.getValueType() != RHSOp.getValueType()))
363       return false;
364     if (!Match(LHSCst, RHSCst))
365       return false;
366   }
367   return true;
368 }
369 
370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
371   switch (VecReduceOpcode) {
372   default:
373     llvm_unreachable("Expected VECREDUCE opcode");
374   case ISD::VECREDUCE_FADD:
375   case ISD::VECREDUCE_SEQ_FADD:
376   case ISD::VP_REDUCE_FADD:
377   case ISD::VP_REDUCE_SEQ_FADD:
378     return ISD::FADD;
379   case ISD::VECREDUCE_FMUL:
380   case ISD::VECREDUCE_SEQ_FMUL:
381   case ISD::VP_REDUCE_FMUL:
382   case ISD::VP_REDUCE_SEQ_FMUL:
383     return ISD::FMUL;
384   case ISD::VECREDUCE_ADD:
385   case ISD::VP_REDUCE_ADD:
386     return ISD::ADD;
387   case ISD::VECREDUCE_MUL:
388   case ISD::VP_REDUCE_MUL:
389     return ISD::MUL;
390   case ISD::VECREDUCE_AND:
391   case ISD::VP_REDUCE_AND:
392     return ISD::AND;
393   case ISD::VECREDUCE_OR:
394   case ISD::VP_REDUCE_OR:
395     return ISD::OR;
396   case ISD::VECREDUCE_XOR:
397   case ISD::VP_REDUCE_XOR:
398     return ISD::XOR;
399   case ISD::VECREDUCE_SMAX:
400   case ISD::VP_REDUCE_SMAX:
401     return ISD::SMAX;
402   case ISD::VECREDUCE_SMIN:
403   case ISD::VP_REDUCE_SMIN:
404     return ISD::SMIN;
405   case ISD::VECREDUCE_UMAX:
406   case ISD::VP_REDUCE_UMAX:
407     return ISD::UMAX;
408   case ISD::VECREDUCE_UMIN:
409   case ISD::VP_REDUCE_UMIN:
410     return ISD::UMIN;
411   case ISD::VECREDUCE_FMAX:
412   case ISD::VP_REDUCE_FMAX:
413     return ISD::FMAXNUM;
414   case ISD::VECREDUCE_FMIN:
415   case ISD::VP_REDUCE_FMIN:
416     return ISD::FMINNUM;
417   }
418 }
419 
420 bool ISD::isVPOpcode(unsigned Opcode) {
421   switch (Opcode) {
422   default:
423     return false;
424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
425   case ISD::VPSD:                                                              \
426     return true;
427 #include "llvm/IR/VPIntrinsics.def"
428   }
429 }
430 
431 bool ISD::isVPBinaryOp(unsigned Opcode) {
432   switch (Opcode) {
433   default:
434     break;
435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
436 #define VP_PROPERTY_BINARYOP return true;
437 #define END_REGISTER_VP_SDNODE(VPSD) break;
438 #include "llvm/IR/VPIntrinsics.def"
439   }
440   return false;
441 }
442 
443 bool ISD::isVPReduction(unsigned Opcode) {
444   switch (Opcode) {
445   default:
446     break;
447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
449 #define END_REGISTER_VP_SDNODE(VPSD) break;
450 #include "llvm/IR/VPIntrinsics.def"
451   }
452   return false;
453 }
454 
455 /// The operand position of the vector mask.
456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
457   switch (Opcode) {
458   default:
459     return None;
460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
461   case ISD::VPSD:                                                              \
462     return MASKPOS;
463 #include "llvm/IR/VPIntrinsics.def"
464   }
465 }
466 
467 /// The operand position of the explicit vector length parameter.
468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
469   switch (Opcode) {
470   default:
471     return None;
472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
473   case ISD::VPSD:                                                              \
474     return EVLPOS;
475 #include "llvm/IR/VPIntrinsics.def"
476   }
477 }
478 
479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
480   switch (ExtType) {
481   case ISD::EXTLOAD:
482     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
483   case ISD::SEXTLOAD:
484     return ISD::SIGN_EXTEND;
485   case ISD::ZEXTLOAD:
486     return ISD::ZERO_EXTEND;
487   default:
488     break;
489   }
490 
491   llvm_unreachable("Invalid LoadExtType");
492 }
493 
494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
495   // To perform this operation, we just need to swap the L and G bits of the
496   // operation.
497   unsigned OldL = (Operation >> 2) & 1;
498   unsigned OldG = (Operation >> 1) & 1;
499   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
500                        (OldL << 1) |       // New G bit
501                        (OldG << 2));       // New L bit.
502 }
503 
504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
505   unsigned Operation = Op;
506   if (isIntegerLike)
507     Operation ^= 7;   // Flip L, G, E bits, but not U.
508   else
509     Operation ^= 15;  // Flip all of the condition bits.
510 
511   if (Operation > ISD::SETTRUE2)
512     Operation &= ~8;  // Don't let N and U bits get set.
513 
514   return ISD::CondCode(Operation);
515 }
516 
517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
518   return getSetCCInverseImpl(Op, Type.isInteger());
519 }
520 
521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
522                                                bool isIntegerLike) {
523   return getSetCCInverseImpl(Op, isIntegerLike);
524 }
525 
526 /// For an integer comparison, return 1 if the comparison is a signed operation
527 /// and 2 if the result is an unsigned comparison. Return zero if the operation
528 /// does not depend on the sign of the input (setne and seteq).
529 static int isSignedOp(ISD::CondCode Opcode) {
530   switch (Opcode) {
531   default: llvm_unreachable("Illegal integer setcc operation!");
532   case ISD::SETEQ:
533   case ISD::SETNE: return 0;
534   case ISD::SETLT:
535   case ISD::SETLE:
536   case ISD::SETGT:
537   case ISD::SETGE: return 1;
538   case ISD::SETULT:
539   case ISD::SETULE:
540   case ISD::SETUGT:
541   case ISD::SETUGE: return 2;
542   }
543 }
544 
545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
546                                        EVT Type) {
547   bool IsInteger = Type.isInteger();
548   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
549     // Cannot fold a signed integer setcc with an unsigned integer setcc.
550     return ISD::SETCC_INVALID;
551 
552   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
553 
554   // If the N and U bits get set, then the resultant comparison DOES suddenly
555   // care about orderedness, and it is true when ordered.
556   if (Op > ISD::SETTRUE2)
557     Op &= ~16;     // Clear the U bit if the N bit is set.
558 
559   // Canonicalize illegal integer setcc's.
560   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
561     Op = ISD::SETNE;
562 
563   return ISD::CondCode(Op);
564 }
565 
566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
567                                         EVT Type) {
568   bool IsInteger = Type.isInteger();
569   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
570     // Cannot fold a signed setcc with an unsigned setcc.
571     return ISD::SETCC_INVALID;
572 
573   // Combine all of the condition bits.
574   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
575 
576   // Canonicalize illegal integer setcc's.
577   if (IsInteger) {
578     switch (Result) {
579     default: break;
580     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
581     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
582     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
583     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
584     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
585     }
586   }
587 
588   return Result;
589 }
590 
591 //===----------------------------------------------------------------------===//
592 //                           SDNode Profile Support
593 //===----------------------------------------------------------------------===//
594 
595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
597   ID.AddInteger(OpC);
598 }
599 
600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
601 /// solely with their pointer.
602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
603   ID.AddPointer(VTList.VTs);
604 }
605 
606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
607 static void AddNodeIDOperands(FoldingSetNodeID &ID,
608                               ArrayRef<SDValue> Ops) {
609   for (auto& Op : Ops) {
610     ID.AddPointer(Op.getNode());
611     ID.AddInteger(Op.getResNo());
612   }
613 }
614 
615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
616 static void AddNodeIDOperands(FoldingSetNodeID &ID,
617                               ArrayRef<SDUse> Ops) {
618   for (auto& Op : Ops) {
619     ID.AddPointer(Op.getNode());
620     ID.AddInteger(Op.getResNo());
621   }
622 }
623 
624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
625                           SDVTList VTList, ArrayRef<SDValue> OpList) {
626   AddNodeIDOpcode(ID, OpC);
627   AddNodeIDValueTypes(ID, VTList);
628   AddNodeIDOperands(ID, OpList);
629 }
630 
631 /// If this is an SDNode with special info, add this info to the NodeID data.
632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
633   switch (N->getOpcode()) {
634   case ISD::TargetExternalSymbol:
635   case ISD::ExternalSymbol:
636   case ISD::MCSymbol:
637     llvm_unreachable("Should only be used on nodes with operands");
638   default: break;  // Normal nodes don't need extra info.
639   case ISD::TargetConstant:
640   case ISD::Constant: {
641     const ConstantSDNode *C = cast<ConstantSDNode>(N);
642     ID.AddPointer(C->getConstantIntValue());
643     ID.AddBoolean(C->isOpaque());
644     break;
645   }
646   case ISD::TargetConstantFP:
647   case ISD::ConstantFP:
648     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
649     break;
650   case ISD::TargetGlobalAddress:
651   case ISD::GlobalAddress:
652   case ISD::TargetGlobalTLSAddress:
653   case ISD::GlobalTLSAddress: {
654     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
655     ID.AddPointer(GA->getGlobal());
656     ID.AddInteger(GA->getOffset());
657     ID.AddInteger(GA->getTargetFlags());
658     break;
659   }
660   case ISD::BasicBlock:
661     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
662     break;
663   case ISD::Register:
664     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
665     break;
666   case ISD::RegisterMask:
667     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
668     break;
669   case ISD::SRCVALUE:
670     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
671     break;
672   case ISD::FrameIndex:
673   case ISD::TargetFrameIndex:
674     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
675     break;
676   case ISD::LIFETIME_START:
677   case ISD::LIFETIME_END:
678     if (cast<LifetimeSDNode>(N)->hasOffset()) {
679       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
680       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
681     }
682     break;
683   case ISD::PSEUDO_PROBE:
684     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
685     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
686     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
687     break;
688   case ISD::JumpTable:
689   case ISD::TargetJumpTable:
690     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
691     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
692     break;
693   case ISD::ConstantPool:
694   case ISD::TargetConstantPool: {
695     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
696     ID.AddInteger(CP->getAlign().value());
697     ID.AddInteger(CP->getOffset());
698     if (CP->isMachineConstantPoolEntry())
699       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
700     else
701       ID.AddPointer(CP->getConstVal());
702     ID.AddInteger(CP->getTargetFlags());
703     break;
704   }
705   case ISD::TargetIndex: {
706     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
707     ID.AddInteger(TI->getIndex());
708     ID.AddInteger(TI->getOffset());
709     ID.AddInteger(TI->getTargetFlags());
710     break;
711   }
712   case ISD::LOAD: {
713     const LoadSDNode *LD = cast<LoadSDNode>(N);
714     ID.AddInteger(LD->getMemoryVT().getRawBits());
715     ID.AddInteger(LD->getRawSubclassData());
716     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
717     break;
718   }
719   case ISD::STORE: {
720     const StoreSDNode *ST = cast<StoreSDNode>(N);
721     ID.AddInteger(ST->getMemoryVT().getRawBits());
722     ID.AddInteger(ST->getRawSubclassData());
723     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
724     break;
725   }
726   case ISD::VP_LOAD: {
727     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
728     ID.AddInteger(ELD->getMemoryVT().getRawBits());
729     ID.AddInteger(ELD->getRawSubclassData());
730     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VP_GATHER: {
741     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
742     ID.AddInteger(EG->getMemoryVT().getRawBits());
743     ID.AddInteger(EG->getRawSubclassData());
744     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
745     break;
746   }
747   case ISD::VP_SCATTER: {
748     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
749     ID.AddInteger(ES->getMemoryVT().getRawBits());
750     ID.AddInteger(ES->getRawSubclassData());
751     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
752     break;
753   }
754   case ISD::MLOAD: {
755     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
756     ID.AddInteger(MLD->getMemoryVT().getRawBits());
757     ID.AddInteger(MLD->getRawSubclassData());
758     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
759     break;
760   }
761   case ISD::MSTORE: {
762     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
763     ID.AddInteger(MST->getMemoryVT().getRawBits());
764     ID.AddInteger(MST->getRawSubclassData());
765     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
766     break;
767   }
768   case ISD::MGATHER: {
769     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
770     ID.AddInteger(MG->getMemoryVT().getRawBits());
771     ID.AddInteger(MG->getRawSubclassData());
772     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
773     break;
774   }
775   case ISD::MSCATTER: {
776     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
777     ID.AddInteger(MS->getMemoryVT().getRawBits());
778     ID.AddInteger(MS->getRawSubclassData());
779     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
780     break;
781   }
782   case ISD::ATOMIC_CMP_SWAP:
783   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
784   case ISD::ATOMIC_SWAP:
785   case ISD::ATOMIC_LOAD_ADD:
786   case ISD::ATOMIC_LOAD_SUB:
787   case ISD::ATOMIC_LOAD_AND:
788   case ISD::ATOMIC_LOAD_CLR:
789   case ISD::ATOMIC_LOAD_OR:
790   case ISD::ATOMIC_LOAD_XOR:
791   case ISD::ATOMIC_LOAD_NAND:
792   case ISD::ATOMIC_LOAD_MIN:
793   case ISD::ATOMIC_LOAD_MAX:
794   case ISD::ATOMIC_LOAD_UMIN:
795   case ISD::ATOMIC_LOAD_UMAX:
796   case ISD::ATOMIC_LOAD:
797   case ISD::ATOMIC_STORE: {
798     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
799     ID.AddInteger(AT->getMemoryVT().getRawBits());
800     ID.AddInteger(AT->getRawSubclassData());
801     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
802     break;
803   }
804   case ISD::PREFETCH: {
805     const MemSDNode *PF = cast<MemSDNode>(N);
806     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
807     break;
808   }
809   case ISD::VECTOR_SHUFFLE: {
810     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
811     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
812          i != e; ++i)
813       ID.AddInteger(SVN->getMaskElt(i));
814     break;
815   }
816   case ISD::TargetBlockAddress:
817   case ISD::BlockAddress: {
818     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
819     ID.AddPointer(BA->getBlockAddress());
820     ID.AddInteger(BA->getOffset());
821     ID.AddInteger(BA->getTargetFlags());
822     break;
823   }
824   } // end switch (N->getOpcode())
825 
826   // Target specific memory nodes could also have address spaces to check.
827   if (N->isTargetMemoryOpcode())
828     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
829 }
830 
831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
832 /// data.
833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
834   AddNodeIDOpcode(ID, N->getOpcode());
835   // Add the return value info.
836   AddNodeIDValueTypes(ID, N->getVTList());
837   // Add the operand info.
838   AddNodeIDOperands(ID, N->ops());
839 
840   // Handle SDNode leafs with special info.
841   AddNodeIDCustom(ID, N);
842 }
843 
844 //===----------------------------------------------------------------------===//
845 //                              SelectionDAG Class
846 //===----------------------------------------------------------------------===//
847 
848 /// doNotCSE - Return true if CSE should not be performed for this node.
849 static bool doNotCSE(SDNode *N) {
850   if (N->getValueType(0) == MVT::Glue)
851     return true; // Never CSE anything that produces a flag.
852 
853   switch (N->getOpcode()) {
854   default: break;
855   case ISD::HANDLENODE:
856   case ISD::EH_LABEL:
857     return true;   // Never CSE these nodes.
858   }
859 
860   // Check that remaining values produced are not flags.
861   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
862     if (N->getValueType(i) == MVT::Glue)
863       return true; // Never CSE anything that produces a flag.
864 
865   return false;
866 }
867 
868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
869 /// SelectionDAG.
870 void SelectionDAG::RemoveDeadNodes() {
871   // Create a dummy node (which is not added to allnodes), that adds a reference
872   // to the root node, preventing it from being deleted.
873   HandleSDNode Dummy(getRoot());
874 
875   SmallVector<SDNode*, 128> DeadNodes;
876 
877   // Add all obviously-dead nodes to the DeadNodes worklist.
878   for (SDNode &Node : allnodes())
879     if (Node.use_empty())
880       DeadNodes.push_back(&Node);
881 
882   RemoveDeadNodes(DeadNodes);
883 
884   // If the root changed (e.g. it was a dead load, update the root).
885   setRoot(Dummy.getValue());
886 }
887 
888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
889 /// given list, and any nodes that become unreachable as a result.
890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
891 
892   // Process the worklist, deleting the nodes and adding their uses to the
893   // worklist.
894   while (!DeadNodes.empty()) {
895     SDNode *N = DeadNodes.pop_back_val();
896     // Skip to next node if we've already managed to delete the node. This could
897     // happen if replacing a node causes a node previously added to the node to
898     // be deleted.
899     if (N->getOpcode() == ISD::DELETED_NODE)
900       continue;
901 
902     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
903       DUL->NodeDeleted(N, nullptr);
904 
905     // Take the node out of the appropriate CSE map.
906     RemoveNodeFromCSEMaps(N);
907 
908     // Next, brutally remove the operand list.  This is safe to do, as there are
909     // no cycles in the graph.
910     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
911       SDUse &Use = *I++;
912       SDNode *Operand = Use.getNode();
913       Use.set(SDValue());
914 
915       // Now that we removed this operand, see if there are no uses of it left.
916       if (Operand->use_empty())
917         DeadNodes.push_back(Operand);
918     }
919 
920     DeallocateNode(N);
921   }
922 }
923 
924 void SelectionDAG::RemoveDeadNode(SDNode *N){
925   SmallVector<SDNode*, 16> DeadNodes(1, N);
926 
927   // Create a dummy node that adds a reference to the root node, preventing
928   // it from being deleted.  (This matters if the root is an operand of the
929   // dead node.)
930   HandleSDNode Dummy(getRoot());
931 
932   RemoveDeadNodes(DeadNodes);
933 }
934 
935 void SelectionDAG::DeleteNode(SDNode *N) {
936   // First take this out of the appropriate CSE map.
937   RemoveNodeFromCSEMaps(N);
938 
939   // Finally, remove uses due to operands of this node, remove from the
940   // AllNodes list, and delete the node.
941   DeleteNodeNotInCSEMaps(N);
942 }
943 
944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
945   assert(N->getIterator() != AllNodes.begin() &&
946          "Cannot delete the entry node!");
947   assert(N->use_empty() && "Cannot delete a node that is not dead!");
948 
949   // Drop all of the operands and decrement used node's use counts.
950   N->DropOperands();
951 
952   DeallocateNode(N);
953 }
954 
955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
956   assert(!(V->isVariadic() && isParameter));
957   if (isParameter)
958     ByvalParmDbgValues.push_back(V);
959   else
960     DbgValues.push_back(V);
961   for (const SDNode *Node : V->getSDNodes())
962     if (Node)
963       DbgValMap[Node].push_back(V);
964 }
965 
966 void SDDbgInfo::erase(const SDNode *Node) {
967   DbgValMapType::iterator I = DbgValMap.find(Node);
968   if (I == DbgValMap.end())
969     return;
970   for (auto &Val: I->second)
971     Val->setIsInvalidated();
972   DbgValMap.erase(I);
973 }
974 
975 void SelectionDAG::DeallocateNode(SDNode *N) {
976   // If we have operands, deallocate them.
977   removeOperands(N);
978 
979   NodeAllocator.Deallocate(AllNodes.remove(N));
980 
981   // Set the opcode to DELETED_NODE to help catch bugs when node
982   // memory is reallocated.
983   // FIXME: There are places in SDag that have grown a dependency on the opcode
984   // value in the released node.
985   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
986   N->NodeType = ISD::DELETED_NODE;
987 
988   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
989   // them and forget about that node.
990   DbgInfo->erase(N);
991 }
992 
993 #ifndef NDEBUG
994 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
995 static void VerifySDNode(SDNode *N) {
996   switch (N->getOpcode()) {
997   default:
998     break;
999   case ISD::BUILD_PAIR: {
1000     EVT VT = N->getValueType(0);
1001     assert(N->getNumValues() == 1 && "Too many results!");
1002     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1003            "Wrong return type!");
1004     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1005     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1006            "Mismatched operand types!");
1007     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1008            "Wrong operand type!");
1009     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1010            "Wrong return type size");
1011     break;
1012   }
1013   case ISD::BUILD_VECTOR: {
1014     assert(N->getNumValues() == 1 && "Too many results!");
1015     assert(N->getValueType(0).isVector() && "Wrong return type!");
1016     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1017            "Wrong number of operands!");
1018     EVT EltVT = N->getValueType(0).getVectorElementType();
1019     for (const SDUse &Op : N->ops()) {
1020       assert((Op.getValueType() == EltVT ||
1021               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1022                EltVT.bitsLE(Op.getValueType()))) &&
1023              "Wrong operand type!");
1024       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1025              "Operands must all have the same type");
1026     }
1027     break;
1028   }
1029   }
1030 }
1031 #endif // NDEBUG
1032 
1033 /// Insert a newly allocated node into the DAG.
1034 ///
1035 /// Handles insertion into the all nodes list and CSE map, as well as
1036 /// verification and other common operations when a new node is allocated.
1037 void SelectionDAG::InsertNode(SDNode *N) {
1038   AllNodes.push_back(N);
1039 #ifndef NDEBUG
1040   N->PersistentId = NextPersistentId++;
1041   VerifySDNode(N);
1042 #endif
1043   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1044     DUL->NodeInserted(N);
1045 }
1046 
1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1048 /// correspond to it.  This is useful when we're about to delete or repurpose
1049 /// the node.  We don't want future request for structurally identical nodes
1050 /// to return N anymore.
1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1052   bool Erased = false;
1053   switch (N->getOpcode()) {
1054   case ISD::HANDLENODE: return false;  // noop.
1055   case ISD::CONDCODE:
1056     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1057            "Cond code doesn't exist!");
1058     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1059     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1060     break;
1061   case ISD::ExternalSymbol:
1062     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1063     break;
1064   case ISD::TargetExternalSymbol: {
1065     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1066     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1067         ESN->getSymbol(), ESN->getTargetFlags()));
1068     break;
1069   }
1070   case ISD::MCSymbol: {
1071     auto *MCSN = cast<MCSymbolSDNode>(N);
1072     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1073     break;
1074   }
1075   case ISD::VALUETYPE: {
1076     EVT VT = cast<VTSDNode>(N)->getVT();
1077     if (VT.isExtended()) {
1078       Erased = ExtendedValueTypeNodes.erase(VT);
1079     } else {
1080       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1081       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1082     }
1083     break;
1084   }
1085   default:
1086     // Remove it from the CSE Map.
1087     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1088     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1089     Erased = CSEMap.RemoveNode(N);
1090     break;
1091   }
1092 #ifndef NDEBUG
1093   // Verify that the node was actually in one of the CSE maps, unless it has a
1094   // flag result (which cannot be CSE'd) or is one of the special cases that are
1095   // not subject to CSE.
1096   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1097       !N->isMachineOpcode() && !doNotCSE(N)) {
1098     N->dump(this);
1099     dbgs() << "\n";
1100     llvm_unreachable("Node is not in map!");
1101   }
1102 #endif
1103   return Erased;
1104 }
1105 
1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1108 /// node already exists, in which case transfer all its users to the existing
1109 /// node. This transfer can potentially trigger recursive merging.
1110 void
1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1112   // For node types that aren't CSE'd, just act as if no identical node
1113   // already exists.
1114   if (!doNotCSE(N)) {
1115     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1116     if (Existing != N) {
1117       // If there was already an existing matching node, use ReplaceAllUsesWith
1118       // to replace the dead one with the existing one.  This can cause
1119       // recursive merging of other unrelated nodes down the line.
1120       ReplaceAllUsesWith(N, Existing);
1121 
1122       // N is now dead. Inform the listeners and delete it.
1123       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1124         DUL->NodeDeleted(N, Existing);
1125       DeleteNodeNotInCSEMaps(N);
1126       return;
1127     }
1128   }
1129 
1130   // If the node doesn't already exist, we updated it.  Inform listeners.
1131   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1132     DUL->NodeUpdated(N);
1133 }
1134 
1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1136 /// were replaced with those specified.  If this node is never memoized,
1137 /// return null, otherwise return a pointer to the slot it would take.  If a
1138 /// node already exists with these operands, the slot will be non-null.
1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1140                                            void *&InsertPos) {
1141   if (doNotCSE(N))
1142     return nullptr;
1143 
1144   SDValue Ops[] = { Op };
1145   FoldingSetNodeID ID;
1146   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1147   AddNodeIDCustom(ID, N);
1148   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1149   if (Node)
1150     Node->intersectFlagsWith(N->getFlags());
1151   return Node;
1152 }
1153 
1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1155 /// were replaced with those specified.  If this node is never memoized,
1156 /// return null, otherwise return a pointer to the slot it would take.  If a
1157 /// node already exists with these operands, the slot will be non-null.
1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1159                                            SDValue Op1, SDValue Op2,
1160                                            void *&InsertPos) {
1161   if (doNotCSE(N))
1162     return nullptr;
1163 
1164   SDValue Ops[] = { Op1, Op2 };
1165   FoldingSetNodeID ID;
1166   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1167   AddNodeIDCustom(ID, N);
1168   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1169   if (Node)
1170     Node->intersectFlagsWith(N->getFlags());
1171   return Node;
1172 }
1173 
1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1175 /// were replaced with those specified.  If this node is never memoized,
1176 /// return null, otherwise return a pointer to the slot it would take.  If a
1177 /// node already exists with these operands, the slot will be non-null.
1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1179                                            void *&InsertPos) {
1180   if (doNotCSE(N))
1181     return nullptr;
1182 
1183   FoldingSetNodeID ID;
1184   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1185   AddNodeIDCustom(ID, N);
1186   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1187   if (Node)
1188     Node->intersectFlagsWith(N->getFlags());
1189   return Node;
1190 }
1191 
1192 Align SelectionDAG::getEVTAlign(EVT VT) const {
1193   Type *Ty = VT == MVT::iPTR ?
1194                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1195                    VT.getTypeForEVT(*getContext());
1196 
1197   return getDataLayout().getABITypeAlign(Ty);
1198 }
1199 
1200 // EntryNode could meaningfully have debug info if we can find it...
1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1202     : TM(tm), OptLevel(OL),
1203       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1204       Root(getEntryNode()) {
1205   InsertNode(&EntryNode);
1206   DbgInfo = new SDDbgInfo();
1207 }
1208 
1209 void SelectionDAG::init(MachineFunction &NewMF,
1210                         OptimizationRemarkEmitter &NewORE,
1211                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1212                         LegacyDivergenceAnalysis * Divergence,
1213                         ProfileSummaryInfo *PSIin,
1214                         BlockFrequencyInfo *BFIin) {
1215   MF = &NewMF;
1216   SDAGISelPass = PassPtr;
1217   ORE = &NewORE;
1218   TLI = getSubtarget().getTargetLowering();
1219   TSI = getSubtarget().getSelectionDAGInfo();
1220   LibInfo = LibraryInfo;
1221   Context = &MF->getFunction().getContext();
1222   DA = Divergence;
1223   PSI = PSIin;
1224   BFI = BFIin;
1225 }
1226 
1227 SelectionDAG::~SelectionDAG() {
1228   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1229   allnodes_clear();
1230   OperandRecycler.clear(OperandAllocator);
1231   delete DbgInfo;
1232 }
1233 
1234 bool SelectionDAG::shouldOptForSize() const {
1235   return MF->getFunction().hasOptSize() ||
1236       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1237 }
1238 
1239 void SelectionDAG::allnodes_clear() {
1240   assert(&*AllNodes.begin() == &EntryNode);
1241   AllNodes.remove(AllNodes.begin());
1242   while (!AllNodes.empty())
1243     DeallocateNode(&AllNodes.front());
1244 #ifndef NDEBUG
1245   NextPersistentId = 0;
1246 #endif
1247 }
1248 
1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1250                                           void *&InsertPos) {
1251   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1252   if (N) {
1253     switch (N->getOpcode()) {
1254     default: break;
1255     case ISD::Constant:
1256     case ISD::ConstantFP:
1257       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1258                        "debug location.  Use another overload.");
1259     }
1260   }
1261   return N;
1262 }
1263 
1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1265                                           const SDLoc &DL, void *&InsertPos) {
1266   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1267   if (N) {
1268     switch (N->getOpcode()) {
1269     case ISD::Constant:
1270     case ISD::ConstantFP:
1271       // Erase debug location from the node if the node is used at several
1272       // different places. Do not propagate one location to all uses as it
1273       // will cause a worse single stepping debugging experience.
1274       if (N->getDebugLoc() != DL.getDebugLoc())
1275         N->setDebugLoc(DebugLoc());
1276       break;
1277     default:
1278       // When the node's point of use is located earlier in the instruction
1279       // sequence than its prior point of use, update its debug info to the
1280       // earlier location.
1281       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1282         N->setDebugLoc(DL.getDebugLoc());
1283       break;
1284     }
1285   }
1286   return N;
1287 }
1288 
1289 void SelectionDAG::clear() {
1290   allnodes_clear();
1291   OperandRecycler.clear(OperandAllocator);
1292   OperandAllocator.Reset();
1293   CSEMap.clear();
1294 
1295   ExtendedValueTypeNodes.clear();
1296   ExternalSymbols.clear();
1297   TargetExternalSymbols.clear();
1298   MCSymbols.clear();
1299   SDCallSiteDbgInfo.clear();
1300   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1301             static_cast<CondCodeSDNode*>(nullptr));
1302   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1303             static_cast<SDNode*>(nullptr));
1304 
1305   EntryNode.UseList = nullptr;
1306   InsertNode(&EntryNode);
1307   Root = getEntryNode();
1308   DbgInfo->clear();
1309 }
1310 
1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1312   return VT.bitsGT(Op.getValueType())
1313              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1314              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1315 }
1316 
1317 std::pair<SDValue, SDValue>
1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1319                                        const SDLoc &DL, EVT VT) {
1320   assert(!VT.bitsEq(Op.getValueType()) &&
1321          "Strict no-op FP extend/round not allowed.");
1322   SDValue Res =
1323       VT.bitsGT(Op.getValueType())
1324           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1325           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1326                     {Chain, Op, getIntPtrConstant(0, DL)});
1327 
1328   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1329 }
1330 
1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1332   return VT.bitsGT(Op.getValueType()) ?
1333     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1334     getNode(ISD::TRUNCATE, DL, VT, Op);
1335 }
1336 
1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1338   return VT.bitsGT(Op.getValueType()) ?
1339     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1340     getNode(ISD::TRUNCATE, DL, VT, Op);
1341 }
1342 
1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1344   return VT.bitsGT(Op.getValueType()) ?
1345     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1346     getNode(ISD::TRUNCATE, DL, VT, Op);
1347 }
1348 
1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1350                                         EVT OpVT) {
1351   if (VT.bitsLE(Op.getValueType()))
1352     return getNode(ISD::TRUNCATE, SL, VT, Op);
1353 
1354   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1355   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1356 }
1357 
1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1359   EVT OpVT = Op.getValueType();
1360   assert(VT.isInteger() && OpVT.isInteger() &&
1361          "Cannot getZeroExtendInReg FP types");
1362   assert(VT.isVector() == OpVT.isVector() &&
1363          "getZeroExtendInReg type should be vector iff the operand "
1364          "type is vector!");
1365   assert((!VT.isVector() ||
1366           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1367          "Vector element counts must match in getZeroExtendInReg");
1368   assert(VT.bitsLE(OpVT) && "Not extending!");
1369   if (OpVT == VT)
1370     return Op;
1371   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1372                                    VT.getScalarSizeInBits());
1373   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1374 }
1375 
1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1377   // Only unsigned pointer semantics are supported right now. In the future this
1378   // might delegate to TLI to check pointer signedness.
1379   return getZExtOrTrunc(Op, DL, VT);
1380 }
1381 
1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1383   // Only unsigned pointer semantics are supported right now. In the future this
1384   // might delegate to TLI to check pointer signedness.
1385   return getZeroExtendInReg(Op, DL, VT);
1386 }
1387 
1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1390   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1391 }
1392 
1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1394   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1395   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1396 }
1397 
1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1399                                       EVT OpVT) {
1400   if (!V)
1401     return getConstant(0, DL, VT);
1402 
1403   switch (TLI->getBooleanContents(OpVT)) {
1404   case TargetLowering::ZeroOrOneBooleanContent:
1405   case TargetLowering::UndefinedBooleanContent:
1406     return getConstant(1, DL, VT);
1407   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1408     return getAllOnesConstant(DL, VT);
1409   }
1410   llvm_unreachable("Unexpected boolean content enum!");
1411 }
1412 
1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1414                                   bool isT, bool isO) {
1415   EVT EltVT = VT.getScalarType();
1416   assert((EltVT.getSizeInBits() >= 64 ||
1417           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1418          "getConstant with a uint64_t value that doesn't fit in the type!");
1419   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1420 }
1421 
1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1423                                   bool isT, bool isO) {
1424   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1425 }
1426 
1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1428                                   EVT VT, bool isT, bool isO) {
1429   assert(VT.isInteger() && "Cannot create FP integer constant!");
1430 
1431   EVT EltVT = VT.getScalarType();
1432   const ConstantInt *Elt = &Val;
1433 
1434   // In some cases the vector type is legal but the element type is illegal and
1435   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1436   // inserted value (the type does not need to match the vector element type).
1437   // Any extra bits introduced will be truncated away.
1438   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1439                            TargetLowering::TypePromoteInteger) {
1440     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1441     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1442     Elt = ConstantInt::get(*getContext(), NewVal);
1443   }
1444   // In other cases the element type is illegal and needs to be expanded, for
1445   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1446   // the value into n parts and use a vector type with n-times the elements.
1447   // Then bitcast to the type requested.
1448   // Legalizing constants too early makes the DAGCombiner's job harder so we
1449   // only legalize if the DAG tells us we must produce legal types.
1450   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1451            TLI->getTypeAction(*getContext(), EltVT) ==
1452                TargetLowering::TypeExpandInteger) {
1453     const APInt &NewVal = Elt->getValue();
1454     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1455     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1456 
1457     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1458     if (VT.isScalableVector()) {
1459       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1460              "Can only handle an even split!");
1461       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1462 
1463       SmallVector<SDValue, 2> ScalarParts;
1464       for (unsigned i = 0; i != Parts; ++i)
1465         ScalarParts.push_back(getConstant(
1466             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1467             ViaEltVT, isT, isO));
1468 
1469       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1470     }
1471 
1472     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1473     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1474 
1475     // Check the temporary vector is the correct size. If this fails then
1476     // getTypeToTransformTo() probably returned a type whose size (in bits)
1477     // isn't a power-of-2 factor of the requested type size.
1478     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1479 
1480     SmallVector<SDValue, 2> EltParts;
1481     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1482       EltParts.push_back(getConstant(
1483           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1484           ViaEltVT, isT, isO));
1485 
1486     // EltParts is currently in little endian order. If we actually want
1487     // big-endian order then reverse it now.
1488     if (getDataLayout().isBigEndian())
1489       std::reverse(EltParts.begin(), EltParts.end());
1490 
1491     // The elements must be reversed when the element order is different
1492     // to the endianness of the elements (because the BITCAST is itself a
1493     // vector shuffle in this situation). However, we do not need any code to
1494     // perform this reversal because getConstant() is producing a vector
1495     // splat.
1496     // This situation occurs in MIPS MSA.
1497 
1498     SmallVector<SDValue, 8> Ops;
1499     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1500       llvm::append_range(Ops, EltParts);
1501 
1502     SDValue V =
1503         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1504     return V;
1505   }
1506 
1507   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1508          "APInt size does not match type size!");
1509   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1510   FoldingSetNodeID ID;
1511   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1512   ID.AddPointer(Elt);
1513   ID.AddBoolean(isO);
1514   void *IP = nullptr;
1515   SDNode *N = nullptr;
1516   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1517     if (!VT.isVector())
1518       return SDValue(N, 0);
1519 
1520   if (!N) {
1521     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1522     CSEMap.InsertNode(N, IP);
1523     InsertNode(N);
1524     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1525   }
1526 
1527   SDValue Result(N, 0);
1528   if (VT.isScalableVector())
1529     Result = getSplatVector(VT, DL, Result);
1530   else if (VT.isVector())
1531     Result = getSplatBuildVector(VT, DL, Result);
1532 
1533   return Result;
1534 }
1535 
1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1537                                         bool isTarget) {
1538   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1539 }
1540 
1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1542                                              const SDLoc &DL, bool LegalTypes) {
1543   assert(VT.isInteger() && "Shift amount is not an integer type!");
1544   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1545   return getConstant(Val, DL, ShiftVT);
1546 }
1547 
1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1549                                            bool isTarget) {
1550   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1551 }
1552 
1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1554                                     bool isTarget) {
1555   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1556 }
1557 
1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1559                                     EVT VT, bool isTarget) {
1560   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1561 
1562   EVT EltVT = VT.getScalarType();
1563 
1564   // Do the map lookup using the actual bit pattern for the floating point
1565   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1566   // we don't have issues with SNANs.
1567   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1568   FoldingSetNodeID ID;
1569   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1570   ID.AddPointer(&V);
1571   void *IP = nullptr;
1572   SDNode *N = nullptr;
1573   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1574     if (!VT.isVector())
1575       return SDValue(N, 0);
1576 
1577   if (!N) {
1578     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1579     CSEMap.InsertNode(N, IP);
1580     InsertNode(N);
1581   }
1582 
1583   SDValue Result(N, 0);
1584   if (VT.isScalableVector())
1585     Result = getSplatVector(VT, DL, Result);
1586   else if (VT.isVector())
1587     Result = getSplatBuildVector(VT, DL, Result);
1588   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1589   return Result;
1590 }
1591 
1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1593                                     bool isTarget) {
1594   EVT EltVT = VT.getScalarType();
1595   if (EltVT == MVT::f32)
1596     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1597   if (EltVT == MVT::f64)
1598     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1599   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1600       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1601     bool Ignored;
1602     APFloat APF = APFloat(Val);
1603     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1604                 &Ignored);
1605     return getConstantFP(APF, DL, VT, isTarget);
1606   }
1607   llvm_unreachable("Unsupported type in getConstantFP");
1608 }
1609 
1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1611                                        EVT VT, int64_t Offset, bool isTargetGA,
1612                                        unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTargetGA) &&
1614          "Cannot set target flags on target-independent globals");
1615 
1616   // Truncate (with sign-extension) the offset value to the pointer size.
1617   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1618   if (BitWidth < 64)
1619     Offset = SignExtend64(Offset, BitWidth);
1620 
1621   unsigned Opc;
1622   if (GV->isThreadLocal())
1623     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1624   else
1625     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1626 
1627   FoldingSetNodeID ID;
1628   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1629   ID.AddPointer(GV);
1630   ID.AddInteger(Offset);
1631   ID.AddInteger(TargetFlags);
1632   void *IP = nullptr;
1633   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1634     return SDValue(E, 0);
1635 
1636   auto *N = newSDNode<GlobalAddressSDNode>(
1637       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1638   CSEMap.InsertNode(N, IP);
1639     InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1644   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(FI);
1648   void *IP = nullptr;
1649   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1650     return SDValue(E, 0);
1651 
1652   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1653   CSEMap.InsertNode(N, IP);
1654   InsertNode(N);
1655   return SDValue(N, 0);
1656 }
1657 
1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1659                                    unsigned TargetFlags) {
1660   assert((TargetFlags == 0 || isTarget) &&
1661          "Cannot set target flags on target-independent jump tables");
1662   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddInteger(JTI);
1666   ID.AddInteger(TargetFlags);
1667   void *IP = nullptr;
1668   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1669     return SDValue(E, 0);
1670 
1671   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1672   CSEMap.InsertNode(N, IP);
1673   InsertNode(N);
1674   return SDValue(N, 0);
1675 }
1676 
1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1678                                       MaybeAlign Alignment, int Offset,
1679                                       bool isTarget, unsigned TargetFlags) {
1680   assert((TargetFlags == 0 || isTarget) &&
1681          "Cannot set target flags on target-independent globals");
1682   if (!Alignment)
1683     Alignment = shouldOptForSize()
1684                     ? getDataLayout().getABITypeAlign(C->getType())
1685                     : getDataLayout().getPrefTypeAlign(C->getType());
1686   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1687   FoldingSetNodeID ID;
1688   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1689   ID.AddInteger(Alignment->value());
1690   ID.AddInteger(Offset);
1691   ID.AddPointer(C);
1692   ID.AddInteger(TargetFlags);
1693   void *IP = nullptr;
1694   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1695     return SDValue(E, 0);
1696 
1697   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1698                                           TargetFlags);
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   SDValue V = SDValue(N, 0);
1702   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1703   return V;
1704 }
1705 
1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1707                                       MaybeAlign Alignment, int Offset,
1708                                       bool isTarget, unsigned TargetFlags) {
1709   assert((TargetFlags == 0 || isTarget) &&
1710          "Cannot set target flags on target-independent globals");
1711   if (!Alignment)
1712     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1713   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1714   FoldingSetNodeID ID;
1715   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1716   ID.AddInteger(Alignment->value());
1717   ID.AddInteger(Offset);
1718   C->addSelectionDAGCSEId(ID);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1725                                           TargetFlags);
1726   CSEMap.InsertNode(N, IP);
1727   InsertNode(N);
1728   return SDValue(N, 0);
1729 }
1730 
1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1732                                      unsigned TargetFlags) {
1733   FoldingSetNodeID ID;
1734   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1735   ID.AddInteger(Index);
1736   ID.AddInteger(Offset);
1737   ID.AddInteger(TargetFlags);
1738   void *IP = nullptr;
1739   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1740     return SDValue(E, 0);
1741 
1742   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1743   CSEMap.InsertNode(N, IP);
1744   InsertNode(N);
1745   return SDValue(N, 0);
1746 }
1747 
1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1749   FoldingSetNodeID ID;
1750   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1751   ID.AddPointer(MBB);
1752   void *IP = nullptr;
1753   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1754     return SDValue(E, 0);
1755 
1756   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1757   CSEMap.InsertNode(N, IP);
1758   InsertNode(N);
1759   return SDValue(N, 0);
1760 }
1761 
1762 SDValue SelectionDAG::getValueType(EVT VT) {
1763   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1764       ValueTypeNodes.size())
1765     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1766 
1767   SDNode *&N = VT.isExtended() ?
1768     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1769 
1770   if (N) return SDValue(N, 0);
1771   N = newSDNode<VTSDNode>(VT);
1772   InsertNode(N);
1773   return SDValue(N, 0);
1774 }
1775 
1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1777   SDNode *&N = ExternalSymbols[Sym];
1778   if (N) return SDValue(N, 0);
1779   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1785   SDNode *&N = MCSymbols[Sym];
1786   if (N)
1787     return SDValue(N, 0);
1788   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1789   InsertNode(N);
1790   return SDValue(N, 0);
1791 }
1792 
1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1794                                               unsigned TargetFlags) {
1795   SDNode *&N =
1796       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1797   if (N) return SDValue(N, 0);
1798   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1804   if ((unsigned)Cond >= CondCodeNodes.size())
1805     CondCodeNodes.resize(Cond+1);
1806 
1807   if (!CondCodeNodes[Cond]) {
1808     auto *N = newSDNode<CondCodeSDNode>(Cond);
1809     CondCodeNodes[Cond] = N;
1810     InsertNode(N);
1811   }
1812 
1813   return SDValue(CondCodeNodes[Cond], 0);
1814 }
1815 
1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1817   APInt One(ResVT.getScalarSizeInBits(), 1);
1818   return getStepVector(DL, ResVT, One);
1819 }
1820 
1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1822   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1823   if (ResVT.isScalableVector())
1824     return getNode(
1825         ISD::STEP_VECTOR, DL, ResVT,
1826         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1827 
1828   SmallVector<SDValue, 16> OpsStepConstants;
1829   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1830     OpsStepConstants.push_back(
1831         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1832   return getBuildVector(ResVT, DL, OpsStepConstants);
1833 }
1834 
1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1838   std::swap(N1, N2);
1839   ShuffleVectorSDNode::commuteMask(M);
1840 }
1841 
1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1843                                        SDValue N2, ArrayRef<int> Mask) {
1844   assert(VT.getVectorNumElements() == Mask.size() &&
1845          "Must have the same number of vector elements as mask elements!");
1846   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1847          "Invalid VECTOR_SHUFFLE");
1848 
1849   // Canonicalize shuffle undef, undef -> undef
1850   if (N1.isUndef() && N2.isUndef())
1851     return getUNDEF(VT);
1852 
1853   // Validate that all indices in Mask are within the range of the elements
1854   // input to the shuffle.
1855   int NElts = Mask.size();
1856   assert(llvm::all_of(Mask,
1857                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1858          "Index out of range");
1859 
1860   // Copy the mask so we can do any needed cleanup.
1861   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1862 
1863   // Canonicalize shuffle v, v -> v, undef
1864   if (N1 == N2) {
1865     N2 = getUNDEF(VT);
1866     for (int i = 0; i != NElts; ++i)
1867       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1868   }
1869 
1870   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1871   if (N1.isUndef())
1872     commuteShuffle(N1, N2, MaskVec);
1873 
1874   if (TLI->hasVectorBlend()) {
1875     // If shuffling a splat, try to blend the splat instead. We do this here so
1876     // that even when this arises during lowering we don't have to re-handle it.
1877     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1878       BitVector UndefElements;
1879       SDValue Splat = BV->getSplatValue(&UndefElements);
1880       if (!Splat)
1881         return;
1882 
1883       for (int i = 0; i < NElts; ++i) {
1884         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1885           continue;
1886 
1887         // If this input comes from undef, mark it as such.
1888         if (UndefElements[MaskVec[i] - Offset]) {
1889           MaskVec[i] = -1;
1890           continue;
1891         }
1892 
1893         // If we can blend a non-undef lane, use that instead.
1894         if (!UndefElements[i])
1895           MaskVec[i] = i + Offset;
1896       }
1897     };
1898     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1899       BlendSplat(N1BV, 0);
1900     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1901       BlendSplat(N2BV, NElts);
1902   }
1903 
1904   // Canonicalize all index into lhs, -> shuffle lhs, undef
1905   // Canonicalize all index into rhs, -> shuffle rhs, undef
1906   bool AllLHS = true, AllRHS = true;
1907   bool N2Undef = N2.isUndef();
1908   for (int i = 0; i != NElts; ++i) {
1909     if (MaskVec[i] >= NElts) {
1910       if (N2Undef)
1911         MaskVec[i] = -1;
1912       else
1913         AllLHS = false;
1914     } else if (MaskVec[i] >= 0) {
1915       AllRHS = false;
1916     }
1917   }
1918   if (AllLHS && AllRHS)
1919     return getUNDEF(VT);
1920   if (AllLHS && !N2Undef)
1921     N2 = getUNDEF(VT);
1922   if (AllRHS) {
1923     N1 = getUNDEF(VT);
1924     commuteShuffle(N1, N2, MaskVec);
1925   }
1926   // Reset our undef status after accounting for the mask.
1927   N2Undef = N2.isUndef();
1928   // Re-check whether both sides ended up undef.
1929   if (N1.isUndef() && N2Undef)
1930     return getUNDEF(VT);
1931 
1932   // If Identity shuffle return that node.
1933   bool Identity = true, AllSame = true;
1934   for (int i = 0; i != NElts; ++i) {
1935     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1936     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1937   }
1938   if (Identity && NElts)
1939     return N1;
1940 
1941   // Shuffling a constant splat doesn't change the result.
1942   if (N2Undef) {
1943     SDValue V = N1;
1944 
1945     // Look through any bitcasts. We check that these don't change the number
1946     // (and size) of elements and just changes their types.
1947     while (V.getOpcode() == ISD::BITCAST)
1948       V = V->getOperand(0);
1949 
1950     // A splat should always show up as a build vector node.
1951     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1952       BitVector UndefElements;
1953       SDValue Splat = BV->getSplatValue(&UndefElements);
1954       // If this is a splat of an undef, shuffling it is also undef.
1955       if (Splat && Splat.isUndef())
1956         return getUNDEF(VT);
1957 
1958       bool SameNumElts =
1959           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1960 
1961       // We only have a splat which can skip shuffles if there is a splatted
1962       // value and no undef lanes rearranged by the shuffle.
1963       if (Splat && UndefElements.none()) {
1964         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1965         // number of elements match or the value splatted is a zero constant.
1966         if (SameNumElts)
1967           return N1;
1968         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1969           if (C->isZero())
1970             return N1;
1971       }
1972 
1973       // If the shuffle itself creates a splat, build the vector directly.
1974       if (AllSame && SameNumElts) {
1975         EVT BuildVT = BV->getValueType(0);
1976         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1977         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1978 
1979         // We may have jumped through bitcasts, so the type of the
1980         // BUILD_VECTOR may not match the type of the shuffle.
1981         if (BuildVT != VT)
1982           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1983         return NewBV;
1984       }
1985     }
1986   }
1987 
1988   FoldingSetNodeID ID;
1989   SDValue Ops[2] = { N1, N2 };
1990   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1991   for (int i = 0; i != NElts; ++i)
1992     ID.AddInteger(MaskVec[i]);
1993 
1994   void* IP = nullptr;
1995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1996     return SDValue(E, 0);
1997 
1998   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1999   // SDNode doesn't have access to it.  This memory will be "leaked" when
2000   // the node is deallocated, but recovered when the NodeAllocator is released.
2001   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2002   llvm::copy(MaskVec, MaskAlloc);
2003 
2004   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2005                                            dl.getDebugLoc(), MaskAlloc);
2006   createOperands(N, Ops);
2007 
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   SDValue V = SDValue(N, 0);
2011   NewSDValueDbgMsg(V, "Creating new node: ", this);
2012   return V;
2013 }
2014 
2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2016   EVT VT = SV.getValueType(0);
2017   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2018   ShuffleVectorSDNode::commuteMask(MaskVec);
2019 
2020   SDValue Op0 = SV.getOperand(0);
2021   SDValue Op1 = SV.getOperand(1);
2022   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2023 }
2024 
2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2028   ID.AddInteger(RegNo);
2029   void *IP = nullptr;
2030   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2031     return SDValue(E, 0);
2032 
2033   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2034   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2041   FoldingSetNodeID ID;
2042   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2043   ID.AddPointer(RegMask);
2044   void *IP = nullptr;
2045   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2046     return SDValue(E, 0);
2047 
2048   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2049   CSEMap.InsertNode(N, IP);
2050   InsertNode(N);
2051   return SDValue(N, 0);
2052 }
2053 
2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2055                                  MCSymbol *Label) {
2056   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2057 }
2058 
2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2060                                    SDValue Root, MCSymbol *Label) {
2061   FoldingSetNodeID ID;
2062   SDValue Ops[] = { Root };
2063   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2064   ID.AddPointer(Label);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N =
2070       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2071   createOperands(N, Ops);
2072 
2073   CSEMap.InsertNode(N, IP);
2074   InsertNode(N);
2075   return SDValue(N, 0);
2076 }
2077 
2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2079                                       int64_t Offset, bool isTarget,
2080                                       unsigned TargetFlags) {
2081   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2082 
2083   FoldingSetNodeID ID;
2084   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2085   ID.AddPointer(BA);
2086   ID.AddInteger(Offset);
2087   ID.AddInteger(TargetFlags);
2088   void *IP = nullptr;
2089   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2090     return SDValue(E, 0);
2091 
2092   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2093   CSEMap.InsertNode(N, IP);
2094   InsertNode(N);
2095   return SDValue(N, 0);
2096 }
2097 
2098 SDValue SelectionDAG::getSrcValue(const Value *V) {
2099   FoldingSetNodeID ID;
2100   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2101   ID.AddPointer(V);
2102 
2103   void *IP = nullptr;
2104   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2105     return SDValue(E, 0);
2106 
2107   auto *N = newSDNode<SrcValueSDNode>(V);
2108   CSEMap.InsertNode(N, IP);
2109   InsertNode(N);
2110   return SDValue(N, 0);
2111 }
2112 
2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2114   FoldingSetNodeID ID;
2115   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2116   ID.AddPointer(MD);
2117 
2118   void *IP = nullptr;
2119   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2120     return SDValue(E, 0);
2121 
2122   auto *N = newSDNode<MDNodeSDNode>(MD);
2123   CSEMap.InsertNode(N, IP);
2124   InsertNode(N);
2125   return SDValue(N, 0);
2126 }
2127 
2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2129   if (VT == V.getValueType())
2130     return V;
2131 
2132   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2133 }
2134 
2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2136                                        unsigned SrcAS, unsigned DestAS) {
2137   SDValue Ops[] = {Ptr};
2138   FoldingSetNodeID ID;
2139   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2140   ID.AddInteger(SrcAS);
2141   ID.AddInteger(DestAS);
2142 
2143   void *IP = nullptr;
2144   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2145     return SDValue(E, 0);
2146 
2147   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2148                                            VT, SrcAS, DestAS);
2149   createOperands(N, Ops);
2150 
2151   CSEMap.InsertNode(N, IP);
2152   InsertNode(N);
2153   return SDValue(N, 0);
2154 }
2155 
2156 SDValue SelectionDAG::getFreeze(SDValue V) {
2157   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2158 }
2159 
2160 /// getShiftAmountOperand - Return the specified value casted to
2161 /// the target's desired shift amount type.
2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2163   EVT OpTy = Op.getValueType();
2164   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2165   if (OpTy == ShTy || OpTy.isVector()) return Op;
2166 
2167   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2168 }
2169 
2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2171   SDLoc dl(Node);
2172   const TargetLowering &TLI = getTargetLoweringInfo();
2173   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2174   EVT VT = Node->getValueType(0);
2175   SDValue Tmp1 = Node->getOperand(0);
2176   SDValue Tmp2 = Node->getOperand(1);
2177   const MaybeAlign MA(Node->getConstantOperandVal(3));
2178 
2179   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2180                                Tmp2, MachinePointerInfo(V));
2181   SDValue VAList = VAListLoad;
2182 
2183   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2184     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2185                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2186 
2187     VAList =
2188         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2189                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2190   }
2191 
2192   // Increment the pointer, VAList, to the next vaarg
2193   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2194                  getConstant(getDataLayout().getTypeAllocSize(
2195                                                VT.getTypeForEVT(*getContext())),
2196                              dl, VAList.getValueType()));
2197   // Store the incremented VAList to the legalized pointer
2198   Tmp1 =
2199       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2200   // Load the actual argument out of the pointer VAList
2201   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2202 }
2203 
2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2205   SDLoc dl(Node);
2206   const TargetLowering &TLI = getTargetLoweringInfo();
2207   // This defaults to loading a pointer from the input and storing it to the
2208   // output, returning the chain.
2209   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2210   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2211   SDValue Tmp1 =
2212       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2213               Node->getOperand(2), MachinePointerInfo(VS));
2214   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2215                   MachinePointerInfo(VD));
2216 }
2217 
2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2219   const DataLayout &DL = getDataLayout();
2220   Type *Ty = VT.getTypeForEVT(*getContext());
2221   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2222 
2223   if (TLI->isTypeLegal(VT) || !VT.isVector())
2224     return RedAlign;
2225 
2226   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2227   const Align StackAlign = TFI->getStackAlign();
2228 
2229   // See if we can choose a smaller ABI alignment in cases where it's an
2230   // illegal vector type that will get broken down.
2231   if (RedAlign > StackAlign) {
2232     EVT IntermediateVT;
2233     MVT RegisterVT;
2234     unsigned NumIntermediates;
2235     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2236                                 NumIntermediates, RegisterVT);
2237     Ty = IntermediateVT.getTypeForEVT(*getContext());
2238     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2239     if (RedAlign2 < RedAlign)
2240       RedAlign = RedAlign2;
2241   }
2242 
2243   return RedAlign;
2244 }
2245 
2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2247   MachineFrameInfo &MFI = MF->getFrameInfo();
2248   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2249   int StackID = 0;
2250   if (Bytes.isScalable())
2251     StackID = TFI->getStackIDForScalableVectors();
2252   // The stack id gives an indication of whether the object is scalable or
2253   // not, so it's safe to pass in the minimum size here.
2254   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2255                                        false, nullptr, StackID);
2256   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2257 }
2258 
2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2260   Type *Ty = VT.getTypeForEVT(*getContext());
2261   Align StackAlign =
2262       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2263   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2264 }
2265 
2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2267   TypeSize VT1Size = VT1.getStoreSize();
2268   TypeSize VT2Size = VT2.getStoreSize();
2269   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2270          "Don't know how to choose the maximum size when creating a stack "
2271          "temporary");
2272   TypeSize Bytes =
2273       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2274 
2275   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2276   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2277   const DataLayout &DL = getDataLayout();
2278   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2279   return CreateStackTemporary(Bytes, Align);
2280 }
2281 
2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2283                                 ISD::CondCode Cond, const SDLoc &dl) {
2284   EVT OpVT = N1.getValueType();
2285 
2286   // These setcc operations always fold.
2287   switch (Cond) {
2288   default: break;
2289   case ISD::SETFALSE:
2290   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2291   case ISD::SETTRUE:
2292   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2293 
2294   case ISD::SETOEQ:
2295   case ISD::SETOGT:
2296   case ISD::SETOGE:
2297   case ISD::SETOLT:
2298   case ISD::SETOLE:
2299   case ISD::SETONE:
2300   case ISD::SETO:
2301   case ISD::SETUO:
2302   case ISD::SETUEQ:
2303   case ISD::SETUNE:
2304     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2305     break;
2306   }
2307 
2308   if (OpVT.isInteger()) {
2309     // For EQ and NE, we can always pick a value for the undef to make the
2310     // predicate pass or fail, so we can return undef.
2311     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2312     // icmp eq/ne X, undef -> undef.
2313     if ((N1.isUndef() || N2.isUndef()) &&
2314         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2315       return getUNDEF(VT);
2316 
2317     // If both operands are undef, we can return undef for int comparison.
2318     // icmp undef, undef -> undef.
2319     if (N1.isUndef() && N2.isUndef())
2320       return getUNDEF(VT);
2321 
2322     // icmp X, X -> true/false
2323     // icmp X, undef -> true/false because undef could be X.
2324     if (N1 == N2)
2325       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2326   }
2327 
2328   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2329     const APInt &C2 = N2C->getAPIntValue();
2330     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2331       const APInt &C1 = N1C->getAPIntValue();
2332 
2333       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2334                              dl, VT, OpVT);
2335     }
2336   }
2337 
2338   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2339   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2340 
2341   if (N1CFP && N2CFP) {
2342     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2343     switch (Cond) {
2344     default: break;
2345     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2346                         return getUNDEF(VT);
2347                       LLVM_FALLTHROUGH;
2348     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2349                                              OpVT);
2350     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2351                         return getUNDEF(VT);
2352                       LLVM_FALLTHROUGH;
2353     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2354                                              R==APFloat::cmpLessThan, dl, VT,
2355                                              OpVT);
2356     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2357                         return getUNDEF(VT);
2358                       LLVM_FALLTHROUGH;
2359     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2360                                              OpVT);
2361     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2362                         return getUNDEF(VT);
2363                       LLVM_FALLTHROUGH;
2364     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2365                                              VT, OpVT);
2366     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2367                         return getUNDEF(VT);
2368                       LLVM_FALLTHROUGH;
2369     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2370                                              R==APFloat::cmpEqual, dl, VT,
2371                                              OpVT);
2372     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2373                         return getUNDEF(VT);
2374                       LLVM_FALLTHROUGH;
2375     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2376                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2377     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2378                                              OpVT);
2379     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2380                                              OpVT);
2381     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2382                                              R==APFloat::cmpEqual, dl, VT,
2383                                              OpVT);
2384     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2387                                              R==APFloat::cmpLessThan, dl, VT,
2388                                              OpVT);
2389     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpUnordered, dl, VT,
2391                                              OpVT);
2392     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2393                                              VT, OpVT);
2394     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2395                                              OpVT);
2396     }
2397   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2398     // Ensure that the constant occurs on the RHS.
2399     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2400     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2401       return SDValue();
2402     return getSetCC(dl, VT, N2, N1, SwappedCond);
2403   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2404              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2405     // If an operand is known to be a nan (or undef that could be a nan), we can
2406     // fold it.
2407     // Choosing NaN for the undef will always make unordered comparison succeed
2408     // and ordered comparison fails.
2409     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2410     switch (ISD::getUnorderedFlavor(Cond)) {
2411     default:
2412       llvm_unreachable("Unknown flavor!");
2413     case 0: // Known false.
2414       return getBoolConstant(false, dl, VT, OpVT);
2415     case 1: // Known true.
2416       return getBoolConstant(true, dl, VT, OpVT);
2417     case 2: // Undefined.
2418       return getUNDEF(VT);
2419     }
2420   }
2421 
2422   // Could not fold it.
2423   return SDValue();
2424 }
2425 
2426 /// See if the specified operand can be simplified with the knowledge that only
2427 /// the bits specified by DemandedBits are used.
2428 /// TODO: really we should be making this into the DAG equivalent of
2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2431   EVT VT = V.getValueType();
2432 
2433   if (VT.isScalableVector())
2434     return SDValue();
2435 
2436   APInt DemandedElts = VT.isVector()
2437                            ? APInt::getAllOnes(VT.getVectorNumElements())
2438                            : APInt(1, 1);
2439   return GetDemandedBits(V, DemandedBits, DemandedElts);
2440 }
2441 
2442 /// See if the specified operand can be simplified with the knowledge that only
2443 /// the bits specified by DemandedBits are used in the elements specified by
2444 /// DemandedElts.
2445 /// TODO: really we should be making this into the DAG equivalent of
2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2448                                       const APInt &DemandedElts) {
2449   switch (V.getOpcode()) {
2450   default:
2451     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2452                                                 *this);
2453   case ISD::Constant: {
2454     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2455     APInt NewVal = CVal & DemandedBits;
2456     if (NewVal != CVal)
2457       return getConstant(NewVal, SDLoc(V), V.getValueType());
2458     break;
2459   }
2460   case ISD::SRL:
2461     // Only look at single-use SRLs.
2462     if (!V.getNode()->hasOneUse())
2463       break;
2464     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2465       // See if we can recursively simplify the LHS.
2466       unsigned Amt = RHSC->getZExtValue();
2467 
2468       // Watch out for shift count overflow though.
2469       if (Amt >= DemandedBits.getBitWidth())
2470         break;
2471       APInt SrcDemandedBits = DemandedBits << Amt;
2472       if (SDValue SimplifyLHS =
2473               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2474         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2475                        V.getOperand(1));
2476     }
2477     break;
2478   }
2479   return SDValue();
2480 }
2481 
2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2483 /// use this predicate to simplify operations downstream.
2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2485   unsigned BitWidth = Op.getScalarValueSizeInBits();
2486   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2487 }
2488 
2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2490 /// this predicate to simplify operations downstream.  Mask is known to be zero
2491 /// for bits that V cannot have.
2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2493                                      unsigned Depth) const {
2494   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2495 }
2496 
2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2498 /// DemandedElts.  We use this predicate to simplify operations downstream.
2499 /// Mask is known to be zero for bits that V cannot have.
2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2501                                      const APInt &DemandedElts,
2502                                      unsigned Depth) const {
2503   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2504 }
2505 
2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2508                                         unsigned Depth) const {
2509   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2510 }
2511 
2512 /// isSplatValue - Return true if the vector V has the same value
2513 /// across all DemandedElts. For scalable vectors it does not make
2514 /// sense to specify which elements are demanded or undefined, therefore
2515 /// they are simply ignored.
2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2517                                 APInt &UndefElts, unsigned Depth) const {
2518   unsigned Opcode = V.getOpcode();
2519   EVT VT = V.getValueType();
2520   assert(VT.isVector() && "Vector type expected");
2521 
2522   if (!VT.isScalableVector() && !DemandedElts)
2523     return false; // No demanded elts, better to assume we don't know anything.
2524 
2525   if (Depth >= MaxRecursionDepth)
2526     return false; // Limit search depth.
2527 
2528   // Deal with some common cases here that work for both fixed and scalable
2529   // vector types.
2530   switch (Opcode) {
2531   case ISD::SPLAT_VECTOR:
2532     UndefElts = V.getOperand(0).isUndef()
2533                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2534                     : APInt(DemandedElts.getBitWidth(), 0);
2535     return true;
2536   case ISD::ADD:
2537   case ISD::SUB:
2538   case ISD::AND:
2539   case ISD::XOR:
2540   case ISD::OR: {
2541     APInt UndefLHS, UndefRHS;
2542     SDValue LHS = V.getOperand(0);
2543     SDValue RHS = V.getOperand(1);
2544     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2545         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2546       UndefElts = UndefLHS | UndefRHS;
2547       return true;
2548     }
2549     return false;
2550   }
2551   case ISD::ABS:
2552   case ISD::TRUNCATE:
2553   case ISD::SIGN_EXTEND:
2554   case ISD::ZERO_EXTEND:
2555     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2556   default:
2557     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2558         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2559       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2560     break;
2561 }
2562 
2563   // We don't support other cases than those above for scalable vectors at
2564   // the moment.
2565   if (VT.isScalableVector())
2566     return false;
2567 
2568   unsigned NumElts = VT.getVectorNumElements();
2569   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2570   UndefElts = APInt::getZero(NumElts);
2571 
2572   switch (Opcode) {
2573   case ISD::BUILD_VECTOR: {
2574     SDValue Scl;
2575     for (unsigned i = 0; i != NumElts; ++i) {
2576       SDValue Op = V.getOperand(i);
2577       if (Op.isUndef()) {
2578         UndefElts.setBit(i);
2579         continue;
2580       }
2581       if (!DemandedElts[i])
2582         continue;
2583       if (Scl && Scl != Op)
2584         return false;
2585       Scl = Op;
2586     }
2587     return true;
2588   }
2589   case ISD::VECTOR_SHUFFLE: {
2590     // Check if this is a shuffle node doing a splat.
2591     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2592     int SplatIndex = -1;
2593     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2594     for (int i = 0; i != (int)NumElts; ++i) {
2595       int M = Mask[i];
2596       if (M < 0) {
2597         UndefElts.setBit(i);
2598         continue;
2599       }
2600       if (!DemandedElts[i])
2601         continue;
2602       if (0 <= SplatIndex && SplatIndex != M)
2603         return false;
2604       SplatIndex = M;
2605     }
2606     return true;
2607   }
2608   case ISD::EXTRACT_SUBVECTOR: {
2609     // Offset the demanded elts by the subvector index.
2610     SDValue Src = V.getOperand(0);
2611     // We don't support scalable vectors at the moment.
2612     if (Src.getValueType().isScalableVector())
2613       return false;
2614     uint64_t Idx = V.getConstantOperandVal(1);
2615     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2616     APInt UndefSrcElts;
2617     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2618     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2619       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2620       return true;
2621     }
2622     break;
2623   }
2624   case ISD::ANY_EXTEND_VECTOR_INREG:
2625   case ISD::SIGN_EXTEND_VECTOR_INREG:
2626   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2627     // Widen the demanded elts by the src element count.
2628     SDValue Src = V.getOperand(0);
2629     // We don't support scalable vectors at the moment.
2630     if (Src.getValueType().isScalableVector())
2631       return false;
2632     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2633     APInt UndefSrcElts;
2634     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2635     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2636       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2637       return true;
2638     }
2639     break;
2640   }
2641   }
2642 
2643   return false;
2644 }
2645 
2646 /// Helper wrapper to main isSplatValue function.
2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2648   EVT VT = V.getValueType();
2649   assert(VT.isVector() && "Vector type expected");
2650 
2651   APInt UndefElts;
2652   APInt DemandedElts;
2653 
2654   // For now we don't support this with scalable vectors.
2655   if (!VT.isScalableVector())
2656     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2657   return isSplatValue(V, DemandedElts, UndefElts) &&
2658          (AllowUndefs || !UndefElts);
2659 }
2660 
2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2662   V = peekThroughExtractSubvectors(V);
2663 
2664   EVT VT = V.getValueType();
2665   unsigned Opcode = V.getOpcode();
2666   switch (Opcode) {
2667   default: {
2668     APInt UndefElts;
2669     APInt DemandedElts;
2670 
2671     if (!VT.isScalableVector())
2672       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2673 
2674     if (isSplatValue(V, DemandedElts, UndefElts)) {
2675       if (VT.isScalableVector()) {
2676         // DemandedElts and UndefElts are ignored for scalable vectors, since
2677         // the only supported cases are SPLAT_VECTOR nodes.
2678         SplatIdx = 0;
2679       } else {
2680         // Handle case where all demanded elements are UNDEF.
2681         if (DemandedElts.isSubsetOf(UndefElts)) {
2682           SplatIdx = 0;
2683           return getUNDEF(VT);
2684         }
2685         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2686       }
2687       return V;
2688     }
2689     break;
2690   }
2691   case ISD::SPLAT_VECTOR:
2692     SplatIdx = 0;
2693     return V;
2694   case ISD::VECTOR_SHUFFLE: {
2695     if (VT.isScalableVector())
2696       return SDValue();
2697 
2698     // Check if this is a shuffle node doing a splat.
2699     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2700     // getTargetVShiftNode currently struggles without the splat source.
2701     auto *SVN = cast<ShuffleVectorSDNode>(V);
2702     if (!SVN->isSplat())
2703       break;
2704     int Idx = SVN->getSplatIndex();
2705     int NumElts = V.getValueType().getVectorNumElements();
2706     SplatIdx = Idx % NumElts;
2707     return V.getOperand(Idx / NumElts);
2708   }
2709   }
2710 
2711   return SDValue();
2712 }
2713 
2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2715   int SplatIdx;
2716   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2717     EVT SVT = SrcVector.getValueType().getScalarType();
2718     EVT LegalSVT = SVT;
2719     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2720       if (!SVT.isInteger())
2721         return SDValue();
2722       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2723       if (LegalSVT.bitsLT(SVT))
2724         return SDValue();
2725     }
2726     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2727                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2728   }
2729   return SDValue();
2730 }
2731 
2732 const APInt *
2733 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2734                                           const APInt &DemandedElts) const {
2735   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2736           V.getOpcode() == ISD::SRA) &&
2737          "Unknown shift node");
2738   unsigned BitWidth = V.getScalarValueSizeInBits();
2739   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2740     // Shifting more than the bitwidth is not valid.
2741     const APInt &ShAmt = SA->getAPIntValue();
2742     if (ShAmt.ult(BitWidth))
2743       return &ShAmt;
2744   }
2745   return nullptr;
2746 }
2747 
2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2749     SDValue V, const APInt &DemandedElts) const {
2750   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2751           V.getOpcode() == ISD::SRA) &&
2752          "Unknown shift node");
2753   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2754     return ValidAmt;
2755   unsigned BitWidth = V.getScalarValueSizeInBits();
2756   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2757   if (!BV)
2758     return nullptr;
2759   const APInt *MinShAmt = nullptr;
2760   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2761     if (!DemandedElts[i])
2762       continue;
2763     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2764     if (!SA)
2765       return nullptr;
2766     // Shifting more than the bitwidth is not valid.
2767     const APInt &ShAmt = SA->getAPIntValue();
2768     if (ShAmt.uge(BitWidth))
2769       return nullptr;
2770     if (MinShAmt && MinShAmt->ule(ShAmt))
2771       continue;
2772     MinShAmt = &ShAmt;
2773   }
2774   return MinShAmt;
2775 }
2776 
2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2778     SDValue V, const APInt &DemandedElts) const {
2779   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2780           V.getOpcode() == ISD::SRA) &&
2781          "Unknown shift node");
2782   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2783     return ValidAmt;
2784   unsigned BitWidth = V.getScalarValueSizeInBits();
2785   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2786   if (!BV)
2787     return nullptr;
2788   const APInt *MaxShAmt = nullptr;
2789   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2790     if (!DemandedElts[i])
2791       continue;
2792     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2793     if (!SA)
2794       return nullptr;
2795     // Shifting more than the bitwidth is not valid.
2796     const APInt &ShAmt = SA->getAPIntValue();
2797     if (ShAmt.uge(BitWidth))
2798       return nullptr;
2799     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2800       continue;
2801     MaxShAmt = &ShAmt;
2802   }
2803   return MaxShAmt;
2804 }
2805 
2806 /// Determine which bits of Op are known to be either zero or one and return
2807 /// them in Known. For vectors, the known bits are those that are shared by
2808 /// every vector element.
2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2810   EVT VT = Op.getValueType();
2811 
2812   // TOOD: Until we have a plan for how to represent demanded elements for
2813   // scalable vectors, we can just bail out for now.
2814   if (Op.getValueType().isScalableVector()) {
2815     unsigned BitWidth = Op.getScalarValueSizeInBits();
2816     return KnownBits(BitWidth);
2817   }
2818 
2819   APInt DemandedElts = VT.isVector()
2820                            ? APInt::getAllOnes(VT.getVectorNumElements())
2821                            : APInt(1, 1);
2822   return computeKnownBits(Op, DemandedElts, Depth);
2823 }
2824 
2825 /// Determine which bits of Op are known to be either zero or one and return
2826 /// them in Known. The DemandedElts argument allows us to only collect the known
2827 /// bits that are shared by the requested vector elements.
2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2829                                          unsigned Depth) const {
2830   unsigned BitWidth = Op.getScalarValueSizeInBits();
2831 
2832   KnownBits Known(BitWidth);   // Don't know anything.
2833 
2834   // TOOD: Until we have a plan for how to represent demanded elements for
2835   // scalable vectors, we can just bail out for now.
2836   if (Op.getValueType().isScalableVector())
2837     return Known;
2838 
2839   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2840     // We know all of the bits for a constant!
2841     return KnownBits::makeConstant(C->getAPIntValue());
2842   }
2843   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2844     // We know all of the bits for a constant fp!
2845     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2846   }
2847 
2848   if (Depth >= MaxRecursionDepth)
2849     return Known;  // Limit search depth.
2850 
2851   KnownBits Known2;
2852   unsigned NumElts = DemandedElts.getBitWidth();
2853   assert((!Op.getValueType().isVector() ||
2854           NumElts == Op.getValueType().getVectorNumElements()) &&
2855          "Unexpected vector size");
2856 
2857   if (!DemandedElts)
2858     return Known;  // No demanded elts, better to assume we don't know anything.
2859 
2860   unsigned Opcode = Op.getOpcode();
2861   switch (Opcode) {
2862   case ISD::BUILD_VECTOR:
2863     // Collect the known bits that are shared by every demanded vector element.
2864     Known.Zero.setAllBits(); Known.One.setAllBits();
2865     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2866       if (!DemandedElts[i])
2867         continue;
2868 
2869       SDValue SrcOp = Op.getOperand(i);
2870       Known2 = computeKnownBits(SrcOp, Depth + 1);
2871 
2872       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2873       if (SrcOp.getValueSizeInBits() != BitWidth) {
2874         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2875                "Expected BUILD_VECTOR implicit truncation");
2876         Known2 = Known2.trunc(BitWidth);
2877       }
2878 
2879       // Known bits are the values that are shared by every demanded element.
2880       Known = KnownBits::commonBits(Known, Known2);
2881 
2882       // If we don't know any bits, early out.
2883       if (Known.isUnknown())
2884         break;
2885     }
2886     break;
2887   case ISD::VECTOR_SHUFFLE: {
2888     // Collect the known bits that are shared by every vector element referenced
2889     // by the shuffle.
2890     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2891     Known.Zero.setAllBits(); Known.One.setAllBits();
2892     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2893     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2894     for (unsigned i = 0; i != NumElts; ++i) {
2895       if (!DemandedElts[i])
2896         continue;
2897 
2898       int M = SVN->getMaskElt(i);
2899       if (M < 0) {
2900         // For UNDEF elements, we don't know anything about the common state of
2901         // the shuffle result.
2902         Known.resetAll();
2903         DemandedLHS.clearAllBits();
2904         DemandedRHS.clearAllBits();
2905         break;
2906       }
2907 
2908       if ((unsigned)M < NumElts)
2909         DemandedLHS.setBit((unsigned)M % NumElts);
2910       else
2911         DemandedRHS.setBit((unsigned)M % NumElts);
2912     }
2913     // Known bits are the values that are shared by every demanded element.
2914     if (!!DemandedLHS) {
2915       SDValue LHS = Op.getOperand(0);
2916       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2917       Known = KnownBits::commonBits(Known, Known2);
2918     }
2919     // If we don't know any bits, early out.
2920     if (Known.isUnknown())
2921       break;
2922     if (!!DemandedRHS) {
2923       SDValue RHS = Op.getOperand(1);
2924       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2925       Known = KnownBits::commonBits(Known, Known2);
2926     }
2927     break;
2928   }
2929   case ISD::CONCAT_VECTORS: {
2930     // Split DemandedElts and test each of the demanded subvectors.
2931     Known.Zero.setAllBits(); Known.One.setAllBits();
2932     EVT SubVectorVT = Op.getOperand(0).getValueType();
2933     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2934     unsigned NumSubVectors = Op.getNumOperands();
2935     for (unsigned i = 0; i != NumSubVectors; ++i) {
2936       APInt DemandedSub =
2937           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2938       if (!!DemandedSub) {
2939         SDValue Sub = Op.getOperand(i);
2940         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2941         Known = KnownBits::commonBits(Known, Known2);
2942       }
2943       // If we don't know any bits, early out.
2944       if (Known.isUnknown())
2945         break;
2946     }
2947     break;
2948   }
2949   case ISD::INSERT_SUBVECTOR: {
2950     // Demand any elements from the subvector and the remainder from the src its
2951     // inserted into.
2952     SDValue Src = Op.getOperand(0);
2953     SDValue Sub = Op.getOperand(1);
2954     uint64_t Idx = Op.getConstantOperandVal(2);
2955     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2956     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2957     APInt DemandedSrcElts = DemandedElts;
2958     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2959 
2960     Known.One.setAllBits();
2961     Known.Zero.setAllBits();
2962     if (!!DemandedSubElts) {
2963       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2964       if (Known.isUnknown())
2965         break; // early-out.
2966     }
2967     if (!!DemandedSrcElts) {
2968       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2969       Known = KnownBits::commonBits(Known, Known2);
2970     }
2971     break;
2972   }
2973   case ISD::EXTRACT_SUBVECTOR: {
2974     // Offset the demanded elts by the subvector index.
2975     SDValue Src = Op.getOperand(0);
2976     // Bail until we can represent demanded elements for scalable vectors.
2977     if (Src.getValueType().isScalableVector())
2978       break;
2979     uint64_t Idx = Op.getConstantOperandVal(1);
2980     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2981     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2982     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2983     break;
2984   }
2985   case ISD::SCALAR_TO_VECTOR: {
2986     // We know about scalar_to_vector as much as we know about it source,
2987     // which becomes the first element of otherwise unknown vector.
2988     if (DemandedElts != 1)
2989       break;
2990 
2991     SDValue N0 = Op.getOperand(0);
2992     Known = computeKnownBits(N0, Depth + 1);
2993     if (N0.getValueSizeInBits() != BitWidth)
2994       Known = Known.trunc(BitWidth);
2995 
2996     break;
2997   }
2998   case ISD::BITCAST: {
2999     SDValue N0 = Op.getOperand(0);
3000     EVT SubVT = N0.getValueType();
3001     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3002 
3003     // Ignore bitcasts from unsupported types.
3004     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3005       break;
3006 
3007     // Fast handling of 'identity' bitcasts.
3008     if (BitWidth == SubBitWidth) {
3009       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3010       break;
3011     }
3012 
3013     bool IsLE = getDataLayout().isLittleEndian();
3014 
3015     // Bitcast 'small element' vector to 'large element' scalar/vector.
3016     if ((BitWidth % SubBitWidth) == 0) {
3017       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3018 
3019       // Collect known bits for the (larger) output by collecting the known
3020       // bits from each set of sub elements and shift these into place.
3021       // We need to separately call computeKnownBits for each set of
3022       // sub elements as the knownbits for each is likely to be different.
3023       unsigned SubScale = BitWidth / SubBitWidth;
3024       APInt SubDemandedElts(NumElts * SubScale, 0);
3025       for (unsigned i = 0; i != NumElts; ++i)
3026         if (DemandedElts[i])
3027           SubDemandedElts.setBit(i * SubScale);
3028 
3029       for (unsigned i = 0; i != SubScale; ++i) {
3030         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3031                          Depth + 1);
3032         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3033         Known.insertBits(Known2, SubBitWidth * Shifts);
3034       }
3035     }
3036 
3037     // Bitcast 'large element' scalar/vector to 'small element' vector.
3038     if ((SubBitWidth % BitWidth) == 0) {
3039       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3040 
3041       // Collect known bits for the (smaller) output by collecting the known
3042       // bits from the overlapping larger input elements and extracting the
3043       // sub sections we actually care about.
3044       unsigned SubScale = SubBitWidth / BitWidth;
3045       APInt SubDemandedElts =
3046           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3047       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3048 
3049       Known.Zero.setAllBits(); Known.One.setAllBits();
3050       for (unsigned i = 0; i != NumElts; ++i)
3051         if (DemandedElts[i]) {
3052           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3053           unsigned Offset = (Shifts % SubScale) * BitWidth;
3054           Known = KnownBits::commonBits(Known,
3055                                         Known2.extractBits(BitWidth, Offset));
3056           // If we don't know any bits, early out.
3057           if (Known.isUnknown())
3058             break;
3059         }
3060     }
3061     break;
3062   }
3063   case ISD::AND:
3064     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3065     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3066 
3067     Known &= Known2;
3068     break;
3069   case ISD::OR:
3070     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3071     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3072 
3073     Known |= Known2;
3074     break;
3075   case ISD::XOR:
3076     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3077     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3078 
3079     Known ^= Known2;
3080     break;
3081   case ISD::MUL: {
3082     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3083     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3084     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3085     // TODO: SelfMultiply can be poison, but not undef.
3086     SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3087         Op.getOperand(0), DemandedElts, false, Depth + 1);
3088     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3089     break;
3090   }
3091   case ISD::MULHU: {
3092     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3093     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3094     Known = KnownBits::mulhu(Known, Known2);
3095     break;
3096   }
3097   case ISD::MULHS: {
3098     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3099     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3100     Known = KnownBits::mulhs(Known, Known2);
3101     break;
3102   }
3103   case ISD::UMUL_LOHI: {
3104     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3105     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3106     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3107     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3108     if (Op.getResNo() == 0)
3109       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3110     else
3111       Known = KnownBits::mulhu(Known, Known2);
3112     break;
3113   }
3114   case ISD::SMUL_LOHI: {
3115     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3116     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3117     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3118     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3119     if (Op.getResNo() == 0)
3120       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3121     else
3122       Known = KnownBits::mulhs(Known, Known2);
3123     break;
3124   }
3125   case ISD::UDIV: {
3126     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3127     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3128     Known = KnownBits::udiv(Known, Known2);
3129     break;
3130   }
3131   case ISD::SELECT:
3132   case ISD::VSELECT:
3133     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3134     // If we don't know any bits, early out.
3135     if (Known.isUnknown())
3136       break;
3137     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3138 
3139     // Only known if known in both the LHS and RHS.
3140     Known = KnownBits::commonBits(Known, Known2);
3141     break;
3142   case ISD::SELECT_CC:
3143     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3144     // If we don't know any bits, early out.
3145     if (Known.isUnknown())
3146       break;
3147     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3148 
3149     // Only known if known in both the LHS and RHS.
3150     Known = KnownBits::commonBits(Known, Known2);
3151     break;
3152   case ISD::SMULO:
3153   case ISD::UMULO:
3154     if (Op.getResNo() != 1)
3155       break;
3156     // The boolean result conforms to getBooleanContents.
3157     // If we know the result of a setcc has the top bits zero, use this info.
3158     // We know that we have an integer-based boolean since these operations
3159     // are only available for integer.
3160     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3161             TargetLowering::ZeroOrOneBooleanContent &&
3162         BitWidth > 1)
3163       Known.Zero.setBitsFrom(1);
3164     break;
3165   case ISD::SETCC:
3166   case ISD::STRICT_FSETCC:
3167   case ISD::STRICT_FSETCCS: {
3168     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3169     // If we know the result of a setcc has the top bits zero, use this info.
3170     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3171             TargetLowering::ZeroOrOneBooleanContent &&
3172         BitWidth > 1)
3173       Known.Zero.setBitsFrom(1);
3174     break;
3175   }
3176   case ISD::SHL:
3177     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3178     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3179     Known = KnownBits::shl(Known, Known2);
3180 
3181     // Minimum shift low bits are known zero.
3182     if (const APInt *ShMinAmt =
3183             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3184       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3185     break;
3186   case ISD::SRL:
3187     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3188     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3189     Known = KnownBits::lshr(Known, Known2);
3190 
3191     // Minimum shift high bits are known zero.
3192     if (const APInt *ShMinAmt =
3193             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3194       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3195     break;
3196   case ISD::SRA:
3197     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3198     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3199     Known = KnownBits::ashr(Known, Known2);
3200     // TODO: Add minimum shift high known sign bits.
3201     break;
3202   case ISD::FSHL:
3203   case ISD::FSHR:
3204     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3205       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3206 
3207       // For fshl, 0-shift returns the 1st arg.
3208       // For fshr, 0-shift returns the 2nd arg.
3209       if (Amt == 0) {
3210         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3211                                  DemandedElts, Depth + 1);
3212         break;
3213       }
3214 
3215       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3216       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3217       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3218       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3219       if (Opcode == ISD::FSHL) {
3220         Known.One <<= Amt;
3221         Known.Zero <<= Amt;
3222         Known2.One.lshrInPlace(BitWidth - Amt);
3223         Known2.Zero.lshrInPlace(BitWidth - Amt);
3224       } else {
3225         Known.One <<= BitWidth - Amt;
3226         Known.Zero <<= BitWidth - Amt;
3227         Known2.One.lshrInPlace(Amt);
3228         Known2.Zero.lshrInPlace(Amt);
3229       }
3230       Known.One |= Known2.One;
3231       Known.Zero |= Known2.Zero;
3232     }
3233     break;
3234   case ISD::SIGN_EXTEND_INREG: {
3235     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3236     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3237     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3238     break;
3239   }
3240   case ISD::CTTZ:
3241   case ISD::CTTZ_ZERO_UNDEF: {
3242     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3243     // If we have a known 1, its position is our upper bound.
3244     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3245     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3246     Known.Zero.setBitsFrom(LowBits);
3247     break;
3248   }
3249   case ISD::CTLZ:
3250   case ISD::CTLZ_ZERO_UNDEF: {
3251     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3252     // If we have a known 1, its position is our upper bound.
3253     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3254     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3255     Known.Zero.setBitsFrom(LowBits);
3256     break;
3257   }
3258   case ISD::CTPOP: {
3259     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3260     // If we know some of the bits are zero, they can't be one.
3261     unsigned PossibleOnes = Known2.countMaxPopulation();
3262     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3263     break;
3264   }
3265   case ISD::PARITY: {
3266     // Parity returns 0 everywhere but the LSB.
3267     Known.Zero.setBitsFrom(1);
3268     break;
3269   }
3270   case ISD::LOAD: {
3271     LoadSDNode *LD = cast<LoadSDNode>(Op);
3272     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3273     if (ISD::isNON_EXTLoad(LD) && Cst) {
3274       // Determine any common known bits from the loaded constant pool value.
3275       Type *CstTy = Cst->getType();
3276       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3277         // If its a vector splat, then we can (quickly) reuse the scalar path.
3278         // NOTE: We assume all elements match and none are UNDEF.
3279         if (CstTy->isVectorTy()) {
3280           if (const Constant *Splat = Cst->getSplatValue()) {
3281             Cst = Splat;
3282             CstTy = Cst->getType();
3283           }
3284         }
3285         // TODO - do we need to handle different bitwidths?
3286         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3287           // Iterate across all vector elements finding common known bits.
3288           Known.One.setAllBits();
3289           Known.Zero.setAllBits();
3290           for (unsigned i = 0; i != NumElts; ++i) {
3291             if (!DemandedElts[i])
3292               continue;
3293             if (Constant *Elt = Cst->getAggregateElement(i)) {
3294               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3295                 const APInt &Value = CInt->getValue();
3296                 Known.One &= Value;
3297                 Known.Zero &= ~Value;
3298                 continue;
3299               }
3300               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3301                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3302                 Known.One &= Value;
3303                 Known.Zero &= ~Value;
3304                 continue;
3305               }
3306             }
3307             Known.One.clearAllBits();
3308             Known.Zero.clearAllBits();
3309             break;
3310           }
3311         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3312           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3313             Known = KnownBits::makeConstant(CInt->getValue());
3314           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3315             Known =
3316                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3317           }
3318         }
3319       }
3320     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3321       // If this is a ZEXTLoad and we are looking at the loaded value.
3322       EVT VT = LD->getMemoryVT();
3323       unsigned MemBits = VT.getScalarSizeInBits();
3324       Known.Zero.setBitsFrom(MemBits);
3325     } else if (const MDNode *Ranges = LD->getRanges()) {
3326       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3327         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3328     }
3329     break;
3330   }
3331   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3332     EVT InVT = Op.getOperand(0).getValueType();
3333     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3334     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3335     Known = Known.zext(BitWidth);
3336     break;
3337   }
3338   case ISD::ZERO_EXTEND: {
3339     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3340     Known = Known.zext(BitWidth);
3341     break;
3342   }
3343   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3344     EVT InVT = Op.getOperand(0).getValueType();
3345     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3346     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3347     // If the sign bit is known to be zero or one, then sext will extend
3348     // it to the top bits, else it will just zext.
3349     Known = Known.sext(BitWidth);
3350     break;
3351   }
3352   case ISD::SIGN_EXTEND: {
3353     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3354     // If the sign bit is known to be zero or one, then sext will extend
3355     // it to the top bits, else it will just zext.
3356     Known = Known.sext(BitWidth);
3357     break;
3358   }
3359   case ISD::ANY_EXTEND_VECTOR_INREG: {
3360     EVT InVT = Op.getOperand(0).getValueType();
3361     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3362     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3363     Known = Known.anyext(BitWidth);
3364     break;
3365   }
3366   case ISD::ANY_EXTEND: {
3367     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3368     Known = Known.anyext(BitWidth);
3369     break;
3370   }
3371   case ISD::TRUNCATE: {
3372     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3373     Known = Known.trunc(BitWidth);
3374     break;
3375   }
3376   case ISD::AssertZext: {
3377     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3378     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3379     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3380     Known.Zero |= (~InMask);
3381     Known.One  &= (~Known.Zero);
3382     break;
3383   }
3384   case ISD::AssertAlign: {
3385     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3386     assert(LogOfAlign != 0);
3387 
3388     // TODO: Should use maximum with source
3389     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3390     // well as clearing one bits.
3391     Known.Zero.setLowBits(LogOfAlign);
3392     Known.One.clearLowBits(LogOfAlign);
3393     break;
3394   }
3395   case ISD::FGETSIGN:
3396     // All bits are zero except the low bit.
3397     Known.Zero.setBitsFrom(1);
3398     break;
3399   case ISD::USUBO:
3400   case ISD::SSUBO:
3401     if (Op.getResNo() == 1) {
3402       // If we know the result of a setcc has the top bits zero, use this info.
3403       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3404               TargetLowering::ZeroOrOneBooleanContent &&
3405           BitWidth > 1)
3406         Known.Zero.setBitsFrom(1);
3407       break;
3408     }
3409     LLVM_FALLTHROUGH;
3410   case ISD::SUB:
3411   case ISD::SUBC: {
3412     assert(Op.getResNo() == 0 &&
3413            "We only compute knownbits for the difference here.");
3414 
3415     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3416     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3417     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3418                                         Known, Known2);
3419     break;
3420   }
3421   case ISD::UADDO:
3422   case ISD::SADDO:
3423   case ISD::ADDCARRY:
3424     if (Op.getResNo() == 1) {
3425       // If we know the result of a setcc has the top bits zero, use this info.
3426       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3427               TargetLowering::ZeroOrOneBooleanContent &&
3428           BitWidth > 1)
3429         Known.Zero.setBitsFrom(1);
3430       break;
3431     }
3432     LLVM_FALLTHROUGH;
3433   case ISD::ADD:
3434   case ISD::ADDC:
3435   case ISD::ADDE: {
3436     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3437 
3438     // With ADDE and ADDCARRY, a carry bit may be added in.
3439     KnownBits Carry(1);
3440     if (Opcode == ISD::ADDE)
3441       // Can't track carry from glue, set carry to unknown.
3442       Carry.resetAll();
3443     else if (Opcode == ISD::ADDCARRY)
3444       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3445       // the trouble (how often will we find a known carry bit). And I haven't
3446       // tested this very much yet, but something like this might work:
3447       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3448       //   Carry = Carry.zextOrTrunc(1, false);
3449       Carry.resetAll();
3450     else
3451       Carry.setAllZero();
3452 
3453     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3454     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3455     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3456     break;
3457   }
3458   case ISD::SREM: {
3459     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3460     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3461     Known = KnownBits::srem(Known, Known2);
3462     break;
3463   }
3464   case ISD::UREM: {
3465     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3466     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3467     Known = KnownBits::urem(Known, Known2);
3468     break;
3469   }
3470   case ISD::EXTRACT_ELEMENT: {
3471     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3472     const unsigned Index = Op.getConstantOperandVal(1);
3473     const unsigned EltBitWidth = Op.getValueSizeInBits();
3474 
3475     // Remove low part of known bits mask
3476     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3477     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3478 
3479     // Remove high part of known bit mask
3480     Known = Known.trunc(EltBitWidth);
3481     break;
3482   }
3483   case ISD::EXTRACT_VECTOR_ELT: {
3484     SDValue InVec = Op.getOperand(0);
3485     SDValue EltNo = Op.getOperand(1);
3486     EVT VecVT = InVec.getValueType();
3487     // computeKnownBits not yet implemented for scalable vectors.
3488     if (VecVT.isScalableVector())
3489       break;
3490     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3491     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3492 
3493     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3494     // anything about the extended bits.
3495     if (BitWidth > EltBitWidth)
3496       Known = Known.trunc(EltBitWidth);
3497 
3498     // If we know the element index, just demand that vector element, else for
3499     // an unknown element index, ignore DemandedElts and demand them all.
3500     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3501     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3502     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3503       DemandedSrcElts =
3504           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3505 
3506     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3507     if (BitWidth > EltBitWidth)
3508       Known = Known.anyext(BitWidth);
3509     break;
3510   }
3511   case ISD::INSERT_VECTOR_ELT: {
3512     // If we know the element index, split the demand between the
3513     // source vector and the inserted element, otherwise assume we need
3514     // the original demanded vector elements and the value.
3515     SDValue InVec = Op.getOperand(0);
3516     SDValue InVal = Op.getOperand(1);
3517     SDValue EltNo = Op.getOperand(2);
3518     bool DemandedVal = true;
3519     APInt DemandedVecElts = DemandedElts;
3520     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3521     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3522       unsigned EltIdx = CEltNo->getZExtValue();
3523       DemandedVal = !!DemandedElts[EltIdx];
3524       DemandedVecElts.clearBit(EltIdx);
3525     }
3526     Known.One.setAllBits();
3527     Known.Zero.setAllBits();
3528     if (DemandedVal) {
3529       Known2 = computeKnownBits(InVal, Depth + 1);
3530       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3531     }
3532     if (!!DemandedVecElts) {
3533       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3534       Known = KnownBits::commonBits(Known, Known2);
3535     }
3536     break;
3537   }
3538   case ISD::BITREVERSE: {
3539     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3540     Known = Known2.reverseBits();
3541     break;
3542   }
3543   case ISD::BSWAP: {
3544     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3545     Known = Known2.byteSwap();
3546     break;
3547   }
3548   case ISD::ABS: {
3549     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3550     Known = Known2.abs();
3551     break;
3552   }
3553   case ISD::USUBSAT: {
3554     // The result of usubsat will never be larger than the LHS.
3555     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3556     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3557     break;
3558   }
3559   case ISD::UMIN: {
3560     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3561     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3562     Known = KnownBits::umin(Known, Known2);
3563     break;
3564   }
3565   case ISD::UMAX: {
3566     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3567     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3568     Known = KnownBits::umax(Known, Known2);
3569     break;
3570   }
3571   case ISD::SMIN:
3572   case ISD::SMAX: {
3573     // If we have a clamp pattern, we know that the number of sign bits will be
3574     // the minimum of the clamp min/max range.
3575     bool IsMax = (Opcode == ISD::SMAX);
3576     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3577     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3578       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3579         CstHigh =
3580             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3581     if (CstLow && CstHigh) {
3582       if (!IsMax)
3583         std::swap(CstLow, CstHigh);
3584 
3585       const APInt &ValueLow = CstLow->getAPIntValue();
3586       const APInt &ValueHigh = CstHigh->getAPIntValue();
3587       if (ValueLow.sle(ValueHigh)) {
3588         unsigned LowSignBits = ValueLow.getNumSignBits();
3589         unsigned HighSignBits = ValueHigh.getNumSignBits();
3590         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3591         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3592           Known.One.setHighBits(MinSignBits);
3593           break;
3594         }
3595         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3596           Known.Zero.setHighBits(MinSignBits);
3597           break;
3598         }
3599       }
3600     }
3601 
3602     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3603     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3604     if (IsMax)
3605       Known = KnownBits::smax(Known, Known2);
3606     else
3607       Known = KnownBits::smin(Known, Known2);
3608     break;
3609   }
3610   case ISD::FP_TO_UINT_SAT: {
3611     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3612     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3613     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3614     break;
3615   }
3616   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3617     if (Op.getResNo() == 1) {
3618       // The boolean result conforms to getBooleanContents.
3619       // If we know the result of a setcc has the top bits zero, use this info.
3620       // We know that we have an integer-based boolean since these operations
3621       // are only available for integer.
3622       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3623               TargetLowering::ZeroOrOneBooleanContent &&
3624           BitWidth > 1)
3625         Known.Zero.setBitsFrom(1);
3626       break;
3627     }
3628     LLVM_FALLTHROUGH;
3629   case ISD::ATOMIC_CMP_SWAP:
3630   case ISD::ATOMIC_SWAP:
3631   case ISD::ATOMIC_LOAD_ADD:
3632   case ISD::ATOMIC_LOAD_SUB:
3633   case ISD::ATOMIC_LOAD_AND:
3634   case ISD::ATOMIC_LOAD_CLR:
3635   case ISD::ATOMIC_LOAD_OR:
3636   case ISD::ATOMIC_LOAD_XOR:
3637   case ISD::ATOMIC_LOAD_NAND:
3638   case ISD::ATOMIC_LOAD_MIN:
3639   case ISD::ATOMIC_LOAD_MAX:
3640   case ISD::ATOMIC_LOAD_UMIN:
3641   case ISD::ATOMIC_LOAD_UMAX:
3642   case ISD::ATOMIC_LOAD: {
3643     unsigned MemBits =
3644         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3645     // If we are looking at the loaded value.
3646     if (Op.getResNo() == 0) {
3647       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3648         Known.Zero.setBitsFrom(MemBits);
3649     }
3650     break;
3651   }
3652   case ISD::FrameIndex:
3653   case ISD::TargetFrameIndex:
3654     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3655                                        Known, getMachineFunction());
3656     break;
3657 
3658   default:
3659     if (Opcode < ISD::BUILTIN_OP_END)
3660       break;
3661     LLVM_FALLTHROUGH;
3662   case ISD::INTRINSIC_WO_CHAIN:
3663   case ISD::INTRINSIC_W_CHAIN:
3664   case ISD::INTRINSIC_VOID:
3665     // Allow the target to implement this method for its nodes.
3666     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3667     break;
3668   }
3669 
3670   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3671   return Known;
3672 }
3673 
3674 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3675                                                              SDValue N1) const {
3676   // X + 0 never overflow
3677   if (isNullConstant(N1))
3678     return OFK_Never;
3679 
3680   KnownBits N1Known = computeKnownBits(N1);
3681   if (N1Known.Zero.getBoolValue()) {
3682     KnownBits N0Known = computeKnownBits(N0);
3683 
3684     bool overflow;
3685     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3686     if (!overflow)
3687       return OFK_Never;
3688   }
3689 
3690   // mulhi + 1 never overflow
3691   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3692       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3693     return OFK_Never;
3694 
3695   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3696     KnownBits N0Known = computeKnownBits(N0);
3697 
3698     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3699       return OFK_Never;
3700   }
3701 
3702   return OFK_Sometime;
3703 }
3704 
3705 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3706   EVT OpVT = Val.getValueType();
3707   unsigned BitWidth = OpVT.getScalarSizeInBits();
3708 
3709   // Is the constant a known power of 2?
3710   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3711     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3712 
3713   // A left-shift of a constant one will have exactly one bit set because
3714   // shifting the bit off the end is undefined.
3715   if (Val.getOpcode() == ISD::SHL) {
3716     auto *C = isConstOrConstSplat(Val.getOperand(0));
3717     if (C && C->getAPIntValue() == 1)
3718       return true;
3719   }
3720 
3721   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3722   // one bit set.
3723   if (Val.getOpcode() == ISD::SRL) {
3724     auto *C = isConstOrConstSplat(Val.getOperand(0));
3725     if (C && C->getAPIntValue().isSignMask())
3726       return true;
3727   }
3728 
3729   // Are all operands of a build vector constant powers of two?
3730   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3731     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3732           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3733             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3734           return false;
3735         }))
3736       return true;
3737 
3738   // Is the operand of a splat vector a constant power of two?
3739   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3740     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3741       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3742         return true;
3743 
3744   // More could be done here, though the above checks are enough
3745   // to handle some common cases.
3746 
3747   // Fall back to computeKnownBits to catch other known cases.
3748   KnownBits Known = computeKnownBits(Val);
3749   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3750 }
3751 
3752 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3753   EVT VT = Op.getValueType();
3754 
3755   // TODO: Assume we don't know anything for now.
3756   if (VT.isScalableVector())
3757     return 1;
3758 
3759   APInt DemandedElts = VT.isVector()
3760                            ? APInt::getAllOnes(VT.getVectorNumElements())
3761                            : APInt(1, 1);
3762   return ComputeNumSignBits(Op, DemandedElts, Depth);
3763 }
3764 
3765 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3766                                           unsigned Depth) const {
3767   EVT VT = Op.getValueType();
3768   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3769   unsigned VTBits = VT.getScalarSizeInBits();
3770   unsigned NumElts = DemandedElts.getBitWidth();
3771   unsigned Tmp, Tmp2;
3772   unsigned FirstAnswer = 1;
3773 
3774   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3775     const APInt &Val = C->getAPIntValue();
3776     return Val.getNumSignBits();
3777   }
3778 
3779   if (Depth >= MaxRecursionDepth)
3780     return 1;  // Limit search depth.
3781 
3782   if (!DemandedElts || VT.isScalableVector())
3783     return 1;  // No demanded elts, better to assume we don't know anything.
3784 
3785   unsigned Opcode = Op.getOpcode();
3786   switch (Opcode) {
3787   default: break;
3788   case ISD::AssertSext:
3789     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3790     return VTBits-Tmp+1;
3791   case ISD::AssertZext:
3792     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3793     return VTBits-Tmp;
3794 
3795   case ISD::BUILD_VECTOR:
3796     Tmp = VTBits;
3797     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3798       if (!DemandedElts[i])
3799         continue;
3800 
3801       SDValue SrcOp = Op.getOperand(i);
3802       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3803 
3804       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3805       if (SrcOp.getValueSizeInBits() != VTBits) {
3806         assert(SrcOp.getValueSizeInBits() > VTBits &&
3807                "Expected BUILD_VECTOR implicit truncation");
3808         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3809         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3810       }
3811       Tmp = std::min(Tmp, Tmp2);
3812     }
3813     return Tmp;
3814 
3815   case ISD::VECTOR_SHUFFLE: {
3816     // Collect the minimum number of sign bits that are shared by every vector
3817     // element referenced by the shuffle.
3818     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3819     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3820     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3821     for (unsigned i = 0; i != NumElts; ++i) {
3822       int M = SVN->getMaskElt(i);
3823       if (!DemandedElts[i])
3824         continue;
3825       // For UNDEF elements, we don't know anything about the common state of
3826       // the shuffle result.
3827       if (M < 0)
3828         return 1;
3829       if ((unsigned)M < NumElts)
3830         DemandedLHS.setBit((unsigned)M % NumElts);
3831       else
3832         DemandedRHS.setBit((unsigned)M % NumElts);
3833     }
3834     Tmp = std::numeric_limits<unsigned>::max();
3835     if (!!DemandedLHS)
3836       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3837     if (!!DemandedRHS) {
3838       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3839       Tmp = std::min(Tmp, Tmp2);
3840     }
3841     // If we don't know anything, early out and try computeKnownBits fall-back.
3842     if (Tmp == 1)
3843       break;
3844     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3845     return Tmp;
3846   }
3847 
3848   case ISD::BITCAST: {
3849     SDValue N0 = Op.getOperand(0);
3850     EVT SrcVT = N0.getValueType();
3851     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3852 
3853     // Ignore bitcasts from unsupported types..
3854     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3855       break;
3856 
3857     // Fast handling of 'identity' bitcasts.
3858     if (VTBits == SrcBits)
3859       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3860 
3861     bool IsLE = getDataLayout().isLittleEndian();
3862 
3863     // Bitcast 'large element' scalar/vector to 'small element' vector.
3864     if ((SrcBits % VTBits) == 0) {
3865       assert(VT.isVector() && "Expected bitcast to vector");
3866 
3867       unsigned Scale = SrcBits / VTBits;
3868       APInt SrcDemandedElts =
3869           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3870 
3871       // Fast case - sign splat can be simply split across the small elements.
3872       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3873       if (Tmp == SrcBits)
3874         return VTBits;
3875 
3876       // Slow case - determine how far the sign extends into each sub-element.
3877       Tmp2 = VTBits;
3878       for (unsigned i = 0; i != NumElts; ++i)
3879         if (DemandedElts[i]) {
3880           unsigned SubOffset = i % Scale;
3881           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3882           SubOffset = SubOffset * VTBits;
3883           if (Tmp <= SubOffset)
3884             return 1;
3885           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3886         }
3887       return Tmp2;
3888     }
3889     break;
3890   }
3891 
3892   case ISD::FP_TO_SINT_SAT:
3893     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3894     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3895     return VTBits - Tmp + 1;
3896   case ISD::SIGN_EXTEND:
3897     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3898     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3899   case ISD::SIGN_EXTEND_INREG:
3900     // Max of the input and what this extends.
3901     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3902     Tmp = VTBits-Tmp+1;
3903     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3904     return std::max(Tmp, Tmp2);
3905   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3906     SDValue Src = Op.getOperand(0);
3907     EVT SrcVT = Src.getValueType();
3908     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3909     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3910     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3911   }
3912   case ISD::SRA:
3913     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3914     // SRA X, C -> adds C sign bits.
3915     if (const APInt *ShAmt =
3916             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3917       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3918     return Tmp;
3919   case ISD::SHL:
3920     if (const APInt *ShAmt =
3921             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3922       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3923       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3924       if (ShAmt->ult(Tmp))
3925         return Tmp - ShAmt->getZExtValue();
3926     }
3927     break;
3928   case ISD::AND:
3929   case ISD::OR:
3930   case ISD::XOR:    // NOT is handled here.
3931     // Logical binary ops preserve the number of sign bits at the worst.
3932     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3933     if (Tmp != 1) {
3934       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3935       FirstAnswer = std::min(Tmp, Tmp2);
3936       // We computed what we know about the sign bits as our first
3937       // answer. Now proceed to the generic code that uses
3938       // computeKnownBits, and pick whichever answer is better.
3939     }
3940     break;
3941 
3942   case ISD::SELECT:
3943   case ISD::VSELECT:
3944     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3945     if (Tmp == 1) return 1;  // Early out.
3946     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3947     return std::min(Tmp, Tmp2);
3948   case ISD::SELECT_CC:
3949     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3950     if (Tmp == 1) return 1;  // Early out.
3951     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3952     return std::min(Tmp, Tmp2);
3953 
3954   case ISD::SMIN:
3955   case ISD::SMAX: {
3956     // If we have a clamp pattern, we know that the number of sign bits will be
3957     // the minimum of the clamp min/max range.
3958     bool IsMax = (Opcode == ISD::SMAX);
3959     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3960     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3961       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3962         CstHigh =
3963             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3964     if (CstLow && CstHigh) {
3965       if (!IsMax)
3966         std::swap(CstLow, CstHigh);
3967       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3968         Tmp = CstLow->getAPIntValue().getNumSignBits();
3969         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3970         return std::min(Tmp, Tmp2);
3971       }
3972     }
3973 
3974     // Fallback - just get the minimum number of sign bits of the operands.
3975     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3976     if (Tmp == 1)
3977       return 1;  // Early out.
3978     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3979     return std::min(Tmp, Tmp2);
3980   }
3981   case ISD::UMIN:
3982   case ISD::UMAX:
3983     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3984     if (Tmp == 1)
3985       return 1;  // Early out.
3986     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3987     return std::min(Tmp, Tmp2);
3988   case ISD::SADDO:
3989   case ISD::UADDO:
3990   case ISD::SSUBO:
3991   case ISD::USUBO:
3992   case ISD::SMULO:
3993   case ISD::UMULO:
3994     if (Op.getResNo() != 1)
3995       break;
3996     // The boolean result conforms to getBooleanContents.  Fall through.
3997     // If setcc returns 0/-1, all bits are sign bits.
3998     // We know that we have an integer-based boolean since these operations
3999     // are only available for integer.
4000     if (TLI->getBooleanContents(VT.isVector(), false) ==
4001         TargetLowering::ZeroOrNegativeOneBooleanContent)
4002       return VTBits;
4003     break;
4004   case ISD::SETCC:
4005   case ISD::STRICT_FSETCC:
4006   case ISD::STRICT_FSETCCS: {
4007     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4008     // If setcc returns 0/-1, all bits are sign bits.
4009     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4010         TargetLowering::ZeroOrNegativeOneBooleanContent)
4011       return VTBits;
4012     break;
4013   }
4014   case ISD::ROTL:
4015   case ISD::ROTR:
4016     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4017 
4018     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4019     if (Tmp == VTBits)
4020       return VTBits;
4021 
4022     if (ConstantSDNode *C =
4023             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4024       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4025 
4026       // Handle rotate right by N like a rotate left by 32-N.
4027       if (Opcode == ISD::ROTR)
4028         RotAmt = (VTBits - RotAmt) % VTBits;
4029 
4030       // If we aren't rotating out all of the known-in sign bits, return the
4031       // number that are left.  This handles rotl(sext(x), 1) for example.
4032       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4033     }
4034     break;
4035   case ISD::ADD:
4036   case ISD::ADDC:
4037     // Add can have at most one carry bit.  Thus we know that the output
4038     // is, at worst, one more bit than the inputs.
4039     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4040     if (Tmp == 1) return 1; // Early out.
4041 
4042     // Special case decrementing a value (ADD X, -1):
4043     if (ConstantSDNode *CRHS =
4044             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4045       if (CRHS->isAllOnes()) {
4046         KnownBits Known =
4047             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4048 
4049         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4050         // sign bits set.
4051         if ((Known.Zero | 1).isAllOnes())
4052           return VTBits;
4053 
4054         // If we are subtracting one from a positive number, there is no carry
4055         // out of the result.
4056         if (Known.isNonNegative())
4057           return Tmp;
4058       }
4059 
4060     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4061     if (Tmp2 == 1) return 1; // Early out.
4062     return std::min(Tmp, Tmp2) - 1;
4063   case ISD::SUB:
4064     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4065     if (Tmp2 == 1) return 1; // Early out.
4066 
4067     // Handle NEG.
4068     if (ConstantSDNode *CLHS =
4069             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4070       if (CLHS->isZero()) {
4071         KnownBits Known =
4072             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4073         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4074         // sign bits set.
4075         if ((Known.Zero | 1).isAllOnes())
4076           return VTBits;
4077 
4078         // If the input is known to be positive (the sign bit is known clear),
4079         // the output of the NEG has the same number of sign bits as the input.
4080         if (Known.isNonNegative())
4081           return Tmp2;
4082 
4083         // Otherwise, we treat this like a SUB.
4084       }
4085 
4086     // Sub can have at most one carry bit.  Thus we know that the output
4087     // is, at worst, one more bit than the inputs.
4088     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4089     if (Tmp == 1) return 1; // Early out.
4090     return std::min(Tmp, Tmp2) - 1;
4091   case ISD::MUL: {
4092     // The output of the Mul can be at most twice the valid bits in the inputs.
4093     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4094     if (SignBitsOp0 == 1)
4095       break;
4096     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4097     if (SignBitsOp1 == 1)
4098       break;
4099     unsigned OutValidBits =
4100         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4101     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4102   }
4103   case ISD::SREM:
4104     // The sign bit is the LHS's sign bit, except when the result of the
4105     // remainder is zero. The magnitude of the result should be less than or
4106     // equal to the magnitude of the LHS. Therefore, the result should have
4107     // at least as many sign bits as the left hand side.
4108     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4109   case ISD::TRUNCATE: {
4110     // Check if the sign bits of source go down as far as the truncated value.
4111     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4112     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4113     if (NumSrcSignBits > (NumSrcBits - VTBits))
4114       return NumSrcSignBits - (NumSrcBits - VTBits);
4115     break;
4116   }
4117   case ISD::EXTRACT_ELEMENT: {
4118     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4119     const int BitWidth = Op.getValueSizeInBits();
4120     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4121 
4122     // Get reverse index (starting from 1), Op1 value indexes elements from
4123     // little end. Sign starts at big end.
4124     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4125 
4126     // If the sign portion ends in our element the subtraction gives correct
4127     // result. Otherwise it gives either negative or > bitwidth result
4128     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4129   }
4130   case ISD::INSERT_VECTOR_ELT: {
4131     // If we know the element index, split the demand between the
4132     // source vector and the inserted element, otherwise assume we need
4133     // the original demanded vector elements and the value.
4134     SDValue InVec = Op.getOperand(0);
4135     SDValue InVal = Op.getOperand(1);
4136     SDValue EltNo = Op.getOperand(2);
4137     bool DemandedVal = true;
4138     APInt DemandedVecElts = DemandedElts;
4139     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4140     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4141       unsigned EltIdx = CEltNo->getZExtValue();
4142       DemandedVal = !!DemandedElts[EltIdx];
4143       DemandedVecElts.clearBit(EltIdx);
4144     }
4145     Tmp = std::numeric_limits<unsigned>::max();
4146     if (DemandedVal) {
4147       // TODO - handle implicit truncation of inserted elements.
4148       if (InVal.getScalarValueSizeInBits() != VTBits)
4149         break;
4150       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4151       Tmp = std::min(Tmp, Tmp2);
4152     }
4153     if (!!DemandedVecElts) {
4154       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4155       Tmp = std::min(Tmp, Tmp2);
4156     }
4157     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4158     return Tmp;
4159   }
4160   case ISD::EXTRACT_VECTOR_ELT: {
4161     SDValue InVec = Op.getOperand(0);
4162     SDValue EltNo = Op.getOperand(1);
4163     EVT VecVT = InVec.getValueType();
4164     // ComputeNumSignBits not yet implemented for scalable vectors.
4165     if (VecVT.isScalableVector())
4166       break;
4167     const unsigned BitWidth = Op.getValueSizeInBits();
4168     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4169     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4170 
4171     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4172     // anything about sign bits. But if the sizes match we can derive knowledge
4173     // about sign bits from the vector operand.
4174     if (BitWidth != EltBitWidth)
4175       break;
4176 
4177     // If we know the element index, just demand that vector element, else for
4178     // an unknown element index, ignore DemandedElts and demand them all.
4179     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4180     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4181     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4182       DemandedSrcElts =
4183           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4184 
4185     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4186   }
4187   case ISD::EXTRACT_SUBVECTOR: {
4188     // Offset the demanded elts by the subvector index.
4189     SDValue Src = Op.getOperand(0);
4190     // Bail until we can represent demanded elements for scalable vectors.
4191     if (Src.getValueType().isScalableVector())
4192       break;
4193     uint64_t Idx = Op.getConstantOperandVal(1);
4194     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4195     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4196     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4197   }
4198   case ISD::CONCAT_VECTORS: {
4199     // Determine the minimum number of sign bits across all demanded
4200     // elts of the input vectors. Early out if the result is already 1.
4201     Tmp = std::numeric_limits<unsigned>::max();
4202     EVT SubVectorVT = Op.getOperand(0).getValueType();
4203     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4204     unsigned NumSubVectors = Op.getNumOperands();
4205     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4206       APInt DemandedSub =
4207           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4208       if (!DemandedSub)
4209         continue;
4210       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4211       Tmp = std::min(Tmp, Tmp2);
4212     }
4213     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4214     return Tmp;
4215   }
4216   case ISD::INSERT_SUBVECTOR: {
4217     // Demand any elements from the subvector and the remainder from the src its
4218     // inserted into.
4219     SDValue Src = Op.getOperand(0);
4220     SDValue Sub = Op.getOperand(1);
4221     uint64_t Idx = Op.getConstantOperandVal(2);
4222     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4223     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4224     APInt DemandedSrcElts = DemandedElts;
4225     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4226 
4227     Tmp = std::numeric_limits<unsigned>::max();
4228     if (!!DemandedSubElts) {
4229       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4230       if (Tmp == 1)
4231         return 1; // early-out
4232     }
4233     if (!!DemandedSrcElts) {
4234       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4235       Tmp = std::min(Tmp, Tmp2);
4236     }
4237     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4238     return Tmp;
4239   }
4240   case ISD::ATOMIC_CMP_SWAP:
4241   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4242   case ISD::ATOMIC_SWAP:
4243   case ISD::ATOMIC_LOAD_ADD:
4244   case ISD::ATOMIC_LOAD_SUB:
4245   case ISD::ATOMIC_LOAD_AND:
4246   case ISD::ATOMIC_LOAD_CLR:
4247   case ISD::ATOMIC_LOAD_OR:
4248   case ISD::ATOMIC_LOAD_XOR:
4249   case ISD::ATOMIC_LOAD_NAND:
4250   case ISD::ATOMIC_LOAD_MIN:
4251   case ISD::ATOMIC_LOAD_MAX:
4252   case ISD::ATOMIC_LOAD_UMIN:
4253   case ISD::ATOMIC_LOAD_UMAX:
4254   case ISD::ATOMIC_LOAD: {
4255     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4256     // If we are looking at the loaded value.
4257     if (Op.getResNo() == 0) {
4258       if (Tmp == VTBits)
4259         return 1; // early-out
4260       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4261         return VTBits - Tmp + 1;
4262       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4263         return VTBits - Tmp;
4264     }
4265     break;
4266   }
4267   }
4268 
4269   // If we are looking at the loaded value of the SDNode.
4270   if (Op.getResNo() == 0) {
4271     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4272     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4273       unsigned ExtType = LD->getExtensionType();
4274       switch (ExtType) {
4275       default: break;
4276       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4277         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4278         return VTBits - Tmp + 1;
4279       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4280         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4281         return VTBits - Tmp;
4282       case ISD::NON_EXTLOAD:
4283         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4284           // We only need to handle vectors - computeKnownBits should handle
4285           // scalar cases.
4286           Type *CstTy = Cst->getType();
4287           if (CstTy->isVectorTy() &&
4288               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4289               VTBits == CstTy->getScalarSizeInBits()) {
4290             Tmp = VTBits;
4291             for (unsigned i = 0; i != NumElts; ++i) {
4292               if (!DemandedElts[i])
4293                 continue;
4294               if (Constant *Elt = Cst->getAggregateElement(i)) {
4295                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4296                   const APInt &Value = CInt->getValue();
4297                   Tmp = std::min(Tmp, Value.getNumSignBits());
4298                   continue;
4299                 }
4300                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4301                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4302                   Tmp = std::min(Tmp, Value.getNumSignBits());
4303                   continue;
4304                 }
4305               }
4306               // Unknown type. Conservatively assume no bits match sign bit.
4307               return 1;
4308             }
4309             return Tmp;
4310           }
4311         }
4312         break;
4313       }
4314     }
4315   }
4316 
4317   // Allow the target to implement this method for its nodes.
4318   if (Opcode >= ISD::BUILTIN_OP_END ||
4319       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4320       Opcode == ISD::INTRINSIC_W_CHAIN ||
4321       Opcode == ISD::INTRINSIC_VOID) {
4322     unsigned NumBits =
4323         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4324     if (NumBits > 1)
4325       FirstAnswer = std::max(FirstAnswer, NumBits);
4326   }
4327 
4328   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4329   // use this information.
4330   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4331   return std::max(FirstAnswer, Known.countMinSignBits());
4332 }
4333 
4334 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4335                                                  unsigned Depth) const {
4336   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4337   return Op.getScalarValueSizeInBits() - SignBits + 1;
4338 }
4339 
4340 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4341                                                  const APInt &DemandedElts,
4342                                                  unsigned Depth) const {
4343   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4344   return Op.getScalarValueSizeInBits() - SignBits + 1;
4345 }
4346 
4347 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4348                                                     unsigned Depth) const {
4349   // Early out for FREEZE.
4350   if (Op.getOpcode() == ISD::FREEZE)
4351     return true;
4352 
4353   // TODO: Assume we don't know anything for now.
4354   EVT VT = Op.getValueType();
4355   if (VT.isScalableVector())
4356     return false;
4357 
4358   APInt DemandedElts = VT.isVector()
4359                            ? APInt::getAllOnes(VT.getVectorNumElements())
4360                            : APInt(1, 1);
4361   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4362 }
4363 
4364 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4365                                                     const APInt &DemandedElts,
4366                                                     bool PoisonOnly,
4367                                                     unsigned Depth) const {
4368   unsigned Opcode = Op.getOpcode();
4369 
4370   // Early out for FREEZE.
4371   if (Opcode == ISD::FREEZE)
4372     return true;
4373 
4374   if (Depth >= MaxRecursionDepth)
4375     return false; // Limit search depth.
4376 
4377   if (isIntOrFPConstant(Op))
4378     return true;
4379 
4380   switch (Opcode) {
4381   case ISD::UNDEF:
4382     return PoisonOnly;
4383 
4384   case ISD::BUILD_VECTOR:
4385     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4386     // this shouldn't affect the result.
4387     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4388       if (!DemandedElts[i])
4389         continue;
4390       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4391                                             Depth + 1))
4392         return false;
4393     }
4394     return true;
4395 
4396   // TODO: Search for noundef attributes from library functions.
4397 
4398   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4399 
4400   default:
4401     // Allow the target to implement this method for its nodes.
4402     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4403         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4404       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4405           Op, DemandedElts, *this, PoisonOnly, Depth);
4406     break;
4407   }
4408 
4409   return false;
4410 }
4411 
4412 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4413   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4414       !isa<ConstantSDNode>(Op.getOperand(1)))
4415     return false;
4416 
4417   if (Op.getOpcode() == ISD::OR &&
4418       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4419     return false;
4420 
4421   return true;
4422 }
4423 
4424 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4425   // If we're told that NaNs won't happen, assume they won't.
4426   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4427     return true;
4428 
4429   if (Depth >= MaxRecursionDepth)
4430     return false; // Limit search depth.
4431 
4432   // TODO: Handle vectors.
4433   // If the value is a constant, we can obviously see if it is a NaN or not.
4434   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4435     return !C->getValueAPF().isNaN() ||
4436            (SNaN && !C->getValueAPF().isSignaling());
4437   }
4438 
4439   unsigned Opcode = Op.getOpcode();
4440   switch (Opcode) {
4441   case ISD::FADD:
4442   case ISD::FSUB:
4443   case ISD::FMUL:
4444   case ISD::FDIV:
4445   case ISD::FREM:
4446   case ISD::FSIN:
4447   case ISD::FCOS: {
4448     if (SNaN)
4449       return true;
4450     // TODO: Need isKnownNeverInfinity
4451     return false;
4452   }
4453   case ISD::FCANONICALIZE:
4454   case ISD::FEXP:
4455   case ISD::FEXP2:
4456   case ISD::FTRUNC:
4457   case ISD::FFLOOR:
4458   case ISD::FCEIL:
4459   case ISD::FROUND:
4460   case ISD::FROUNDEVEN:
4461   case ISD::FRINT:
4462   case ISD::FNEARBYINT: {
4463     if (SNaN)
4464       return true;
4465     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4466   }
4467   case ISD::FABS:
4468   case ISD::FNEG:
4469   case ISD::FCOPYSIGN: {
4470     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4471   }
4472   case ISD::SELECT:
4473     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4474            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4475   case ISD::FP_EXTEND:
4476   case ISD::FP_ROUND: {
4477     if (SNaN)
4478       return true;
4479     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4480   }
4481   case ISD::SINT_TO_FP:
4482   case ISD::UINT_TO_FP:
4483     return true;
4484   case ISD::FMA:
4485   case ISD::FMAD: {
4486     if (SNaN)
4487       return true;
4488     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4489            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4490            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4491   }
4492   case ISD::FSQRT: // Need is known positive
4493   case ISD::FLOG:
4494   case ISD::FLOG2:
4495   case ISD::FLOG10:
4496   case ISD::FPOWI:
4497   case ISD::FPOW: {
4498     if (SNaN)
4499       return true;
4500     // TODO: Refine on operand
4501     return false;
4502   }
4503   case ISD::FMINNUM:
4504   case ISD::FMAXNUM: {
4505     // Only one needs to be known not-nan, since it will be returned if the
4506     // other ends up being one.
4507     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4508            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4509   }
4510   case ISD::FMINNUM_IEEE:
4511   case ISD::FMAXNUM_IEEE: {
4512     if (SNaN)
4513       return true;
4514     // This can return a NaN if either operand is an sNaN, or if both operands
4515     // are NaN.
4516     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4517             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4518            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4519             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4520   }
4521   case ISD::FMINIMUM:
4522   case ISD::FMAXIMUM: {
4523     // TODO: Does this quiet or return the origina NaN as-is?
4524     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4525            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4526   }
4527   case ISD::EXTRACT_VECTOR_ELT: {
4528     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4529   }
4530   default:
4531     if (Opcode >= ISD::BUILTIN_OP_END ||
4532         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4533         Opcode == ISD::INTRINSIC_W_CHAIN ||
4534         Opcode == ISD::INTRINSIC_VOID) {
4535       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4536     }
4537 
4538     return false;
4539   }
4540 }
4541 
4542 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4543   assert(Op.getValueType().isFloatingPoint() &&
4544          "Floating point type expected");
4545 
4546   // If the value is a constant, we can obviously see if it is a zero or not.
4547   // TODO: Add BuildVector support.
4548   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4549     return !C->isZero();
4550   return false;
4551 }
4552 
4553 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4554   assert(!Op.getValueType().isFloatingPoint() &&
4555          "Floating point types unsupported - use isKnownNeverZeroFloat");
4556 
4557   // If the value is a constant, we can obviously see if it is a zero or not.
4558   if (ISD::matchUnaryPredicate(Op,
4559                                [](ConstantSDNode *C) { return !C->isZero(); }))
4560     return true;
4561 
4562   // TODO: Recognize more cases here.
4563   switch (Op.getOpcode()) {
4564   default: break;
4565   case ISD::OR:
4566     if (isKnownNeverZero(Op.getOperand(1)) ||
4567         isKnownNeverZero(Op.getOperand(0)))
4568       return true;
4569     break;
4570   }
4571 
4572   return false;
4573 }
4574 
4575 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4576   // Check the obvious case.
4577   if (A == B) return true;
4578 
4579   // For for negative and positive zero.
4580   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4581     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4582       if (CA->isZero() && CB->isZero()) return true;
4583 
4584   // Otherwise they may not be equal.
4585   return false;
4586 }
4587 
4588 // FIXME: unify with llvm::haveNoCommonBitsSet.
4589 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4590   assert(A.getValueType() == B.getValueType() &&
4591          "Values must have the same type");
4592   // Match masked merge pattern (X & ~M) op (Y & M)
4593   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4594     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4595       if (isBitwiseNot(NotM, true)) {
4596         SDValue NotOperand = NotM->getOperand(0);
4597         return NotOperand == And->getOperand(0) ||
4598                NotOperand == And->getOperand(1);
4599       }
4600       return false;
4601     };
4602     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4603         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4604         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4605         MatchNoCommonBitsPattern(B->getOperand(1), A))
4606       return true;
4607   }
4608   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4609                                         computeKnownBits(B));
4610 }
4611 
4612 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4613                                SelectionDAG &DAG) {
4614   if (cast<ConstantSDNode>(Step)->isZero())
4615     return DAG.getConstant(0, DL, VT);
4616 
4617   return SDValue();
4618 }
4619 
4620 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4621                                 ArrayRef<SDValue> Ops,
4622                                 SelectionDAG &DAG) {
4623   int NumOps = Ops.size();
4624   assert(NumOps != 0 && "Can't build an empty vector!");
4625   assert(!VT.isScalableVector() &&
4626          "BUILD_VECTOR cannot be used with scalable types");
4627   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4628          "Incorrect element count in BUILD_VECTOR!");
4629 
4630   // BUILD_VECTOR of UNDEFs is UNDEF.
4631   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4632     return DAG.getUNDEF(VT);
4633 
4634   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4635   SDValue IdentitySrc;
4636   bool IsIdentity = true;
4637   for (int i = 0; i != NumOps; ++i) {
4638     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4639         Ops[i].getOperand(0).getValueType() != VT ||
4640         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4641         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4642         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4643       IsIdentity = false;
4644       break;
4645     }
4646     IdentitySrc = Ops[i].getOperand(0);
4647   }
4648   if (IsIdentity)
4649     return IdentitySrc;
4650 
4651   return SDValue();
4652 }
4653 
4654 /// Try to simplify vector concatenation to an input value, undef, or build
4655 /// vector.
4656 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4657                                   ArrayRef<SDValue> Ops,
4658                                   SelectionDAG &DAG) {
4659   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4660   assert(llvm::all_of(Ops,
4661                       [Ops](SDValue Op) {
4662                         return Ops[0].getValueType() == Op.getValueType();
4663                       }) &&
4664          "Concatenation of vectors with inconsistent value types!");
4665   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4666              VT.getVectorElementCount() &&
4667          "Incorrect element count in vector concatenation!");
4668 
4669   if (Ops.size() == 1)
4670     return Ops[0];
4671 
4672   // Concat of UNDEFs is UNDEF.
4673   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4674     return DAG.getUNDEF(VT);
4675 
4676   // Scan the operands and look for extract operations from a single source
4677   // that correspond to insertion at the same location via this concatenation:
4678   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4679   SDValue IdentitySrc;
4680   bool IsIdentity = true;
4681   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4682     SDValue Op = Ops[i];
4683     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4684     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4685         Op.getOperand(0).getValueType() != VT ||
4686         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4687         Op.getConstantOperandVal(1) != IdentityIndex) {
4688       IsIdentity = false;
4689       break;
4690     }
4691     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4692            "Unexpected identity source vector for concat of extracts");
4693     IdentitySrc = Op.getOperand(0);
4694   }
4695   if (IsIdentity) {
4696     assert(IdentitySrc && "Failed to set source vector of extracts");
4697     return IdentitySrc;
4698   }
4699 
4700   // The code below this point is only designed to work for fixed width
4701   // vectors, so we bail out for now.
4702   if (VT.isScalableVector())
4703     return SDValue();
4704 
4705   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4706   // simplified to one big BUILD_VECTOR.
4707   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4708   EVT SVT = VT.getScalarType();
4709   SmallVector<SDValue, 16> Elts;
4710   for (SDValue Op : Ops) {
4711     EVT OpVT = Op.getValueType();
4712     if (Op.isUndef())
4713       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4714     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4715       Elts.append(Op->op_begin(), Op->op_end());
4716     else
4717       return SDValue();
4718   }
4719 
4720   // BUILD_VECTOR requires all inputs to be of the same type, find the
4721   // maximum type and extend them all.
4722   for (SDValue Op : Elts)
4723     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4724 
4725   if (SVT.bitsGT(VT.getScalarType())) {
4726     for (SDValue &Op : Elts) {
4727       if (Op.isUndef())
4728         Op = DAG.getUNDEF(SVT);
4729       else
4730         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4731                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4732                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4733     }
4734   }
4735 
4736   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4737   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4738   return V;
4739 }
4740 
4741 /// Gets or creates the specified node.
4742 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4743   FoldingSetNodeID ID;
4744   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4745   void *IP = nullptr;
4746   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4747     return SDValue(E, 0);
4748 
4749   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4750                               getVTList(VT));
4751   CSEMap.InsertNode(N, IP);
4752 
4753   InsertNode(N);
4754   SDValue V = SDValue(N, 0);
4755   NewSDValueDbgMsg(V, "Creating new node: ", this);
4756   return V;
4757 }
4758 
4759 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4760                               SDValue Operand) {
4761   SDNodeFlags Flags;
4762   if (Inserter)
4763     Flags = Inserter->getFlags();
4764   return getNode(Opcode, DL, VT, Operand, Flags);
4765 }
4766 
4767 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4768                               SDValue Operand, const SDNodeFlags Flags) {
4769   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4770          "Operand is DELETED_NODE!");
4771   // Constant fold unary operations with an integer constant operand. Even
4772   // opaque constant will be folded, because the folding of unary operations
4773   // doesn't create new constants with different values. Nevertheless, the
4774   // opaque flag is preserved during folding to prevent future folding with
4775   // other constants.
4776   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4777     const APInt &Val = C->getAPIntValue();
4778     switch (Opcode) {
4779     default: break;
4780     case ISD::SIGN_EXTEND:
4781       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4782                          C->isTargetOpcode(), C->isOpaque());
4783     case ISD::TRUNCATE:
4784       if (C->isOpaque())
4785         break;
4786       LLVM_FALLTHROUGH;
4787     case ISD::ZERO_EXTEND:
4788       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4789                          C->isTargetOpcode(), C->isOpaque());
4790     case ISD::ANY_EXTEND:
4791       // Some targets like RISCV prefer to sign extend some types.
4792       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4793         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4794                            C->isTargetOpcode(), C->isOpaque());
4795       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4796                          C->isTargetOpcode(), C->isOpaque());
4797     case ISD::UINT_TO_FP:
4798     case ISD::SINT_TO_FP: {
4799       APFloat apf(EVTToAPFloatSemantics(VT),
4800                   APInt::getZero(VT.getSizeInBits()));
4801       (void)apf.convertFromAPInt(Val,
4802                                  Opcode==ISD::SINT_TO_FP,
4803                                  APFloat::rmNearestTiesToEven);
4804       return getConstantFP(apf, DL, VT);
4805     }
4806     case ISD::BITCAST:
4807       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4808         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4809       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4810         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4811       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4812         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4813       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4814         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4815       break;
4816     case ISD::ABS:
4817       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4818                          C->isOpaque());
4819     case ISD::BITREVERSE:
4820       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4821                          C->isOpaque());
4822     case ISD::BSWAP:
4823       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4824                          C->isOpaque());
4825     case ISD::CTPOP:
4826       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4827                          C->isOpaque());
4828     case ISD::CTLZ:
4829     case ISD::CTLZ_ZERO_UNDEF:
4830       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4831                          C->isOpaque());
4832     case ISD::CTTZ:
4833     case ISD::CTTZ_ZERO_UNDEF:
4834       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4835                          C->isOpaque());
4836     case ISD::FP16_TO_FP: {
4837       bool Ignored;
4838       APFloat FPV(APFloat::IEEEhalf(),
4839                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4840 
4841       // This can return overflow, underflow, or inexact; we don't care.
4842       // FIXME need to be more flexible about rounding mode.
4843       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4844                         APFloat::rmNearestTiesToEven, &Ignored);
4845       return getConstantFP(FPV, DL, VT);
4846     }
4847     case ISD::STEP_VECTOR: {
4848       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4849         return V;
4850       break;
4851     }
4852     }
4853   }
4854 
4855   // Constant fold unary operations with a floating point constant operand.
4856   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4857     APFloat V = C->getValueAPF();    // make copy
4858     switch (Opcode) {
4859     case ISD::FNEG:
4860       V.changeSign();
4861       return getConstantFP(V, DL, VT);
4862     case ISD::FABS:
4863       V.clearSign();
4864       return getConstantFP(V, DL, VT);
4865     case ISD::FCEIL: {
4866       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4867       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4868         return getConstantFP(V, DL, VT);
4869       break;
4870     }
4871     case ISD::FTRUNC: {
4872       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4873       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4874         return getConstantFP(V, DL, VT);
4875       break;
4876     }
4877     case ISD::FFLOOR: {
4878       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4879       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4880         return getConstantFP(V, DL, VT);
4881       break;
4882     }
4883     case ISD::FP_EXTEND: {
4884       bool ignored;
4885       // This can return overflow, underflow, or inexact; we don't care.
4886       // FIXME need to be more flexible about rounding mode.
4887       (void)V.convert(EVTToAPFloatSemantics(VT),
4888                       APFloat::rmNearestTiesToEven, &ignored);
4889       return getConstantFP(V, DL, VT);
4890     }
4891     case ISD::FP_TO_SINT:
4892     case ISD::FP_TO_UINT: {
4893       bool ignored;
4894       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4895       // FIXME need to be more flexible about rounding mode.
4896       APFloat::opStatus s =
4897           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4898       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4899         break;
4900       return getConstant(IntVal, DL, VT);
4901     }
4902     case ISD::BITCAST:
4903       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4904         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4905       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4906         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4907       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4908         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4909       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4910         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4911       break;
4912     case ISD::FP_TO_FP16: {
4913       bool Ignored;
4914       // This can return overflow, underflow, or inexact; we don't care.
4915       // FIXME need to be more flexible about rounding mode.
4916       (void)V.convert(APFloat::IEEEhalf(),
4917                       APFloat::rmNearestTiesToEven, &Ignored);
4918       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4919     }
4920     }
4921   }
4922 
4923   // Constant fold unary operations with a vector integer or float operand.
4924   switch (Opcode) {
4925   default:
4926     // FIXME: Entirely reasonable to perform folding of other unary
4927     // operations here as the need arises.
4928     break;
4929   case ISD::FNEG:
4930   case ISD::FABS:
4931   case ISD::FCEIL:
4932   case ISD::FTRUNC:
4933   case ISD::FFLOOR:
4934   case ISD::FP_EXTEND:
4935   case ISD::FP_TO_SINT:
4936   case ISD::FP_TO_UINT:
4937   case ISD::TRUNCATE:
4938   case ISD::ANY_EXTEND:
4939   case ISD::ZERO_EXTEND:
4940   case ISD::SIGN_EXTEND:
4941   case ISD::UINT_TO_FP:
4942   case ISD::SINT_TO_FP:
4943   case ISD::ABS:
4944   case ISD::BITREVERSE:
4945   case ISD::BSWAP:
4946   case ISD::CTLZ:
4947   case ISD::CTLZ_ZERO_UNDEF:
4948   case ISD::CTTZ:
4949   case ISD::CTTZ_ZERO_UNDEF:
4950   case ISD::CTPOP: {
4951     SDValue Ops = {Operand};
4952     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
4953       return Fold;
4954   }
4955   }
4956 
4957   unsigned OpOpcode = Operand.getNode()->getOpcode();
4958   switch (Opcode) {
4959   case ISD::STEP_VECTOR:
4960     assert(VT.isScalableVector() &&
4961            "STEP_VECTOR can only be used with scalable types");
4962     assert(OpOpcode == ISD::TargetConstant &&
4963            VT.getVectorElementType() == Operand.getValueType() &&
4964            "Unexpected step operand");
4965     break;
4966   case ISD::FREEZE:
4967     assert(VT == Operand.getValueType() && "Unexpected VT!");
4968     break;
4969   case ISD::TokenFactor:
4970   case ISD::MERGE_VALUES:
4971   case ISD::CONCAT_VECTORS:
4972     return Operand;         // Factor, merge or concat of one node?  No need.
4973   case ISD::BUILD_VECTOR: {
4974     // Attempt to simplify BUILD_VECTOR.
4975     SDValue Ops[] = {Operand};
4976     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4977       return V;
4978     break;
4979   }
4980   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4981   case ISD::FP_EXTEND:
4982     assert(VT.isFloatingPoint() &&
4983            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4984     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4985     assert((!VT.isVector() ||
4986             VT.getVectorElementCount() ==
4987             Operand.getValueType().getVectorElementCount()) &&
4988            "Vector element count mismatch!");
4989     assert(Operand.getValueType().bitsLT(VT) &&
4990            "Invalid fpext node, dst < src!");
4991     if (Operand.isUndef())
4992       return getUNDEF(VT);
4993     break;
4994   case ISD::FP_TO_SINT:
4995   case ISD::FP_TO_UINT:
4996     if (Operand.isUndef())
4997       return getUNDEF(VT);
4998     break;
4999   case ISD::SINT_TO_FP:
5000   case ISD::UINT_TO_FP:
5001     // [us]itofp(undef) = 0, because the result value is bounded.
5002     if (Operand.isUndef())
5003       return getConstantFP(0.0, DL, VT);
5004     break;
5005   case ISD::SIGN_EXTEND:
5006     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5007            "Invalid SIGN_EXTEND!");
5008     assert(VT.isVector() == Operand.getValueType().isVector() &&
5009            "SIGN_EXTEND result type type should be vector iff the operand "
5010            "type is vector!");
5011     if (Operand.getValueType() == VT) return Operand;   // noop extension
5012     assert((!VT.isVector() ||
5013             VT.getVectorElementCount() ==
5014                 Operand.getValueType().getVectorElementCount()) &&
5015            "Vector element count mismatch!");
5016     assert(Operand.getValueType().bitsLT(VT) &&
5017            "Invalid sext node, dst < src!");
5018     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5019       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5020     if (OpOpcode == ISD::UNDEF)
5021       // sext(undef) = 0, because the top bits will all be the same.
5022       return getConstant(0, DL, VT);
5023     break;
5024   case ISD::ZERO_EXTEND:
5025     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5026            "Invalid ZERO_EXTEND!");
5027     assert(VT.isVector() == Operand.getValueType().isVector() &&
5028            "ZERO_EXTEND result type type should be vector iff the operand "
5029            "type is vector!");
5030     if (Operand.getValueType() == VT) return Operand;   // noop extension
5031     assert((!VT.isVector() ||
5032             VT.getVectorElementCount() ==
5033                 Operand.getValueType().getVectorElementCount()) &&
5034            "Vector element count mismatch!");
5035     assert(Operand.getValueType().bitsLT(VT) &&
5036            "Invalid zext node, dst < src!");
5037     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5038       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5039     if (OpOpcode == ISD::UNDEF)
5040       // zext(undef) = 0, because the top bits will be zero.
5041       return getConstant(0, DL, VT);
5042     break;
5043   case ISD::ANY_EXTEND:
5044     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5045            "Invalid ANY_EXTEND!");
5046     assert(VT.isVector() == Operand.getValueType().isVector() &&
5047            "ANY_EXTEND result type type should be vector iff the operand "
5048            "type is vector!");
5049     if (Operand.getValueType() == VT) return Operand;   // noop extension
5050     assert((!VT.isVector() ||
5051             VT.getVectorElementCount() ==
5052                 Operand.getValueType().getVectorElementCount()) &&
5053            "Vector element count mismatch!");
5054     assert(Operand.getValueType().bitsLT(VT) &&
5055            "Invalid anyext node, dst < src!");
5056 
5057     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5058         OpOpcode == ISD::ANY_EXTEND)
5059       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5060       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5061     if (OpOpcode == ISD::UNDEF)
5062       return getUNDEF(VT);
5063 
5064     // (ext (trunc x)) -> x
5065     if (OpOpcode == ISD::TRUNCATE) {
5066       SDValue OpOp = Operand.getOperand(0);
5067       if (OpOp.getValueType() == VT) {
5068         transferDbgValues(Operand, OpOp);
5069         return OpOp;
5070       }
5071     }
5072     break;
5073   case ISD::TRUNCATE:
5074     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5075            "Invalid TRUNCATE!");
5076     assert(VT.isVector() == Operand.getValueType().isVector() &&
5077            "TRUNCATE result type type should be vector iff the operand "
5078            "type is vector!");
5079     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5080     assert((!VT.isVector() ||
5081             VT.getVectorElementCount() ==
5082                 Operand.getValueType().getVectorElementCount()) &&
5083            "Vector element count mismatch!");
5084     assert(Operand.getValueType().bitsGT(VT) &&
5085            "Invalid truncate node, src < dst!");
5086     if (OpOpcode == ISD::TRUNCATE)
5087       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5088     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5089         OpOpcode == ISD::ANY_EXTEND) {
5090       // If the source is smaller than the dest, we still need an extend.
5091       if (Operand.getOperand(0).getValueType().getScalarType()
5092             .bitsLT(VT.getScalarType()))
5093         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5094       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5095         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5096       return Operand.getOperand(0);
5097     }
5098     if (OpOpcode == ISD::UNDEF)
5099       return getUNDEF(VT);
5100     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5101       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5102     break;
5103   case ISD::ANY_EXTEND_VECTOR_INREG:
5104   case ISD::ZERO_EXTEND_VECTOR_INREG:
5105   case ISD::SIGN_EXTEND_VECTOR_INREG:
5106     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5107     assert(Operand.getValueType().bitsLE(VT) &&
5108            "The input must be the same size or smaller than the result.");
5109     assert(VT.getVectorMinNumElements() <
5110                Operand.getValueType().getVectorMinNumElements() &&
5111            "The destination vector type must have fewer lanes than the input.");
5112     break;
5113   case ISD::ABS:
5114     assert(VT.isInteger() && VT == Operand.getValueType() &&
5115            "Invalid ABS!");
5116     if (OpOpcode == ISD::UNDEF)
5117       return getUNDEF(VT);
5118     break;
5119   case ISD::BSWAP:
5120     assert(VT.isInteger() && VT == Operand.getValueType() &&
5121            "Invalid BSWAP!");
5122     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5123            "BSWAP types must be a multiple of 16 bits!");
5124     if (OpOpcode == ISD::UNDEF)
5125       return getUNDEF(VT);
5126     // bswap(bswap(X)) -> X.
5127     if (OpOpcode == ISD::BSWAP)
5128       return Operand.getOperand(0);
5129     break;
5130   case ISD::BITREVERSE:
5131     assert(VT.isInteger() && VT == Operand.getValueType() &&
5132            "Invalid BITREVERSE!");
5133     if (OpOpcode == ISD::UNDEF)
5134       return getUNDEF(VT);
5135     break;
5136   case ISD::BITCAST:
5137     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5138            "Cannot BITCAST between types of different sizes!");
5139     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5140     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5141       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5142     if (OpOpcode == ISD::UNDEF)
5143       return getUNDEF(VT);
5144     break;
5145   case ISD::SCALAR_TO_VECTOR:
5146     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5147            (VT.getVectorElementType() == Operand.getValueType() ||
5148             (VT.getVectorElementType().isInteger() &&
5149              Operand.getValueType().isInteger() &&
5150              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5151            "Illegal SCALAR_TO_VECTOR node!");
5152     if (OpOpcode == ISD::UNDEF)
5153       return getUNDEF(VT);
5154     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5155     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5156         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5157         Operand.getConstantOperandVal(1) == 0 &&
5158         Operand.getOperand(0).getValueType() == VT)
5159       return Operand.getOperand(0);
5160     break;
5161   case ISD::FNEG:
5162     // Negation of an unknown bag of bits is still completely undefined.
5163     if (OpOpcode == ISD::UNDEF)
5164       return getUNDEF(VT);
5165 
5166     if (OpOpcode == ISD::FNEG)  // --X -> X
5167       return Operand.getOperand(0);
5168     break;
5169   case ISD::FABS:
5170     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5171       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5172     break;
5173   case ISD::VSCALE:
5174     assert(VT == Operand.getValueType() && "Unexpected VT!");
5175     break;
5176   case ISD::CTPOP:
5177     if (Operand.getValueType().getScalarType() == MVT::i1)
5178       return Operand;
5179     break;
5180   case ISD::CTLZ:
5181   case ISD::CTTZ:
5182     if (Operand.getValueType().getScalarType() == MVT::i1)
5183       return getNOT(DL, Operand, Operand.getValueType());
5184     break;
5185   case ISD::VECREDUCE_SMIN:
5186   case ISD::VECREDUCE_UMAX:
5187     if (Operand.getValueType().getScalarType() == MVT::i1)
5188       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5189     break;
5190   case ISD::VECREDUCE_SMAX:
5191   case ISD::VECREDUCE_UMIN:
5192     if (Operand.getValueType().getScalarType() == MVT::i1)
5193       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5194     break;
5195   }
5196 
5197   SDNode *N;
5198   SDVTList VTs = getVTList(VT);
5199   SDValue Ops[] = {Operand};
5200   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5201     FoldingSetNodeID ID;
5202     AddNodeIDNode(ID, Opcode, VTs, Ops);
5203     void *IP = nullptr;
5204     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5205       E->intersectFlagsWith(Flags);
5206       return SDValue(E, 0);
5207     }
5208 
5209     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5210     N->setFlags(Flags);
5211     createOperands(N, Ops);
5212     CSEMap.InsertNode(N, IP);
5213   } else {
5214     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5215     createOperands(N, Ops);
5216   }
5217 
5218   InsertNode(N);
5219   SDValue V = SDValue(N, 0);
5220   NewSDValueDbgMsg(V, "Creating new node: ", this);
5221   return V;
5222 }
5223 
5224 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5225                                        const APInt &C2) {
5226   switch (Opcode) {
5227   case ISD::ADD:  return C1 + C2;
5228   case ISD::SUB:  return C1 - C2;
5229   case ISD::MUL:  return C1 * C2;
5230   case ISD::AND:  return C1 & C2;
5231   case ISD::OR:   return C1 | C2;
5232   case ISD::XOR:  return C1 ^ C2;
5233   case ISD::SHL:  return C1 << C2;
5234   case ISD::SRL:  return C1.lshr(C2);
5235   case ISD::SRA:  return C1.ashr(C2);
5236   case ISD::ROTL: return C1.rotl(C2);
5237   case ISD::ROTR: return C1.rotr(C2);
5238   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5239   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5240   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5241   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5242   case ISD::SADDSAT: return C1.sadd_sat(C2);
5243   case ISD::UADDSAT: return C1.uadd_sat(C2);
5244   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5245   case ISD::USUBSAT: return C1.usub_sat(C2);
5246   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5247   case ISD::USHLSAT: return C1.ushl_sat(C2);
5248   case ISD::UDIV:
5249     if (!C2.getBoolValue())
5250       break;
5251     return C1.udiv(C2);
5252   case ISD::UREM:
5253     if (!C2.getBoolValue())
5254       break;
5255     return C1.urem(C2);
5256   case ISD::SDIV:
5257     if (!C2.getBoolValue())
5258       break;
5259     return C1.sdiv(C2);
5260   case ISD::SREM:
5261     if (!C2.getBoolValue())
5262       break;
5263     return C1.srem(C2);
5264   case ISD::MULHS: {
5265     unsigned FullWidth = C1.getBitWidth() * 2;
5266     APInt C1Ext = C1.sext(FullWidth);
5267     APInt C2Ext = C2.sext(FullWidth);
5268     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5269   }
5270   case ISD::MULHU: {
5271     unsigned FullWidth = C1.getBitWidth() * 2;
5272     APInt C1Ext = C1.zext(FullWidth);
5273     APInt C2Ext = C2.zext(FullWidth);
5274     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5275   }
5276   }
5277   return llvm::None;
5278 }
5279 
5280 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5281                                        const GlobalAddressSDNode *GA,
5282                                        const SDNode *N2) {
5283   if (GA->getOpcode() != ISD::GlobalAddress)
5284     return SDValue();
5285   if (!TLI->isOffsetFoldingLegal(GA))
5286     return SDValue();
5287   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5288   if (!C2)
5289     return SDValue();
5290   int64_t Offset = C2->getSExtValue();
5291   switch (Opcode) {
5292   case ISD::ADD: break;
5293   case ISD::SUB: Offset = -uint64_t(Offset); break;
5294   default: return SDValue();
5295   }
5296   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5297                           GA->getOffset() + uint64_t(Offset));
5298 }
5299 
5300 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5301   switch (Opcode) {
5302   case ISD::SDIV:
5303   case ISD::UDIV:
5304   case ISD::SREM:
5305   case ISD::UREM: {
5306     // If a divisor is zero/undef or any element of a divisor vector is
5307     // zero/undef, the whole op is undef.
5308     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5309     SDValue Divisor = Ops[1];
5310     if (Divisor.isUndef() || isNullConstant(Divisor))
5311       return true;
5312 
5313     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5314            llvm::any_of(Divisor->op_values(),
5315                         [](SDValue V) { return V.isUndef() ||
5316                                         isNullConstant(V); });
5317     // TODO: Handle signed overflow.
5318   }
5319   // TODO: Handle oversized shifts.
5320   default:
5321     return false;
5322   }
5323 }
5324 
5325 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5326                                              EVT VT, ArrayRef<SDValue> Ops) {
5327   // If the opcode is a target-specific ISD node, there's nothing we can
5328   // do here and the operand rules may not line up with the below, so
5329   // bail early.
5330   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5331   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5332   // foldCONCAT_VECTORS in getNode before this is called.
5333   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5334     return SDValue();
5335 
5336   unsigned NumOps = Ops.size();
5337   if (NumOps == 0)
5338     return SDValue();
5339 
5340   if (isUndef(Opcode, Ops))
5341     return getUNDEF(VT);
5342 
5343   // Handle binops special cases.
5344   if (NumOps == 2) {
5345     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5346       return CFP;
5347 
5348     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5349       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5350         if (C1->isOpaque() || C2->isOpaque())
5351           return SDValue();
5352 
5353         Optional<APInt> FoldAttempt =
5354             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5355         if (!FoldAttempt)
5356           return SDValue();
5357 
5358         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5359         assert((!Folded || !VT.isVector()) &&
5360                "Can't fold vectors ops with scalar operands");
5361         return Folded;
5362       }
5363     }
5364 
5365     // fold (add Sym, c) -> Sym+c
5366     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5367       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5368     if (TLI->isCommutativeBinOp(Opcode))
5369       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5370         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5371   }
5372 
5373   // This is for vector folding only from here on.
5374   if (!VT.isVector())
5375     return SDValue();
5376 
5377   ElementCount NumElts = VT.getVectorElementCount();
5378 
5379   // See if we can fold through bitcasted integer ops.
5380   // TODO: Can we handle undef elements?
5381   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5382       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5383       Ops[0].getOpcode() == ISD::BITCAST &&
5384       Ops[1].getOpcode() == ISD::BITCAST) {
5385     SDValue N1 = peekThroughBitcasts(Ops[0]);
5386     SDValue N2 = peekThroughBitcasts(Ops[1]);
5387     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5388     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5389     EVT BVVT = N1.getValueType();
5390     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5391       bool IsLE = getDataLayout().isLittleEndian();
5392       unsigned EltBits = VT.getScalarSizeInBits();
5393       SmallVector<APInt> RawBits1, RawBits2;
5394       BitVector UndefElts1, UndefElts2;
5395       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5396           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5397           UndefElts1.none() && UndefElts2.none()) {
5398         SmallVector<APInt> RawBits;
5399         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5400           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5401           if (!Fold)
5402             break;
5403           RawBits.push_back(Fold.getValue());
5404         }
5405         if (RawBits.size() == NumElts.getFixedValue()) {
5406           // We have constant folded, but we need to cast this again back to
5407           // the original (possibly legalized) type.
5408           SmallVector<APInt> DstBits;
5409           BitVector DstUndefs;
5410           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5411                                            DstBits, RawBits, DstUndefs,
5412                                            BitVector(RawBits.size(), false));
5413           EVT BVEltVT = BV1->getOperand(0).getValueType();
5414           unsigned BVEltBits = BVEltVT.getSizeInBits();
5415           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5416           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5417             if (DstUndefs[I])
5418               continue;
5419             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5420           }
5421           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5422         }
5423       }
5424     }
5425   }
5426 
5427   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5428   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5429   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5430       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5431     APInt RHSVal;
5432     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5433       APInt NewStep = Opcode == ISD::MUL
5434                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5435                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5436       return getStepVector(DL, VT, NewStep);
5437     }
5438   }
5439 
5440   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5441     return !Op.getValueType().isVector() ||
5442            Op.getValueType().getVectorElementCount() == NumElts;
5443   };
5444 
5445   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5446     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5447            Op.getOpcode() == ISD::BUILD_VECTOR ||
5448            Op.getOpcode() == ISD::SPLAT_VECTOR;
5449   };
5450 
5451   // All operands must be vector types with the same number of elements as
5452   // the result type and must be either UNDEF or a build/splat vector
5453   // or UNDEF scalars.
5454   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5455       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5456     return SDValue();
5457 
5458   // If we are comparing vectors, then the result needs to be a i1 boolean
5459   // that is then sign-extended back to the legal result type.
5460   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5461 
5462   // Find legal integer scalar type for constant promotion and
5463   // ensure that its scalar size is at least as large as source.
5464   EVT LegalSVT = VT.getScalarType();
5465   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5466     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5467     if (LegalSVT.bitsLT(VT.getScalarType()))
5468       return SDValue();
5469   }
5470 
5471   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5472   // only have one operand to check. For fixed-length vector types we may have
5473   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5474   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5475 
5476   // Constant fold each scalar lane separately.
5477   SmallVector<SDValue, 4> ScalarResults;
5478   for (unsigned I = 0; I != NumVectorElts; I++) {
5479     SmallVector<SDValue, 4> ScalarOps;
5480     for (SDValue Op : Ops) {
5481       EVT InSVT = Op.getValueType().getScalarType();
5482       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5483           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5484         if (Op.isUndef())
5485           ScalarOps.push_back(getUNDEF(InSVT));
5486         else
5487           ScalarOps.push_back(Op);
5488         continue;
5489       }
5490 
5491       SDValue ScalarOp =
5492           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5493       EVT ScalarVT = ScalarOp.getValueType();
5494 
5495       // Build vector (integer) scalar operands may need implicit
5496       // truncation - do this before constant folding.
5497       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5498         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5499 
5500       ScalarOps.push_back(ScalarOp);
5501     }
5502 
5503     // Constant fold the scalar operands.
5504     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5505 
5506     // Legalize the (integer) scalar constant if necessary.
5507     if (LegalSVT != SVT)
5508       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5509 
5510     // Scalar folding only succeeded if the result is a constant or UNDEF.
5511     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5512         ScalarResult.getOpcode() != ISD::ConstantFP)
5513       return SDValue();
5514     ScalarResults.push_back(ScalarResult);
5515   }
5516 
5517   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5518                                    : getBuildVector(VT, DL, ScalarResults);
5519   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5520   return V;
5521 }
5522 
5523 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5524                                          EVT VT, SDValue N1, SDValue N2) {
5525   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5526   //       should. That will require dealing with a potentially non-default
5527   //       rounding mode, checking the "opStatus" return value from the APFloat
5528   //       math calculations, and possibly other variations.
5529   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5530   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5531   if (N1CFP && N2CFP) {
5532     APFloat C1 = N1CFP->getValueAPF(); // make copy
5533     const APFloat &C2 = N2CFP->getValueAPF();
5534     switch (Opcode) {
5535     case ISD::FADD:
5536       C1.add(C2, APFloat::rmNearestTiesToEven);
5537       return getConstantFP(C1, DL, VT);
5538     case ISD::FSUB:
5539       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5540       return getConstantFP(C1, DL, VT);
5541     case ISD::FMUL:
5542       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5543       return getConstantFP(C1, DL, VT);
5544     case ISD::FDIV:
5545       C1.divide(C2, APFloat::rmNearestTiesToEven);
5546       return getConstantFP(C1, DL, VT);
5547     case ISD::FREM:
5548       C1.mod(C2);
5549       return getConstantFP(C1, DL, VT);
5550     case ISD::FCOPYSIGN:
5551       C1.copySign(C2);
5552       return getConstantFP(C1, DL, VT);
5553     case ISD::FMINNUM:
5554       return getConstantFP(minnum(C1, C2), DL, VT);
5555     case ISD::FMAXNUM:
5556       return getConstantFP(maxnum(C1, C2), DL, VT);
5557     case ISD::FMINIMUM:
5558       return getConstantFP(minimum(C1, C2), DL, VT);
5559     case ISD::FMAXIMUM:
5560       return getConstantFP(maximum(C1, C2), DL, VT);
5561     default: break;
5562     }
5563   }
5564   if (N1CFP && Opcode == ISD::FP_ROUND) {
5565     APFloat C1 = N1CFP->getValueAPF();    // make copy
5566     bool Unused;
5567     // This can return overflow, underflow, or inexact; we don't care.
5568     // FIXME need to be more flexible about rounding mode.
5569     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5570                       &Unused);
5571     return getConstantFP(C1, DL, VT);
5572   }
5573 
5574   switch (Opcode) {
5575   case ISD::FSUB:
5576     // -0.0 - undef --> undef (consistent with "fneg undef")
5577     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5578       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5579         return getUNDEF(VT);
5580     LLVM_FALLTHROUGH;
5581 
5582   case ISD::FADD:
5583   case ISD::FMUL:
5584   case ISD::FDIV:
5585   case ISD::FREM:
5586     // If both operands are undef, the result is undef. If 1 operand is undef,
5587     // the result is NaN. This should match the behavior of the IR optimizer.
5588     if (N1.isUndef() && N2.isUndef())
5589       return getUNDEF(VT);
5590     if (N1.isUndef() || N2.isUndef())
5591       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5592   }
5593   return SDValue();
5594 }
5595 
5596 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5597   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5598 
5599   // There's no need to assert on a byte-aligned pointer. All pointers are at
5600   // least byte aligned.
5601   if (A == Align(1))
5602     return Val;
5603 
5604   FoldingSetNodeID ID;
5605   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5606   ID.AddInteger(A.value());
5607 
5608   void *IP = nullptr;
5609   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5610     return SDValue(E, 0);
5611 
5612   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5613                                          Val.getValueType(), A);
5614   createOperands(N, {Val});
5615 
5616   CSEMap.InsertNode(N, IP);
5617   InsertNode(N);
5618 
5619   SDValue V(N, 0);
5620   NewSDValueDbgMsg(V, "Creating new node: ", this);
5621   return V;
5622 }
5623 
5624 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5625                               SDValue N1, SDValue N2) {
5626   SDNodeFlags Flags;
5627   if (Inserter)
5628     Flags = Inserter->getFlags();
5629   return getNode(Opcode, DL, VT, N1, N2, Flags);
5630 }
5631 
5632 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5633                                                 SDValue &N2) const {
5634   if (!TLI->isCommutativeBinOp(Opcode))
5635     return;
5636 
5637   // Canonicalize:
5638   //   binop(const, nonconst) -> binop(nonconst, const)
5639   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5640   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5641   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5642   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5643   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5644     std::swap(N1, N2);
5645 
5646   // Canonicalize:
5647   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5648   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5649            N2.getOpcode() == ISD::STEP_VECTOR)
5650     std::swap(N1, N2);
5651 }
5652 
5653 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5654                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5655   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5656          N2.getOpcode() != ISD::DELETED_NODE &&
5657          "Operand is DELETED_NODE!");
5658 
5659   canonicalizeCommutativeBinop(Opcode, N1, N2);
5660 
5661   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5662   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5663 
5664   // Don't allow undefs in vector splats - we might be returning N2 when folding
5665   // to zero etc.
5666   ConstantSDNode *N2CV =
5667       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5668 
5669   switch (Opcode) {
5670   default: break;
5671   case ISD::TokenFactor:
5672     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5673            N2.getValueType() == MVT::Other && "Invalid token factor!");
5674     // Fold trivial token factors.
5675     if (N1.getOpcode() == ISD::EntryToken) return N2;
5676     if (N2.getOpcode() == ISD::EntryToken) return N1;
5677     if (N1 == N2) return N1;
5678     break;
5679   case ISD::BUILD_VECTOR: {
5680     // Attempt to simplify BUILD_VECTOR.
5681     SDValue Ops[] = {N1, N2};
5682     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5683       return V;
5684     break;
5685   }
5686   case ISD::CONCAT_VECTORS: {
5687     SDValue Ops[] = {N1, N2};
5688     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5689       return V;
5690     break;
5691   }
5692   case ISD::AND:
5693     assert(VT.isInteger() && "This operator does not apply to FP types!");
5694     assert(N1.getValueType() == N2.getValueType() &&
5695            N1.getValueType() == VT && "Binary operator types must match!");
5696     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5697     // worth handling here.
5698     if (N2CV && N2CV->isZero())
5699       return N2;
5700     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5701       return N1;
5702     break;
5703   case ISD::OR:
5704   case ISD::XOR:
5705   case ISD::ADD:
5706   case ISD::SUB:
5707     assert(VT.isInteger() && "This operator does not apply to FP types!");
5708     assert(N1.getValueType() == N2.getValueType() &&
5709            N1.getValueType() == VT && "Binary operator types must match!");
5710     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5711     // it's worth handling here.
5712     if (N2CV && N2CV->isZero())
5713       return N1;
5714     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5715         VT.getVectorElementType() == MVT::i1)
5716       return getNode(ISD::XOR, DL, VT, N1, N2);
5717     break;
5718   case ISD::MUL:
5719     assert(VT.isInteger() && "This operator does not apply to FP types!");
5720     assert(N1.getValueType() == N2.getValueType() &&
5721            N1.getValueType() == VT && "Binary operator types must match!");
5722     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5723       return getNode(ISD::AND, DL, VT, N1, N2);
5724     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5725       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5726       const APInt &N2CImm = N2C->getAPIntValue();
5727       return getVScale(DL, VT, MulImm * N2CImm);
5728     }
5729     break;
5730   case ISD::UDIV:
5731   case ISD::UREM:
5732   case ISD::MULHU:
5733   case ISD::MULHS:
5734   case ISD::SDIV:
5735   case ISD::SREM:
5736   case ISD::SADDSAT:
5737   case ISD::SSUBSAT:
5738   case ISD::UADDSAT:
5739   case ISD::USUBSAT:
5740     assert(VT.isInteger() && "This operator does not apply to FP types!");
5741     assert(N1.getValueType() == N2.getValueType() &&
5742            N1.getValueType() == VT && "Binary operator types must match!");
5743     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5744       // fold (add_sat x, y) -> (or x, y) for bool types.
5745       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5746         return getNode(ISD::OR, DL, VT, N1, N2);
5747       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5748       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5749         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5750     }
5751     break;
5752   case ISD::SMIN:
5753   case ISD::UMAX:
5754     assert(VT.isInteger() && "This operator does not apply to FP types!");
5755     assert(N1.getValueType() == N2.getValueType() &&
5756            N1.getValueType() == VT && "Binary operator types must match!");
5757     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5758       return getNode(ISD::OR, DL, VT, N1, N2);
5759     break;
5760   case ISD::SMAX:
5761   case ISD::UMIN:
5762     assert(VT.isInteger() && "This operator does not apply to FP types!");
5763     assert(N1.getValueType() == N2.getValueType() &&
5764            N1.getValueType() == VT && "Binary operator types must match!");
5765     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5766       return getNode(ISD::AND, DL, VT, N1, N2);
5767     break;
5768   case ISD::FADD:
5769   case ISD::FSUB:
5770   case ISD::FMUL:
5771   case ISD::FDIV:
5772   case ISD::FREM:
5773     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5774     assert(N1.getValueType() == N2.getValueType() &&
5775            N1.getValueType() == VT && "Binary operator types must match!");
5776     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5777       return V;
5778     break;
5779   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5780     assert(N1.getValueType() == VT &&
5781            N1.getValueType().isFloatingPoint() &&
5782            N2.getValueType().isFloatingPoint() &&
5783            "Invalid FCOPYSIGN!");
5784     break;
5785   case ISD::SHL:
5786     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5787       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5788       const APInt &ShiftImm = N2C->getAPIntValue();
5789       return getVScale(DL, VT, MulImm << ShiftImm);
5790     }
5791     LLVM_FALLTHROUGH;
5792   case ISD::SRA:
5793   case ISD::SRL:
5794     if (SDValue V = simplifyShift(N1, N2))
5795       return V;
5796     LLVM_FALLTHROUGH;
5797   case ISD::ROTL:
5798   case ISD::ROTR:
5799     assert(VT == N1.getValueType() &&
5800            "Shift operators return type must be the same as their first arg");
5801     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5802            "Shifts only work on integers");
5803     assert((!VT.isVector() || VT == N2.getValueType()) &&
5804            "Vector shift amounts must be in the same as their first arg");
5805     // Verify that the shift amount VT is big enough to hold valid shift
5806     // amounts.  This catches things like trying to shift an i1024 value by an
5807     // i8, which is easy to fall into in generic code that uses
5808     // TLI.getShiftAmount().
5809     assert(N2.getValueType().getScalarSizeInBits() >=
5810                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5811            "Invalid use of small shift amount with oversized value!");
5812 
5813     // Always fold shifts of i1 values so the code generator doesn't need to
5814     // handle them.  Since we know the size of the shift has to be less than the
5815     // size of the value, the shift/rotate count is guaranteed to be zero.
5816     if (VT == MVT::i1)
5817       return N1;
5818     if (N2CV && N2CV->isZero())
5819       return N1;
5820     break;
5821   case ISD::FP_ROUND:
5822     assert(VT.isFloatingPoint() &&
5823            N1.getValueType().isFloatingPoint() &&
5824            VT.bitsLE(N1.getValueType()) &&
5825            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5826            "Invalid FP_ROUND!");
5827     if (N1.getValueType() == VT) return N1;  // noop conversion.
5828     break;
5829   case ISD::AssertSext:
5830   case ISD::AssertZext: {
5831     EVT EVT = cast<VTSDNode>(N2)->getVT();
5832     assert(VT == N1.getValueType() && "Not an inreg extend!");
5833     assert(VT.isInteger() && EVT.isInteger() &&
5834            "Cannot *_EXTEND_INREG FP types");
5835     assert(!EVT.isVector() &&
5836            "AssertSExt/AssertZExt type should be the vector element type "
5837            "rather than the vector type!");
5838     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5839     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5840     break;
5841   }
5842   case ISD::SIGN_EXTEND_INREG: {
5843     EVT EVT = cast<VTSDNode>(N2)->getVT();
5844     assert(VT == N1.getValueType() && "Not an inreg extend!");
5845     assert(VT.isInteger() && EVT.isInteger() &&
5846            "Cannot *_EXTEND_INREG FP types");
5847     assert(EVT.isVector() == VT.isVector() &&
5848            "SIGN_EXTEND_INREG type should be vector iff the operand "
5849            "type is vector!");
5850     assert((!EVT.isVector() ||
5851             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5852            "Vector element counts must match in SIGN_EXTEND_INREG");
5853     assert(EVT.bitsLE(VT) && "Not extending!");
5854     if (EVT == VT) return N1;  // Not actually extending
5855 
5856     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5857       unsigned FromBits = EVT.getScalarSizeInBits();
5858       Val <<= Val.getBitWidth() - FromBits;
5859       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5860       return getConstant(Val, DL, ConstantVT);
5861     };
5862 
5863     if (N1C) {
5864       const APInt &Val = N1C->getAPIntValue();
5865       return SignExtendInReg(Val, VT);
5866     }
5867 
5868     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5869       SmallVector<SDValue, 8> Ops;
5870       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5871       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5872         SDValue Op = N1.getOperand(i);
5873         if (Op.isUndef()) {
5874           Ops.push_back(getUNDEF(OpVT));
5875           continue;
5876         }
5877         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5878         APInt Val = C->getAPIntValue();
5879         Ops.push_back(SignExtendInReg(Val, OpVT));
5880       }
5881       return getBuildVector(VT, DL, Ops);
5882     }
5883     break;
5884   }
5885   case ISD::FP_TO_SINT_SAT:
5886   case ISD::FP_TO_UINT_SAT: {
5887     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5888            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5889     assert(N1.getValueType().isVector() == VT.isVector() &&
5890            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5891            "vector!");
5892     assert((!VT.isVector() || VT.getVectorNumElements() ==
5893                                   N1.getValueType().getVectorNumElements()) &&
5894            "Vector element counts must match in FP_TO_*INT_SAT");
5895     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5896            "Type to saturate to must be a scalar.");
5897     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5898            "Not extending!");
5899     break;
5900   }
5901   case ISD::EXTRACT_VECTOR_ELT:
5902     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5903            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5904              element type of the vector.");
5905 
5906     // Extract from an undefined value or using an undefined index is undefined.
5907     if (N1.isUndef() || N2.isUndef())
5908       return getUNDEF(VT);
5909 
5910     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5911     // vectors. For scalable vectors we will provide appropriate support for
5912     // dealing with arbitrary indices.
5913     if (N2C && N1.getValueType().isFixedLengthVector() &&
5914         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5915       return getUNDEF(VT);
5916 
5917     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5918     // expanding copies of large vectors from registers. This only works for
5919     // fixed length vectors, since we need to know the exact number of
5920     // elements.
5921     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5922         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5923       unsigned Factor =
5924         N1.getOperand(0).getValueType().getVectorNumElements();
5925       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5926                      N1.getOperand(N2C->getZExtValue() / Factor),
5927                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5928     }
5929 
5930     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5931     // lowering is expanding large vector constants.
5932     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5933                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5934       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5935               N1.getValueType().isFixedLengthVector()) &&
5936              "BUILD_VECTOR used for scalable vectors");
5937       unsigned Index =
5938           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5939       SDValue Elt = N1.getOperand(Index);
5940 
5941       if (VT != Elt.getValueType())
5942         // If the vector element type is not legal, the BUILD_VECTOR operands
5943         // are promoted and implicitly truncated, and the result implicitly
5944         // extended. Make that explicit here.
5945         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5946 
5947       return Elt;
5948     }
5949 
5950     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5951     // operations are lowered to scalars.
5952     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5953       // If the indices are the same, return the inserted element else
5954       // if the indices are known different, extract the element from
5955       // the original vector.
5956       SDValue N1Op2 = N1.getOperand(2);
5957       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5958 
5959       if (N1Op2C && N2C) {
5960         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5961           if (VT == N1.getOperand(1).getValueType())
5962             return N1.getOperand(1);
5963           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5964         }
5965         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5966       }
5967     }
5968 
5969     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5970     // when vector types are scalarized and v1iX is legal.
5971     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5972     // Here we are completely ignoring the extract element index (N2),
5973     // which is fine for fixed width vectors, since any index other than 0
5974     // is undefined anyway. However, this cannot be ignored for scalable
5975     // vectors - in theory we could support this, but we don't want to do this
5976     // without a profitability check.
5977     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5978         N1.getValueType().isFixedLengthVector() &&
5979         N1.getValueType().getVectorNumElements() == 1) {
5980       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5981                      N1.getOperand(1));
5982     }
5983     break;
5984   case ISD::EXTRACT_ELEMENT:
5985     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5986     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5987            (N1.getValueType().isInteger() == VT.isInteger()) &&
5988            N1.getValueType() != VT &&
5989            "Wrong types for EXTRACT_ELEMENT!");
5990 
5991     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5992     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5993     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5994     if (N1.getOpcode() == ISD::BUILD_PAIR)
5995       return N1.getOperand(N2C->getZExtValue());
5996 
5997     // EXTRACT_ELEMENT of a constant int is also very common.
5998     if (N1C) {
5999       unsigned ElementSize = VT.getSizeInBits();
6000       unsigned Shift = ElementSize * N2C->getZExtValue();
6001       const APInt &Val = N1C->getAPIntValue();
6002       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6003     }
6004     break;
6005   case ISD::EXTRACT_SUBVECTOR: {
6006     EVT N1VT = N1.getValueType();
6007     assert(VT.isVector() && N1VT.isVector() &&
6008            "Extract subvector VTs must be vectors!");
6009     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6010            "Extract subvector VTs must have the same element type!");
6011     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6012            "Cannot extract a scalable vector from a fixed length vector!");
6013     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6014             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6015            "Extract subvector must be from larger vector to smaller vector!");
6016     assert(N2C && "Extract subvector index must be a constant");
6017     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6018             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6019                 N1VT.getVectorMinNumElements()) &&
6020            "Extract subvector overflow!");
6021     assert(N2C->getAPIntValue().getBitWidth() ==
6022                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6023            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6024 
6025     // Trivial extraction.
6026     if (VT == N1VT)
6027       return N1;
6028 
6029     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6030     if (N1.isUndef())
6031       return getUNDEF(VT);
6032 
6033     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6034     // the concat have the same type as the extract.
6035     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6036         VT == N1.getOperand(0).getValueType()) {
6037       unsigned Factor = VT.getVectorMinNumElements();
6038       return N1.getOperand(N2C->getZExtValue() / Factor);
6039     }
6040 
6041     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6042     // during shuffle legalization.
6043     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6044         VT == N1.getOperand(1).getValueType())
6045       return N1.getOperand(1);
6046     break;
6047   }
6048   }
6049 
6050   // Perform trivial constant folding.
6051   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6052     return SV;
6053 
6054   // Canonicalize an UNDEF to the RHS, even over a constant.
6055   if (N1.isUndef()) {
6056     if (TLI->isCommutativeBinOp(Opcode)) {
6057       std::swap(N1, N2);
6058     } else {
6059       switch (Opcode) {
6060       case ISD::SIGN_EXTEND_INREG:
6061       case ISD::SUB:
6062         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6063       case ISD::UDIV:
6064       case ISD::SDIV:
6065       case ISD::UREM:
6066       case ISD::SREM:
6067       case ISD::SSUBSAT:
6068       case ISD::USUBSAT:
6069         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6070       }
6071     }
6072   }
6073 
6074   // Fold a bunch of operators when the RHS is undef.
6075   if (N2.isUndef()) {
6076     switch (Opcode) {
6077     case ISD::XOR:
6078       if (N1.isUndef())
6079         // Handle undef ^ undef -> 0 special case. This is a common
6080         // idiom (misuse).
6081         return getConstant(0, DL, VT);
6082       LLVM_FALLTHROUGH;
6083     case ISD::ADD:
6084     case ISD::SUB:
6085     case ISD::UDIV:
6086     case ISD::SDIV:
6087     case ISD::UREM:
6088     case ISD::SREM:
6089       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6090     case ISD::MUL:
6091     case ISD::AND:
6092     case ISD::SSUBSAT:
6093     case ISD::USUBSAT:
6094       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6095     case ISD::OR:
6096     case ISD::SADDSAT:
6097     case ISD::UADDSAT:
6098       return getAllOnesConstant(DL, VT);
6099     }
6100   }
6101 
6102   // Memoize this node if possible.
6103   SDNode *N;
6104   SDVTList VTs = getVTList(VT);
6105   SDValue Ops[] = {N1, N2};
6106   if (VT != MVT::Glue) {
6107     FoldingSetNodeID ID;
6108     AddNodeIDNode(ID, Opcode, VTs, Ops);
6109     void *IP = nullptr;
6110     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6111       E->intersectFlagsWith(Flags);
6112       return SDValue(E, 0);
6113     }
6114 
6115     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6116     N->setFlags(Flags);
6117     createOperands(N, Ops);
6118     CSEMap.InsertNode(N, IP);
6119   } else {
6120     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6121     createOperands(N, Ops);
6122   }
6123 
6124   InsertNode(N);
6125   SDValue V = SDValue(N, 0);
6126   NewSDValueDbgMsg(V, "Creating new node: ", this);
6127   return V;
6128 }
6129 
6130 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6131                               SDValue N1, SDValue N2, SDValue N3) {
6132   SDNodeFlags Flags;
6133   if (Inserter)
6134     Flags = Inserter->getFlags();
6135   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6136 }
6137 
6138 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6139                               SDValue N1, SDValue N2, SDValue N3,
6140                               const SDNodeFlags Flags) {
6141   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6142          N2.getOpcode() != ISD::DELETED_NODE &&
6143          N3.getOpcode() != ISD::DELETED_NODE &&
6144          "Operand is DELETED_NODE!");
6145   // Perform various simplifications.
6146   switch (Opcode) {
6147   case ISD::FMA: {
6148     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6149     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6150            N3.getValueType() == VT && "FMA types must match!");
6151     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6152     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6153     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6154     if (N1CFP && N2CFP && N3CFP) {
6155       APFloat  V1 = N1CFP->getValueAPF();
6156       const APFloat &V2 = N2CFP->getValueAPF();
6157       const APFloat &V3 = N3CFP->getValueAPF();
6158       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6159       return getConstantFP(V1, DL, VT);
6160     }
6161     break;
6162   }
6163   case ISD::BUILD_VECTOR: {
6164     // Attempt to simplify BUILD_VECTOR.
6165     SDValue Ops[] = {N1, N2, N3};
6166     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6167       return V;
6168     break;
6169   }
6170   case ISD::CONCAT_VECTORS: {
6171     SDValue Ops[] = {N1, N2, N3};
6172     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6173       return V;
6174     break;
6175   }
6176   case ISD::SETCC: {
6177     assert(VT.isInteger() && "SETCC result type must be an integer!");
6178     assert(N1.getValueType() == N2.getValueType() &&
6179            "SETCC operands must have the same type!");
6180     assert(VT.isVector() == N1.getValueType().isVector() &&
6181            "SETCC type should be vector iff the operand type is vector!");
6182     assert((!VT.isVector() || VT.getVectorElementCount() ==
6183                                   N1.getValueType().getVectorElementCount()) &&
6184            "SETCC vector element counts must match!");
6185     // Use FoldSetCC to simplify SETCC's.
6186     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6187       return V;
6188     // Vector constant folding.
6189     SDValue Ops[] = {N1, N2, N3};
6190     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6191       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6192       return V;
6193     }
6194     break;
6195   }
6196   case ISD::SELECT:
6197   case ISD::VSELECT:
6198     if (SDValue V = simplifySelect(N1, N2, N3))
6199       return V;
6200     break;
6201   case ISD::VECTOR_SHUFFLE:
6202     llvm_unreachable("should use getVectorShuffle constructor!");
6203   case ISD::VECTOR_SPLICE: {
6204     if (cast<ConstantSDNode>(N3)->isNullValue())
6205       return N1;
6206     break;
6207   }
6208   case ISD::INSERT_VECTOR_ELT: {
6209     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6210     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6211     // for scalable vectors where we will generate appropriate code to
6212     // deal with out-of-bounds cases correctly.
6213     if (N3C && N1.getValueType().isFixedLengthVector() &&
6214         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6215       return getUNDEF(VT);
6216 
6217     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6218     if (N3.isUndef())
6219       return getUNDEF(VT);
6220 
6221     // If the inserted element is an UNDEF, just use the input vector.
6222     if (N2.isUndef())
6223       return N1;
6224 
6225     break;
6226   }
6227   case ISD::INSERT_SUBVECTOR: {
6228     // Inserting undef into undef is still undef.
6229     if (N1.isUndef() && N2.isUndef())
6230       return getUNDEF(VT);
6231 
6232     EVT N2VT = N2.getValueType();
6233     assert(VT == N1.getValueType() &&
6234            "Dest and insert subvector source types must match!");
6235     assert(VT.isVector() && N2VT.isVector() &&
6236            "Insert subvector VTs must be vectors!");
6237     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6238            "Cannot insert a scalable vector into a fixed length vector!");
6239     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6240             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6241            "Insert subvector must be from smaller vector to larger vector!");
6242     assert(isa<ConstantSDNode>(N3) &&
6243            "Insert subvector index must be constant");
6244     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6245             (N2VT.getVectorMinNumElements() +
6246              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6247                 VT.getVectorMinNumElements()) &&
6248            "Insert subvector overflow!");
6249     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6250                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6251            "Constant index for INSERT_SUBVECTOR has an invalid size");
6252 
6253     // Trivial insertion.
6254     if (VT == N2VT)
6255       return N2;
6256 
6257     // If this is an insert of an extracted vector into an undef vector, we
6258     // can just use the input to the extract.
6259     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6260         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6261       return N2.getOperand(0);
6262     break;
6263   }
6264   case ISD::BITCAST:
6265     // Fold bit_convert nodes from a type to themselves.
6266     if (N1.getValueType() == VT)
6267       return N1;
6268     break;
6269   }
6270 
6271   // Memoize node if it doesn't produce a flag.
6272   SDNode *N;
6273   SDVTList VTs = getVTList(VT);
6274   SDValue Ops[] = {N1, N2, N3};
6275   if (VT != MVT::Glue) {
6276     FoldingSetNodeID ID;
6277     AddNodeIDNode(ID, Opcode, VTs, Ops);
6278     void *IP = nullptr;
6279     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6280       E->intersectFlagsWith(Flags);
6281       return SDValue(E, 0);
6282     }
6283 
6284     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6285     N->setFlags(Flags);
6286     createOperands(N, Ops);
6287     CSEMap.InsertNode(N, IP);
6288   } else {
6289     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6290     createOperands(N, Ops);
6291   }
6292 
6293   InsertNode(N);
6294   SDValue V = SDValue(N, 0);
6295   NewSDValueDbgMsg(V, "Creating new node: ", this);
6296   return V;
6297 }
6298 
6299 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6300                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6301   SDValue Ops[] = { N1, N2, N3, N4 };
6302   return getNode(Opcode, DL, VT, Ops);
6303 }
6304 
6305 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6306                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6307                               SDValue N5) {
6308   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6309   return getNode(Opcode, DL, VT, Ops);
6310 }
6311 
6312 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6313 /// the incoming stack arguments to be loaded from the stack.
6314 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6315   SmallVector<SDValue, 8> ArgChains;
6316 
6317   // Include the original chain at the beginning of the list. When this is
6318   // used by target LowerCall hooks, this helps legalize find the
6319   // CALLSEQ_BEGIN node.
6320   ArgChains.push_back(Chain);
6321 
6322   // Add a chain value for each stack argument.
6323   for (SDNode *U : getEntryNode().getNode()->uses())
6324     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6325       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6326         if (FI->getIndex() < 0)
6327           ArgChains.push_back(SDValue(L, 1));
6328 
6329   // Build a tokenfactor for all the chains.
6330   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6331 }
6332 
6333 /// getMemsetValue - Vectorized representation of the memset value
6334 /// operand.
6335 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6336                               const SDLoc &dl) {
6337   assert(!Value.isUndef());
6338 
6339   unsigned NumBits = VT.getScalarSizeInBits();
6340   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6341     assert(C->getAPIntValue().getBitWidth() == 8);
6342     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6343     if (VT.isInteger()) {
6344       bool IsOpaque = VT.getSizeInBits() > 64 ||
6345           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6346       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6347     }
6348     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6349                              VT);
6350   }
6351 
6352   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6353   EVT IntVT = VT.getScalarType();
6354   if (!IntVT.isInteger())
6355     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6356 
6357   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6358   if (NumBits > 8) {
6359     // Use a multiplication with 0x010101... to extend the input to the
6360     // required length.
6361     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6362     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6363                         DAG.getConstant(Magic, dl, IntVT));
6364   }
6365 
6366   if (VT != Value.getValueType() && !VT.isInteger())
6367     Value = DAG.getBitcast(VT.getScalarType(), Value);
6368   if (VT != Value.getValueType())
6369     Value = DAG.getSplatBuildVector(VT, dl, Value);
6370 
6371   return Value;
6372 }
6373 
6374 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6375 /// used when a memcpy is turned into a memset when the source is a constant
6376 /// string ptr.
6377 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6378                                   const TargetLowering &TLI,
6379                                   const ConstantDataArraySlice &Slice) {
6380   // Handle vector with all elements zero.
6381   if (Slice.Array == nullptr) {
6382     if (VT.isInteger())
6383       return DAG.getConstant(0, dl, VT);
6384     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6385       return DAG.getConstantFP(0.0, dl, VT);
6386     if (VT.isVector()) {
6387       unsigned NumElts = VT.getVectorNumElements();
6388       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6389       return DAG.getNode(ISD::BITCAST, dl, VT,
6390                          DAG.getConstant(0, dl,
6391                                          EVT::getVectorVT(*DAG.getContext(),
6392                                                           EltVT, NumElts)));
6393     }
6394     llvm_unreachable("Expected type!");
6395   }
6396 
6397   assert(!VT.isVector() && "Can't handle vector type here!");
6398   unsigned NumVTBits = VT.getSizeInBits();
6399   unsigned NumVTBytes = NumVTBits / 8;
6400   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6401 
6402   APInt Val(NumVTBits, 0);
6403   if (DAG.getDataLayout().isLittleEndian()) {
6404     for (unsigned i = 0; i != NumBytes; ++i)
6405       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6406   } else {
6407     for (unsigned i = 0; i != NumBytes; ++i)
6408       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6409   }
6410 
6411   // If the "cost" of materializing the integer immediate is less than the cost
6412   // of a load, then it is cost effective to turn the load into the immediate.
6413   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6414   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6415     return DAG.getConstant(Val, dl, VT);
6416   return SDValue();
6417 }
6418 
6419 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6420                                            const SDLoc &DL,
6421                                            const SDNodeFlags Flags) {
6422   EVT VT = Base.getValueType();
6423   SDValue Index;
6424 
6425   if (Offset.isScalable())
6426     Index = getVScale(DL, Base.getValueType(),
6427                       APInt(Base.getValueSizeInBits().getFixedSize(),
6428                             Offset.getKnownMinSize()));
6429   else
6430     Index = getConstant(Offset.getFixedSize(), DL, VT);
6431 
6432   return getMemBasePlusOffset(Base, Index, DL, Flags);
6433 }
6434 
6435 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6436                                            const SDLoc &DL,
6437                                            const SDNodeFlags Flags) {
6438   assert(Offset.getValueType().isInteger());
6439   EVT BasePtrVT = Ptr.getValueType();
6440   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6441 }
6442 
6443 /// Returns true if memcpy source is constant data.
6444 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6445   uint64_t SrcDelta = 0;
6446   GlobalAddressSDNode *G = nullptr;
6447   if (Src.getOpcode() == ISD::GlobalAddress)
6448     G = cast<GlobalAddressSDNode>(Src);
6449   else if (Src.getOpcode() == ISD::ADD &&
6450            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6451            Src.getOperand(1).getOpcode() == ISD::Constant) {
6452     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6453     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6454   }
6455   if (!G)
6456     return false;
6457 
6458   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6459                                   SrcDelta + G->getOffset());
6460 }
6461 
6462 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6463                                       SelectionDAG &DAG) {
6464   // On Darwin, -Os means optimize for size without hurting performance, so
6465   // only really optimize for size when -Oz (MinSize) is used.
6466   if (MF.getTarget().getTargetTriple().isOSDarwin())
6467     return MF.getFunction().hasMinSize();
6468   return DAG.shouldOptForSize();
6469 }
6470 
6471 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6472                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6473                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6474                           SmallVector<SDValue, 16> &OutStoreChains) {
6475   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6476   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6477   SmallVector<SDValue, 16> GluedLoadChains;
6478   for (unsigned i = From; i < To; ++i) {
6479     OutChains.push_back(OutLoadChains[i]);
6480     GluedLoadChains.push_back(OutLoadChains[i]);
6481   }
6482 
6483   // Chain for all loads.
6484   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6485                                   GluedLoadChains);
6486 
6487   for (unsigned i = From; i < To; ++i) {
6488     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6489     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6490                                   ST->getBasePtr(), ST->getMemoryVT(),
6491                                   ST->getMemOperand());
6492     OutChains.push_back(NewStore);
6493   }
6494 }
6495 
6496 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6497                                        SDValue Chain, SDValue Dst, SDValue Src,
6498                                        uint64_t Size, Align Alignment,
6499                                        bool isVol, bool AlwaysInline,
6500                                        MachinePointerInfo DstPtrInfo,
6501                                        MachinePointerInfo SrcPtrInfo,
6502                                        const AAMDNodes &AAInfo) {
6503   // Turn a memcpy of undef to nop.
6504   // FIXME: We need to honor volatile even is Src is undef.
6505   if (Src.isUndef())
6506     return Chain;
6507 
6508   // Expand memcpy to a series of load and store ops if the size operand falls
6509   // below a certain threshold.
6510   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6511   // rather than maybe a humongous number of loads and stores.
6512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6513   const DataLayout &DL = DAG.getDataLayout();
6514   LLVMContext &C = *DAG.getContext();
6515   std::vector<EVT> MemOps;
6516   bool DstAlignCanChange = false;
6517   MachineFunction &MF = DAG.getMachineFunction();
6518   MachineFrameInfo &MFI = MF.getFrameInfo();
6519   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6520   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6521   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6522     DstAlignCanChange = true;
6523   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6524   if (!SrcAlign || Alignment > *SrcAlign)
6525     SrcAlign = Alignment;
6526   assert(SrcAlign && "SrcAlign must be set");
6527   ConstantDataArraySlice Slice;
6528   // If marked as volatile, perform a copy even when marked as constant.
6529   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6530   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6531   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6532   const MemOp Op = isZeroConstant
6533                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6534                                     /*IsZeroMemset*/ true, isVol)
6535                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6536                                      *SrcAlign, isVol, CopyFromConstant);
6537   if (!TLI.findOptimalMemOpLowering(
6538           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6539           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6540     return SDValue();
6541 
6542   if (DstAlignCanChange) {
6543     Type *Ty = MemOps[0].getTypeForEVT(C);
6544     Align NewAlign = DL.getABITypeAlign(Ty);
6545 
6546     // Don't promote to an alignment that would require dynamic stack
6547     // realignment.
6548     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6549     if (!TRI->hasStackRealignment(MF))
6550       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6551         NewAlign = NewAlign / 2;
6552 
6553     if (NewAlign > Alignment) {
6554       // Give the stack frame object a larger alignment if needed.
6555       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6556         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6557       Alignment = NewAlign;
6558     }
6559   }
6560 
6561   // Prepare AAInfo for loads/stores after lowering this memcpy.
6562   AAMDNodes NewAAInfo = AAInfo;
6563   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6564 
6565   MachineMemOperand::Flags MMOFlags =
6566       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6567   SmallVector<SDValue, 16> OutLoadChains;
6568   SmallVector<SDValue, 16> OutStoreChains;
6569   SmallVector<SDValue, 32> OutChains;
6570   unsigned NumMemOps = MemOps.size();
6571   uint64_t SrcOff = 0, DstOff = 0;
6572   for (unsigned i = 0; i != NumMemOps; ++i) {
6573     EVT VT = MemOps[i];
6574     unsigned VTSize = VT.getSizeInBits() / 8;
6575     SDValue Value, Store;
6576 
6577     if (VTSize > Size) {
6578       // Issuing an unaligned load / store pair  that overlaps with the previous
6579       // pair. Adjust the offset accordingly.
6580       assert(i == NumMemOps-1 && i != 0);
6581       SrcOff -= VTSize - Size;
6582       DstOff -= VTSize - Size;
6583     }
6584 
6585     if (CopyFromConstant &&
6586         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6587       // It's unlikely a store of a vector immediate can be done in a single
6588       // instruction. It would require a load from a constantpool first.
6589       // We only handle zero vectors here.
6590       // FIXME: Handle other cases where store of vector immediate is done in
6591       // a single instruction.
6592       ConstantDataArraySlice SubSlice;
6593       if (SrcOff < Slice.Length) {
6594         SubSlice = Slice;
6595         SubSlice.move(SrcOff);
6596       } else {
6597         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6598         SubSlice.Array = nullptr;
6599         SubSlice.Offset = 0;
6600         SubSlice.Length = VTSize;
6601       }
6602       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6603       if (Value.getNode()) {
6604         Store = DAG.getStore(
6605             Chain, dl, Value,
6606             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6607             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6608         OutChains.push_back(Store);
6609       }
6610     }
6611 
6612     if (!Store.getNode()) {
6613       // The type might not be legal for the target.  This should only happen
6614       // if the type is smaller than a legal type, as on PPC, so the right
6615       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6616       // to Load/Store if NVT==VT.
6617       // FIXME does the case above also need this?
6618       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6619       assert(NVT.bitsGE(VT));
6620 
6621       bool isDereferenceable =
6622         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6623       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6624       if (isDereferenceable)
6625         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6626 
6627       Value = DAG.getExtLoad(
6628           ISD::EXTLOAD, dl, NVT, Chain,
6629           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6630           SrcPtrInfo.getWithOffset(SrcOff), VT,
6631           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6632       OutLoadChains.push_back(Value.getValue(1));
6633 
6634       Store = DAG.getTruncStore(
6635           Chain, dl, Value,
6636           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6637           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6638       OutStoreChains.push_back(Store);
6639     }
6640     SrcOff += VTSize;
6641     DstOff += VTSize;
6642     Size -= VTSize;
6643   }
6644 
6645   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6646                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6647   unsigned NumLdStInMemcpy = OutStoreChains.size();
6648 
6649   if (NumLdStInMemcpy) {
6650     // It may be that memcpy might be converted to memset if it's memcpy
6651     // of constants. In such a case, we won't have loads and stores, but
6652     // just stores. In the absence of loads, there is nothing to gang up.
6653     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6654       // If target does not care, just leave as it.
6655       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6656         OutChains.push_back(OutLoadChains[i]);
6657         OutChains.push_back(OutStoreChains[i]);
6658       }
6659     } else {
6660       // Ld/St less than/equal limit set by target.
6661       if (NumLdStInMemcpy <= GluedLdStLimit) {
6662           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6663                                         NumLdStInMemcpy, OutLoadChains,
6664                                         OutStoreChains);
6665       } else {
6666         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6667         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6668         unsigned GlueIter = 0;
6669 
6670         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6671           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6672           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6673 
6674           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6675                                        OutLoadChains, OutStoreChains);
6676           GlueIter += GluedLdStLimit;
6677         }
6678 
6679         // Residual ld/st.
6680         if (RemainingLdStInMemcpy) {
6681           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6682                                         RemainingLdStInMemcpy, OutLoadChains,
6683                                         OutStoreChains);
6684         }
6685       }
6686     }
6687   }
6688   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6689 }
6690 
6691 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6692                                         SDValue Chain, SDValue Dst, SDValue Src,
6693                                         uint64_t Size, Align Alignment,
6694                                         bool isVol, bool AlwaysInline,
6695                                         MachinePointerInfo DstPtrInfo,
6696                                         MachinePointerInfo SrcPtrInfo,
6697                                         const AAMDNodes &AAInfo) {
6698   // Turn a memmove of undef to nop.
6699   // FIXME: We need to honor volatile even is Src is undef.
6700   if (Src.isUndef())
6701     return Chain;
6702 
6703   // Expand memmove to a series of load and store ops if the size operand falls
6704   // below a certain threshold.
6705   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6706   const DataLayout &DL = DAG.getDataLayout();
6707   LLVMContext &C = *DAG.getContext();
6708   std::vector<EVT> MemOps;
6709   bool DstAlignCanChange = false;
6710   MachineFunction &MF = DAG.getMachineFunction();
6711   MachineFrameInfo &MFI = MF.getFrameInfo();
6712   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6713   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6714   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6715     DstAlignCanChange = true;
6716   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6717   if (!SrcAlign || Alignment > *SrcAlign)
6718     SrcAlign = Alignment;
6719   assert(SrcAlign && "SrcAlign must be set");
6720   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6721   if (!TLI.findOptimalMemOpLowering(
6722           MemOps, Limit,
6723           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6724                       /*IsVolatile*/ true),
6725           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6726           MF.getFunction().getAttributes()))
6727     return SDValue();
6728 
6729   if (DstAlignCanChange) {
6730     Type *Ty = MemOps[0].getTypeForEVT(C);
6731     Align NewAlign = DL.getABITypeAlign(Ty);
6732     if (NewAlign > Alignment) {
6733       // Give the stack frame object a larger alignment if needed.
6734       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6735         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6736       Alignment = NewAlign;
6737     }
6738   }
6739 
6740   // Prepare AAInfo for loads/stores after lowering this memmove.
6741   AAMDNodes NewAAInfo = AAInfo;
6742   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6743 
6744   MachineMemOperand::Flags MMOFlags =
6745       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6746   uint64_t SrcOff = 0, DstOff = 0;
6747   SmallVector<SDValue, 8> LoadValues;
6748   SmallVector<SDValue, 8> LoadChains;
6749   SmallVector<SDValue, 8> OutChains;
6750   unsigned NumMemOps = MemOps.size();
6751   for (unsigned i = 0; i < NumMemOps; i++) {
6752     EVT VT = MemOps[i];
6753     unsigned VTSize = VT.getSizeInBits() / 8;
6754     SDValue Value;
6755 
6756     bool isDereferenceable =
6757       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6758     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6759     if (isDereferenceable)
6760       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6761 
6762     Value = DAG.getLoad(
6763         VT, dl, Chain,
6764         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6765         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6766     LoadValues.push_back(Value);
6767     LoadChains.push_back(Value.getValue(1));
6768     SrcOff += VTSize;
6769   }
6770   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6771   OutChains.clear();
6772   for (unsigned i = 0; i < NumMemOps; i++) {
6773     EVT VT = MemOps[i];
6774     unsigned VTSize = VT.getSizeInBits() / 8;
6775     SDValue Store;
6776 
6777     Store = DAG.getStore(
6778         Chain, dl, LoadValues[i],
6779         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6780         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6781     OutChains.push_back(Store);
6782     DstOff += VTSize;
6783   }
6784 
6785   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6786 }
6787 
6788 /// Lower the call to 'memset' intrinsic function into a series of store
6789 /// operations.
6790 ///
6791 /// \param DAG Selection DAG where lowered code is placed.
6792 /// \param dl Link to corresponding IR location.
6793 /// \param Chain Control flow dependency.
6794 /// \param Dst Pointer to destination memory location.
6795 /// \param Src Value of byte to write into the memory.
6796 /// \param Size Number of bytes to write.
6797 /// \param Alignment Alignment of the destination in bytes.
6798 /// \param isVol True if destination is volatile.
6799 /// \param DstPtrInfo IR information on the memory pointer.
6800 /// \returns New head in the control flow, if lowering was successful, empty
6801 /// SDValue otherwise.
6802 ///
6803 /// The function tries to replace 'llvm.memset' intrinsic with several store
6804 /// operations and value calculation code. This is usually profitable for small
6805 /// memory size.
6806 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6807                                SDValue Chain, SDValue Dst, SDValue Src,
6808                                uint64_t Size, Align Alignment, bool isVol,
6809                                MachinePointerInfo DstPtrInfo,
6810                                const AAMDNodes &AAInfo) {
6811   // Turn a memset of undef to nop.
6812   // FIXME: We need to honor volatile even is Src is undef.
6813   if (Src.isUndef())
6814     return Chain;
6815 
6816   // Expand memset to a series of load/store ops if the size operand
6817   // falls below a certain threshold.
6818   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6819   std::vector<EVT> MemOps;
6820   bool DstAlignCanChange = false;
6821   MachineFunction &MF = DAG.getMachineFunction();
6822   MachineFrameInfo &MFI = MF.getFrameInfo();
6823   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6824   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6825   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6826     DstAlignCanChange = true;
6827   bool IsZeroVal =
6828       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6829   if (!TLI.findOptimalMemOpLowering(
6830           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6831           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6832           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6833     return SDValue();
6834 
6835   if (DstAlignCanChange) {
6836     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6837     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6838     if (NewAlign > Alignment) {
6839       // Give the stack frame object a larger alignment if needed.
6840       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6841         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6842       Alignment = NewAlign;
6843     }
6844   }
6845 
6846   SmallVector<SDValue, 8> OutChains;
6847   uint64_t DstOff = 0;
6848   unsigned NumMemOps = MemOps.size();
6849 
6850   // Find the largest store and generate the bit pattern for it.
6851   EVT LargestVT = MemOps[0];
6852   for (unsigned i = 1; i < NumMemOps; i++)
6853     if (MemOps[i].bitsGT(LargestVT))
6854       LargestVT = MemOps[i];
6855   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6856 
6857   // Prepare AAInfo for loads/stores after lowering this memset.
6858   AAMDNodes NewAAInfo = AAInfo;
6859   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6860 
6861   for (unsigned i = 0; i < NumMemOps; i++) {
6862     EVT VT = MemOps[i];
6863     unsigned VTSize = VT.getSizeInBits() / 8;
6864     if (VTSize > Size) {
6865       // Issuing an unaligned load / store pair  that overlaps with the previous
6866       // pair. Adjust the offset accordingly.
6867       assert(i == NumMemOps-1 && i != 0);
6868       DstOff -= VTSize - Size;
6869     }
6870 
6871     // If this store is smaller than the largest store see whether we can get
6872     // the smaller value for free with a truncate.
6873     SDValue Value = MemSetValue;
6874     if (VT.bitsLT(LargestVT)) {
6875       if (!LargestVT.isVector() && !VT.isVector() &&
6876           TLI.isTruncateFree(LargestVT, VT))
6877         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6878       else
6879         Value = getMemsetValue(Src, VT, DAG, dl);
6880     }
6881     assert(Value.getValueType() == VT && "Value with wrong type.");
6882     SDValue Store = DAG.getStore(
6883         Chain, dl, Value,
6884         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6885         DstPtrInfo.getWithOffset(DstOff), Alignment,
6886         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6887         NewAAInfo);
6888     OutChains.push_back(Store);
6889     DstOff += VT.getSizeInBits() / 8;
6890     Size -= VTSize;
6891   }
6892 
6893   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6894 }
6895 
6896 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6897                                             unsigned AS) {
6898   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6899   // pointer operands can be losslessly bitcasted to pointers of address space 0
6900   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6901     report_fatal_error("cannot lower memory intrinsic in address space " +
6902                        Twine(AS));
6903   }
6904 }
6905 
6906 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6907                                 SDValue Src, SDValue Size, Align Alignment,
6908                                 bool isVol, bool AlwaysInline, bool isTailCall,
6909                                 MachinePointerInfo DstPtrInfo,
6910                                 MachinePointerInfo SrcPtrInfo,
6911                                 const AAMDNodes &AAInfo) {
6912   // Check to see if we should lower the memcpy to loads and stores first.
6913   // For cases within the target-specified limits, this is the best choice.
6914   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6915   if (ConstantSize) {
6916     // Memcpy with size zero? Just return the original chain.
6917     if (ConstantSize->isZero())
6918       return Chain;
6919 
6920     SDValue Result = getMemcpyLoadsAndStores(
6921         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6922         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6923     if (Result.getNode())
6924       return Result;
6925   }
6926 
6927   // Then check to see if we should lower the memcpy with target-specific
6928   // code. If the target chooses to do this, this is the next best.
6929   if (TSI) {
6930     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6931         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6932         DstPtrInfo, SrcPtrInfo);
6933     if (Result.getNode())
6934       return Result;
6935   }
6936 
6937   // If we really need inline code and the target declined to provide it,
6938   // use a (potentially long) sequence of loads and stores.
6939   if (AlwaysInline) {
6940     assert(ConstantSize && "AlwaysInline requires a constant size!");
6941     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6942                                    ConstantSize->getZExtValue(), Alignment,
6943                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6944   }
6945 
6946   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6947   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6948 
6949   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6950   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6951   // respect volatile, so they may do things like read or write memory
6952   // beyond the given memory regions. But fixing this isn't easy, and most
6953   // people don't care.
6954 
6955   // Emit a library call.
6956   TargetLowering::ArgListTy Args;
6957   TargetLowering::ArgListEntry Entry;
6958   Entry.Ty = Type::getInt8PtrTy(*getContext());
6959   Entry.Node = Dst; Args.push_back(Entry);
6960   Entry.Node = Src; Args.push_back(Entry);
6961 
6962   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6963   Entry.Node = Size; Args.push_back(Entry);
6964   // FIXME: pass in SDLoc
6965   TargetLowering::CallLoweringInfo CLI(*this);
6966   CLI.setDebugLoc(dl)
6967       .setChain(Chain)
6968       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6969                     Dst.getValueType().getTypeForEVT(*getContext()),
6970                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6971                                       TLI->getPointerTy(getDataLayout())),
6972                     std::move(Args))
6973       .setDiscardResult()
6974       .setTailCall(isTailCall);
6975 
6976   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6977   return CallResult.second;
6978 }
6979 
6980 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6981                                       SDValue Dst, unsigned DstAlign,
6982                                       SDValue Src, unsigned SrcAlign,
6983                                       SDValue Size, Type *SizeTy,
6984                                       unsigned ElemSz, bool isTailCall,
6985                                       MachinePointerInfo DstPtrInfo,
6986                                       MachinePointerInfo SrcPtrInfo) {
6987   // Emit a library call.
6988   TargetLowering::ArgListTy Args;
6989   TargetLowering::ArgListEntry Entry;
6990   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6991   Entry.Node = Dst;
6992   Args.push_back(Entry);
6993 
6994   Entry.Node = Src;
6995   Args.push_back(Entry);
6996 
6997   Entry.Ty = SizeTy;
6998   Entry.Node = Size;
6999   Args.push_back(Entry);
7000 
7001   RTLIB::Libcall LibraryCall =
7002       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7003   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7004     report_fatal_error("Unsupported element size");
7005 
7006   TargetLowering::CallLoweringInfo CLI(*this);
7007   CLI.setDebugLoc(dl)
7008       .setChain(Chain)
7009       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7010                     Type::getVoidTy(*getContext()),
7011                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7012                                       TLI->getPointerTy(getDataLayout())),
7013                     std::move(Args))
7014       .setDiscardResult()
7015       .setTailCall(isTailCall);
7016 
7017   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7018   return CallResult.second;
7019 }
7020 
7021 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7022                                  SDValue Src, SDValue Size, Align Alignment,
7023                                  bool isVol, bool isTailCall,
7024                                  MachinePointerInfo DstPtrInfo,
7025                                  MachinePointerInfo SrcPtrInfo,
7026                                  const AAMDNodes &AAInfo) {
7027   // Check to see if we should lower the memmove to loads and stores first.
7028   // For cases within the target-specified limits, this is the best choice.
7029   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7030   if (ConstantSize) {
7031     // Memmove with size zero? Just return the original chain.
7032     if (ConstantSize->isZero())
7033       return Chain;
7034 
7035     SDValue Result = getMemmoveLoadsAndStores(
7036         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7037         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7038     if (Result.getNode())
7039       return Result;
7040   }
7041 
7042   // Then check to see if we should lower the memmove with target-specific
7043   // code. If the target chooses to do this, this is the next best.
7044   if (TSI) {
7045     SDValue Result =
7046         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7047                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7048     if (Result.getNode())
7049       return Result;
7050   }
7051 
7052   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7053   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7054 
7055   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7056   // not be safe.  See memcpy above for more details.
7057 
7058   // Emit a library call.
7059   TargetLowering::ArgListTy Args;
7060   TargetLowering::ArgListEntry Entry;
7061   Entry.Ty = Type::getInt8PtrTy(*getContext());
7062   Entry.Node = Dst; Args.push_back(Entry);
7063   Entry.Node = Src; Args.push_back(Entry);
7064 
7065   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7066   Entry.Node = Size; Args.push_back(Entry);
7067   // FIXME:  pass in SDLoc
7068   TargetLowering::CallLoweringInfo CLI(*this);
7069   CLI.setDebugLoc(dl)
7070       .setChain(Chain)
7071       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7072                     Dst.getValueType().getTypeForEVT(*getContext()),
7073                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7074                                       TLI->getPointerTy(getDataLayout())),
7075                     std::move(Args))
7076       .setDiscardResult()
7077       .setTailCall(isTailCall);
7078 
7079   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7080   return CallResult.second;
7081 }
7082 
7083 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7084                                        SDValue Dst, unsigned DstAlign,
7085                                        SDValue Src, unsigned SrcAlign,
7086                                        SDValue Size, Type *SizeTy,
7087                                        unsigned ElemSz, bool isTailCall,
7088                                        MachinePointerInfo DstPtrInfo,
7089                                        MachinePointerInfo SrcPtrInfo) {
7090   // Emit a library call.
7091   TargetLowering::ArgListTy Args;
7092   TargetLowering::ArgListEntry Entry;
7093   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7094   Entry.Node = Dst;
7095   Args.push_back(Entry);
7096 
7097   Entry.Node = Src;
7098   Args.push_back(Entry);
7099 
7100   Entry.Ty = SizeTy;
7101   Entry.Node = Size;
7102   Args.push_back(Entry);
7103 
7104   RTLIB::Libcall LibraryCall =
7105       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7106   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7107     report_fatal_error("Unsupported element size");
7108 
7109   TargetLowering::CallLoweringInfo CLI(*this);
7110   CLI.setDebugLoc(dl)
7111       .setChain(Chain)
7112       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7113                     Type::getVoidTy(*getContext()),
7114                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7115                                       TLI->getPointerTy(getDataLayout())),
7116                     std::move(Args))
7117       .setDiscardResult()
7118       .setTailCall(isTailCall);
7119 
7120   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7121   return CallResult.second;
7122 }
7123 
7124 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7125                                 SDValue Src, SDValue Size, Align Alignment,
7126                                 bool isVol, bool isTailCall,
7127                                 MachinePointerInfo DstPtrInfo,
7128                                 const AAMDNodes &AAInfo) {
7129   // Check to see if we should lower the memset to stores first.
7130   // For cases within the target-specified limits, this is the best choice.
7131   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7132   if (ConstantSize) {
7133     // Memset with size zero? Just return the original chain.
7134     if (ConstantSize->isZero())
7135       return Chain;
7136 
7137     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7138                                      ConstantSize->getZExtValue(), Alignment,
7139                                      isVol, DstPtrInfo, AAInfo);
7140 
7141     if (Result.getNode())
7142       return Result;
7143   }
7144 
7145   // Then check to see if we should lower the memset with target-specific
7146   // code. If the target chooses to do this, this is the next best.
7147   if (TSI) {
7148     SDValue Result = TSI->EmitTargetCodeForMemset(
7149         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7150     if (Result.getNode())
7151       return Result;
7152   }
7153 
7154   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7155 
7156   // Emit a library call.
7157   TargetLowering::ArgListTy Args;
7158   TargetLowering::ArgListEntry Entry;
7159   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7160   Args.push_back(Entry);
7161   Entry.Node = Src;
7162   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7163   Args.push_back(Entry);
7164   Entry.Node = Size;
7165   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7166   Args.push_back(Entry);
7167 
7168   // FIXME: pass in SDLoc
7169   TargetLowering::CallLoweringInfo CLI(*this);
7170   CLI.setDebugLoc(dl)
7171       .setChain(Chain)
7172       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7173                     Dst.getValueType().getTypeForEVT(*getContext()),
7174                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7175                                       TLI->getPointerTy(getDataLayout())),
7176                     std::move(Args))
7177       .setDiscardResult()
7178       .setTailCall(isTailCall);
7179 
7180   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7181   return CallResult.second;
7182 }
7183 
7184 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7185                                       SDValue Dst, unsigned DstAlign,
7186                                       SDValue Value, SDValue Size, Type *SizeTy,
7187                                       unsigned ElemSz, bool isTailCall,
7188                                       MachinePointerInfo DstPtrInfo) {
7189   // Emit a library call.
7190   TargetLowering::ArgListTy Args;
7191   TargetLowering::ArgListEntry Entry;
7192   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7193   Entry.Node = Dst;
7194   Args.push_back(Entry);
7195 
7196   Entry.Ty = Type::getInt8Ty(*getContext());
7197   Entry.Node = Value;
7198   Args.push_back(Entry);
7199 
7200   Entry.Ty = SizeTy;
7201   Entry.Node = Size;
7202   Args.push_back(Entry);
7203 
7204   RTLIB::Libcall LibraryCall =
7205       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7206   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7207     report_fatal_error("Unsupported element size");
7208 
7209   TargetLowering::CallLoweringInfo CLI(*this);
7210   CLI.setDebugLoc(dl)
7211       .setChain(Chain)
7212       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7213                     Type::getVoidTy(*getContext()),
7214                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7215                                       TLI->getPointerTy(getDataLayout())),
7216                     std::move(Args))
7217       .setDiscardResult()
7218       .setTailCall(isTailCall);
7219 
7220   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7221   return CallResult.second;
7222 }
7223 
7224 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7225                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7226                                 MachineMemOperand *MMO) {
7227   FoldingSetNodeID ID;
7228   ID.AddInteger(MemVT.getRawBits());
7229   AddNodeIDNode(ID, Opcode, VTList, Ops);
7230   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7231   void* IP = nullptr;
7232   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7233     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7234     return SDValue(E, 0);
7235   }
7236 
7237   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7238                                     VTList, MemVT, MMO);
7239   createOperands(N, Ops);
7240 
7241   CSEMap.InsertNode(N, IP);
7242   InsertNode(N);
7243   return SDValue(N, 0);
7244 }
7245 
7246 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7247                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7248                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7249                                        MachineMemOperand *MMO) {
7250   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7251          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7252   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7253 
7254   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7255   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7256 }
7257 
7258 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7259                                 SDValue Chain, SDValue Ptr, SDValue Val,
7260                                 MachineMemOperand *MMO) {
7261   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7262           Opcode == ISD::ATOMIC_LOAD_SUB ||
7263           Opcode == ISD::ATOMIC_LOAD_AND ||
7264           Opcode == ISD::ATOMIC_LOAD_CLR ||
7265           Opcode == ISD::ATOMIC_LOAD_OR ||
7266           Opcode == ISD::ATOMIC_LOAD_XOR ||
7267           Opcode == ISD::ATOMIC_LOAD_NAND ||
7268           Opcode == ISD::ATOMIC_LOAD_MIN ||
7269           Opcode == ISD::ATOMIC_LOAD_MAX ||
7270           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7271           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7272           Opcode == ISD::ATOMIC_LOAD_FADD ||
7273           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7274           Opcode == ISD::ATOMIC_SWAP ||
7275           Opcode == ISD::ATOMIC_STORE) &&
7276          "Invalid Atomic Op");
7277 
7278   EVT VT = Val.getValueType();
7279 
7280   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7281                                                getVTList(VT, MVT::Other);
7282   SDValue Ops[] = {Chain, Ptr, Val};
7283   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7284 }
7285 
7286 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7287                                 EVT VT, SDValue Chain, SDValue Ptr,
7288                                 MachineMemOperand *MMO) {
7289   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7290 
7291   SDVTList VTs = getVTList(VT, MVT::Other);
7292   SDValue Ops[] = {Chain, Ptr};
7293   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7294 }
7295 
7296 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7297 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7298   if (Ops.size() == 1)
7299     return Ops[0];
7300 
7301   SmallVector<EVT, 4> VTs;
7302   VTs.reserve(Ops.size());
7303   for (const SDValue &Op : Ops)
7304     VTs.push_back(Op.getValueType());
7305   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7306 }
7307 
7308 SDValue SelectionDAG::getMemIntrinsicNode(
7309     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7310     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7311     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7312   if (!Size && MemVT.isScalableVector())
7313     Size = MemoryLocation::UnknownSize;
7314   else if (!Size)
7315     Size = MemVT.getStoreSize();
7316 
7317   MachineFunction &MF = getMachineFunction();
7318   MachineMemOperand *MMO =
7319       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7320 
7321   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7322 }
7323 
7324 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7325                                           SDVTList VTList,
7326                                           ArrayRef<SDValue> Ops, EVT MemVT,
7327                                           MachineMemOperand *MMO) {
7328   assert((Opcode == ISD::INTRINSIC_VOID ||
7329           Opcode == ISD::INTRINSIC_W_CHAIN ||
7330           Opcode == ISD::PREFETCH ||
7331           ((int)Opcode <= std::numeric_limits<int>::max() &&
7332            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7333          "Opcode is not a memory-accessing opcode!");
7334 
7335   // Memoize the node unless it returns a flag.
7336   MemIntrinsicSDNode *N;
7337   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7338     FoldingSetNodeID ID;
7339     AddNodeIDNode(ID, Opcode, VTList, Ops);
7340     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7341         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7342     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7343     void *IP = nullptr;
7344     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7345       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7346       return SDValue(E, 0);
7347     }
7348 
7349     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7350                                       VTList, MemVT, MMO);
7351     createOperands(N, Ops);
7352 
7353   CSEMap.InsertNode(N, IP);
7354   } else {
7355     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7356                                       VTList, MemVT, MMO);
7357     createOperands(N, Ops);
7358   }
7359   InsertNode(N);
7360   SDValue V(N, 0);
7361   NewSDValueDbgMsg(V, "Creating new node: ", this);
7362   return V;
7363 }
7364 
7365 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7366                                       SDValue Chain, int FrameIndex,
7367                                       int64_t Size, int64_t Offset) {
7368   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7369   const auto VTs = getVTList(MVT::Other);
7370   SDValue Ops[2] = {
7371       Chain,
7372       getFrameIndex(FrameIndex,
7373                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7374                     true)};
7375 
7376   FoldingSetNodeID ID;
7377   AddNodeIDNode(ID, Opcode, VTs, Ops);
7378   ID.AddInteger(FrameIndex);
7379   ID.AddInteger(Size);
7380   ID.AddInteger(Offset);
7381   void *IP = nullptr;
7382   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7383     return SDValue(E, 0);
7384 
7385   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7386       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7387   createOperands(N, Ops);
7388   CSEMap.InsertNode(N, IP);
7389   InsertNode(N);
7390   SDValue V(N, 0);
7391   NewSDValueDbgMsg(V, "Creating new node: ", this);
7392   return V;
7393 }
7394 
7395 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7396                                          uint64_t Guid, uint64_t Index,
7397                                          uint32_t Attr) {
7398   const unsigned Opcode = ISD::PSEUDO_PROBE;
7399   const auto VTs = getVTList(MVT::Other);
7400   SDValue Ops[] = {Chain};
7401   FoldingSetNodeID ID;
7402   AddNodeIDNode(ID, Opcode, VTs, Ops);
7403   ID.AddInteger(Guid);
7404   ID.AddInteger(Index);
7405   void *IP = nullptr;
7406   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7407     return SDValue(E, 0);
7408 
7409   auto *N = newSDNode<PseudoProbeSDNode>(
7410       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7411   createOperands(N, Ops);
7412   CSEMap.InsertNode(N, IP);
7413   InsertNode(N);
7414   SDValue V(N, 0);
7415   NewSDValueDbgMsg(V, "Creating new node: ", this);
7416   return V;
7417 }
7418 
7419 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7420 /// MachinePointerInfo record from it.  This is particularly useful because the
7421 /// code generator has many cases where it doesn't bother passing in a
7422 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7423 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7424                                            SelectionDAG &DAG, SDValue Ptr,
7425                                            int64_t Offset = 0) {
7426   // If this is FI+Offset, we can model it.
7427   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7428     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7429                                              FI->getIndex(), Offset);
7430 
7431   // If this is (FI+Offset1)+Offset2, we can model it.
7432   if (Ptr.getOpcode() != ISD::ADD ||
7433       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7434       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7435     return Info;
7436 
7437   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7438   return MachinePointerInfo::getFixedStack(
7439       DAG.getMachineFunction(), FI,
7440       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7441 }
7442 
7443 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7444 /// MachinePointerInfo record from it.  This is particularly useful because the
7445 /// code generator has many cases where it doesn't bother passing in a
7446 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7447 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7448                                            SelectionDAG &DAG, SDValue Ptr,
7449                                            SDValue OffsetOp) {
7450   // If the 'Offset' value isn't a constant, we can't handle this.
7451   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7452     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7453   if (OffsetOp.isUndef())
7454     return InferPointerInfo(Info, DAG, Ptr);
7455   return Info;
7456 }
7457 
7458 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7459                               EVT VT, const SDLoc &dl, SDValue Chain,
7460                               SDValue Ptr, SDValue Offset,
7461                               MachinePointerInfo PtrInfo, EVT MemVT,
7462                               Align Alignment,
7463                               MachineMemOperand::Flags MMOFlags,
7464                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7465   assert(Chain.getValueType() == MVT::Other &&
7466         "Invalid chain type");
7467 
7468   MMOFlags |= MachineMemOperand::MOLoad;
7469   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7470   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7471   // clients.
7472   if (PtrInfo.V.isNull())
7473     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7474 
7475   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7476   MachineFunction &MF = getMachineFunction();
7477   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7478                                                    Alignment, AAInfo, Ranges);
7479   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7480 }
7481 
7482 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7483                               EVT VT, const SDLoc &dl, SDValue Chain,
7484                               SDValue Ptr, SDValue Offset, EVT MemVT,
7485                               MachineMemOperand *MMO) {
7486   if (VT == MemVT) {
7487     ExtType = ISD::NON_EXTLOAD;
7488   } else if (ExtType == ISD::NON_EXTLOAD) {
7489     assert(VT == MemVT && "Non-extending load from different memory type!");
7490   } else {
7491     // Extending load.
7492     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7493            "Should only be an extending load, not truncating!");
7494     assert(VT.isInteger() == MemVT.isInteger() &&
7495            "Cannot convert from FP to Int or Int -> FP!");
7496     assert(VT.isVector() == MemVT.isVector() &&
7497            "Cannot use an ext load to convert to or from a vector!");
7498     assert((!VT.isVector() ||
7499             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7500            "Cannot use an ext load to change the number of vector elements!");
7501   }
7502 
7503   bool Indexed = AM != ISD::UNINDEXED;
7504   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7505 
7506   SDVTList VTs = Indexed ?
7507     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7508   SDValue Ops[] = { Chain, Ptr, Offset };
7509   FoldingSetNodeID ID;
7510   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7511   ID.AddInteger(MemVT.getRawBits());
7512   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7513       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7514   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7515   void *IP = nullptr;
7516   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7517     cast<LoadSDNode>(E)->refineAlignment(MMO);
7518     return SDValue(E, 0);
7519   }
7520   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7521                                   ExtType, MemVT, MMO);
7522   createOperands(N, Ops);
7523 
7524   CSEMap.InsertNode(N, IP);
7525   InsertNode(N);
7526   SDValue V(N, 0);
7527   NewSDValueDbgMsg(V, "Creating new node: ", this);
7528   return V;
7529 }
7530 
7531 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7532                               SDValue Ptr, MachinePointerInfo PtrInfo,
7533                               MaybeAlign Alignment,
7534                               MachineMemOperand::Flags MMOFlags,
7535                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7536   SDValue Undef = getUNDEF(Ptr.getValueType());
7537   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7538                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7539 }
7540 
7541 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7542                               SDValue Ptr, MachineMemOperand *MMO) {
7543   SDValue Undef = getUNDEF(Ptr.getValueType());
7544   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7545                  VT, MMO);
7546 }
7547 
7548 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7549                                  EVT VT, SDValue Chain, SDValue Ptr,
7550                                  MachinePointerInfo PtrInfo, EVT MemVT,
7551                                  MaybeAlign Alignment,
7552                                  MachineMemOperand::Flags MMOFlags,
7553                                  const AAMDNodes &AAInfo) {
7554   SDValue Undef = getUNDEF(Ptr.getValueType());
7555   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7556                  MemVT, Alignment, MMOFlags, AAInfo);
7557 }
7558 
7559 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7560                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7561                                  MachineMemOperand *MMO) {
7562   SDValue Undef = getUNDEF(Ptr.getValueType());
7563   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7564                  MemVT, MMO);
7565 }
7566 
7567 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7568                                      SDValue Base, SDValue Offset,
7569                                      ISD::MemIndexedMode AM) {
7570   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7571   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7572   // Don't propagate the invariant or dereferenceable flags.
7573   auto MMOFlags =
7574       LD->getMemOperand()->getFlags() &
7575       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7576   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7577                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7578                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7579 }
7580 
7581 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7582                                SDValue Ptr, MachinePointerInfo PtrInfo,
7583                                Align Alignment,
7584                                MachineMemOperand::Flags MMOFlags,
7585                                const AAMDNodes &AAInfo) {
7586   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7587 
7588   MMOFlags |= MachineMemOperand::MOStore;
7589   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7590 
7591   if (PtrInfo.V.isNull())
7592     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7593 
7594   MachineFunction &MF = getMachineFunction();
7595   uint64_t Size =
7596       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7597   MachineMemOperand *MMO =
7598       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7599   return getStore(Chain, dl, Val, Ptr, MMO);
7600 }
7601 
7602 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7603                                SDValue Ptr, MachineMemOperand *MMO) {
7604   assert(Chain.getValueType() == MVT::Other &&
7605         "Invalid chain type");
7606   EVT VT = Val.getValueType();
7607   SDVTList VTs = getVTList(MVT::Other);
7608   SDValue Undef = getUNDEF(Ptr.getValueType());
7609   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7610   FoldingSetNodeID ID;
7611   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7612   ID.AddInteger(VT.getRawBits());
7613   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7614       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7615   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7616   void *IP = nullptr;
7617   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7618     cast<StoreSDNode>(E)->refineAlignment(MMO);
7619     return SDValue(E, 0);
7620   }
7621   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7622                                    ISD::UNINDEXED, false, VT, MMO);
7623   createOperands(N, Ops);
7624 
7625   CSEMap.InsertNode(N, IP);
7626   InsertNode(N);
7627   SDValue V(N, 0);
7628   NewSDValueDbgMsg(V, "Creating new node: ", this);
7629   return V;
7630 }
7631 
7632 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7633                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7634                                     EVT SVT, Align Alignment,
7635                                     MachineMemOperand::Flags MMOFlags,
7636                                     const AAMDNodes &AAInfo) {
7637   assert(Chain.getValueType() == MVT::Other &&
7638         "Invalid chain type");
7639 
7640   MMOFlags |= MachineMemOperand::MOStore;
7641   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7642 
7643   if (PtrInfo.V.isNull())
7644     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7645 
7646   MachineFunction &MF = getMachineFunction();
7647   MachineMemOperand *MMO = MF.getMachineMemOperand(
7648       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7649       Alignment, AAInfo);
7650   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7651 }
7652 
7653 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7654                                     SDValue Ptr, EVT SVT,
7655                                     MachineMemOperand *MMO) {
7656   EVT VT = Val.getValueType();
7657 
7658   assert(Chain.getValueType() == MVT::Other &&
7659         "Invalid chain type");
7660   if (VT == SVT)
7661     return getStore(Chain, dl, Val, Ptr, MMO);
7662 
7663   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7664          "Should only be a truncating store, not extending!");
7665   assert(VT.isInteger() == SVT.isInteger() &&
7666          "Can't do FP-INT conversion!");
7667   assert(VT.isVector() == SVT.isVector() &&
7668          "Cannot use trunc store to convert to or from a vector!");
7669   assert((!VT.isVector() ||
7670           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7671          "Cannot use trunc store to change the number of vector elements!");
7672 
7673   SDVTList VTs = getVTList(MVT::Other);
7674   SDValue Undef = getUNDEF(Ptr.getValueType());
7675   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7676   FoldingSetNodeID ID;
7677   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7678   ID.AddInteger(SVT.getRawBits());
7679   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7680       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7681   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7682   void *IP = nullptr;
7683   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7684     cast<StoreSDNode>(E)->refineAlignment(MMO);
7685     return SDValue(E, 0);
7686   }
7687   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7688                                    ISD::UNINDEXED, true, SVT, MMO);
7689   createOperands(N, Ops);
7690 
7691   CSEMap.InsertNode(N, IP);
7692   InsertNode(N);
7693   SDValue V(N, 0);
7694   NewSDValueDbgMsg(V, "Creating new node: ", this);
7695   return V;
7696 }
7697 
7698 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7699                                       SDValue Base, SDValue Offset,
7700                                       ISD::MemIndexedMode AM) {
7701   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7702   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7703   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7704   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7705   FoldingSetNodeID ID;
7706   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7707   ID.AddInteger(ST->getMemoryVT().getRawBits());
7708   ID.AddInteger(ST->getRawSubclassData());
7709   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7710   void *IP = nullptr;
7711   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7712     return SDValue(E, 0);
7713 
7714   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7715                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7716                                    ST->getMemOperand());
7717   createOperands(N, Ops);
7718 
7719   CSEMap.InsertNode(N, IP);
7720   InsertNode(N);
7721   SDValue V(N, 0);
7722   NewSDValueDbgMsg(V, "Creating new node: ", this);
7723   return V;
7724 }
7725 
7726 SDValue SelectionDAG::getLoadVP(
7727     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7728     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7729     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7730     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7731     const MDNode *Ranges, bool IsExpanding) {
7732   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7733 
7734   MMOFlags |= MachineMemOperand::MOLoad;
7735   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7736   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7737   // clients.
7738   if (PtrInfo.V.isNull())
7739     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7740 
7741   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7742   MachineFunction &MF = getMachineFunction();
7743   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7744                                                    Alignment, AAInfo, Ranges);
7745   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7746                    MMO, IsExpanding);
7747 }
7748 
7749 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7750                                 ISD::LoadExtType ExtType, EVT VT,
7751                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7752                                 SDValue Offset, SDValue Mask, SDValue EVL,
7753                                 EVT MemVT, MachineMemOperand *MMO,
7754                                 bool IsExpanding) {
7755   bool Indexed = AM != ISD::UNINDEXED;
7756   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7757 
7758   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7759                          : getVTList(VT, MVT::Other);
7760   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7761   FoldingSetNodeID ID;
7762   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7763   ID.AddInteger(VT.getRawBits());
7764   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7765       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7766   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7767   void *IP = nullptr;
7768   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7769     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7770     return SDValue(E, 0);
7771   }
7772   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7773                                     ExtType, IsExpanding, MemVT, MMO);
7774   createOperands(N, Ops);
7775 
7776   CSEMap.InsertNode(N, IP);
7777   InsertNode(N);
7778   SDValue V(N, 0);
7779   NewSDValueDbgMsg(V, "Creating new node: ", this);
7780   return V;
7781 }
7782 
7783 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7784                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7785                                 MachinePointerInfo PtrInfo,
7786                                 MaybeAlign Alignment,
7787                                 MachineMemOperand::Flags MMOFlags,
7788                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7789                                 bool IsExpanding) {
7790   SDValue Undef = getUNDEF(Ptr.getValueType());
7791   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7792                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7793                    IsExpanding);
7794 }
7795 
7796 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7797                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7798                                 MachineMemOperand *MMO, bool IsExpanding) {
7799   SDValue Undef = getUNDEF(Ptr.getValueType());
7800   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7801                    Mask, EVL, VT, MMO, IsExpanding);
7802 }
7803 
7804 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7805                                    EVT VT, SDValue Chain, SDValue Ptr,
7806                                    SDValue Mask, SDValue EVL,
7807                                    MachinePointerInfo PtrInfo, EVT MemVT,
7808                                    MaybeAlign Alignment,
7809                                    MachineMemOperand::Flags MMOFlags,
7810                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7811   SDValue Undef = getUNDEF(Ptr.getValueType());
7812   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7813                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7814                    IsExpanding);
7815 }
7816 
7817 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7818                                    EVT VT, SDValue Chain, SDValue Ptr,
7819                                    SDValue Mask, SDValue EVL, EVT MemVT,
7820                                    MachineMemOperand *MMO, bool IsExpanding) {
7821   SDValue Undef = getUNDEF(Ptr.getValueType());
7822   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7823                    EVL, MemVT, MMO, IsExpanding);
7824 }
7825 
7826 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7827                                        SDValue Base, SDValue Offset,
7828                                        ISD::MemIndexedMode AM) {
7829   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7830   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7831   // Don't propagate the invariant or dereferenceable flags.
7832   auto MMOFlags =
7833       LD->getMemOperand()->getFlags() &
7834       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7835   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7836                    LD->getChain(), Base, Offset, LD->getMask(),
7837                    LD->getVectorLength(), LD->getPointerInfo(),
7838                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7839                    nullptr, LD->isExpandingLoad());
7840 }
7841 
7842 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7843                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7844                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7845                                  ISD::MemIndexedMode AM, bool IsTruncating,
7846                                  bool IsCompressing) {
7847   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7848   bool Indexed = AM != ISD::UNINDEXED;
7849   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7850   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7851                          : getVTList(MVT::Other);
7852   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7853   FoldingSetNodeID ID;
7854   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7855   ID.AddInteger(MemVT.getRawBits());
7856   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7857       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7858   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7859   void *IP = nullptr;
7860   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7861     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7862     return SDValue(E, 0);
7863   }
7864   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7865                                      IsTruncating, IsCompressing, MemVT, MMO);
7866   createOperands(N, Ops);
7867 
7868   CSEMap.InsertNode(N, IP);
7869   InsertNode(N);
7870   SDValue V(N, 0);
7871   NewSDValueDbgMsg(V, "Creating new node: ", this);
7872   return V;
7873 }
7874 
7875 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7876                                       SDValue Val, SDValue Ptr, SDValue Mask,
7877                                       SDValue EVL, MachinePointerInfo PtrInfo,
7878                                       EVT SVT, Align Alignment,
7879                                       MachineMemOperand::Flags MMOFlags,
7880                                       const AAMDNodes &AAInfo,
7881                                       bool IsCompressing) {
7882   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7883 
7884   MMOFlags |= MachineMemOperand::MOStore;
7885   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7886 
7887   if (PtrInfo.V.isNull())
7888     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7889 
7890   MachineFunction &MF = getMachineFunction();
7891   MachineMemOperand *MMO = MF.getMachineMemOperand(
7892       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7893       Alignment, AAInfo);
7894   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7895                          IsCompressing);
7896 }
7897 
7898 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7899                                       SDValue Val, SDValue Ptr, SDValue Mask,
7900                                       SDValue EVL, EVT SVT,
7901                                       MachineMemOperand *MMO,
7902                                       bool IsCompressing) {
7903   EVT VT = Val.getValueType();
7904 
7905   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7906   if (VT == SVT)
7907     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
7908                       EVL, VT, MMO, ISD::UNINDEXED,
7909                       /*IsTruncating*/ false, IsCompressing);
7910 
7911   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7912          "Should only be a truncating store, not extending!");
7913   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7914   assert(VT.isVector() == SVT.isVector() &&
7915          "Cannot use trunc store to convert to or from a vector!");
7916   assert((!VT.isVector() ||
7917           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7918          "Cannot use trunc store to change the number of vector elements!");
7919 
7920   SDVTList VTs = getVTList(MVT::Other);
7921   SDValue Undef = getUNDEF(Ptr.getValueType());
7922   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7923   FoldingSetNodeID ID;
7924   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7925   ID.AddInteger(SVT.getRawBits());
7926   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7927       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7928   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7929   void *IP = nullptr;
7930   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7931     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7932     return SDValue(E, 0);
7933   }
7934   auto *N =
7935       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7936                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7937   createOperands(N, Ops);
7938 
7939   CSEMap.InsertNode(N, IP);
7940   InsertNode(N);
7941   SDValue V(N, 0);
7942   NewSDValueDbgMsg(V, "Creating new node: ", this);
7943   return V;
7944 }
7945 
7946 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7947                                         SDValue Base, SDValue Offset,
7948                                         ISD::MemIndexedMode AM) {
7949   auto *ST = cast<VPStoreSDNode>(OrigStore);
7950   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7951   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7952   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7953                    Offset,         ST->getMask(),  ST->getVectorLength()};
7954   FoldingSetNodeID ID;
7955   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7956   ID.AddInteger(ST->getMemoryVT().getRawBits());
7957   ID.AddInteger(ST->getRawSubclassData());
7958   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7959   void *IP = nullptr;
7960   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7961     return SDValue(E, 0);
7962 
7963   auto *N = newSDNode<VPStoreSDNode>(
7964       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7965       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7966   createOperands(N, Ops);
7967 
7968   CSEMap.InsertNode(N, IP);
7969   InsertNode(N);
7970   SDValue V(N, 0);
7971   NewSDValueDbgMsg(V, "Creating new node: ", this);
7972   return V;
7973 }
7974 
7975 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7976                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7977                                   ISD::MemIndexType IndexType) {
7978   assert(Ops.size() == 6 && "Incompatible number of operands");
7979 
7980   FoldingSetNodeID ID;
7981   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7982   ID.AddInteger(VT.getRawBits());
7983   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7984       dl.getIROrder(), VTs, VT, MMO, IndexType));
7985   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7986   void *IP = nullptr;
7987   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7988     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7989     return SDValue(E, 0);
7990   }
7991 
7992   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7993                                       VT, MMO, IndexType);
7994   createOperands(N, Ops);
7995 
7996   assert(N->getMask().getValueType().getVectorElementCount() ==
7997              N->getValueType(0).getVectorElementCount() &&
7998          "Vector width mismatch between mask and data");
7999   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8000              N->getValueType(0).getVectorElementCount().isScalable() &&
8001          "Scalable flags of index and data do not match");
8002   assert(ElementCount::isKnownGE(
8003              N->getIndex().getValueType().getVectorElementCount(),
8004              N->getValueType(0).getVectorElementCount()) &&
8005          "Vector width mismatch between index and data");
8006   assert(isa<ConstantSDNode>(N->getScale()) &&
8007          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8008          "Scale should be a constant power of 2");
8009 
8010   CSEMap.InsertNode(N, IP);
8011   InsertNode(N);
8012   SDValue V(N, 0);
8013   NewSDValueDbgMsg(V, "Creating new node: ", this);
8014   return V;
8015 }
8016 
8017 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8018                                    ArrayRef<SDValue> Ops,
8019                                    MachineMemOperand *MMO,
8020                                    ISD::MemIndexType IndexType) {
8021   assert(Ops.size() == 7 && "Incompatible number of operands");
8022 
8023   FoldingSetNodeID ID;
8024   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8025   ID.AddInteger(VT.getRawBits());
8026   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8027       dl.getIROrder(), VTs, VT, MMO, IndexType));
8028   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8029   void *IP = nullptr;
8030   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8031     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8032     return SDValue(E, 0);
8033   }
8034   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8035                                        VT, MMO, IndexType);
8036   createOperands(N, Ops);
8037 
8038   assert(N->getMask().getValueType().getVectorElementCount() ==
8039              N->getValue().getValueType().getVectorElementCount() &&
8040          "Vector width mismatch between mask and data");
8041   assert(
8042       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8043           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8044       "Scalable flags of index and data do not match");
8045   assert(ElementCount::isKnownGE(
8046              N->getIndex().getValueType().getVectorElementCount(),
8047              N->getValue().getValueType().getVectorElementCount()) &&
8048          "Vector width mismatch between index and data");
8049   assert(isa<ConstantSDNode>(N->getScale()) &&
8050          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8051          "Scale should be a constant power of 2");
8052 
8053   CSEMap.InsertNode(N, IP);
8054   InsertNode(N);
8055   SDValue V(N, 0);
8056   NewSDValueDbgMsg(V, "Creating new node: ", this);
8057   return V;
8058 }
8059 
8060 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8061                                     SDValue Base, SDValue Offset, SDValue Mask,
8062                                     SDValue PassThru, EVT MemVT,
8063                                     MachineMemOperand *MMO,
8064                                     ISD::MemIndexedMode AM,
8065                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8066   bool Indexed = AM != ISD::UNINDEXED;
8067   assert((Indexed || Offset.isUndef()) &&
8068          "Unindexed masked load with an offset!");
8069   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8070                          : getVTList(VT, MVT::Other);
8071   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8072   FoldingSetNodeID ID;
8073   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8074   ID.AddInteger(MemVT.getRawBits());
8075   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8076       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8077   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8078   void *IP = nullptr;
8079   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8080     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8081     return SDValue(E, 0);
8082   }
8083   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8084                                         AM, ExtTy, isExpanding, MemVT, MMO);
8085   createOperands(N, Ops);
8086 
8087   CSEMap.InsertNode(N, IP);
8088   InsertNode(N);
8089   SDValue V(N, 0);
8090   NewSDValueDbgMsg(V, "Creating new node: ", this);
8091   return V;
8092 }
8093 
8094 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8095                                            SDValue Base, SDValue Offset,
8096                                            ISD::MemIndexedMode AM) {
8097   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8098   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8099   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8100                        Offset, LD->getMask(), LD->getPassThru(),
8101                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8102                        LD->getExtensionType(), LD->isExpandingLoad());
8103 }
8104 
8105 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8106                                      SDValue Val, SDValue Base, SDValue Offset,
8107                                      SDValue Mask, EVT MemVT,
8108                                      MachineMemOperand *MMO,
8109                                      ISD::MemIndexedMode AM, bool IsTruncating,
8110                                      bool IsCompressing) {
8111   assert(Chain.getValueType() == MVT::Other &&
8112         "Invalid chain type");
8113   bool Indexed = AM != ISD::UNINDEXED;
8114   assert((Indexed || Offset.isUndef()) &&
8115          "Unindexed masked store with an offset!");
8116   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8117                          : getVTList(MVT::Other);
8118   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8119   FoldingSetNodeID ID;
8120   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8121   ID.AddInteger(MemVT.getRawBits());
8122   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8123       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8124   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8125   void *IP = nullptr;
8126   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8127     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8128     return SDValue(E, 0);
8129   }
8130   auto *N =
8131       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8132                                    IsTruncating, IsCompressing, MemVT, MMO);
8133   createOperands(N, Ops);
8134 
8135   CSEMap.InsertNode(N, IP);
8136   InsertNode(N);
8137   SDValue V(N, 0);
8138   NewSDValueDbgMsg(V, "Creating new node: ", this);
8139   return V;
8140 }
8141 
8142 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8143                                             SDValue Base, SDValue Offset,
8144                                             ISD::MemIndexedMode AM) {
8145   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8146   assert(ST->getOffset().isUndef() &&
8147          "Masked store is already a indexed store!");
8148   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8149                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8150                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8151 }
8152 
8153 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8154                                       ArrayRef<SDValue> Ops,
8155                                       MachineMemOperand *MMO,
8156                                       ISD::MemIndexType IndexType,
8157                                       ISD::LoadExtType ExtTy) {
8158   assert(Ops.size() == 6 && "Incompatible number of operands");
8159 
8160   FoldingSetNodeID ID;
8161   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8162   ID.AddInteger(MemVT.getRawBits());
8163   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8164       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8165   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8166   void *IP = nullptr;
8167   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8168     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8169     return SDValue(E, 0);
8170   }
8171 
8172   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8173   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8174                                           VTs, MemVT, MMO, IndexType, ExtTy);
8175   createOperands(N, Ops);
8176 
8177   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8178          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8179   assert(N->getMask().getValueType().getVectorElementCount() ==
8180              N->getValueType(0).getVectorElementCount() &&
8181          "Vector width mismatch between mask and data");
8182   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8183              N->getValueType(0).getVectorElementCount().isScalable() &&
8184          "Scalable flags of index and data do not match");
8185   assert(ElementCount::isKnownGE(
8186              N->getIndex().getValueType().getVectorElementCount(),
8187              N->getValueType(0).getVectorElementCount()) &&
8188          "Vector width mismatch between index and data");
8189   assert(isa<ConstantSDNode>(N->getScale()) &&
8190          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8191          "Scale should be a constant power of 2");
8192 
8193   CSEMap.InsertNode(N, IP);
8194   InsertNode(N);
8195   SDValue V(N, 0);
8196   NewSDValueDbgMsg(V, "Creating new node: ", this);
8197   return V;
8198 }
8199 
8200 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8201                                        ArrayRef<SDValue> Ops,
8202                                        MachineMemOperand *MMO,
8203                                        ISD::MemIndexType IndexType,
8204                                        bool IsTrunc) {
8205   assert(Ops.size() == 6 && "Incompatible number of operands");
8206 
8207   FoldingSetNodeID ID;
8208   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8209   ID.AddInteger(MemVT.getRawBits());
8210   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8211       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8212   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8213   void *IP = nullptr;
8214   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8215     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8216     return SDValue(E, 0);
8217   }
8218 
8219   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8220   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8221                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8222   createOperands(N, Ops);
8223 
8224   assert(N->getMask().getValueType().getVectorElementCount() ==
8225              N->getValue().getValueType().getVectorElementCount() &&
8226          "Vector width mismatch between mask and data");
8227   assert(
8228       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8229           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8230       "Scalable flags of index and data do not match");
8231   assert(ElementCount::isKnownGE(
8232              N->getIndex().getValueType().getVectorElementCount(),
8233              N->getValue().getValueType().getVectorElementCount()) &&
8234          "Vector width mismatch between index and data");
8235   assert(isa<ConstantSDNode>(N->getScale()) &&
8236          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8237          "Scale should be a constant power of 2");
8238 
8239   CSEMap.InsertNode(N, IP);
8240   InsertNode(N);
8241   SDValue V(N, 0);
8242   NewSDValueDbgMsg(V, "Creating new node: ", this);
8243   return V;
8244 }
8245 
8246 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8247   // select undef, T, F --> T (if T is a constant), otherwise F
8248   // select, ?, undef, F --> F
8249   // select, ?, T, undef --> T
8250   if (Cond.isUndef())
8251     return isConstantValueOfAnyType(T) ? T : F;
8252   if (T.isUndef())
8253     return F;
8254   if (F.isUndef())
8255     return T;
8256 
8257   // select true, T, F --> T
8258   // select false, T, F --> F
8259   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8260     return CondC->isZero() ? F : T;
8261 
8262   // TODO: This should simplify VSELECT with constant condition using something
8263   // like this (but check boolean contents to be complete?):
8264   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8265   //    return T;
8266   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8267   //    return F;
8268 
8269   // select ?, T, T --> T
8270   if (T == F)
8271     return T;
8272 
8273   return SDValue();
8274 }
8275 
8276 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8277   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8278   if (X.isUndef())
8279     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8280   // shift X, undef --> undef (because it may shift by the bitwidth)
8281   if (Y.isUndef())
8282     return getUNDEF(X.getValueType());
8283 
8284   // shift 0, Y --> 0
8285   // shift X, 0 --> X
8286   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8287     return X;
8288 
8289   // shift X, C >= bitwidth(X) --> undef
8290   // All vector elements must be too big (or undef) to avoid partial undefs.
8291   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8292     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8293   };
8294   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8295     return getUNDEF(X.getValueType());
8296 
8297   return SDValue();
8298 }
8299 
8300 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8301                                       SDNodeFlags Flags) {
8302   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8303   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8304   // operation is poison. That result can be relaxed to undef.
8305   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8306   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8307   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8308                 (YC && YC->getValueAPF().isNaN());
8309   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8310                 (YC && YC->getValueAPF().isInfinity());
8311 
8312   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8313     return getUNDEF(X.getValueType());
8314 
8315   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8316     return getUNDEF(X.getValueType());
8317 
8318   if (!YC)
8319     return SDValue();
8320 
8321   // X + -0.0 --> X
8322   if (Opcode == ISD::FADD)
8323     if (YC->getValueAPF().isNegZero())
8324       return X;
8325 
8326   // X - +0.0 --> X
8327   if (Opcode == ISD::FSUB)
8328     if (YC->getValueAPF().isPosZero())
8329       return X;
8330 
8331   // X * 1.0 --> X
8332   // X / 1.0 --> X
8333   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8334     if (YC->getValueAPF().isExactlyValue(1.0))
8335       return X;
8336 
8337   // X * 0.0 --> 0.0
8338   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8339     if (YC->getValueAPF().isZero())
8340       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8341 
8342   return SDValue();
8343 }
8344 
8345 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8346                                SDValue Ptr, SDValue SV, unsigned Align) {
8347   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8348   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8349 }
8350 
8351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8352                               ArrayRef<SDUse> Ops) {
8353   switch (Ops.size()) {
8354   case 0: return getNode(Opcode, DL, VT);
8355   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8356   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8357   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8358   default: break;
8359   }
8360 
8361   // Copy from an SDUse array into an SDValue array for use with
8362   // the regular getNode logic.
8363   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8364   return getNode(Opcode, DL, VT, NewOps);
8365 }
8366 
8367 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8368                               ArrayRef<SDValue> Ops) {
8369   SDNodeFlags Flags;
8370   if (Inserter)
8371     Flags = Inserter->getFlags();
8372   return getNode(Opcode, DL, VT, Ops, Flags);
8373 }
8374 
8375 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8376                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8377   unsigned NumOps = Ops.size();
8378   switch (NumOps) {
8379   case 0: return getNode(Opcode, DL, VT);
8380   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8381   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8382   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8383   default: break;
8384   }
8385 
8386 #ifndef NDEBUG
8387   for (auto &Op : Ops)
8388     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8389            "Operand is DELETED_NODE!");
8390 #endif
8391 
8392   switch (Opcode) {
8393   default: break;
8394   case ISD::BUILD_VECTOR:
8395     // Attempt to simplify BUILD_VECTOR.
8396     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8397       return V;
8398     break;
8399   case ISD::CONCAT_VECTORS:
8400     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8401       return V;
8402     break;
8403   case ISD::SELECT_CC:
8404     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8405     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8406            "LHS and RHS of condition must have same type!");
8407     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8408            "True and False arms of SelectCC must have same type!");
8409     assert(Ops[2].getValueType() == VT &&
8410            "select_cc node must be of same type as true and false value!");
8411     break;
8412   case ISD::BR_CC:
8413     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8414     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8415            "LHS/RHS of comparison should match types!");
8416     break;
8417   }
8418 
8419   // Memoize nodes.
8420   SDNode *N;
8421   SDVTList VTs = getVTList(VT);
8422 
8423   if (VT != MVT::Glue) {
8424     FoldingSetNodeID ID;
8425     AddNodeIDNode(ID, Opcode, VTs, Ops);
8426     void *IP = nullptr;
8427 
8428     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8429       return SDValue(E, 0);
8430 
8431     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8432     createOperands(N, Ops);
8433 
8434     CSEMap.InsertNode(N, IP);
8435   } else {
8436     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8437     createOperands(N, Ops);
8438   }
8439 
8440   N->setFlags(Flags);
8441   InsertNode(N);
8442   SDValue V(N, 0);
8443   NewSDValueDbgMsg(V, "Creating new node: ", this);
8444   return V;
8445 }
8446 
8447 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8448                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8449   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8450 }
8451 
8452 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8453                               ArrayRef<SDValue> Ops) {
8454   SDNodeFlags Flags;
8455   if (Inserter)
8456     Flags = Inserter->getFlags();
8457   return getNode(Opcode, DL, VTList, Ops, Flags);
8458 }
8459 
8460 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8461                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8462   if (VTList.NumVTs == 1)
8463     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8464 
8465 #ifndef NDEBUG
8466   for (auto &Op : Ops)
8467     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8468            "Operand is DELETED_NODE!");
8469 #endif
8470 
8471   switch (Opcode) {
8472   case ISD::STRICT_FP_EXTEND:
8473     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8474            "Invalid STRICT_FP_EXTEND!");
8475     assert(VTList.VTs[0].isFloatingPoint() &&
8476            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8477     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8478            "STRICT_FP_EXTEND result type should be vector iff the operand "
8479            "type is vector!");
8480     assert((!VTList.VTs[0].isVector() ||
8481             VTList.VTs[0].getVectorNumElements() ==
8482             Ops[1].getValueType().getVectorNumElements()) &&
8483            "Vector element count mismatch!");
8484     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8485            "Invalid fpext node, dst <= src!");
8486     break;
8487   case ISD::STRICT_FP_ROUND:
8488     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8489     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8490            "STRICT_FP_ROUND result type should be vector iff the operand "
8491            "type is vector!");
8492     assert((!VTList.VTs[0].isVector() ||
8493             VTList.VTs[0].getVectorNumElements() ==
8494             Ops[1].getValueType().getVectorNumElements()) &&
8495            "Vector element count mismatch!");
8496     assert(VTList.VTs[0].isFloatingPoint() &&
8497            Ops[1].getValueType().isFloatingPoint() &&
8498            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8499            isa<ConstantSDNode>(Ops[2]) &&
8500            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8501             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8502            "Invalid STRICT_FP_ROUND!");
8503     break;
8504 #if 0
8505   // FIXME: figure out how to safely handle things like
8506   // int foo(int x) { return 1 << (x & 255); }
8507   // int bar() { return foo(256); }
8508   case ISD::SRA_PARTS:
8509   case ISD::SRL_PARTS:
8510   case ISD::SHL_PARTS:
8511     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8512         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8513       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8514     else if (N3.getOpcode() == ISD::AND)
8515       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8516         // If the and is only masking out bits that cannot effect the shift,
8517         // eliminate the and.
8518         unsigned NumBits = VT.getScalarSizeInBits()*2;
8519         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8520           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8521       }
8522     break;
8523 #endif
8524   }
8525 
8526   // Memoize the node unless it returns a flag.
8527   SDNode *N;
8528   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8529     FoldingSetNodeID ID;
8530     AddNodeIDNode(ID, Opcode, VTList, Ops);
8531     void *IP = nullptr;
8532     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8533       return SDValue(E, 0);
8534 
8535     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8536     createOperands(N, Ops);
8537     CSEMap.InsertNode(N, IP);
8538   } else {
8539     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8540     createOperands(N, Ops);
8541   }
8542 
8543   N->setFlags(Flags);
8544   InsertNode(N);
8545   SDValue V(N, 0);
8546   NewSDValueDbgMsg(V, "Creating new node: ", this);
8547   return V;
8548 }
8549 
8550 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8551                               SDVTList VTList) {
8552   return getNode(Opcode, DL, VTList, None);
8553 }
8554 
8555 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8556                               SDValue N1) {
8557   SDValue Ops[] = { N1 };
8558   return getNode(Opcode, DL, VTList, Ops);
8559 }
8560 
8561 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8562                               SDValue N1, SDValue N2) {
8563   SDValue Ops[] = { N1, N2 };
8564   return getNode(Opcode, DL, VTList, Ops);
8565 }
8566 
8567 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8568                               SDValue N1, SDValue N2, SDValue N3) {
8569   SDValue Ops[] = { N1, N2, N3 };
8570   return getNode(Opcode, DL, VTList, Ops);
8571 }
8572 
8573 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8574                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8575   SDValue Ops[] = { N1, N2, N3, N4 };
8576   return getNode(Opcode, DL, VTList, Ops);
8577 }
8578 
8579 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8580                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8581                               SDValue N5) {
8582   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8583   return getNode(Opcode, DL, VTList, Ops);
8584 }
8585 
8586 SDVTList SelectionDAG::getVTList(EVT VT) {
8587   return makeVTList(SDNode::getValueTypeList(VT), 1);
8588 }
8589 
8590 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8591   FoldingSetNodeID ID;
8592   ID.AddInteger(2U);
8593   ID.AddInteger(VT1.getRawBits());
8594   ID.AddInteger(VT2.getRawBits());
8595 
8596   void *IP = nullptr;
8597   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8598   if (!Result) {
8599     EVT *Array = Allocator.Allocate<EVT>(2);
8600     Array[0] = VT1;
8601     Array[1] = VT2;
8602     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8603     VTListMap.InsertNode(Result, IP);
8604   }
8605   return Result->getSDVTList();
8606 }
8607 
8608 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8609   FoldingSetNodeID ID;
8610   ID.AddInteger(3U);
8611   ID.AddInteger(VT1.getRawBits());
8612   ID.AddInteger(VT2.getRawBits());
8613   ID.AddInteger(VT3.getRawBits());
8614 
8615   void *IP = nullptr;
8616   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8617   if (!Result) {
8618     EVT *Array = Allocator.Allocate<EVT>(3);
8619     Array[0] = VT1;
8620     Array[1] = VT2;
8621     Array[2] = VT3;
8622     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8623     VTListMap.InsertNode(Result, IP);
8624   }
8625   return Result->getSDVTList();
8626 }
8627 
8628 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8629   FoldingSetNodeID ID;
8630   ID.AddInteger(4U);
8631   ID.AddInteger(VT1.getRawBits());
8632   ID.AddInteger(VT2.getRawBits());
8633   ID.AddInteger(VT3.getRawBits());
8634   ID.AddInteger(VT4.getRawBits());
8635 
8636   void *IP = nullptr;
8637   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8638   if (!Result) {
8639     EVT *Array = Allocator.Allocate<EVT>(4);
8640     Array[0] = VT1;
8641     Array[1] = VT2;
8642     Array[2] = VT3;
8643     Array[3] = VT4;
8644     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8645     VTListMap.InsertNode(Result, IP);
8646   }
8647   return Result->getSDVTList();
8648 }
8649 
8650 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8651   unsigned NumVTs = VTs.size();
8652   FoldingSetNodeID ID;
8653   ID.AddInteger(NumVTs);
8654   for (unsigned index = 0; index < NumVTs; index++) {
8655     ID.AddInteger(VTs[index].getRawBits());
8656   }
8657 
8658   void *IP = nullptr;
8659   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8660   if (!Result) {
8661     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8662     llvm::copy(VTs, Array);
8663     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8664     VTListMap.InsertNode(Result, IP);
8665   }
8666   return Result->getSDVTList();
8667 }
8668 
8669 
8670 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8671 /// specified operands.  If the resultant node already exists in the DAG,
8672 /// this does not modify the specified node, instead it returns the node that
8673 /// already exists.  If the resultant node does not exist in the DAG, the
8674 /// input node is returned.  As a degenerate case, if you specify the same
8675 /// input operands as the node already has, the input node is returned.
8676 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8677   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8678 
8679   // Check to see if there is no change.
8680   if (Op == N->getOperand(0)) return N;
8681 
8682   // See if the modified node already exists.
8683   void *InsertPos = nullptr;
8684   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8685     return Existing;
8686 
8687   // Nope it doesn't.  Remove the node from its current place in the maps.
8688   if (InsertPos)
8689     if (!RemoveNodeFromCSEMaps(N))
8690       InsertPos = nullptr;
8691 
8692   // Now we update the operands.
8693   N->OperandList[0].set(Op);
8694 
8695   updateDivergence(N);
8696   // If this gets put into a CSE map, add it.
8697   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8698   return N;
8699 }
8700 
8701 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8702   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8703 
8704   // Check to see if there is no change.
8705   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8706     return N;   // No operands changed, just return the input node.
8707 
8708   // See if the modified node already exists.
8709   void *InsertPos = nullptr;
8710   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8711     return Existing;
8712 
8713   // Nope it doesn't.  Remove the node from its current place in the maps.
8714   if (InsertPos)
8715     if (!RemoveNodeFromCSEMaps(N))
8716       InsertPos = nullptr;
8717 
8718   // Now we update the operands.
8719   if (N->OperandList[0] != Op1)
8720     N->OperandList[0].set(Op1);
8721   if (N->OperandList[1] != Op2)
8722     N->OperandList[1].set(Op2);
8723 
8724   updateDivergence(N);
8725   // If this gets put into a CSE map, add it.
8726   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8727   return N;
8728 }
8729 
8730 SDNode *SelectionDAG::
8731 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8732   SDValue Ops[] = { Op1, Op2, Op3 };
8733   return UpdateNodeOperands(N, Ops);
8734 }
8735 
8736 SDNode *SelectionDAG::
8737 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8738                    SDValue Op3, SDValue Op4) {
8739   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8740   return UpdateNodeOperands(N, Ops);
8741 }
8742 
8743 SDNode *SelectionDAG::
8744 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8745                    SDValue Op3, SDValue Op4, SDValue Op5) {
8746   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8747   return UpdateNodeOperands(N, Ops);
8748 }
8749 
8750 SDNode *SelectionDAG::
8751 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8752   unsigned NumOps = Ops.size();
8753   assert(N->getNumOperands() == NumOps &&
8754          "Update with wrong number of operands");
8755 
8756   // If no operands changed just return the input node.
8757   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8758     return N;
8759 
8760   // See if the modified node already exists.
8761   void *InsertPos = nullptr;
8762   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8763     return Existing;
8764 
8765   // Nope it doesn't.  Remove the node from its current place in the maps.
8766   if (InsertPos)
8767     if (!RemoveNodeFromCSEMaps(N))
8768       InsertPos = nullptr;
8769 
8770   // Now we update the operands.
8771   for (unsigned i = 0; i != NumOps; ++i)
8772     if (N->OperandList[i] != Ops[i])
8773       N->OperandList[i].set(Ops[i]);
8774 
8775   updateDivergence(N);
8776   // If this gets put into a CSE map, add it.
8777   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8778   return N;
8779 }
8780 
8781 /// DropOperands - Release the operands and set this node to have
8782 /// zero operands.
8783 void SDNode::DropOperands() {
8784   // Unlike the code in MorphNodeTo that does this, we don't need to
8785   // watch for dead nodes here.
8786   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8787     SDUse &Use = *I++;
8788     Use.set(SDValue());
8789   }
8790 }
8791 
8792 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8793                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8794   if (NewMemRefs.empty()) {
8795     N->clearMemRefs();
8796     return;
8797   }
8798 
8799   // Check if we can avoid allocating by storing a single reference directly.
8800   if (NewMemRefs.size() == 1) {
8801     N->MemRefs = NewMemRefs[0];
8802     N->NumMemRefs = 1;
8803     return;
8804   }
8805 
8806   MachineMemOperand **MemRefsBuffer =
8807       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8808   llvm::copy(NewMemRefs, MemRefsBuffer);
8809   N->MemRefs = MemRefsBuffer;
8810   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8811 }
8812 
8813 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8814 /// machine opcode.
8815 ///
8816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8817                                    EVT VT) {
8818   SDVTList VTs = getVTList(VT);
8819   return SelectNodeTo(N, MachineOpc, VTs, None);
8820 }
8821 
8822 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8823                                    EVT VT, SDValue Op1) {
8824   SDVTList VTs = getVTList(VT);
8825   SDValue Ops[] = { Op1 };
8826   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8827 }
8828 
8829 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8830                                    EVT VT, SDValue Op1,
8831                                    SDValue Op2) {
8832   SDVTList VTs = getVTList(VT);
8833   SDValue Ops[] = { Op1, Op2 };
8834   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8835 }
8836 
8837 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8838                                    EVT VT, SDValue Op1,
8839                                    SDValue Op2, SDValue Op3) {
8840   SDVTList VTs = getVTList(VT);
8841   SDValue Ops[] = { Op1, Op2, Op3 };
8842   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8843 }
8844 
8845 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8846                                    EVT VT, ArrayRef<SDValue> Ops) {
8847   SDVTList VTs = getVTList(VT);
8848   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8849 }
8850 
8851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8852                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8853   SDVTList VTs = getVTList(VT1, VT2);
8854   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8855 }
8856 
8857 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8858                                    EVT VT1, EVT VT2) {
8859   SDVTList VTs = getVTList(VT1, VT2);
8860   return SelectNodeTo(N, MachineOpc, VTs, None);
8861 }
8862 
8863 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8864                                    EVT VT1, EVT VT2, EVT VT3,
8865                                    ArrayRef<SDValue> Ops) {
8866   SDVTList VTs = getVTList(VT1, VT2, VT3);
8867   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8868 }
8869 
8870 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8871                                    EVT VT1, EVT VT2,
8872                                    SDValue Op1, SDValue Op2) {
8873   SDVTList VTs = getVTList(VT1, VT2);
8874   SDValue Ops[] = { Op1, Op2 };
8875   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8876 }
8877 
8878 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8879                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8880   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8881   // Reset the NodeID to -1.
8882   New->setNodeId(-1);
8883   if (New != N) {
8884     ReplaceAllUsesWith(N, New);
8885     RemoveDeadNode(N);
8886   }
8887   return New;
8888 }
8889 
8890 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8891 /// the line number information on the merged node since it is not possible to
8892 /// preserve the information that operation is associated with multiple lines.
8893 /// This will make the debugger working better at -O0, were there is a higher
8894 /// probability having other instructions associated with that line.
8895 ///
8896 /// For IROrder, we keep the smaller of the two
8897 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8898   DebugLoc NLoc = N->getDebugLoc();
8899   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8900     N->setDebugLoc(DebugLoc());
8901   }
8902   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8903   N->setIROrder(Order);
8904   return N;
8905 }
8906 
8907 /// MorphNodeTo - This *mutates* the specified node to have the specified
8908 /// return type, opcode, and operands.
8909 ///
8910 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8911 /// node of the specified opcode and operands, it returns that node instead of
8912 /// the current one.  Note that the SDLoc need not be the same.
8913 ///
8914 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8915 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8916 /// node, and because it doesn't require CSE recalculation for any of
8917 /// the node's users.
8918 ///
8919 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8920 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8921 /// the legalizer which maintain worklists that would need to be updated when
8922 /// deleting things.
8923 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8924                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8925   // If an identical node already exists, use it.
8926   void *IP = nullptr;
8927   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8928     FoldingSetNodeID ID;
8929     AddNodeIDNode(ID, Opc, VTs, Ops);
8930     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8931       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8932   }
8933 
8934   if (!RemoveNodeFromCSEMaps(N))
8935     IP = nullptr;
8936 
8937   // Start the morphing.
8938   N->NodeType = Opc;
8939   N->ValueList = VTs.VTs;
8940   N->NumValues = VTs.NumVTs;
8941 
8942   // Clear the operands list, updating used nodes to remove this from their
8943   // use list.  Keep track of any operands that become dead as a result.
8944   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8945   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8946     SDUse &Use = *I++;
8947     SDNode *Used = Use.getNode();
8948     Use.set(SDValue());
8949     if (Used->use_empty())
8950       DeadNodeSet.insert(Used);
8951   }
8952 
8953   // For MachineNode, initialize the memory references information.
8954   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8955     MN->clearMemRefs();
8956 
8957   // Swap for an appropriately sized array from the recycler.
8958   removeOperands(N);
8959   createOperands(N, Ops);
8960 
8961   // Delete any nodes that are still dead after adding the uses for the
8962   // new operands.
8963   if (!DeadNodeSet.empty()) {
8964     SmallVector<SDNode *, 16> DeadNodes;
8965     for (SDNode *N : DeadNodeSet)
8966       if (N->use_empty())
8967         DeadNodes.push_back(N);
8968     RemoveDeadNodes(DeadNodes);
8969   }
8970 
8971   if (IP)
8972     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8973   return N;
8974 }
8975 
8976 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8977   unsigned OrigOpc = Node->getOpcode();
8978   unsigned NewOpc;
8979   switch (OrigOpc) {
8980   default:
8981     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8982 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8983   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8984 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8985   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8986 #include "llvm/IR/ConstrainedOps.def"
8987   }
8988 
8989   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8990 
8991   // We're taking this node out of the chain, so we need to re-link things.
8992   SDValue InputChain = Node->getOperand(0);
8993   SDValue OutputChain = SDValue(Node, 1);
8994   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8995 
8996   SmallVector<SDValue, 3> Ops;
8997   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8998     Ops.push_back(Node->getOperand(i));
8999 
9000   SDVTList VTs = getVTList(Node->getValueType(0));
9001   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9002 
9003   // MorphNodeTo can operate in two ways: if an existing node with the
9004   // specified operands exists, it can just return it.  Otherwise, it
9005   // updates the node in place to have the requested operands.
9006   if (Res == Node) {
9007     // If we updated the node in place, reset the node ID.  To the isel,
9008     // this should be just like a newly allocated machine node.
9009     Res->setNodeId(-1);
9010   } else {
9011     ReplaceAllUsesWith(Node, Res);
9012     RemoveDeadNode(Node);
9013   }
9014 
9015   return Res;
9016 }
9017 
9018 /// getMachineNode - These are used for target selectors to create a new node
9019 /// with specified return type(s), MachineInstr opcode, and operands.
9020 ///
9021 /// Note that getMachineNode returns the resultant node.  If there is already a
9022 /// node of the specified opcode and operands, it returns that node instead of
9023 /// the current one.
9024 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9025                                             EVT VT) {
9026   SDVTList VTs = getVTList(VT);
9027   return getMachineNode(Opcode, dl, VTs, None);
9028 }
9029 
9030 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9031                                             EVT VT, SDValue Op1) {
9032   SDVTList VTs = getVTList(VT);
9033   SDValue Ops[] = { Op1 };
9034   return getMachineNode(Opcode, dl, VTs, Ops);
9035 }
9036 
9037 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9038                                             EVT VT, SDValue Op1, SDValue Op2) {
9039   SDVTList VTs = getVTList(VT);
9040   SDValue Ops[] = { Op1, Op2 };
9041   return getMachineNode(Opcode, dl, VTs, Ops);
9042 }
9043 
9044 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9045                                             EVT VT, SDValue Op1, SDValue Op2,
9046                                             SDValue Op3) {
9047   SDVTList VTs = getVTList(VT);
9048   SDValue Ops[] = { Op1, Op2, Op3 };
9049   return getMachineNode(Opcode, dl, VTs, Ops);
9050 }
9051 
9052 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9053                                             EVT VT, ArrayRef<SDValue> Ops) {
9054   SDVTList VTs = getVTList(VT);
9055   return getMachineNode(Opcode, dl, VTs, Ops);
9056 }
9057 
9058 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9059                                             EVT VT1, EVT VT2, SDValue Op1,
9060                                             SDValue Op2) {
9061   SDVTList VTs = getVTList(VT1, VT2);
9062   SDValue Ops[] = { Op1, Op2 };
9063   return getMachineNode(Opcode, dl, VTs, Ops);
9064 }
9065 
9066 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9067                                             EVT VT1, EVT VT2, SDValue Op1,
9068                                             SDValue Op2, SDValue Op3) {
9069   SDVTList VTs = getVTList(VT1, VT2);
9070   SDValue Ops[] = { Op1, Op2, Op3 };
9071   return getMachineNode(Opcode, dl, VTs, Ops);
9072 }
9073 
9074 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9075                                             EVT VT1, EVT VT2,
9076                                             ArrayRef<SDValue> Ops) {
9077   SDVTList VTs = getVTList(VT1, VT2);
9078   return getMachineNode(Opcode, dl, VTs, Ops);
9079 }
9080 
9081 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9082                                             EVT VT1, EVT VT2, EVT VT3,
9083                                             SDValue Op1, SDValue Op2) {
9084   SDVTList VTs = getVTList(VT1, VT2, VT3);
9085   SDValue Ops[] = { Op1, Op2 };
9086   return getMachineNode(Opcode, dl, VTs, Ops);
9087 }
9088 
9089 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9090                                             EVT VT1, EVT VT2, EVT VT3,
9091                                             SDValue Op1, SDValue Op2,
9092                                             SDValue Op3) {
9093   SDVTList VTs = getVTList(VT1, VT2, VT3);
9094   SDValue Ops[] = { Op1, Op2, Op3 };
9095   return getMachineNode(Opcode, dl, VTs, Ops);
9096 }
9097 
9098 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9099                                             EVT VT1, EVT VT2, EVT VT3,
9100                                             ArrayRef<SDValue> Ops) {
9101   SDVTList VTs = getVTList(VT1, VT2, VT3);
9102   return getMachineNode(Opcode, dl, VTs, Ops);
9103 }
9104 
9105 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9106                                             ArrayRef<EVT> ResultTys,
9107                                             ArrayRef<SDValue> Ops) {
9108   SDVTList VTs = getVTList(ResultTys);
9109   return getMachineNode(Opcode, dl, VTs, Ops);
9110 }
9111 
9112 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9113                                             SDVTList VTs,
9114                                             ArrayRef<SDValue> Ops) {
9115   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9116   MachineSDNode *N;
9117   void *IP = nullptr;
9118 
9119   if (DoCSE) {
9120     FoldingSetNodeID ID;
9121     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9122     IP = nullptr;
9123     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9124       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9125     }
9126   }
9127 
9128   // Allocate a new MachineSDNode.
9129   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9130   createOperands(N, Ops);
9131 
9132   if (DoCSE)
9133     CSEMap.InsertNode(N, IP);
9134 
9135   InsertNode(N);
9136   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9137   return N;
9138 }
9139 
9140 /// getTargetExtractSubreg - A convenience function for creating
9141 /// TargetOpcode::EXTRACT_SUBREG nodes.
9142 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9143                                              SDValue Operand) {
9144   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9145   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9146                                   VT, Operand, SRIdxVal);
9147   return SDValue(Subreg, 0);
9148 }
9149 
9150 /// getTargetInsertSubreg - A convenience function for creating
9151 /// TargetOpcode::INSERT_SUBREG nodes.
9152 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9153                                             SDValue Operand, SDValue Subreg) {
9154   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9155   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9156                                   VT, Operand, Subreg, SRIdxVal);
9157   return SDValue(Result, 0);
9158 }
9159 
9160 /// getNodeIfExists - Get the specified node if it's already available, or
9161 /// else return NULL.
9162 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9163                                       ArrayRef<SDValue> Ops) {
9164   SDNodeFlags Flags;
9165   if (Inserter)
9166     Flags = Inserter->getFlags();
9167   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9168 }
9169 
9170 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9171                                       ArrayRef<SDValue> Ops,
9172                                       const SDNodeFlags Flags) {
9173   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9174     FoldingSetNodeID ID;
9175     AddNodeIDNode(ID, Opcode, VTList, Ops);
9176     void *IP = nullptr;
9177     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9178       E->intersectFlagsWith(Flags);
9179       return E;
9180     }
9181   }
9182   return nullptr;
9183 }
9184 
9185 /// doesNodeExist - Check if a node exists without modifying its flags.
9186 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9187                                  ArrayRef<SDValue> Ops) {
9188   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9189     FoldingSetNodeID ID;
9190     AddNodeIDNode(ID, Opcode, VTList, Ops);
9191     void *IP = nullptr;
9192     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9193       return true;
9194   }
9195   return false;
9196 }
9197 
9198 /// getDbgValue - Creates a SDDbgValue node.
9199 ///
9200 /// SDNode
9201 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9202                                       SDNode *N, unsigned R, bool IsIndirect,
9203                                       const DebugLoc &DL, unsigned O) {
9204   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9205          "Expected inlined-at fields to agree");
9206   return new (DbgInfo->getAlloc())
9207       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9208                  {}, IsIndirect, DL, O,
9209                  /*IsVariadic=*/false);
9210 }
9211 
9212 /// Constant
9213 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9214                                               DIExpression *Expr,
9215                                               const Value *C,
9216                                               const DebugLoc &DL, unsigned O) {
9217   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9218          "Expected inlined-at fields to agree");
9219   return new (DbgInfo->getAlloc())
9220       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9221                  /*IsIndirect=*/false, DL, O,
9222                  /*IsVariadic=*/false);
9223 }
9224 
9225 /// FrameIndex
9226 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9227                                                 DIExpression *Expr, unsigned FI,
9228                                                 bool IsIndirect,
9229                                                 const DebugLoc &DL,
9230                                                 unsigned O) {
9231   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9232          "Expected inlined-at fields to agree");
9233   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9234 }
9235 
9236 /// FrameIndex with dependencies
9237 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9238                                                 DIExpression *Expr, unsigned FI,
9239                                                 ArrayRef<SDNode *> Dependencies,
9240                                                 bool IsIndirect,
9241                                                 const DebugLoc &DL,
9242                                                 unsigned O) {
9243   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9244          "Expected inlined-at fields to agree");
9245   return new (DbgInfo->getAlloc())
9246       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9247                  Dependencies, IsIndirect, DL, O,
9248                  /*IsVariadic=*/false);
9249 }
9250 
9251 /// VReg
9252 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9253                                           unsigned VReg, bool IsIndirect,
9254                                           const DebugLoc &DL, unsigned O) {
9255   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9256          "Expected inlined-at fields to agree");
9257   return new (DbgInfo->getAlloc())
9258       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9259                  {}, IsIndirect, DL, O,
9260                  /*IsVariadic=*/false);
9261 }
9262 
9263 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9264                                           ArrayRef<SDDbgOperand> Locs,
9265                                           ArrayRef<SDNode *> Dependencies,
9266                                           bool IsIndirect, const DebugLoc &DL,
9267                                           unsigned O, bool IsVariadic) {
9268   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9269          "Expected inlined-at fields to agree");
9270   return new (DbgInfo->getAlloc())
9271       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9272                  DL, O, IsVariadic);
9273 }
9274 
9275 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9276                                      unsigned OffsetInBits, unsigned SizeInBits,
9277                                      bool InvalidateDbg) {
9278   SDNode *FromNode = From.getNode();
9279   SDNode *ToNode = To.getNode();
9280   assert(FromNode && ToNode && "Can't modify dbg values");
9281 
9282   // PR35338
9283   // TODO: assert(From != To && "Redundant dbg value transfer");
9284   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9285   if (From == To || FromNode == ToNode)
9286     return;
9287 
9288   if (!FromNode->getHasDebugValue())
9289     return;
9290 
9291   SDDbgOperand FromLocOp =
9292       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9293   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9294 
9295   SmallVector<SDDbgValue *, 2> ClonedDVs;
9296   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9297     if (Dbg->isInvalidated())
9298       continue;
9299 
9300     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9301 
9302     // Create a new location ops vector that is equal to the old vector, but
9303     // with each instance of FromLocOp replaced with ToLocOp.
9304     bool Changed = false;
9305     auto NewLocOps = Dbg->copyLocationOps();
9306     std::replace_if(
9307         NewLocOps.begin(), NewLocOps.end(),
9308         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9309           bool Match = Op == FromLocOp;
9310           Changed |= Match;
9311           return Match;
9312         },
9313         ToLocOp);
9314     // Ignore this SDDbgValue if we didn't find a matching location.
9315     if (!Changed)
9316       continue;
9317 
9318     DIVariable *Var = Dbg->getVariable();
9319     auto *Expr = Dbg->getExpression();
9320     // If a fragment is requested, update the expression.
9321     if (SizeInBits) {
9322       // When splitting a larger (e.g., sign-extended) value whose
9323       // lower bits are described with an SDDbgValue, do not attempt
9324       // to transfer the SDDbgValue to the upper bits.
9325       if (auto FI = Expr->getFragmentInfo())
9326         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9327           continue;
9328       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9329                                                              SizeInBits);
9330       if (!Fragment)
9331         continue;
9332       Expr = *Fragment;
9333     }
9334 
9335     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9336     // Clone the SDDbgValue and move it to To.
9337     SDDbgValue *Clone = getDbgValueList(
9338         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9339         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9340         Dbg->isVariadic());
9341     ClonedDVs.push_back(Clone);
9342 
9343     if (InvalidateDbg) {
9344       // Invalidate value and indicate the SDDbgValue should not be emitted.
9345       Dbg->setIsInvalidated();
9346       Dbg->setIsEmitted();
9347     }
9348   }
9349 
9350   for (SDDbgValue *Dbg : ClonedDVs) {
9351     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9352            "Transferred DbgValues should depend on the new SDNode");
9353     AddDbgValue(Dbg, false);
9354   }
9355 }
9356 
9357 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9358   if (!N.getHasDebugValue())
9359     return;
9360 
9361   SmallVector<SDDbgValue *, 2> ClonedDVs;
9362   for (auto DV : GetDbgValues(&N)) {
9363     if (DV->isInvalidated())
9364       continue;
9365     switch (N.getOpcode()) {
9366     default:
9367       break;
9368     case ISD::ADD:
9369       SDValue N0 = N.getOperand(0);
9370       SDValue N1 = N.getOperand(1);
9371       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9372           isConstantIntBuildVectorOrConstantInt(N1)) {
9373         uint64_t Offset = N.getConstantOperandVal(1);
9374 
9375         // Rewrite an ADD constant node into a DIExpression. Since we are
9376         // performing arithmetic to compute the variable's *value* in the
9377         // DIExpression, we need to mark the expression with a
9378         // DW_OP_stack_value.
9379         auto *DIExpr = DV->getExpression();
9380         auto NewLocOps = DV->copyLocationOps();
9381         bool Changed = false;
9382         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9383           // We're not given a ResNo to compare against because the whole
9384           // node is going away. We know that any ISD::ADD only has one
9385           // result, so we can assume any node match is using the result.
9386           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9387               NewLocOps[i].getSDNode() != &N)
9388             continue;
9389           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9390           SmallVector<uint64_t, 3> ExprOps;
9391           DIExpression::appendOffset(ExprOps, Offset);
9392           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9393           Changed = true;
9394         }
9395         (void)Changed;
9396         assert(Changed && "Salvage target doesn't use N");
9397 
9398         auto AdditionalDependencies = DV->getAdditionalDependencies();
9399         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9400                                             NewLocOps, AdditionalDependencies,
9401                                             DV->isIndirect(), DV->getDebugLoc(),
9402                                             DV->getOrder(), DV->isVariadic());
9403         ClonedDVs.push_back(Clone);
9404         DV->setIsInvalidated();
9405         DV->setIsEmitted();
9406         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9407                    N0.getNode()->dumprFull(this);
9408                    dbgs() << " into " << *DIExpr << '\n');
9409       }
9410     }
9411   }
9412 
9413   for (SDDbgValue *Dbg : ClonedDVs) {
9414     assert(!Dbg->getSDNodes().empty() &&
9415            "Salvaged DbgValue should depend on a new SDNode");
9416     AddDbgValue(Dbg, false);
9417   }
9418 }
9419 
9420 /// Creates a SDDbgLabel node.
9421 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9422                                       const DebugLoc &DL, unsigned O) {
9423   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9424          "Expected inlined-at fields to agree");
9425   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9426 }
9427 
9428 namespace {
9429 
9430 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9431 /// pointed to by a use iterator is deleted, increment the use iterator
9432 /// so that it doesn't dangle.
9433 ///
9434 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9435   SDNode::use_iterator &UI;
9436   SDNode::use_iterator &UE;
9437 
9438   void NodeDeleted(SDNode *N, SDNode *E) override {
9439     // Increment the iterator as needed.
9440     while (UI != UE && N == *UI)
9441       ++UI;
9442   }
9443 
9444 public:
9445   RAUWUpdateListener(SelectionDAG &d,
9446                      SDNode::use_iterator &ui,
9447                      SDNode::use_iterator &ue)
9448     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9449 };
9450 
9451 } // end anonymous namespace
9452 
9453 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9454 /// This can cause recursive merging of nodes in the DAG.
9455 ///
9456 /// This version assumes From has a single result value.
9457 ///
9458 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9459   SDNode *From = FromN.getNode();
9460   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9461          "Cannot replace with this method!");
9462   assert(From != To.getNode() && "Cannot replace uses of with self");
9463 
9464   // Preserve Debug Values
9465   transferDbgValues(FromN, To);
9466 
9467   // Iterate over all the existing uses of From. New uses will be added
9468   // to the beginning of the use list, which we avoid visiting.
9469   // This specifically avoids visiting uses of From that arise while the
9470   // replacement is happening, because any such uses would be the result
9471   // of CSE: If an existing node looks like From after one of its operands
9472   // is replaced by To, we don't want to replace of all its users with To
9473   // too. See PR3018 for more info.
9474   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9475   RAUWUpdateListener Listener(*this, UI, UE);
9476   while (UI != UE) {
9477     SDNode *User = *UI;
9478 
9479     // This node is about to morph, remove its old self from the CSE maps.
9480     RemoveNodeFromCSEMaps(User);
9481 
9482     // A user can appear in a use list multiple times, and when this
9483     // happens the uses are usually next to each other in the list.
9484     // To help reduce the number of CSE recomputations, process all
9485     // the uses of this user that we can find this way.
9486     do {
9487       SDUse &Use = UI.getUse();
9488       ++UI;
9489       Use.set(To);
9490       if (To->isDivergent() != From->isDivergent())
9491         updateDivergence(User);
9492     } while (UI != UE && *UI == User);
9493     // Now that we have modified User, add it back to the CSE maps.  If it
9494     // already exists there, recursively merge the results together.
9495     AddModifiedNodeToCSEMaps(User);
9496   }
9497 
9498   // If we just RAUW'd the root, take note.
9499   if (FromN == getRoot())
9500     setRoot(To);
9501 }
9502 
9503 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9504 /// This can cause recursive merging of nodes in the DAG.
9505 ///
9506 /// This version assumes that for each value of From, there is a
9507 /// corresponding value in To in the same position with the same type.
9508 ///
9509 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9510 #ifndef NDEBUG
9511   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9512     assert((!From->hasAnyUseOfValue(i) ||
9513             From->getValueType(i) == To->getValueType(i)) &&
9514            "Cannot use this version of ReplaceAllUsesWith!");
9515 #endif
9516 
9517   // Handle the trivial case.
9518   if (From == To)
9519     return;
9520 
9521   // Preserve Debug Info. Only do this if there's a use.
9522   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9523     if (From->hasAnyUseOfValue(i)) {
9524       assert((i < To->getNumValues()) && "Invalid To location");
9525       transferDbgValues(SDValue(From, i), SDValue(To, i));
9526     }
9527 
9528   // Iterate over just the existing users of From. See the comments in
9529   // the ReplaceAllUsesWith above.
9530   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9531   RAUWUpdateListener Listener(*this, UI, UE);
9532   while (UI != UE) {
9533     SDNode *User = *UI;
9534 
9535     // This node is about to morph, remove its old self from the CSE maps.
9536     RemoveNodeFromCSEMaps(User);
9537 
9538     // A user can appear in a use list multiple times, and when this
9539     // happens the uses are usually next to each other in the list.
9540     // To help reduce the number of CSE recomputations, process all
9541     // the uses of this user that we can find this way.
9542     do {
9543       SDUse &Use = UI.getUse();
9544       ++UI;
9545       Use.setNode(To);
9546       if (To->isDivergent() != From->isDivergent())
9547         updateDivergence(User);
9548     } while (UI != UE && *UI == User);
9549 
9550     // Now that we have modified User, add it back to the CSE maps.  If it
9551     // already exists there, recursively merge the results together.
9552     AddModifiedNodeToCSEMaps(User);
9553   }
9554 
9555   // If we just RAUW'd the root, take note.
9556   if (From == getRoot().getNode())
9557     setRoot(SDValue(To, getRoot().getResNo()));
9558 }
9559 
9560 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9561 /// This can cause recursive merging of nodes in the DAG.
9562 ///
9563 /// This version can replace From with any result values.  To must match the
9564 /// number and types of values returned by From.
9565 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9566   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9567     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9568 
9569   // Preserve Debug Info.
9570   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9571     transferDbgValues(SDValue(From, i), To[i]);
9572 
9573   // Iterate over just the existing users of From. See the comments in
9574   // the ReplaceAllUsesWith above.
9575   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9576   RAUWUpdateListener Listener(*this, UI, UE);
9577   while (UI != UE) {
9578     SDNode *User = *UI;
9579 
9580     // This node is about to morph, remove its old self from the CSE maps.
9581     RemoveNodeFromCSEMaps(User);
9582 
9583     // A user can appear in a use list multiple times, and when this happens the
9584     // uses are usually next to each other in the list.  To help reduce the
9585     // number of CSE and divergence recomputations, process all the uses of this
9586     // user that we can find this way.
9587     bool To_IsDivergent = false;
9588     do {
9589       SDUse &Use = UI.getUse();
9590       const SDValue &ToOp = To[Use.getResNo()];
9591       ++UI;
9592       Use.set(ToOp);
9593       To_IsDivergent |= ToOp->isDivergent();
9594     } while (UI != UE && *UI == User);
9595 
9596     if (To_IsDivergent != From->isDivergent())
9597       updateDivergence(User);
9598 
9599     // Now that we have modified User, add it back to the CSE maps.  If it
9600     // already exists there, recursively merge the results together.
9601     AddModifiedNodeToCSEMaps(User);
9602   }
9603 
9604   // If we just RAUW'd the root, take note.
9605   if (From == getRoot().getNode())
9606     setRoot(SDValue(To[getRoot().getResNo()]));
9607 }
9608 
9609 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9610 /// uses of other values produced by From.getNode() alone.  The Deleted
9611 /// vector is handled the same way as for ReplaceAllUsesWith.
9612 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9613   // Handle the really simple, really trivial case efficiently.
9614   if (From == To) return;
9615 
9616   // Handle the simple, trivial, case efficiently.
9617   if (From.getNode()->getNumValues() == 1) {
9618     ReplaceAllUsesWith(From, To);
9619     return;
9620   }
9621 
9622   // Preserve Debug Info.
9623   transferDbgValues(From, To);
9624 
9625   // Iterate over just the existing users of From. See the comments in
9626   // the ReplaceAllUsesWith above.
9627   SDNode::use_iterator UI = From.getNode()->use_begin(),
9628                        UE = From.getNode()->use_end();
9629   RAUWUpdateListener Listener(*this, UI, UE);
9630   while (UI != UE) {
9631     SDNode *User = *UI;
9632     bool UserRemovedFromCSEMaps = false;
9633 
9634     // A user can appear in a use list multiple times, and when this
9635     // happens the uses are usually next to each other in the list.
9636     // To help reduce the number of CSE recomputations, process all
9637     // the uses of this user that we can find this way.
9638     do {
9639       SDUse &Use = UI.getUse();
9640 
9641       // Skip uses of different values from the same node.
9642       if (Use.getResNo() != From.getResNo()) {
9643         ++UI;
9644         continue;
9645       }
9646 
9647       // If this node hasn't been modified yet, it's still in the CSE maps,
9648       // so remove its old self from the CSE maps.
9649       if (!UserRemovedFromCSEMaps) {
9650         RemoveNodeFromCSEMaps(User);
9651         UserRemovedFromCSEMaps = true;
9652       }
9653 
9654       ++UI;
9655       Use.set(To);
9656       if (To->isDivergent() != From->isDivergent())
9657         updateDivergence(User);
9658     } while (UI != UE && *UI == User);
9659     // We are iterating over all uses of the From node, so if a use
9660     // doesn't use the specific value, no changes are made.
9661     if (!UserRemovedFromCSEMaps)
9662       continue;
9663 
9664     // Now that we have modified User, add it back to the CSE maps.  If it
9665     // already exists there, recursively merge the results together.
9666     AddModifiedNodeToCSEMaps(User);
9667   }
9668 
9669   // If we just RAUW'd the root, take note.
9670   if (From == getRoot())
9671     setRoot(To);
9672 }
9673 
9674 namespace {
9675 
9676   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9677   /// to record information about a use.
9678   struct UseMemo {
9679     SDNode *User;
9680     unsigned Index;
9681     SDUse *Use;
9682   };
9683 
9684   /// operator< - Sort Memos by User.
9685   bool operator<(const UseMemo &L, const UseMemo &R) {
9686     return (intptr_t)L.User < (intptr_t)R.User;
9687   }
9688 
9689 } // end anonymous namespace
9690 
9691 bool SelectionDAG::calculateDivergence(SDNode *N) {
9692   if (TLI->isSDNodeAlwaysUniform(N)) {
9693     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9694            "Conflicting divergence information!");
9695     return false;
9696   }
9697   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9698     return true;
9699   for (auto &Op : N->ops()) {
9700     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9701       return true;
9702   }
9703   return false;
9704 }
9705 
9706 void SelectionDAG::updateDivergence(SDNode *N) {
9707   SmallVector<SDNode *, 16> Worklist(1, N);
9708   do {
9709     N = Worklist.pop_back_val();
9710     bool IsDivergent = calculateDivergence(N);
9711     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9712       N->SDNodeBits.IsDivergent = IsDivergent;
9713       llvm::append_range(Worklist, N->uses());
9714     }
9715   } while (!Worklist.empty());
9716 }
9717 
9718 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9719   DenseMap<SDNode *, unsigned> Degree;
9720   Order.reserve(AllNodes.size());
9721   for (auto &N : allnodes()) {
9722     unsigned NOps = N.getNumOperands();
9723     Degree[&N] = NOps;
9724     if (0 == NOps)
9725       Order.push_back(&N);
9726   }
9727   for (size_t I = 0; I != Order.size(); ++I) {
9728     SDNode *N = Order[I];
9729     for (auto U : N->uses()) {
9730       unsigned &UnsortedOps = Degree[U];
9731       if (0 == --UnsortedOps)
9732         Order.push_back(U);
9733     }
9734   }
9735 }
9736 
9737 #ifndef NDEBUG
9738 void SelectionDAG::VerifyDAGDivergence() {
9739   std::vector<SDNode *> TopoOrder;
9740   CreateTopologicalOrder(TopoOrder);
9741   for (auto *N : TopoOrder) {
9742     assert(calculateDivergence(N) == N->isDivergent() &&
9743            "Divergence bit inconsistency detected");
9744   }
9745 }
9746 #endif
9747 
9748 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9749 /// uses of other values produced by From.getNode() alone.  The same value
9750 /// may appear in both the From and To list.  The Deleted vector is
9751 /// handled the same way as for ReplaceAllUsesWith.
9752 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9753                                               const SDValue *To,
9754                                               unsigned Num){
9755   // Handle the simple, trivial case efficiently.
9756   if (Num == 1)
9757     return ReplaceAllUsesOfValueWith(*From, *To);
9758 
9759   transferDbgValues(*From, *To);
9760 
9761   // Read up all the uses and make records of them. This helps
9762   // processing new uses that are introduced during the
9763   // replacement process.
9764   SmallVector<UseMemo, 4> Uses;
9765   for (unsigned i = 0; i != Num; ++i) {
9766     unsigned FromResNo = From[i].getResNo();
9767     SDNode *FromNode = From[i].getNode();
9768     for (SDNode::use_iterator UI = FromNode->use_begin(),
9769          E = FromNode->use_end(); UI != E; ++UI) {
9770       SDUse &Use = UI.getUse();
9771       if (Use.getResNo() == FromResNo) {
9772         UseMemo Memo = { *UI, i, &Use };
9773         Uses.push_back(Memo);
9774       }
9775     }
9776   }
9777 
9778   // Sort the uses, so that all the uses from a given User are together.
9779   llvm::sort(Uses);
9780 
9781   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9782        UseIndex != UseIndexEnd; ) {
9783     // We know that this user uses some value of From.  If it is the right
9784     // value, update it.
9785     SDNode *User = Uses[UseIndex].User;
9786 
9787     // This node is about to morph, remove its old self from the CSE maps.
9788     RemoveNodeFromCSEMaps(User);
9789 
9790     // The Uses array is sorted, so all the uses for a given User
9791     // are next to each other in the list.
9792     // To help reduce the number of CSE recomputations, process all
9793     // the uses of this user that we can find this way.
9794     do {
9795       unsigned i = Uses[UseIndex].Index;
9796       SDUse &Use = *Uses[UseIndex].Use;
9797       ++UseIndex;
9798 
9799       Use.set(To[i]);
9800     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9801 
9802     // Now that we have modified User, add it back to the CSE maps.  If it
9803     // already exists there, recursively merge the results together.
9804     AddModifiedNodeToCSEMaps(User);
9805   }
9806 }
9807 
9808 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9809 /// based on their topological order. It returns the maximum id and a vector
9810 /// of the SDNodes* in assigned order by reference.
9811 unsigned SelectionDAG::AssignTopologicalOrder() {
9812   unsigned DAGSize = 0;
9813 
9814   // SortedPos tracks the progress of the algorithm. Nodes before it are
9815   // sorted, nodes after it are unsorted. When the algorithm completes
9816   // it is at the end of the list.
9817   allnodes_iterator SortedPos = allnodes_begin();
9818 
9819   // Visit all the nodes. Move nodes with no operands to the front of
9820   // the list immediately. Annotate nodes that do have operands with their
9821   // operand count. Before we do this, the Node Id fields of the nodes
9822   // may contain arbitrary values. After, the Node Id fields for nodes
9823   // before SortedPos will contain the topological sort index, and the
9824   // Node Id fields for nodes At SortedPos and after will contain the
9825   // count of outstanding operands.
9826   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
9827     checkForCycles(&N, this);
9828     unsigned Degree = N.getNumOperands();
9829     if (Degree == 0) {
9830       // A node with no uses, add it to the result array immediately.
9831       N.setNodeId(DAGSize++);
9832       allnodes_iterator Q(&N);
9833       if (Q != SortedPos)
9834         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9835       assert(SortedPos != AllNodes.end() && "Overran node list");
9836       ++SortedPos;
9837     } else {
9838       // Temporarily use the Node Id as scratch space for the degree count.
9839       N.setNodeId(Degree);
9840     }
9841   }
9842 
9843   // Visit all the nodes. As we iterate, move nodes into sorted order,
9844   // such that by the time the end is reached all nodes will be sorted.
9845   for (SDNode &Node : allnodes()) {
9846     SDNode *N = &Node;
9847     checkForCycles(N, this);
9848     // N is in sorted position, so all its uses have one less operand
9849     // that needs to be sorted.
9850     for (SDNode *P : N->uses()) {
9851       unsigned Degree = P->getNodeId();
9852       assert(Degree != 0 && "Invalid node degree");
9853       --Degree;
9854       if (Degree == 0) {
9855         // All of P's operands are sorted, so P may sorted now.
9856         P->setNodeId(DAGSize++);
9857         if (P->getIterator() != SortedPos)
9858           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9859         assert(SortedPos != AllNodes.end() && "Overran node list");
9860         ++SortedPos;
9861       } else {
9862         // Update P's outstanding operand count.
9863         P->setNodeId(Degree);
9864       }
9865     }
9866     if (Node.getIterator() == SortedPos) {
9867 #ifndef NDEBUG
9868       allnodes_iterator I(N);
9869       SDNode *S = &*++I;
9870       dbgs() << "Overran sorted position:\n";
9871       S->dumprFull(this); dbgs() << "\n";
9872       dbgs() << "Checking if this is due to cycles\n";
9873       checkForCycles(this, true);
9874 #endif
9875       llvm_unreachable(nullptr);
9876     }
9877   }
9878 
9879   assert(SortedPos == AllNodes.end() &&
9880          "Topological sort incomplete!");
9881   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9882          "First node in topological sort is not the entry token!");
9883   assert(AllNodes.front().getNodeId() == 0 &&
9884          "First node in topological sort has non-zero id!");
9885   assert(AllNodes.front().getNumOperands() == 0 &&
9886          "First node in topological sort has operands!");
9887   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9888          "Last node in topologic sort has unexpected id!");
9889   assert(AllNodes.back().use_empty() &&
9890          "Last node in topologic sort has users!");
9891   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9892   return DAGSize;
9893 }
9894 
9895 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9896 /// value is produced by SD.
9897 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9898   for (SDNode *SD : DB->getSDNodes()) {
9899     if (!SD)
9900       continue;
9901     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9902     SD->setHasDebugValue(true);
9903   }
9904   DbgInfo->add(DB, isParameter);
9905 }
9906 
9907 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9908 
9909 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9910                                                    SDValue NewMemOpChain) {
9911   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9912   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9913   // The new memory operation must have the same position as the old load in
9914   // terms of memory dependency. Create a TokenFactor for the old load and new
9915   // memory operation and update uses of the old load's output chain to use that
9916   // TokenFactor.
9917   if (OldChain == NewMemOpChain || OldChain.use_empty())
9918     return NewMemOpChain;
9919 
9920   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9921                                 OldChain, NewMemOpChain);
9922   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9923   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9924   return TokenFactor;
9925 }
9926 
9927 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9928                                                    SDValue NewMemOp) {
9929   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9930   SDValue OldChain = SDValue(OldLoad, 1);
9931   SDValue NewMemOpChain = NewMemOp.getValue(1);
9932   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9933 }
9934 
9935 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9936                                                      Function **OutFunction) {
9937   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9938 
9939   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9940   auto *Module = MF->getFunction().getParent();
9941   auto *Function = Module->getFunction(Symbol);
9942 
9943   if (OutFunction != nullptr)
9944       *OutFunction = Function;
9945 
9946   if (Function != nullptr) {
9947     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9948     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9949   }
9950 
9951   std::string ErrorStr;
9952   raw_string_ostream ErrorFormatter(ErrorStr);
9953   ErrorFormatter << "Undefined external symbol ";
9954   ErrorFormatter << '"' << Symbol << '"';
9955   report_fatal_error(Twine(ErrorFormatter.str()));
9956 }
9957 
9958 //===----------------------------------------------------------------------===//
9959 //                              SDNode Class
9960 //===----------------------------------------------------------------------===//
9961 
9962 bool llvm::isNullConstant(SDValue V) {
9963   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9964   return Const != nullptr && Const->isZero();
9965 }
9966 
9967 bool llvm::isNullFPConstant(SDValue V) {
9968   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9969   return Const != nullptr && Const->isZero() && !Const->isNegative();
9970 }
9971 
9972 bool llvm::isAllOnesConstant(SDValue V) {
9973   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9974   return Const != nullptr && Const->isAllOnes();
9975 }
9976 
9977 bool llvm::isOneConstant(SDValue V) {
9978   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9979   return Const != nullptr && Const->isOne();
9980 }
9981 
9982 SDValue llvm::peekThroughBitcasts(SDValue V) {
9983   while (V.getOpcode() == ISD::BITCAST)
9984     V = V.getOperand(0);
9985   return V;
9986 }
9987 
9988 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9989   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9990     V = V.getOperand(0);
9991   return V;
9992 }
9993 
9994 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9995   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9996     V = V.getOperand(0);
9997   return V;
9998 }
9999 
10000 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10001   if (V.getOpcode() != ISD::XOR)
10002     return false;
10003   V = peekThroughBitcasts(V.getOperand(1));
10004   unsigned NumBits = V.getScalarValueSizeInBits();
10005   ConstantSDNode *C =
10006       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10007   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10008 }
10009 
10010 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10011                                           bool AllowTruncation) {
10012   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10013     return CN;
10014 
10015   // SplatVectors can truncate their operands. Ignore that case here unless
10016   // AllowTruncation is set.
10017   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10018     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10019     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10020       EVT CVT = CN->getValueType(0);
10021       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10022       if (AllowTruncation || CVT == VecEltVT)
10023         return CN;
10024     }
10025   }
10026 
10027   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10028     BitVector UndefElements;
10029     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10030 
10031     // BuildVectors can truncate their operands. Ignore that case here unless
10032     // AllowTruncation is set.
10033     if (CN && (UndefElements.none() || AllowUndefs)) {
10034       EVT CVT = CN->getValueType(0);
10035       EVT NSVT = N.getValueType().getScalarType();
10036       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10037       if (AllowTruncation || (CVT == NSVT))
10038         return CN;
10039     }
10040   }
10041 
10042   return nullptr;
10043 }
10044 
10045 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10046                                           bool AllowUndefs,
10047                                           bool AllowTruncation) {
10048   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10049     return CN;
10050 
10051   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10052     BitVector UndefElements;
10053     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10054 
10055     // BuildVectors can truncate their operands. Ignore that case here unless
10056     // AllowTruncation is set.
10057     if (CN && (UndefElements.none() || AllowUndefs)) {
10058       EVT CVT = CN->getValueType(0);
10059       EVT NSVT = N.getValueType().getScalarType();
10060       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10061       if (AllowTruncation || (CVT == NSVT))
10062         return CN;
10063     }
10064   }
10065 
10066   return nullptr;
10067 }
10068 
10069 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10070   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10071     return CN;
10072 
10073   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10074     BitVector UndefElements;
10075     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10076     if (CN && (UndefElements.none() || AllowUndefs))
10077       return CN;
10078   }
10079 
10080   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10081     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10082       return CN;
10083 
10084   return nullptr;
10085 }
10086 
10087 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10088                                               const APInt &DemandedElts,
10089                                               bool AllowUndefs) {
10090   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10091     return CN;
10092 
10093   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10094     BitVector UndefElements;
10095     ConstantFPSDNode *CN =
10096         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10097     if (CN && (UndefElements.none() || AllowUndefs))
10098       return CN;
10099   }
10100 
10101   return nullptr;
10102 }
10103 
10104 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10105   // TODO: may want to use peekThroughBitcast() here.
10106   ConstantSDNode *C =
10107       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10108   return C && C->isZero();
10109 }
10110 
10111 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10112   // TODO: may want to use peekThroughBitcast() here.
10113   unsigned BitWidth = N.getScalarValueSizeInBits();
10114   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10115   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10116 }
10117 
10118 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10119   N = peekThroughBitcasts(N);
10120   unsigned BitWidth = N.getScalarValueSizeInBits();
10121   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10122   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10123 }
10124 
10125 HandleSDNode::~HandleSDNode() {
10126   DropOperands();
10127 }
10128 
10129 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10130                                          const DebugLoc &DL,
10131                                          const GlobalValue *GA, EVT VT,
10132                                          int64_t o, unsigned TF)
10133     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10134   TheGlobal = GA;
10135 }
10136 
10137 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10138                                          EVT VT, unsigned SrcAS,
10139                                          unsigned DestAS)
10140     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10141       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10142 
10143 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10144                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10145     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10146   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10147   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10148   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10149   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10150 
10151   // We check here that the size of the memory operand fits within the size of
10152   // the MMO. This is because the MMO might indicate only a possible address
10153   // range instead of specifying the affected memory addresses precisely.
10154   // TODO: Make MachineMemOperands aware of scalable vectors.
10155   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10156          "Size mismatch!");
10157 }
10158 
10159 /// Profile - Gather unique data for the node.
10160 ///
10161 void SDNode::Profile(FoldingSetNodeID &ID) const {
10162   AddNodeIDNode(ID, this);
10163 }
10164 
10165 namespace {
10166 
10167   struct EVTArray {
10168     std::vector<EVT> VTs;
10169 
10170     EVTArray() {
10171       VTs.reserve(MVT::VALUETYPE_SIZE);
10172       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10173         VTs.push_back(MVT((MVT::SimpleValueType)i));
10174     }
10175   };
10176 
10177 } // end anonymous namespace
10178 
10179 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10180 static ManagedStatic<EVTArray> SimpleVTArray;
10181 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10182 
10183 /// getValueTypeList - Return a pointer to the specified value type.
10184 ///
10185 const EVT *SDNode::getValueTypeList(EVT VT) {
10186   if (VT.isExtended()) {
10187     sys::SmartScopedLock<true> Lock(*VTMutex);
10188     return &(*EVTs->insert(VT).first);
10189   }
10190   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10191   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10192 }
10193 
10194 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10195 /// indicated value.  This method ignores uses of other values defined by this
10196 /// operation.
10197 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10198   assert(Value < getNumValues() && "Bad value!");
10199 
10200   // TODO: Only iterate over uses of a given value of the node
10201   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10202     if (UI.getUse().getResNo() == Value) {
10203       if (NUses == 0)
10204         return false;
10205       --NUses;
10206     }
10207   }
10208 
10209   // Found exactly the right number of uses?
10210   return NUses == 0;
10211 }
10212 
10213 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10214 /// value. This method ignores uses of other values defined by this operation.
10215 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10216   assert(Value < getNumValues() && "Bad value!");
10217 
10218   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10219     if (UI.getUse().getResNo() == Value)
10220       return true;
10221 
10222   return false;
10223 }
10224 
10225 /// isOnlyUserOf - Return true if this node is the only use of N.
10226 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10227   bool Seen = false;
10228   for (const SDNode *User : N->uses()) {
10229     if (User == this)
10230       Seen = true;
10231     else
10232       return false;
10233   }
10234 
10235   return Seen;
10236 }
10237 
10238 /// Return true if the only users of N are contained in Nodes.
10239 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10240   bool Seen = false;
10241   for (const SDNode *User : N->uses()) {
10242     if (llvm::is_contained(Nodes, User))
10243       Seen = true;
10244     else
10245       return false;
10246   }
10247 
10248   return Seen;
10249 }
10250 
10251 /// isOperand - Return true if this node is an operand of N.
10252 bool SDValue::isOperandOf(const SDNode *N) const {
10253   return is_contained(N->op_values(), *this);
10254 }
10255 
10256 bool SDNode::isOperandOf(const SDNode *N) const {
10257   return any_of(N->op_values(),
10258                 [this](SDValue Op) { return this == Op.getNode(); });
10259 }
10260 
10261 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10262 /// be a chain) reaches the specified operand without crossing any
10263 /// side-effecting instructions on any chain path.  In practice, this looks
10264 /// through token factors and non-volatile loads.  In order to remain efficient,
10265 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10266 ///
10267 /// Note that we only need to examine chains when we're searching for
10268 /// side-effects; SelectionDAG requires that all side-effects are represented
10269 /// by chains, even if another operand would force a specific ordering. This
10270 /// constraint is necessary to allow transformations like splitting loads.
10271 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10272                                              unsigned Depth) const {
10273   if (*this == Dest) return true;
10274 
10275   // Don't search too deeply, we just want to be able to see through
10276   // TokenFactor's etc.
10277   if (Depth == 0) return false;
10278 
10279   // If this is a token factor, all inputs to the TF happen in parallel.
10280   if (getOpcode() == ISD::TokenFactor) {
10281     // First, try a shallow search.
10282     if (is_contained((*this)->ops(), Dest)) {
10283       // We found the chain we want as an operand of this TokenFactor.
10284       // Essentially, we reach the chain without side-effects if we could
10285       // serialize the TokenFactor into a simple chain of operations with
10286       // Dest as the last operation. This is automatically true if the
10287       // chain has one use: there are no other ordering constraints.
10288       // If the chain has more than one use, we give up: some other
10289       // use of Dest might force a side-effect between Dest and the current
10290       // node.
10291       if (Dest.hasOneUse())
10292         return true;
10293     }
10294     // Next, try a deep search: check whether every operand of the TokenFactor
10295     // reaches Dest.
10296     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10297       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10298     });
10299   }
10300 
10301   // Loads don't have side effects, look through them.
10302   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10303     if (Ld->isUnordered())
10304       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10305   }
10306   return false;
10307 }
10308 
10309 bool SDNode::hasPredecessor(const SDNode *N) const {
10310   SmallPtrSet<const SDNode *, 32> Visited;
10311   SmallVector<const SDNode *, 16> Worklist;
10312   Worklist.push_back(this);
10313   return hasPredecessorHelper(N, Visited, Worklist);
10314 }
10315 
10316 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10317   this->Flags.intersectWith(Flags);
10318 }
10319 
10320 SDValue
10321 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10322                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10323                                   bool AllowPartials) {
10324   // The pattern must end in an extract from index 0.
10325   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10326       !isNullConstant(Extract->getOperand(1)))
10327     return SDValue();
10328 
10329   // Match against one of the candidate binary ops.
10330   SDValue Op = Extract->getOperand(0);
10331   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10332         return Op.getOpcode() == unsigned(BinOp);
10333       }))
10334     return SDValue();
10335 
10336   // Floating-point reductions may require relaxed constraints on the final step
10337   // of the reduction because they may reorder intermediate operations.
10338   unsigned CandidateBinOp = Op.getOpcode();
10339   if (Op.getValueType().isFloatingPoint()) {
10340     SDNodeFlags Flags = Op->getFlags();
10341     switch (CandidateBinOp) {
10342     case ISD::FADD:
10343       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10344         return SDValue();
10345       break;
10346     default:
10347       llvm_unreachable("Unhandled FP opcode for binop reduction");
10348     }
10349   }
10350 
10351   // Matching failed - attempt to see if we did enough stages that a partial
10352   // reduction from a subvector is possible.
10353   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10354     if (!AllowPartials || !Op)
10355       return SDValue();
10356     EVT OpVT = Op.getValueType();
10357     EVT OpSVT = OpVT.getScalarType();
10358     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10359     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10360       return SDValue();
10361     BinOp = (ISD::NodeType)CandidateBinOp;
10362     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10363                    getVectorIdxConstant(0, SDLoc(Op)));
10364   };
10365 
10366   // At each stage, we're looking for something that looks like:
10367   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10368   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10369   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10370   // %a = binop <8 x i32> %op, %s
10371   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10372   // we expect something like:
10373   // <4,5,6,7,u,u,u,u>
10374   // <2,3,u,u,u,u,u,u>
10375   // <1,u,u,u,u,u,u,u>
10376   // While a partial reduction match would be:
10377   // <2,3,u,u,u,u,u,u>
10378   // <1,u,u,u,u,u,u,u>
10379   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10380   SDValue PrevOp;
10381   for (unsigned i = 0; i < Stages; ++i) {
10382     unsigned MaskEnd = (1 << i);
10383 
10384     if (Op.getOpcode() != CandidateBinOp)
10385       return PartialReduction(PrevOp, MaskEnd);
10386 
10387     SDValue Op0 = Op.getOperand(0);
10388     SDValue Op1 = Op.getOperand(1);
10389 
10390     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10391     if (Shuffle) {
10392       Op = Op1;
10393     } else {
10394       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10395       Op = Op0;
10396     }
10397 
10398     // The first operand of the shuffle should be the same as the other operand
10399     // of the binop.
10400     if (!Shuffle || Shuffle->getOperand(0) != Op)
10401       return PartialReduction(PrevOp, MaskEnd);
10402 
10403     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10404     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10405       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10406         return PartialReduction(PrevOp, MaskEnd);
10407 
10408     PrevOp = Op;
10409   }
10410 
10411   // Handle subvector reductions, which tend to appear after the shuffle
10412   // reduction stages.
10413   while (Op.getOpcode() == CandidateBinOp) {
10414     unsigned NumElts = Op.getValueType().getVectorNumElements();
10415     SDValue Op0 = Op.getOperand(0);
10416     SDValue Op1 = Op.getOperand(1);
10417     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10418         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10419         Op0.getOperand(0) != Op1.getOperand(0))
10420       break;
10421     SDValue Src = Op0.getOperand(0);
10422     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10423     if (NumSrcElts != (2 * NumElts))
10424       break;
10425     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10426           Op1.getConstantOperandAPInt(1) == NumElts) &&
10427         !(Op1.getConstantOperandAPInt(1) == 0 &&
10428           Op0.getConstantOperandAPInt(1) == NumElts))
10429       break;
10430     Op = Src;
10431   }
10432 
10433   BinOp = (ISD::NodeType)CandidateBinOp;
10434   return Op;
10435 }
10436 
10437 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10438   assert(N->getNumValues() == 1 &&
10439          "Can't unroll a vector with multiple results!");
10440 
10441   EVT VT = N->getValueType(0);
10442   unsigned NE = VT.getVectorNumElements();
10443   EVT EltVT = VT.getVectorElementType();
10444   SDLoc dl(N);
10445 
10446   SmallVector<SDValue, 8> Scalars;
10447   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10448 
10449   // If ResNE is 0, fully unroll the vector op.
10450   if (ResNE == 0)
10451     ResNE = NE;
10452   else if (NE > ResNE)
10453     NE = ResNE;
10454 
10455   unsigned i;
10456   for (i= 0; i != NE; ++i) {
10457     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10458       SDValue Operand = N->getOperand(j);
10459       EVT OperandVT = Operand.getValueType();
10460       if (OperandVT.isVector()) {
10461         // A vector operand; extract a single element.
10462         EVT OperandEltVT = OperandVT.getVectorElementType();
10463         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10464                               Operand, getVectorIdxConstant(i, dl));
10465       } else {
10466         // A scalar operand; just use it as is.
10467         Operands[j] = Operand;
10468       }
10469     }
10470 
10471     switch (N->getOpcode()) {
10472     default: {
10473       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10474                                 N->getFlags()));
10475       break;
10476     }
10477     case ISD::VSELECT:
10478       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10479       break;
10480     case ISD::SHL:
10481     case ISD::SRA:
10482     case ISD::SRL:
10483     case ISD::ROTL:
10484     case ISD::ROTR:
10485       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10486                                getShiftAmountOperand(Operands[0].getValueType(),
10487                                                      Operands[1])));
10488       break;
10489     case ISD::SIGN_EXTEND_INREG: {
10490       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10491       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10492                                 Operands[0],
10493                                 getValueType(ExtVT)));
10494     }
10495     }
10496   }
10497 
10498   for (; i < ResNE; ++i)
10499     Scalars.push_back(getUNDEF(EltVT));
10500 
10501   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10502   return getBuildVector(VecVT, dl, Scalars);
10503 }
10504 
10505 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10506     SDNode *N, unsigned ResNE) {
10507   unsigned Opcode = N->getOpcode();
10508   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10509           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10510           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10511          "Expected an overflow opcode");
10512 
10513   EVT ResVT = N->getValueType(0);
10514   EVT OvVT = N->getValueType(1);
10515   EVT ResEltVT = ResVT.getVectorElementType();
10516   EVT OvEltVT = OvVT.getVectorElementType();
10517   SDLoc dl(N);
10518 
10519   // If ResNE is 0, fully unroll the vector op.
10520   unsigned NE = ResVT.getVectorNumElements();
10521   if (ResNE == 0)
10522     ResNE = NE;
10523   else if (NE > ResNE)
10524     NE = ResNE;
10525 
10526   SmallVector<SDValue, 8> LHSScalars;
10527   SmallVector<SDValue, 8> RHSScalars;
10528   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10529   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10530 
10531   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10532   SDVTList VTs = getVTList(ResEltVT, SVT);
10533   SmallVector<SDValue, 8> ResScalars;
10534   SmallVector<SDValue, 8> OvScalars;
10535   for (unsigned i = 0; i < NE; ++i) {
10536     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10537     SDValue Ov =
10538         getSelect(dl, OvEltVT, Res.getValue(1),
10539                   getBoolConstant(true, dl, OvEltVT, ResVT),
10540                   getConstant(0, dl, OvEltVT));
10541 
10542     ResScalars.push_back(Res);
10543     OvScalars.push_back(Ov);
10544   }
10545 
10546   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10547   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10548 
10549   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10550   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10551   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10552                         getBuildVector(NewOvVT, dl, OvScalars));
10553 }
10554 
10555 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10556                                                   LoadSDNode *Base,
10557                                                   unsigned Bytes,
10558                                                   int Dist) const {
10559   if (LD->isVolatile() || Base->isVolatile())
10560     return false;
10561   // TODO: probably too restrictive for atomics, revisit
10562   if (!LD->isSimple())
10563     return false;
10564   if (LD->isIndexed() || Base->isIndexed())
10565     return false;
10566   if (LD->getChain() != Base->getChain())
10567     return false;
10568   EVT VT = LD->getValueType(0);
10569   if (VT.getSizeInBits() / 8 != Bytes)
10570     return false;
10571 
10572   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10573   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10574 
10575   int64_t Offset = 0;
10576   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10577     return (Dist * Bytes == Offset);
10578   return false;
10579 }
10580 
10581 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10582 /// if it cannot be inferred.
10583 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10584   // If this is a GlobalAddress + cst, return the alignment.
10585   const GlobalValue *GV = nullptr;
10586   int64_t GVOffset = 0;
10587   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10588     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10589     KnownBits Known(PtrWidth);
10590     llvm::computeKnownBits(GV, Known, getDataLayout());
10591     unsigned AlignBits = Known.countMinTrailingZeros();
10592     if (AlignBits)
10593       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10594   }
10595 
10596   // If this is a direct reference to a stack slot, use information about the
10597   // stack slot's alignment.
10598   int FrameIdx = INT_MIN;
10599   int64_t FrameOffset = 0;
10600   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10601     FrameIdx = FI->getIndex();
10602   } else if (isBaseWithConstantOffset(Ptr) &&
10603              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10604     // Handle FI+Cst
10605     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10606     FrameOffset = Ptr.getConstantOperandVal(1);
10607   }
10608 
10609   if (FrameIdx != INT_MIN) {
10610     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10611     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10612   }
10613 
10614   return None;
10615 }
10616 
10617 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10618 /// which is split (or expanded) into two not necessarily identical pieces.
10619 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10620   // Currently all types are split in half.
10621   EVT LoVT, HiVT;
10622   if (!VT.isVector())
10623     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10624   else
10625     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10626 
10627   return std::make_pair(LoVT, HiVT);
10628 }
10629 
10630 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10631 /// type, dependent on an enveloping VT that has been split into two identical
10632 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10633 std::pair<EVT, EVT>
10634 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10635                                        bool *HiIsEmpty) const {
10636   EVT EltTp = VT.getVectorElementType();
10637   // Examples:
10638   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10639   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10640   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10641   //   etc.
10642   ElementCount VTNumElts = VT.getVectorElementCount();
10643   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10644   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10645          "Mixing fixed width and scalable vectors when enveloping a type");
10646   EVT LoVT, HiVT;
10647   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10648     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10649     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10650     *HiIsEmpty = false;
10651   } else {
10652     // Flag that hi type has zero storage size, but return split envelop type
10653     // (this would be easier if vector types with zero elements were allowed).
10654     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10655     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10656     *HiIsEmpty = true;
10657   }
10658   return std::make_pair(LoVT, HiVT);
10659 }
10660 
10661 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10662 /// low/high part.
10663 std::pair<SDValue, SDValue>
10664 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10665                           const EVT &HiVT) {
10666   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10667          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10668          "Splitting vector with an invalid mixture of fixed and scalable "
10669          "vector types");
10670   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10671              N.getValueType().getVectorMinNumElements() &&
10672          "More vector elements requested than available!");
10673   SDValue Lo, Hi;
10674   Lo =
10675       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10676   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10677   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10678   // IDX with the runtime scaling factor of the result vector type. For
10679   // fixed-width result vectors, that runtime scaling factor is 1.
10680   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10681                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10682   return std::make_pair(Lo, Hi);
10683 }
10684 
10685 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
10686                                                    const SDLoc &DL) {
10687   // Split the vector length parameter.
10688   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
10689   EVT VT = N.getValueType();
10690   assert(VecVT.getVectorElementCount().isKnownEven() &&
10691          "Expecting the mask to be an evenly-sized vector");
10692   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
10693   SDValue HalfNumElts =
10694       VecVT.isFixedLengthVector()
10695           ? getConstant(HalfMinNumElts, DL, VT)
10696           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
10697   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
10698   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
10699   return std::make_pair(Lo, Hi);
10700 }
10701 
10702 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10703 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10704   EVT VT = N.getValueType();
10705   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10706                                 NextPowerOf2(VT.getVectorNumElements()));
10707   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10708                  getVectorIdxConstant(0, DL));
10709 }
10710 
10711 void SelectionDAG::ExtractVectorElements(SDValue Op,
10712                                          SmallVectorImpl<SDValue> &Args,
10713                                          unsigned Start, unsigned Count,
10714                                          EVT EltVT) {
10715   EVT VT = Op.getValueType();
10716   if (Count == 0)
10717     Count = VT.getVectorNumElements();
10718   if (EltVT == EVT())
10719     EltVT = VT.getVectorElementType();
10720   SDLoc SL(Op);
10721   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10722     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10723                            getVectorIdxConstant(i, SL)));
10724   }
10725 }
10726 
10727 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10728 unsigned GlobalAddressSDNode::getAddressSpace() const {
10729   return getGlobal()->getType()->getAddressSpace();
10730 }
10731 
10732 Type *ConstantPoolSDNode::getType() const {
10733   if (isMachineConstantPoolEntry())
10734     return Val.MachineCPVal->getType();
10735   return Val.ConstVal->getType();
10736 }
10737 
10738 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10739                                         unsigned &SplatBitSize,
10740                                         bool &HasAnyUndefs,
10741                                         unsigned MinSplatBits,
10742                                         bool IsBigEndian) const {
10743   EVT VT = getValueType(0);
10744   assert(VT.isVector() && "Expected a vector type");
10745   unsigned VecWidth = VT.getSizeInBits();
10746   if (MinSplatBits > VecWidth)
10747     return false;
10748 
10749   // FIXME: The widths are based on this node's type, but build vectors can
10750   // truncate their operands.
10751   SplatValue = APInt(VecWidth, 0);
10752   SplatUndef = APInt(VecWidth, 0);
10753 
10754   // Get the bits. Bits with undefined values (when the corresponding element
10755   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10756   // in SplatValue. If any of the values are not constant, give up and return
10757   // false.
10758   unsigned int NumOps = getNumOperands();
10759   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10760   unsigned EltWidth = VT.getScalarSizeInBits();
10761 
10762   for (unsigned j = 0; j < NumOps; ++j) {
10763     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10764     SDValue OpVal = getOperand(i);
10765     unsigned BitPos = j * EltWidth;
10766 
10767     if (OpVal.isUndef())
10768       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10769     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10770       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10771     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10772       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10773     else
10774       return false;
10775   }
10776 
10777   // The build_vector is all constants or undefs. Find the smallest element
10778   // size that splats the vector.
10779   HasAnyUndefs = (SplatUndef != 0);
10780 
10781   // FIXME: This does not work for vectors with elements less than 8 bits.
10782   while (VecWidth > 8) {
10783     unsigned HalfSize = VecWidth / 2;
10784     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10785     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10786     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10787     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10788 
10789     // If the two halves do not match (ignoring undef bits), stop here.
10790     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10791         MinSplatBits > HalfSize)
10792       break;
10793 
10794     SplatValue = HighValue | LowValue;
10795     SplatUndef = HighUndef & LowUndef;
10796 
10797     VecWidth = HalfSize;
10798   }
10799 
10800   SplatBitSize = VecWidth;
10801   return true;
10802 }
10803 
10804 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10805                                          BitVector *UndefElements) const {
10806   unsigned NumOps = getNumOperands();
10807   if (UndefElements) {
10808     UndefElements->clear();
10809     UndefElements->resize(NumOps);
10810   }
10811   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10812   if (!DemandedElts)
10813     return SDValue();
10814   SDValue Splatted;
10815   for (unsigned i = 0; i != NumOps; ++i) {
10816     if (!DemandedElts[i])
10817       continue;
10818     SDValue Op = getOperand(i);
10819     if (Op.isUndef()) {
10820       if (UndefElements)
10821         (*UndefElements)[i] = true;
10822     } else if (!Splatted) {
10823       Splatted = Op;
10824     } else if (Splatted != Op) {
10825       return SDValue();
10826     }
10827   }
10828 
10829   if (!Splatted) {
10830     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10831     assert(getOperand(FirstDemandedIdx).isUndef() &&
10832            "Can only have a splat without a constant for all undefs.");
10833     return getOperand(FirstDemandedIdx);
10834   }
10835 
10836   return Splatted;
10837 }
10838 
10839 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10840   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10841   return getSplatValue(DemandedElts, UndefElements);
10842 }
10843 
10844 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10845                                             SmallVectorImpl<SDValue> &Sequence,
10846                                             BitVector *UndefElements) const {
10847   unsigned NumOps = getNumOperands();
10848   Sequence.clear();
10849   if (UndefElements) {
10850     UndefElements->clear();
10851     UndefElements->resize(NumOps);
10852   }
10853   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10854   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10855     return false;
10856 
10857   // Set the undefs even if we don't find a sequence (like getSplatValue).
10858   if (UndefElements)
10859     for (unsigned I = 0; I != NumOps; ++I)
10860       if (DemandedElts[I] && getOperand(I).isUndef())
10861         (*UndefElements)[I] = true;
10862 
10863   // Iteratively widen the sequence length looking for repetitions.
10864   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10865     Sequence.append(SeqLen, SDValue());
10866     for (unsigned I = 0; I != NumOps; ++I) {
10867       if (!DemandedElts[I])
10868         continue;
10869       SDValue &SeqOp = Sequence[I % SeqLen];
10870       SDValue Op = getOperand(I);
10871       if (Op.isUndef()) {
10872         if (!SeqOp)
10873           SeqOp = Op;
10874         continue;
10875       }
10876       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10877         Sequence.clear();
10878         break;
10879       }
10880       SeqOp = Op;
10881     }
10882     if (!Sequence.empty())
10883       return true;
10884   }
10885 
10886   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10887   return false;
10888 }
10889 
10890 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10891                                             BitVector *UndefElements) const {
10892   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10893   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10894 }
10895 
10896 ConstantSDNode *
10897 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10898                                         BitVector *UndefElements) const {
10899   return dyn_cast_or_null<ConstantSDNode>(
10900       getSplatValue(DemandedElts, UndefElements));
10901 }
10902 
10903 ConstantSDNode *
10904 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10905   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10906 }
10907 
10908 ConstantFPSDNode *
10909 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10910                                           BitVector *UndefElements) const {
10911   return dyn_cast_or_null<ConstantFPSDNode>(
10912       getSplatValue(DemandedElts, UndefElements));
10913 }
10914 
10915 ConstantFPSDNode *
10916 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10917   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10918 }
10919 
10920 int32_t
10921 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10922                                                    uint32_t BitWidth) const {
10923   if (ConstantFPSDNode *CN =
10924           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10925     bool IsExact;
10926     APSInt IntVal(BitWidth);
10927     const APFloat &APF = CN->getValueAPF();
10928     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10929             APFloat::opOK ||
10930         !IsExact)
10931       return -1;
10932 
10933     return IntVal.exactLogBase2();
10934   }
10935   return -1;
10936 }
10937 
10938 bool BuildVectorSDNode::getConstantRawBits(
10939     bool IsLittleEndian, unsigned DstEltSizeInBits,
10940     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
10941   // Early-out if this contains anything but Undef/Constant/ConstantFP.
10942   if (!isConstant())
10943     return false;
10944 
10945   unsigned NumSrcOps = getNumOperands();
10946   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
10947   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10948          "Invalid bitcast scale");
10949 
10950   // Extract raw src bits.
10951   SmallVector<APInt> SrcBitElements(NumSrcOps,
10952                                     APInt::getNullValue(SrcEltSizeInBits));
10953   BitVector SrcUndeElements(NumSrcOps, false);
10954 
10955   for (unsigned I = 0; I != NumSrcOps; ++I) {
10956     SDValue Op = getOperand(I);
10957     if (Op.isUndef()) {
10958       SrcUndeElements.set(I);
10959       continue;
10960     }
10961     auto *CInt = dyn_cast<ConstantSDNode>(Op);
10962     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
10963     assert((CInt || CFP) && "Unknown constant");
10964     SrcBitElements[I] =
10965         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
10966              : CFP->getValueAPF().bitcastToAPInt();
10967   }
10968 
10969   // Recast to dst width.
10970   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
10971                 SrcBitElements, UndefElements, SrcUndeElements);
10972   return true;
10973 }
10974 
10975 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
10976                                       unsigned DstEltSizeInBits,
10977                                       SmallVectorImpl<APInt> &DstBitElements,
10978                                       ArrayRef<APInt> SrcBitElements,
10979                                       BitVector &DstUndefElements,
10980                                       const BitVector &SrcUndefElements) {
10981   unsigned NumSrcOps = SrcBitElements.size();
10982   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
10983   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10984          "Invalid bitcast scale");
10985   assert(NumSrcOps == SrcUndefElements.size() &&
10986          "Vector size mismatch");
10987 
10988   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
10989   DstUndefElements.clear();
10990   DstUndefElements.resize(NumDstOps, false);
10991   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
10992 
10993   // Concatenate src elements constant bits together into dst element.
10994   if (SrcEltSizeInBits <= DstEltSizeInBits) {
10995     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
10996     for (unsigned I = 0; I != NumDstOps; ++I) {
10997       DstUndefElements.set(I);
10998       APInt &DstBits = DstBitElements[I];
10999       for (unsigned J = 0; J != Scale; ++J) {
11000         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11001         if (SrcUndefElements[Idx])
11002           continue;
11003         DstUndefElements.reset(I);
11004         const APInt &SrcBits = SrcBitElements[Idx];
11005         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11006                "Illegal constant bitwidths");
11007         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11008       }
11009     }
11010     return;
11011   }
11012 
11013   // Split src element constant bits into dst elements.
11014   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11015   for (unsigned I = 0; I != NumSrcOps; ++I) {
11016     if (SrcUndefElements[I]) {
11017       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11018       continue;
11019     }
11020     const APInt &SrcBits = SrcBitElements[I];
11021     for (unsigned J = 0; J != Scale; ++J) {
11022       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11023       APInt &DstBits = DstBitElements[Idx];
11024       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11025     }
11026   }
11027 }
11028 
11029 bool BuildVectorSDNode::isConstant() const {
11030   for (const SDValue &Op : op_values()) {
11031     unsigned Opc = Op.getOpcode();
11032     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11033       return false;
11034   }
11035   return true;
11036 }
11037 
11038 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11039   // Find the first non-undef value in the shuffle mask.
11040   unsigned i, e;
11041   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11042     /* search */;
11043 
11044   // If all elements are undefined, this shuffle can be considered a splat
11045   // (although it should eventually get simplified away completely).
11046   if (i == e)
11047     return true;
11048 
11049   // Make sure all remaining elements are either undef or the same as the first
11050   // non-undef value.
11051   for (int Idx = Mask[i]; i != e; ++i)
11052     if (Mask[i] >= 0 && Mask[i] != Idx)
11053       return false;
11054   return true;
11055 }
11056 
11057 // Returns the SDNode if it is a constant integer BuildVector
11058 // or constant integer.
11059 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11060   if (isa<ConstantSDNode>(N))
11061     return N.getNode();
11062   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11063     return N.getNode();
11064   // Treat a GlobalAddress supporting constant offset folding as a
11065   // constant integer.
11066   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11067     if (GA->getOpcode() == ISD::GlobalAddress &&
11068         TLI->isOffsetFoldingLegal(GA))
11069       return GA;
11070   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11071       isa<ConstantSDNode>(N.getOperand(0)))
11072     return N.getNode();
11073   return nullptr;
11074 }
11075 
11076 // Returns the SDNode if it is a constant float BuildVector
11077 // or constant float.
11078 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11079   if (isa<ConstantFPSDNode>(N))
11080     return N.getNode();
11081 
11082   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11083     return N.getNode();
11084 
11085   return nullptr;
11086 }
11087 
11088 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11089   assert(!Node->OperandList && "Node already has operands");
11090   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11091          "too many operands to fit into SDNode");
11092   SDUse *Ops = OperandRecycler.allocate(
11093       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11094 
11095   bool IsDivergent = false;
11096   for (unsigned I = 0; I != Vals.size(); ++I) {
11097     Ops[I].setUser(Node);
11098     Ops[I].setInitial(Vals[I]);
11099     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11100       IsDivergent |= Ops[I].getNode()->isDivergent();
11101   }
11102   Node->NumOperands = Vals.size();
11103   Node->OperandList = Ops;
11104   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11105     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11106     Node->SDNodeBits.IsDivergent = IsDivergent;
11107   }
11108   checkForCycles(Node);
11109 }
11110 
11111 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11112                                      SmallVectorImpl<SDValue> &Vals) {
11113   size_t Limit = SDNode::getMaxNumOperands();
11114   while (Vals.size() > Limit) {
11115     unsigned SliceIdx = Vals.size() - Limit;
11116     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11117     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11118     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11119     Vals.emplace_back(NewTF);
11120   }
11121   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11122 }
11123 
11124 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11125                                         EVT VT, SDNodeFlags Flags) {
11126   switch (Opcode) {
11127   default:
11128     return SDValue();
11129   case ISD::ADD:
11130   case ISD::OR:
11131   case ISD::XOR:
11132   case ISD::UMAX:
11133     return getConstant(0, DL, VT);
11134   case ISD::MUL:
11135     return getConstant(1, DL, VT);
11136   case ISD::AND:
11137   case ISD::UMIN:
11138     return getAllOnesConstant(DL, VT);
11139   case ISD::SMAX:
11140     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11141   case ISD::SMIN:
11142     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11143   case ISD::FADD:
11144     return getConstantFP(-0.0, DL, VT);
11145   case ISD::FMUL:
11146     return getConstantFP(1.0, DL, VT);
11147   case ISD::FMINNUM:
11148   case ISD::FMAXNUM: {
11149     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11150     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11151     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11152                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11153                         APFloat::getLargest(Semantics);
11154     if (Opcode == ISD::FMAXNUM)
11155       NeutralAF.changeSign();
11156 
11157     return getConstantFP(NeutralAF, DL, VT);
11158   }
11159   }
11160 }
11161 
11162 #ifndef NDEBUG
11163 static void checkForCyclesHelper(const SDNode *N,
11164                                  SmallPtrSetImpl<const SDNode*> &Visited,
11165                                  SmallPtrSetImpl<const SDNode*> &Checked,
11166                                  const llvm::SelectionDAG *DAG) {
11167   // If this node has already been checked, don't check it again.
11168   if (Checked.count(N))
11169     return;
11170 
11171   // If a node has already been visited on this depth-first walk, reject it as
11172   // a cycle.
11173   if (!Visited.insert(N).second) {
11174     errs() << "Detected cycle in SelectionDAG\n";
11175     dbgs() << "Offending node:\n";
11176     N->dumprFull(DAG); dbgs() << "\n";
11177     abort();
11178   }
11179 
11180   for (const SDValue &Op : N->op_values())
11181     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11182 
11183   Checked.insert(N);
11184   Visited.erase(N);
11185 }
11186 #endif
11187 
11188 void llvm::checkForCycles(const llvm::SDNode *N,
11189                           const llvm::SelectionDAG *DAG,
11190                           bool force) {
11191 #ifndef NDEBUG
11192   bool check = force;
11193 #ifdef EXPENSIVE_CHECKS
11194   check = true;
11195 #endif  // EXPENSIVE_CHECKS
11196   if (check) {
11197     assert(N && "Checking nonexistent SDNode");
11198     SmallPtrSet<const SDNode*, 32> visited;
11199     SmallPtrSet<const SDNode*, 32> checked;
11200     checkForCyclesHelper(N, visited, checked, DAG);
11201   }
11202 #endif  // !NDEBUG
11203 }
11204 
11205 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11206   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11207 }
11208