1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   auto *BV = dyn_cast<BuildVectorSDNode>(N);
143   if (!BV)
144     return false;
145 
146   APInt SplatUndef;
147   unsigned SplatBitSize;
148   bool HasUndefs;
149   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
150   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
151                              EltSize) &&
152          EltSize == SplatBitSize;
153 }
154 
155 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
156 // specializations of the more general isConstantSplatVector()?
157 
158 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
159   // Look through a bit convert.
160   while (N->getOpcode() == ISD::BITCAST)
161     N = N->getOperand(0).getNode();
162 
163   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
164 
165   unsigned i = 0, e = N->getNumOperands();
166 
167   // Skip over all of the undef values.
168   while (i != e && N->getOperand(i).isUndef())
169     ++i;
170 
171   // Do not accept an all-undef vector.
172   if (i == e) return false;
173 
174   // Do not accept build_vectors that aren't all constants or which have non-~0
175   // elements. We have to be a bit careful here, as the type of the constant
176   // may not be the same as the type of the vector elements due to type
177   // legalization (the elements are promoted to a legal type for the target and
178   // a vector of a type may be legal when the base element type is not).
179   // We only want to check enough bits to cover the vector elements, because
180   // we care if the resultant vector is all ones, not whether the individual
181   // constants are.
182   SDValue NotZero = N->getOperand(i);
183   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
184   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
185     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
186       return false;
187   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
188     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
189       return false;
190   } else
191     return false;
192 
193   // Okay, we have at least one ~0 value, check to see if the rest match or are
194   // undefs. Even with the above element type twiddling, this should be OK, as
195   // the same type legalization should have applied to all the elements.
196   for (++i; i != e; ++i)
197     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
198       return false;
199   return true;
200 }
201 
202 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
203   // Look through a bit convert.
204   while (N->getOpcode() == ISD::BITCAST)
205     N = N->getOperand(0).getNode();
206 
207   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
208 
209   bool IsAllUndef = true;
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     IsAllUndef = false;
214     // Do not accept build_vectors that aren't all constants or which have non-0
215     // elements. We have to be a bit careful here, as the type of the constant
216     // may not be the same as the type of the vector elements due to type
217     // legalization (the elements are promoted to a legal type for the target
218     // and a vector of a type may be legal when the base element type is not).
219     // We only want to check enough bits to cover the vector elements, because
220     // we care if the resultant vector is all zeros, not whether the individual
221     // constants are.
222     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
223     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
224       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
225         return false;
226     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
227       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
228         return false;
229     } else
230       return false;
231   }
232 
233   // Do not accept an all-undef vector.
234   if (IsAllUndef)
235     return false;
236   return true;
237 }
238 
239 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
240   if (N->getOpcode() != ISD::BUILD_VECTOR)
241     return false;
242 
243   for (const SDValue &Op : N->op_values()) {
244     if (Op.isUndef())
245       continue;
246     if (!isa<ConstantSDNode>(Op))
247       return false;
248   }
249   return true;
250 }
251 
252 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
253   if (N->getOpcode() != ISD::BUILD_VECTOR)
254     return false;
255 
256   for (const SDValue &Op : N->op_values()) {
257     if (Op.isUndef())
258       continue;
259     if (!isa<ConstantFPSDNode>(Op))
260       return false;
261   }
262   return true;
263 }
264 
265 bool ISD::allOperandsUndef(const SDNode *N) {
266   // Return false if the node has no operands.
267   // This is "logically inconsistent" with the definition of "all" but
268   // is probably the desired behavior.
269   if (N->getNumOperands() == 0)
270     return false;
271   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
272 }
273 
274 bool ISD::matchUnaryPredicate(SDValue Op,
275                               std::function<bool(ConstantSDNode *)> Match,
276                               bool AllowUndefs) {
277   // FIXME: Add support for scalar UNDEF cases?
278   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
279     return Match(Cst);
280 
281   // FIXME: Add support for vector UNDEF cases?
282   if (ISD::BUILD_VECTOR != Op.getOpcode())
283     return false;
284 
285   EVT SVT = Op.getValueType().getScalarType();
286   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
287     if (AllowUndefs && Op.getOperand(i).isUndef()) {
288       if (!Match(nullptr))
289         return false;
290       continue;
291     }
292 
293     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
294     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
295       return false;
296   }
297   return true;
298 }
299 
300 bool ISD::matchBinaryPredicate(
301     SDValue LHS, SDValue RHS,
302     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
303     bool AllowUndefs, bool AllowTypeMismatch) {
304   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
305     return false;
306 
307   // TODO: Add support for scalar UNDEF cases?
308   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
309     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
310       return Match(LHSCst, RHSCst);
311 
312   // TODO: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
314       ISD::BUILD_VECTOR != RHS.getOpcode())
315     return false;
316 
317   EVT SVT = LHS.getValueType().getScalarType();
318   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
319     SDValue LHSOp = LHS.getOperand(i);
320     SDValue RHSOp = RHS.getOperand(i);
321     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
322     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
323     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
324     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
325     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
326       return false;
327     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
328                                LHSOp.getValueType() != RHSOp.getValueType()))
329       return false;
330     if (!Match(LHSCst, RHSCst))
331       return false;
332   }
333   return true;
334 }
335 
336 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
337   switch (ExtType) {
338   case ISD::EXTLOAD:
339     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
340   case ISD::SEXTLOAD:
341     return ISD::SIGN_EXTEND;
342   case ISD::ZEXTLOAD:
343     return ISD::ZERO_EXTEND;
344   default:
345     break;
346   }
347 
348   llvm_unreachable("Invalid LoadExtType");
349 }
350 
351 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
352   // To perform this operation, we just need to swap the L and G bits of the
353   // operation.
354   unsigned OldL = (Operation >> 2) & 1;
355   unsigned OldG = (Operation >> 1) & 1;
356   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
357                        (OldL << 1) |       // New G bit
358                        (OldG << 2));       // New L bit.
359 }
360 
361 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
362   unsigned Operation = Op;
363   if (isIntegerLike)
364     Operation ^= 7;   // Flip L, G, E bits, but not U.
365   else
366     Operation ^= 15;  // Flip all of the condition bits.
367 
368   if (Operation > ISD::SETTRUE2)
369     Operation &= ~8;  // Don't let N and U bits get set.
370 
371   return ISD::CondCode(Operation);
372 }
373 
374 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
375   return getSetCCInverseImpl(Op, Type.isInteger());
376 }
377 
378 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
379                                                bool isIntegerLike) {
380   return getSetCCInverseImpl(Op, isIntegerLike);
381 }
382 
383 /// For an integer comparison, return 1 if the comparison is a signed operation
384 /// and 2 if the result is an unsigned comparison. Return zero if the operation
385 /// does not depend on the sign of the input (setne and seteq).
386 static int isSignedOp(ISD::CondCode Opcode) {
387   switch (Opcode) {
388   default: llvm_unreachable("Illegal integer setcc operation!");
389   case ISD::SETEQ:
390   case ISD::SETNE: return 0;
391   case ISD::SETLT:
392   case ISD::SETLE:
393   case ISD::SETGT:
394   case ISD::SETGE: return 1;
395   case ISD::SETULT:
396   case ISD::SETULE:
397   case ISD::SETUGT:
398   case ISD::SETUGE: return 2;
399   }
400 }
401 
402 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
403                                        EVT Type) {
404   bool IsInteger = Type.isInteger();
405   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
406     // Cannot fold a signed integer setcc with an unsigned integer setcc.
407     return ISD::SETCC_INVALID;
408 
409   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
410 
411   // If the N and U bits get set, then the resultant comparison DOES suddenly
412   // care about orderedness, and it is true when ordered.
413   if (Op > ISD::SETTRUE2)
414     Op &= ~16;     // Clear the U bit if the N bit is set.
415 
416   // Canonicalize illegal integer setcc's.
417   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
418     Op = ISD::SETNE;
419 
420   return ISD::CondCode(Op);
421 }
422 
423 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
424                                         EVT Type) {
425   bool IsInteger = Type.isInteger();
426   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
427     // Cannot fold a signed setcc with an unsigned setcc.
428     return ISD::SETCC_INVALID;
429 
430   // Combine all of the condition bits.
431   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
432 
433   // Canonicalize illegal integer setcc's.
434   if (IsInteger) {
435     switch (Result) {
436     default: break;
437     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
438     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
439     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
440     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
441     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
442     }
443   }
444 
445   return Result;
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //                           SDNode Profile Support
450 //===----------------------------------------------------------------------===//
451 
452 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
453 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
454   ID.AddInteger(OpC);
455 }
456 
457 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
458 /// solely with their pointer.
459 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
460   ID.AddPointer(VTList.VTs);
461 }
462 
463 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
464 static void AddNodeIDOperands(FoldingSetNodeID &ID,
465                               ArrayRef<SDValue> Ops) {
466   for (auto& Op : Ops) {
467     ID.AddPointer(Op.getNode());
468     ID.AddInteger(Op.getResNo());
469   }
470 }
471 
472 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
473 static void AddNodeIDOperands(FoldingSetNodeID &ID,
474                               ArrayRef<SDUse> Ops) {
475   for (auto& Op : Ops) {
476     ID.AddPointer(Op.getNode());
477     ID.AddInteger(Op.getResNo());
478   }
479 }
480 
481 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
482                           SDVTList VTList, ArrayRef<SDValue> OpList) {
483   AddNodeIDOpcode(ID, OpC);
484   AddNodeIDValueTypes(ID, VTList);
485   AddNodeIDOperands(ID, OpList);
486 }
487 
488 /// If this is an SDNode with special info, add this info to the NodeID data.
489 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
490   switch (N->getOpcode()) {
491   case ISD::TargetExternalSymbol:
492   case ISD::ExternalSymbol:
493   case ISD::MCSymbol:
494     llvm_unreachable("Should only be used on nodes with operands");
495   default: break;  // Normal nodes don't need extra info.
496   case ISD::TargetConstant:
497   case ISD::Constant: {
498     const ConstantSDNode *C = cast<ConstantSDNode>(N);
499     ID.AddPointer(C->getConstantIntValue());
500     ID.AddBoolean(C->isOpaque());
501     break;
502   }
503   case ISD::TargetConstantFP:
504   case ISD::ConstantFP:
505     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
506     break;
507   case ISD::TargetGlobalAddress:
508   case ISD::GlobalAddress:
509   case ISD::TargetGlobalTLSAddress:
510   case ISD::GlobalTLSAddress: {
511     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
512     ID.AddPointer(GA->getGlobal());
513     ID.AddInteger(GA->getOffset());
514     ID.AddInteger(GA->getTargetFlags());
515     break;
516   }
517   case ISD::BasicBlock:
518     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
519     break;
520   case ISD::Register:
521     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
522     break;
523   case ISD::RegisterMask:
524     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
525     break;
526   case ISD::SRCVALUE:
527     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
528     break;
529   case ISD::FrameIndex:
530   case ISD::TargetFrameIndex:
531     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
532     break;
533   case ISD::LIFETIME_START:
534   case ISD::LIFETIME_END:
535     if (cast<LifetimeSDNode>(N)->hasOffset()) {
536       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
537       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
538     }
539     break;
540   case ISD::JumpTable:
541   case ISD::TargetJumpTable:
542     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
543     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
544     break;
545   case ISD::ConstantPool:
546   case ISD::TargetConstantPool: {
547     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
548     ID.AddInteger(CP->getAlign().value());
549     ID.AddInteger(CP->getOffset());
550     if (CP->isMachineConstantPoolEntry())
551       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
552     else
553       ID.AddPointer(CP->getConstVal());
554     ID.AddInteger(CP->getTargetFlags());
555     break;
556   }
557   case ISD::TargetIndex: {
558     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
559     ID.AddInteger(TI->getIndex());
560     ID.AddInteger(TI->getOffset());
561     ID.AddInteger(TI->getTargetFlags());
562     break;
563   }
564   case ISD::LOAD: {
565     const LoadSDNode *LD = cast<LoadSDNode>(N);
566     ID.AddInteger(LD->getMemoryVT().getRawBits());
567     ID.AddInteger(LD->getRawSubclassData());
568     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
569     break;
570   }
571   case ISD::STORE: {
572     const StoreSDNode *ST = cast<StoreSDNode>(N);
573     ID.AddInteger(ST->getMemoryVT().getRawBits());
574     ID.AddInteger(ST->getRawSubclassData());
575     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
576     break;
577   }
578   case ISD::MLOAD: {
579     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
580     ID.AddInteger(MLD->getMemoryVT().getRawBits());
581     ID.AddInteger(MLD->getRawSubclassData());
582     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
583     break;
584   }
585   case ISD::MSTORE: {
586     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
587     ID.AddInteger(MST->getMemoryVT().getRawBits());
588     ID.AddInteger(MST->getRawSubclassData());
589     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
590     break;
591   }
592   case ISD::MGATHER: {
593     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
594     ID.AddInteger(MG->getMemoryVT().getRawBits());
595     ID.AddInteger(MG->getRawSubclassData());
596     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
597     break;
598   }
599   case ISD::MSCATTER: {
600     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
601     ID.AddInteger(MS->getMemoryVT().getRawBits());
602     ID.AddInteger(MS->getRawSubclassData());
603     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
604     break;
605   }
606   case ISD::ATOMIC_CMP_SWAP:
607   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
608   case ISD::ATOMIC_SWAP:
609   case ISD::ATOMIC_LOAD_ADD:
610   case ISD::ATOMIC_LOAD_SUB:
611   case ISD::ATOMIC_LOAD_AND:
612   case ISD::ATOMIC_LOAD_CLR:
613   case ISD::ATOMIC_LOAD_OR:
614   case ISD::ATOMIC_LOAD_XOR:
615   case ISD::ATOMIC_LOAD_NAND:
616   case ISD::ATOMIC_LOAD_MIN:
617   case ISD::ATOMIC_LOAD_MAX:
618   case ISD::ATOMIC_LOAD_UMIN:
619   case ISD::ATOMIC_LOAD_UMAX:
620   case ISD::ATOMIC_LOAD:
621   case ISD::ATOMIC_STORE: {
622     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
623     ID.AddInteger(AT->getMemoryVT().getRawBits());
624     ID.AddInteger(AT->getRawSubclassData());
625     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
626     break;
627   }
628   case ISD::PREFETCH: {
629     const MemSDNode *PF = cast<MemSDNode>(N);
630     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
631     break;
632   }
633   case ISD::VECTOR_SHUFFLE: {
634     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
635     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
636          i != e; ++i)
637       ID.AddInteger(SVN->getMaskElt(i));
638     break;
639   }
640   case ISD::TargetBlockAddress:
641   case ISD::BlockAddress: {
642     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
643     ID.AddPointer(BA->getBlockAddress());
644     ID.AddInteger(BA->getOffset());
645     ID.AddInteger(BA->getTargetFlags());
646     break;
647   }
648   } // end switch (N->getOpcode())
649 
650   // Target specific memory nodes could also have address spaces to check.
651   if (N->isTargetMemoryOpcode())
652     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
653 }
654 
655 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
656 /// data.
657 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
658   AddNodeIDOpcode(ID, N->getOpcode());
659   // Add the return value info.
660   AddNodeIDValueTypes(ID, N->getVTList());
661   // Add the operand info.
662   AddNodeIDOperands(ID, N->ops());
663 
664   // Handle SDNode leafs with special info.
665   AddNodeIDCustom(ID, N);
666 }
667 
668 //===----------------------------------------------------------------------===//
669 //                              SelectionDAG Class
670 //===----------------------------------------------------------------------===//
671 
672 /// doNotCSE - Return true if CSE should not be performed for this node.
673 static bool doNotCSE(SDNode *N) {
674   if (N->getValueType(0) == MVT::Glue)
675     return true; // Never CSE anything that produces a flag.
676 
677   switch (N->getOpcode()) {
678   default: break;
679   case ISD::HANDLENODE:
680   case ISD::EH_LABEL:
681     return true;   // Never CSE these nodes.
682   }
683 
684   // Check that remaining values produced are not flags.
685   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
686     if (N->getValueType(i) == MVT::Glue)
687       return true; // Never CSE anything that produces a flag.
688 
689   return false;
690 }
691 
692 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
693 /// SelectionDAG.
694 void SelectionDAG::RemoveDeadNodes() {
695   // Create a dummy node (which is not added to allnodes), that adds a reference
696   // to the root node, preventing it from being deleted.
697   HandleSDNode Dummy(getRoot());
698 
699   SmallVector<SDNode*, 128> DeadNodes;
700 
701   // Add all obviously-dead nodes to the DeadNodes worklist.
702   for (SDNode &Node : allnodes())
703     if (Node.use_empty())
704       DeadNodes.push_back(&Node);
705 
706   RemoveDeadNodes(DeadNodes);
707 
708   // If the root changed (e.g. it was a dead load, update the root).
709   setRoot(Dummy.getValue());
710 }
711 
712 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
713 /// given list, and any nodes that become unreachable as a result.
714 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
715 
716   // Process the worklist, deleting the nodes and adding their uses to the
717   // worklist.
718   while (!DeadNodes.empty()) {
719     SDNode *N = DeadNodes.pop_back_val();
720     // Skip to next node if we've already managed to delete the node. This could
721     // happen if replacing a node causes a node previously added to the node to
722     // be deleted.
723     if (N->getOpcode() == ISD::DELETED_NODE)
724       continue;
725 
726     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
727       DUL->NodeDeleted(N, nullptr);
728 
729     // Take the node out of the appropriate CSE map.
730     RemoveNodeFromCSEMaps(N);
731 
732     // Next, brutally remove the operand list.  This is safe to do, as there are
733     // no cycles in the graph.
734     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
735       SDUse &Use = *I++;
736       SDNode *Operand = Use.getNode();
737       Use.set(SDValue());
738 
739       // Now that we removed this operand, see if there are no uses of it left.
740       if (Operand->use_empty())
741         DeadNodes.push_back(Operand);
742     }
743 
744     DeallocateNode(N);
745   }
746 }
747 
748 void SelectionDAG::RemoveDeadNode(SDNode *N){
749   SmallVector<SDNode*, 16> DeadNodes(1, N);
750 
751   // Create a dummy node that adds a reference to the root node, preventing
752   // it from being deleted.  (This matters if the root is an operand of the
753   // dead node.)
754   HandleSDNode Dummy(getRoot());
755 
756   RemoveDeadNodes(DeadNodes);
757 }
758 
759 void SelectionDAG::DeleteNode(SDNode *N) {
760   // First take this out of the appropriate CSE map.
761   RemoveNodeFromCSEMaps(N);
762 
763   // Finally, remove uses due to operands of this node, remove from the
764   // AllNodes list, and delete the node.
765   DeleteNodeNotInCSEMaps(N);
766 }
767 
768 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
769   assert(N->getIterator() != AllNodes.begin() &&
770          "Cannot delete the entry node!");
771   assert(N->use_empty() && "Cannot delete a node that is not dead!");
772 
773   // Drop all of the operands and decrement used node's use counts.
774   N->DropOperands();
775 
776   DeallocateNode(N);
777 }
778 
779 void SDDbgInfo::erase(const SDNode *Node) {
780   DbgValMapType::iterator I = DbgValMap.find(Node);
781   if (I == DbgValMap.end())
782     return;
783   for (auto &Val: I->second)
784     Val->setIsInvalidated();
785   DbgValMap.erase(I);
786 }
787 
788 void SelectionDAG::DeallocateNode(SDNode *N) {
789   // If we have operands, deallocate them.
790   removeOperands(N);
791 
792   NodeAllocator.Deallocate(AllNodes.remove(N));
793 
794   // Set the opcode to DELETED_NODE to help catch bugs when node
795   // memory is reallocated.
796   // FIXME: There are places in SDag that have grown a dependency on the opcode
797   // value in the released node.
798   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
799   N->NodeType = ISD::DELETED_NODE;
800 
801   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
802   // them and forget about that node.
803   DbgInfo->erase(N);
804 }
805 
806 #ifndef NDEBUG
807 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
808 static void VerifySDNode(SDNode *N) {
809   switch (N->getOpcode()) {
810   default:
811     break;
812   case ISD::BUILD_PAIR: {
813     EVT VT = N->getValueType(0);
814     assert(N->getNumValues() == 1 && "Too many results!");
815     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
816            "Wrong return type!");
817     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
818     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
819            "Mismatched operand types!");
820     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
821            "Wrong operand type!");
822     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
823            "Wrong return type size");
824     break;
825   }
826   case ISD::BUILD_VECTOR: {
827     assert(N->getNumValues() == 1 && "Too many results!");
828     assert(N->getValueType(0).isVector() && "Wrong return type!");
829     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
830            "Wrong number of operands!");
831     EVT EltVT = N->getValueType(0).getVectorElementType();
832     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
833       assert((I->getValueType() == EltVT ||
834              (EltVT.isInteger() && I->getValueType().isInteger() &&
835               EltVT.bitsLE(I->getValueType()))) &&
836             "Wrong operand type!");
837       assert(I->getValueType() == N->getOperand(0).getValueType() &&
838              "Operands must all have the same type");
839     }
840     break;
841   }
842   }
843 }
844 #endif // NDEBUG
845 
846 /// Insert a newly allocated node into the DAG.
847 ///
848 /// Handles insertion into the all nodes list and CSE map, as well as
849 /// verification and other common operations when a new node is allocated.
850 void SelectionDAG::InsertNode(SDNode *N) {
851   AllNodes.push_back(N);
852 #ifndef NDEBUG
853   N->PersistentId = NextPersistentId++;
854   VerifySDNode(N);
855 #endif
856   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
857     DUL->NodeInserted(N);
858 }
859 
860 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
861 /// correspond to it.  This is useful when we're about to delete or repurpose
862 /// the node.  We don't want future request for structurally identical nodes
863 /// to return N anymore.
864 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
865   bool Erased = false;
866   switch (N->getOpcode()) {
867   case ISD::HANDLENODE: return false;  // noop.
868   case ISD::CONDCODE:
869     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
870            "Cond code doesn't exist!");
871     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
872     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
873     break;
874   case ISD::ExternalSymbol:
875     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
876     break;
877   case ISD::TargetExternalSymbol: {
878     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
879     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
880         ESN->getSymbol(), ESN->getTargetFlags()));
881     break;
882   }
883   case ISD::MCSymbol: {
884     auto *MCSN = cast<MCSymbolSDNode>(N);
885     Erased = MCSymbols.erase(MCSN->getMCSymbol());
886     break;
887   }
888   case ISD::VALUETYPE: {
889     EVT VT = cast<VTSDNode>(N)->getVT();
890     if (VT.isExtended()) {
891       Erased = ExtendedValueTypeNodes.erase(VT);
892     } else {
893       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
894       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
895     }
896     break;
897   }
898   default:
899     // Remove it from the CSE Map.
900     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
901     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
902     Erased = CSEMap.RemoveNode(N);
903     break;
904   }
905 #ifndef NDEBUG
906   // Verify that the node was actually in one of the CSE maps, unless it has a
907   // flag result (which cannot be CSE'd) or is one of the special cases that are
908   // not subject to CSE.
909   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
910       !N->isMachineOpcode() && !doNotCSE(N)) {
911     N->dump(this);
912     dbgs() << "\n";
913     llvm_unreachable("Node is not in map!");
914   }
915 #endif
916   return Erased;
917 }
918 
919 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
920 /// maps and modified in place. Add it back to the CSE maps, unless an identical
921 /// node already exists, in which case transfer all its users to the existing
922 /// node. This transfer can potentially trigger recursive merging.
923 void
924 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
925   // For node types that aren't CSE'd, just act as if no identical node
926   // already exists.
927   if (!doNotCSE(N)) {
928     SDNode *Existing = CSEMap.GetOrInsertNode(N);
929     if (Existing != N) {
930       // If there was already an existing matching node, use ReplaceAllUsesWith
931       // to replace the dead one with the existing one.  This can cause
932       // recursive merging of other unrelated nodes down the line.
933       ReplaceAllUsesWith(N, Existing);
934 
935       // N is now dead. Inform the listeners and delete it.
936       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
937         DUL->NodeDeleted(N, Existing);
938       DeleteNodeNotInCSEMaps(N);
939       return;
940     }
941   }
942 
943   // If the node doesn't already exist, we updated it.  Inform listeners.
944   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
945     DUL->NodeUpdated(N);
946 }
947 
948 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
949 /// were replaced with those specified.  If this node is never memoized,
950 /// return null, otherwise return a pointer to the slot it would take.  If a
951 /// node already exists with these operands, the slot will be non-null.
952 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
953                                            void *&InsertPos) {
954   if (doNotCSE(N))
955     return nullptr;
956 
957   SDValue Ops[] = { Op };
958   FoldingSetNodeID ID;
959   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
960   AddNodeIDCustom(ID, N);
961   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
962   if (Node)
963     Node->intersectFlagsWith(N->getFlags());
964   return Node;
965 }
966 
967 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
968 /// were replaced with those specified.  If this node is never memoized,
969 /// return null, otherwise return a pointer to the slot it would take.  If a
970 /// node already exists with these operands, the slot will be non-null.
971 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
972                                            SDValue Op1, SDValue Op2,
973                                            void *&InsertPos) {
974   if (doNotCSE(N))
975     return nullptr;
976 
977   SDValue Ops[] = { Op1, Op2 };
978   FoldingSetNodeID ID;
979   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
980   AddNodeIDCustom(ID, N);
981   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
982   if (Node)
983     Node->intersectFlagsWith(N->getFlags());
984   return Node;
985 }
986 
987 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
988 /// were replaced with those specified.  If this node is never memoized,
989 /// return null, otherwise return a pointer to the slot it would take.  If a
990 /// node already exists with these operands, the slot will be non-null.
991 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
992                                            void *&InsertPos) {
993   if (doNotCSE(N))
994     return nullptr;
995 
996   FoldingSetNodeID ID;
997   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
998   AddNodeIDCustom(ID, N);
999   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1000   if (Node)
1001     Node->intersectFlagsWith(N->getFlags());
1002   return Node;
1003 }
1004 
1005 Align SelectionDAG::getEVTAlign(EVT VT) const {
1006   Type *Ty = VT == MVT::iPTR ?
1007                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1008                    VT.getTypeForEVT(*getContext());
1009 
1010   return getDataLayout().getABITypeAlign(Ty);
1011 }
1012 
1013 // EntryNode could meaningfully have debug info if we can find it...
1014 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1015     : TM(tm), OptLevel(OL),
1016       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1017       Root(getEntryNode()) {
1018   InsertNode(&EntryNode);
1019   DbgInfo = new SDDbgInfo();
1020 }
1021 
1022 void SelectionDAG::init(MachineFunction &NewMF,
1023                         OptimizationRemarkEmitter &NewORE,
1024                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1025                         LegacyDivergenceAnalysis * Divergence,
1026                         ProfileSummaryInfo *PSIin,
1027                         BlockFrequencyInfo *BFIin) {
1028   MF = &NewMF;
1029   SDAGISelPass = PassPtr;
1030   ORE = &NewORE;
1031   TLI = getSubtarget().getTargetLowering();
1032   TSI = getSubtarget().getSelectionDAGInfo();
1033   LibInfo = LibraryInfo;
1034   Context = &MF->getFunction().getContext();
1035   DA = Divergence;
1036   PSI = PSIin;
1037   BFI = BFIin;
1038 }
1039 
1040 SelectionDAG::~SelectionDAG() {
1041   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1042   allnodes_clear();
1043   OperandRecycler.clear(OperandAllocator);
1044   delete DbgInfo;
1045 }
1046 
1047 bool SelectionDAG::shouldOptForSize() const {
1048   return MF->getFunction().hasOptSize() ||
1049       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1050 }
1051 
1052 void SelectionDAG::allnodes_clear() {
1053   assert(&*AllNodes.begin() == &EntryNode);
1054   AllNodes.remove(AllNodes.begin());
1055   while (!AllNodes.empty())
1056     DeallocateNode(&AllNodes.front());
1057 #ifndef NDEBUG
1058   NextPersistentId = 0;
1059 #endif
1060 }
1061 
1062 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1063                                           void *&InsertPos) {
1064   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1065   if (N) {
1066     switch (N->getOpcode()) {
1067     default: break;
1068     case ISD::Constant:
1069     case ISD::ConstantFP:
1070       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1071                        "debug location.  Use another overload.");
1072     }
1073   }
1074   return N;
1075 }
1076 
1077 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1078                                           const SDLoc &DL, void *&InsertPos) {
1079   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1080   if (N) {
1081     switch (N->getOpcode()) {
1082     case ISD::Constant:
1083     case ISD::ConstantFP:
1084       // Erase debug location from the node if the node is used at several
1085       // different places. Do not propagate one location to all uses as it
1086       // will cause a worse single stepping debugging experience.
1087       if (N->getDebugLoc() != DL.getDebugLoc())
1088         N->setDebugLoc(DebugLoc());
1089       break;
1090     default:
1091       // When the node's point of use is located earlier in the instruction
1092       // sequence than its prior point of use, update its debug info to the
1093       // earlier location.
1094       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1095         N->setDebugLoc(DL.getDebugLoc());
1096       break;
1097     }
1098   }
1099   return N;
1100 }
1101 
1102 void SelectionDAG::clear() {
1103   allnodes_clear();
1104   OperandRecycler.clear(OperandAllocator);
1105   OperandAllocator.Reset();
1106   CSEMap.clear();
1107 
1108   ExtendedValueTypeNodes.clear();
1109   ExternalSymbols.clear();
1110   TargetExternalSymbols.clear();
1111   MCSymbols.clear();
1112   SDCallSiteDbgInfo.clear();
1113   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1114             static_cast<CondCodeSDNode*>(nullptr));
1115   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1116             static_cast<SDNode*>(nullptr));
1117 
1118   EntryNode.UseList = nullptr;
1119   InsertNode(&EntryNode);
1120   Root = getEntryNode();
1121   DbgInfo->clear();
1122 }
1123 
1124 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1125   return VT.bitsGT(Op.getValueType())
1126              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1127              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1128 }
1129 
1130 std::pair<SDValue, SDValue>
1131 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1132                                        const SDLoc &DL, EVT VT) {
1133   assert(!VT.bitsEq(Op.getValueType()) &&
1134          "Strict no-op FP extend/round not allowed.");
1135   SDValue Res =
1136       VT.bitsGT(Op.getValueType())
1137           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1138           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1139                     {Chain, Op, getIntPtrConstant(0, DL)});
1140 
1141   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1142 }
1143 
1144 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1145   return VT.bitsGT(Op.getValueType()) ?
1146     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1147     getNode(ISD::TRUNCATE, DL, VT, Op);
1148 }
1149 
1150 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1151   return VT.bitsGT(Op.getValueType()) ?
1152     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1153     getNode(ISD::TRUNCATE, DL, VT, Op);
1154 }
1155 
1156 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1157   return VT.bitsGT(Op.getValueType()) ?
1158     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1159     getNode(ISD::TRUNCATE, DL, VT, Op);
1160 }
1161 
1162 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1163                                         EVT OpVT) {
1164   if (VT.bitsLE(Op.getValueType()))
1165     return getNode(ISD::TRUNCATE, SL, VT, Op);
1166 
1167   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1168   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1169 }
1170 
1171 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1172   EVT OpVT = Op.getValueType();
1173   assert(VT.isInteger() && OpVT.isInteger() &&
1174          "Cannot getZeroExtendInReg FP types");
1175   assert(VT.isVector() == OpVT.isVector() &&
1176          "getZeroExtendInReg type should be vector iff the operand "
1177          "type is vector!");
1178   assert((!VT.isVector() ||
1179           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1180          "Vector element counts must match in getZeroExtendInReg");
1181   assert(VT.bitsLE(OpVT) && "Not extending!");
1182   if (OpVT == VT)
1183     return Op;
1184   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1185                                    VT.getScalarSizeInBits());
1186   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1187 }
1188 
1189 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1190   // Only unsigned pointer semantics are supported right now. In the future this
1191   // might delegate to TLI to check pointer signedness.
1192   return getZExtOrTrunc(Op, DL, VT);
1193 }
1194 
1195 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1196   // Only unsigned pointer semantics are supported right now. In the future this
1197   // might delegate to TLI to check pointer signedness.
1198   return getZeroExtendInReg(Op, DL, VT);
1199 }
1200 
1201 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1202 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1203   EVT EltVT = VT.getScalarType();
1204   SDValue NegOne =
1205     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1206   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1207 }
1208 
1209 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1210   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1211   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1212 }
1213 
1214 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1215                                       EVT OpVT) {
1216   if (!V)
1217     return getConstant(0, DL, VT);
1218 
1219   switch (TLI->getBooleanContents(OpVT)) {
1220   case TargetLowering::ZeroOrOneBooleanContent:
1221   case TargetLowering::UndefinedBooleanContent:
1222     return getConstant(1, DL, VT);
1223   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1224     return getAllOnesConstant(DL, VT);
1225   }
1226   llvm_unreachable("Unexpected boolean content enum!");
1227 }
1228 
1229 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1230                                   bool isT, bool isO) {
1231   EVT EltVT = VT.getScalarType();
1232   assert((EltVT.getSizeInBits() >= 64 ||
1233          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1234          "getConstant with a uint64_t value that doesn't fit in the type!");
1235   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1236 }
1237 
1238 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1239                                   bool isT, bool isO) {
1240   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1241 }
1242 
1243 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1244                                   EVT VT, bool isT, bool isO) {
1245   assert(VT.isInteger() && "Cannot create FP integer constant!");
1246 
1247   EVT EltVT = VT.getScalarType();
1248   const ConstantInt *Elt = &Val;
1249 
1250   // In some cases the vector type is legal but the element type is illegal and
1251   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1252   // inserted value (the type does not need to match the vector element type).
1253   // Any extra bits introduced will be truncated away.
1254   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1255       TargetLowering::TypePromoteInteger) {
1256    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1257    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1258    Elt = ConstantInt::get(*getContext(), NewVal);
1259   }
1260   // In other cases the element type is illegal and needs to be expanded, for
1261   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1262   // the value into n parts and use a vector type with n-times the elements.
1263   // Then bitcast to the type requested.
1264   // Legalizing constants too early makes the DAGCombiner's job harder so we
1265   // only legalize if the DAG tells us we must produce legal types.
1266   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1267            TLI->getTypeAction(*getContext(), EltVT) ==
1268            TargetLowering::TypeExpandInteger) {
1269     const APInt &NewVal = Elt->getValue();
1270     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1271     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1272     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1273     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1274 
1275     // Check the temporary vector is the correct size. If this fails then
1276     // getTypeToTransformTo() probably returned a type whose size (in bits)
1277     // isn't a power-of-2 factor of the requested type size.
1278     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1279 
1280     SmallVector<SDValue, 2> EltParts;
1281     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1282       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1283                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1284                                      ViaEltVT, isT, isO));
1285     }
1286 
1287     // EltParts is currently in little endian order. If we actually want
1288     // big-endian order then reverse it now.
1289     if (getDataLayout().isBigEndian())
1290       std::reverse(EltParts.begin(), EltParts.end());
1291 
1292     // The elements must be reversed when the element order is different
1293     // to the endianness of the elements (because the BITCAST is itself a
1294     // vector shuffle in this situation). However, we do not need any code to
1295     // perform this reversal because getConstant() is producing a vector
1296     // splat.
1297     // This situation occurs in MIPS MSA.
1298 
1299     SmallVector<SDValue, 8> Ops;
1300     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1301       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1302 
1303     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1304     return V;
1305   }
1306 
1307   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1308          "APInt size does not match type size!");
1309   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1310   FoldingSetNodeID ID;
1311   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1312   ID.AddPointer(Elt);
1313   ID.AddBoolean(isO);
1314   void *IP = nullptr;
1315   SDNode *N = nullptr;
1316   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1317     if (!VT.isVector())
1318       return SDValue(N, 0);
1319 
1320   if (!N) {
1321     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1322     CSEMap.InsertNode(N, IP);
1323     InsertNode(N);
1324     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1325   }
1326 
1327   SDValue Result(N, 0);
1328   if (VT.isScalableVector())
1329     Result = getSplatVector(VT, DL, Result);
1330   else if (VT.isVector())
1331     Result = getSplatBuildVector(VT, DL, Result);
1332 
1333   return Result;
1334 }
1335 
1336 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1337                                         bool isTarget) {
1338   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1339 }
1340 
1341 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1342                                              const SDLoc &DL, bool LegalTypes) {
1343   assert(VT.isInteger() && "Shift amount is not an integer type!");
1344   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1345   return getConstant(Val, DL, ShiftVT);
1346 }
1347 
1348 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1349                                            bool isTarget) {
1350   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1351 }
1352 
1353 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1354                                     bool isTarget) {
1355   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1356 }
1357 
1358 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1359                                     EVT VT, bool isTarget) {
1360   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1361 
1362   EVT EltVT = VT.getScalarType();
1363 
1364   // Do the map lookup using the actual bit pattern for the floating point
1365   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1366   // we don't have issues with SNANs.
1367   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1368   FoldingSetNodeID ID;
1369   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1370   ID.AddPointer(&V);
1371   void *IP = nullptr;
1372   SDNode *N = nullptr;
1373   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1374     if (!VT.isVector())
1375       return SDValue(N, 0);
1376 
1377   if (!N) {
1378     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1379     CSEMap.InsertNode(N, IP);
1380     InsertNode(N);
1381   }
1382 
1383   SDValue Result(N, 0);
1384   if (VT.isScalableVector())
1385     Result = getSplatVector(VT, DL, Result);
1386   else if (VT.isVector())
1387     Result = getSplatBuildVector(VT, DL, Result);
1388   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1389   return Result;
1390 }
1391 
1392 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1393                                     bool isTarget) {
1394   EVT EltVT = VT.getScalarType();
1395   if (EltVT == MVT::f32)
1396     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1397   else if (EltVT == MVT::f64)
1398     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1399   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1400            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1401     bool Ignored;
1402     APFloat APF = APFloat(Val);
1403     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1404                 &Ignored);
1405     return getConstantFP(APF, DL, VT, isTarget);
1406   } else
1407     llvm_unreachable("Unsupported type in getConstantFP");
1408 }
1409 
1410 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1411                                        EVT VT, int64_t Offset, bool isTargetGA,
1412                                        unsigned TargetFlags) {
1413   assert((TargetFlags == 0 || isTargetGA) &&
1414          "Cannot set target flags on target-independent globals");
1415 
1416   // Truncate (with sign-extension) the offset value to the pointer size.
1417   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1418   if (BitWidth < 64)
1419     Offset = SignExtend64(Offset, BitWidth);
1420 
1421   unsigned Opc;
1422   if (GV->isThreadLocal())
1423     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1424   else
1425     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1426 
1427   FoldingSetNodeID ID;
1428   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1429   ID.AddPointer(GV);
1430   ID.AddInteger(Offset);
1431   ID.AddInteger(TargetFlags);
1432   void *IP = nullptr;
1433   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1434     return SDValue(E, 0);
1435 
1436   auto *N = newSDNode<GlobalAddressSDNode>(
1437       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1438   CSEMap.InsertNode(N, IP);
1439     InsertNode(N);
1440   return SDValue(N, 0);
1441 }
1442 
1443 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1444   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1445   FoldingSetNodeID ID;
1446   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1447   ID.AddInteger(FI);
1448   void *IP = nullptr;
1449   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1450     return SDValue(E, 0);
1451 
1452   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1453   CSEMap.InsertNode(N, IP);
1454   InsertNode(N);
1455   return SDValue(N, 0);
1456 }
1457 
1458 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1459                                    unsigned TargetFlags) {
1460   assert((TargetFlags == 0 || isTarget) &&
1461          "Cannot set target flags on target-independent jump tables");
1462   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1463   FoldingSetNodeID ID;
1464   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1465   ID.AddInteger(JTI);
1466   ID.AddInteger(TargetFlags);
1467   void *IP = nullptr;
1468   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1469     return SDValue(E, 0);
1470 
1471   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1472   CSEMap.InsertNode(N, IP);
1473   InsertNode(N);
1474   return SDValue(N, 0);
1475 }
1476 
1477 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1478                                       MaybeAlign Alignment, int Offset,
1479                                       bool isTarget, unsigned TargetFlags) {
1480   assert((TargetFlags == 0 || isTarget) &&
1481          "Cannot set target flags on target-independent globals");
1482   if (!Alignment)
1483     Alignment = shouldOptForSize()
1484                     ? getDataLayout().getABITypeAlign(C->getType())
1485                     : getDataLayout().getPrefTypeAlign(C->getType());
1486   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1487   FoldingSetNodeID ID;
1488   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1489   ID.AddInteger(Alignment->value());
1490   ID.AddInteger(Offset);
1491   ID.AddPointer(C);
1492   ID.AddInteger(TargetFlags);
1493   void *IP = nullptr;
1494   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1495     return SDValue(E, 0);
1496 
1497   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1498                                           TargetFlags);
1499   CSEMap.InsertNode(N, IP);
1500   InsertNode(N);
1501   SDValue V = SDValue(N, 0);
1502   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1503   return V;
1504 }
1505 
1506 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1507                                       MaybeAlign Alignment, int Offset,
1508                                       bool isTarget, unsigned TargetFlags) {
1509   assert((TargetFlags == 0 || isTarget) &&
1510          "Cannot set target flags on target-independent globals");
1511   if (!Alignment)
1512     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1513   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1514   FoldingSetNodeID ID;
1515   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1516   ID.AddInteger(Alignment->value());
1517   ID.AddInteger(Offset);
1518   C->addSelectionDAGCSEId(ID);
1519   ID.AddInteger(TargetFlags);
1520   void *IP = nullptr;
1521   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1522     return SDValue(E, 0);
1523 
1524   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1525                                           TargetFlags);
1526   CSEMap.InsertNode(N, IP);
1527   InsertNode(N);
1528   return SDValue(N, 0);
1529 }
1530 
1531 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1532                                      unsigned TargetFlags) {
1533   FoldingSetNodeID ID;
1534   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1535   ID.AddInteger(Index);
1536   ID.AddInteger(Offset);
1537   ID.AddInteger(TargetFlags);
1538   void *IP = nullptr;
1539   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1540     return SDValue(E, 0);
1541 
1542   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1543   CSEMap.InsertNode(N, IP);
1544   InsertNode(N);
1545   return SDValue(N, 0);
1546 }
1547 
1548 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1549   FoldingSetNodeID ID;
1550   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1551   ID.AddPointer(MBB);
1552   void *IP = nullptr;
1553   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1554     return SDValue(E, 0);
1555 
1556   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1557   CSEMap.InsertNode(N, IP);
1558   InsertNode(N);
1559   return SDValue(N, 0);
1560 }
1561 
1562 SDValue SelectionDAG::getValueType(EVT VT) {
1563   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1564       ValueTypeNodes.size())
1565     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1566 
1567   SDNode *&N = VT.isExtended() ?
1568     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1569 
1570   if (N) return SDValue(N, 0);
1571   N = newSDNode<VTSDNode>(VT);
1572   InsertNode(N);
1573   return SDValue(N, 0);
1574 }
1575 
1576 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1577   SDNode *&N = ExternalSymbols[Sym];
1578   if (N) return SDValue(N, 0);
1579   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1580   InsertNode(N);
1581   return SDValue(N, 0);
1582 }
1583 
1584 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1585   SDNode *&N = MCSymbols[Sym];
1586   if (N)
1587     return SDValue(N, 0);
1588   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1594                                               unsigned TargetFlags) {
1595   SDNode *&N =
1596       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1597   if (N) return SDValue(N, 0);
1598   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1599   InsertNode(N);
1600   return SDValue(N, 0);
1601 }
1602 
1603 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1604   if ((unsigned)Cond >= CondCodeNodes.size())
1605     CondCodeNodes.resize(Cond+1);
1606 
1607   if (!CondCodeNodes[Cond]) {
1608     auto *N = newSDNode<CondCodeSDNode>(Cond);
1609     CondCodeNodes[Cond] = N;
1610     InsertNode(N);
1611   }
1612 
1613   return SDValue(CondCodeNodes[Cond], 0);
1614 }
1615 
1616 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1617 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1618 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1619   std::swap(N1, N2);
1620   ShuffleVectorSDNode::commuteMask(M);
1621 }
1622 
1623 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1624                                        SDValue N2, ArrayRef<int> Mask) {
1625   assert(VT.getVectorNumElements() == Mask.size() &&
1626            "Must have the same number of vector elements as mask elements!");
1627   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1628          "Invalid VECTOR_SHUFFLE");
1629 
1630   // Canonicalize shuffle undef, undef -> undef
1631   if (N1.isUndef() && N2.isUndef())
1632     return getUNDEF(VT);
1633 
1634   // Validate that all indices in Mask are within the range of the elements
1635   // input to the shuffle.
1636   int NElts = Mask.size();
1637   assert(llvm::all_of(Mask,
1638                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1639          "Index out of range");
1640 
1641   // Copy the mask so we can do any needed cleanup.
1642   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1643 
1644   // Canonicalize shuffle v, v -> v, undef
1645   if (N1 == N2) {
1646     N2 = getUNDEF(VT);
1647     for (int i = 0; i != NElts; ++i)
1648       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1649   }
1650 
1651   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1652   if (N1.isUndef())
1653     commuteShuffle(N1, N2, MaskVec);
1654 
1655   if (TLI->hasVectorBlend()) {
1656     // If shuffling a splat, try to blend the splat instead. We do this here so
1657     // that even when this arises during lowering we don't have to re-handle it.
1658     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1659       BitVector UndefElements;
1660       SDValue Splat = BV->getSplatValue(&UndefElements);
1661       if (!Splat)
1662         return;
1663 
1664       for (int i = 0; i < NElts; ++i) {
1665         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1666           continue;
1667 
1668         // If this input comes from undef, mark it as such.
1669         if (UndefElements[MaskVec[i] - Offset]) {
1670           MaskVec[i] = -1;
1671           continue;
1672         }
1673 
1674         // If we can blend a non-undef lane, use that instead.
1675         if (!UndefElements[i])
1676           MaskVec[i] = i + Offset;
1677       }
1678     };
1679     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1680       BlendSplat(N1BV, 0);
1681     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1682       BlendSplat(N2BV, NElts);
1683   }
1684 
1685   // Canonicalize all index into lhs, -> shuffle lhs, undef
1686   // Canonicalize all index into rhs, -> shuffle rhs, undef
1687   bool AllLHS = true, AllRHS = true;
1688   bool N2Undef = N2.isUndef();
1689   for (int i = 0; i != NElts; ++i) {
1690     if (MaskVec[i] >= NElts) {
1691       if (N2Undef)
1692         MaskVec[i] = -1;
1693       else
1694         AllLHS = false;
1695     } else if (MaskVec[i] >= 0) {
1696       AllRHS = false;
1697     }
1698   }
1699   if (AllLHS && AllRHS)
1700     return getUNDEF(VT);
1701   if (AllLHS && !N2Undef)
1702     N2 = getUNDEF(VT);
1703   if (AllRHS) {
1704     N1 = getUNDEF(VT);
1705     commuteShuffle(N1, N2, MaskVec);
1706   }
1707   // Reset our undef status after accounting for the mask.
1708   N2Undef = N2.isUndef();
1709   // Re-check whether both sides ended up undef.
1710   if (N1.isUndef() && N2Undef)
1711     return getUNDEF(VT);
1712 
1713   // If Identity shuffle return that node.
1714   bool Identity = true, AllSame = true;
1715   for (int i = 0; i != NElts; ++i) {
1716     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1717     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1718   }
1719   if (Identity && NElts)
1720     return N1;
1721 
1722   // Shuffling a constant splat doesn't change the result.
1723   if (N2Undef) {
1724     SDValue V = N1;
1725 
1726     // Look through any bitcasts. We check that these don't change the number
1727     // (and size) of elements and just changes their types.
1728     while (V.getOpcode() == ISD::BITCAST)
1729       V = V->getOperand(0);
1730 
1731     // A splat should always show up as a build vector node.
1732     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1733       BitVector UndefElements;
1734       SDValue Splat = BV->getSplatValue(&UndefElements);
1735       // If this is a splat of an undef, shuffling it is also undef.
1736       if (Splat && Splat.isUndef())
1737         return getUNDEF(VT);
1738 
1739       bool SameNumElts =
1740           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1741 
1742       // We only have a splat which can skip shuffles if there is a splatted
1743       // value and no undef lanes rearranged by the shuffle.
1744       if (Splat && UndefElements.none()) {
1745         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1746         // number of elements match or the value splatted is a zero constant.
1747         if (SameNumElts)
1748           return N1;
1749         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1750           if (C->isNullValue())
1751             return N1;
1752       }
1753 
1754       // If the shuffle itself creates a splat, build the vector directly.
1755       if (AllSame && SameNumElts) {
1756         EVT BuildVT = BV->getValueType(0);
1757         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1758         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1759 
1760         // We may have jumped through bitcasts, so the type of the
1761         // BUILD_VECTOR may not match the type of the shuffle.
1762         if (BuildVT != VT)
1763           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1764         return NewBV;
1765       }
1766     }
1767   }
1768 
1769   FoldingSetNodeID ID;
1770   SDValue Ops[2] = { N1, N2 };
1771   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1772   for (int i = 0; i != NElts; ++i)
1773     ID.AddInteger(MaskVec[i]);
1774 
1775   void* IP = nullptr;
1776   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1777     return SDValue(E, 0);
1778 
1779   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1780   // SDNode doesn't have access to it.  This memory will be "leaked" when
1781   // the node is deallocated, but recovered when the NodeAllocator is released.
1782   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1783   llvm::copy(MaskVec, MaskAlloc);
1784 
1785   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1786                                            dl.getDebugLoc(), MaskAlloc);
1787   createOperands(N, Ops);
1788 
1789   CSEMap.InsertNode(N, IP);
1790   InsertNode(N);
1791   SDValue V = SDValue(N, 0);
1792   NewSDValueDbgMsg(V, "Creating new node: ", this);
1793   return V;
1794 }
1795 
1796 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1797   EVT VT = SV.getValueType(0);
1798   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1799   ShuffleVectorSDNode::commuteMask(MaskVec);
1800 
1801   SDValue Op0 = SV.getOperand(0);
1802   SDValue Op1 = SV.getOperand(1);
1803   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1804 }
1805 
1806 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1807   FoldingSetNodeID ID;
1808   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1809   ID.AddInteger(RegNo);
1810   void *IP = nullptr;
1811   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1812     return SDValue(E, 0);
1813 
1814   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1815   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1816   CSEMap.InsertNode(N, IP);
1817   InsertNode(N);
1818   return SDValue(N, 0);
1819 }
1820 
1821 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1822   FoldingSetNodeID ID;
1823   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1824   ID.AddPointer(RegMask);
1825   void *IP = nullptr;
1826   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1827     return SDValue(E, 0);
1828 
1829   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1830   CSEMap.InsertNode(N, IP);
1831   InsertNode(N);
1832   return SDValue(N, 0);
1833 }
1834 
1835 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1836                                  MCSymbol *Label) {
1837   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1838 }
1839 
1840 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1841                                    SDValue Root, MCSymbol *Label) {
1842   FoldingSetNodeID ID;
1843   SDValue Ops[] = { Root };
1844   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1845   ID.AddPointer(Label);
1846   void *IP = nullptr;
1847   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1848     return SDValue(E, 0);
1849 
1850   auto *N =
1851       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1852   createOperands(N, Ops);
1853 
1854   CSEMap.InsertNode(N, IP);
1855   InsertNode(N);
1856   return SDValue(N, 0);
1857 }
1858 
1859 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1860                                       int64_t Offset, bool isTarget,
1861                                       unsigned TargetFlags) {
1862   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1863 
1864   FoldingSetNodeID ID;
1865   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1866   ID.AddPointer(BA);
1867   ID.AddInteger(Offset);
1868   ID.AddInteger(TargetFlags);
1869   void *IP = nullptr;
1870   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1871     return SDValue(E, 0);
1872 
1873   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1874   CSEMap.InsertNode(N, IP);
1875   InsertNode(N);
1876   return SDValue(N, 0);
1877 }
1878 
1879 SDValue SelectionDAG::getSrcValue(const Value *V) {
1880   FoldingSetNodeID ID;
1881   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1882   ID.AddPointer(V);
1883 
1884   void *IP = nullptr;
1885   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1886     return SDValue(E, 0);
1887 
1888   auto *N = newSDNode<SrcValueSDNode>(V);
1889   CSEMap.InsertNode(N, IP);
1890   InsertNode(N);
1891   return SDValue(N, 0);
1892 }
1893 
1894 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1895   FoldingSetNodeID ID;
1896   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1897   ID.AddPointer(MD);
1898 
1899   void *IP = nullptr;
1900   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1901     return SDValue(E, 0);
1902 
1903   auto *N = newSDNode<MDNodeSDNode>(MD);
1904   CSEMap.InsertNode(N, IP);
1905   InsertNode(N);
1906   return SDValue(N, 0);
1907 }
1908 
1909 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1910   if (VT == V.getValueType())
1911     return V;
1912 
1913   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1914 }
1915 
1916 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1917                                        unsigned SrcAS, unsigned DestAS) {
1918   SDValue Ops[] = {Ptr};
1919   FoldingSetNodeID ID;
1920   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1921   ID.AddInteger(SrcAS);
1922   ID.AddInteger(DestAS);
1923 
1924   void *IP = nullptr;
1925   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1926     return SDValue(E, 0);
1927 
1928   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1929                                            VT, SrcAS, DestAS);
1930   createOperands(N, Ops);
1931 
1932   CSEMap.InsertNode(N, IP);
1933   InsertNode(N);
1934   return SDValue(N, 0);
1935 }
1936 
1937 SDValue SelectionDAG::getFreeze(SDValue V) {
1938   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1939 }
1940 
1941 /// getShiftAmountOperand - Return the specified value casted to
1942 /// the target's desired shift amount type.
1943 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1944   EVT OpTy = Op.getValueType();
1945   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1946   if (OpTy == ShTy || OpTy.isVector()) return Op;
1947 
1948   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1949 }
1950 
1951 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1952   SDLoc dl(Node);
1953   const TargetLowering &TLI = getTargetLoweringInfo();
1954   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1955   EVT VT = Node->getValueType(0);
1956   SDValue Tmp1 = Node->getOperand(0);
1957   SDValue Tmp2 = Node->getOperand(1);
1958   const MaybeAlign MA(Node->getConstantOperandVal(3));
1959 
1960   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1961                                Tmp2, MachinePointerInfo(V));
1962   SDValue VAList = VAListLoad;
1963 
1964   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1965     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1966                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1967 
1968     VAList =
1969         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1970                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1971   }
1972 
1973   // Increment the pointer, VAList, to the next vaarg
1974   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1975                  getConstant(getDataLayout().getTypeAllocSize(
1976                                                VT.getTypeForEVT(*getContext())),
1977                              dl, VAList.getValueType()));
1978   // Store the incremented VAList to the legalized pointer
1979   Tmp1 =
1980       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1981   // Load the actual argument out of the pointer VAList
1982   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1983 }
1984 
1985 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1986   SDLoc dl(Node);
1987   const TargetLowering &TLI = getTargetLoweringInfo();
1988   // This defaults to loading a pointer from the input and storing it to the
1989   // output, returning the chain.
1990   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1991   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1992   SDValue Tmp1 =
1993       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1994               Node->getOperand(2), MachinePointerInfo(VS));
1995   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1996                   MachinePointerInfo(VD));
1997 }
1998 
1999 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2000   const DataLayout &DL = getDataLayout();
2001   Type *Ty = VT.getTypeForEVT(*getContext());
2002   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2003 
2004   if (TLI->isTypeLegal(VT) || !VT.isVector())
2005     return RedAlign;
2006 
2007   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2008   const Align StackAlign = TFI->getStackAlign();
2009 
2010   // See if we can choose a smaller ABI alignment in cases where it's an
2011   // illegal vector type that will get broken down.
2012   if (RedAlign > StackAlign) {
2013     EVT IntermediateVT;
2014     MVT RegisterVT;
2015     unsigned NumIntermediates;
2016     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2017                                 NumIntermediates, RegisterVT);
2018     Ty = IntermediateVT.getTypeForEVT(*getContext());
2019     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2020     if (RedAlign2 < RedAlign)
2021       RedAlign = RedAlign2;
2022   }
2023 
2024   return RedAlign;
2025 }
2026 
2027 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2028   MachineFrameInfo &MFI = MF->getFrameInfo();
2029   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2030   int StackID = 0;
2031   if (Bytes.isScalable())
2032     StackID = TFI->getStackIDForScalableVectors();
2033   // The stack id gives an indication of whether the object is scalable or
2034   // not, so it's safe to pass in the minimum size here.
2035   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2036                                        false, nullptr, StackID);
2037   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2038 }
2039 
2040 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2041   Type *Ty = VT.getTypeForEVT(*getContext());
2042   Align StackAlign =
2043       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2044   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2045 }
2046 
2047 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2048   TypeSize VT1Size = VT1.getStoreSize();
2049   TypeSize VT2Size = VT2.getStoreSize();
2050   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2051          "Don't know how to choose the maximum size when creating a stack "
2052          "temporary");
2053   TypeSize Bytes =
2054       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2055 
2056   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2057   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2058   const DataLayout &DL = getDataLayout();
2059   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2060   return CreateStackTemporary(Bytes, Align);
2061 }
2062 
2063 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2064                                 ISD::CondCode Cond, const SDLoc &dl) {
2065   EVT OpVT = N1.getValueType();
2066 
2067   // These setcc operations always fold.
2068   switch (Cond) {
2069   default: break;
2070   case ISD::SETFALSE:
2071   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2072   case ISD::SETTRUE:
2073   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2074 
2075   case ISD::SETOEQ:
2076   case ISD::SETOGT:
2077   case ISD::SETOGE:
2078   case ISD::SETOLT:
2079   case ISD::SETOLE:
2080   case ISD::SETONE:
2081   case ISD::SETO:
2082   case ISD::SETUO:
2083   case ISD::SETUEQ:
2084   case ISD::SETUNE:
2085     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2086     break;
2087   }
2088 
2089   if (OpVT.isInteger()) {
2090     // For EQ and NE, we can always pick a value for the undef to make the
2091     // predicate pass or fail, so we can return undef.
2092     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2093     // icmp eq/ne X, undef -> undef.
2094     if ((N1.isUndef() || N2.isUndef()) &&
2095         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2096       return getUNDEF(VT);
2097 
2098     // If both operands are undef, we can return undef for int comparison.
2099     // icmp undef, undef -> undef.
2100     if (N1.isUndef() && N2.isUndef())
2101       return getUNDEF(VT);
2102 
2103     // icmp X, X -> true/false
2104     // icmp X, undef -> true/false because undef could be X.
2105     if (N1 == N2)
2106       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2107   }
2108 
2109   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2110     const APInt &C2 = N2C->getAPIntValue();
2111     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2112       const APInt &C1 = N1C->getAPIntValue();
2113 
2114       switch (Cond) {
2115       default: llvm_unreachable("Unknown integer setcc!");
2116       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2117       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2118       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2119       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2120       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2121       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2122       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2123       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2124       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2125       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2126       }
2127     }
2128   }
2129 
2130   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2131   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2132 
2133   if (N1CFP && N2CFP) {
2134     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2135     switch (Cond) {
2136     default: break;
2137     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2138                         return getUNDEF(VT);
2139                       LLVM_FALLTHROUGH;
2140     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2141                                              OpVT);
2142     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2143                         return getUNDEF(VT);
2144                       LLVM_FALLTHROUGH;
2145     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2146                                              R==APFloat::cmpLessThan, dl, VT,
2147                                              OpVT);
2148     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2149                         return getUNDEF(VT);
2150                       LLVM_FALLTHROUGH;
2151     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2152                                              OpVT);
2153     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2154                         return getUNDEF(VT);
2155                       LLVM_FALLTHROUGH;
2156     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2157                                              VT, OpVT);
2158     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2159                         return getUNDEF(VT);
2160                       LLVM_FALLTHROUGH;
2161     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2162                                              R==APFloat::cmpEqual, dl, VT,
2163                                              OpVT);
2164     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2165                         return getUNDEF(VT);
2166                       LLVM_FALLTHROUGH;
2167     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2168                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2169     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2170                                              OpVT);
2171     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2172                                              OpVT);
2173     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2174                                              R==APFloat::cmpEqual, dl, VT,
2175                                              OpVT);
2176     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2177                                              OpVT);
2178     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2179                                              R==APFloat::cmpLessThan, dl, VT,
2180                                              OpVT);
2181     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2182                                              R==APFloat::cmpUnordered, dl, VT,
2183                                              OpVT);
2184     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2185                                              VT, OpVT);
2186     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2187                                              OpVT);
2188     }
2189   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2190     // Ensure that the constant occurs on the RHS.
2191     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2192     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2193       return SDValue();
2194     return getSetCC(dl, VT, N2, N1, SwappedCond);
2195   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2196              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2197     // If an operand is known to be a nan (or undef that could be a nan), we can
2198     // fold it.
2199     // Choosing NaN for the undef will always make unordered comparison succeed
2200     // and ordered comparison fails.
2201     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2202     switch (ISD::getUnorderedFlavor(Cond)) {
2203     default:
2204       llvm_unreachable("Unknown flavor!");
2205     case 0: // Known false.
2206       return getBoolConstant(false, dl, VT, OpVT);
2207     case 1: // Known true.
2208       return getBoolConstant(true, dl, VT, OpVT);
2209     case 2: // Undefined.
2210       return getUNDEF(VT);
2211     }
2212   }
2213 
2214   // Could not fold it.
2215   return SDValue();
2216 }
2217 
2218 /// See if the specified operand can be simplified with the knowledge that only
2219 /// the bits specified by DemandedBits are used.
2220 /// TODO: really we should be making this into the DAG equivalent of
2221 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2222 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2223   EVT VT = V.getValueType();
2224 
2225   if (VT.isScalableVector())
2226     return SDValue();
2227 
2228   APInt DemandedElts = VT.isVector()
2229                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2230                            : APInt(1, 1);
2231   return GetDemandedBits(V, DemandedBits, DemandedElts);
2232 }
2233 
2234 /// See if the specified operand can be simplified with the knowledge that only
2235 /// the bits specified by DemandedBits are used in the elements specified by
2236 /// DemandedElts.
2237 /// TODO: really we should be making this into the DAG equivalent of
2238 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2239 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2240                                       const APInt &DemandedElts) {
2241   switch (V.getOpcode()) {
2242   default:
2243     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2244                                                 *this, 0);
2245   case ISD::Constant: {
2246     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2247     APInt NewVal = CVal & DemandedBits;
2248     if (NewVal != CVal)
2249       return getConstant(NewVal, SDLoc(V), V.getValueType());
2250     break;
2251   }
2252   case ISD::SRL:
2253     // Only look at single-use SRLs.
2254     if (!V.getNode()->hasOneUse())
2255       break;
2256     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2257       // See if we can recursively simplify the LHS.
2258       unsigned Amt = RHSC->getZExtValue();
2259 
2260       // Watch out for shift count overflow though.
2261       if (Amt >= DemandedBits.getBitWidth())
2262         break;
2263       APInt SrcDemandedBits = DemandedBits << Amt;
2264       if (SDValue SimplifyLHS =
2265               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2266         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2267                        V.getOperand(1));
2268     }
2269     break;
2270   }
2271   return SDValue();
2272 }
2273 
2274 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2275 /// use this predicate to simplify operations downstream.
2276 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2277   unsigned BitWidth = Op.getScalarValueSizeInBits();
2278   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2279 }
2280 
2281 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2282 /// this predicate to simplify operations downstream.  Mask is known to be zero
2283 /// for bits that V cannot have.
2284 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2285                                      unsigned Depth) const {
2286   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2287 }
2288 
2289 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2290 /// DemandedElts.  We use this predicate to simplify operations downstream.
2291 /// Mask is known to be zero for bits that V cannot have.
2292 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2293                                      const APInt &DemandedElts,
2294                                      unsigned Depth) const {
2295   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2296 }
2297 
2298 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2299 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2300                                         unsigned Depth) const {
2301   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2302 }
2303 
2304 /// isSplatValue - Return true if the vector V has the same value
2305 /// across all DemandedElts. For scalable vectors it does not make
2306 /// sense to specify which elements are demanded or undefined, therefore
2307 /// they are simply ignored.
2308 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2309                                 APInt &UndefElts) {
2310   EVT VT = V.getValueType();
2311   assert(VT.isVector() && "Vector type expected");
2312 
2313   if (!VT.isScalableVector() && !DemandedElts)
2314     return false; // No demanded elts, better to assume we don't know anything.
2315 
2316   // Deal with some common cases here that work for both fixed and scalable
2317   // vector types.
2318   switch (V.getOpcode()) {
2319   case ISD::SPLAT_VECTOR:
2320     UndefElts = V.getOperand(0).isUndef()
2321                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2322                     : APInt(DemandedElts.getBitWidth(), 0);
2323     return true;
2324   case ISD::ADD:
2325   case ISD::SUB:
2326   case ISD::AND: {
2327     APInt UndefLHS, UndefRHS;
2328     SDValue LHS = V.getOperand(0);
2329     SDValue RHS = V.getOperand(1);
2330     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2331         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2332       UndefElts = UndefLHS | UndefRHS;
2333       return true;
2334     }
2335     break;
2336   }
2337   case ISD::TRUNCATE:
2338   case ISD::SIGN_EXTEND:
2339   case ISD::ZERO_EXTEND:
2340     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts);
2341   }
2342 
2343   // We don't support other cases than those above for scalable vectors at
2344   // the moment.
2345   if (VT.isScalableVector())
2346     return false;
2347 
2348   unsigned NumElts = VT.getVectorNumElements();
2349   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2350   UndefElts = APInt::getNullValue(NumElts);
2351 
2352   switch (V.getOpcode()) {
2353   case ISD::BUILD_VECTOR: {
2354     SDValue Scl;
2355     for (unsigned i = 0; i != NumElts; ++i) {
2356       SDValue Op = V.getOperand(i);
2357       if (Op.isUndef()) {
2358         UndefElts.setBit(i);
2359         continue;
2360       }
2361       if (!DemandedElts[i])
2362         continue;
2363       if (Scl && Scl != Op)
2364         return false;
2365       Scl = Op;
2366     }
2367     return true;
2368   }
2369   case ISD::VECTOR_SHUFFLE: {
2370     // Check if this is a shuffle node doing a splat.
2371     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2372     int SplatIndex = -1;
2373     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2374     for (int i = 0; i != (int)NumElts; ++i) {
2375       int M = Mask[i];
2376       if (M < 0) {
2377         UndefElts.setBit(i);
2378         continue;
2379       }
2380       if (!DemandedElts[i])
2381         continue;
2382       if (0 <= SplatIndex && SplatIndex != M)
2383         return false;
2384       SplatIndex = M;
2385     }
2386     return true;
2387   }
2388   case ISD::EXTRACT_SUBVECTOR: {
2389     // Offset the demanded elts by the subvector index.
2390     SDValue Src = V.getOperand(0);
2391     uint64_t Idx = V.getConstantOperandVal(1);
2392     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2393     APInt UndefSrcElts;
2394     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2395     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2396       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2397       return true;
2398     }
2399     break;
2400   }
2401   }
2402 
2403   return false;
2404 }
2405 
2406 /// Helper wrapper to main isSplatValue function.
2407 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2408   EVT VT = V.getValueType();
2409   assert(VT.isVector() && "Vector type expected");
2410 
2411   APInt UndefElts;
2412   APInt DemandedElts;
2413 
2414   // For now we don't support this with scalable vectors.
2415   if (!VT.isScalableVector())
2416     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2417   return isSplatValue(V, DemandedElts, UndefElts) &&
2418          (AllowUndefs || !UndefElts);
2419 }
2420 
2421 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2422   V = peekThroughExtractSubvectors(V);
2423 
2424   EVT VT = V.getValueType();
2425   unsigned Opcode = V.getOpcode();
2426   switch (Opcode) {
2427   default: {
2428     APInt UndefElts;
2429     APInt DemandedElts;
2430 
2431     if (!VT.isScalableVector())
2432       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2433 
2434     if (isSplatValue(V, DemandedElts, UndefElts)) {
2435       if (VT.isScalableVector()) {
2436         // DemandedElts and UndefElts are ignored for scalable vectors, since
2437         // the only supported cases are SPLAT_VECTOR nodes.
2438         SplatIdx = 0;
2439       } else {
2440         // Handle case where all demanded elements are UNDEF.
2441         if (DemandedElts.isSubsetOf(UndefElts)) {
2442           SplatIdx = 0;
2443           return getUNDEF(VT);
2444         }
2445         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2446       }
2447       return V;
2448     }
2449     break;
2450   }
2451   case ISD::SPLAT_VECTOR:
2452     SplatIdx = 0;
2453     return V;
2454   case ISD::VECTOR_SHUFFLE: {
2455     if (VT.isScalableVector())
2456       return SDValue();
2457 
2458     // Check if this is a shuffle node doing a splat.
2459     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2460     // getTargetVShiftNode currently struggles without the splat source.
2461     auto *SVN = cast<ShuffleVectorSDNode>(V);
2462     if (!SVN->isSplat())
2463       break;
2464     int Idx = SVN->getSplatIndex();
2465     int NumElts = V.getValueType().getVectorNumElements();
2466     SplatIdx = Idx % NumElts;
2467     return V.getOperand(Idx / NumElts);
2468   }
2469   }
2470 
2471   return SDValue();
2472 }
2473 
2474 SDValue SelectionDAG::getSplatValue(SDValue V) {
2475   int SplatIdx;
2476   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2477     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2478                    SrcVector.getValueType().getScalarType(), SrcVector,
2479                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2480   return SDValue();
2481 }
2482 
2483 const APInt *
2484 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2485                                           const APInt &DemandedElts) const {
2486   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2487           V.getOpcode() == ISD::SRA) &&
2488          "Unknown shift node");
2489   unsigned BitWidth = V.getScalarValueSizeInBits();
2490   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2491     // Shifting more than the bitwidth is not valid.
2492     const APInt &ShAmt = SA->getAPIntValue();
2493     if (ShAmt.ult(BitWidth))
2494       return &ShAmt;
2495   }
2496   return nullptr;
2497 }
2498 
2499 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2500     SDValue V, const APInt &DemandedElts) const {
2501   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2502           V.getOpcode() == ISD::SRA) &&
2503          "Unknown shift node");
2504   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2505     return ValidAmt;
2506   unsigned BitWidth = V.getScalarValueSizeInBits();
2507   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2508   if (!BV)
2509     return nullptr;
2510   const APInt *MinShAmt = nullptr;
2511   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2512     if (!DemandedElts[i])
2513       continue;
2514     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2515     if (!SA)
2516       return nullptr;
2517     // Shifting more than the bitwidth is not valid.
2518     const APInt &ShAmt = SA->getAPIntValue();
2519     if (ShAmt.uge(BitWidth))
2520       return nullptr;
2521     if (MinShAmt && MinShAmt->ule(ShAmt))
2522       continue;
2523     MinShAmt = &ShAmt;
2524   }
2525   return MinShAmt;
2526 }
2527 
2528 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2529     SDValue V, const APInt &DemandedElts) const {
2530   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2531           V.getOpcode() == ISD::SRA) &&
2532          "Unknown shift node");
2533   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2534     return ValidAmt;
2535   unsigned BitWidth = V.getScalarValueSizeInBits();
2536   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2537   if (!BV)
2538     return nullptr;
2539   const APInt *MaxShAmt = nullptr;
2540   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2541     if (!DemandedElts[i])
2542       continue;
2543     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2544     if (!SA)
2545       return nullptr;
2546     // Shifting more than the bitwidth is not valid.
2547     const APInt &ShAmt = SA->getAPIntValue();
2548     if (ShAmt.uge(BitWidth))
2549       return nullptr;
2550     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2551       continue;
2552     MaxShAmt = &ShAmt;
2553   }
2554   return MaxShAmt;
2555 }
2556 
2557 /// Determine which bits of Op are known to be either zero or one and return
2558 /// them in Known. For vectors, the known bits are those that are shared by
2559 /// every vector element.
2560 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2561   EVT VT = Op.getValueType();
2562 
2563   // TOOD: Until we have a plan for how to represent demanded elements for
2564   // scalable vectors, we can just bail out for now.
2565   if (Op.getValueType().isScalableVector()) {
2566     unsigned BitWidth = Op.getScalarValueSizeInBits();
2567     return KnownBits(BitWidth);
2568   }
2569 
2570   APInt DemandedElts = VT.isVector()
2571                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2572                            : APInt(1, 1);
2573   return computeKnownBits(Op, DemandedElts, Depth);
2574 }
2575 
2576 /// Determine which bits of Op are known to be either zero or one and return
2577 /// them in Known. The DemandedElts argument allows us to only collect the known
2578 /// bits that are shared by the requested vector elements.
2579 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2580                                          unsigned Depth) const {
2581   unsigned BitWidth = Op.getScalarValueSizeInBits();
2582 
2583   KnownBits Known(BitWidth);   // Don't know anything.
2584 
2585   // TOOD: Until we have a plan for how to represent demanded elements for
2586   // scalable vectors, we can just bail out for now.
2587   if (Op.getValueType().isScalableVector())
2588     return Known;
2589 
2590   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2591     // We know all of the bits for a constant!
2592     Known.One = C->getAPIntValue();
2593     Known.Zero = ~Known.One;
2594     return Known;
2595   }
2596   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2597     // We know all of the bits for a constant fp!
2598     Known.One = C->getValueAPF().bitcastToAPInt();
2599     Known.Zero = ~Known.One;
2600     return Known;
2601   }
2602 
2603   if (Depth >= MaxRecursionDepth)
2604     return Known;  // Limit search depth.
2605 
2606   KnownBits Known2;
2607   unsigned NumElts = DemandedElts.getBitWidth();
2608   assert((!Op.getValueType().isVector() ||
2609           NumElts == Op.getValueType().getVectorNumElements()) &&
2610          "Unexpected vector size");
2611 
2612   if (!DemandedElts)
2613     return Known;  // No demanded elts, better to assume we don't know anything.
2614 
2615   unsigned Opcode = Op.getOpcode();
2616   switch (Opcode) {
2617   case ISD::BUILD_VECTOR:
2618     // Collect the known bits that are shared by every demanded vector element.
2619     Known.Zero.setAllBits(); Known.One.setAllBits();
2620     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2621       if (!DemandedElts[i])
2622         continue;
2623 
2624       SDValue SrcOp = Op.getOperand(i);
2625       Known2 = computeKnownBits(SrcOp, Depth + 1);
2626 
2627       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2628       if (SrcOp.getValueSizeInBits() != BitWidth) {
2629         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2630                "Expected BUILD_VECTOR implicit truncation");
2631         Known2 = Known2.trunc(BitWidth);
2632       }
2633 
2634       // Known bits are the values that are shared by every demanded element.
2635       Known.One &= Known2.One;
2636       Known.Zero &= Known2.Zero;
2637 
2638       // If we don't know any bits, early out.
2639       if (Known.isUnknown())
2640         break;
2641     }
2642     break;
2643   case ISD::VECTOR_SHUFFLE: {
2644     // Collect the known bits that are shared by every vector element referenced
2645     // by the shuffle.
2646     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2647     Known.Zero.setAllBits(); Known.One.setAllBits();
2648     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2649     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2650     for (unsigned i = 0; i != NumElts; ++i) {
2651       if (!DemandedElts[i])
2652         continue;
2653 
2654       int M = SVN->getMaskElt(i);
2655       if (M < 0) {
2656         // For UNDEF elements, we don't know anything about the common state of
2657         // the shuffle result.
2658         Known.resetAll();
2659         DemandedLHS.clearAllBits();
2660         DemandedRHS.clearAllBits();
2661         break;
2662       }
2663 
2664       if ((unsigned)M < NumElts)
2665         DemandedLHS.setBit((unsigned)M % NumElts);
2666       else
2667         DemandedRHS.setBit((unsigned)M % NumElts);
2668     }
2669     // Known bits are the values that are shared by every demanded element.
2670     if (!!DemandedLHS) {
2671       SDValue LHS = Op.getOperand(0);
2672       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2673       Known.One &= Known2.One;
2674       Known.Zero &= Known2.Zero;
2675     }
2676     // If we don't know any bits, early out.
2677     if (Known.isUnknown())
2678       break;
2679     if (!!DemandedRHS) {
2680       SDValue RHS = Op.getOperand(1);
2681       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2682       Known.One &= Known2.One;
2683       Known.Zero &= Known2.Zero;
2684     }
2685     break;
2686   }
2687   case ISD::CONCAT_VECTORS: {
2688     // Split DemandedElts and test each of the demanded subvectors.
2689     Known.Zero.setAllBits(); Known.One.setAllBits();
2690     EVT SubVectorVT = Op.getOperand(0).getValueType();
2691     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2692     unsigned NumSubVectors = Op.getNumOperands();
2693     for (unsigned i = 0; i != NumSubVectors; ++i) {
2694       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2695       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2696       if (!!DemandedSub) {
2697         SDValue Sub = Op.getOperand(i);
2698         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2699         Known.One &= Known2.One;
2700         Known.Zero &= Known2.Zero;
2701       }
2702       // If we don't know any bits, early out.
2703       if (Known.isUnknown())
2704         break;
2705     }
2706     break;
2707   }
2708   case ISD::INSERT_SUBVECTOR: {
2709     // Demand any elements from the subvector and the remainder from the src its
2710     // inserted into.
2711     SDValue Src = Op.getOperand(0);
2712     SDValue Sub = Op.getOperand(1);
2713     uint64_t Idx = Op.getConstantOperandVal(2);
2714     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2715     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2716     APInt DemandedSrcElts = DemandedElts;
2717     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2718 
2719     Known.One.setAllBits();
2720     Known.Zero.setAllBits();
2721     if (!!DemandedSubElts) {
2722       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2723       if (Known.isUnknown())
2724         break; // early-out.
2725     }
2726     if (!!DemandedSrcElts) {
2727       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2728       Known.One &= Known2.One;
2729       Known.Zero &= Known2.Zero;
2730     }
2731     break;
2732   }
2733   case ISD::EXTRACT_SUBVECTOR: {
2734     // Offset the demanded elts by the subvector index.
2735     SDValue Src = Op.getOperand(0);
2736     // Bail until we can represent demanded elements for scalable vectors.
2737     if (Src.getValueType().isScalableVector())
2738       break;
2739     uint64_t Idx = Op.getConstantOperandVal(1);
2740     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2741     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2742     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2743     break;
2744   }
2745   case ISD::SCALAR_TO_VECTOR: {
2746     // We know about scalar_to_vector as much as we know about it source,
2747     // which becomes the first element of otherwise unknown vector.
2748     if (DemandedElts != 1)
2749       break;
2750 
2751     SDValue N0 = Op.getOperand(0);
2752     Known = computeKnownBits(N0, Depth + 1);
2753     if (N0.getValueSizeInBits() != BitWidth)
2754       Known = Known.trunc(BitWidth);
2755 
2756     break;
2757   }
2758   case ISD::BITCAST: {
2759     SDValue N0 = Op.getOperand(0);
2760     EVT SubVT = N0.getValueType();
2761     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2762 
2763     // Ignore bitcasts from unsupported types.
2764     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2765       break;
2766 
2767     // Fast handling of 'identity' bitcasts.
2768     if (BitWidth == SubBitWidth) {
2769       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2770       break;
2771     }
2772 
2773     bool IsLE = getDataLayout().isLittleEndian();
2774 
2775     // Bitcast 'small element' vector to 'large element' scalar/vector.
2776     if ((BitWidth % SubBitWidth) == 0) {
2777       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2778 
2779       // Collect known bits for the (larger) output by collecting the known
2780       // bits from each set of sub elements and shift these into place.
2781       // We need to separately call computeKnownBits for each set of
2782       // sub elements as the knownbits for each is likely to be different.
2783       unsigned SubScale = BitWidth / SubBitWidth;
2784       APInt SubDemandedElts(NumElts * SubScale, 0);
2785       for (unsigned i = 0; i != NumElts; ++i)
2786         if (DemandedElts[i])
2787           SubDemandedElts.setBit(i * SubScale);
2788 
2789       for (unsigned i = 0; i != SubScale; ++i) {
2790         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2791                          Depth + 1);
2792         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2793         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2794         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2795       }
2796     }
2797 
2798     // Bitcast 'large element' scalar/vector to 'small element' vector.
2799     if ((SubBitWidth % BitWidth) == 0) {
2800       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2801 
2802       // Collect known bits for the (smaller) output by collecting the known
2803       // bits from the overlapping larger input elements and extracting the
2804       // sub sections we actually care about.
2805       unsigned SubScale = SubBitWidth / BitWidth;
2806       APInt SubDemandedElts(NumElts / SubScale, 0);
2807       for (unsigned i = 0; i != NumElts; ++i)
2808         if (DemandedElts[i])
2809           SubDemandedElts.setBit(i / SubScale);
2810 
2811       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2812 
2813       Known.Zero.setAllBits(); Known.One.setAllBits();
2814       for (unsigned i = 0; i != NumElts; ++i)
2815         if (DemandedElts[i]) {
2816           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2817           unsigned Offset = (Shifts % SubScale) * BitWidth;
2818           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2819           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2820           // If we don't know any bits, early out.
2821           if (Known.isUnknown())
2822             break;
2823         }
2824     }
2825     break;
2826   }
2827   case ISD::AND:
2828     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2829     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2830 
2831     Known &= Known2;
2832     break;
2833   case ISD::OR:
2834     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2835     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2836 
2837     Known |= Known2;
2838     break;
2839   case ISD::XOR:
2840     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2841     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2842 
2843     Known ^= Known2;
2844     break;
2845   case ISD::MUL: {
2846     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2847     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2848 
2849     // If low bits are zero in either operand, output low known-0 bits.
2850     // Also compute a conservative estimate for high known-0 bits.
2851     // More trickiness is possible, but this is sufficient for the
2852     // interesting case of alignment computation.
2853     unsigned TrailZ = Known.countMinTrailingZeros() +
2854                       Known2.countMinTrailingZeros();
2855     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2856                                Known2.countMinLeadingZeros(),
2857                                BitWidth) - BitWidth;
2858 
2859     Known.resetAll();
2860     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2861     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2862     break;
2863   }
2864   case ISD::UDIV: {
2865     // For the purposes of computing leading zeros we can conservatively
2866     // treat a udiv as a logical right shift by the power of 2 known to
2867     // be less than the denominator.
2868     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2869     unsigned LeadZ = Known2.countMinLeadingZeros();
2870 
2871     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2872     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2873     if (RHSMaxLeadingZeros != BitWidth)
2874       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2875 
2876     Known.Zero.setHighBits(LeadZ);
2877     break;
2878   }
2879   case ISD::SELECT:
2880   case ISD::VSELECT:
2881     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2882     // If we don't know any bits, early out.
2883     if (Known.isUnknown())
2884       break;
2885     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2886 
2887     // Only known if known in both the LHS and RHS.
2888     Known.One &= Known2.One;
2889     Known.Zero &= Known2.Zero;
2890     break;
2891   case ISD::SELECT_CC:
2892     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2893     // If we don't know any bits, early out.
2894     if (Known.isUnknown())
2895       break;
2896     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2897 
2898     // Only known if known in both the LHS and RHS.
2899     Known.One &= Known2.One;
2900     Known.Zero &= Known2.Zero;
2901     break;
2902   case ISD::SMULO:
2903   case ISD::UMULO:
2904   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2905     if (Op.getResNo() != 1)
2906       break;
2907     // The boolean result conforms to getBooleanContents.
2908     // If we know the result of a setcc has the top bits zero, use this info.
2909     // We know that we have an integer-based boolean since these operations
2910     // are only available for integer.
2911     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2912             TargetLowering::ZeroOrOneBooleanContent &&
2913         BitWidth > 1)
2914       Known.Zero.setBitsFrom(1);
2915     break;
2916   case ISD::SETCC:
2917   case ISD::STRICT_FSETCC:
2918   case ISD::STRICT_FSETCCS: {
2919     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2920     // If we know the result of a setcc has the top bits zero, use this info.
2921     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2922             TargetLowering::ZeroOrOneBooleanContent &&
2923         BitWidth > 1)
2924       Known.Zero.setBitsFrom(1);
2925     break;
2926   }
2927   case ISD::SHL:
2928     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2929 
2930     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2931       unsigned Shift = ShAmt->getZExtValue();
2932       Known.Zero <<= Shift;
2933       Known.One <<= Shift;
2934       // Low bits are known zero.
2935       Known.Zero.setLowBits(Shift);
2936       break;
2937     }
2938 
2939     // No matter the shift amount, the trailing zeros will stay zero.
2940     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2941     Known.One.clearAllBits();
2942 
2943     // Minimum shift low bits are known zero.
2944     if (const APInt *ShMinAmt =
2945             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2946       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2947     break;
2948   case ISD::SRL:
2949     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2950 
2951     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2952       unsigned Shift = ShAmt->getZExtValue();
2953       Known.Zero.lshrInPlace(Shift);
2954       Known.One.lshrInPlace(Shift);
2955       // High bits are known zero.
2956       Known.Zero.setHighBits(Shift);
2957       break;
2958     }
2959 
2960     // No matter the shift amount, the leading zeros will stay zero.
2961     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2962     Known.One.clearAllBits();
2963 
2964     // Minimum shift high bits are known zero.
2965     if (const APInt *ShMinAmt =
2966             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2967       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2968     break;
2969   case ISD::SRA:
2970     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2971       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2972       unsigned Shift = ShAmt->getZExtValue();
2973       // Sign extend known zero/one bit (else is unknown).
2974       Known.Zero.ashrInPlace(Shift);
2975       Known.One.ashrInPlace(Shift);
2976     }
2977     break;
2978   case ISD::FSHL:
2979   case ISD::FSHR:
2980     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2981       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2982 
2983       // For fshl, 0-shift returns the 1st arg.
2984       // For fshr, 0-shift returns the 2nd arg.
2985       if (Amt == 0) {
2986         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2987                                  DemandedElts, Depth + 1);
2988         break;
2989       }
2990 
2991       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2992       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2993       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2994       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2995       if (Opcode == ISD::FSHL) {
2996         Known.One <<= Amt;
2997         Known.Zero <<= Amt;
2998         Known2.One.lshrInPlace(BitWidth - Amt);
2999         Known2.Zero.lshrInPlace(BitWidth - Amt);
3000       } else {
3001         Known.One <<= BitWidth - Amt;
3002         Known.Zero <<= BitWidth - Amt;
3003         Known2.One.lshrInPlace(Amt);
3004         Known2.Zero.lshrInPlace(Amt);
3005       }
3006       Known.One |= Known2.One;
3007       Known.Zero |= Known2.Zero;
3008     }
3009     break;
3010   case ISD::SIGN_EXTEND_INREG: {
3011     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3012     unsigned EBits = EVT.getScalarSizeInBits();
3013 
3014     // Sign extension.  Compute the demanded bits in the result that are not
3015     // present in the input.
3016     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
3017 
3018     APInt InSignMask = APInt::getSignMask(EBits);
3019     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3020 
3021     // If the sign extended bits are demanded, we know that the sign
3022     // bit is demanded.
3023     InSignMask = InSignMask.zext(BitWidth);
3024     if (NewBits.getBoolValue())
3025       InputDemandedBits |= InSignMask;
3026 
3027     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3028     Known.One &= InputDemandedBits;
3029     Known.Zero &= InputDemandedBits;
3030 
3031     // If the sign bit of the input is known set or clear, then we know the
3032     // top bits of the result.
3033     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3034       Known.Zero |= NewBits;
3035       Known.One  &= ~NewBits;
3036     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3037       Known.One  |= NewBits;
3038       Known.Zero &= ~NewBits;
3039     } else {                              // Input sign bit unknown
3040       Known.Zero &= ~NewBits;
3041       Known.One  &= ~NewBits;
3042     }
3043     break;
3044   }
3045   case ISD::CTTZ:
3046   case ISD::CTTZ_ZERO_UNDEF: {
3047     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3048     // If we have a known 1, its position is our upper bound.
3049     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3050     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3051     Known.Zero.setBitsFrom(LowBits);
3052     break;
3053   }
3054   case ISD::CTLZ:
3055   case ISD::CTLZ_ZERO_UNDEF: {
3056     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3057     // If we have a known 1, its position is our upper bound.
3058     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3059     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3060     Known.Zero.setBitsFrom(LowBits);
3061     break;
3062   }
3063   case ISD::CTPOP: {
3064     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3065     // If we know some of the bits are zero, they can't be one.
3066     unsigned PossibleOnes = Known2.countMaxPopulation();
3067     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3068     break;
3069   }
3070   case ISD::PARITY: {
3071     // Parity returns 0 everywhere but the LSB.
3072     Known.Zero.setBitsFrom(1);
3073     break;
3074   }
3075   case ISD::LOAD: {
3076     LoadSDNode *LD = cast<LoadSDNode>(Op);
3077     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3078     if (ISD::isNON_EXTLoad(LD) && Cst) {
3079       // Determine any common known bits from the loaded constant pool value.
3080       Type *CstTy = Cst->getType();
3081       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3082         // If its a vector splat, then we can (quickly) reuse the scalar path.
3083         // NOTE: We assume all elements match and none are UNDEF.
3084         if (CstTy->isVectorTy()) {
3085           if (const Constant *Splat = Cst->getSplatValue()) {
3086             Cst = Splat;
3087             CstTy = Cst->getType();
3088           }
3089         }
3090         // TODO - do we need to handle different bitwidths?
3091         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3092           // Iterate across all vector elements finding common known bits.
3093           Known.One.setAllBits();
3094           Known.Zero.setAllBits();
3095           for (unsigned i = 0; i != NumElts; ++i) {
3096             if (!DemandedElts[i])
3097               continue;
3098             if (Constant *Elt = Cst->getAggregateElement(i)) {
3099               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3100                 const APInt &Value = CInt->getValue();
3101                 Known.One &= Value;
3102                 Known.Zero &= ~Value;
3103                 continue;
3104               }
3105               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3106                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3107                 Known.One &= Value;
3108                 Known.Zero &= ~Value;
3109                 continue;
3110               }
3111             }
3112             Known.One.clearAllBits();
3113             Known.Zero.clearAllBits();
3114             break;
3115           }
3116         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3117           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3118             const APInt &Value = CInt->getValue();
3119             Known.One = Value;
3120             Known.Zero = ~Value;
3121           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3122             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3123             Known.One = Value;
3124             Known.Zero = ~Value;
3125           }
3126         }
3127       }
3128     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3129       // If this is a ZEXTLoad and we are looking at the loaded value.
3130       EVT VT = LD->getMemoryVT();
3131       unsigned MemBits = VT.getScalarSizeInBits();
3132       Known.Zero.setBitsFrom(MemBits);
3133     } else if (const MDNode *Ranges = LD->getRanges()) {
3134       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3135         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3136     }
3137     break;
3138   }
3139   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3140     EVT InVT = Op.getOperand(0).getValueType();
3141     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3142     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3143     Known = Known.zext(BitWidth);
3144     break;
3145   }
3146   case ISD::ZERO_EXTEND: {
3147     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3148     Known = Known.zext(BitWidth);
3149     break;
3150   }
3151   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3152     EVT InVT = Op.getOperand(0).getValueType();
3153     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3154     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3155     // If the sign bit is known to be zero or one, then sext will extend
3156     // it to the top bits, else it will just zext.
3157     Known = Known.sext(BitWidth);
3158     break;
3159   }
3160   case ISD::SIGN_EXTEND: {
3161     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3162     // If the sign bit is known to be zero or one, then sext will extend
3163     // it to the top bits, else it will just zext.
3164     Known = Known.sext(BitWidth);
3165     break;
3166   }
3167   case ISD::ANY_EXTEND_VECTOR_INREG: {
3168     EVT InVT = Op.getOperand(0).getValueType();
3169     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3170     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3171     Known = Known.anyext(BitWidth);
3172     break;
3173   }
3174   case ISD::ANY_EXTEND: {
3175     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3176     Known = Known.anyext(BitWidth);
3177     break;
3178   }
3179   case ISD::TRUNCATE: {
3180     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3181     Known = Known.trunc(BitWidth);
3182     break;
3183   }
3184   case ISD::AssertZext: {
3185     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3186     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3187     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3188     Known.Zero |= (~InMask);
3189     Known.One  &= (~Known.Zero);
3190     break;
3191   }
3192   case ISD::AssertAlign: {
3193     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3194     assert(LogOfAlign != 0);
3195     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3196     // well as clearing one bits.
3197     Known.Zero.setLowBits(LogOfAlign);
3198     Known.One.clearLowBits(LogOfAlign);
3199     break;
3200   }
3201   case ISD::FGETSIGN:
3202     // All bits are zero except the low bit.
3203     Known.Zero.setBitsFrom(1);
3204     break;
3205   case ISD::USUBO:
3206   case ISD::SSUBO:
3207     if (Op.getResNo() == 1) {
3208       // If we know the result of a setcc has the top bits zero, use this info.
3209       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3210               TargetLowering::ZeroOrOneBooleanContent &&
3211           BitWidth > 1)
3212         Known.Zero.setBitsFrom(1);
3213       break;
3214     }
3215     LLVM_FALLTHROUGH;
3216   case ISD::SUB:
3217   case ISD::SUBC: {
3218     assert(Op.getResNo() == 0 &&
3219            "We only compute knownbits for the difference here.");
3220 
3221     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3222     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3223     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3224                                         Known, Known2);
3225     break;
3226   }
3227   case ISD::UADDO:
3228   case ISD::SADDO:
3229   case ISD::ADDCARRY:
3230     if (Op.getResNo() == 1) {
3231       // If we know the result of a setcc has the top bits zero, use this info.
3232       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3233               TargetLowering::ZeroOrOneBooleanContent &&
3234           BitWidth > 1)
3235         Known.Zero.setBitsFrom(1);
3236       break;
3237     }
3238     LLVM_FALLTHROUGH;
3239   case ISD::ADD:
3240   case ISD::ADDC:
3241   case ISD::ADDE: {
3242     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3243 
3244     // With ADDE and ADDCARRY, a carry bit may be added in.
3245     KnownBits Carry(1);
3246     if (Opcode == ISD::ADDE)
3247       // Can't track carry from glue, set carry to unknown.
3248       Carry.resetAll();
3249     else if (Opcode == ISD::ADDCARRY)
3250       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3251       // the trouble (how often will we find a known carry bit). And I haven't
3252       // tested this very much yet, but something like this might work:
3253       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3254       //   Carry = Carry.zextOrTrunc(1, false);
3255       Carry.resetAll();
3256     else
3257       Carry.setAllZero();
3258 
3259     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3260     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3261     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3262     break;
3263   }
3264   case ISD::SREM:
3265     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3266       const APInt &RA = Rem->getAPIntValue().abs();
3267       if (RA.isPowerOf2()) {
3268         APInt LowBits = RA - 1;
3269         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3270 
3271         // The low bits of the first operand are unchanged by the srem.
3272         Known.Zero = Known2.Zero & LowBits;
3273         Known.One = Known2.One & LowBits;
3274 
3275         // If the first operand is non-negative or has all low bits zero, then
3276         // the upper bits are all zero.
3277         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3278           Known.Zero |= ~LowBits;
3279 
3280         // If the first operand is negative and not all low bits are zero, then
3281         // the upper bits are all one.
3282         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3283           Known.One |= ~LowBits;
3284         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3285       }
3286     }
3287     break;
3288   case ISD::UREM: {
3289     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3290       const APInt &RA = Rem->getAPIntValue();
3291       if (RA.isPowerOf2()) {
3292         APInt LowBits = (RA - 1);
3293         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3294 
3295         // The upper bits are all zero, the lower ones are unchanged.
3296         Known.Zero = Known2.Zero | ~LowBits;
3297         Known.One = Known2.One & LowBits;
3298         break;
3299       }
3300     }
3301 
3302     // Since the result is less than or equal to either operand, any leading
3303     // zero bits in either operand must also exist in the result.
3304     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3305     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3306 
3307     uint32_t Leaders =
3308         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3309     Known.resetAll();
3310     Known.Zero.setHighBits(Leaders);
3311     break;
3312   }
3313   case ISD::EXTRACT_ELEMENT: {
3314     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3315     const unsigned Index = Op.getConstantOperandVal(1);
3316     const unsigned EltBitWidth = Op.getValueSizeInBits();
3317 
3318     // Remove low part of known bits mask
3319     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3320     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3321 
3322     // Remove high part of known bit mask
3323     Known = Known.trunc(EltBitWidth);
3324     break;
3325   }
3326   case ISD::EXTRACT_VECTOR_ELT: {
3327     SDValue InVec = Op.getOperand(0);
3328     SDValue EltNo = Op.getOperand(1);
3329     EVT VecVT = InVec.getValueType();
3330     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3331     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3332 
3333     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3334     // anything about the extended bits.
3335     if (BitWidth > EltBitWidth)
3336       Known = Known.trunc(EltBitWidth);
3337 
3338     // If we know the element index, just demand that vector element, else for
3339     // an unknown element index, ignore DemandedElts and demand them all.
3340     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3341     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3342     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3343       DemandedSrcElts =
3344           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3345 
3346     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3347     if (BitWidth > EltBitWidth)
3348       Known = Known.anyext(BitWidth);
3349     break;
3350   }
3351   case ISD::INSERT_VECTOR_ELT: {
3352     // If we know the element index, split the demand between the
3353     // source vector and the inserted element, otherwise assume we need
3354     // the original demanded vector elements and the value.
3355     SDValue InVec = Op.getOperand(0);
3356     SDValue InVal = Op.getOperand(1);
3357     SDValue EltNo = Op.getOperand(2);
3358     bool DemandedVal = true;
3359     APInt DemandedVecElts = DemandedElts;
3360     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3361     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3362       unsigned EltIdx = CEltNo->getZExtValue();
3363       DemandedVal = !!DemandedElts[EltIdx];
3364       DemandedVecElts.clearBit(EltIdx);
3365     }
3366     Known.One.setAllBits();
3367     Known.Zero.setAllBits();
3368     if (DemandedVal) {
3369       Known2 = computeKnownBits(InVal, Depth + 1);
3370       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3371       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3372     }
3373     if (!!DemandedVecElts) {
3374       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3375       Known.One &= Known2.One;
3376       Known.Zero &= Known2.Zero;
3377     }
3378     break;
3379   }
3380   case ISD::BITREVERSE: {
3381     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3382     Known = Known2.reverseBits();
3383     break;
3384   }
3385   case ISD::BSWAP: {
3386     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3387     Known = Known2.byteSwap();
3388     break;
3389   }
3390   case ISD::ABS: {
3391     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3392     Known = Known2.abs();
3393     break;
3394   }
3395   case ISD::UMIN: {
3396     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3397     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3398     Known = KnownBits::umin(Known, Known2);
3399     break;
3400   }
3401   case ISD::UMAX: {
3402     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3403     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3404     Known = KnownBits::umax(Known, Known2);
3405     break;
3406   }
3407   case ISD::SMIN:
3408   case ISD::SMAX: {
3409     // If we have a clamp pattern, we know that the number of sign bits will be
3410     // the minimum of the clamp min/max range.
3411     bool IsMax = (Opcode == ISD::SMAX);
3412     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3413     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3414       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3415         CstHigh =
3416             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3417     if (CstLow && CstHigh) {
3418       if (!IsMax)
3419         std::swap(CstLow, CstHigh);
3420 
3421       const APInt &ValueLow = CstLow->getAPIntValue();
3422       const APInt &ValueHigh = CstHigh->getAPIntValue();
3423       if (ValueLow.sle(ValueHigh)) {
3424         unsigned LowSignBits = ValueLow.getNumSignBits();
3425         unsigned HighSignBits = ValueHigh.getNumSignBits();
3426         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3427         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3428           Known.One.setHighBits(MinSignBits);
3429           break;
3430         }
3431         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3432           Known.Zero.setHighBits(MinSignBits);
3433           break;
3434         }
3435       }
3436     }
3437 
3438     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3439     if (Known.isUnknown()) break; // Early-out
3440     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3441     if (IsMax)
3442       Known = KnownBits::smax(Known, Known2);
3443     else
3444       Known = KnownBits::smin(Known, Known2);
3445     break;
3446   }
3447   case ISD::FrameIndex:
3448   case ISD::TargetFrameIndex:
3449     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3450                                        Known, getMachineFunction());
3451     break;
3452 
3453   default:
3454     if (Opcode < ISD::BUILTIN_OP_END)
3455       break;
3456     LLVM_FALLTHROUGH;
3457   case ISD::INTRINSIC_WO_CHAIN:
3458   case ISD::INTRINSIC_W_CHAIN:
3459   case ISD::INTRINSIC_VOID:
3460     // Allow the target to implement this method for its nodes.
3461     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3462     break;
3463   }
3464 
3465   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3466   return Known;
3467 }
3468 
3469 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3470                                                              SDValue N1) const {
3471   // X + 0 never overflow
3472   if (isNullConstant(N1))
3473     return OFK_Never;
3474 
3475   KnownBits N1Known = computeKnownBits(N1);
3476   if (N1Known.Zero.getBoolValue()) {
3477     KnownBits N0Known = computeKnownBits(N0);
3478 
3479     bool overflow;
3480     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3481     if (!overflow)
3482       return OFK_Never;
3483   }
3484 
3485   // mulhi + 1 never overflow
3486   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3487       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3488     return OFK_Never;
3489 
3490   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3491     KnownBits N0Known = computeKnownBits(N0);
3492 
3493     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3494       return OFK_Never;
3495   }
3496 
3497   return OFK_Sometime;
3498 }
3499 
3500 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3501   EVT OpVT = Val.getValueType();
3502   unsigned BitWidth = OpVT.getScalarSizeInBits();
3503 
3504   // Is the constant a known power of 2?
3505   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3506     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3507 
3508   // A left-shift of a constant one will have exactly one bit set because
3509   // shifting the bit off the end is undefined.
3510   if (Val.getOpcode() == ISD::SHL) {
3511     auto *C = isConstOrConstSplat(Val.getOperand(0));
3512     if (C && C->getAPIntValue() == 1)
3513       return true;
3514   }
3515 
3516   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3517   // one bit set.
3518   if (Val.getOpcode() == ISD::SRL) {
3519     auto *C = isConstOrConstSplat(Val.getOperand(0));
3520     if (C && C->getAPIntValue().isSignMask())
3521       return true;
3522   }
3523 
3524   // Are all operands of a build vector constant powers of two?
3525   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3526     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3527           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3528             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3529           return false;
3530         }))
3531       return true;
3532 
3533   // More could be done here, though the above checks are enough
3534   // to handle some common cases.
3535 
3536   // Fall back to computeKnownBits to catch other known cases.
3537   KnownBits Known = computeKnownBits(Val);
3538   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3539 }
3540 
3541 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3542   EVT VT = Op.getValueType();
3543 
3544   // TODO: Assume we don't know anything for now.
3545   if (VT.isScalableVector())
3546     return 1;
3547 
3548   APInt DemandedElts = VT.isVector()
3549                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3550                            : APInt(1, 1);
3551   return ComputeNumSignBits(Op, DemandedElts, Depth);
3552 }
3553 
3554 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3555                                           unsigned Depth) const {
3556   EVT VT = Op.getValueType();
3557   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3558   unsigned VTBits = VT.getScalarSizeInBits();
3559   unsigned NumElts = DemandedElts.getBitWidth();
3560   unsigned Tmp, Tmp2;
3561   unsigned FirstAnswer = 1;
3562 
3563   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3564     const APInt &Val = C->getAPIntValue();
3565     return Val.getNumSignBits();
3566   }
3567 
3568   if (Depth >= MaxRecursionDepth)
3569     return 1;  // Limit search depth.
3570 
3571   if (!DemandedElts || VT.isScalableVector())
3572     return 1;  // No demanded elts, better to assume we don't know anything.
3573 
3574   unsigned Opcode = Op.getOpcode();
3575   switch (Opcode) {
3576   default: break;
3577   case ISD::AssertSext:
3578     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3579     return VTBits-Tmp+1;
3580   case ISD::AssertZext:
3581     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3582     return VTBits-Tmp;
3583 
3584   case ISD::BUILD_VECTOR:
3585     Tmp = VTBits;
3586     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3587       if (!DemandedElts[i])
3588         continue;
3589 
3590       SDValue SrcOp = Op.getOperand(i);
3591       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3592 
3593       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3594       if (SrcOp.getValueSizeInBits() != VTBits) {
3595         assert(SrcOp.getValueSizeInBits() > VTBits &&
3596                "Expected BUILD_VECTOR implicit truncation");
3597         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3598         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3599       }
3600       Tmp = std::min(Tmp, Tmp2);
3601     }
3602     return Tmp;
3603 
3604   case ISD::VECTOR_SHUFFLE: {
3605     // Collect the minimum number of sign bits that are shared by every vector
3606     // element referenced by the shuffle.
3607     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3608     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3609     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3610     for (unsigned i = 0; i != NumElts; ++i) {
3611       int M = SVN->getMaskElt(i);
3612       if (!DemandedElts[i])
3613         continue;
3614       // For UNDEF elements, we don't know anything about the common state of
3615       // the shuffle result.
3616       if (M < 0)
3617         return 1;
3618       if ((unsigned)M < NumElts)
3619         DemandedLHS.setBit((unsigned)M % NumElts);
3620       else
3621         DemandedRHS.setBit((unsigned)M % NumElts);
3622     }
3623     Tmp = std::numeric_limits<unsigned>::max();
3624     if (!!DemandedLHS)
3625       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3626     if (!!DemandedRHS) {
3627       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3628       Tmp = std::min(Tmp, Tmp2);
3629     }
3630     // If we don't know anything, early out and try computeKnownBits fall-back.
3631     if (Tmp == 1)
3632       break;
3633     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3634     return Tmp;
3635   }
3636 
3637   case ISD::BITCAST: {
3638     SDValue N0 = Op.getOperand(0);
3639     EVT SrcVT = N0.getValueType();
3640     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3641 
3642     // Ignore bitcasts from unsupported types..
3643     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3644       break;
3645 
3646     // Fast handling of 'identity' bitcasts.
3647     if (VTBits == SrcBits)
3648       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3649 
3650     bool IsLE = getDataLayout().isLittleEndian();
3651 
3652     // Bitcast 'large element' scalar/vector to 'small element' vector.
3653     if ((SrcBits % VTBits) == 0) {
3654       assert(VT.isVector() && "Expected bitcast to vector");
3655 
3656       unsigned Scale = SrcBits / VTBits;
3657       APInt SrcDemandedElts(NumElts / Scale, 0);
3658       for (unsigned i = 0; i != NumElts; ++i)
3659         if (DemandedElts[i])
3660           SrcDemandedElts.setBit(i / Scale);
3661 
3662       // Fast case - sign splat can be simply split across the small elements.
3663       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3664       if (Tmp == SrcBits)
3665         return VTBits;
3666 
3667       // Slow case - determine how far the sign extends into each sub-element.
3668       Tmp2 = VTBits;
3669       for (unsigned i = 0; i != NumElts; ++i)
3670         if (DemandedElts[i]) {
3671           unsigned SubOffset = i % Scale;
3672           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3673           SubOffset = SubOffset * VTBits;
3674           if (Tmp <= SubOffset)
3675             return 1;
3676           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3677         }
3678       return Tmp2;
3679     }
3680     break;
3681   }
3682 
3683   case ISD::SIGN_EXTEND:
3684     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3685     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3686   case ISD::SIGN_EXTEND_INREG:
3687     // Max of the input and what this extends.
3688     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3689     Tmp = VTBits-Tmp+1;
3690     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3691     return std::max(Tmp, Tmp2);
3692   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3693     SDValue Src = Op.getOperand(0);
3694     EVT SrcVT = Src.getValueType();
3695     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3696     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3697     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3698   }
3699   case ISD::SRA:
3700     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3701     // SRA X, C -> adds C sign bits.
3702     if (const APInt *ShAmt =
3703             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3704       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3705     return Tmp;
3706   case ISD::SHL:
3707     if (const APInt *ShAmt =
3708             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3709       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3710       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3711       if (ShAmt->ult(Tmp))
3712         return Tmp - ShAmt->getZExtValue();
3713     }
3714     break;
3715   case ISD::AND:
3716   case ISD::OR:
3717   case ISD::XOR:    // NOT is handled here.
3718     // Logical binary ops preserve the number of sign bits at the worst.
3719     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3720     if (Tmp != 1) {
3721       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3722       FirstAnswer = std::min(Tmp, Tmp2);
3723       // We computed what we know about the sign bits as our first
3724       // answer. Now proceed to the generic code that uses
3725       // computeKnownBits, and pick whichever answer is better.
3726     }
3727     break;
3728 
3729   case ISD::SELECT:
3730   case ISD::VSELECT:
3731     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3732     if (Tmp == 1) return 1;  // Early out.
3733     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3734     return std::min(Tmp, Tmp2);
3735   case ISD::SELECT_CC:
3736     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3737     if (Tmp == 1) return 1;  // Early out.
3738     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3739     return std::min(Tmp, Tmp2);
3740 
3741   case ISD::SMIN:
3742   case ISD::SMAX: {
3743     // If we have a clamp pattern, we know that the number of sign bits will be
3744     // the minimum of the clamp min/max range.
3745     bool IsMax = (Opcode == ISD::SMAX);
3746     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3747     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3748       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3749         CstHigh =
3750             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3751     if (CstLow && CstHigh) {
3752       if (!IsMax)
3753         std::swap(CstLow, CstHigh);
3754       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3755         Tmp = CstLow->getAPIntValue().getNumSignBits();
3756         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3757         return std::min(Tmp, Tmp2);
3758       }
3759     }
3760 
3761     // Fallback - just get the minimum number of sign bits of the operands.
3762     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3763     if (Tmp == 1)
3764       return 1;  // Early out.
3765     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3766     return std::min(Tmp, Tmp2);
3767   }
3768   case ISD::UMIN:
3769   case ISD::UMAX:
3770     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3771     if (Tmp == 1)
3772       return 1;  // Early out.
3773     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3774     return std::min(Tmp, Tmp2);
3775   case ISD::SADDO:
3776   case ISD::UADDO:
3777   case ISD::SSUBO:
3778   case ISD::USUBO:
3779   case ISD::SMULO:
3780   case ISD::UMULO:
3781     if (Op.getResNo() != 1)
3782       break;
3783     // The boolean result conforms to getBooleanContents.  Fall through.
3784     // If setcc returns 0/-1, all bits are sign bits.
3785     // We know that we have an integer-based boolean since these operations
3786     // are only available for integer.
3787     if (TLI->getBooleanContents(VT.isVector(), false) ==
3788         TargetLowering::ZeroOrNegativeOneBooleanContent)
3789       return VTBits;
3790     break;
3791   case ISD::SETCC:
3792   case ISD::STRICT_FSETCC:
3793   case ISD::STRICT_FSETCCS: {
3794     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3795     // If setcc returns 0/-1, all bits are sign bits.
3796     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3797         TargetLowering::ZeroOrNegativeOneBooleanContent)
3798       return VTBits;
3799     break;
3800   }
3801   case ISD::ROTL:
3802   case ISD::ROTR:
3803     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3804 
3805     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3806     if (Tmp == VTBits)
3807       return VTBits;
3808 
3809     if (ConstantSDNode *C =
3810             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3811       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3812 
3813       // Handle rotate right by N like a rotate left by 32-N.
3814       if (Opcode == ISD::ROTR)
3815         RotAmt = (VTBits - RotAmt) % VTBits;
3816 
3817       // If we aren't rotating out all of the known-in sign bits, return the
3818       // number that are left.  This handles rotl(sext(x), 1) for example.
3819       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3820     }
3821     break;
3822   case ISD::ADD:
3823   case ISD::ADDC:
3824     // Add can have at most one carry bit.  Thus we know that the output
3825     // is, at worst, one more bit than the inputs.
3826     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3827     if (Tmp == 1) return 1; // Early out.
3828 
3829     // Special case decrementing a value (ADD X, -1):
3830     if (ConstantSDNode *CRHS =
3831             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3832       if (CRHS->isAllOnesValue()) {
3833         KnownBits Known =
3834             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3835 
3836         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3837         // sign bits set.
3838         if ((Known.Zero | 1).isAllOnesValue())
3839           return VTBits;
3840 
3841         // If we are subtracting one from a positive number, there is no carry
3842         // out of the result.
3843         if (Known.isNonNegative())
3844           return Tmp;
3845       }
3846 
3847     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3848     if (Tmp2 == 1) return 1; // Early out.
3849     return std::min(Tmp, Tmp2) - 1;
3850   case ISD::SUB:
3851     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3852     if (Tmp2 == 1) return 1; // Early out.
3853 
3854     // Handle NEG.
3855     if (ConstantSDNode *CLHS =
3856             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3857       if (CLHS->isNullValue()) {
3858         KnownBits Known =
3859             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3860         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3861         // sign bits set.
3862         if ((Known.Zero | 1).isAllOnesValue())
3863           return VTBits;
3864 
3865         // If the input is known to be positive (the sign bit is known clear),
3866         // the output of the NEG has the same number of sign bits as the input.
3867         if (Known.isNonNegative())
3868           return Tmp2;
3869 
3870         // Otherwise, we treat this like a SUB.
3871       }
3872 
3873     // Sub can have at most one carry bit.  Thus we know that the output
3874     // is, at worst, one more bit than the inputs.
3875     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3876     if (Tmp == 1) return 1; // Early out.
3877     return std::min(Tmp, Tmp2) - 1;
3878   case ISD::MUL: {
3879     // The output of the Mul can be at most twice the valid bits in the inputs.
3880     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3881     if (SignBitsOp0 == 1)
3882       break;
3883     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3884     if (SignBitsOp1 == 1)
3885       break;
3886     unsigned OutValidBits =
3887         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3888     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3889   }
3890   case ISD::TRUNCATE: {
3891     // Check if the sign bits of source go down as far as the truncated value.
3892     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3893     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3894     if (NumSrcSignBits > (NumSrcBits - VTBits))
3895       return NumSrcSignBits - (NumSrcBits - VTBits);
3896     break;
3897   }
3898   case ISD::EXTRACT_ELEMENT: {
3899     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3900     const int BitWidth = Op.getValueSizeInBits();
3901     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3902 
3903     // Get reverse index (starting from 1), Op1 value indexes elements from
3904     // little end. Sign starts at big end.
3905     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3906 
3907     // If the sign portion ends in our element the subtraction gives correct
3908     // result. Otherwise it gives either negative or > bitwidth result
3909     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3910   }
3911   case ISD::INSERT_VECTOR_ELT: {
3912     // If we know the element index, split the demand between the
3913     // source vector and the inserted element, otherwise assume we need
3914     // the original demanded vector elements and the value.
3915     SDValue InVec = Op.getOperand(0);
3916     SDValue InVal = Op.getOperand(1);
3917     SDValue EltNo = Op.getOperand(2);
3918     bool DemandedVal = true;
3919     APInt DemandedVecElts = DemandedElts;
3920     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3921     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3922       unsigned EltIdx = CEltNo->getZExtValue();
3923       DemandedVal = !!DemandedElts[EltIdx];
3924       DemandedVecElts.clearBit(EltIdx);
3925     }
3926     Tmp = std::numeric_limits<unsigned>::max();
3927     if (DemandedVal) {
3928       // TODO - handle implicit truncation of inserted elements.
3929       if (InVal.getScalarValueSizeInBits() != VTBits)
3930         break;
3931       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3932       Tmp = std::min(Tmp, Tmp2);
3933     }
3934     if (!!DemandedVecElts) {
3935       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3936       Tmp = std::min(Tmp, Tmp2);
3937     }
3938     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3939     return Tmp;
3940   }
3941   case ISD::EXTRACT_VECTOR_ELT: {
3942     SDValue InVec = Op.getOperand(0);
3943     SDValue EltNo = Op.getOperand(1);
3944     EVT VecVT = InVec.getValueType();
3945     const unsigned BitWidth = Op.getValueSizeInBits();
3946     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3947     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3948 
3949     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3950     // anything about sign bits. But if the sizes match we can derive knowledge
3951     // about sign bits from the vector operand.
3952     if (BitWidth != EltBitWidth)
3953       break;
3954 
3955     // If we know the element index, just demand that vector element, else for
3956     // an unknown element index, ignore DemandedElts and demand them all.
3957     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3958     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3959     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3960       DemandedSrcElts =
3961           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3962 
3963     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3964   }
3965   case ISD::EXTRACT_SUBVECTOR: {
3966     // Offset the demanded elts by the subvector index.
3967     SDValue Src = Op.getOperand(0);
3968     // Bail until we can represent demanded elements for scalable vectors.
3969     if (Src.getValueType().isScalableVector())
3970       break;
3971     uint64_t Idx = Op.getConstantOperandVal(1);
3972     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3973     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3974     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3975   }
3976   case ISD::CONCAT_VECTORS: {
3977     // Determine the minimum number of sign bits across all demanded
3978     // elts of the input vectors. Early out if the result is already 1.
3979     Tmp = std::numeric_limits<unsigned>::max();
3980     EVT SubVectorVT = Op.getOperand(0).getValueType();
3981     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3982     unsigned NumSubVectors = Op.getNumOperands();
3983     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3984       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3985       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3986       if (!DemandedSub)
3987         continue;
3988       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3989       Tmp = std::min(Tmp, Tmp2);
3990     }
3991     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3992     return Tmp;
3993   }
3994   case ISD::INSERT_SUBVECTOR: {
3995     // Demand any elements from the subvector and the remainder from the src its
3996     // inserted into.
3997     SDValue Src = Op.getOperand(0);
3998     SDValue Sub = Op.getOperand(1);
3999     uint64_t Idx = Op.getConstantOperandVal(2);
4000     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4001     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4002     APInt DemandedSrcElts = DemandedElts;
4003     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4004 
4005     Tmp = std::numeric_limits<unsigned>::max();
4006     if (!!DemandedSubElts) {
4007       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4008       if (Tmp == 1)
4009         return 1; // early-out
4010     }
4011     if (!!DemandedSrcElts) {
4012       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4013       Tmp = std::min(Tmp, Tmp2);
4014     }
4015     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4016     return Tmp;
4017   }
4018   }
4019 
4020   // If we are looking at the loaded value of the SDNode.
4021   if (Op.getResNo() == 0) {
4022     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4023     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4024       unsigned ExtType = LD->getExtensionType();
4025       switch (ExtType) {
4026       default: break;
4027       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4028         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4029         return VTBits - Tmp + 1;
4030       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4031         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4032         return VTBits - Tmp;
4033       case ISD::NON_EXTLOAD:
4034         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4035           // We only need to handle vectors - computeKnownBits should handle
4036           // scalar cases.
4037           Type *CstTy = Cst->getType();
4038           if (CstTy->isVectorTy() &&
4039               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4040             Tmp = VTBits;
4041             for (unsigned i = 0; i != NumElts; ++i) {
4042               if (!DemandedElts[i])
4043                 continue;
4044               if (Constant *Elt = Cst->getAggregateElement(i)) {
4045                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4046                   const APInt &Value = CInt->getValue();
4047                   Tmp = std::min(Tmp, Value.getNumSignBits());
4048                   continue;
4049                 }
4050                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4051                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4052                   Tmp = std::min(Tmp, Value.getNumSignBits());
4053                   continue;
4054                 }
4055               }
4056               // Unknown type. Conservatively assume no bits match sign bit.
4057               return 1;
4058             }
4059             return Tmp;
4060           }
4061         }
4062         break;
4063       }
4064     }
4065   }
4066 
4067   // Allow the target to implement this method for its nodes.
4068   if (Opcode >= ISD::BUILTIN_OP_END ||
4069       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4070       Opcode == ISD::INTRINSIC_W_CHAIN ||
4071       Opcode == ISD::INTRINSIC_VOID) {
4072     unsigned NumBits =
4073         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4074     if (NumBits > 1)
4075       FirstAnswer = std::max(FirstAnswer, NumBits);
4076   }
4077 
4078   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4079   // use this information.
4080   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4081 
4082   APInt Mask;
4083   if (Known.isNonNegative()) {        // sign bit is 0
4084     Mask = Known.Zero;
4085   } else if (Known.isNegative()) {  // sign bit is 1;
4086     Mask = Known.One;
4087   } else {
4088     // Nothing known.
4089     return FirstAnswer;
4090   }
4091 
4092   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4093   // the number of identical bits in the top of the input value.
4094   Mask <<= Mask.getBitWidth()-VTBits;
4095   return std::max(FirstAnswer, Mask.countLeadingOnes());
4096 }
4097 
4098 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4099   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4100       !isa<ConstantSDNode>(Op.getOperand(1)))
4101     return false;
4102 
4103   if (Op.getOpcode() == ISD::OR &&
4104       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4105     return false;
4106 
4107   return true;
4108 }
4109 
4110 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4111   // If we're told that NaNs won't happen, assume they won't.
4112   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4113     return true;
4114 
4115   if (Depth >= MaxRecursionDepth)
4116     return false; // Limit search depth.
4117 
4118   // TODO: Handle vectors.
4119   // If the value is a constant, we can obviously see if it is a NaN or not.
4120   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4121     return !C->getValueAPF().isNaN() ||
4122            (SNaN && !C->getValueAPF().isSignaling());
4123   }
4124 
4125   unsigned Opcode = Op.getOpcode();
4126   switch (Opcode) {
4127   case ISD::FADD:
4128   case ISD::FSUB:
4129   case ISD::FMUL:
4130   case ISD::FDIV:
4131   case ISD::FREM:
4132   case ISD::FSIN:
4133   case ISD::FCOS: {
4134     if (SNaN)
4135       return true;
4136     // TODO: Need isKnownNeverInfinity
4137     return false;
4138   }
4139   case ISD::FCANONICALIZE:
4140   case ISD::FEXP:
4141   case ISD::FEXP2:
4142   case ISD::FTRUNC:
4143   case ISD::FFLOOR:
4144   case ISD::FCEIL:
4145   case ISD::FROUND:
4146   case ISD::FROUNDEVEN:
4147   case ISD::FRINT:
4148   case ISD::FNEARBYINT: {
4149     if (SNaN)
4150       return true;
4151     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4152   }
4153   case ISD::FABS:
4154   case ISD::FNEG:
4155   case ISD::FCOPYSIGN: {
4156     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4157   }
4158   case ISD::SELECT:
4159     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4160            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4161   case ISD::FP_EXTEND:
4162   case ISD::FP_ROUND: {
4163     if (SNaN)
4164       return true;
4165     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4166   }
4167   case ISD::SINT_TO_FP:
4168   case ISD::UINT_TO_FP:
4169     return true;
4170   case ISD::FMA:
4171   case ISD::FMAD: {
4172     if (SNaN)
4173       return true;
4174     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4175            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4176            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4177   }
4178   case ISD::FSQRT: // Need is known positive
4179   case ISD::FLOG:
4180   case ISD::FLOG2:
4181   case ISD::FLOG10:
4182   case ISD::FPOWI:
4183   case ISD::FPOW: {
4184     if (SNaN)
4185       return true;
4186     // TODO: Refine on operand
4187     return false;
4188   }
4189   case ISD::FMINNUM:
4190   case ISD::FMAXNUM: {
4191     // Only one needs to be known not-nan, since it will be returned if the
4192     // other ends up being one.
4193     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4194            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4195   }
4196   case ISD::FMINNUM_IEEE:
4197   case ISD::FMAXNUM_IEEE: {
4198     if (SNaN)
4199       return true;
4200     // This can return a NaN if either operand is an sNaN, or if both operands
4201     // are NaN.
4202     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4203             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4204            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4205             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4206   }
4207   case ISD::FMINIMUM:
4208   case ISD::FMAXIMUM: {
4209     // TODO: Does this quiet or return the origina NaN as-is?
4210     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4211            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4212   }
4213   case ISD::EXTRACT_VECTOR_ELT: {
4214     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4215   }
4216   default:
4217     if (Opcode >= ISD::BUILTIN_OP_END ||
4218         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4219         Opcode == ISD::INTRINSIC_W_CHAIN ||
4220         Opcode == ISD::INTRINSIC_VOID) {
4221       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4222     }
4223 
4224     return false;
4225   }
4226 }
4227 
4228 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4229   assert(Op.getValueType().isFloatingPoint() &&
4230          "Floating point type expected");
4231 
4232   // If the value is a constant, we can obviously see if it is a zero or not.
4233   // TODO: Add BuildVector support.
4234   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4235     return !C->isZero();
4236   return false;
4237 }
4238 
4239 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4240   assert(!Op.getValueType().isFloatingPoint() &&
4241          "Floating point types unsupported - use isKnownNeverZeroFloat");
4242 
4243   // If the value is a constant, we can obviously see if it is a zero or not.
4244   if (ISD::matchUnaryPredicate(
4245           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4246     return true;
4247 
4248   // TODO: Recognize more cases here.
4249   switch (Op.getOpcode()) {
4250   default: break;
4251   case ISD::OR:
4252     if (isKnownNeverZero(Op.getOperand(1)) ||
4253         isKnownNeverZero(Op.getOperand(0)))
4254       return true;
4255     break;
4256   }
4257 
4258   return false;
4259 }
4260 
4261 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4262   // Check the obvious case.
4263   if (A == B) return true;
4264 
4265   // For for negative and positive zero.
4266   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4267     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4268       if (CA->isZero() && CB->isZero()) return true;
4269 
4270   // Otherwise they may not be equal.
4271   return false;
4272 }
4273 
4274 // FIXME: unify with llvm::haveNoCommonBitsSet.
4275 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4276 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4277   assert(A.getValueType() == B.getValueType() &&
4278          "Values must have the same type");
4279   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4280 }
4281 
4282 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4283                                 ArrayRef<SDValue> Ops,
4284                                 SelectionDAG &DAG) {
4285   int NumOps = Ops.size();
4286   assert(NumOps != 0 && "Can't build an empty vector!");
4287   assert(!VT.isScalableVector() &&
4288          "BUILD_VECTOR cannot be used with scalable types");
4289   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4290          "Incorrect element count in BUILD_VECTOR!");
4291 
4292   // BUILD_VECTOR of UNDEFs is UNDEF.
4293   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4294     return DAG.getUNDEF(VT);
4295 
4296   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4297   SDValue IdentitySrc;
4298   bool IsIdentity = true;
4299   for (int i = 0; i != NumOps; ++i) {
4300     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4301         Ops[i].getOperand(0).getValueType() != VT ||
4302         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4303         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4304         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4305       IsIdentity = false;
4306       break;
4307     }
4308     IdentitySrc = Ops[i].getOperand(0);
4309   }
4310   if (IsIdentity)
4311     return IdentitySrc;
4312 
4313   return SDValue();
4314 }
4315 
4316 /// Try to simplify vector concatenation to an input value, undef, or build
4317 /// vector.
4318 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4319                                   ArrayRef<SDValue> Ops,
4320                                   SelectionDAG &DAG) {
4321   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4322   assert(llvm::all_of(Ops,
4323                       [Ops](SDValue Op) {
4324                         return Ops[0].getValueType() == Op.getValueType();
4325                       }) &&
4326          "Concatenation of vectors with inconsistent value types!");
4327   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4328              VT.getVectorElementCount() &&
4329          "Incorrect element count in vector concatenation!");
4330 
4331   if (Ops.size() == 1)
4332     return Ops[0];
4333 
4334   // Concat of UNDEFs is UNDEF.
4335   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4336     return DAG.getUNDEF(VT);
4337 
4338   // Scan the operands and look for extract operations from a single source
4339   // that correspond to insertion at the same location via this concatenation:
4340   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4341   SDValue IdentitySrc;
4342   bool IsIdentity = true;
4343   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4344     SDValue Op = Ops[i];
4345     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4346     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4347         Op.getOperand(0).getValueType() != VT ||
4348         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4349         Op.getConstantOperandVal(1) != IdentityIndex) {
4350       IsIdentity = false;
4351       break;
4352     }
4353     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4354            "Unexpected identity source vector for concat of extracts");
4355     IdentitySrc = Op.getOperand(0);
4356   }
4357   if (IsIdentity) {
4358     assert(IdentitySrc && "Failed to set source vector of extracts");
4359     return IdentitySrc;
4360   }
4361 
4362   // The code below this point is only designed to work for fixed width
4363   // vectors, so we bail out for now.
4364   if (VT.isScalableVector())
4365     return SDValue();
4366 
4367   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4368   // simplified to one big BUILD_VECTOR.
4369   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4370   EVT SVT = VT.getScalarType();
4371   SmallVector<SDValue, 16> Elts;
4372   for (SDValue Op : Ops) {
4373     EVT OpVT = Op.getValueType();
4374     if (Op.isUndef())
4375       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4376     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4377       Elts.append(Op->op_begin(), Op->op_end());
4378     else
4379       return SDValue();
4380   }
4381 
4382   // BUILD_VECTOR requires all inputs to be of the same type, find the
4383   // maximum type and extend them all.
4384   for (SDValue Op : Elts)
4385     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4386 
4387   if (SVT.bitsGT(VT.getScalarType())) {
4388     for (SDValue &Op : Elts) {
4389       if (Op.isUndef())
4390         Op = DAG.getUNDEF(SVT);
4391       else
4392         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4393                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4394                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4395     }
4396   }
4397 
4398   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4399   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4400   return V;
4401 }
4402 
4403 /// Gets or creates the specified node.
4404 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4405   FoldingSetNodeID ID;
4406   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4407   void *IP = nullptr;
4408   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4409     return SDValue(E, 0);
4410 
4411   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4412                               getVTList(VT));
4413   CSEMap.InsertNode(N, IP);
4414 
4415   InsertNode(N);
4416   SDValue V = SDValue(N, 0);
4417   NewSDValueDbgMsg(V, "Creating new node: ", this);
4418   return V;
4419 }
4420 
4421 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4422                               SDValue Operand) {
4423   SDNodeFlags Flags;
4424   if (Inserter)
4425     Flags = Inserter->getFlags();
4426   return getNode(Opcode, DL, VT, Operand, Flags);
4427 }
4428 
4429 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4430                               SDValue Operand, const SDNodeFlags Flags) {
4431   // Constant fold unary operations with an integer constant operand. Even
4432   // opaque constant will be folded, because the folding of unary operations
4433   // doesn't create new constants with different values. Nevertheless, the
4434   // opaque flag is preserved during folding to prevent future folding with
4435   // other constants.
4436   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4437     const APInt &Val = C->getAPIntValue();
4438     switch (Opcode) {
4439     default: break;
4440     case ISD::SIGN_EXTEND:
4441       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4442                          C->isTargetOpcode(), C->isOpaque());
4443     case ISD::TRUNCATE:
4444       if (C->isOpaque())
4445         break;
4446       LLVM_FALLTHROUGH;
4447     case ISD::ANY_EXTEND:
4448     case ISD::ZERO_EXTEND:
4449       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4450                          C->isTargetOpcode(), C->isOpaque());
4451     case ISD::UINT_TO_FP:
4452     case ISD::SINT_TO_FP: {
4453       APFloat apf(EVTToAPFloatSemantics(VT),
4454                   APInt::getNullValue(VT.getSizeInBits()));
4455       (void)apf.convertFromAPInt(Val,
4456                                  Opcode==ISD::SINT_TO_FP,
4457                                  APFloat::rmNearestTiesToEven);
4458       return getConstantFP(apf, DL, VT);
4459     }
4460     case ISD::BITCAST:
4461       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4462         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4463       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4464         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4465       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4466         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4467       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4468         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4469       break;
4470     case ISD::ABS:
4471       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4472                          C->isOpaque());
4473     case ISD::BITREVERSE:
4474       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4475                          C->isOpaque());
4476     case ISD::BSWAP:
4477       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4478                          C->isOpaque());
4479     case ISD::CTPOP:
4480       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4481                          C->isOpaque());
4482     case ISD::CTLZ:
4483     case ISD::CTLZ_ZERO_UNDEF:
4484       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4485                          C->isOpaque());
4486     case ISD::CTTZ:
4487     case ISD::CTTZ_ZERO_UNDEF:
4488       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4489                          C->isOpaque());
4490     case ISD::FP16_TO_FP: {
4491       bool Ignored;
4492       APFloat FPV(APFloat::IEEEhalf(),
4493                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4494 
4495       // This can return overflow, underflow, or inexact; we don't care.
4496       // FIXME need to be more flexible about rounding mode.
4497       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4498                         APFloat::rmNearestTiesToEven, &Ignored);
4499       return getConstantFP(FPV, DL, VT);
4500     }
4501     }
4502   }
4503 
4504   // Constant fold unary operations with a floating point constant operand.
4505   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4506     APFloat V = C->getValueAPF();    // make copy
4507     switch (Opcode) {
4508     case ISD::FNEG:
4509       V.changeSign();
4510       return getConstantFP(V, DL, VT);
4511     case ISD::FABS:
4512       V.clearSign();
4513       return getConstantFP(V, DL, VT);
4514     case ISD::FCEIL: {
4515       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4516       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4517         return getConstantFP(V, DL, VT);
4518       break;
4519     }
4520     case ISD::FTRUNC: {
4521       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4522       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4523         return getConstantFP(V, DL, VT);
4524       break;
4525     }
4526     case ISD::FFLOOR: {
4527       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4528       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4529         return getConstantFP(V, DL, VT);
4530       break;
4531     }
4532     case ISD::FP_EXTEND: {
4533       bool ignored;
4534       // This can return overflow, underflow, or inexact; we don't care.
4535       // FIXME need to be more flexible about rounding mode.
4536       (void)V.convert(EVTToAPFloatSemantics(VT),
4537                       APFloat::rmNearestTiesToEven, &ignored);
4538       return getConstantFP(V, DL, VT);
4539     }
4540     case ISD::FP_TO_SINT:
4541     case ISD::FP_TO_UINT: {
4542       bool ignored;
4543       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4544       // FIXME need to be more flexible about rounding mode.
4545       APFloat::opStatus s =
4546           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4547       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4548         break;
4549       return getConstant(IntVal, DL, VT);
4550     }
4551     case ISD::BITCAST:
4552       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4553         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4554       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4555         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4556       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4557         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4558       break;
4559     case ISD::FP_TO_FP16: {
4560       bool Ignored;
4561       // This can return overflow, underflow, or inexact; we don't care.
4562       // FIXME need to be more flexible about rounding mode.
4563       (void)V.convert(APFloat::IEEEhalf(),
4564                       APFloat::rmNearestTiesToEven, &Ignored);
4565       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4566     }
4567     }
4568   }
4569 
4570   // Constant fold unary operations with a vector integer or float operand.
4571   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4572     if (BV->isConstant()) {
4573       switch (Opcode) {
4574       default:
4575         // FIXME: Entirely reasonable to perform folding of other unary
4576         // operations here as the need arises.
4577         break;
4578       case ISD::FNEG:
4579       case ISD::FABS:
4580       case ISD::FCEIL:
4581       case ISD::FTRUNC:
4582       case ISD::FFLOOR:
4583       case ISD::FP_EXTEND:
4584       case ISD::FP_TO_SINT:
4585       case ISD::FP_TO_UINT:
4586       case ISD::TRUNCATE:
4587       case ISD::ANY_EXTEND:
4588       case ISD::ZERO_EXTEND:
4589       case ISD::SIGN_EXTEND:
4590       case ISD::UINT_TO_FP:
4591       case ISD::SINT_TO_FP:
4592       case ISD::ABS:
4593       case ISD::BITREVERSE:
4594       case ISD::BSWAP:
4595       case ISD::CTLZ:
4596       case ISD::CTLZ_ZERO_UNDEF:
4597       case ISD::CTTZ:
4598       case ISD::CTTZ_ZERO_UNDEF:
4599       case ISD::CTPOP: {
4600         SDValue Ops = { Operand };
4601         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4602           return Fold;
4603       }
4604       }
4605     }
4606   }
4607 
4608   unsigned OpOpcode = Operand.getNode()->getOpcode();
4609   switch (Opcode) {
4610   case ISD::FREEZE:
4611     assert(VT == Operand.getValueType() && "Unexpected VT!");
4612     break;
4613   case ISD::TokenFactor:
4614   case ISD::MERGE_VALUES:
4615   case ISD::CONCAT_VECTORS:
4616     return Operand;         // Factor, merge or concat of one node?  No need.
4617   case ISD::BUILD_VECTOR: {
4618     // Attempt to simplify BUILD_VECTOR.
4619     SDValue Ops[] = {Operand};
4620     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4621       return V;
4622     break;
4623   }
4624   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4625   case ISD::FP_EXTEND:
4626     assert(VT.isFloatingPoint() &&
4627            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4628     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4629     assert((!VT.isVector() ||
4630             VT.getVectorElementCount() ==
4631             Operand.getValueType().getVectorElementCount()) &&
4632            "Vector element count mismatch!");
4633     assert(Operand.getValueType().bitsLT(VT) &&
4634            "Invalid fpext node, dst < src!");
4635     if (Operand.isUndef())
4636       return getUNDEF(VT);
4637     break;
4638   case ISD::FP_TO_SINT:
4639   case ISD::FP_TO_UINT:
4640     if (Operand.isUndef())
4641       return getUNDEF(VT);
4642     break;
4643   case ISD::SINT_TO_FP:
4644   case ISD::UINT_TO_FP:
4645     // [us]itofp(undef) = 0, because the result value is bounded.
4646     if (Operand.isUndef())
4647       return getConstantFP(0.0, DL, VT);
4648     break;
4649   case ISD::SIGN_EXTEND:
4650     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4651            "Invalid SIGN_EXTEND!");
4652     assert(VT.isVector() == Operand.getValueType().isVector() &&
4653            "SIGN_EXTEND result type type should be vector iff the operand "
4654            "type is vector!");
4655     if (Operand.getValueType() == VT) return Operand;   // noop extension
4656     assert((!VT.isVector() ||
4657             VT.getVectorElementCount() ==
4658                 Operand.getValueType().getVectorElementCount()) &&
4659            "Vector element count mismatch!");
4660     assert(Operand.getValueType().bitsLT(VT) &&
4661            "Invalid sext node, dst < src!");
4662     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4663       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4664     else if (OpOpcode == ISD::UNDEF)
4665       // sext(undef) = 0, because the top bits will all be the same.
4666       return getConstant(0, DL, VT);
4667     break;
4668   case ISD::ZERO_EXTEND:
4669     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4670            "Invalid ZERO_EXTEND!");
4671     assert(VT.isVector() == Operand.getValueType().isVector() &&
4672            "ZERO_EXTEND result type type should be vector iff the operand "
4673            "type is vector!");
4674     if (Operand.getValueType() == VT) return Operand;   // noop extension
4675     assert((!VT.isVector() ||
4676             VT.getVectorElementCount() ==
4677                 Operand.getValueType().getVectorElementCount()) &&
4678            "Vector element count mismatch!");
4679     assert(Operand.getValueType().bitsLT(VT) &&
4680            "Invalid zext node, dst < src!");
4681     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4682       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4683     else if (OpOpcode == ISD::UNDEF)
4684       // zext(undef) = 0, because the top bits will be zero.
4685       return getConstant(0, DL, VT);
4686     break;
4687   case ISD::ANY_EXTEND:
4688     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4689            "Invalid ANY_EXTEND!");
4690     assert(VT.isVector() == Operand.getValueType().isVector() &&
4691            "ANY_EXTEND result type type should be vector iff the operand "
4692            "type is vector!");
4693     if (Operand.getValueType() == VT) return Operand;   // noop extension
4694     assert((!VT.isVector() ||
4695             VT.getVectorElementCount() ==
4696                 Operand.getValueType().getVectorElementCount()) &&
4697            "Vector element count mismatch!");
4698     assert(Operand.getValueType().bitsLT(VT) &&
4699            "Invalid anyext node, dst < src!");
4700 
4701     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4702         OpOpcode == ISD::ANY_EXTEND)
4703       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4704       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4705     else if (OpOpcode == ISD::UNDEF)
4706       return getUNDEF(VT);
4707 
4708     // (ext (trunc x)) -> x
4709     if (OpOpcode == ISD::TRUNCATE) {
4710       SDValue OpOp = Operand.getOperand(0);
4711       if (OpOp.getValueType() == VT) {
4712         transferDbgValues(Operand, OpOp);
4713         return OpOp;
4714       }
4715     }
4716     break;
4717   case ISD::TRUNCATE:
4718     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4719            "Invalid TRUNCATE!");
4720     assert(VT.isVector() == Operand.getValueType().isVector() &&
4721            "TRUNCATE result type type should be vector iff the operand "
4722            "type is vector!");
4723     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4724     assert((!VT.isVector() ||
4725             VT.getVectorElementCount() ==
4726                 Operand.getValueType().getVectorElementCount()) &&
4727            "Vector element count mismatch!");
4728     assert(Operand.getValueType().bitsGT(VT) &&
4729            "Invalid truncate node, src < dst!");
4730     if (OpOpcode == ISD::TRUNCATE)
4731       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4732     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4733         OpOpcode == ISD::ANY_EXTEND) {
4734       // If the source is smaller than the dest, we still need an extend.
4735       if (Operand.getOperand(0).getValueType().getScalarType()
4736             .bitsLT(VT.getScalarType()))
4737         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4738       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4739         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4740       return Operand.getOperand(0);
4741     }
4742     if (OpOpcode == ISD::UNDEF)
4743       return getUNDEF(VT);
4744     break;
4745   case ISD::ANY_EXTEND_VECTOR_INREG:
4746   case ISD::ZERO_EXTEND_VECTOR_INREG:
4747   case ISD::SIGN_EXTEND_VECTOR_INREG:
4748     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4749     assert(Operand.getValueType().bitsLE(VT) &&
4750            "The input must be the same size or smaller than the result.");
4751     assert(VT.getVectorNumElements() <
4752              Operand.getValueType().getVectorNumElements() &&
4753            "The destination vector type must have fewer lanes than the input.");
4754     break;
4755   case ISD::ABS:
4756     assert(VT.isInteger() && VT == Operand.getValueType() &&
4757            "Invalid ABS!");
4758     if (OpOpcode == ISD::UNDEF)
4759       return getUNDEF(VT);
4760     break;
4761   case ISD::BSWAP:
4762     assert(VT.isInteger() && VT == Operand.getValueType() &&
4763            "Invalid BSWAP!");
4764     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4765            "BSWAP types must be a multiple of 16 bits!");
4766     if (OpOpcode == ISD::UNDEF)
4767       return getUNDEF(VT);
4768     break;
4769   case ISD::BITREVERSE:
4770     assert(VT.isInteger() && VT == Operand.getValueType() &&
4771            "Invalid BITREVERSE!");
4772     if (OpOpcode == ISD::UNDEF)
4773       return getUNDEF(VT);
4774     break;
4775   case ISD::BITCAST:
4776     // Basic sanity checking.
4777     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4778            "Cannot BITCAST between types of different sizes!");
4779     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4780     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4781       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4782     if (OpOpcode == ISD::UNDEF)
4783       return getUNDEF(VT);
4784     break;
4785   case ISD::SCALAR_TO_VECTOR:
4786     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4787            (VT.getVectorElementType() == Operand.getValueType() ||
4788             (VT.getVectorElementType().isInteger() &&
4789              Operand.getValueType().isInteger() &&
4790              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4791            "Illegal SCALAR_TO_VECTOR node!");
4792     if (OpOpcode == ISD::UNDEF)
4793       return getUNDEF(VT);
4794     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4795     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4796         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4797         Operand.getConstantOperandVal(1) == 0 &&
4798         Operand.getOperand(0).getValueType() == VT)
4799       return Operand.getOperand(0);
4800     break;
4801   case ISD::FNEG:
4802     // Negation of an unknown bag of bits is still completely undefined.
4803     if (OpOpcode == ISD::UNDEF)
4804       return getUNDEF(VT);
4805 
4806     if (OpOpcode == ISD::FNEG)  // --X -> X
4807       return Operand.getOperand(0);
4808     break;
4809   case ISD::FABS:
4810     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4811       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4812     break;
4813   case ISD::VSCALE:
4814     assert(VT == Operand.getValueType() && "Unexpected VT!");
4815     break;
4816   }
4817 
4818   SDNode *N;
4819   SDVTList VTs = getVTList(VT);
4820   SDValue Ops[] = {Operand};
4821   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4822     FoldingSetNodeID ID;
4823     AddNodeIDNode(ID, Opcode, VTs, Ops);
4824     void *IP = nullptr;
4825     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4826       E->intersectFlagsWith(Flags);
4827       return SDValue(E, 0);
4828     }
4829 
4830     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4831     N->setFlags(Flags);
4832     createOperands(N, Ops);
4833     CSEMap.InsertNode(N, IP);
4834   } else {
4835     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4836     createOperands(N, Ops);
4837   }
4838 
4839   InsertNode(N);
4840   SDValue V = SDValue(N, 0);
4841   NewSDValueDbgMsg(V, "Creating new node: ", this);
4842   return V;
4843 }
4844 
4845 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4846                                        const APInt &C2) {
4847   switch (Opcode) {
4848   case ISD::ADD:  return C1 + C2;
4849   case ISD::SUB:  return C1 - C2;
4850   case ISD::MUL:  return C1 * C2;
4851   case ISD::AND:  return C1 & C2;
4852   case ISD::OR:   return C1 | C2;
4853   case ISD::XOR:  return C1 ^ C2;
4854   case ISD::SHL:  return C1 << C2;
4855   case ISD::SRL:  return C1.lshr(C2);
4856   case ISD::SRA:  return C1.ashr(C2);
4857   case ISD::ROTL: return C1.rotl(C2);
4858   case ISD::ROTR: return C1.rotr(C2);
4859   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4860   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4861   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4862   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4863   case ISD::SADDSAT: return C1.sadd_sat(C2);
4864   case ISD::UADDSAT: return C1.uadd_sat(C2);
4865   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4866   case ISD::USUBSAT: return C1.usub_sat(C2);
4867   case ISD::UDIV:
4868     if (!C2.getBoolValue())
4869       break;
4870     return C1.udiv(C2);
4871   case ISD::UREM:
4872     if (!C2.getBoolValue())
4873       break;
4874     return C1.urem(C2);
4875   case ISD::SDIV:
4876     if (!C2.getBoolValue())
4877       break;
4878     return C1.sdiv(C2);
4879   case ISD::SREM:
4880     if (!C2.getBoolValue())
4881       break;
4882     return C1.srem(C2);
4883   }
4884   return llvm::None;
4885 }
4886 
4887 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4888                                        const GlobalAddressSDNode *GA,
4889                                        const SDNode *N2) {
4890   if (GA->getOpcode() != ISD::GlobalAddress)
4891     return SDValue();
4892   if (!TLI->isOffsetFoldingLegal(GA))
4893     return SDValue();
4894   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4895   if (!C2)
4896     return SDValue();
4897   int64_t Offset = C2->getSExtValue();
4898   switch (Opcode) {
4899   case ISD::ADD: break;
4900   case ISD::SUB: Offset = -uint64_t(Offset); break;
4901   default: return SDValue();
4902   }
4903   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4904                           GA->getOffset() + uint64_t(Offset));
4905 }
4906 
4907 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4908   switch (Opcode) {
4909   case ISD::SDIV:
4910   case ISD::UDIV:
4911   case ISD::SREM:
4912   case ISD::UREM: {
4913     // If a divisor is zero/undef or any element of a divisor vector is
4914     // zero/undef, the whole op is undef.
4915     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4916     SDValue Divisor = Ops[1];
4917     if (Divisor.isUndef() || isNullConstant(Divisor))
4918       return true;
4919 
4920     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4921            llvm::any_of(Divisor->op_values(),
4922                         [](SDValue V) { return V.isUndef() ||
4923                                         isNullConstant(V); });
4924     // TODO: Handle signed overflow.
4925   }
4926   // TODO: Handle oversized shifts.
4927   default:
4928     return false;
4929   }
4930 }
4931 
4932 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4933                                              EVT VT, ArrayRef<SDValue> Ops) {
4934   // If the opcode is a target-specific ISD node, there's nothing we can
4935   // do here and the operand rules may not line up with the below, so
4936   // bail early.
4937   if (Opcode >= ISD::BUILTIN_OP_END)
4938     return SDValue();
4939 
4940   // For now, the array Ops should only contain two values.
4941   // This enforcement will be removed once this function is merged with
4942   // FoldConstantVectorArithmetic
4943   if (Ops.size() != 2)
4944     return SDValue();
4945 
4946   if (isUndef(Opcode, Ops))
4947     return getUNDEF(VT);
4948 
4949   SDNode *N1 = Ops[0].getNode();
4950   SDNode *N2 = Ops[1].getNode();
4951 
4952   // Handle the case of two scalars.
4953   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4954     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4955       if (C1->isOpaque() || C2->isOpaque())
4956         return SDValue();
4957 
4958       Optional<APInt> FoldAttempt =
4959           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4960       if (!FoldAttempt)
4961         return SDValue();
4962 
4963       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4964       assert((!Folded || !VT.isVector()) &&
4965              "Can't fold vectors ops with scalar operands");
4966       return Folded;
4967     }
4968   }
4969 
4970   // fold (add Sym, c) -> Sym+c
4971   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4972     return FoldSymbolOffset(Opcode, VT, GA, N2);
4973   if (TLI->isCommutativeBinOp(Opcode))
4974     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4975       return FoldSymbolOffset(Opcode, VT, GA, N1);
4976 
4977   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4978   // vector width, however we should be able to do constant folds involving
4979   // splat vector nodes too.
4980   if (VT.isScalableVector())
4981     return SDValue();
4982 
4983   // For fixed width vectors, extract each constant element and fold them
4984   // individually. Either input may be an undef value.
4985   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4986   if (!BV1 && !N1->isUndef())
4987     return SDValue();
4988   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4989   if (!BV2 && !N2->isUndef())
4990     return SDValue();
4991   // If both operands are undef, that's handled the same way as scalars.
4992   if (!BV1 && !BV2)
4993     return SDValue();
4994 
4995   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4996          "Vector binop with different number of elements in operands?");
4997 
4998   EVT SVT = VT.getScalarType();
4999   EVT LegalSVT = SVT;
5000   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5001     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5002     if (LegalSVT.bitsLT(SVT))
5003       return SDValue();
5004   }
5005   SmallVector<SDValue, 4> Outputs;
5006   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5007   for (unsigned I = 0; I != NumOps; ++I) {
5008     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5009     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5010     if (SVT.isInteger()) {
5011       if (V1->getValueType(0).bitsGT(SVT))
5012         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5013       if (V2->getValueType(0).bitsGT(SVT))
5014         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5015     }
5016 
5017     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5018       return SDValue();
5019 
5020     // Fold one vector element.
5021     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5022     if (LegalSVT != SVT)
5023       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5024 
5025     // Scalar folding only succeeded if the result is a constant or UNDEF.
5026     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5027         ScalarResult.getOpcode() != ISD::ConstantFP)
5028       return SDValue();
5029     Outputs.push_back(ScalarResult);
5030   }
5031 
5032   assert(VT.getVectorNumElements() == Outputs.size() &&
5033          "Vector size mismatch!");
5034 
5035   // We may have a vector type but a scalar result. Create a splat.
5036   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5037 
5038   // Build a big vector out of the scalar elements we generated.
5039   return getBuildVector(VT, SDLoc(), Outputs);
5040 }
5041 
5042 // TODO: Merge with FoldConstantArithmetic
5043 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5044                                                    const SDLoc &DL, EVT VT,
5045                                                    ArrayRef<SDValue> Ops,
5046                                                    const SDNodeFlags Flags) {
5047   // If the opcode is a target-specific ISD node, there's nothing we can
5048   // do here and the operand rules may not line up with the below, so
5049   // bail early.
5050   if (Opcode >= ISD::BUILTIN_OP_END)
5051     return SDValue();
5052 
5053   if (isUndef(Opcode, Ops))
5054     return getUNDEF(VT);
5055 
5056   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5057   if (!VT.isVector())
5058     return SDValue();
5059 
5060   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5061   // vector width, however we should be able to do constant folds involving
5062   // splat vector nodes too.
5063   if (VT.isScalableVector())
5064     return SDValue();
5065 
5066   // From this point onwards all vectors are assumed to be fixed width.
5067   unsigned NumElts = VT.getVectorNumElements();
5068 
5069   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5070     return !Op.getValueType().isVector() ||
5071            Op.getValueType().getVectorNumElements() == NumElts;
5072   };
5073 
5074   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5075     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5076     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5077            (BV && BV->isConstant());
5078   };
5079 
5080   // All operands must be vector types with the same number of elements as
5081   // the result type and must be either UNDEF or a build vector of constant
5082   // or UNDEF scalars.
5083   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5084       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5085     return SDValue();
5086 
5087   // If we are comparing vectors, then the result needs to be a i1 boolean
5088   // that is then sign-extended back to the legal result type.
5089   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5090 
5091   // Find legal integer scalar type for constant promotion and
5092   // ensure that its scalar size is at least as large as source.
5093   EVT LegalSVT = VT.getScalarType();
5094   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5095     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5096     if (LegalSVT.bitsLT(VT.getScalarType()))
5097       return SDValue();
5098   }
5099 
5100   // Constant fold each scalar lane separately.
5101   SmallVector<SDValue, 4> ScalarResults;
5102   for (unsigned i = 0; i != NumElts; i++) {
5103     SmallVector<SDValue, 4> ScalarOps;
5104     for (SDValue Op : Ops) {
5105       EVT InSVT = Op.getValueType().getScalarType();
5106       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5107       if (!InBV) {
5108         // We've checked that this is UNDEF or a constant of some kind.
5109         if (Op.isUndef())
5110           ScalarOps.push_back(getUNDEF(InSVT));
5111         else
5112           ScalarOps.push_back(Op);
5113         continue;
5114       }
5115 
5116       SDValue ScalarOp = InBV->getOperand(i);
5117       EVT ScalarVT = ScalarOp.getValueType();
5118 
5119       // Build vector (integer) scalar operands may need implicit
5120       // truncation - do this before constant folding.
5121       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5122         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5123 
5124       ScalarOps.push_back(ScalarOp);
5125     }
5126 
5127     // Constant fold the scalar operands.
5128     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5129 
5130     // Legalize the (integer) scalar constant if necessary.
5131     if (LegalSVT != SVT)
5132       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5133 
5134     // Scalar folding only succeeded if the result is a constant or UNDEF.
5135     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5136         ScalarResult.getOpcode() != ISD::ConstantFP)
5137       return SDValue();
5138     ScalarResults.push_back(ScalarResult);
5139   }
5140 
5141   SDValue V = getBuildVector(VT, DL, ScalarResults);
5142   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5143   return V;
5144 }
5145 
5146 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5147                                          EVT VT, SDValue N1, SDValue N2) {
5148   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5149   //       should. That will require dealing with a potentially non-default
5150   //       rounding mode, checking the "opStatus" return value from the APFloat
5151   //       math calculations, and possibly other variations.
5152   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5153   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5154   if (N1CFP && N2CFP) {
5155     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5156     switch (Opcode) {
5157     case ISD::FADD:
5158       C1.add(C2, APFloat::rmNearestTiesToEven);
5159       return getConstantFP(C1, DL, VT);
5160     case ISD::FSUB:
5161       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5162       return getConstantFP(C1, DL, VT);
5163     case ISD::FMUL:
5164       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5165       return getConstantFP(C1, DL, VT);
5166     case ISD::FDIV:
5167       C1.divide(C2, APFloat::rmNearestTiesToEven);
5168       return getConstantFP(C1, DL, VT);
5169     case ISD::FREM:
5170       C1.mod(C2);
5171       return getConstantFP(C1, DL, VT);
5172     case ISD::FCOPYSIGN:
5173       C1.copySign(C2);
5174       return getConstantFP(C1, DL, VT);
5175     default: break;
5176     }
5177   }
5178   if (N1CFP && Opcode == ISD::FP_ROUND) {
5179     APFloat C1 = N1CFP->getValueAPF();    // make copy
5180     bool Unused;
5181     // This can return overflow, underflow, or inexact; we don't care.
5182     // FIXME need to be more flexible about rounding mode.
5183     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5184                       &Unused);
5185     return getConstantFP(C1, DL, VT);
5186   }
5187 
5188   switch (Opcode) {
5189   case ISD::FSUB:
5190     // -0.0 - undef --> undef (consistent with "fneg undef")
5191     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5192       return getUNDEF(VT);
5193     LLVM_FALLTHROUGH;
5194 
5195   case ISD::FADD:
5196   case ISD::FMUL:
5197   case ISD::FDIV:
5198   case ISD::FREM:
5199     // If both operands are undef, the result is undef. If 1 operand is undef,
5200     // the result is NaN. This should match the behavior of the IR optimizer.
5201     if (N1.isUndef() && N2.isUndef())
5202       return getUNDEF(VT);
5203     if (N1.isUndef() || N2.isUndef())
5204       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5205   }
5206   return SDValue();
5207 }
5208 
5209 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5210   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5211 
5212   // There's no need to assert on a byte-aligned pointer. All pointers are at
5213   // least byte aligned.
5214   if (A == Align(1))
5215     return Val;
5216 
5217   FoldingSetNodeID ID;
5218   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5219   ID.AddInteger(A.value());
5220 
5221   void *IP = nullptr;
5222   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5223     return SDValue(E, 0);
5224 
5225   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5226                                          Val.getValueType(), A);
5227   createOperands(N, {Val});
5228 
5229   CSEMap.InsertNode(N, IP);
5230   InsertNode(N);
5231 
5232   SDValue V(N, 0);
5233   NewSDValueDbgMsg(V, "Creating new node: ", this);
5234   return V;
5235 }
5236 
5237 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5238                               SDValue N1, SDValue N2) {
5239   SDNodeFlags Flags;
5240   if (Inserter)
5241     Flags = Inserter->getFlags();
5242   return getNode(Opcode, DL, VT, N1, N2, Flags);
5243 }
5244 
5245 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5246                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5247   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5248   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5249   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5250   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5251 
5252   // Canonicalize constant to RHS if commutative.
5253   if (TLI->isCommutativeBinOp(Opcode)) {
5254     if (N1C && !N2C) {
5255       std::swap(N1C, N2C);
5256       std::swap(N1, N2);
5257     } else if (N1CFP && !N2CFP) {
5258       std::swap(N1CFP, N2CFP);
5259       std::swap(N1, N2);
5260     }
5261   }
5262 
5263   switch (Opcode) {
5264   default: break;
5265   case ISD::TokenFactor:
5266     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5267            N2.getValueType() == MVT::Other && "Invalid token factor!");
5268     // Fold trivial token factors.
5269     if (N1.getOpcode() == ISD::EntryToken) return N2;
5270     if (N2.getOpcode() == ISD::EntryToken) return N1;
5271     if (N1 == N2) return N1;
5272     break;
5273   case ISD::BUILD_VECTOR: {
5274     // Attempt to simplify BUILD_VECTOR.
5275     SDValue Ops[] = {N1, N2};
5276     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5277       return V;
5278     break;
5279   }
5280   case ISD::CONCAT_VECTORS: {
5281     SDValue Ops[] = {N1, N2};
5282     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5283       return V;
5284     break;
5285   }
5286   case ISD::AND:
5287     assert(VT.isInteger() && "This operator does not apply to FP types!");
5288     assert(N1.getValueType() == N2.getValueType() &&
5289            N1.getValueType() == VT && "Binary operator types must match!");
5290     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5291     // worth handling here.
5292     if (N2C && N2C->isNullValue())
5293       return N2;
5294     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5295       return N1;
5296     break;
5297   case ISD::OR:
5298   case ISD::XOR:
5299   case ISD::ADD:
5300   case ISD::SUB:
5301     assert(VT.isInteger() && "This operator does not apply to FP types!");
5302     assert(N1.getValueType() == N2.getValueType() &&
5303            N1.getValueType() == VT && "Binary operator types must match!");
5304     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5305     // it's worth handling here.
5306     if (N2C && N2C->isNullValue())
5307       return N1;
5308     break;
5309   case ISD::MUL:
5310     assert(VT.isInteger() && "This operator does not apply to FP types!");
5311     assert(N1.getValueType() == N2.getValueType() &&
5312            N1.getValueType() == VT && "Binary operator types must match!");
5313     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5314       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5315       APInt N2CImm = N2C->getAPIntValue();
5316       return getVScale(DL, VT, MulImm * N2CImm);
5317     }
5318     break;
5319   case ISD::UDIV:
5320   case ISD::UREM:
5321   case ISD::MULHU:
5322   case ISD::MULHS:
5323   case ISD::SDIV:
5324   case ISD::SREM:
5325   case ISD::SMIN:
5326   case ISD::SMAX:
5327   case ISD::UMIN:
5328   case ISD::UMAX:
5329   case ISD::SADDSAT:
5330   case ISD::SSUBSAT:
5331   case ISD::UADDSAT:
5332   case ISD::USUBSAT:
5333     assert(VT.isInteger() && "This operator does not apply to FP types!");
5334     assert(N1.getValueType() == N2.getValueType() &&
5335            N1.getValueType() == VT && "Binary operator types must match!");
5336     break;
5337   case ISD::FADD:
5338   case ISD::FSUB:
5339   case ISD::FMUL:
5340   case ISD::FDIV:
5341   case ISD::FREM:
5342     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5343     assert(N1.getValueType() == N2.getValueType() &&
5344            N1.getValueType() == VT && "Binary operator types must match!");
5345     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5346       return V;
5347     break;
5348   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5349     assert(N1.getValueType() == VT &&
5350            N1.getValueType().isFloatingPoint() &&
5351            N2.getValueType().isFloatingPoint() &&
5352            "Invalid FCOPYSIGN!");
5353     break;
5354   case ISD::SHL:
5355     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5356       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5357       APInt ShiftImm = N2C->getAPIntValue();
5358       return getVScale(DL, VT, MulImm << ShiftImm);
5359     }
5360     LLVM_FALLTHROUGH;
5361   case ISD::SRA:
5362   case ISD::SRL:
5363     if (SDValue V = simplifyShift(N1, N2))
5364       return V;
5365     LLVM_FALLTHROUGH;
5366   case ISD::ROTL:
5367   case ISD::ROTR:
5368     assert(VT == N1.getValueType() &&
5369            "Shift operators return type must be the same as their first arg");
5370     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5371            "Shifts only work on integers");
5372     assert((!VT.isVector() || VT == N2.getValueType()) &&
5373            "Vector shift amounts must be in the same as their first arg");
5374     // Verify that the shift amount VT is big enough to hold valid shift
5375     // amounts.  This catches things like trying to shift an i1024 value by an
5376     // i8, which is easy to fall into in generic code that uses
5377     // TLI.getShiftAmount().
5378     assert(N2.getValueType().getScalarSizeInBits() >=
5379                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5380            "Invalid use of small shift amount with oversized value!");
5381 
5382     // Always fold shifts of i1 values so the code generator doesn't need to
5383     // handle them.  Since we know the size of the shift has to be less than the
5384     // size of the value, the shift/rotate count is guaranteed to be zero.
5385     if (VT == MVT::i1)
5386       return N1;
5387     if (N2C && N2C->isNullValue())
5388       return N1;
5389     break;
5390   case ISD::FP_ROUND:
5391     assert(VT.isFloatingPoint() &&
5392            N1.getValueType().isFloatingPoint() &&
5393            VT.bitsLE(N1.getValueType()) &&
5394            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5395            "Invalid FP_ROUND!");
5396     if (N1.getValueType() == VT) return N1;  // noop conversion.
5397     break;
5398   case ISD::AssertSext:
5399   case ISD::AssertZext: {
5400     EVT EVT = cast<VTSDNode>(N2)->getVT();
5401     assert(VT == N1.getValueType() && "Not an inreg extend!");
5402     assert(VT.isInteger() && EVT.isInteger() &&
5403            "Cannot *_EXTEND_INREG FP types");
5404     assert(!EVT.isVector() &&
5405            "AssertSExt/AssertZExt type should be the vector element type "
5406            "rather than the vector type!");
5407     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5408     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5409     break;
5410   }
5411   case ISD::SIGN_EXTEND_INREG: {
5412     EVT EVT = cast<VTSDNode>(N2)->getVT();
5413     assert(VT == N1.getValueType() && "Not an inreg extend!");
5414     assert(VT.isInteger() && EVT.isInteger() &&
5415            "Cannot *_EXTEND_INREG FP types");
5416     assert(EVT.isVector() == VT.isVector() &&
5417            "SIGN_EXTEND_INREG type should be vector iff the operand "
5418            "type is vector!");
5419     assert((!EVT.isVector() ||
5420             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5421            "Vector element counts must match in SIGN_EXTEND_INREG");
5422     assert(EVT.bitsLE(VT) && "Not extending!");
5423     if (EVT == VT) return N1;  // Not actually extending
5424 
5425     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5426       unsigned FromBits = EVT.getScalarSizeInBits();
5427       Val <<= Val.getBitWidth() - FromBits;
5428       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5429       return getConstant(Val, DL, ConstantVT);
5430     };
5431 
5432     if (N1C) {
5433       const APInt &Val = N1C->getAPIntValue();
5434       return SignExtendInReg(Val, VT);
5435     }
5436     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5437       SmallVector<SDValue, 8> Ops;
5438       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5439       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5440         SDValue Op = N1.getOperand(i);
5441         if (Op.isUndef()) {
5442           Ops.push_back(getUNDEF(OpVT));
5443           continue;
5444         }
5445         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5446         APInt Val = C->getAPIntValue();
5447         Ops.push_back(SignExtendInReg(Val, OpVT));
5448       }
5449       return getBuildVector(VT, DL, Ops);
5450     }
5451     break;
5452   }
5453   case ISD::EXTRACT_VECTOR_ELT:
5454     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5455            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5456              element type of the vector.");
5457 
5458     // Extract from an undefined value or using an undefined index is undefined.
5459     if (N1.isUndef() || N2.isUndef())
5460       return getUNDEF(VT);
5461 
5462     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5463     // vectors. For scalable vectors we will provide appropriate support for
5464     // dealing with arbitrary indices.
5465     if (N2C && N1.getValueType().isFixedLengthVector() &&
5466         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5467       return getUNDEF(VT);
5468 
5469     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5470     // expanding copies of large vectors from registers. This only works for
5471     // fixed length vectors, since we need to know the exact number of
5472     // elements.
5473     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5474         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5475       unsigned Factor =
5476         N1.getOperand(0).getValueType().getVectorNumElements();
5477       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5478                      N1.getOperand(N2C->getZExtValue() / Factor),
5479                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5480     }
5481 
5482     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5483     // lowering is expanding large vector constants.
5484     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5485                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5486       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5487               N1.getValueType().isFixedLengthVector()) &&
5488              "BUILD_VECTOR used for scalable vectors");
5489       unsigned Index =
5490           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5491       SDValue Elt = N1.getOperand(Index);
5492 
5493       if (VT != Elt.getValueType())
5494         // If the vector element type is not legal, the BUILD_VECTOR operands
5495         // are promoted and implicitly truncated, and the result implicitly
5496         // extended. Make that explicit here.
5497         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5498 
5499       return Elt;
5500     }
5501 
5502     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5503     // operations are lowered to scalars.
5504     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5505       // If the indices are the same, return the inserted element else
5506       // if the indices are known different, extract the element from
5507       // the original vector.
5508       SDValue N1Op2 = N1.getOperand(2);
5509       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5510 
5511       if (N1Op2C && N2C) {
5512         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5513           if (VT == N1.getOperand(1).getValueType())
5514             return N1.getOperand(1);
5515           else
5516             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5517         }
5518 
5519         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5520       }
5521     }
5522 
5523     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5524     // when vector types are scalarized and v1iX is legal.
5525     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5526     // Here we are completely ignoring the extract element index (N2),
5527     // which is fine for fixed width vectors, since any index other than 0
5528     // is undefined anyway. However, this cannot be ignored for scalable
5529     // vectors - in theory we could support this, but we don't want to do this
5530     // without a profitability check.
5531     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5532         N1.getValueType().isFixedLengthVector() &&
5533         N1.getValueType().getVectorNumElements() == 1) {
5534       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5535                      N1.getOperand(1));
5536     }
5537     break;
5538   case ISD::EXTRACT_ELEMENT:
5539     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5540     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5541            (N1.getValueType().isInteger() == VT.isInteger()) &&
5542            N1.getValueType() != VT &&
5543            "Wrong types for EXTRACT_ELEMENT!");
5544 
5545     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5546     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5547     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5548     if (N1.getOpcode() == ISD::BUILD_PAIR)
5549       return N1.getOperand(N2C->getZExtValue());
5550 
5551     // EXTRACT_ELEMENT of a constant int is also very common.
5552     if (N1C) {
5553       unsigned ElementSize = VT.getSizeInBits();
5554       unsigned Shift = ElementSize * N2C->getZExtValue();
5555       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5556       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5557     }
5558     break;
5559   case ISD::EXTRACT_SUBVECTOR:
5560     EVT N1VT = N1.getValueType();
5561     assert(VT.isVector() && N1VT.isVector() &&
5562            "Extract subvector VTs must be vectors!");
5563     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5564            "Extract subvector VTs must have the same element type!");
5565     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5566            "Cannot extract a scalable vector from a fixed length vector!");
5567     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5568             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5569            "Extract subvector must be from larger vector to smaller vector!");
5570     assert(N2C && "Extract subvector index must be a constant");
5571     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5572             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5573                 N1VT.getVectorMinNumElements()) &&
5574            "Extract subvector overflow!");
5575     assert(N2C->getAPIntValue().getBitWidth() ==
5576                TLI->getVectorIdxTy(getDataLayout())
5577                    .getSizeInBits()
5578                    .getFixedSize() &&
5579            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5580 
5581     // Trivial extraction.
5582     if (VT == N1VT)
5583       return N1;
5584 
5585     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5586     if (N1.isUndef())
5587       return getUNDEF(VT);
5588 
5589     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5590     // the concat have the same type as the extract.
5591     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5592         VT == N1.getOperand(0).getValueType()) {
5593       unsigned Factor = VT.getVectorMinNumElements();
5594       return N1.getOperand(N2C->getZExtValue() / Factor);
5595     }
5596 
5597     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5598     // during shuffle legalization.
5599     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5600         VT == N1.getOperand(1).getValueType())
5601       return N1.getOperand(1);
5602     break;
5603   }
5604 
5605   // Perform trivial constant folding.
5606   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5607     return SV;
5608 
5609   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5610     return V;
5611 
5612   // Canonicalize an UNDEF to the RHS, even over a constant.
5613   if (N1.isUndef()) {
5614     if (TLI->isCommutativeBinOp(Opcode)) {
5615       std::swap(N1, N2);
5616     } else {
5617       switch (Opcode) {
5618       case ISD::SIGN_EXTEND_INREG:
5619       case ISD::SUB:
5620         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5621       case ISD::UDIV:
5622       case ISD::SDIV:
5623       case ISD::UREM:
5624       case ISD::SREM:
5625       case ISD::SSUBSAT:
5626       case ISD::USUBSAT:
5627         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5628       }
5629     }
5630   }
5631 
5632   // Fold a bunch of operators when the RHS is undef.
5633   if (N2.isUndef()) {
5634     switch (Opcode) {
5635     case ISD::XOR:
5636       if (N1.isUndef())
5637         // Handle undef ^ undef -> 0 special case. This is a common
5638         // idiom (misuse).
5639         return getConstant(0, DL, VT);
5640       LLVM_FALLTHROUGH;
5641     case ISD::ADD:
5642     case ISD::SUB:
5643     case ISD::UDIV:
5644     case ISD::SDIV:
5645     case ISD::UREM:
5646     case ISD::SREM:
5647       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5648     case ISD::MUL:
5649     case ISD::AND:
5650     case ISD::SSUBSAT:
5651     case ISD::USUBSAT:
5652       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5653     case ISD::OR:
5654     case ISD::SADDSAT:
5655     case ISD::UADDSAT:
5656       return getAllOnesConstant(DL, VT);
5657     }
5658   }
5659 
5660   // Memoize this node if possible.
5661   SDNode *N;
5662   SDVTList VTs = getVTList(VT);
5663   SDValue Ops[] = {N1, N2};
5664   if (VT != MVT::Glue) {
5665     FoldingSetNodeID ID;
5666     AddNodeIDNode(ID, Opcode, VTs, Ops);
5667     void *IP = nullptr;
5668     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5669       E->intersectFlagsWith(Flags);
5670       return SDValue(E, 0);
5671     }
5672 
5673     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5674     N->setFlags(Flags);
5675     createOperands(N, Ops);
5676     CSEMap.InsertNode(N, IP);
5677   } else {
5678     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5679     createOperands(N, Ops);
5680   }
5681 
5682   InsertNode(N);
5683   SDValue V = SDValue(N, 0);
5684   NewSDValueDbgMsg(V, "Creating new node: ", this);
5685   return V;
5686 }
5687 
5688 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5689                               SDValue N1, SDValue N2, SDValue N3) {
5690   SDNodeFlags Flags;
5691   if (Inserter)
5692     Flags = Inserter->getFlags();
5693   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5694 }
5695 
5696 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5697                               SDValue N1, SDValue N2, SDValue N3,
5698                               const SDNodeFlags Flags) {
5699   // Perform various simplifications.
5700   switch (Opcode) {
5701   case ISD::FMA: {
5702     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5703     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5704            N3.getValueType() == VT && "FMA types must match!");
5705     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5706     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5707     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5708     if (N1CFP && N2CFP && N3CFP) {
5709       APFloat  V1 = N1CFP->getValueAPF();
5710       const APFloat &V2 = N2CFP->getValueAPF();
5711       const APFloat &V3 = N3CFP->getValueAPF();
5712       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5713       return getConstantFP(V1, DL, VT);
5714     }
5715     break;
5716   }
5717   case ISD::BUILD_VECTOR: {
5718     // Attempt to simplify BUILD_VECTOR.
5719     SDValue Ops[] = {N1, N2, N3};
5720     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5721       return V;
5722     break;
5723   }
5724   case ISD::CONCAT_VECTORS: {
5725     SDValue Ops[] = {N1, N2, N3};
5726     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5727       return V;
5728     break;
5729   }
5730   case ISD::SETCC: {
5731     assert(VT.isInteger() && "SETCC result type must be an integer!");
5732     assert(N1.getValueType() == N2.getValueType() &&
5733            "SETCC operands must have the same type!");
5734     assert(VT.isVector() == N1.getValueType().isVector() &&
5735            "SETCC type should be vector iff the operand type is vector!");
5736     assert((!VT.isVector() || VT.getVectorElementCount() ==
5737                                   N1.getValueType().getVectorElementCount()) &&
5738            "SETCC vector element counts must match!");
5739     // Use FoldSetCC to simplify SETCC's.
5740     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5741       return V;
5742     // Vector constant folding.
5743     SDValue Ops[] = {N1, N2, N3};
5744     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5745       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5746       return V;
5747     }
5748     break;
5749   }
5750   case ISD::SELECT:
5751   case ISD::VSELECT:
5752     if (SDValue V = simplifySelect(N1, N2, N3))
5753       return V;
5754     break;
5755   case ISD::VECTOR_SHUFFLE:
5756     llvm_unreachable("should use getVectorShuffle constructor!");
5757   case ISD::INSERT_VECTOR_ELT: {
5758     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5759     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5760     // for scalable vectors where we will generate appropriate code to
5761     // deal with out-of-bounds cases correctly.
5762     if (N3C && N1.getValueType().isFixedLengthVector() &&
5763         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5764       return getUNDEF(VT);
5765 
5766     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5767     if (N3.isUndef())
5768       return getUNDEF(VT);
5769 
5770     // If the inserted element is an UNDEF, just use the input vector.
5771     if (N2.isUndef())
5772       return N1;
5773 
5774     break;
5775   }
5776   case ISD::INSERT_SUBVECTOR: {
5777     // Inserting undef into undef is still undef.
5778     if (N1.isUndef() && N2.isUndef())
5779       return getUNDEF(VT);
5780 
5781     EVT N2VT = N2.getValueType();
5782     assert(VT == N1.getValueType() &&
5783            "Dest and insert subvector source types must match!");
5784     assert(VT.isVector() && N2VT.isVector() &&
5785            "Insert subvector VTs must be vectors!");
5786     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5787            "Cannot insert a scalable vector into a fixed length vector!");
5788     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5789             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5790            "Insert subvector must be from smaller vector to larger vector!");
5791     assert(isa<ConstantSDNode>(N3) &&
5792            "Insert subvector index must be constant");
5793     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5794             (N2VT.getVectorMinNumElements() +
5795              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5796                 VT.getVectorMinNumElements()) &&
5797            "Insert subvector overflow!");
5798 
5799     // Trivial insertion.
5800     if (VT == N2VT)
5801       return N2;
5802 
5803     // If this is an insert of an extracted vector into an undef vector, we
5804     // can just use the input to the extract.
5805     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5806         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5807       return N2.getOperand(0);
5808     break;
5809   }
5810   case ISD::BITCAST:
5811     // Fold bit_convert nodes from a type to themselves.
5812     if (N1.getValueType() == VT)
5813       return N1;
5814     break;
5815   }
5816 
5817   // Memoize node if it doesn't produce a flag.
5818   SDNode *N;
5819   SDVTList VTs = getVTList(VT);
5820   SDValue Ops[] = {N1, N2, N3};
5821   if (VT != MVT::Glue) {
5822     FoldingSetNodeID ID;
5823     AddNodeIDNode(ID, Opcode, VTs, Ops);
5824     void *IP = nullptr;
5825     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5826       E->intersectFlagsWith(Flags);
5827       return SDValue(E, 0);
5828     }
5829 
5830     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5831     N->setFlags(Flags);
5832     createOperands(N, Ops);
5833     CSEMap.InsertNode(N, IP);
5834   } else {
5835     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5836     createOperands(N, Ops);
5837   }
5838 
5839   InsertNode(N);
5840   SDValue V = SDValue(N, 0);
5841   NewSDValueDbgMsg(V, "Creating new node: ", this);
5842   return V;
5843 }
5844 
5845 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5846                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5847   SDValue Ops[] = { N1, N2, N3, N4 };
5848   return getNode(Opcode, DL, VT, Ops);
5849 }
5850 
5851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5852                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5853                               SDValue N5) {
5854   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5855   return getNode(Opcode, DL, VT, Ops);
5856 }
5857 
5858 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5859 /// the incoming stack arguments to be loaded from the stack.
5860 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5861   SmallVector<SDValue, 8> ArgChains;
5862 
5863   // Include the original chain at the beginning of the list. When this is
5864   // used by target LowerCall hooks, this helps legalize find the
5865   // CALLSEQ_BEGIN node.
5866   ArgChains.push_back(Chain);
5867 
5868   // Add a chain value for each stack argument.
5869   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5870        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5871     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5872       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5873         if (FI->getIndex() < 0)
5874           ArgChains.push_back(SDValue(L, 1));
5875 
5876   // Build a tokenfactor for all the chains.
5877   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5878 }
5879 
5880 /// getMemsetValue - Vectorized representation of the memset value
5881 /// operand.
5882 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5883                               const SDLoc &dl) {
5884   assert(!Value.isUndef());
5885 
5886   unsigned NumBits = VT.getScalarSizeInBits();
5887   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5888     assert(C->getAPIntValue().getBitWidth() == 8);
5889     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5890     if (VT.isInteger()) {
5891       bool IsOpaque = VT.getSizeInBits() > 64 ||
5892           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5893       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5894     }
5895     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5896                              VT);
5897   }
5898 
5899   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5900   EVT IntVT = VT.getScalarType();
5901   if (!IntVT.isInteger())
5902     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5903 
5904   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5905   if (NumBits > 8) {
5906     // Use a multiplication with 0x010101... to extend the input to the
5907     // required length.
5908     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5909     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5910                         DAG.getConstant(Magic, dl, IntVT));
5911   }
5912 
5913   if (VT != Value.getValueType() && !VT.isInteger())
5914     Value = DAG.getBitcast(VT.getScalarType(), Value);
5915   if (VT != Value.getValueType())
5916     Value = DAG.getSplatBuildVector(VT, dl, Value);
5917 
5918   return Value;
5919 }
5920 
5921 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5922 /// used when a memcpy is turned into a memset when the source is a constant
5923 /// string ptr.
5924 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5925                                   const TargetLowering &TLI,
5926                                   const ConstantDataArraySlice &Slice) {
5927   // Handle vector with all elements zero.
5928   if (Slice.Array == nullptr) {
5929     if (VT.isInteger())
5930       return DAG.getConstant(0, dl, VT);
5931     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5932       return DAG.getConstantFP(0.0, dl, VT);
5933     else if (VT.isVector()) {
5934       unsigned NumElts = VT.getVectorNumElements();
5935       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5936       return DAG.getNode(ISD::BITCAST, dl, VT,
5937                          DAG.getConstant(0, dl,
5938                                          EVT::getVectorVT(*DAG.getContext(),
5939                                                           EltVT, NumElts)));
5940     } else
5941       llvm_unreachable("Expected type!");
5942   }
5943 
5944   assert(!VT.isVector() && "Can't handle vector type here!");
5945   unsigned NumVTBits = VT.getSizeInBits();
5946   unsigned NumVTBytes = NumVTBits / 8;
5947   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5948 
5949   APInt Val(NumVTBits, 0);
5950   if (DAG.getDataLayout().isLittleEndian()) {
5951     for (unsigned i = 0; i != NumBytes; ++i)
5952       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5953   } else {
5954     for (unsigned i = 0; i != NumBytes; ++i)
5955       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5956   }
5957 
5958   // If the "cost" of materializing the integer immediate is less than the cost
5959   // of a load, then it is cost effective to turn the load into the immediate.
5960   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5961   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5962     return DAG.getConstant(Val, dl, VT);
5963   return SDValue(nullptr, 0);
5964 }
5965 
5966 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
5967                                            const SDLoc &DL,
5968                                            const SDNodeFlags Flags) {
5969   EVT VT = Base.getValueType();
5970   SDValue Index;
5971 
5972   if (Offset.isScalable())
5973     Index = getVScale(DL, Base.getValueType(),
5974                       APInt(Base.getValueSizeInBits().getFixedSize(),
5975                             Offset.getKnownMinSize()));
5976   else
5977     Index = getConstant(Offset.getFixedSize(), DL, VT);
5978 
5979   return getMemBasePlusOffset(Base, Index, DL, Flags);
5980 }
5981 
5982 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5983                                            const SDLoc &DL,
5984                                            const SDNodeFlags Flags) {
5985   assert(Offset.getValueType().isInteger());
5986   EVT BasePtrVT = Ptr.getValueType();
5987   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5988 }
5989 
5990 /// Returns true if memcpy source is constant data.
5991 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5992   uint64_t SrcDelta = 0;
5993   GlobalAddressSDNode *G = nullptr;
5994   if (Src.getOpcode() == ISD::GlobalAddress)
5995     G = cast<GlobalAddressSDNode>(Src);
5996   else if (Src.getOpcode() == ISD::ADD &&
5997            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5998            Src.getOperand(1).getOpcode() == ISD::Constant) {
5999     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6000     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6001   }
6002   if (!G)
6003     return false;
6004 
6005   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6006                                   SrcDelta + G->getOffset());
6007 }
6008 
6009 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6010                                       SelectionDAG &DAG) {
6011   // On Darwin, -Os means optimize for size without hurting performance, so
6012   // only really optimize for size when -Oz (MinSize) is used.
6013   if (MF.getTarget().getTargetTriple().isOSDarwin())
6014     return MF.getFunction().hasMinSize();
6015   return DAG.shouldOptForSize();
6016 }
6017 
6018 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6019                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6020                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6021                           SmallVector<SDValue, 16> &OutStoreChains) {
6022   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6023   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6024   SmallVector<SDValue, 16> GluedLoadChains;
6025   for (unsigned i = From; i < To; ++i) {
6026     OutChains.push_back(OutLoadChains[i]);
6027     GluedLoadChains.push_back(OutLoadChains[i]);
6028   }
6029 
6030   // Chain for all loads.
6031   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6032                                   GluedLoadChains);
6033 
6034   for (unsigned i = From; i < To; ++i) {
6035     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6036     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6037                                   ST->getBasePtr(), ST->getMemoryVT(),
6038                                   ST->getMemOperand());
6039     OutChains.push_back(NewStore);
6040   }
6041 }
6042 
6043 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6044                                        SDValue Chain, SDValue Dst, SDValue Src,
6045                                        uint64_t Size, Align Alignment,
6046                                        bool isVol, bool AlwaysInline,
6047                                        MachinePointerInfo DstPtrInfo,
6048                                        MachinePointerInfo SrcPtrInfo) {
6049   // Turn a memcpy of undef to nop.
6050   // FIXME: We need to honor volatile even is Src is undef.
6051   if (Src.isUndef())
6052     return Chain;
6053 
6054   // Expand memcpy to a series of load and store ops if the size operand falls
6055   // below a certain threshold.
6056   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6057   // rather than maybe a humongous number of loads and stores.
6058   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6059   const DataLayout &DL = DAG.getDataLayout();
6060   LLVMContext &C = *DAG.getContext();
6061   std::vector<EVT> MemOps;
6062   bool DstAlignCanChange = false;
6063   MachineFunction &MF = DAG.getMachineFunction();
6064   MachineFrameInfo &MFI = MF.getFrameInfo();
6065   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6066   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6067   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6068     DstAlignCanChange = true;
6069   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6070   if (!SrcAlign || Alignment > *SrcAlign)
6071     SrcAlign = Alignment;
6072   assert(SrcAlign && "SrcAlign must be set");
6073   ConstantDataArraySlice Slice;
6074   // If marked as volatile, perform a copy even when marked as constant.
6075   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6076   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6077   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6078   const MemOp Op = isZeroConstant
6079                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6080                                     /*IsZeroMemset*/ true, isVol)
6081                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6082                                      *SrcAlign, isVol, CopyFromConstant);
6083   if (!TLI.findOptimalMemOpLowering(
6084           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6085           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6086     return SDValue();
6087 
6088   if (DstAlignCanChange) {
6089     Type *Ty = MemOps[0].getTypeForEVT(C);
6090     Align NewAlign = DL.getABITypeAlign(Ty);
6091 
6092     // Don't promote to an alignment that would require dynamic stack
6093     // realignment.
6094     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6095     if (!TRI->needsStackRealignment(MF))
6096       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6097         NewAlign = NewAlign / 2;
6098 
6099     if (NewAlign > Alignment) {
6100       // Give the stack frame object a larger alignment if needed.
6101       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6102         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6103       Alignment = NewAlign;
6104     }
6105   }
6106 
6107   MachineMemOperand::Flags MMOFlags =
6108       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6109   SmallVector<SDValue, 16> OutLoadChains;
6110   SmallVector<SDValue, 16> OutStoreChains;
6111   SmallVector<SDValue, 32> OutChains;
6112   unsigned NumMemOps = MemOps.size();
6113   uint64_t SrcOff = 0, DstOff = 0;
6114   for (unsigned i = 0; i != NumMemOps; ++i) {
6115     EVT VT = MemOps[i];
6116     unsigned VTSize = VT.getSizeInBits() / 8;
6117     SDValue Value, Store;
6118 
6119     if (VTSize > Size) {
6120       // Issuing an unaligned load / store pair  that overlaps with the previous
6121       // pair. Adjust the offset accordingly.
6122       assert(i == NumMemOps-1 && i != 0);
6123       SrcOff -= VTSize - Size;
6124       DstOff -= VTSize - Size;
6125     }
6126 
6127     if (CopyFromConstant &&
6128         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6129       // It's unlikely a store of a vector immediate can be done in a single
6130       // instruction. It would require a load from a constantpool first.
6131       // We only handle zero vectors here.
6132       // FIXME: Handle other cases where store of vector immediate is done in
6133       // a single instruction.
6134       ConstantDataArraySlice SubSlice;
6135       if (SrcOff < Slice.Length) {
6136         SubSlice = Slice;
6137         SubSlice.move(SrcOff);
6138       } else {
6139         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6140         SubSlice.Array = nullptr;
6141         SubSlice.Offset = 0;
6142         SubSlice.Length = VTSize;
6143       }
6144       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6145       if (Value.getNode()) {
6146         Store = DAG.getStore(
6147             Chain, dl, Value,
6148             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6149             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6150         OutChains.push_back(Store);
6151       }
6152     }
6153 
6154     if (!Store.getNode()) {
6155       // The type might not be legal for the target.  This should only happen
6156       // if the type is smaller than a legal type, as on PPC, so the right
6157       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6158       // to Load/Store if NVT==VT.
6159       // FIXME does the case above also need this?
6160       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6161       assert(NVT.bitsGE(VT));
6162 
6163       bool isDereferenceable =
6164         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6165       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6166       if (isDereferenceable)
6167         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6168 
6169       Value = DAG.getExtLoad(
6170           ISD::EXTLOAD, dl, NVT, Chain,
6171           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6172           SrcPtrInfo.getWithOffset(SrcOff), VT,
6173           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6174       OutLoadChains.push_back(Value.getValue(1));
6175 
6176       Store = DAG.getTruncStore(
6177           Chain, dl, Value,
6178           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6179           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6180       OutStoreChains.push_back(Store);
6181     }
6182     SrcOff += VTSize;
6183     DstOff += VTSize;
6184     Size -= VTSize;
6185   }
6186 
6187   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6188                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6189   unsigned NumLdStInMemcpy = OutStoreChains.size();
6190 
6191   if (NumLdStInMemcpy) {
6192     // It may be that memcpy might be converted to memset if it's memcpy
6193     // of constants. In such a case, we won't have loads and stores, but
6194     // just stores. In the absence of loads, there is nothing to gang up.
6195     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6196       // If target does not care, just leave as it.
6197       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6198         OutChains.push_back(OutLoadChains[i]);
6199         OutChains.push_back(OutStoreChains[i]);
6200       }
6201     } else {
6202       // Ld/St less than/equal limit set by target.
6203       if (NumLdStInMemcpy <= GluedLdStLimit) {
6204           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6205                                         NumLdStInMemcpy, OutLoadChains,
6206                                         OutStoreChains);
6207       } else {
6208         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6209         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6210         unsigned GlueIter = 0;
6211 
6212         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6213           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6214           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6215 
6216           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6217                                        OutLoadChains, OutStoreChains);
6218           GlueIter += GluedLdStLimit;
6219         }
6220 
6221         // Residual ld/st.
6222         if (RemainingLdStInMemcpy) {
6223           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6224                                         RemainingLdStInMemcpy, OutLoadChains,
6225                                         OutStoreChains);
6226         }
6227       }
6228     }
6229   }
6230   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6231 }
6232 
6233 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6234                                         SDValue Chain, SDValue Dst, SDValue Src,
6235                                         uint64_t Size, Align Alignment,
6236                                         bool isVol, bool AlwaysInline,
6237                                         MachinePointerInfo DstPtrInfo,
6238                                         MachinePointerInfo SrcPtrInfo) {
6239   // Turn a memmove of undef to nop.
6240   // FIXME: We need to honor volatile even is Src is undef.
6241   if (Src.isUndef())
6242     return Chain;
6243 
6244   // Expand memmove to a series of load and store ops if the size operand falls
6245   // below a certain threshold.
6246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6247   const DataLayout &DL = DAG.getDataLayout();
6248   LLVMContext &C = *DAG.getContext();
6249   std::vector<EVT> MemOps;
6250   bool DstAlignCanChange = false;
6251   MachineFunction &MF = DAG.getMachineFunction();
6252   MachineFrameInfo &MFI = MF.getFrameInfo();
6253   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6254   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6255   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6256     DstAlignCanChange = true;
6257   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6258   if (!SrcAlign || Alignment > *SrcAlign)
6259     SrcAlign = Alignment;
6260   assert(SrcAlign && "SrcAlign must be set");
6261   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6262   if (!TLI.findOptimalMemOpLowering(
6263           MemOps, Limit,
6264           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6265                       /*IsVolatile*/ true),
6266           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6267           MF.getFunction().getAttributes()))
6268     return SDValue();
6269 
6270   if (DstAlignCanChange) {
6271     Type *Ty = MemOps[0].getTypeForEVT(C);
6272     Align NewAlign = DL.getABITypeAlign(Ty);
6273     if (NewAlign > Alignment) {
6274       // Give the stack frame object a larger alignment if needed.
6275       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6276         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6277       Alignment = NewAlign;
6278     }
6279   }
6280 
6281   MachineMemOperand::Flags MMOFlags =
6282       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6283   uint64_t SrcOff = 0, DstOff = 0;
6284   SmallVector<SDValue, 8> LoadValues;
6285   SmallVector<SDValue, 8> LoadChains;
6286   SmallVector<SDValue, 8> OutChains;
6287   unsigned NumMemOps = MemOps.size();
6288   for (unsigned i = 0; i < NumMemOps; i++) {
6289     EVT VT = MemOps[i];
6290     unsigned VTSize = VT.getSizeInBits() / 8;
6291     SDValue Value;
6292 
6293     bool isDereferenceable =
6294       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6295     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6296     if (isDereferenceable)
6297       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6298 
6299     Value =
6300         DAG.getLoad(VT, dl, Chain,
6301                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6302                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6303     LoadValues.push_back(Value);
6304     LoadChains.push_back(Value.getValue(1));
6305     SrcOff += VTSize;
6306   }
6307   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6308   OutChains.clear();
6309   for (unsigned i = 0; i < NumMemOps; i++) {
6310     EVT VT = MemOps[i];
6311     unsigned VTSize = VT.getSizeInBits() / 8;
6312     SDValue Store;
6313 
6314     Store =
6315         DAG.getStore(Chain, dl, LoadValues[i],
6316                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6317                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6318     OutChains.push_back(Store);
6319     DstOff += VTSize;
6320   }
6321 
6322   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6323 }
6324 
6325 /// Lower the call to 'memset' intrinsic function into a series of store
6326 /// operations.
6327 ///
6328 /// \param DAG Selection DAG where lowered code is placed.
6329 /// \param dl Link to corresponding IR location.
6330 /// \param Chain Control flow dependency.
6331 /// \param Dst Pointer to destination memory location.
6332 /// \param Src Value of byte to write into the memory.
6333 /// \param Size Number of bytes to write.
6334 /// \param Alignment Alignment of the destination in bytes.
6335 /// \param isVol True if destination is volatile.
6336 /// \param DstPtrInfo IR information on the memory pointer.
6337 /// \returns New head in the control flow, if lowering was successful, empty
6338 /// SDValue otherwise.
6339 ///
6340 /// The function tries to replace 'llvm.memset' intrinsic with several store
6341 /// operations and value calculation code. This is usually profitable for small
6342 /// memory size.
6343 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6344                                SDValue Chain, SDValue Dst, SDValue Src,
6345                                uint64_t Size, Align Alignment, bool isVol,
6346                                MachinePointerInfo DstPtrInfo) {
6347   // Turn a memset of undef to nop.
6348   // FIXME: We need to honor volatile even is Src is undef.
6349   if (Src.isUndef())
6350     return Chain;
6351 
6352   // Expand memset to a series of load/store ops if the size operand
6353   // falls below a certain threshold.
6354   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6355   std::vector<EVT> MemOps;
6356   bool DstAlignCanChange = false;
6357   MachineFunction &MF = DAG.getMachineFunction();
6358   MachineFrameInfo &MFI = MF.getFrameInfo();
6359   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6360   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6361   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6362     DstAlignCanChange = true;
6363   bool IsZeroVal =
6364     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6365   if (!TLI.findOptimalMemOpLowering(
6366           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6367           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6368           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6369     return SDValue();
6370 
6371   if (DstAlignCanChange) {
6372     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6373     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6374     if (NewAlign > Alignment) {
6375       // Give the stack frame object a larger alignment if needed.
6376       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6377         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6378       Alignment = NewAlign;
6379     }
6380   }
6381 
6382   SmallVector<SDValue, 8> OutChains;
6383   uint64_t DstOff = 0;
6384   unsigned NumMemOps = MemOps.size();
6385 
6386   // Find the largest store and generate the bit pattern for it.
6387   EVT LargestVT = MemOps[0];
6388   for (unsigned i = 1; i < NumMemOps; i++)
6389     if (MemOps[i].bitsGT(LargestVT))
6390       LargestVT = MemOps[i];
6391   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6392 
6393   for (unsigned i = 0; i < NumMemOps; i++) {
6394     EVT VT = MemOps[i];
6395     unsigned VTSize = VT.getSizeInBits() / 8;
6396     if (VTSize > Size) {
6397       // Issuing an unaligned load / store pair  that overlaps with the previous
6398       // pair. Adjust the offset accordingly.
6399       assert(i == NumMemOps-1 && i != 0);
6400       DstOff -= VTSize - Size;
6401     }
6402 
6403     // If this store is smaller than the largest store see whether we can get
6404     // the smaller value for free with a truncate.
6405     SDValue Value = MemSetValue;
6406     if (VT.bitsLT(LargestVT)) {
6407       if (!LargestVT.isVector() && !VT.isVector() &&
6408           TLI.isTruncateFree(LargestVT, VT))
6409         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6410       else
6411         Value = getMemsetValue(Src, VT, DAG, dl);
6412     }
6413     assert(Value.getValueType() == VT && "Value with wrong type.");
6414     SDValue Store = DAG.getStore(
6415         Chain, dl, Value,
6416         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6417         DstPtrInfo.getWithOffset(DstOff), Alignment,
6418         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6419     OutChains.push_back(Store);
6420     DstOff += VT.getSizeInBits() / 8;
6421     Size -= VTSize;
6422   }
6423 
6424   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6425 }
6426 
6427 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6428                                             unsigned AS) {
6429   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6430   // pointer operands can be losslessly bitcasted to pointers of address space 0
6431   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6432     report_fatal_error("cannot lower memory intrinsic in address space " +
6433                        Twine(AS));
6434   }
6435 }
6436 
6437 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6438                                 SDValue Src, SDValue Size, Align Alignment,
6439                                 bool isVol, bool AlwaysInline, bool isTailCall,
6440                                 MachinePointerInfo DstPtrInfo,
6441                                 MachinePointerInfo SrcPtrInfo) {
6442   // Check to see if we should lower the memcpy to loads and stores first.
6443   // For cases within the target-specified limits, this is the best choice.
6444   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6445   if (ConstantSize) {
6446     // Memcpy with size zero? Just return the original chain.
6447     if (ConstantSize->isNullValue())
6448       return Chain;
6449 
6450     SDValue Result = getMemcpyLoadsAndStores(
6451         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6452         isVol, false, DstPtrInfo, SrcPtrInfo);
6453     if (Result.getNode())
6454       return Result;
6455   }
6456 
6457   // Then check to see if we should lower the memcpy with target-specific
6458   // code. If the target chooses to do this, this is the next best.
6459   if (TSI) {
6460     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6461         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6462         DstPtrInfo, SrcPtrInfo);
6463     if (Result.getNode())
6464       return Result;
6465   }
6466 
6467   // If we really need inline code and the target declined to provide it,
6468   // use a (potentially long) sequence of loads and stores.
6469   if (AlwaysInline) {
6470     assert(ConstantSize && "AlwaysInline requires a constant size!");
6471     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6472                                    ConstantSize->getZExtValue(), Alignment,
6473                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6474   }
6475 
6476   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6477   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6478 
6479   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6480   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6481   // respect volatile, so they may do things like read or write memory
6482   // beyond the given memory regions. But fixing this isn't easy, and most
6483   // people don't care.
6484 
6485   // Emit a library call.
6486   TargetLowering::ArgListTy Args;
6487   TargetLowering::ArgListEntry Entry;
6488   Entry.Ty = Type::getInt8PtrTy(*getContext());
6489   Entry.Node = Dst; Args.push_back(Entry);
6490   Entry.Node = Src; Args.push_back(Entry);
6491 
6492   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6493   Entry.Node = Size; Args.push_back(Entry);
6494   // FIXME: pass in SDLoc
6495   TargetLowering::CallLoweringInfo CLI(*this);
6496   CLI.setDebugLoc(dl)
6497       .setChain(Chain)
6498       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6499                     Dst.getValueType().getTypeForEVT(*getContext()),
6500                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6501                                       TLI->getPointerTy(getDataLayout())),
6502                     std::move(Args))
6503       .setDiscardResult()
6504       .setTailCall(isTailCall);
6505 
6506   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6507   return CallResult.second;
6508 }
6509 
6510 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6511                                       SDValue Dst, unsigned DstAlign,
6512                                       SDValue Src, unsigned SrcAlign,
6513                                       SDValue Size, Type *SizeTy,
6514                                       unsigned ElemSz, bool isTailCall,
6515                                       MachinePointerInfo DstPtrInfo,
6516                                       MachinePointerInfo SrcPtrInfo) {
6517   // Emit a library call.
6518   TargetLowering::ArgListTy Args;
6519   TargetLowering::ArgListEntry Entry;
6520   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6521   Entry.Node = Dst;
6522   Args.push_back(Entry);
6523 
6524   Entry.Node = Src;
6525   Args.push_back(Entry);
6526 
6527   Entry.Ty = SizeTy;
6528   Entry.Node = Size;
6529   Args.push_back(Entry);
6530 
6531   RTLIB::Libcall LibraryCall =
6532       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6533   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6534     report_fatal_error("Unsupported element size");
6535 
6536   TargetLowering::CallLoweringInfo CLI(*this);
6537   CLI.setDebugLoc(dl)
6538       .setChain(Chain)
6539       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6540                     Type::getVoidTy(*getContext()),
6541                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6542                                       TLI->getPointerTy(getDataLayout())),
6543                     std::move(Args))
6544       .setDiscardResult()
6545       .setTailCall(isTailCall);
6546 
6547   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6548   return CallResult.second;
6549 }
6550 
6551 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6552                                  SDValue Src, SDValue Size, Align Alignment,
6553                                  bool isVol, bool isTailCall,
6554                                  MachinePointerInfo DstPtrInfo,
6555                                  MachinePointerInfo SrcPtrInfo) {
6556   // Check to see if we should lower the memmove to loads and stores first.
6557   // For cases within the target-specified limits, this is the best choice.
6558   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6559   if (ConstantSize) {
6560     // Memmove with size zero? Just return the original chain.
6561     if (ConstantSize->isNullValue())
6562       return Chain;
6563 
6564     SDValue Result = getMemmoveLoadsAndStores(
6565         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6566         isVol, false, DstPtrInfo, SrcPtrInfo);
6567     if (Result.getNode())
6568       return Result;
6569   }
6570 
6571   // Then check to see if we should lower the memmove with target-specific
6572   // code. If the target chooses to do this, this is the next best.
6573   if (TSI) {
6574     SDValue Result =
6575         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6576                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6577     if (Result.getNode())
6578       return Result;
6579   }
6580 
6581   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6582   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6583 
6584   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6585   // not be safe.  See memcpy above for more details.
6586 
6587   // Emit a library call.
6588   TargetLowering::ArgListTy Args;
6589   TargetLowering::ArgListEntry Entry;
6590   Entry.Ty = Type::getInt8PtrTy(*getContext());
6591   Entry.Node = Dst; Args.push_back(Entry);
6592   Entry.Node = Src; Args.push_back(Entry);
6593 
6594   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6595   Entry.Node = Size; Args.push_back(Entry);
6596   // FIXME:  pass in SDLoc
6597   TargetLowering::CallLoweringInfo CLI(*this);
6598   CLI.setDebugLoc(dl)
6599       .setChain(Chain)
6600       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6601                     Dst.getValueType().getTypeForEVT(*getContext()),
6602                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6603                                       TLI->getPointerTy(getDataLayout())),
6604                     std::move(Args))
6605       .setDiscardResult()
6606       .setTailCall(isTailCall);
6607 
6608   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6609   return CallResult.second;
6610 }
6611 
6612 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6613                                        SDValue Dst, unsigned DstAlign,
6614                                        SDValue Src, unsigned SrcAlign,
6615                                        SDValue Size, Type *SizeTy,
6616                                        unsigned ElemSz, bool isTailCall,
6617                                        MachinePointerInfo DstPtrInfo,
6618                                        MachinePointerInfo SrcPtrInfo) {
6619   // Emit a library call.
6620   TargetLowering::ArgListTy Args;
6621   TargetLowering::ArgListEntry Entry;
6622   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6623   Entry.Node = Dst;
6624   Args.push_back(Entry);
6625 
6626   Entry.Node = Src;
6627   Args.push_back(Entry);
6628 
6629   Entry.Ty = SizeTy;
6630   Entry.Node = Size;
6631   Args.push_back(Entry);
6632 
6633   RTLIB::Libcall LibraryCall =
6634       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6635   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6636     report_fatal_error("Unsupported element size");
6637 
6638   TargetLowering::CallLoweringInfo CLI(*this);
6639   CLI.setDebugLoc(dl)
6640       .setChain(Chain)
6641       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6642                     Type::getVoidTy(*getContext()),
6643                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6644                                       TLI->getPointerTy(getDataLayout())),
6645                     std::move(Args))
6646       .setDiscardResult()
6647       .setTailCall(isTailCall);
6648 
6649   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6650   return CallResult.second;
6651 }
6652 
6653 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6654                                 SDValue Src, SDValue Size, Align Alignment,
6655                                 bool isVol, bool isTailCall,
6656                                 MachinePointerInfo DstPtrInfo) {
6657   // Check to see if we should lower the memset to stores first.
6658   // For cases within the target-specified limits, this is the best choice.
6659   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6660   if (ConstantSize) {
6661     // Memset with size zero? Just return the original chain.
6662     if (ConstantSize->isNullValue())
6663       return Chain;
6664 
6665     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6666                                      ConstantSize->getZExtValue(), Alignment,
6667                                      isVol, DstPtrInfo);
6668 
6669     if (Result.getNode())
6670       return Result;
6671   }
6672 
6673   // Then check to see if we should lower the memset with target-specific
6674   // code. If the target chooses to do this, this is the next best.
6675   if (TSI) {
6676     SDValue Result = TSI->EmitTargetCodeForMemset(
6677         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6678     if (Result.getNode())
6679       return Result;
6680   }
6681 
6682   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6683 
6684   // Emit a library call.
6685   TargetLowering::ArgListTy Args;
6686   TargetLowering::ArgListEntry Entry;
6687   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6688   Args.push_back(Entry);
6689   Entry.Node = Src;
6690   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6691   Args.push_back(Entry);
6692   Entry.Node = Size;
6693   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6694   Args.push_back(Entry);
6695 
6696   // FIXME: pass in SDLoc
6697   TargetLowering::CallLoweringInfo CLI(*this);
6698   CLI.setDebugLoc(dl)
6699       .setChain(Chain)
6700       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6701                     Dst.getValueType().getTypeForEVT(*getContext()),
6702                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6703                                       TLI->getPointerTy(getDataLayout())),
6704                     std::move(Args))
6705       .setDiscardResult()
6706       .setTailCall(isTailCall);
6707 
6708   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6709   return CallResult.second;
6710 }
6711 
6712 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6713                                       SDValue Dst, unsigned DstAlign,
6714                                       SDValue Value, SDValue Size, Type *SizeTy,
6715                                       unsigned ElemSz, bool isTailCall,
6716                                       MachinePointerInfo DstPtrInfo) {
6717   // Emit a library call.
6718   TargetLowering::ArgListTy Args;
6719   TargetLowering::ArgListEntry Entry;
6720   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6721   Entry.Node = Dst;
6722   Args.push_back(Entry);
6723 
6724   Entry.Ty = Type::getInt8Ty(*getContext());
6725   Entry.Node = Value;
6726   Args.push_back(Entry);
6727 
6728   Entry.Ty = SizeTy;
6729   Entry.Node = Size;
6730   Args.push_back(Entry);
6731 
6732   RTLIB::Libcall LibraryCall =
6733       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6734   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6735     report_fatal_error("Unsupported element size");
6736 
6737   TargetLowering::CallLoweringInfo CLI(*this);
6738   CLI.setDebugLoc(dl)
6739       .setChain(Chain)
6740       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6741                     Type::getVoidTy(*getContext()),
6742                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6743                                       TLI->getPointerTy(getDataLayout())),
6744                     std::move(Args))
6745       .setDiscardResult()
6746       .setTailCall(isTailCall);
6747 
6748   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6749   return CallResult.second;
6750 }
6751 
6752 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6753                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6754                                 MachineMemOperand *MMO) {
6755   FoldingSetNodeID ID;
6756   ID.AddInteger(MemVT.getRawBits());
6757   AddNodeIDNode(ID, Opcode, VTList, Ops);
6758   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6759   void* IP = nullptr;
6760   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6761     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6762     return SDValue(E, 0);
6763   }
6764 
6765   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6766                                     VTList, MemVT, MMO);
6767   createOperands(N, Ops);
6768 
6769   CSEMap.InsertNode(N, IP);
6770   InsertNode(N);
6771   return SDValue(N, 0);
6772 }
6773 
6774 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6775                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6776                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6777                                        MachineMemOperand *MMO) {
6778   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6779          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6780   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6781 
6782   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6783   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6784 }
6785 
6786 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6787                                 SDValue Chain, SDValue Ptr, SDValue Val,
6788                                 MachineMemOperand *MMO) {
6789   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6790           Opcode == ISD::ATOMIC_LOAD_SUB ||
6791           Opcode == ISD::ATOMIC_LOAD_AND ||
6792           Opcode == ISD::ATOMIC_LOAD_CLR ||
6793           Opcode == ISD::ATOMIC_LOAD_OR ||
6794           Opcode == ISD::ATOMIC_LOAD_XOR ||
6795           Opcode == ISD::ATOMIC_LOAD_NAND ||
6796           Opcode == ISD::ATOMIC_LOAD_MIN ||
6797           Opcode == ISD::ATOMIC_LOAD_MAX ||
6798           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6799           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6800           Opcode == ISD::ATOMIC_LOAD_FADD ||
6801           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6802           Opcode == ISD::ATOMIC_SWAP ||
6803           Opcode == ISD::ATOMIC_STORE) &&
6804          "Invalid Atomic Op");
6805 
6806   EVT VT = Val.getValueType();
6807 
6808   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6809                                                getVTList(VT, MVT::Other);
6810   SDValue Ops[] = {Chain, Ptr, Val};
6811   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6812 }
6813 
6814 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6815                                 EVT VT, SDValue Chain, SDValue Ptr,
6816                                 MachineMemOperand *MMO) {
6817   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6818 
6819   SDVTList VTs = getVTList(VT, MVT::Other);
6820   SDValue Ops[] = {Chain, Ptr};
6821   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6822 }
6823 
6824 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6825 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6826   if (Ops.size() == 1)
6827     return Ops[0];
6828 
6829   SmallVector<EVT, 4> VTs;
6830   VTs.reserve(Ops.size());
6831   for (unsigned i = 0; i < Ops.size(); ++i)
6832     VTs.push_back(Ops[i].getValueType());
6833   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6834 }
6835 
6836 SDValue SelectionDAG::getMemIntrinsicNode(
6837     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6838     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6839     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6840   if (!Size && MemVT.isScalableVector())
6841     Size = MemoryLocation::UnknownSize;
6842   else if (!Size)
6843     Size = MemVT.getStoreSize();
6844 
6845   MachineFunction &MF = getMachineFunction();
6846   MachineMemOperand *MMO =
6847       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6848 
6849   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6850 }
6851 
6852 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6853                                           SDVTList VTList,
6854                                           ArrayRef<SDValue> Ops, EVT MemVT,
6855                                           MachineMemOperand *MMO) {
6856   assert((Opcode == ISD::INTRINSIC_VOID ||
6857           Opcode == ISD::INTRINSIC_W_CHAIN ||
6858           Opcode == ISD::PREFETCH ||
6859           ((int)Opcode <= std::numeric_limits<int>::max() &&
6860            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6861          "Opcode is not a memory-accessing opcode!");
6862 
6863   // Memoize the node unless it returns a flag.
6864   MemIntrinsicSDNode *N;
6865   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6866     FoldingSetNodeID ID;
6867     AddNodeIDNode(ID, Opcode, VTList, Ops);
6868     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6869         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6870     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6871     void *IP = nullptr;
6872     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6873       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6874       return SDValue(E, 0);
6875     }
6876 
6877     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6878                                       VTList, MemVT, MMO);
6879     createOperands(N, Ops);
6880 
6881   CSEMap.InsertNode(N, IP);
6882   } else {
6883     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6884                                       VTList, MemVT, MMO);
6885     createOperands(N, Ops);
6886   }
6887   InsertNode(N);
6888   SDValue V(N, 0);
6889   NewSDValueDbgMsg(V, "Creating new node: ", this);
6890   return V;
6891 }
6892 
6893 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6894                                       SDValue Chain, int FrameIndex,
6895                                       int64_t Size, int64_t Offset) {
6896   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6897   const auto VTs = getVTList(MVT::Other);
6898   SDValue Ops[2] = {
6899       Chain,
6900       getFrameIndex(FrameIndex,
6901                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6902                     true)};
6903 
6904   FoldingSetNodeID ID;
6905   AddNodeIDNode(ID, Opcode, VTs, Ops);
6906   ID.AddInteger(FrameIndex);
6907   ID.AddInteger(Size);
6908   ID.AddInteger(Offset);
6909   void *IP = nullptr;
6910   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6911     return SDValue(E, 0);
6912 
6913   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6914       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6915   createOperands(N, Ops);
6916   CSEMap.InsertNode(N, IP);
6917   InsertNode(N);
6918   SDValue V(N, 0);
6919   NewSDValueDbgMsg(V, "Creating new node: ", this);
6920   return V;
6921 }
6922 
6923 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6924 /// MachinePointerInfo record from it.  This is particularly useful because the
6925 /// code generator has many cases where it doesn't bother passing in a
6926 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6927 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6928                                            SelectionDAG &DAG, SDValue Ptr,
6929                                            int64_t Offset = 0) {
6930   // If this is FI+Offset, we can model it.
6931   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6932     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6933                                              FI->getIndex(), Offset);
6934 
6935   // If this is (FI+Offset1)+Offset2, we can model it.
6936   if (Ptr.getOpcode() != ISD::ADD ||
6937       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6938       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6939     return Info;
6940 
6941   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6942   return MachinePointerInfo::getFixedStack(
6943       DAG.getMachineFunction(), FI,
6944       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6945 }
6946 
6947 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6948 /// MachinePointerInfo record from it.  This is particularly useful because the
6949 /// code generator has many cases where it doesn't bother passing in a
6950 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6951 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6952                                            SelectionDAG &DAG, SDValue Ptr,
6953                                            SDValue OffsetOp) {
6954   // If the 'Offset' value isn't a constant, we can't handle this.
6955   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6956     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6957   if (OffsetOp.isUndef())
6958     return InferPointerInfo(Info, DAG, Ptr);
6959   return Info;
6960 }
6961 
6962 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6963                               EVT VT, const SDLoc &dl, SDValue Chain,
6964                               SDValue Ptr, SDValue Offset,
6965                               MachinePointerInfo PtrInfo, EVT MemVT,
6966                               Align Alignment,
6967                               MachineMemOperand::Flags MMOFlags,
6968                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6969   assert(Chain.getValueType() == MVT::Other &&
6970         "Invalid chain type");
6971 
6972   MMOFlags |= MachineMemOperand::MOLoad;
6973   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6974   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6975   // clients.
6976   if (PtrInfo.V.isNull())
6977     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6978 
6979   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6980   MachineFunction &MF = getMachineFunction();
6981   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6982                                                    Alignment, AAInfo, Ranges);
6983   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6984 }
6985 
6986 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6987                               EVT VT, const SDLoc &dl, SDValue Chain,
6988                               SDValue Ptr, SDValue Offset, EVT MemVT,
6989                               MachineMemOperand *MMO) {
6990   if (VT == MemVT) {
6991     ExtType = ISD::NON_EXTLOAD;
6992   } else if (ExtType == ISD::NON_EXTLOAD) {
6993     assert(VT == MemVT && "Non-extending load from different memory type!");
6994   } else {
6995     // Extending load.
6996     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6997            "Should only be an extending load, not truncating!");
6998     assert(VT.isInteger() == MemVT.isInteger() &&
6999            "Cannot convert from FP to Int or Int -> FP!");
7000     assert(VT.isVector() == MemVT.isVector() &&
7001            "Cannot use an ext load to convert to or from a vector!");
7002     assert((!VT.isVector() ||
7003             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7004            "Cannot use an ext load to change the number of vector elements!");
7005   }
7006 
7007   bool Indexed = AM != ISD::UNINDEXED;
7008   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7009 
7010   SDVTList VTs = Indexed ?
7011     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7012   SDValue Ops[] = { Chain, Ptr, Offset };
7013   FoldingSetNodeID ID;
7014   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7015   ID.AddInteger(MemVT.getRawBits());
7016   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7017       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7018   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7019   void *IP = nullptr;
7020   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7021     cast<LoadSDNode>(E)->refineAlignment(MMO);
7022     return SDValue(E, 0);
7023   }
7024   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7025                                   ExtType, MemVT, MMO);
7026   createOperands(N, Ops);
7027 
7028   CSEMap.InsertNode(N, IP);
7029   InsertNode(N);
7030   SDValue V(N, 0);
7031   NewSDValueDbgMsg(V, "Creating new node: ", this);
7032   return V;
7033 }
7034 
7035 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7036                               SDValue Ptr, MachinePointerInfo PtrInfo,
7037                               MaybeAlign Alignment,
7038                               MachineMemOperand::Flags MMOFlags,
7039                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7040   SDValue Undef = getUNDEF(Ptr.getValueType());
7041   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7042                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7043 }
7044 
7045 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7046                               SDValue Ptr, MachineMemOperand *MMO) {
7047   SDValue Undef = getUNDEF(Ptr.getValueType());
7048   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7049                  VT, MMO);
7050 }
7051 
7052 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7053                                  EVT VT, SDValue Chain, SDValue Ptr,
7054                                  MachinePointerInfo PtrInfo, EVT MemVT,
7055                                  MaybeAlign Alignment,
7056                                  MachineMemOperand::Flags MMOFlags,
7057                                  const AAMDNodes &AAInfo) {
7058   SDValue Undef = getUNDEF(Ptr.getValueType());
7059   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7060                  MemVT, Alignment, MMOFlags, AAInfo);
7061 }
7062 
7063 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7064                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7065                                  MachineMemOperand *MMO) {
7066   SDValue Undef = getUNDEF(Ptr.getValueType());
7067   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7068                  MemVT, MMO);
7069 }
7070 
7071 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7072                                      SDValue Base, SDValue Offset,
7073                                      ISD::MemIndexedMode AM) {
7074   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7075   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7076   // Don't propagate the invariant or dereferenceable flags.
7077   auto MMOFlags =
7078       LD->getMemOperand()->getFlags() &
7079       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7080   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7081                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7082                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7083 }
7084 
7085 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7086                                SDValue Ptr, MachinePointerInfo PtrInfo,
7087                                Align Alignment,
7088                                MachineMemOperand::Flags MMOFlags,
7089                                const AAMDNodes &AAInfo) {
7090   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7091 
7092   MMOFlags |= MachineMemOperand::MOStore;
7093   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7094 
7095   if (PtrInfo.V.isNull())
7096     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7097 
7098   MachineFunction &MF = getMachineFunction();
7099   uint64_t Size =
7100       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7101   MachineMemOperand *MMO =
7102       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7103   return getStore(Chain, dl, Val, Ptr, MMO);
7104 }
7105 
7106 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7107                                SDValue Ptr, MachineMemOperand *MMO) {
7108   assert(Chain.getValueType() == MVT::Other &&
7109         "Invalid chain type");
7110   EVT VT = Val.getValueType();
7111   SDVTList VTs = getVTList(MVT::Other);
7112   SDValue Undef = getUNDEF(Ptr.getValueType());
7113   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7114   FoldingSetNodeID ID;
7115   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7116   ID.AddInteger(VT.getRawBits());
7117   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7118       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7119   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7120   void *IP = nullptr;
7121   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7122     cast<StoreSDNode>(E)->refineAlignment(MMO);
7123     return SDValue(E, 0);
7124   }
7125   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7126                                    ISD::UNINDEXED, false, VT, MMO);
7127   createOperands(N, Ops);
7128 
7129   CSEMap.InsertNode(N, IP);
7130   InsertNode(N);
7131   SDValue V(N, 0);
7132   NewSDValueDbgMsg(V, "Creating new node: ", this);
7133   return V;
7134 }
7135 
7136 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7137                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7138                                     EVT SVT, Align Alignment,
7139                                     MachineMemOperand::Flags MMOFlags,
7140                                     const AAMDNodes &AAInfo) {
7141   assert(Chain.getValueType() == MVT::Other &&
7142         "Invalid chain type");
7143 
7144   MMOFlags |= MachineMemOperand::MOStore;
7145   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7146 
7147   if (PtrInfo.V.isNull())
7148     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7149 
7150   MachineFunction &MF = getMachineFunction();
7151   MachineMemOperand *MMO = MF.getMachineMemOperand(
7152       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7153       Alignment, AAInfo);
7154   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7155 }
7156 
7157 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7158                                     SDValue Ptr, EVT SVT,
7159                                     MachineMemOperand *MMO) {
7160   EVT VT = Val.getValueType();
7161 
7162   assert(Chain.getValueType() == MVT::Other &&
7163         "Invalid chain type");
7164   if (VT == SVT)
7165     return getStore(Chain, dl, Val, Ptr, MMO);
7166 
7167   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7168          "Should only be a truncating store, not extending!");
7169   assert(VT.isInteger() == SVT.isInteger() &&
7170          "Can't do FP-INT conversion!");
7171   assert(VT.isVector() == SVT.isVector() &&
7172          "Cannot use trunc store to convert to or from a vector!");
7173   assert((!VT.isVector() ||
7174           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7175          "Cannot use trunc store to change the number of vector elements!");
7176 
7177   SDVTList VTs = getVTList(MVT::Other);
7178   SDValue Undef = getUNDEF(Ptr.getValueType());
7179   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7180   FoldingSetNodeID ID;
7181   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7182   ID.AddInteger(SVT.getRawBits());
7183   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7184       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7185   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7186   void *IP = nullptr;
7187   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7188     cast<StoreSDNode>(E)->refineAlignment(MMO);
7189     return SDValue(E, 0);
7190   }
7191   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7192                                    ISD::UNINDEXED, true, SVT, MMO);
7193   createOperands(N, Ops);
7194 
7195   CSEMap.InsertNode(N, IP);
7196   InsertNode(N);
7197   SDValue V(N, 0);
7198   NewSDValueDbgMsg(V, "Creating new node: ", this);
7199   return V;
7200 }
7201 
7202 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7203                                       SDValue Base, SDValue Offset,
7204                                       ISD::MemIndexedMode AM) {
7205   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7206   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7207   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7208   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7209   FoldingSetNodeID ID;
7210   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7211   ID.AddInteger(ST->getMemoryVT().getRawBits());
7212   ID.AddInteger(ST->getRawSubclassData());
7213   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7214   void *IP = nullptr;
7215   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7216     return SDValue(E, 0);
7217 
7218   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7219                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7220                                    ST->getMemOperand());
7221   createOperands(N, Ops);
7222 
7223   CSEMap.InsertNode(N, IP);
7224   InsertNode(N);
7225   SDValue V(N, 0);
7226   NewSDValueDbgMsg(V, "Creating new node: ", this);
7227   return V;
7228 }
7229 
7230 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7231                                     SDValue Base, SDValue Offset, SDValue Mask,
7232                                     SDValue PassThru, EVT MemVT,
7233                                     MachineMemOperand *MMO,
7234                                     ISD::MemIndexedMode AM,
7235                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7236   bool Indexed = AM != ISD::UNINDEXED;
7237   assert((Indexed || Offset.isUndef()) &&
7238          "Unindexed masked load with an offset!");
7239   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7240                          : getVTList(VT, MVT::Other);
7241   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7242   FoldingSetNodeID ID;
7243   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7244   ID.AddInteger(MemVT.getRawBits());
7245   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7246       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7247   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7248   void *IP = nullptr;
7249   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7250     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7251     return SDValue(E, 0);
7252   }
7253   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7254                                         AM, ExtTy, isExpanding, MemVT, MMO);
7255   createOperands(N, Ops);
7256 
7257   CSEMap.InsertNode(N, IP);
7258   InsertNode(N);
7259   SDValue V(N, 0);
7260   NewSDValueDbgMsg(V, "Creating new node: ", this);
7261   return V;
7262 }
7263 
7264 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7265                                            SDValue Base, SDValue Offset,
7266                                            ISD::MemIndexedMode AM) {
7267   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7268   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7269   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7270                        Offset, LD->getMask(), LD->getPassThru(),
7271                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7272                        LD->getExtensionType(), LD->isExpandingLoad());
7273 }
7274 
7275 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7276                                      SDValue Val, SDValue Base, SDValue Offset,
7277                                      SDValue Mask, EVT MemVT,
7278                                      MachineMemOperand *MMO,
7279                                      ISD::MemIndexedMode AM, bool IsTruncating,
7280                                      bool IsCompressing) {
7281   assert(Chain.getValueType() == MVT::Other &&
7282         "Invalid chain type");
7283   bool Indexed = AM != ISD::UNINDEXED;
7284   assert((Indexed || Offset.isUndef()) &&
7285          "Unindexed masked store with an offset!");
7286   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7287                          : getVTList(MVT::Other);
7288   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7289   FoldingSetNodeID ID;
7290   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7291   ID.AddInteger(MemVT.getRawBits());
7292   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7293       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7294   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7295   void *IP = nullptr;
7296   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7297     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7298     return SDValue(E, 0);
7299   }
7300   auto *N =
7301       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7302                                    IsTruncating, IsCompressing, MemVT, MMO);
7303   createOperands(N, Ops);
7304 
7305   CSEMap.InsertNode(N, IP);
7306   InsertNode(N);
7307   SDValue V(N, 0);
7308   NewSDValueDbgMsg(V, "Creating new node: ", this);
7309   return V;
7310 }
7311 
7312 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7313                                             SDValue Base, SDValue Offset,
7314                                             ISD::MemIndexedMode AM) {
7315   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7316   assert(ST->getOffset().isUndef() &&
7317          "Masked store is already a indexed store!");
7318   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7319                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7320                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7321 }
7322 
7323 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7324                                       ArrayRef<SDValue> Ops,
7325                                       MachineMemOperand *MMO,
7326                                       ISD::MemIndexType IndexType) {
7327   assert(Ops.size() == 6 && "Incompatible number of operands");
7328 
7329   FoldingSetNodeID ID;
7330   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7331   ID.AddInteger(VT.getRawBits());
7332   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7333       dl.getIROrder(), VTs, VT, MMO, IndexType));
7334   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7335   void *IP = nullptr;
7336   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7337     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7338     return SDValue(E, 0);
7339   }
7340 
7341   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7342                                           VTs, VT, MMO, IndexType);
7343   createOperands(N, Ops);
7344 
7345   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7346          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7347   assert(N->getMask().getValueType().getVectorNumElements() ==
7348              N->getValueType(0).getVectorNumElements() &&
7349          "Vector width mismatch between mask and data");
7350   assert(N->getIndex().getValueType().getVectorNumElements() >=
7351              N->getValueType(0).getVectorNumElements() &&
7352          "Vector width mismatch between index and data");
7353   assert(isa<ConstantSDNode>(N->getScale()) &&
7354          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7355          "Scale should be a constant power of 2");
7356 
7357   CSEMap.InsertNode(N, IP);
7358   InsertNode(N);
7359   SDValue V(N, 0);
7360   NewSDValueDbgMsg(V, "Creating new node: ", this);
7361   return V;
7362 }
7363 
7364 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7365                                        ArrayRef<SDValue> Ops,
7366                                        MachineMemOperand *MMO,
7367                                        ISD::MemIndexType IndexType) {
7368   assert(Ops.size() == 6 && "Incompatible number of operands");
7369 
7370   FoldingSetNodeID ID;
7371   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7372   ID.AddInteger(VT.getRawBits());
7373   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7374       dl.getIROrder(), VTs, VT, MMO, IndexType));
7375   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7376   void *IP = nullptr;
7377   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7378     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7379     return SDValue(E, 0);
7380   }
7381   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7382                                            VTs, VT, MMO, IndexType);
7383   createOperands(N, Ops);
7384 
7385   assert(N->getMask().getValueType().getVectorNumElements() ==
7386              N->getValue().getValueType().getVectorNumElements() &&
7387          "Vector width mismatch between mask and data");
7388   assert(N->getIndex().getValueType().getVectorNumElements() >=
7389              N->getValue().getValueType().getVectorNumElements() &&
7390          "Vector width mismatch between index and data");
7391   assert(isa<ConstantSDNode>(N->getScale()) &&
7392          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7393          "Scale should be a constant power of 2");
7394 
7395   CSEMap.InsertNode(N, IP);
7396   InsertNode(N);
7397   SDValue V(N, 0);
7398   NewSDValueDbgMsg(V, "Creating new node: ", this);
7399   return V;
7400 }
7401 
7402 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7403   // select undef, T, F --> T (if T is a constant), otherwise F
7404   // select, ?, undef, F --> F
7405   // select, ?, T, undef --> T
7406   if (Cond.isUndef())
7407     return isConstantValueOfAnyType(T) ? T : F;
7408   if (T.isUndef())
7409     return F;
7410   if (F.isUndef())
7411     return T;
7412 
7413   // select true, T, F --> T
7414   // select false, T, F --> F
7415   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7416     return CondC->isNullValue() ? F : T;
7417 
7418   // TODO: This should simplify VSELECT with constant condition using something
7419   // like this (but check boolean contents to be complete?):
7420   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7421   //    return T;
7422   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7423   //    return F;
7424 
7425   // select ?, T, T --> T
7426   if (T == F)
7427     return T;
7428 
7429   return SDValue();
7430 }
7431 
7432 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7433   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7434   if (X.isUndef())
7435     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7436   // shift X, undef --> undef (because it may shift by the bitwidth)
7437   if (Y.isUndef())
7438     return getUNDEF(X.getValueType());
7439 
7440   // shift 0, Y --> 0
7441   // shift X, 0 --> X
7442   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7443     return X;
7444 
7445   // shift X, C >= bitwidth(X) --> undef
7446   // All vector elements must be too big (or undef) to avoid partial undefs.
7447   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7448     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7449   };
7450   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7451     return getUNDEF(X.getValueType());
7452 
7453   return SDValue();
7454 }
7455 
7456 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7457                                       SDNodeFlags Flags) {
7458   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7459   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7460   // operation is poison. That result can be relaxed to undef.
7461   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7462   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7463   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7464                 (YC && YC->getValueAPF().isNaN());
7465   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7466                 (YC && YC->getValueAPF().isInfinity());
7467 
7468   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7469     return getUNDEF(X.getValueType());
7470 
7471   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7472     return getUNDEF(X.getValueType());
7473 
7474   if (!YC)
7475     return SDValue();
7476 
7477   // X + -0.0 --> X
7478   if (Opcode == ISD::FADD)
7479     if (YC->getValueAPF().isNegZero())
7480       return X;
7481 
7482   // X - +0.0 --> X
7483   if (Opcode == ISD::FSUB)
7484     if (YC->getValueAPF().isPosZero())
7485       return X;
7486 
7487   // X * 1.0 --> X
7488   // X / 1.0 --> X
7489   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7490     if (YC->getValueAPF().isExactlyValue(1.0))
7491       return X;
7492 
7493   // X * 0.0 --> 0.0
7494   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7495     if (YC->getValueAPF().isZero())
7496       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7497 
7498   return SDValue();
7499 }
7500 
7501 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7502                                SDValue Ptr, SDValue SV, unsigned Align) {
7503   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7504   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7505 }
7506 
7507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7508                               ArrayRef<SDUse> Ops) {
7509   switch (Ops.size()) {
7510   case 0: return getNode(Opcode, DL, VT);
7511   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7512   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7513   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7514   default: break;
7515   }
7516 
7517   // Copy from an SDUse array into an SDValue array for use with
7518   // the regular getNode logic.
7519   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7520   return getNode(Opcode, DL, VT, NewOps);
7521 }
7522 
7523 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7524                               ArrayRef<SDValue> Ops) {
7525   SDNodeFlags Flags;
7526   if (Inserter)
7527     Flags = Inserter->getFlags();
7528   return getNode(Opcode, DL, VT, Ops, Flags);
7529 }
7530 
7531 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7532                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7533   unsigned NumOps = Ops.size();
7534   switch (NumOps) {
7535   case 0: return getNode(Opcode, DL, VT);
7536   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7537   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7538   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7539   default: break;
7540   }
7541 
7542   switch (Opcode) {
7543   default: break;
7544   case ISD::BUILD_VECTOR:
7545     // Attempt to simplify BUILD_VECTOR.
7546     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7547       return V;
7548     break;
7549   case ISD::CONCAT_VECTORS:
7550     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7551       return V;
7552     break;
7553   case ISD::SELECT_CC:
7554     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7555     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7556            "LHS and RHS of condition must have same type!");
7557     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7558            "True and False arms of SelectCC must have same type!");
7559     assert(Ops[2].getValueType() == VT &&
7560            "select_cc node must be of same type as true and false value!");
7561     break;
7562   case ISD::BR_CC:
7563     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7564     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7565            "LHS/RHS of comparison should match types!");
7566     break;
7567   }
7568 
7569   // Memoize nodes.
7570   SDNode *N;
7571   SDVTList VTs = getVTList(VT);
7572 
7573   if (VT != MVT::Glue) {
7574     FoldingSetNodeID ID;
7575     AddNodeIDNode(ID, Opcode, VTs, Ops);
7576     void *IP = nullptr;
7577 
7578     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7579       return SDValue(E, 0);
7580 
7581     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7582     createOperands(N, Ops);
7583 
7584     CSEMap.InsertNode(N, IP);
7585   } else {
7586     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7587     createOperands(N, Ops);
7588   }
7589 
7590   N->setFlags(Flags);
7591   InsertNode(N);
7592   SDValue V(N, 0);
7593   NewSDValueDbgMsg(V, "Creating new node: ", this);
7594   return V;
7595 }
7596 
7597 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7598                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7599   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7600 }
7601 
7602 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7603                               ArrayRef<SDValue> Ops) {
7604   SDNodeFlags Flags;
7605   if (Inserter)
7606     Flags = Inserter->getFlags();
7607   return getNode(Opcode, DL, VTList, Ops, Flags);
7608 }
7609 
7610 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7611                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7612   if (VTList.NumVTs == 1)
7613     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7614 
7615   switch (Opcode) {
7616   case ISD::STRICT_FP_EXTEND:
7617     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7618            "Invalid STRICT_FP_EXTEND!");
7619     assert(VTList.VTs[0].isFloatingPoint() &&
7620            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7621     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7622            "STRICT_FP_EXTEND result type should be vector iff the operand "
7623            "type is vector!");
7624     assert((!VTList.VTs[0].isVector() ||
7625             VTList.VTs[0].getVectorNumElements() ==
7626             Ops[1].getValueType().getVectorNumElements()) &&
7627            "Vector element count mismatch!");
7628     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7629            "Invalid fpext node, dst <= src!");
7630     break;
7631   case ISD::STRICT_FP_ROUND:
7632     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7633     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7634            "STRICT_FP_ROUND result type should be vector iff the operand "
7635            "type is vector!");
7636     assert((!VTList.VTs[0].isVector() ||
7637             VTList.VTs[0].getVectorNumElements() ==
7638             Ops[1].getValueType().getVectorNumElements()) &&
7639            "Vector element count mismatch!");
7640     assert(VTList.VTs[0].isFloatingPoint() &&
7641            Ops[1].getValueType().isFloatingPoint() &&
7642            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7643            isa<ConstantSDNode>(Ops[2]) &&
7644            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7645             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7646            "Invalid STRICT_FP_ROUND!");
7647     break;
7648 #if 0
7649   // FIXME: figure out how to safely handle things like
7650   // int foo(int x) { return 1 << (x & 255); }
7651   // int bar() { return foo(256); }
7652   case ISD::SRA_PARTS:
7653   case ISD::SRL_PARTS:
7654   case ISD::SHL_PARTS:
7655     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7656         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7657       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7658     else if (N3.getOpcode() == ISD::AND)
7659       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7660         // If the and is only masking out bits that cannot effect the shift,
7661         // eliminate the and.
7662         unsigned NumBits = VT.getScalarSizeInBits()*2;
7663         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7664           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7665       }
7666     break;
7667 #endif
7668   }
7669 
7670   // Memoize the node unless it returns a flag.
7671   SDNode *N;
7672   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7673     FoldingSetNodeID ID;
7674     AddNodeIDNode(ID, Opcode, VTList, Ops);
7675     void *IP = nullptr;
7676     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7677       return SDValue(E, 0);
7678 
7679     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7680     createOperands(N, Ops);
7681     CSEMap.InsertNode(N, IP);
7682   } else {
7683     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7684     createOperands(N, Ops);
7685   }
7686 
7687   N->setFlags(Flags);
7688   InsertNode(N);
7689   SDValue V(N, 0);
7690   NewSDValueDbgMsg(V, "Creating new node: ", this);
7691   return V;
7692 }
7693 
7694 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7695                               SDVTList VTList) {
7696   return getNode(Opcode, DL, VTList, None);
7697 }
7698 
7699 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7700                               SDValue N1) {
7701   SDValue Ops[] = { N1 };
7702   return getNode(Opcode, DL, VTList, Ops);
7703 }
7704 
7705 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7706                               SDValue N1, SDValue N2) {
7707   SDValue Ops[] = { N1, N2 };
7708   return getNode(Opcode, DL, VTList, Ops);
7709 }
7710 
7711 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7712                               SDValue N1, SDValue N2, SDValue N3) {
7713   SDValue Ops[] = { N1, N2, N3 };
7714   return getNode(Opcode, DL, VTList, Ops);
7715 }
7716 
7717 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7718                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7719   SDValue Ops[] = { N1, N2, N3, N4 };
7720   return getNode(Opcode, DL, VTList, Ops);
7721 }
7722 
7723 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7724                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7725                               SDValue N5) {
7726   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7727   return getNode(Opcode, DL, VTList, Ops);
7728 }
7729 
7730 SDVTList SelectionDAG::getVTList(EVT VT) {
7731   return makeVTList(SDNode::getValueTypeList(VT), 1);
7732 }
7733 
7734 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7735   FoldingSetNodeID ID;
7736   ID.AddInteger(2U);
7737   ID.AddInteger(VT1.getRawBits());
7738   ID.AddInteger(VT2.getRawBits());
7739 
7740   void *IP = nullptr;
7741   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7742   if (!Result) {
7743     EVT *Array = Allocator.Allocate<EVT>(2);
7744     Array[0] = VT1;
7745     Array[1] = VT2;
7746     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7747     VTListMap.InsertNode(Result, IP);
7748   }
7749   return Result->getSDVTList();
7750 }
7751 
7752 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7753   FoldingSetNodeID ID;
7754   ID.AddInteger(3U);
7755   ID.AddInteger(VT1.getRawBits());
7756   ID.AddInteger(VT2.getRawBits());
7757   ID.AddInteger(VT3.getRawBits());
7758 
7759   void *IP = nullptr;
7760   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7761   if (!Result) {
7762     EVT *Array = Allocator.Allocate<EVT>(3);
7763     Array[0] = VT1;
7764     Array[1] = VT2;
7765     Array[2] = VT3;
7766     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7767     VTListMap.InsertNode(Result, IP);
7768   }
7769   return Result->getSDVTList();
7770 }
7771 
7772 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7773   FoldingSetNodeID ID;
7774   ID.AddInteger(4U);
7775   ID.AddInteger(VT1.getRawBits());
7776   ID.AddInteger(VT2.getRawBits());
7777   ID.AddInteger(VT3.getRawBits());
7778   ID.AddInteger(VT4.getRawBits());
7779 
7780   void *IP = nullptr;
7781   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7782   if (!Result) {
7783     EVT *Array = Allocator.Allocate<EVT>(4);
7784     Array[0] = VT1;
7785     Array[1] = VT2;
7786     Array[2] = VT3;
7787     Array[3] = VT4;
7788     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7789     VTListMap.InsertNode(Result, IP);
7790   }
7791   return Result->getSDVTList();
7792 }
7793 
7794 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7795   unsigned NumVTs = VTs.size();
7796   FoldingSetNodeID ID;
7797   ID.AddInteger(NumVTs);
7798   for (unsigned index = 0; index < NumVTs; index++) {
7799     ID.AddInteger(VTs[index].getRawBits());
7800   }
7801 
7802   void *IP = nullptr;
7803   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7804   if (!Result) {
7805     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7806     llvm::copy(VTs, Array);
7807     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7808     VTListMap.InsertNode(Result, IP);
7809   }
7810   return Result->getSDVTList();
7811 }
7812 
7813 
7814 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7815 /// specified operands.  If the resultant node already exists in the DAG,
7816 /// this does not modify the specified node, instead it returns the node that
7817 /// already exists.  If the resultant node does not exist in the DAG, the
7818 /// input node is returned.  As a degenerate case, if you specify the same
7819 /// input operands as the node already has, the input node is returned.
7820 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7821   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7822 
7823   // Check to see if there is no change.
7824   if (Op == N->getOperand(0)) return N;
7825 
7826   // See if the modified node already exists.
7827   void *InsertPos = nullptr;
7828   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7829     return Existing;
7830 
7831   // Nope it doesn't.  Remove the node from its current place in the maps.
7832   if (InsertPos)
7833     if (!RemoveNodeFromCSEMaps(N))
7834       InsertPos = nullptr;
7835 
7836   // Now we update the operands.
7837   N->OperandList[0].set(Op);
7838 
7839   updateDivergence(N);
7840   // If this gets put into a CSE map, add it.
7841   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7842   return N;
7843 }
7844 
7845 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7846   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7847 
7848   // Check to see if there is no change.
7849   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7850     return N;   // No operands changed, just return the input node.
7851 
7852   // See if the modified node already exists.
7853   void *InsertPos = nullptr;
7854   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7855     return Existing;
7856 
7857   // Nope it doesn't.  Remove the node from its current place in the maps.
7858   if (InsertPos)
7859     if (!RemoveNodeFromCSEMaps(N))
7860       InsertPos = nullptr;
7861 
7862   // Now we update the operands.
7863   if (N->OperandList[0] != Op1)
7864     N->OperandList[0].set(Op1);
7865   if (N->OperandList[1] != Op2)
7866     N->OperandList[1].set(Op2);
7867 
7868   updateDivergence(N);
7869   // If this gets put into a CSE map, add it.
7870   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7871   return N;
7872 }
7873 
7874 SDNode *SelectionDAG::
7875 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7876   SDValue Ops[] = { Op1, Op2, Op3 };
7877   return UpdateNodeOperands(N, Ops);
7878 }
7879 
7880 SDNode *SelectionDAG::
7881 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7882                    SDValue Op3, SDValue Op4) {
7883   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7884   return UpdateNodeOperands(N, Ops);
7885 }
7886 
7887 SDNode *SelectionDAG::
7888 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7889                    SDValue Op3, SDValue Op4, SDValue Op5) {
7890   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7891   return UpdateNodeOperands(N, Ops);
7892 }
7893 
7894 SDNode *SelectionDAG::
7895 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7896   unsigned NumOps = Ops.size();
7897   assert(N->getNumOperands() == NumOps &&
7898          "Update with wrong number of operands");
7899 
7900   // If no operands changed just return the input node.
7901   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7902     return N;
7903 
7904   // See if the modified node already exists.
7905   void *InsertPos = nullptr;
7906   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7907     return Existing;
7908 
7909   // Nope it doesn't.  Remove the node from its current place in the maps.
7910   if (InsertPos)
7911     if (!RemoveNodeFromCSEMaps(N))
7912       InsertPos = nullptr;
7913 
7914   // Now we update the operands.
7915   for (unsigned i = 0; i != NumOps; ++i)
7916     if (N->OperandList[i] != Ops[i])
7917       N->OperandList[i].set(Ops[i]);
7918 
7919   updateDivergence(N);
7920   // If this gets put into a CSE map, add it.
7921   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7922   return N;
7923 }
7924 
7925 /// DropOperands - Release the operands and set this node to have
7926 /// zero operands.
7927 void SDNode::DropOperands() {
7928   // Unlike the code in MorphNodeTo that does this, we don't need to
7929   // watch for dead nodes here.
7930   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7931     SDUse &Use = *I++;
7932     Use.set(SDValue());
7933   }
7934 }
7935 
7936 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7937                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7938   if (NewMemRefs.empty()) {
7939     N->clearMemRefs();
7940     return;
7941   }
7942 
7943   // Check if we can avoid allocating by storing a single reference directly.
7944   if (NewMemRefs.size() == 1) {
7945     N->MemRefs = NewMemRefs[0];
7946     N->NumMemRefs = 1;
7947     return;
7948   }
7949 
7950   MachineMemOperand **MemRefsBuffer =
7951       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7952   llvm::copy(NewMemRefs, MemRefsBuffer);
7953   N->MemRefs = MemRefsBuffer;
7954   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7955 }
7956 
7957 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7958 /// machine opcode.
7959 ///
7960 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7961                                    EVT VT) {
7962   SDVTList VTs = getVTList(VT);
7963   return SelectNodeTo(N, MachineOpc, VTs, None);
7964 }
7965 
7966 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7967                                    EVT VT, SDValue Op1) {
7968   SDVTList VTs = getVTList(VT);
7969   SDValue Ops[] = { Op1 };
7970   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7971 }
7972 
7973 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7974                                    EVT VT, SDValue Op1,
7975                                    SDValue Op2) {
7976   SDVTList VTs = getVTList(VT);
7977   SDValue Ops[] = { Op1, Op2 };
7978   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7979 }
7980 
7981 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7982                                    EVT VT, SDValue Op1,
7983                                    SDValue Op2, SDValue Op3) {
7984   SDVTList VTs = getVTList(VT);
7985   SDValue Ops[] = { Op1, Op2, Op3 };
7986   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7987 }
7988 
7989 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7990                                    EVT VT, ArrayRef<SDValue> Ops) {
7991   SDVTList VTs = getVTList(VT);
7992   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7993 }
7994 
7995 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7996                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7997   SDVTList VTs = getVTList(VT1, VT2);
7998   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7999 }
8000 
8001 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8002                                    EVT VT1, EVT VT2) {
8003   SDVTList VTs = getVTList(VT1, VT2);
8004   return SelectNodeTo(N, MachineOpc, VTs, None);
8005 }
8006 
8007 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8008                                    EVT VT1, EVT VT2, EVT VT3,
8009                                    ArrayRef<SDValue> Ops) {
8010   SDVTList VTs = getVTList(VT1, VT2, VT3);
8011   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8012 }
8013 
8014 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8015                                    EVT VT1, EVT VT2,
8016                                    SDValue Op1, SDValue Op2) {
8017   SDVTList VTs = getVTList(VT1, VT2);
8018   SDValue Ops[] = { Op1, Op2 };
8019   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8020 }
8021 
8022 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8023                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8024   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8025   // Reset the NodeID to -1.
8026   New->setNodeId(-1);
8027   if (New != N) {
8028     ReplaceAllUsesWith(N, New);
8029     RemoveDeadNode(N);
8030   }
8031   return New;
8032 }
8033 
8034 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8035 /// the line number information on the merged node since it is not possible to
8036 /// preserve the information that operation is associated with multiple lines.
8037 /// This will make the debugger working better at -O0, were there is a higher
8038 /// probability having other instructions associated with that line.
8039 ///
8040 /// For IROrder, we keep the smaller of the two
8041 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8042   DebugLoc NLoc = N->getDebugLoc();
8043   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8044     N->setDebugLoc(DebugLoc());
8045   }
8046   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8047   N->setIROrder(Order);
8048   return N;
8049 }
8050 
8051 /// MorphNodeTo - This *mutates* the specified node to have the specified
8052 /// return type, opcode, and operands.
8053 ///
8054 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8055 /// node of the specified opcode and operands, it returns that node instead of
8056 /// the current one.  Note that the SDLoc need not be the same.
8057 ///
8058 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8059 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8060 /// node, and because it doesn't require CSE recalculation for any of
8061 /// the node's users.
8062 ///
8063 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8064 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8065 /// the legalizer which maintain worklists that would need to be updated when
8066 /// deleting things.
8067 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8068                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8069   // If an identical node already exists, use it.
8070   void *IP = nullptr;
8071   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8072     FoldingSetNodeID ID;
8073     AddNodeIDNode(ID, Opc, VTs, Ops);
8074     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8075       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8076   }
8077 
8078   if (!RemoveNodeFromCSEMaps(N))
8079     IP = nullptr;
8080 
8081   // Start the morphing.
8082   N->NodeType = Opc;
8083   N->ValueList = VTs.VTs;
8084   N->NumValues = VTs.NumVTs;
8085 
8086   // Clear the operands list, updating used nodes to remove this from their
8087   // use list.  Keep track of any operands that become dead as a result.
8088   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8089   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8090     SDUse &Use = *I++;
8091     SDNode *Used = Use.getNode();
8092     Use.set(SDValue());
8093     if (Used->use_empty())
8094       DeadNodeSet.insert(Used);
8095   }
8096 
8097   // For MachineNode, initialize the memory references information.
8098   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8099     MN->clearMemRefs();
8100 
8101   // Swap for an appropriately sized array from the recycler.
8102   removeOperands(N);
8103   createOperands(N, Ops);
8104 
8105   // Delete any nodes that are still dead after adding the uses for the
8106   // new operands.
8107   if (!DeadNodeSet.empty()) {
8108     SmallVector<SDNode *, 16> DeadNodes;
8109     for (SDNode *N : DeadNodeSet)
8110       if (N->use_empty())
8111         DeadNodes.push_back(N);
8112     RemoveDeadNodes(DeadNodes);
8113   }
8114 
8115   if (IP)
8116     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8117   return N;
8118 }
8119 
8120 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8121   unsigned OrigOpc = Node->getOpcode();
8122   unsigned NewOpc;
8123   switch (OrigOpc) {
8124   default:
8125     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8126 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8127   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8128 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8129   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8130 #include "llvm/IR/ConstrainedOps.def"
8131   }
8132 
8133   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8134 
8135   // We're taking this node out of the chain, so we need to re-link things.
8136   SDValue InputChain = Node->getOperand(0);
8137   SDValue OutputChain = SDValue(Node, 1);
8138   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8139 
8140   SmallVector<SDValue, 3> Ops;
8141   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8142     Ops.push_back(Node->getOperand(i));
8143 
8144   SDVTList VTs = getVTList(Node->getValueType(0));
8145   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8146 
8147   // MorphNodeTo can operate in two ways: if an existing node with the
8148   // specified operands exists, it can just return it.  Otherwise, it
8149   // updates the node in place to have the requested operands.
8150   if (Res == Node) {
8151     // If we updated the node in place, reset the node ID.  To the isel,
8152     // this should be just like a newly allocated machine node.
8153     Res->setNodeId(-1);
8154   } else {
8155     ReplaceAllUsesWith(Node, Res);
8156     RemoveDeadNode(Node);
8157   }
8158 
8159   return Res;
8160 }
8161 
8162 /// getMachineNode - These are used for target selectors to create a new node
8163 /// with specified return type(s), MachineInstr opcode, and operands.
8164 ///
8165 /// Note that getMachineNode returns the resultant node.  If there is already a
8166 /// node of the specified opcode and operands, it returns that node instead of
8167 /// the current one.
8168 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8169                                             EVT VT) {
8170   SDVTList VTs = getVTList(VT);
8171   return getMachineNode(Opcode, dl, VTs, None);
8172 }
8173 
8174 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8175                                             EVT VT, SDValue Op1) {
8176   SDVTList VTs = getVTList(VT);
8177   SDValue Ops[] = { Op1 };
8178   return getMachineNode(Opcode, dl, VTs, Ops);
8179 }
8180 
8181 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8182                                             EVT VT, SDValue Op1, SDValue Op2) {
8183   SDVTList VTs = getVTList(VT);
8184   SDValue Ops[] = { Op1, Op2 };
8185   return getMachineNode(Opcode, dl, VTs, Ops);
8186 }
8187 
8188 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8189                                             EVT VT, SDValue Op1, SDValue Op2,
8190                                             SDValue Op3) {
8191   SDVTList VTs = getVTList(VT);
8192   SDValue Ops[] = { Op1, Op2, Op3 };
8193   return getMachineNode(Opcode, dl, VTs, Ops);
8194 }
8195 
8196 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8197                                             EVT VT, ArrayRef<SDValue> Ops) {
8198   SDVTList VTs = getVTList(VT);
8199   return getMachineNode(Opcode, dl, VTs, Ops);
8200 }
8201 
8202 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8203                                             EVT VT1, EVT VT2, SDValue Op1,
8204                                             SDValue Op2) {
8205   SDVTList VTs = getVTList(VT1, VT2);
8206   SDValue Ops[] = { Op1, Op2 };
8207   return getMachineNode(Opcode, dl, VTs, Ops);
8208 }
8209 
8210 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8211                                             EVT VT1, EVT VT2, SDValue Op1,
8212                                             SDValue Op2, SDValue Op3) {
8213   SDVTList VTs = getVTList(VT1, VT2);
8214   SDValue Ops[] = { Op1, Op2, Op3 };
8215   return getMachineNode(Opcode, dl, VTs, Ops);
8216 }
8217 
8218 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8219                                             EVT VT1, EVT VT2,
8220                                             ArrayRef<SDValue> Ops) {
8221   SDVTList VTs = getVTList(VT1, VT2);
8222   return getMachineNode(Opcode, dl, VTs, Ops);
8223 }
8224 
8225 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8226                                             EVT VT1, EVT VT2, EVT VT3,
8227                                             SDValue Op1, SDValue Op2) {
8228   SDVTList VTs = getVTList(VT1, VT2, VT3);
8229   SDValue Ops[] = { Op1, Op2 };
8230   return getMachineNode(Opcode, dl, VTs, Ops);
8231 }
8232 
8233 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8234                                             EVT VT1, EVT VT2, EVT VT3,
8235                                             SDValue Op1, SDValue Op2,
8236                                             SDValue Op3) {
8237   SDVTList VTs = getVTList(VT1, VT2, VT3);
8238   SDValue Ops[] = { Op1, Op2, Op3 };
8239   return getMachineNode(Opcode, dl, VTs, Ops);
8240 }
8241 
8242 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8243                                             EVT VT1, EVT VT2, EVT VT3,
8244                                             ArrayRef<SDValue> Ops) {
8245   SDVTList VTs = getVTList(VT1, VT2, VT3);
8246   return getMachineNode(Opcode, dl, VTs, Ops);
8247 }
8248 
8249 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8250                                             ArrayRef<EVT> ResultTys,
8251                                             ArrayRef<SDValue> Ops) {
8252   SDVTList VTs = getVTList(ResultTys);
8253   return getMachineNode(Opcode, dl, VTs, Ops);
8254 }
8255 
8256 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8257                                             SDVTList VTs,
8258                                             ArrayRef<SDValue> Ops) {
8259   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8260   MachineSDNode *N;
8261   void *IP = nullptr;
8262 
8263   if (DoCSE) {
8264     FoldingSetNodeID ID;
8265     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8266     IP = nullptr;
8267     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8268       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8269     }
8270   }
8271 
8272   // Allocate a new MachineSDNode.
8273   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8274   createOperands(N, Ops);
8275 
8276   if (DoCSE)
8277     CSEMap.InsertNode(N, IP);
8278 
8279   InsertNode(N);
8280   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8281   return N;
8282 }
8283 
8284 /// getTargetExtractSubreg - A convenience function for creating
8285 /// TargetOpcode::EXTRACT_SUBREG nodes.
8286 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8287                                              SDValue Operand) {
8288   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8289   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8290                                   VT, Operand, SRIdxVal);
8291   return SDValue(Subreg, 0);
8292 }
8293 
8294 /// getTargetInsertSubreg - A convenience function for creating
8295 /// TargetOpcode::INSERT_SUBREG nodes.
8296 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8297                                             SDValue Operand, SDValue Subreg) {
8298   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8299   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8300                                   VT, Operand, Subreg, SRIdxVal);
8301   return SDValue(Result, 0);
8302 }
8303 
8304 /// getNodeIfExists - Get the specified node if it's already available, or
8305 /// else return NULL.
8306 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8307                                       ArrayRef<SDValue> Ops) {
8308   SDNodeFlags Flags;
8309   if (Inserter)
8310     Flags = Inserter->getFlags();
8311   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8312 }
8313 
8314 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8315                                       ArrayRef<SDValue> Ops,
8316                                       const SDNodeFlags Flags) {
8317   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8318     FoldingSetNodeID ID;
8319     AddNodeIDNode(ID, Opcode, VTList, Ops);
8320     void *IP = nullptr;
8321     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8322       E->intersectFlagsWith(Flags);
8323       return E;
8324     }
8325   }
8326   return nullptr;
8327 }
8328 
8329 /// getDbgValue - Creates a SDDbgValue node.
8330 ///
8331 /// SDNode
8332 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8333                                       SDNode *N, unsigned R, bool IsIndirect,
8334                                       const DebugLoc &DL, unsigned O) {
8335   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8336          "Expected inlined-at fields to agree");
8337   return new (DbgInfo->getAlloc())
8338       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8339 }
8340 
8341 /// Constant
8342 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8343                                               DIExpression *Expr,
8344                                               const Value *C,
8345                                               const DebugLoc &DL, unsigned O) {
8346   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8347          "Expected inlined-at fields to agree");
8348   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8349 }
8350 
8351 /// FrameIndex
8352 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8353                                                 DIExpression *Expr, unsigned FI,
8354                                                 bool IsIndirect,
8355                                                 const DebugLoc &DL,
8356                                                 unsigned O) {
8357   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8358          "Expected inlined-at fields to agree");
8359   return new (DbgInfo->getAlloc())
8360       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8361 }
8362 
8363 /// VReg
8364 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8365                                           DIExpression *Expr,
8366                                           unsigned VReg, bool IsIndirect,
8367                                           const DebugLoc &DL, unsigned O) {
8368   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8369          "Expected inlined-at fields to agree");
8370   return new (DbgInfo->getAlloc())
8371       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8372 }
8373 
8374 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8375                                      unsigned OffsetInBits, unsigned SizeInBits,
8376                                      bool InvalidateDbg) {
8377   SDNode *FromNode = From.getNode();
8378   SDNode *ToNode = To.getNode();
8379   assert(FromNode && ToNode && "Can't modify dbg values");
8380 
8381   // PR35338
8382   // TODO: assert(From != To && "Redundant dbg value transfer");
8383   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8384   if (From == To || FromNode == ToNode)
8385     return;
8386 
8387   if (!FromNode->getHasDebugValue())
8388     return;
8389 
8390   SmallVector<SDDbgValue *, 2> ClonedDVs;
8391   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8392     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8393       continue;
8394 
8395     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8396 
8397     // Just transfer the dbg value attached to From.
8398     if (Dbg->getResNo() != From.getResNo())
8399       continue;
8400 
8401     DIVariable *Var = Dbg->getVariable();
8402     auto *Expr = Dbg->getExpression();
8403     // If a fragment is requested, update the expression.
8404     if (SizeInBits) {
8405       // When splitting a larger (e.g., sign-extended) value whose
8406       // lower bits are described with an SDDbgValue, do not attempt
8407       // to transfer the SDDbgValue to the upper bits.
8408       if (auto FI = Expr->getFragmentInfo())
8409         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8410           continue;
8411       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8412                                                              SizeInBits);
8413       if (!Fragment)
8414         continue;
8415       Expr = *Fragment;
8416     }
8417     // Clone the SDDbgValue and move it to To.
8418     SDDbgValue *Clone = getDbgValue(
8419         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8420         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8421     ClonedDVs.push_back(Clone);
8422 
8423     if (InvalidateDbg) {
8424       // Invalidate value and indicate the SDDbgValue should not be emitted.
8425       Dbg->setIsInvalidated();
8426       Dbg->setIsEmitted();
8427     }
8428   }
8429 
8430   for (SDDbgValue *Dbg : ClonedDVs)
8431     AddDbgValue(Dbg, ToNode, false);
8432 }
8433 
8434 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8435   if (!N.getHasDebugValue())
8436     return;
8437 
8438   SmallVector<SDDbgValue *, 2> ClonedDVs;
8439   for (auto DV : GetDbgValues(&N)) {
8440     if (DV->isInvalidated())
8441       continue;
8442     switch (N.getOpcode()) {
8443     default:
8444       break;
8445     case ISD::ADD:
8446       SDValue N0 = N.getOperand(0);
8447       SDValue N1 = N.getOperand(1);
8448       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8449           isConstantIntBuildVectorOrConstantInt(N1)) {
8450         uint64_t Offset = N.getConstantOperandVal(1);
8451         // Rewrite an ADD constant node into a DIExpression. Since we are
8452         // performing arithmetic to compute the variable's *value* in the
8453         // DIExpression, we need to mark the expression with a
8454         // DW_OP_stack_value.
8455         auto *DIExpr = DV->getExpression();
8456         DIExpr =
8457             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8458         SDDbgValue *Clone =
8459             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8460                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8461         ClonedDVs.push_back(Clone);
8462         DV->setIsInvalidated();
8463         DV->setIsEmitted();
8464         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8465                    N0.getNode()->dumprFull(this);
8466                    dbgs() << " into " << *DIExpr << '\n');
8467       }
8468     }
8469   }
8470 
8471   for (SDDbgValue *Dbg : ClonedDVs)
8472     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8473 }
8474 
8475 /// Creates a SDDbgLabel node.
8476 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8477                                       const DebugLoc &DL, unsigned O) {
8478   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8479          "Expected inlined-at fields to agree");
8480   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8481 }
8482 
8483 namespace {
8484 
8485 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8486 /// pointed to by a use iterator is deleted, increment the use iterator
8487 /// so that it doesn't dangle.
8488 ///
8489 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8490   SDNode::use_iterator &UI;
8491   SDNode::use_iterator &UE;
8492 
8493   void NodeDeleted(SDNode *N, SDNode *E) override {
8494     // Increment the iterator as needed.
8495     while (UI != UE && N == *UI)
8496       ++UI;
8497   }
8498 
8499 public:
8500   RAUWUpdateListener(SelectionDAG &d,
8501                      SDNode::use_iterator &ui,
8502                      SDNode::use_iterator &ue)
8503     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8504 };
8505 
8506 } // end anonymous namespace
8507 
8508 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8509 /// This can cause recursive merging of nodes in the DAG.
8510 ///
8511 /// This version assumes From has a single result value.
8512 ///
8513 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8514   SDNode *From = FromN.getNode();
8515   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8516          "Cannot replace with this method!");
8517   assert(From != To.getNode() && "Cannot replace uses of with self");
8518 
8519   // Preserve Debug Values
8520   transferDbgValues(FromN, To);
8521 
8522   // Iterate over all the existing uses of From. New uses will be added
8523   // to the beginning of the use list, which we avoid visiting.
8524   // This specifically avoids visiting uses of From that arise while the
8525   // replacement is happening, because any such uses would be the result
8526   // of CSE: If an existing node looks like From after one of its operands
8527   // is replaced by To, we don't want to replace of all its users with To
8528   // too. See PR3018 for more info.
8529   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8530   RAUWUpdateListener Listener(*this, UI, UE);
8531   while (UI != UE) {
8532     SDNode *User = *UI;
8533 
8534     // This node is about to morph, remove its old self from the CSE maps.
8535     RemoveNodeFromCSEMaps(User);
8536 
8537     // A user can appear in a use list multiple times, and when this
8538     // happens the uses are usually next to each other in the list.
8539     // To help reduce the number of CSE recomputations, process all
8540     // the uses of this user that we can find this way.
8541     do {
8542       SDUse &Use = UI.getUse();
8543       ++UI;
8544       Use.set(To);
8545       if (To->isDivergent() != From->isDivergent())
8546         updateDivergence(User);
8547     } while (UI != UE && *UI == User);
8548     // Now that we have modified User, add it back to the CSE maps.  If it
8549     // already exists there, recursively merge the results together.
8550     AddModifiedNodeToCSEMaps(User);
8551   }
8552 
8553   // If we just RAUW'd the root, take note.
8554   if (FromN == getRoot())
8555     setRoot(To);
8556 }
8557 
8558 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8559 /// This can cause recursive merging of nodes in the DAG.
8560 ///
8561 /// This version assumes that for each value of From, there is a
8562 /// corresponding value in To in the same position with the same type.
8563 ///
8564 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8565 #ifndef NDEBUG
8566   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8567     assert((!From->hasAnyUseOfValue(i) ||
8568             From->getValueType(i) == To->getValueType(i)) &&
8569            "Cannot use this version of ReplaceAllUsesWith!");
8570 #endif
8571 
8572   // Handle the trivial case.
8573   if (From == To)
8574     return;
8575 
8576   // Preserve Debug Info. Only do this if there's a use.
8577   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8578     if (From->hasAnyUseOfValue(i)) {
8579       assert((i < To->getNumValues()) && "Invalid To location");
8580       transferDbgValues(SDValue(From, i), SDValue(To, i));
8581     }
8582 
8583   // Iterate over just the existing users of From. See the comments in
8584   // the ReplaceAllUsesWith above.
8585   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8586   RAUWUpdateListener Listener(*this, UI, UE);
8587   while (UI != UE) {
8588     SDNode *User = *UI;
8589 
8590     // This node is about to morph, remove its old self from the CSE maps.
8591     RemoveNodeFromCSEMaps(User);
8592 
8593     // A user can appear in a use list multiple times, and when this
8594     // happens the uses are usually next to each other in the list.
8595     // To help reduce the number of CSE recomputations, process all
8596     // the uses of this user that we can find this way.
8597     do {
8598       SDUse &Use = UI.getUse();
8599       ++UI;
8600       Use.setNode(To);
8601       if (To->isDivergent() != From->isDivergent())
8602         updateDivergence(User);
8603     } while (UI != UE && *UI == User);
8604 
8605     // Now that we have modified User, add it back to the CSE maps.  If it
8606     // already exists there, recursively merge the results together.
8607     AddModifiedNodeToCSEMaps(User);
8608   }
8609 
8610   // If we just RAUW'd the root, take note.
8611   if (From == getRoot().getNode())
8612     setRoot(SDValue(To, getRoot().getResNo()));
8613 }
8614 
8615 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8616 /// This can cause recursive merging of nodes in the DAG.
8617 ///
8618 /// This version can replace From with any result values.  To must match the
8619 /// number and types of values returned by From.
8620 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8621   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8622     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8623 
8624   // Preserve Debug Info.
8625   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8626     transferDbgValues(SDValue(From, i), To[i]);
8627 
8628   // Iterate over just the existing users of From. See the comments in
8629   // the ReplaceAllUsesWith above.
8630   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8631   RAUWUpdateListener Listener(*this, UI, UE);
8632   while (UI != UE) {
8633     SDNode *User = *UI;
8634 
8635     // This node is about to morph, remove its old self from the CSE maps.
8636     RemoveNodeFromCSEMaps(User);
8637 
8638     // A user can appear in a use list multiple times, and when this happens the
8639     // uses are usually next to each other in the list.  To help reduce the
8640     // number of CSE and divergence recomputations, process all the uses of this
8641     // user that we can find this way.
8642     bool To_IsDivergent = false;
8643     do {
8644       SDUse &Use = UI.getUse();
8645       const SDValue &ToOp = To[Use.getResNo()];
8646       ++UI;
8647       Use.set(ToOp);
8648       To_IsDivergent |= ToOp->isDivergent();
8649     } while (UI != UE && *UI == User);
8650 
8651     if (To_IsDivergent != From->isDivergent())
8652       updateDivergence(User);
8653 
8654     // Now that we have modified User, add it back to the CSE maps.  If it
8655     // already exists there, recursively merge the results together.
8656     AddModifiedNodeToCSEMaps(User);
8657   }
8658 
8659   // If we just RAUW'd the root, take note.
8660   if (From == getRoot().getNode())
8661     setRoot(SDValue(To[getRoot().getResNo()]));
8662 }
8663 
8664 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8665 /// uses of other values produced by From.getNode() alone.  The Deleted
8666 /// vector is handled the same way as for ReplaceAllUsesWith.
8667 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8668   // Handle the really simple, really trivial case efficiently.
8669   if (From == To) return;
8670 
8671   // Handle the simple, trivial, case efficiently.
8672   if (From.getNode()->getNumValues() == 1) {
8673     ReplaceAllUsesWith(From, To);
8674     return;
8675   }
8676 
8677   // Preserve Debug Info.
8678   transferDbgValues(From, To);
8679 
8680   // Iterate over just the existing users of From. See the comments in
8681   // the ReplaceAllUsesWith above.
8682   SDNode::use_iterator UI = From.getNode()->use_begin(),
8683                        UE = From.getNode()->use_end();
8684   RAUWUpdateListener Listener(*this, UI, UE);
8685   while (UI != UE) {
8686     SDNode *User = *UI;
8687     bool UserRemovedFromCSEMaps = false;
8688 
8689     // A user can appear in a use list multiple times, and when this
8690     // happens the uses are usually next to each other in the list.
8691     // To help reduce the number of CSE recomputations, process all
8692     // the uses of this user that we can find this way.
8693     do {
8694       SDUse &Use = UI.getUse();
8695 
8696       // Skip uses of different values from the same node.
8697       if (Use.getResNo() != From.getResNo()) {
8698         ++UI;
8699         continue;
8700       }
8701 
8702       // If this node hasn't been modified yet, it's still in the CSE maps,
8703       // so remove its old self from the CSE maps.
8704       if (!UserRemovedFromCSEMaps) {
8705         RemoveNodeFromCSEMaps(User);
8706         UserRemovedFromCSEMaps = true;
8707       }
8708 
8709       ++UI;
8710       Use.set(To);
8711       if (To->isDivergent() != From->isDivergent())
8712         updateDivergence(User);
8713     } while (UI != UE && *UI == User);
8714     // We are iterating over all uses of the From node, so if a use
8715     // doesn't use the specific value, no changes are made.
8716     if (!UserRemovedFromCSEMaps)
8717       continue;
8718 
8719     // Now that we have modified User, add it back to the CSE maps.  If it
8720     // already exists there, recursively merge the results together.
8721     AddModifiedNodeToCSEMaps(User);
8722   }
8723 
8724   // If we just RAUW'd the root, take note.
8725   if (From == getRoot())
8726     setRoot(To);
8727 }
8728 
8729 namespace {
8730 
8731   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8732   /// to record information about a use.
8733   struct UseMemo {
8734     SDNode *User;
8735     unsigned Index;
8736     SDUse *Use;
8737   };
8738 
8739   /// operator< - Sort Memos by User.
8740   bool operator<(const UseMemo &L, const UseMemo &R) {
8741     return (intptr_t)L.User < (intptr_t)R.User;
8742   }
8743 
8744 } // end anonymous namespace
8745 
8746 bool SelectionDAG::calculateDivergence(SDNode *N) {
8747   if (TLI->isSDNodeAlwaysUniform(N)) {
8748     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
8749            "Conflicting divergence information!");
8750     return false;
8751   }
8752   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
8753     return true;
8754   for (auto &Op : N->ops()) {
8755     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
8756       return true;
8757   }
8758   return false;
8759 }
8760 
8761 void SelectionDAG::updateDivergence(SDNode *N) {
8762   SmallVector<SDNode *, 16> Worklist(1, N);
8763   do {
8764     N = Worklist.pop_back_val();
8765     bool IsDivergent = calculateDivergence(N);
8766     if (N->SDNodeBits.IsDivergent != IsDivergent) {
8767       N->SDNodeBits.IsDivergent = IsDivergent;
8768       Worklist.insert(Worklist.end(), N->use_begin(), N->use_end());
8769     }
8770   } while (!Worklist.empty());
8771 }
8772 
8773 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8774   DenseMap<SDNode *, unsigned> Degree;
8775   Order.reserve(AllNodes.size());
8776   for (auto &N : allnodes()) {
8777     unsigned NOps = N.getNumOperands();
8778     Degree[&N] = NOps;
8779     if (0 == NOps)
8780       Order.push_back(&N);
8781   }
8782   for (size_t I = 0; I != Order.size(); ++I) {
8783     SDNode *N = Order[I];
8784     for (auto U : N->uses()) {
8785       unsigned &UnsortedOps = Degree[U];
8786       if (0 == --UnsortedOps)
8787         Order.push_back(U);
8788     }
8789   }
8790 }
8791 
8792 #ifndef NDEBUG
8793 void SelectionDAG::VerifyDAGDiverence() {
8794   std::vector<SDNode *> TopoOrder;
8795   CreateTopologicalOrder(TopoOrder);
8796   for (auto *N : TopoOrder) {
8797     assert(calculateDivergence(N) == N->isDivergent() &&
8798            "Divergence bit inconsistency detected");
8799   }
8800 }
8801 #endif
8802 
8803 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8804 /// uses of other values produced by From.getNode() alone.  The same value
8805 /// may appear in both the From and To list.  The Deleted vector is
8806 /// handled the same way as for ReplaceAllUsesWith.
8807 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8808                                               const SDValue *To,
8809                                               unsigned Num){
8810   // Handle the simple, trivial case efficiently.
8811   if (Num == 1)
8812     return ReplaceAllUsesOfValueWith(*From, *To);
8813 
8814   transferDbgValues(*From, *To);
8815 
8816   // Read up all the uses and make records of them. This helps
8817   // processing new uses that are introduced during the
8818   // replacement process.
8819   SmallVector<UseMemo, 4> Uses;
8820   for (unsigned i = 0; i != Num; ++i) {
8821     unsigned FromResNo = From[i].getResNo();
8822     SDNode *FromNode = From[i].getNode();
8823     for (SDNode::use_iterator UI = FromNode->use_begin(),
8824          E = FromNode->use_end(); UI != E; ++UI) {
8825       SDUse &Use = UI.getUse();
8826       if (Use.getResNo() == FromResNo) {
8827         UseMemo Memo = { *UI, i, &Use };
8828         Uses.push_back(Memo);
8829       }
8830     }
8831   }
8832 
8833   // Sort the uses, so that all the uses from a given User are together.
8834   llvm::sort(Uses);
8835 
8836   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8837        UseIndex != UseIndexEnd; ) {
8838     // We know that this user uses some value of From.  If it is the right
8839     // value, update it.
8840     SDNode *User = Uses[UseIndex].User;
8841 
8842     // This node is about to morph, remove its old self from the CSE maps.
8843     RemoveNodeFromCSEMaps(User);
8844 
8845     // The Uses array is sorted, so all the uses for a given User
8846     // are next to each other in the list.
8847     // To help reduce the number of CSE recomputations, process all
8848     // the uses of this user that we can find this way.
8849     do {
8850       unsigned i = Uses[UseIndex].Index;
8851       SDUse &Use = *Uses[UseIndex].Use;
8852       ++UseIndex;
8853 
8854       Use.set(To[i]);
8855     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8856 
8857     // Now that we have modified User, add it back to the CSE maps.  If it
8858     // already exists there, recursively merge the results together.
8859     AddModifiedNodeToCSEMaps(User);
8860   }
8861 }
8862 
8863 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8864 /// based on their topological order. It returns the maximum id and a vector
8865 /// of the SDNodes* in assigned order by reference.
8866 unsigned SelectionDAG::AssignTopologicalOrder() {
8867   unsigned DAGSize = 0;
8868 
8869   // SortedPos tracks the progress of the algorithm. Nodes before it are
8870   // sorted, nodes after it are unsorted. When the algorithm completes
8871   // it is at the end of the list.
8872   allnodes_iterator SortedPos = allnodes_begin();
8873 
8874   // Visit all the nodes. Move nodes with no operands to the front of
8875   // the list immediately. Annotate nodes that do have operands with their
8876   // operand count. Before we do this, the Node Id fields of the nodes
8877   // may contain arbitrary values. After, the Node Id fields for nodes
8878   // before SortedPos will contain the topological sort index, and the
8879   // Node Id fields for nodes At SortedPos and after will contain the
8880   // count of outstanding operands.
8881   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8882     SDNode *N = &*I++;
8883     checkForCycles(N, this);
8884     unsigned Degree = N->getNumOperands();
8885     if (Degree == 0) {
8886       // A node with no uses, add it to the result array immediately.
8887       N->setNodeId(DAGSize++);
8888       allnodes_iterator Q(N);
8889       if (Q != SortedPos)
8890         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8891       assert(SortedPos != AllNodes.end() && "Overran node list");
8892       ++SortedPos;
8893     } else {
8894       // Temporarily use the Node Id as scratch space for the degree count.
8895       N->setNodeId(Degree);
8896     }
8897   }
8898 
8899   // Visit all the nodes. As we iterate, move nodes into sorted order,
8900   // such that by the time the end is reached all nodes will be sorted.
8901   for (SDNode &Node : allnodes()) {
8902     SDNode *N = &Node;
8903     checkForCycles(N, this);
8904     // N is in sorted position, so all its uses have one less operand
8905     // that needs to be sorted.
8906     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8907          UI != UE; ++UI) {
8908       SDNode *P = *UI;
8909       unsigned Degree = P->getNodeId();
8910       assert(Degree != 0 && "Invalid node degree");
8911       --Degree;
8912       if (Degree == 0) {
8913         // All of P's operands are sorted, so P may sorted now.
8914         P->setNodeId(DAGSize++);
8915         if (P->getIterator() != SortedPos)
8916           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8917         assert(SortedPos != AllNodes.end() && "Overran node list");
8918         ++SortedPos;
8919       } else {
8920         // Update P's outstanding operand count.
8921         P->setNodeId(Degree);
8922       }
8923     }
8924     if (Node.getIterator() == SortedPos) {
8925 #ifndef NDEBUG
8926       allnodes_iterator I(N);
8927       SDNode *S = &*++I;
8928       dbgs() << "Overran sorted position:\n";
8929       S->dumprFull(this); dbgs() << "\n";
8930       dbgs() << "Checking if this is due to cycles\n";
8931       checkForCycles(this, true);
8932 #endif
8933       llvm_unreachable(nullptr);
8934     }
8935   }
8936 
8937   assert(SortedPos == AllNodes.end() &&
8938          "Topological sort incomplete!");
8939   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8940          "First node in topological sort is not the entry token!");
8941   assert(AllNodes.front().getNodeId() == 0 &&
8942          "First node in topological sort has non-zero id!");
8943   assert(AllNodes.front().getNumOperands() == 0 &&
8944          "First node in topological sort has operands!");
8945   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8946          "Last node in topologic sort has unexpected id!");
8947   assert(AllNodes.back().use_empty() &&
8948          "Last node in topologic sort has users!");
8949   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8950   return DAGSize;
8951 }
8952 
8953 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8954 /// value is produced by SD.
8955 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8956   if (SD) {
8957     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8958     SD->setHasDebugValue(true);
8959   }
8960   DbgInfo->add(DB, SD, isParameter);
8961 }
8962 
8963 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8964   DbgInfo->add(DB);
8965 }
8966 
8967 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8968                                                    SDValue NewMemOp) {
8969   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8970   // The new memory operation must have the same position as the old load in
8971   // terms of memory dependency. Create a TokenFactor for the old load and new
8972   // memory operation and update uses of the old load's output chain to use that
8973   // TokenFactor.
8974   SDValue OldChain = SDValue(OldLoad, 1);
8975   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8976   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8977     return NewChain;
8978 
8979   SDValue TokenFactor =
8980       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8981   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8982   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8983   return TokenFactor;
8984 }
8985 
8986 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8987                                                      Function **OutFunction) {
8988   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8989 
8990   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8991   auto *Module = MF->getFunction().getParent();
8992   auto *Function = Module->getFunction(Symbol);
8993 
8994   if (OutFunction != nullptr)
8995       *OutFunction = Function;
8996 
8997   if (Function != nullptr) {
8998     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8999     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9000   }
9001 
9002   std::string ErrorStr;
9003   raw_string_ostream ErrorFormatter(ErrorStr);
9004 
9005   ErrorFormatter << "Undefined external symbol ";
9006   ErrorFormatter << '"' << Symbol << '"';
9007   ErrorFormatter.flush();
9008 
9009   report_fatal_error(ErrorStr);
9010 }
9011 
9012 //===----------------------------------------------------------------------===//
9013 //                              SDNode Class
9014 //===----------------------------------------------------------------------===//
9015 
9016 bool llvm::isNullConstant(SDValue V) {
9017   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9018   return Const != nullptr && Const->isNullValue();
9019 }
9020 
9021 bool llvm::isNullFPConstant(SDValue V) {
9022   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9023   return Const != nullptr && Const->isZero() && !Const->isNegative();
9024 }
9025 
9026 bool llvm::isAllOnesConstant(SDValue V) {
9027   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9028   return Const != nullptr && Const->isAllOnesValue();
9029 }
9030 
9031 bool llvm::isOneConstant(SDValue V) {
9032   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9033   return Const != nullptr && Const->isOne();
9034 }
9035 
9036 SDValue llvm::peekThroughBitcasts(SDValue V) {
9037   while (V.getOpcode() == ISD::BITCAST)
9038     V = V.getOperand(0);
9039   return V;
9040 }
9041 
9042 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9043   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9044     V = V.getOperand(0);
9045   return V;
9046 }
9047 
9048 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9049   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9050     V = V.getOperand(0);
9051   return V;
9052 }
9053 
9054 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9055   if (V.getOpcode() != ISD::XOR)
9056     return false;
9057   V = peekThroughBitcasts(V.getOperand(1));
9058   unsigned NumBits = V.getScalarValueSizeInBits();
9059   ConstantSDNode *C =
9060       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9061   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9062 }
9063 
9064 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9065                                           bool AllowTruncation) {
9066   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9067     return CN;
9068 
9069   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9070     BitVector UndefElements;
9071     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9072 
9073     // BuildVectors can truncate their operands. Ignore that case here unless
9074     // AllowTruncation is set.
9075     if (CN && (UndefElements.none() || AllowUndefs)) {
9076       EVT CVT = CN->getValueType(0);
9077       EVT NSVT = N.getValueType().getScalarType();
9078       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9079       if (AllowTruncation || (CVT == NSVT))
9080         return CN;
9081     }
9082   }
9083 
9084   return nullptr;
9085 }
9086 
9087 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9088                                           bool AllowUndefs,
9089                                           bool AllowTruncation) {
9090   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9091     return CN;
9092 
9093   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9094     BitVector UndefElements;
9095     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9096 
9097     // BuildVectors can truncate their operands. Ignore that case here unless
9098     // AllowTruncation is set.
9099     if (CN && (UndefElements.none() || AllowUndefs)) {
9100       EVT CVT = CN->getValueType(0);
9101       EVT NSVT = N.getValueType().getScalarType();
9102       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9103       if (AllowTruncation || (CVT == NSVT))
9104         return CN;
9105     }
9106   }
9107 
9108   return nullptr;
9109 }
9110 
9111 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9112   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9113     return CN;
9114 
9115   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9116     BitVector UndefElements;
9117     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9118     if (CN && (UndefElements.none() || AllowUndefs))
9119       return CN;
9120   }
9121 
9122   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9123     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9124       return CN;
9125 
9126   return nullptr;
9127 }
9128 
9129 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9130                                               const APInt &DemandedElts,
9131                                               bool AllowUndefs) {
9132   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9133     return CN;
9134 
9135   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9136     BitVector UndefElements;
9137     ConstantFPSDNode *CN =
9138         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9139     if (CN && (UndefElements.none() || AllowUndefs))
9140       return CN;
9141   }
9142 
9143   return nullptr;
9144 }
9145 
9146 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9147   // TODO: may want to use peekThroughBitcast() here.
9148   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9149   return C && C->isNullValue();
9150 }
9151 
9152 bool llvm::isOneOrOneSplat(SDValue N) {
9153   // TODO: may want to use peekThroughBitcast() here.
9154   unsigned BitWidth = N.getScalarValueSizeInBits();
9155   ConstantSDNode *C = isConstOrConstSplat(N);
9156   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9157 }
9158 
9159 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9160   N = peekThroughBitcasts(N);
9161   unsigned BitWidth = N.getScalarValueSizeInBits();
9162   ConstantSDNode *C = isConstOrConstSplat(N);
9163   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9164 }
9165 
9166 HandleSDNode::~HandleSDNode() {
9167   DropOperands();
9168 }
9169 
9170 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9171                                          const DebugLoc &DL,
9172                                          const GlobalValue *GA, EVT VT,
9173                                          int64_t o, unsigned TF)
9174     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9175   TheGlobal = GA;
9176 }
9177 
9178 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9179                                          EVT VT, unsigned SrcAS,
9180                                          unsigned DestAS)
9181     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9182       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9183 
9184 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9185                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9186     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9187   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9188   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9189   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9190   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9191 
9192   // We check here that the size of the memory operand fits within the size of
9193   // the MMO. This is because the MMO might indicate only a possible address
9194   // range instead of specifying the affected memory addresses precisely.
9195   // TODO: Make MachineMemOperands aware of scalable vectors.
9196   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9197          "Size mismatch!");
9198 }
9199 
9200 /// Profile - Gather unique data for the node.
9201 ///
9202 void SDNode::Profile(FoldingSetNodeID &ID) const {
9203   AddNodeIDNode(ID, this);
9204 }
9205 
9206 namespace {
9207 
9208   struct EVTArray {
9209     std::vector<EVT> VTs;
9210 
9211     EVTArray() {
9212       VTs.reserve(MVT::LAST_VALUETYPE);
9213       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9214         VTs.push_back(MVT((MVT::SimpleValueType)i));
9215     }
9216   };
9217 
9218 } // end anonymous namespace
9219 
9220 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9221 static ManagedStatic<EVTArray> SimpleVTArray;
9222 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9223 
9224 /// getValueTypeList - Return a pointer to the specified value type.
9225 ///
9226 const EVT *SDNode::getValueTypeList(EVT VT) {
9227   if (VT.isExtended()) {
9228     sys::SmartScopedLock<true> Lock(*VTMutex);
9229     return &(*EVTs->insert(VT).first);
9230   } else {
9231     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9232            "Value type out of range!");
9233     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9234   }
9235 }
9236 
9237 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9238 /// indicated value.  This method ignores uses of other values defined by this
9239 /// operation.
9240 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9241   assert(Value < getNumValues() && "Bad value!");
9242 
9243   // TODO: Only iterate over uses of a given value of the node
9244   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9245     if (UI.getUse().getResNo() == Value) {
9246       if (NUses == 0)
9247         return false;
9248       --NUses;
9249     }
9250   }
9251 
9252   // Found exactly the right number of uses?
9253   return NUses == 0;
9254 }
9255 
9256 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9257 /// value. This method ignores uses of other values defined by this operation.
9258 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9259   assert(Value < getNumValues() && "Bad value!");
9260 
9261   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9262     if (UI.getUse().getResNo() == Value)
9263       return true;
9264 
9265   return false;
9266 }
9267 
9268 /// isOnlyUserOf - Return true if this node is the only use of N.
9269 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9270   bool Seen = false;
9271   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9272     SDNode *User = *I;
9273     if (User == this)
9274       Seen = true;
9275     else
9276       return false;
9277   }
9278 
9279   return Seen;
9280 }
9281 
9282 /// Return true if the only users of N are contained in Nodes.
9283 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9284   bool Seen = false;
9285   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9286     SDNode *User = *I;
9287     if (llvm::any_of(Nodes,
9288                      [&User](const SDNode *Node) { return User == Node; }))
9289       Seen = true;
9290     else
9291       return false;
9292   }
9293 
9294   return Seen;
9295 }
9296 
9297 /// isOperand - Return true if this node is an operand of N.
9298 bool SDValue::isOperandOf(const SDNode *N) const {
9299   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9300 }
9301 
9302 bool SDNode::isOperandOf(const SDNode *N) const {
9303   return any_of(N->op_values(),
9304                 [this](SDValue Op) { return this == Op.getNode(); });
9305 }
9306 
9307 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9308 /// be a chain) reaches the specified operand without crossing any
9309 /// side-effecting instructions on any chain path.  In practice, this looks
9310 /// through token factors and non-volatile loads.  In order to remain efficient,
9311 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9312 ///
9313 /// Note that we only need to examine chains when we're searching for
9314 /// side-effects; SelectionDAG requires that all side-effects are represented
9315 /// by chains, even if another operand would force a specific ordering. This
9316 /// constraint is necessary to allow transformations like splitting loads.
9317 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9318                                              unsigned Depth) const {
9319   if (*this == Dest) return true;
9320 
9321   // Don't search too deeply, we just want to be able to see through
9322   // TokenFactor's etc.
9323   if (Depth == 0) return false;
9324 
9325   // If this is a token factor, all inputs to the TF happen in parallel.
9326   if (getOpcode() == ISD::TokenFactor) {
9327     // First, try a shallow search.
9328     if (is_contained((*this)->ops(), Dest)) {
9329       // We found the chain we want as an operand of this TokenFactor.
9330       // Essentially, we reach the chain without side-effects if we could
9331       // serialize the TokenFactor into a simple chain of operations with
9332       // Dest as the last operation. This is automatically true if the
9333       // chain has one use: there are no other ordering constraints.
9334       // If the chain has more than one use, we give up: some other
9335       // use of Dest might force a side-effect between Dest and the current
9336       // node.
9337       if (Dest.hasOneUse())
9338         return true;
9339     }
9340     // Next, try a deep search: check whether every operand of the TokenFactor
9341     // reaches Dest.
9342     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9343       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9344     });
9345   }
9346 
9347   // Loads don't have side effects, look through them.
9348   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9349     if (Ld->isUnordered())
9350       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9351   }
9352   return false;
9353 }
9354 
9355 bool SDNode::hasPredecessor(const SDNode *N) const {
9356   SmallPtrSet<const SDNode *, 32> Visited;
9357   SmallVector<const SDNode *, 16> Worklist;
9358   Worklist.push_back(this);
9359   return hasPredecessorHelper(N, Visited, Worklist);
9360 }
9361 
9362 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9363   this->Flags.intersectWith(Flags);
9364 }
9365 
9366 SDValue
9367 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9368                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9369                                   bool AllowPartials) {
9370   // The pattern must end in an extract from index 0.
9371   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9372       !isNullConstant(Extract->getOperand(1)))
9373     return SDValue();
9374 
9375   // Match against one of the candidate binary ops.
9376   SDValue Op = Extract->getOperand(0);
9377   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9378         return Op.getOpcode() == unsigned(BinOp);
9379       }))
9380     return SDValue();
9381 
9382   // Floating-point reductions may require relaxed constraints on the final step
9383   // of the reduction because they may reorder intermediate operations.
9384   unsigned CandidateBinOp = Op.getOpcode();
9385   if (Op.getValueType().isFloatingPoint()) {
9386     SDNodeFlags Flags = Op->getFlags();
9387     switch (CandidateBinOp) {
9388     case ISD::FADD:
9389       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9390         return SDValue();
9391       break;
9392     default:
9393       llvm_unreachable("Unhandled FP opcode for binop reduction");
9394     }
9395   }
9396 
9397   // Matching failed - attempt to see if we did enough stages that a partial
9398   // reduction from a subvector is possible.
9399   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9400     if (!AllowPartials || !Op)
9401       return SDValue();
9402     EVT OpVT = Op.getValueType();
9403     EVT OpSVT = OpVT.getScalarType();
9404     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9405     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9406       return SDValue();
9407     BinOp = (ISD::NodeType)CandidateBinOp;
9408     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9409                    getVectorIdxConstant(0, SDLoc(Op)));
9410   };
9411 
9412   // At each stage, we're looking for something that looks like:
9413   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9414   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9415   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9416   // %a = binop <8 x i32> %op, %s
9417   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9418   // we expect something like:
9419   // <4,5,6,7,u,u,u,u>
9420   // <2,3,u,u,u,u,u,u>
9421   // <1,u,u,u,u,u,u,u>
9422   // While a partial reduction match would be:
9423   // <2,3,u,u,u,u,u,u>
9424   // <1,u,u,u,u,u,u,u>
9425   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9426   SDValue PrevOp;
9427   for (unsigned i = 0; i < Stages; ++i) {
9428     unsigned MaskEnd = (1 << i);
9429 
9430     if (Op.getOpcode() != CandidateBinOp)
9431       return PartialReduction(PrevOp, MaskEnd);
9432 
9433     SDValue Op0 = Op.getOperand(0);
9434     SDValue Op1 = Op.getOperand(1);
9435 
9436     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9437     if (Shuffle) {
9438       Op = Op1;
9439     } else {
9440       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9441       Op = Op0;
9442     }
9443 
9444     // The first operand of the shuffle should be the same as the other operand
9445     // of the binop.
9446     if (!Shuffle || Shuffle->getOperand(0) != Op)
9447       return PartialReduction(PrevOp, MaskEnd);
9448 
9449     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9450     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9451       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9452         return PartialReduction(PrevOp, MaskEnd);
9453 
9454     PrevOp = Op;
9455   }
9456 
9457   // Handle subvector reductions, which tend to appear after the shuffle
9458   // reduction stages.
9459   while (Op.getOpcode() == CandidateBinOp) {
9460     unsigned NumElts = Op.getValueType().getVectorNumElements();
9461     SDValue Op0 = Op.getOperand(0);
9462     SDValue Op1 = Op.getOperand(1);
9463     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9464         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9465         Op0.getOperand(0) != Op1.getOperand(0))
9466       break;
9467     SDValue Src = Op0.getOperand(0);
9468     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9469     if (NumSrcElts != (2 * NumElts))
9470       break;
9471     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9472           Op1.getConstantOperandAPInt(1) == NumElts) &&
9473         !(Op1.getConstantOperandAPInt(1) == 0 &&
9474           Op0.getConstantOperandAPInt(1) == NumElts))
9475       break;
9476     Op = Src;
9477   }
9478 
9479   BinOp = (ISD::NodeType)CandidateBinOp;
9480   return Op;
9481 }
9482 
9483 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9484   assert(N->getNumValues() == 1 &&
9485          "Can't unroll a vector with multiple results!");
9486 
9487   EVT VT = N->getValueType(0);
9488   unsigned NE = VT.getVectorNumElements();
9489   EVT EltVT = VT.getVectorElementType();
9490   SDLoc dl(N);
9491 
9492   SmallVector<SDValue, 8> Scalars;
9493   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9494 
9495   // If ResNE is 0, fully unroll the vector op.
9496   if (ResNE == 0)
9497     ResNE = NE;
9498   else if (NE > ResNE)
9499     NE = ResNE;
9500 
9501   unsigned i;
9502   for (i= 0; i != NE; ++i) {
9503     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9504       SDValue Operand = N->getOperand(j);
9505       EVT OperandVT = Operand.getValueType();
9506       if (OperandVT.isVector()) {
9507         // A vector operand; extract a single element.
9508         EVT OperandEltVT = OperandVT.getVectorElementType();
9509         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9510                               Operand, getVectorIdxConstant(i, dl));
9511       } else {
9512         // A scalar operand; just use it as is.
9513         Operands[j] = Operand;
9514       }
9515     }
9516 
9517     switch (N->getOpcode()) {
9518     default: {
9519       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9520                                 N->getFlags()));
9521       break;
9522     }
9523     case ISD::VSELECT:
9524       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9525       break;
9526     case ISD::SHL:
9527     case ISD::SRA:
9528     case ISD::SRL:
9529     case ISD::ROTL:
9530     case ISD::ROTR:
9531       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9532                                getShiftAmountOperand(Operands[0].getValueType(),
9533                                                      Operands[1])));
9534       break;
9535     case ISD::SIGN_EXTEND_INREG: {
9536       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9537       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9538                                 Operands[0],
9539                                 getValueType(ExtVT)));
9540     }
9541     }
9542   }
9543 
9544   for (; i < ResNE; ++i)
9545     Scalars.push_back(getUNDEF(EltVT));
9546 
9547   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9548   return getBuildVector(VecVT, dl, Scalars);
9549 }
9550 
9551 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9552     SDNode *N, unsigned ResNE) {
9553   unsigned Opcode = N->getOpcode();
9554   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9555           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9556           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9557          "Expected an overflow opcode");
9558 
9559   EVT ResVT = N->getValueType(0);
9560   EVT OvVT = N->getValueType(1);
9561   EVT ResEltVT = ResVT.getVectorElementType();
9562   EVT OvEltVT = OvVT.getVectorElementType();
9563   SDLoc dl(N);
9564 
9565   // If ResNE is 0, fully unroll the vector op.
9566   unsigned NE = ResVT.getVectorNumElements();
9567   if (ResNE == 0)
9568     ResNE = NE;
9569   else if (NE > ResNE)
9570     NE = ResNE;
9571 
9572   SmallVector<SDValue, 8> LHSScalars;
9573   SmallVector<SDValue, 8> RHSScalars;
9574   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9575   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9576 
9577   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9578   SDVTList VTs = getVTList(ResEltVT, SVT);
9579   SmallVector<SDValue, 8> ResScalars;
9580   SmallVector<SDValue, 8> OvScalars;
9581   for (unsigned i = 0; i < NE; ++i) {
9582     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9583     SDValue Ov =
9584         getSelect(dl, OvEltVT, Res.getValue(1),
9585                   getBoolConstant(true, dl, OvEltVT, ResVT),
9586                   getConstant(0, dl, OvEltVT));
9587 
9588     ResScalars.push_back(Res);
9589     OvScalars.push_back(Ov);
9590   }
9591 
9592   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9593   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9594 
9595   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9596   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9597   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9598                         getBuildVector(NewOvVT, dl, OvScalars));
9599 }
9600 
9601 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9602                                                   LoadSDNode *Base,
9603                                                   unsigned Bytes,
9604                                                   int Dist) const {
9605   if (LD->isVolatile() || Base->isVolatile())
9606     return false;
9607   // TODO: probably too restrictive for atomics, revisit
9608   if (!LD->isSimple())
9609     return false;
9610   if (LD->isIndexed() || Base->isIndexed())
9611     return false;
9612   if (LD->getChain() != Base->getChain())
9613     return false;
9614   EVT VT = LD->getValueType(0);
9615   if (VT.getSizeInBits() / 8 != Bytes)
9616     return false;
9617 
9618   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9619   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9620 
9621   int64_t Offset = 0;
9622   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9623     return (Dist * Bytes == Offset);
9624   return false;
9625 }
9626 
9627 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9628 /// if it cannot be inferred.
9629 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9630   // If this is a GlobalAddress + cst, return the alignment.
9631   const GlobalValue *GV = nullptr;
9632   int64_t GVOffset = 0;
9633   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9634     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9635     KnownBits Known(PtrWidth);
9636     llvm::computeKnownBits(GV, Known, getDataLayout());
9637     unsigned AlignBits = Known.countMinTrailingZeros();
9638     if (AlignBits)
9639       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9640   }
9641 
9642   // If this is a direct reference to a stack slot, use information about the
9643   // stack slot's alignment.
9644   int FrameIdx = INT_MIN;
9645   int64_t FrameOffset = 0;
9646   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9647     FrameIdx = FI->getIndex();
9648   } else if (isBaseWithConstantOffset(Ptr) &&
9649              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9650     // Handle FI+Cst
9651     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9652     FrameOffset = Ptr.getConstantOperandVal(1);
9653   }
9654 
9655   if (FrameIdx != INT_MIN) {
9656     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9657     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9658   }
9659 
9660   return None;
9661 }
9662 
9663 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9664 /// which is split (or expanded) into two not necessarily identical pieces.
9665 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9666   // Currently all types are split in half.
9667   EVT LoVT, HiVT;
9668   if (!VT.isVector())
9669     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9670   else
9671     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9672 
9673   return std::make_pair(LoVT, HiVT);
9674 }
9675 
9676 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9677 /// type, dependent on an enveloping VT that has been split into two identical
9678 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9679 std::pair<EVT, EVT>
9680 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9681                                        bool *HiIsEmpty) const {
9682   EVT EltTp = VT.getVectorElementType();
9683   // Examples:
9684   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9685   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9686   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9687   //   etc.
9688   ElementCount VTNumElts = VT.getVectorElementCount();
9689   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
9690   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
9691          "Mixing fixed width and scalable vectors when enveloping a type");
9692   EVT LoVT, HiVT;
9693   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
9694     LoVT = EnvVT;
9695     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
9696     *HiIsEmpty = false;
9697   } else {
9698     // Flag that hi type has zero storage size, but return split envelop type
9699     // (this would be easier if vector types with zero elements were allowed).
9700     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
9701     HiVT = EnvVT;
9702     *HiIsEmpty = true;
9703   }
9704   return std::make_pair(LoVT, HiVT);
9705 }
9706 
9707 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9708 /// low/high part.
9709 std::pair<SDValue, SDValue>
9710 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9711                           const EVT &HiVT) {
9712   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9713          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9714          "Splitting vector with an invalid mixture of fixed and scalable "
9715          "vector types");
9716   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9717              N.getValueType().getVectorMinNumElements() &&
9718          "More vector elements requested than available!");
9719   SDValue Lo, Hi;
9720   Lo =
9721       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9722   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9723   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9724   // IDX with the runtime scaling factor of the result vector type. For
9725   // fixed-width result vectors, that runtime scaling factor is 1.
9726   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9727                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9728   return std::make_pair(Lo, Hi);
9729 }
9730 
9731 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9732 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9733   EVT VT = N.getValueType();
9734   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9735                                 NextPowerOf2(VT.getVectorNumElements()));
9736   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9737                  getVectorIdxConstant(0, DL));
9738 }
9739 
9740 void SelectionDAG::ExtractVectorElements(SDValue Op,
9741                                          SmallVectorImpl<SDValue> &Args,
9742                                          unsigned Start, unsigned Count,
9743                                          EVT EltVT) {
9744   EVT VT = Op.getValueType();
9745   if (Count == 0)
9746     Count = VT.getVectorNumElements();
9747   if (EltVT == EVT())
9748     EltVT = VT.getVectorElementType();
9749   SDLoc SL(Op);
9750   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9751     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9752                            getVectorIdxConstant(i, SL)));
9753   }
9754 }
9755 
9756 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9757 unsigned GlobalAddressSDNode::getAddressSpace() const {
9758   return getGlobal()->getType()->getAddressSpace();
9759 }
9760 
9761 Type *ConstantPoolSDNode::getType() const {
9762   if (isMachineConstantPoolEntry())
9763     return Val.MachineCPVal->getType();
9764   return Val.ConstVal->getType();
9765 }
9766 
9767 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9768                                         unsigned &SplatBitSize,
9769                                         bool &HasAnyUndefs,
9770                                         unsigned MinSplatBits,
9771                                         bool IsBigEndian) const {
9772   EVT VT = getValueType(0);
9773   assert(VT.isVector() && "Expected a vector type");
9774   unsigned VecWidth = VT.getSizeInBits();
9775   if (MinSplatBits > VecWidth)
9776     return false;
9777 
9778   // FIXME: The widths are based on this node's type, but build vectors can
9779   // truncate their operands.
9780   SplatValue = APInt(VecWidth, 0);
9781   SplatUndef = APInt(VecWidth, 0);
9782 
9783   // Get the bits. Bits with undefined values (when the corresponding element
9784   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9785   // in SplatValue. If any of the values are not constant, give up and return
9786   // false.
9787   unsigned int NumOps = getNumOperands();
9788   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9789   unsigned EltWidth = VT.getScalarSizeInBits();
9790 
9791   for (unsigned j = 0; j < NumOps; ++j) {
9792     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9793     SDValue OpVal = getOperand(i);
9794     unsigned BitPos = j * EltWidth;
9795 
9796     if (OpVal.isUndef())
9797       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9798     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9799       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9800     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9801       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9802     else
9803       return false;
9804   }
9805 
9806   // The build_vector is all constants or undefs. Find the smallest element
9807   // size that splats the vector.
9808   HasAnyUndefs = (SplatUndef != 0);
9809 
9810   // FIXME: This does not work for vectors with elements less than 8 bits.
9811   while (VecWidth > 8) {
9812     unsigned HalfSize = VecWidth / 2;
9813     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9814     APInt LowValue = SplatValue.trunc(HalfSize);
9815     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9816     APInt LowUndef = SplatUndef.trunc(HalfSize);
9817 
9818     // If the two halves do not match (ignoring undef bits), stop here.
9819     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9820         MinSplatBits > HalfSize)
9821       break;
9822 
9823     SplatValue = HighValue | LowValue;
9824     SplatUndef = HighUndef & LowUndef;
9825 
9826     VecWidth = HalfSize;
9827   }
9828 
9829   SplatBitSize = VecWidth;
9830   return true;
9831 }
9832 
9833 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9834                                          BitVector *UndefElements) const {
9835   unsigned NumOps = getNumOperands();
9836   if (UndefElements) {
9837     UndefElements->clear();
9838     UndefElements->resize(NumOps);
9839   }
9840   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
9841   if (!DemandedElts)
9842     return SDValue();
9843   SDValue Splatted;
9844   for (unsigned i = 0; i != NumOps; ++i) {
9845     if (!DemandedElts[i])
9846       continue;
9847     SDValue Op = getOperand(i);
9848     if (Op.isUndef()) {
9849       if (UndefElements)
9850         (*UndefElements)[i] = true;
9851     } else if (!Splatted) {
9852       Splatted = Op;
9853     } else if (Splatted != Op) {
9854       return SDValue();
9855     }
9856   }
9857 
9858   if (!Splatted) {
9859     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9860     assert(getOperand(FirstDemandedIdx).isUndef() &&
9861            "Can only have a splat without a constant for all undefs.");
9862     return getOperand(FirstDemandedIdx);
9863   }
9864 
9865   return Splatted;
9866 }
9867 
9868 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9869   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9870   return getSplatValue(DemandedElts, UndefElements);
9871 }
9872 
9873 ConstantSDNode *
9874 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9875                                         BitVector *UndefElements) const {
9876   return dyn_cast_or_null<ConstantSDNode>(
9877       getSplatValue(DemandedElts, UndefElements));
9878 }
9879 
9880 ConstantSDNode *
9881 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9882   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9883 }
9884 
9885 ConstantFPSDNode *
9886 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9887                                           BitVector *UndefElements) const {
9888   return dyn_cast_or_null<ConstantFPSDNode>(
9889       getSplatValue(DemandedElts, UndefElements));
9890 }
9891 
9892 ConstantFPSDNode *
9893 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9894   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9895 }
9896 
9897 int32_t
9898 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9899                                                    uint32_t BitWidth) const {
9900   if (ConstantFPSDNode *CN =
9901           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9902     bool IsExact;
9903     APSInt IntVal(BitWidth);
9904     const APFloat &APF = CN->getValueAPF();
9905     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9906             APFloat::opOK ||
9907         !IsExact)
9908       return -1;
9909 
9910     return IntVal.exactLogBase2();
9911   }
9912   return -1;
9913 }
9914 
9915 bool BuildVectorSDNode::isConstant() const {
9916   for (const SDValue &Op : op_values()) {
9917     unsigned Opc = Op.getOpcode();
9918     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9919       return false;
9920   }
9921   return true;
9922 }
9923 
9924 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9925   // Find the first non-undef value in the shuffle mask.
9926   unsigned i, e;
9927   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9928     /* search */;
9929 
9930   // If all elements are undefined, this shuffle can be considered a splat
9931   // (although it should eventually get simplified away completely).
9932   if (i == e)
9933     return true;
9934 
9935   // Make sure all remaining elements are either undef or the same as the first
9936   // non-undef value.
9937   for (int Idx = Mask[i]; i != e; ++i)
9938     if (Mask[i] >= 0 && Mask[i] != Idx)
9939       return false;
9940   return true;
9941 }
9942 
9943 // Returns the SDNode if it is a constant integer BuildVector
9944 // or constant integer.
9945 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9946   if (isa<ConstantSDNode>(N))
9947     return N.getNode();
9948   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9949     return N.getNode();
9950   // Treat a GlobalAddress supporting constant offset folding as a
9951   // constant integer.
9952   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9953     if (GA->getOpcode() == ISD::GlobalAddress &&
9954         TLI->isOffsetFoldingLegal(GA))
9955       return GA;
9956   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
9957       isa<ConstantSDNode>(N.getOperand(0)))
9958     return N.getNode();
9959   return nullptr;
9960 }
9961 
9962 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9963   if (isa<ConstantFPSDNode>(N))
9964     return N.getNode();
9965 
9966   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9967     return N.getNode();
9968 
9969   return nullptr;
9970 }
9971 
9972 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9973   assert(!Node->OperandList && "Node already has operands");
9974   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9975          "too many operands to fit into SDNode");
9976   SDUse *Ops = OperandRecycler.allocate(
9977       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9978 
9979   bool IsDivergent = false;
9980   for (unsigned I = 0; I != Vals.size(); ++I) {
9981     Ops[I].setUser(Node);
9982     Ops[I].setInitial(Vals[I]);
9983     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9984       IsDivergent |= Ops[I].getNode()->isDivergent();
9985   }
9986   Node->NumOperands = Vals.size();
9987   Node->OperandList = Ops;
9988   if (!TLI->isSDNodeAlwaysUniform(Node)) {
9989     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9990     Node->SDNodeBits.IsDivergent = IsDivergent;
9991   }
9992   checkForCycles(Node);
9993 }
9994 
9995 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9996                                      SmallVectorImpl<SDValue> &Vals) {
9997   size_t Limit = SDNode::getMaxNumOperands();
9998   while (Vals.size() > Limit) {
9999     unsigned SliceIdx = Vals.size() - Limit;
10000     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10001     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10002     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10003     Vals.emplace_back(NewTF);
10004   }
10005   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10006 }
10007 
10008 #ifndef NDEBUG
10009 static void checkForCyclesHelper(const SDNode *N,
10010                                  SmallPtrSetImpl<const SDNode*> &Visited,
10011                                  SmallPtrSetImpl<const SDNode*> &Checked,
10012                                  const llvm::SelectionDAG *DAG) {
10013   // If this node has already been checked, don't check it again.
10014   if (Checked.count(N))
10015     return;
10016 
10017   // If a node has already been visited on this depth-first walk, reject it as
10018   // a cycle.
10019   if (!Visited.insert(N).second) {
10020     errs() << "Detected cycle in SelectionDAG\n";
10021     dbgs() << "Offending node:\n";
10022     N->dumprFull(DAG); dbgs() << "\n";
10023     abort();
10024   }
10025 
10026   for (const SDValue &Op : N->op_values())
10027     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10028 
10029   Checked.insert(N);
10030   Visited.erase(N);
10031 }
10032 #endif
10033 
10034 void llvm::checkForCycles(const llvm::SDNode *N,
10035                           const llvm::SelectionDAG *DAG,
10036                           bool force) {
10037 #ifndef NDEBUG
10038   bool check = force;
10039 #ifdef EXPENSIVE_CHECKS
10040   check = true;
10041 #endif  // EXPENSIVE_CHECKS
10042   if (check) {
10043     assert(N && "Checking nonexistent SDNode");
10044     SmallPtrSet<const SDNode*, 32> visited;
10045     SmallPtrSet<const SDNode*, 32> checked;
10046     checkForCyclesHelper(N, visited, checked, DAG);
10047   }
10048 #endif  // !NDEBUG
10049 }
10050 
10051 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10052   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10053 }
10054