1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/CodeGen/ValueTypes.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 auto *BV = dyn_cast<BuildVectorSDNode>(N); 141 if (!BV) 142 return false; 143 144 APInt SplatUndef; 145 unsigned SplatBitSize; 146 bool HasUndefs; 147 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 148 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 149 EltSize) && 150 EltSize == SplatBitSize; 151 } 152 153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 154 // specializations of the more general isConstantSplatVector()? 155 156 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 unsigned i = 0, e = N->getNumOperands(); 164 165 // Skip over all of the undef values. 166 while (i != e && N->getOperand(i).isUndef()) 167 ++i; 168 169 // Do not accept an all-undef vector. 170 if (i == e) return false; 171 172 // Do not accept build_vectors that aren't all constants or which have non-~0 173 // elements. We have to be a bit careful here, as the type of the constant 174 // may not be the same as the type of the vector elements due to type 175 // legalization (the elements are promoted to a legal type for the target and 176 // a vector of a type may be legal when the base element type is not). 177 // We only want to check enough bits to cover the vector elements, because 178 // we care if the resultant vector is all ones, not whether the individual 179 // constants are. 180 SDValue NotZero = N->getOperand(i); 181 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 182 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 183 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 184 return false; 185 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 186 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 187 return false; 188 } else 189 return false; 190 191 // Okay, we have at least one ~0 value, check to see if the rest match or are 192 // undefs. Even with the above element type twiddling, this should be OK, as 193 // the same type legalization should have applied to all the elements. 194 for (++i; i != e; ++i) 195 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 196 return false; 197 return true; 198 } 199 200 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 201 // Look through a bit convert. 202 while (N->getOpcode() == ISD::BITCAST) 203 N = N->getOperand(0).getNode(); 204 205 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 206 207 bool IsAllUndef = true; 208 for (const SDValue &Op : N->op_values()) { 209 if (Op.isUndef()) 210 continue; 211 IsAllUndef = false; 212 // Do not accept build_vectors that aren't all constants or which have non-0 213 // elements. We have to be a bit careful here, as the type of the constant 214 // may not be the same as the type of the vector elements due to type 215 // legalization (the elements are promoted to a legal type for the target 216 // and a vector of a type may be legal when the base element type is not). 217 // We only want to check enough bits to cover the vector elements, because 218 // we care if the resultant vector is all zeros, not whether the individual 219 // constants are. 220 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 221 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 222 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 223 return false; 224 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 225 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 226 return false; 227 } else 228 return false; 229 } 230 231 // Do not accept an all-undef vector. 232 if (IsAllUndef) 233 return false; 234 return true; 235 } 236 237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 238 if (N->getOpcode() != ISD::BUILD_VECTOR) 239 return false; 240 241 for (const SDValue &Op : N->op_values()) { 242 if (Op.isUndef()) 243 continue; 244 if (!isa<ConstantSDNode>(Op)) 245 return false; 246 } 247 return true; 248 } 249 250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 251 if (N->getOpcode() != ISD::BUILD_VECTOR) 252 return false; 253 254 for (const SDValue &Op : N->op_values()) { 255 if (Op.isUndef()) 256 continue; 257 if (!isa<ConstantFPSDNode>(Op)) 258 return false; 259 } 260 return true; 261 } 262 263 bool ISD::allOperandsUndef(const SDNode *N) { 264 // Return false if the node has no operands. 265 // This is "logically inconsistent" with the definition of "all" but 266 // is probably the desired behavior. 267 if (N->getNumOperands() == 0) 268 return false; 269 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 270 } 271 272 bool ISD::matchUnaryPredicate(SDValue Op, 273 std::function<bool(ConstantSDNode *)> Match, 274 bool AllowUndefs) { 275 // FIXME: Add support for scalar UNDEF cases? 276 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 277 return Match(Cst); 278 279 // FIXME: Add support for vector UNDEF cases? 280 if (ISD::BUILD_VECTOR != Op.getOpcode()) 281 return false; 282 283 EVT SVT = Op.getValueType().getScalarType(); 284 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 285 if (AllowUndefs && Op.getOperand(i).isUndef()) { 286 if (!Match(nullptr)) 287 return false; 288 continue; 289 } 290 291 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 292 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 293 return false; 294 } 295 return true; 296 } 297 298 bool ISD::matchBinaryPredicate( 299 SDValue LHS, SDValue RHS, 300 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 301 bool AllowUndefs, bool AllowTypeMismatch) { 302 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 303 return false; 304 305 // TODO: Add support for scalar UNDEF cases? 306 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 307 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 308 return Match(LHSCst, RHSCst); 309 310 // TODO: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 312 ISD::BUILD_VECTOR != RHS.getOpcode()) 313 return false; 314 315 EVT SVT = LHS.getValueType().getScalarType(); 316 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 317 SDValue LHSOp = LHS.getOperand(i); 318 SDValue RHSOp = RHS.getOperand(i); 319 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 320 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 321 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 322 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 323 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 324 return false; 325 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 326 LHSOp.getValueType() != RHSOp.getValueType())) 327 return false; 328 if (!Match(LHSCst, RHSCst)) 329 return false; 330 } 331 return true; 332 } 333 334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 335 switch (ExtType) { 336 case ISD::EXTLOAD: 337 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 338 case ISD::SEXTLOAD: 339 return ISD::SIGN_EXTEND; 340 case ISD::ZEXTLOAD: 341 return ISD::ZERO_EXTEND; 342 default: 343 break; 344 } 345 346 llvm_unreachable("Invalid LoadExtType"); 347 } 348 349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 350 // To perform this operation, we just need to swap the L and G bits of the 351 // operation. 352 unsigned OldL = (Operation >> 2) & 1; 353 unsigned OldG = (Operation >> 1) & 1; 354 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 355 (OldL << 1) | // New G bit 356 (OldG << 2)); // New L bit. 357 } 358 359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 360 unsigned Operation = Op; 361 if (isIntegerLike) 362 Operation ^= 7; // Flip L, G, E bits, but not U. 363 else 364 Operation ^= 15; // Flip all of the condition bits. 365 366 if (Operation > ISD::SETTRUE2) 367 Operation &= ~8; // Don't let N and U bits get set. 368 369 return ISD::CondCode(Operation); 370 } 371 372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 373 return getSetCCInverseImpl(Op, Type.isInteger()); 374 } 375 376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 377 bool isIntegerLike) { 378 return getSetCCInverseImpl(Op, isIntegerLike); 379 } 380 381 /// For an integer comparison, return 1 if the comparison is a signed operation 382 /// and 2 if the result is an unsigned comparison. Return zero if the operation 383 /// does not depend on the sign of the input (setne and seteq). 384 static int isSignedOp(ISD::CondCode Opcode) { 385 switch (Opcode) { 386 default: llvm_unreachable("Illegal integer setcc operation!"); 387 case ISD::SETEQ: 388 case ISD::SETNE: return 0; 389 case ISD::SETLT: 390 case ISD::SETLE: 391 case ISD::SETGT: 392 case ISD::SETGE: return 1; 393 case ISD::SETULT: 394 case ISD::SETULE: 395 case ISD::SETUGT: 396 case ISD::SETUGE: return 2; 397 } 398 } 399 400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 401 EVT Type) { 402 bool IsInteger = Type.isInteger(); 403 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 404 // Cannot fold a signed integer setcc with an unsigned integer setcc. 405 return ISD::SETCC_INVALID; 406 407 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 408 409 // If the N and U bits get set, then the resultant comparison DOES suddenly 410 // care about orderedness, and it is true when ordered. 411 if (Op > ISD::SETTRUE2) 412 Op &= ~16; // Clear the U bit if the N bit is set. 413 414 // Canonicalize illegal integer setcc's. 415 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 416 Op = ISD::SETNE; 417 418 return ISD::CondCode(Op); 419 } 420 421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 422 EVT Type) { 423 bool IsInteger = Type.isInteger(); 424 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 425 // Cannot fold a signed setcc with an unsigned setcc. 426 return ISD::SETCC_INVALID; 427 428 // Combine all of the condition bits. 429 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 430 431 // Canonicalize illegal integer setcc's. 432 if (IsInteger) { 433 switch (Result) { 434 default: break; 435 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 436 case ISD::SETOEQ: // SETEQ & SETU[LG]E 437 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 438 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 439 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 440 } 441 } 442 443 return Result; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SDNode Profile Support 448 //===----------------------------------------------------------------------===// 449 450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 452 ID.AddInteger(OpC); 453 } 454 455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 456 /// solely with their pointer. 457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 458 ID.AddPointer(VTList.VTs); 459 } 460 461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 462 static void AddNodeIDOperands(FoldingSetNodeID &ID, 463 ArrayRef<SDValue> Ops) { 464 for (auto& Op : Ops) { 465 ID.AddPointer(Op.getNode()); 466 ID.AddInteger(Op.getResNo()); 467 } 468 } 469 470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 471 static void AddNodeIDOperands(FoldingSetNodeID &ID, 472 ArrayRef<SDUse> Ops) { 473 for (auto& Op : Ops) { 474 ID.AddPointer(Op.getNode()); 475 ID.AddInteger(Op.getResNo()); 476 } 477 } 478 479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 480 SDVTList VTList, ArrayRef<SDValue> OpList) { 481 AddNodeIDOpcode(ID, OpC); 482 AddNodeIDValueTypes(ID, VTList); 483 AddNodeIDOperands(ID, OpList); 484 } 485 486 /// If this is an SDNode with special info, add this info to the NodeID data. 487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 488 switch (N->getOpcode()) { 489 case ISD::TargetExternalSymbol: 490 case ISD::ExternalSymbol: 491 case ISD::MCSymbol: 492 llvm_unreachable("Should only be used on nodes with operands"); 493 default: break; // Normal nodes don't need extra info. 494 case ISD::TargetConstant: 495 case ISD::Constant: { 496 const ConstantSDNode *C = cast<ConstantSDNode>(N); 497 ID.AddPointer(C->getConstantIntValue()); 498 ID.AddBoolean(C->isOpaque()); 499 break; 500 } 501 case ISD::TargetConstantFP: 502 case ISD::ConstantFP: 503 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 504 break; 505 case ISD::TargetGlobalAddress: 506 case ISD::GlobalAddress: 507 case ISD::TargetGlobalTLSAddress: 508 case ISD::GlobalTLSAddress: { 509 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 510 ID.AddPointer(GA->getGlobal()); 511 ID.AddInteger(GA->getOffset()); 512 ID.AddInteger(GA->getTargetFlags()); 513 break; 514 } 515 case ISD::BasicBlock: 516 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 517 break; 518 case ISD::Register: 519 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 520 break; 521 case ISD::RegisterMask: 522 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 523 break; 524 case ISD::SRCVALUE: 525 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 526 break; 527 case ISD::FrameIndex: 528 case ISD::TargetFrameIndex: 529 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 530 break; 531 case ISD::LIFETIME_START: 532 case ISD::LIFETIME_END: 533 if (cast<LifetimeSDNode>(N)->hasOffset()) { 534 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 536 } 537 break; 538 case ISD::JumpTable: 539 case ISD::TargetJumpTable: 540 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 542 break; 543 case ISD::ConstantPool: 544 case ISD::TargetConstantPool: { 545 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 546 ID.AddInteger(CP->getAlignment()); 547 ID.AddInteger(CP->getOffset()); 548 if (CP->isMachineConstantPoolEntry()) 549 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 550 else 551 ID.AddPointer(CP->getConstVal()); 552 ID.AddInteger(CP->getTargetFlags()); 553 break; 554 } 555 case ISD::TargetIndex: { 556 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 557 ID.AddInteger(TI->getIndex()); 558 ID.AddInteger(TI->getOffset()); 559 ID.AddInteger(TI->getTargetFlags()); 560 break; 561 } 562 case ISD::LOAD: { 563 const LoadSDNode *LD = cast<LoadSDNode>(N); 564 ID.AddInteger(LD->getMemoryVT().getRawBits()); 565 ID.AddInteger(LD->getRawSubclassData()); 566 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 567 break; 568 } 569 case ISD::STORE: { 570 const StoreSDNode *ST = cast<StoreSDNode>(N); 571 ID.AddInteger(ST->getMemoryVT().getRawBits()); 572 ID.AddInteger(ST->getRawSubclassData()); 573 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 574 break; 575 } 576 case ISD::MLOAD: { 577 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 578 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 579 ID.AddInteger(MLD->getRawSubclassData()); 580 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 581 break; 582 } 583 case ISD::MSTORE: { 584 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 585 ID.AddInteger(MST->getMemoryVT().getRawBits()); 586 ID.AddInteger(MST->getRawSubclassData()); 587 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 588 break; 589 } 590 case ISD::MGATHER: { 591 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 592 ID.AddInteger(MG->getMemoryVT().getRawBits()); 593 ID.AddInteger(MG->getRawSubclassData()); 594 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 595 break; 596 } 597 case ISD::MSCATTER: { 598 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 599 ID.AddInteger(MS->getMemoryVT().getRawBits()); 600 ID.AddInteger(MS->getRawSubclassData()); 601 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 602 break; 603 } 604 case ISD::ATOMIC_CMP_SWAP: 605 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 606 case ISD::ATOMIC_SWAP: 607 case ISD::ATOMIC_LOAD_ADD: 608 case ISD::ATOMIC_LOAD_SUB: 609 case ISD::ATOMIC_LOAD_AND: 610 case ISD::ATOMIC_LOAD_CLR: 611 case ISD::ATOMIC_LOAD_OR: 612 case ISD::ATOMIC_LOAD_XOR: 613 case ISD::ATOMIC_LOAD_NAND: 614 case ISD::ATOMIC_LOAD_MIN: 615 case ISD::ATOMIC_LOAD_MAX: 616 case ISD::ATOMIC_LOAD_UMIN: 617 case ISD::ATOMIC_LOAD_UMAX: 618 case ISD::ATOMIC_LOAD: 619 case ISD::ATOMIC_STORE: { 620 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 621 ID.AddInteger(AT->getMemoryVT().getRawBits()); 622 ID.AddInteger(AT->getRawSubclassData()); 623 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 624 break; 625 } 626 case ISD::PREFETCH: { 627 const MemSDNode *PF = cast<MemSDNode>(N); 628 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 629 break; 630 } 631 case ISD::VECTOR_SHUFFLE: { 632 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 633 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 634 i != e; ++i) 635 ID.AddInteger(SVN->getMaskElt(i)); 636 break; 637 } 638 case ISD::TargetBlockAddress: 639 case ISD::BlockAddress: { 640 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 641 ID.AddPointer(BA->getBlockAddress()); 642 ID.AddInteger(BA->getOffset()); 643 ID.AddInteger(BA->getTargetFlags()); 644 break; 645 } 646 } // end switch (N->getOpcode()) 647 648 // Target specific memory nodes could also have address spaces to check. 649 if (N->isTargetMemoryOpcode()) 650 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 651 } 652 653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 654 /// data. 655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 656 AddNodeIDOpcode(ID, N->getOpcode()); 657 // Add the return value info. 658 AddNodeIDValueTypes(ID, N->getVTList()); 659 // Add the operand info. 660 AddNodeIDOperands(ID, N->ops()); 661 662 // Handle SDNode leafs with special info. 663 AddNodeIDCustom(ID, N); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // SelectionDAG Class 668 //===----------------------------------------------------------------------===// 669 670 /// doNotCSE - Return true if CSE should not be performed for this node. 671 static bool doNotCSE(SDNode *N) { 672 if (N->getValueType(0) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 switch (N->getOpcode()) { 676 default: break; 677 case ISD::HANDLENODE: 678 case ISD::EH_LABEL: 679 return true; // Never CSE these nodes. 680 } 681 682 // Check that remaining values produced are not flags. 683 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 684 if (N->getValueType(i) == MVT::Glue) 685 return true; // Never CSE anything that produces a flag. 686 687 return false; 688 } 689 690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 691 /// SelectionDAG. 692 void SelectionDAG::RemoveDeadNodes() { 693 // Create a dummy node (which is not added to allnodes), that adds a reference 694 // to the root node, preventing it from being deleted. 695 HandleSDNode Dummy(getRoot()); 696 697 SmallVector<SDNode*, 128> DeadNodes; 698 699 // Add all obviously-dead nodes to the DeadNodes worklist. 700 for (SDNode &Node : allnodes()) 701 if (Node.use_empty()) 702 DeadNodes.push_back(&Node); 703 704 RemoveDeadNodes(DeadNodes); 705 706 // If the root changed (e.g. it was a dead load, update the root). 707 setRoot(Dummy.getValue()); 708 } 709 710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 711 /// given list, and any nodes that become unreachable as a result. 712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 713 714 // Process the worklist, deleting the nodes and adding their uses to the 715 // worklist. 716 while (!DeadNodes.empty()) { 717 SDNode *N = DeadNodes.pop_back_val(); 718 // Skip to next node if we've already managed to delete the node. This could 719 // happen if replacing a node causes a node previously added to the node to 720 // be deleted. 721 if (N->getOpcode() == ISD::DELETED_NODE) 722 continue; 723 724 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 725 DUL->NodeDeleted(N, nullptr); 726 727 // Take the node out of the appropriate CSE map. 728 RemoveNodeFromCSEMaps(N); 729 730 // Next, brutally remove the operand list. This is safe to do, as there are 731 // no cycles in the graph. 732 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 733 SDUse &Use = *I++; 734 SDNode *Operand = Use.getNode(); 735 Use.set(SDValue()); 736 737 // Now that we removed this operand, see if there are no uses of it left. 738 if (Operand->use_empty()) 739 DeadNodes.push_back(Operand); 740 } 741 742 DeallocateNode(N); 743 } 744 } 745 746 void SelectionDAG::RemoveDeadNode(SDNode *N){ 747 SmallVector<SDNode*, 16> DeadNodes(1, N); 748 749 // Create a dummy node that adds a reference to the root node, preventing 750 // it from being deleted. (This matters if the root is an operand of the 751 // dead node.) 752 HandleSDNode Dummy(getRoot()); 753 754 RemoveDeadNodes(DeadNodes); 755 } 756 757 void SelectionDAG::DeleteNode(SDNode *N) { 758 // First take this out of the appropriate CSE map. 759 RemoveNodeFromCSEMaps(N); 760 761 // Finally, remove uses due to operands of this node, remove from the 762 // AllNodes list, and delete the node. 763 DeleteNodeNotInCSEMaps(N); 764 } 765 766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 767 assert(N->getIterator() != AllNodes.begin() && 768 "Cannot delete the entry node!"); 769 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 770 771 // Drop all of the operands and decrement used node's use counts. 772 N->DropOperands(); 773 774 DeallocateNode(N); 775 } 776 777 void SDDbgInfo::erase(const SDNode *Node) { 778 DbgValMapType::iterator I = DbgValMap.find(Node); 779 if (I == DbgValMap.end()) 780 return; 781 for (auto &Val: I->second) 782 Val->setIsInvalidated(); 783 DbgValMap.erase(I); 784 } 785 786 void SelectionDAG::DeallocateNode(SDNode *N) { 787 // If we have operands, deallocate them. 788 removeOperands(N); 789 790 NodeAllocator.Deallocate(AllNodes.remove(N)); 791 792 // Set the opcode to DELETED_NODE to help catch bugs when node 793 // memory is reallocated. 794 // FIXME: There are places in SDag that have grown a dependency on the opcode 795 // value in the released node. 796 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 797 N->NodeType = ISD::DELETED_NODE; 798 799 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 800 // them and forget about that node. 801 DbgInfo->erase(N); 802 } 803 804 #ifndef NDEBUG 805 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 806 static void VerifySDNode(SDNode *N) { 807 switch (N->getOpcode()) { 808 default: 809 break; 810 case ISD::BUILD_PAIR: { 811 EVT VT = N->getValueType(0); 812 assert(N->getNumValues() == 1 && "Too many results!"); 813 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 814 "Wrong return type!"); 815 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 816 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 817 "Mismatched operand types!"); 818 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 819 "Wrong operand type!"); 820 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 821 "Wrong return type size"); 822 break; 823 } 824 case ISD::BUILD_VECTOR: { 825 assert(N->getNumValues() == 1 && "Too many results!"); 826 assert(N->getValueType(0).isVector() && "Wrong return type!"); 827 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 828 "Wrong number of operands!"); 829 EVT EltVT = N->getValueType(0).getVectorElementType(); 830 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 831 assert((I->getValueType() == EltVT || 832 (EltVT.isInteger() && I->getValueType().isInteger() && 833 EltVT.bitsLE(I->getValueType()))) && 834 "Wrong operand type!"); 835 assert(I->getValueType() == N->getOperand(0).getValueType() && 836 "Operands must all have the same type"); 837 } 838 break; 839 } 840 } 841 } 842 #endif // NDEBUG 843 844 /// Insert a newly allocated node into the DAG. 845 /// 846 /// Handles insertion into the all nodes list and CSE map, as well as 847 /// verification and other common operations when a new node is allocated. 848 void SelectionDAG::InsertNode(SDNode *N) { 849 AllNodes.push_back(N); 850 #ifndef NDEBUG 851 N->PersistentId = NextPersistentId++; 852 VerifySDNode(N); 853 #endif 854 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 855 DUL->NodeInserted(N); 856 } 857 858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 859 /// correspond to it. This is useful when we're about to delete or repurpose 860 /// the node. We don't want future request for structurally identical nodes 861 /// to return N anymore. 862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 863 bool Erased = false; 864 switch (N->getOpcode()) { 865 case ISD::HANDLENODE: return false; // noop. 866 case ISD::CONDCODE: 867 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 868 "Cond code doesn't exist!"); 869 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 870 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 871 break; 872 case ISD::ExternalSymbol: 873 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 874 break; 875 case ISD::TargetExternalSymbol: { 876 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 877 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 878 ESN->getSymbol(), ESN->getTargetFlags())); 879 break; 880 } 881 case ISD::MCSymbol: { 882 auto *MCSN = cast<MCSymbolSDNode>(N); 883 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 884 break; 885 } 886 case ISD::VALUETYPE: { 887 EVT VT = cast<VTSDNode>(N)->getVT(); 888 if (VT.isExtended()) { 889 Erased = ExtendedValueTypeNodes.erase(VT); 890 } else { 891 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 892 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 893 } 894 break; 895 } 896 default: 897 // Remove it from the CSE Map. 898 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 899 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 900 Erased = CSEMap.RemoveNode(N); 901 break; 902 } 903 #ifndef NDEBUG 904 // Verify that the node was actually in one of the CSE maps, unless it has a 905 // flag result (which cannot be CSE'd) or is one of the special cases that are 906 // not subject to CSE. 907 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 908 !N->isMachineOpcode() && !doNotCSE(N)) { 909 N->dump(this); 910 dbgs() << "\n"; 911 llvm_unreachable("Node is not in map!"); 912 } 913 #endif 914 return Erased; 915 } 916 917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 918 /// maps and modified in place. Add it back to the CSE maps, unless an identical 919 /// node already exists, in which case transfer all its users to the existing 920 /// node. This transfer can potentially trigger recursive merging. 921 void 922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 923 // For node types that aren't CSE'd, just act as if no identical node 924 // already exists. 925 if (!doNotCSE(N)) { 926 SDNode *Existing = CSEMap.GetOrInsertNode(N); 927 if (Existing != N) { 928 // If there was already an existing matching node, use ReplaceAllUsesWith 929 // to replace the dead one with the existing one. This can cause 930 // recursive merging of other unrelated nodes down the line. 931 ReplaceAllUsesWith(N, Existing); 932 933 // N is now dead. Inform the listeners and delete it. 934 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 935 DUL->NodeDeleted(N, Existing); 936 DeleteNodeNotInCSEMaps(N); 937 return; 938 } 939 } 940 941 // If the node doesn't already exist, we updated it. Inform listeners. 942 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 943 DUL->NodeUpdated(N); 944 } 945 946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 947 /// were replaced with those specified. If this node is never memoized, 948 /// return null, otherwise return a pointer to the slot it would take. If a 949 /// node already exists with these operands, the slot will be non-null. 950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 951 void *&InsertPos) { 952 if (doNotCSE(N)) 953 return nullptr; 954 955 SDValue Ops[] = { Op }; 956 FoldingSetNodeID ID; 957 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 958 AddNodeIDCustom(ID, N); 959 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 960 if (Node) 961 Node->intersectFlagsWith(N->getFlags()); 962 return Node; 963 } 964 965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 966 /// were replaced with those specified. If this node is never memoized, 967 /// return null, otherwise return a pointer to the slot it would take. If a 968 /// node already exists with these operands, the slot will be non-null. 969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 970 SDValue Op1, SDValue Op2, 971 void *&InsertPos) { 972 if (doNotCSE(N)) 973 return nullptr; 974 975 SDValue Ops[] = { Op1, Op2 }; 976 FoldingSetNodeID ID; 977 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 978 AddNodeIDCustom(ID, N); 979 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 980 if (Node) 981 Node->intersectFlagsWith(N->getFlags()); 982 return Node; 983 } 984 985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 986 /// were replaced with those specified. If this node is never memoized, 987 /// return null, otherwise return a pointer to the slot it would take. If a 988 /// node already exists with these operands, the slot will be non-null. 989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 990 void *&InsertPos) { 991 if (doNotCSE(N)) 992 return nullptr; 993 994 FoldingSetNodeID ID; 995 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 996 AddNodeIDCustom(ID, N); 997 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 998 if (Node) 999 Node->intersectFlagsWith(N->getFlags()); 1000 return Node; 1001 } 1002 1003 Align SelectionDAG::getEVTAlign(EVT VT) const { 1004 Type *Ty = VT == MVT::iPTR ? 1005 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1006 VT.getTypeForEVT(*getContext()); 1007 1008 return getDataLayout().getABITypeAlign(Ty); 1009 } 1010 1011 // EntryNode could meaningfully have debug info if we can find it... 1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1013 : TM(tm), OptLevel(OL), 1014 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1015 Root(getEntryNode()) { 1016 InsertNode(&EntryNode); 1017 DbgInfo = new SDDbgInfo(); 1018 } 1019 1020 void SelectionDAG::init(MachineFunction &NewMF, 1021 OptimizationRemarkEmitter &NewORE, 1022 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1023 LegacyDivergenceAnalysis * Divergence, 1024 ProfileSummaryInfo *PSIin, 1025 BlockFrequencyInfo *BFIin) { 1026 MF = &NewMF; 1027 SDAGISelPass = PassPtr; 1028 ORE = &NewORE; 1029 TLI = getSubtarget().getTargetLowering(); 1030 TSI = getSubtarget().getSelectionDAGInfo(); 1031 LibInfo = LibraryInfo; 1032 Context = &MF->getFunction().getContext(); 1033 DA = Divergence; 1034 PSI = PSIin; 1035 BFI = BFIin; 1036 } 1037 1038 SelectionDAG::~SelectionDAG() { 1039 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1040 allnodes_clear(); 1041 OperandRecycler.clear(OperandAllocator); 1042 delete DbgInfo; 1043 } 1044 1045 bool SelectionDAG::shouldOptForSize() const { 1046 return MF->getFunction().hasOptSize() || 1047 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1048 } 1049 1050 void SelectionDAG::allnodes_clear() { 1051 assert(&*AllNodes.begin() == &EntryNode); 1052 AllNodes.remove(AllNodes.begin()); 1053 while (!AllNodes.empty()) 1054 DeallocateNode(&AllNodes.front()); 1055 #ifndef NDEBUG 1056 NextPersistentId = 0; 1057 #endif 1058 } 1059 1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1061 void *&InsertPos) { 1062 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1063 if (N) { 1064 switch (N->getOpcode()) { 1065 default: break; 1066 case ISD::Constant: 1067 case ISD::ConstantFP: 1068 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1069 "debug location. Use another overload."); 1070 } 1071 } 1072 return N; 1073 } 1074 1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1076 const SDLoc &DL, void *&InsertPos) { 1077 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1078 if (N) { 1079 switch (N->getOpcode()) { 1080 case ISD::Constant: 1081 case ISD::ConstantFP: 1082 // Erase debug location from the node if the node is used at several 1083 // different places. Do not propagate one location to all uses as it 1084 // will cause a worse single stepping debugging experience. 1085 if (N->getDebugLoc() != DL.getDebugLoc()) 1086 N->setDebugLoc(DebugLoc()); 1087 break; 1088 default: 1089 // When the node's point of use is located earlier in the instruction 1090 // sequence than its prior point of use, update its debug info to the 1091 // earlier location. 1092 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1093 N->setDebugLoc(DL.getDebugLoc()); 1094 break; 1095 } 1096 } 1097 return N; 1098 } 1099 1100 void SelectionDAG::clear() { 1101 allnodes_clear(); 1102 OperandRecycler.clear(OperandAllocator); 1103 OperandAllocator.Reset(); 1104 CSEMap.clear(); 1105 1106 ExtendedValueTypeNodes.clear(); 1107 ExternalSymbols.clear(); 1108 TargetExternalSymbols.clear(); 1109 MCSymbols.clear(); 1110 SDCallSiteDbgInfo.clear(); 1111 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1112 static_cast<CondCodeSDNode*>(nullptr)); 1113 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1114 static_cast<SDNode*>(nullptr)); 1115 1116 EntryNode.UseList = nullptr; 1117 InsertNode(&EntryNode); 1118 Root = getEntryNode(); 1119 DbgInfo->clear(); 1120 } 1121 1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) 1124 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1125 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1126 } 1127 1128 std::pair<SDValue, SDValue> 1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1130 const SDLoc &DL, EVT VT) { 1131 assert(!VT.bitsEq(Op.getValueType()) && 1132 "Strict no-op FP extend/round not allowed."); 1133 SDValue Res = 1134 VT.bitsGT(Op.getValueType()) 1135 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1136 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1137 {Chain, Op, getIntPtrConstant(0, DL)}); 1138 1139 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1140 } 1141 1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1143 return VT.bitsGT(Op.getValueType()) ? 1144 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1145 getNode(ISD::TRUNCATE, DL, VT, Op); 1146 } 1147 1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1149 return VT.bitsGT(Op.getValueType()) ? 1150 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1151 getNode(ISD::TRUNCATE, DL, VT, Op); 1152 } 1153 1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1155 return VT.bitsGT(Op.getValueType()) ? 1156 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1157 getNode(ISD::TRUNCATE, DL, VT, Op); 1158 } 1159 1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1161 EVT OpVT) { 1162 if (VT.bitsLE(Op.getValueType())) 1163 return getNode(ISD::TRUNCATE, SL, VT, Op); 1164 1165 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1166 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1167 } 1168 1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1170 assert(!VT.isVector() && 1171 "getZeroExtendInReg should use the vector element type instead of " 1172 "the vector type!"); 1173 if (Op.getValueType().getScalarType() == VT) return Op; 1174 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1175 APInt Imm = APInt::getLowBitsSet(BitWidth, 1176 VT.getSizeInBits()); 1177 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1178 getConstant(Imm, DL, Op.getValueType())); 1179 } 1180 1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1182 // Only unsigned pointer semantics are supported right now. In the future this 1183 // might delegate to TLI to check pointer signedness. 1184 return getZExtOrTrunc(Op, DL, VT); 1185 } 1186 1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1188 // Only unsigned pointer semantics are supported right now. In the future this 1189 // might delegate to TLI to check pointer signedness. 1190 return getZeroExtendInReg(Op, DL, VT); 1191 } 1192 1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1195 EVT EltVT = VT.getScalarType(); 1196 SDValue NegOne = 1197 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1198 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1199 } 1200 1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1203 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1204 } 1205 1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1207 EVT OpVT) { 1208 if (!V) 1209 return getConstant(0, DL, VT); 1210 1211 switch (TLI->getBooleanContents(OpVT)) { 1212 case TargetLowering::ZeroOrOneBooleanContent: 1213 case TargetLowering::UndefinedBooleanContent: 1214 return getConstant(1, DL, VT); 1215 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1216 return getAllOnesConstant(DL, VT); 1217 } 1218 llvm_unreachable("Unexpected boolean content enum!"); 1219 } 1220 1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1222 bool isT, bool isO) { 1223 EVT EltVT = VT.getScalarType(); 1224 assert((EltVT.getSizeInBits() >= 64 || 1225 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1226 "getConstant with a uint64_t value that doesn't fit in the type!"); 1227 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1228 } 1229 1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1231 bool isT, bool isO) { 1232 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1233 } 1234 1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1236 EVT VT, bool isT, bool isO) { 1237 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1238 1239 EVT EltVT = VT.getScalarType(); 1240 const ConstantInt *Elt = &Val; 1241 1242 // In some cases the vector type is legal but the element type is illegal and 1243 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1244 // inserted value (the type does not need to match the vector element type). 1245 // Any extra bits introduced will be truncated away. 1246 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1247 TargetLowering::TypePromoteInteger) { 1248 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1249 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1250 Elt = ConstantInt::get(*getContext(), NewVal); 1251 } 1252 // In other cases the element type is illegal and needs to be expanded, for 1253 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1254 // the value into n parts and use a vector type with n-times the elements. 1255 // Then bitcast to the type requested. 1256 // Legalizing constants too early makes the DAGCombiner's job harder so we 1257 // only legalize if the DAG tells us we must produce legal types. 1258 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1259 TLI->getTypeAction(*getContext(), EltVT) == 1260 TargetLowering::TypeExpandInteger) { 1261 const APInt &NewVal = Elt->getValue(); 1262 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1263 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1264 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1265 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1266 1267 // Check the temporary vector is the correct size. If this fails then 1268 // getTypeToTransformTo() probably returned a type whose size (in bits) 1269 // isn't a power-of-2 factor of the requested type size. 1270 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1271 1272 SmallVector<SDValue, 2> EltParts; 1273 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1274 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1275 .zextOrTrunc(ViaEltSizeInBits), DL, 1276 ViaEltVT, isT, isO)); 1277 } 1278 1279 // EltParts is currently in little endian order. If we actually want 1280 // big-endian order then reverse it now. 1281 if (getDataLayout().isBigEndian()) 1282 std::reverse(EltParts.begin(), EltParts.end()); 1283 1284 // The elements must be reversed when the element order is different 1285 // to the endianness of the elements (because the BITCAST is itself a 1286 // vector shuffle in this situation). However, we do not need any code to 1287 // perform this reversal because getConstant() is producing a vector 1288 // splat. 1289 // This situation occurs in MIPS MSA. 1290 1291 SmallVector<SDValue, 8> Ops; 1292 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1293 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1294 1295 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1296 return V; 1297 } 1298 1299 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1300 "APInt size does not match type size!"); 1301 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1302 FoldingSetNodeID ID; 1303 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1304 ID.AddPointer(Elt); 1305 ID.AddBoolean(isO); 1306 void *IP = nullptr; 1307 SDNode *N = nullptr; 1308 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1309 if (!VT.isVector()) 1310 return SDValue(N, 0); 1311 1312 if (!N) { 1313 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1314 CSEMap.InsertNode(N, IP); 1315 InsertNode(N); 1316 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1317 } 1318 1319 SDValue Result(N, 0); 1320 if (VT.isScalableVector()) 1321 Result = getSplatVector(VT, DL, Result); 1322 else if (VT.isVector()) 1323 Result = getSplatBuildVector(VT, DL, Result); 1324 1325 return Result; 1326 } 1327 1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1329 bool isTarget) { 1330 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1331 } 1332 1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1334 const SDLoc &DL, bool LegalTypes) { 1335 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1336 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1337 return getConstant(Val, DL, ShiftVT); 1338 } 1339 1340 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1341 bool isTarget) { 1342 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1343 } 1344 1345 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1346 bool isTarget) { 1347 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1348 } 1349 1350 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1351 EVT VT, bool isTarget) { 1352 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1353 1354 EVT EltVT = VT.getScalarType(); 1355 1356 // Do the map lookup using the actual bit pattern for the floating point 1357 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1358 // we don't have issues with SNANs. 1359 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1360 FoldingSetNodeID ID; 1361 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1362 ID.AddPointer(&V); 1363 void *IP = nullptr; 1364 SDNode *N = nullptr; 1365 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1366 if (!VT.isVector()) 1367 return SDValue(N, 0); 1368 1369 if (!N) { 1370 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1371 CSEMap.InsertNode(N, IP); 1372 InsertNode(N); 1373 } 1374 1375 SDValue Result(N, 0); 1376 if (VT.isVector()) 1377 Result = getSplatBuildVector(VT, DL, Result); 1378 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1379 return Result; 1380 } 1381 1382 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1383 bool isTarget) { 1384 EVT EltVT = VT.getScalarType(); 1385 if (EltVT == MVT::f32) 1386 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1387 else if (EltVT == MVT::f64) 1388 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1389 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1390 EltVT == MVT::f16) { 1391 bool Ignored; 1392 APFloat APF = APFloat(Val); 1393 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1394 &Ignored); 1395 return getConstantFP(APF, DL, VT, isTarget); 1396 } else 1397 llvm_unreachable("Unsupported type in getConstantFP"); 1398 } 1399 1400 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1401 EVT VT, int64_t Offset, bool isTargetGA, 1402 unsigned TargetFlags) { 1403 assert((TargetFlags == 0 || isTargetGA) && 1404 "Cannot set target flags on target-independent globals"); 1405 1406 // Truncate (with sign-extension) the offset value to the pointer size. 1407 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1408 if (BitWidth < 64) 1409 Offset = SignExtend64(Offset, BitWidth); 1410 1411 unsigned Opc; 1412 if (GV->isThreadLocal()) 1413 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1414 else 1415 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1416 1417 FoldingSetNodeID ID; 1418 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1419 ID.AddPointer(GV); 1420 ID.AddInteger(Offset); 1421 ID.AddInteger(TargetFlags); 1422 void *IP = nullptr; 1423 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1424 return SDValue(E, 0); 1425 1426 auto *N = newSDNode<GlobalAddressSDNode>( 1427 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1428 CSEMap.InsertNode(N, IP); 1429 InsertNode(N); 1430 return SDValue(N, 0); 1431 } 1432 1433 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1434 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1435 FoldingSetNodeID ID; 1436 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1437 ID.AddInteger(FI); 1438 void *IP = nullptr; 1439 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1440 return SDValue(E, 0); 1441 1442 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1443 CSEMap.InsertNode(N, IP); 1444 InsertNode(N); 1445 return SDValue(N, 0); 1446 } 1447 1448 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1449 unsigned TargetFlags) { 1450 assert((TargetFlags == 0 || isTarget) && 1451 "Cannot set target flags on target-independent jump tables"); 1452 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1453 FoldingSetNodeID ID; 1454 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1455 ID.AddInteger(JTI); 1456 ID.AddInteger(TargetFlags); 1457 void *IP = nullptr; 1458 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1459 return SDValue(E, 0); 1460 1461 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1462 CSEMap.InsertNode(N, IP); 1463 InsertNode(N); 1464 return SDValue(N, 0); 1465 } 1466 1467 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1468 unsigned Alignment, int Offset, 1469 bool isTarget, 1470 unsigned TargetFlags) { 1471 assert((TargetFlags == 0 || isTarget) && 1472 "Cannot set target flags on target-independent globals"); 1473 if (Alignment == 0) 1474 Alignment = shouldOptForSize() 1475 ? getDataLayout().getABITypeAlignment(C->getType()) 1476 : getDataLayout().getPrefTypeAlignment(C->getType()); 1477 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1478 FoldingSetNodeID ID; 1479 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1480 ID.AddInteger(Alignment); 1481 ID.AddInteger(Offset); 1482 ID.AddPointer(C); 1483 ID.AddInteger(TargetFlags); 1484 void *IP = nullptr; 1485 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1486 return SDValue(E, 0); 1487 1488 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1489 TargetFlags); 1490 CSEMap.InsertNode(N, IP); 1491 InsertNode(N); 1492 return SDValue(N, 0); 1493 } 1494 1495 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1496 unsigned Alignment, int Offset, 1497 bool isTarget, 1498 unsigned TargetFlags) { 1499 assert((TargetFlags == 0 || isTarget) && 1500 "Cannot set target flags on target-independent globals"); 1501 if (Alignment == 0) 1502 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1503 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1504 FoldingSetNodeID ID; 1505 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1506 ID.AddInteger(Alignment); 1507 ID.AddInteger(Offset); 1508 C->addSelectionDAGCSEId(ID); 1509 ID.AddInteger(TargetFlags); 1510 void *IP = nullptr; 1511 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1512 return SDValue(E, 0); 1513 1514 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1515 TargetFlags); 1516 CSEMap.InsertNode(N, IP); 1517 InsertNode(N); 1518 return SDValue(N, 0); 1519 } 1520 1521 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1522 unsigned TargetFlags) { 1523 FoldingSetNodeID ID; 1524 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1525 ID.AddInteger(Index); 1526 ID.AddInteger(Offset); 1527 ID.AddInteger(TargetFlags); 1528 void *IP = nullptr; 1529 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1530 return SDValue(E, 0); 1531 1532 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1533 CSEMap.InsertNode(N, IP); 1534 InsertNode(N); 1535 return SDValue(N, 0); 1536 } 1537 1538 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1539 FoldingSetNodeID ID; 1540 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1541 ID.AddPointer(MBB); 1542 void *IP = nullptr; 1543 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1544 return SDValue(E, 0); 1545 1546 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1547 CSEMap.InsertNode(N, IP); 1548 InsertNode(N); 1549 return SDValue(N, 0); 1550 } 1551 1552 SDValue SelectionDAG::getValueType(EVT VT) { 1553 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1554 ValueTypeNodes.size()) 1555 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1556 1557 SDNode *&N = VT.isExtended() ? 1558 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1559 1560 if (N) return SDValue(N, 0); 1561 N = newSDNode<VTSDNode>(VT); 1562 InsertNode(N); 1563 return SDValue(N, 0); 1564 } 1565 1566 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1567 SDNode *&N = ExternalSymbols[Sym]; 1568 if (N) return SDValue(N, 0); 1569 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1570 InsertNode(N); 1571 return SDValue(N, 0); 1572 } 1573 1574 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1575 SDNode *&N = MCSymbols[Sym]; 1576 if (N) 1577 return SDValue(N, 0); 1578 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1579 InsertNode(N); 1580 return SDValue(N, 0); 1581 } 1582 1583 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1584 unsigned TargetFlags) { 1585 SDNode *&N = 1586 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1587 if (N) return SDValue(N, 0); 1588 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1589 InsertNode(N); 1590 return SDValue(N, 0); 1591 } 1592 1593 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1594 if ((unsigned)Cond >= CondCodeNodes.size()) 1595 CondCodeNodes.resize(Cond+1); 1596 1597 if (!CondCodeNodes[Cond]) { 1598 auto *N = newSDNode<CondCodeSDNode>(Cond); 1599 CondCodeNodes[Cond] = N; 1600 InsertNode(N); 1601 } 1602 1603 return SDValue(CondCodeNodes[Cond], 0); 1604 } 1605 1606 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1607 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1608 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1609 std::swap(N1, N2); 1610 ShuffleVectorSDNode::commuteMask(M); 1611 } 1612 1613 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1614 SDValue N2, ArrayRef<int> Mask) { 1615 assert(VT.getVectorNumElements() == Mask.size() && 1616 "Must have the same number of vector elements as mask elements!"); 1617 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1618 "Invalid VECTOR_SHUFFLE"); 1619 1620 // Canonicalize shuffle undef, undef -> undef 1621 if (N1.isUndef() && N2.isUndef()) 1622 return getUNDEF(VT); 1623 1624 // Validate that all indices in Mask are within the range of the elements 1625 // input to the shuffle. 1626 int NElts = Mask.size(); 1627 assert(llvm::all_of(Mask, 1628 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1629 "Index out of range"); 1630 1631 // Copy the mask so we can do any needed cleanup. 1632 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1633 1634 // Canonicalize shuffle v, v -> v, undef 1635 if (N1 == N2) { 1636 N2 = getUNDEF(VT); 1637 for (int i = 0; i != NElts; ++i) 1638 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1639 } 1640 1641 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1642 if (N1.isUndef()) 1643 commuteShuffle(N1, N2, MaskVec); 1644 1645 if (TLI->hasVectorBlend()) { 1646 // If shuffling a splat, try to blend the splat instead. We do this here so 1647 // that even when this arises during lowering we don't have to re-handle it. 1648 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1649 BitVector UndefElements; 1650 SDValue Splat = BV->getSplatValue(&UndefElements); 1651 if (!Splat) 1652 return; 1653 1654 for (int i = 0; i < NElts; ++i) { 1655 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1656 continue; 1657 1658 // If this input comes from undef, mark it as such. 1659 if (UndefElements[MaskVec[i] - Offset]) { 1660 MaskVec[i] = -1; 1661 continue; 1662 } 1663 1664 // If we can blend a non-undef lane, use that instead. 1665 if (!UndefElements[i]) 1666 MaskVec[i] = i + Offset; 1667 } 1668 }; 1669 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1670 BlendSplat(N1BV, 0); 1671 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1672 BlendSplat(N2BV, NElts); 1673 } 1674 1675 // Canonicalize all index into lhs, -> shuffle lhs, undef 1676 // Canonicalize all index into rhs, -> shuffle rhs, undef 1677 bool AllLHS = true, AllRHS = true; 1678 bool N2Undef = N2.isUndef(); 1679 for (int i = 0; i != NElts; ++i) { 1680 if (MaskVec[i] >= NElts) { 1681 if (N2Undef) 1682 MaskVec[i] = -1; 1683 else 1684 AllLHS = false; 1685 } else if (MaskVec[i] >= 0) { 1686 AllRHS = false; 1687 } 1688 } 1689 if (AllLHS && AllRHS) 1690 return getUNDEF(VT); 1691 if (AllLHS && !N2Undef) 1692 N2 = getUNDEF(VT); 1693 if (AllRHS) { 1694 N1 = getUNDEF(VT); 1695 commuteShuffle(N1, N2, MaskVec); 1696 } 1697 // Reset our undef status after accounting for the mask. 1698 N2Undef = N2.isUndef(); 1699 // Re-check whether both sides ended up undef. 1700 if (N1.isUndef() && N2Undef) 1701 return getUNDEF(VT); 1702 1703 // If Identity shuffle return that node. 1704 bool Identity = true, AllSame = true; 1705 for (int i = 0; i != NElts; ++i) { 1706 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1707 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1708 } 1709 if (Identity && NElts) 1710 return N1; 1711 1712 // Shuffling a constant splat doesn't change the result. 1713 if (N2Undef) { 1714 SDValue V = N1; 1715 1716 // Look through any bitcasts. We check that these don't change the number 1717 // (and size) of elements and just changes their types. 1718 while (V.getOpcode() == ISD::BITCAST) 1719 V = V->getOperand(0); 1720 1721 // A splat should always show up as a build vector node. 1722 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1723 BitVector UndefElements; 1724 SDValue Splat = BV->getSplatValue(&UndefElements); 1725 // If this is a splat of an undef, shuffling it is also undef. 1726 if (Splat && Splat.isUndef()) 1727 return getUNDEF(VT); 1728 1729 bool SameNumElts = 1730 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1731 1732 // We only have a splat which can skip shuffles if there is a splatted 1733 // value and no undef lanes rearranged by the shuffle. 1734 if (Splat && UndefElements.none()) { 1735 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1736 // number of elements match or the value splatted is a zero constant. 1737 if (SameNumElts) 1738 return N1; 1739 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1740 if (C->isNullValue()) 1741 return N1; 1742 } 1743 1744 // If the shuffle itself creates a splat, build the vector directly. 1745 if (AllSame && SameNumElts) { 1746 EVT BuildVT = BV->getValueType(0); 1747 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1748 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1749 1750 // We may have jumped through bitcasts, so the type of the 1751 // BUILD_VECTOR may not match the type of the shuffle. 1752 if (BuildVT != VT) 1753 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1754 return NewBV; 1755 } 1756 } 1757 } 1758 1759 FoldingSetNodeID ID; 1760 SDValue Ops[2] = { N1, N2 }; 1761 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1762 for (int i = 0; i != NElts; ++i) 1763 ID.AddInteger(MaskVec[i]); 1764 1765 void* IP = nullptr; 1766 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1767 return SDValue(E, 0); 1768 1769 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1770 // SDNode doesn't have access to it. This memory will be "leaked" when 1771 // the node is deallocated, but recovered when the NodeAllocator is released. 1772 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1773 llvm::copy(MaskVec, MaskAlloc); 1774 1775 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1776 dl.getDebugLoc(), MaskAlloc); 1777 createOperands(N, Ops); 1778 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 SDValue V = SDValue(N, 0); 1782 NewSDValueDbgMsg(V, "Creating new node: ", this); 1783 return V; 1784 } 1785 1786 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1787 EVT VT = SV.getValueType(0); 1788 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1789 ShuffleVectorSDNode::commuteMask(MaskVec); 1790 1791 SDValue Op0 = SV.getOperand(0); 1792 SDValue Op1 = SV.getOperand(1); 1793 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1794 } 1795 1796 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1797 FoldingSetNodeID ID; 1798 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1799 ID.AddInteger(RegNo); 1800 void *IP = nullptr; 1801 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1802 return SDValue(E, 0); 1803 1804 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1805 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1806 CSEMap.InsertNode(N, IP); 1807 InsertNode(N); 1808 return SDValue(N, 0); 1809 } 1810 1811 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1812 FoldingSetNodeID ID; 1813 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1814 ID.AddPointer(RegMask); 1815 void *IP = nullptr; 1816 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1817 return SDValue(E, 0); 1818 1819 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1820 CSEMap.InsertNode(N, IP); 1821 InsertNode(N); 1822 return SDValue(N, 0); 1823 } 1824 1825 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1826 MCSymbol *Label) { 1827 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1828 } 1829 1830 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1831 SDValue Root, MCSymbol *Label) { 1832 FoldingSetNodeID ID; 1833 SDValue Ops[] = { Root }; 1834 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1835 ID.AddPointer(Label); 1836 void *IP = nullptr; 1837 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1838 return SDValue(E, 0); 1839 1840 auto *N = 1841 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1842 createOperands(N, Ops); 1843 1844 CSEMap.InsertNode(N, IP); 1845 InsertNode(N); 1846 return SDValue(N, 0); 1847 } 1848 1849 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1850 int64_t Offset, bool isTarget, 1851 unsigned TargetFlags) { 1852 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1853 1854 FoldingSetNodeID ID; 1855 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1856 ID.AddPointer(BA); 1857 ID.AddInteger(Offset); 1858 ID.AddInteger(TargetFlags); 1859 void *IP = nullptr; 1860 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1861 return SDValue(E, 0); 1862 1863 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1864 CSEMap.InsertNode(N, IP); 1865 InsertNode(N); 1866 return SDValue(N, 0); 1867 } 1868 1869 SDValue SelectionDAG::getSrcValue(const Value *V) { 1870 assert((!V || V->getType()->isPointerTy()) && 1871 "SrcValue is not a pointer?"); 1872 1873 FoldingSetNodeID ID; 1874 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1875 ID.AddPointer(V); 1876 1877 void *IP = nullptr; 1878 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1879 return SDValue(E, 0); 1880 1881 auto *N = newSDNode<SrcValueSDNode>(V); 1882 CSEMap.InsertNode(N, IP); 1883 InsertNode(N); 1884 return SDValue(N, 0); 1885 } 1886 1887 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1888 FoldingSetNodeID ID; 1889 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1890 ID.AddPointer(MD); 1891 1892 void *IP = nullptr; 1893 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1894 return SDValue(E, 0); 1895 1896 auto *N = newSDNode<MDNodeSDNode>(MD); 1897 CSEMap.InsertNode(N, IP); 1898 InsertNode(N); 1899 return SDValue(N, 0); 1900 } 1901 1902 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1903 if (VT == V.getValueType()) 1904 return V; 1905 1906 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1907 } 1908 1909 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1910 unsigned SrcAS, unsigned DestAS) { 1911 SDValue Ops[] = {Ptr}; 1912 FoldingSetNodeID ID; 1913 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1914 ID.AddInteger(SrcAS); 1915 ID.AddInteger(DestAS); 1916 1917 void *IP = nullptr; 1918 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1919 return SDValue(E, 0); 1920 1921 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1922 VT, SrcAS, DestAS); 1923 createOperands(N, Ops); 1924 1925 CSEMap.InsertNode(N, IP); 1926 InsertNode(N); 1927 return SDValue(N, 0); 1928 } 1929 1930 SDValue SelectionDAG::getFreeze(SDValue V) { 1931 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 1932 } 1933 1934 /// getShiftAmountOperand - Return the specified value casted to 1935 /// the target's desired shift amount type. 1936 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1937 EVT OpTy = Op.getValueType(); 1938 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1939 if (OpTy == ShTy || OpTy.isVector()) return Op; 1940 1941 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1942 } 1943 1944 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1945 SDLoc dl(Node); 1946 const TargetLowering &TLI = getTargetLoweringInfo(); 1947 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1948 EVT VT = Node->getValueType(0); 1949 SDValue Tmp1 = Node->getOperand(0); 1950 SDValue Tmp2 = Node->getOperand(1); 1951 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1952 1953 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1954 Tmp2, MachinePointerInfo(V)); 1955 SDValue VAList = VAListLoad; 1956 1957 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1958 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1959 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1960 1961 VAList = 1962 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1963 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1964 } 1965 1966 // Increment the pointer, VAList, to the next vaarg 1967 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1968 getConstant(getDataLayout().getTypeAllocSize( 1969 VT.getTypeForEVT(*getContext())), 1970 dl, VAList.getValueType())); 1971 // Store the incremented VAList to the legalized pointer 1972 Tmp1 = 1973 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1974 // Load the actual argument out of the pointer VAList 1975 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1976 } 1977 1978 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1979 SDLoc dl(Node); 1980 const TargetLowering &TLI = getTargetLoweringInfo(); 1981 // This defaults to loading a pointer from the input and storing it to the 1982 // output, returning the chain. 1983 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1984 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1985 SDValue Tmp1 = 1986 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1987 Node->getOperand(2), MachinePointerInfo(VS)); 1988 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1989 MachinePointerInfo(VD)); 1990 } 1991 1992 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1993 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1994 unsigned ByteSize = VT.getStoreSize(); 1995 Type *Ty = VT.getTypeForEVT(*getContext()); 1996 unsigned StackAlign = 1997 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1998 1999 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 2000 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2001 } 2002 2003 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2004 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 2005 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2006 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2007 const DataLayout &DL = getDataLayout(); 2008 unsigned Align = 2009 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 2010 2011 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 2012 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 2013 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2014 } 2015 2016 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2017 ISD::CondCode Cond, const SDLoc &dl) { 2018 EVT OpVT = N1.getValueType(); 2019 2020 // These setcc operations always fold. 2021 switch (Cond) { 2022 default: break; 2023 case ISD::SETFALSE: 2024 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2025 case ISD::SETTRUE: 2026 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2027 2028 case ISD::SETOEQ: 2029 case ISD::SETOGT: 2030 case ISD::SETOGE: 2031 case ISD::SETOLT: 2032 case ISD::SETOLE: 2033 case ISD::SETONE: 2034 case ISD::SETO: 2035 case ISD::SETUO: 2036 case ISD::SETUEQ: 2037 case ISD::SETUNE: 2038 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2039 break; 2040 } 2041 2042 if (OpVT.isInteger()) { 2043 // For EQ and NE, we can always pick a value for the undef to make the 2044 // predicate pass or fail, so we can return undef. 2045 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2046 // icmp eq/ne X, undef -> undef. 2047 if ((N1.isUndef() || N2.isUndef()) && 2048 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2049 return getUNDEF(VT); 2050 2051 // If both operands are undef, we can return undef for int comparison. 2052 // icmp undef, undef -> undef. 2053 if (N1.isUndef() && N2.isUndef()) 2054 return getUNDEF(VT); 2055 2056 // icmp X, X -> true/false 2057 // icmp X, undef -> true/false because undef could be X. 2058 if (N1 == N2) 2059 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2060 } 2061 2062 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2063 const APInt &C2 = N2C->getAPIntValue(); 2064 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2065 const APInt &C1 = N1C->getAPIntValue(); 2066 2067 switch (Cond) { 2068 default: llvm_unreachable("Unknown integer setcc!"); 2069 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2070 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2071 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2072 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2073 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2074 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2075 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2076 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2077 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2078 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2079 } 2080 } 2081 } 2082 2083 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2084 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2085 2086 if (N1CFP && N2CFP) { 2087 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2088 switch (Cond) { 2089 default: break; 2090 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2091 return getUNDEF(VT); 2092 LLVM_FALLTHROUGH; 2093 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2094 OpVT); 2095 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2096 return getUNDEF(VT); 2097 LLVM_FALLTHROUGH; 2098 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2099 R==APFloat::cmpLessThan, dl, VT, 2100 OpVT); 2101 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2102 return getUNDEF(VT); 2103 LLVM_FALLTHROUGH; 2104 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2105 OpVT); 2106 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2107 return getUNDEF(VT); 2108 LLVM_FALLTHROUGH; 2109 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2110 VT, OpVT); 2111 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2112 return getUNDEF(VT); 2113 LLVM_FALLTHROUGH; 2114 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2115 R==APFloat::cmpEqual, dl, VT, 2116 OpVT); 2117 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2118 return getUNDEF(VT); 2119 LLVM_FALLTHROUGH; 2120 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2121 R==APFloat::cmpEqual, dl, VT, OpVT); 2122 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2123 OpVT); 2124 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2125 OpVT); 2126 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2127 R==APFloat::cmpEqual, dl, VT, 2128 OpVT); 2129 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2130 OpVT); 2131 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2132 R==APFloat::cmpLessThan, dl, VT, 2133 OpVT); 2134 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2135 R==APFloat::cmpUnordered, dl, VT, 2136 OpVT); 2137 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2138 VT, OpVT); 2139 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2140 OpVT); 2141 } 2142 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2143 // Ensure that the constant occurs on the RHS. 2144 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2145 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2146 return SDValue(); 2147 return getSetCC(dl, VT, N2, N1, SwappedCond); 2148 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2149 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2150 // If an operand is known to be a nan (or undef that could be a nan), we can 2151 // fold it. 2152 // Choosing NaN for the undef will always make unordered comparison succeed 2153 // and ordered comparison fails. 2154 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2155 switch (ISD::getUnorderedFlavor(Cond)) { 2156 default: 2157 llvm_unreachable("Unknown flavor!"); 2158 case 0: // Known false. 2159 return getBoolConstant(false, dl, VT, OpVT); 2160 case 1: // Known true. 2161 return getBoolConstant(true, dl, VT, OpVT); 2162 case 2: // Undefined. 2163 return getUNDEF(VT); 2164 } 2165 } 2166 2167 // Could not fold it. 2168 return SDValue(); 2169 } 2170 2171 /// See if the specified operand can be simplified with the knowledge that only 2172 /// the bits specified by DemandedBits are used. 2173 /// TODO: really we should be making this into the DAG equivalent of 2174 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2175 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2176 EVT VT = V.getValueType(); 2177 APInt DemandedElts = VT.isVector() 2178 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2179 : APInt(1, 1); 2180 return GetDemandedBits(V, DemandedBits, DemandedElts); 2181 } 2182 2183 /// See if the specified operand can be simplified with the knowledge that only 2184 /// the bits specified by DemandedBits are used in the elements specified by 2185 /// DemandedElts. 2186 /// TODO: really we should be making this into the DAG equivalent of 2187 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2188 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2189 const APInt &DemandedElts) { 2190 switch (V.getOpcode()) { 2191 default: 2192 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2193 *this, 0); 2194 break; 2195 case ISD::Constant: { 2196 auto *CV = cast<ConstantSDNode>(V.getNode()); 2197 assert(CV && "Const value should be ConstSDNode."); 2198 const APInt &CVal = CV->getAPIntValue(); 2199 APInt NewVal = CVal & DemandedBits; 2200 if (NewVal != CVal) 2201 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2202 break; 2203 } 2204 case ISD::SRL: 2205 // Only look at single-use SRLs. 2206 if (!V.getNode()->hasOneUse()) 2207 break; 2208 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2209 // See if we can recursively simplify the LHS. 2210 unsigned Amt = RHSC->getZExtValue(); 2211 2212 // Watch out for shift count overflow though. 2213 if (Amt >= DemandedBits.getBitWidth()) 2214 break; 2215 APInt SrcDemandedBits = DemandedBits << Amt; 2216 if (SDValue SimplifyLHS = 2217 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2218 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2219 V.getOperand(1)); 2220 } 2221 break; 2222 case ISD::AND: { 2223 // X & -1 -> X (ignoring bits which aren't demanded). 2224 // Also handle the case where masked out bits in X are known to be zero. 2225 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2226 const APInt &AndVal = RHSC->getAPIntValue(); 2227 if (DemandedBits.isSubsetOf(AndVal) || 2228 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2229 AndVal)) 2230 return V.getOperand(0); 2231 } 2232 break; 2233 } 2234 } 2235 return SDValue(); 2236 } 2237 2238 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2239 /// use this predicate to simplify operations downstream. 2240 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2241 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2242 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2243 } 2244 2245 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2246 /// this predicate to simplify operations downstream. Mask is known to be zero 2247 /// for bits that V cannot have. 2248 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2249 unsigned Depth) const { 2250 EVT VT = V.getValueType(); 2251 APInt DemandedElts = VT.isVector() 2252 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2253 : APInt(1, 1); 2254 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2255 } 2256 2257 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2258 /// DemandedElts. We use this predicate to simplify operations downstream. 2259 /// Mask is known to be zero for bits that V cannot have. 2260 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2261 const APInt &DemandedElts, 2262 unsigned Depth) const { 2263 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2264 } 2265 2266 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2267 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2268 unsigned Depth) const { 2269 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2270 } 2271 2272 /// isSplatValue - Return true if the vector V has the same value 2273 /// across all DemandedElts. 2274 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2275 APInt &UndefElts) { 2276 if (!DemandedElts) 2277 return false; // No demanded elts, better to assume we don't know anything. 2278 2279 EVT VT = V.getValueType(); 2280 assert(VT.isVector() && "Vector type expected"); 2281 2282 unsigned NumElts = VT.getVectorNumElements(); 2283 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2284 UndefElts = APInt::getNullValue(NumElts); 2285 2286 switch (V.getOpcode()) { 2287 case ISD::BUILD_VECTOR: { 2288 SDValue Scl; 2289 for (unsigned i = 0; i != NumElts; ++i) { 2290 SDValue Op = V.getOperand(i); 2291 if (Op.isUndef()) { 2292 UndefElts.setBit(i); 2293 continue; 2294 } 2295 if (!DemandedElts[i]) 2296 continue; 2297 if (Scl && Scl != Op) 2298 return false; 2299 Scl = Op; 2300 } 2301 return true; 2302 } 2303 case ISD::VECTOR_SHUFFLE: { 2304 // Check if this is a shuffle node doing a splat. 2305 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2306 int SplatIndex = -1; 2307 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2308 for (int i = 0; i != (int)NumElts; ++i) { 2309 int M = Mask[i]; 2310 if (M < 0) { 2311 UndefElts.setBit(i); 2312 continue; 2313 } 2314 if (!DemandedElts[i]) 2315 continue; 2316 if (0 <= SplatIndex && SplatIndex != M) 2317 return false; 2318 SplatIndex = M; 2319 } 2320 return true; 2321 } 2322 case ISD::EXTRACT_SUBVECTOR: { 2323 SDValue Src = V.getOperand(0); 2324 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2325 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2326 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2327 // Offset the demanded elts by the subvector index. 2328 uint64_t Idx = SubIdx->getZExtValue(); 2329 APInt UndefSrcElts; 2330 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2331 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2332 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2333 return true; 2334 } 2335 } 2336 break; 2337 } 2338 case ISD::ADD: 2339 case ISD::SUB: 2340 case ISD::AND: { 2341 APInt UndefLHS, UndefRHS; 2342 SDValue LHS = V.getOperand(0); 2343 SDValue RHS = V.getOperand(1); 2344 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2345 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2346 UndefElts = UndefLHS | UndefRHS; 2347 return true; 2348 } 2349 break; 2350 } 2351 } 2352 2353 return false; 2354 } 2355 2356 /// Helper wrapper to main isSplatValue function. 2357 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2358 EVT VT = V.getValueType(); 2359 assert(VT.isVector() && "Vector type expected"); 2360 unsigned NumElts = VT.getVectorNumElements(); 2361 2362 APInt UndefElts; 2363 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2364 return isSplatValue(V, DemandedElts, UndefElts) && 2365 (AllowUndefs || !UndefElts); 2366 } 2367 2368 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2369 V = peekThroughExtractSubvectors(V); 2370 2371 EVT VT = V.getValueType(); 2372 unsigned Opcode = V.getOpcode(); 2373 switch (Opcode) { 2374 default: { 2375 APInt UndefElts; 2376 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2377 if (isSplatValue(V, DemandedElts, UndefElts)) { 2378 // Handle case where all demanded elements are UNDEF. 2379 if (DemandedElts.isSubsetOf(UndefElts)) { 2380 SplatIdx = 0; 2381 return getUNDEF(VT); 2382 } 2383 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2384 return V; 2385 } 2386 break; 2387 } 2388 case ISD::VECTOR_SHUFFLE: { 2389 // Check if this is a shuffle node doing a splat. 2390 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2391 // getTargetVShiftNode currently struggles without the splat source. 2392 auto *SVN = cast<ShuffleVectorSDNode>(V); 2393 if (!SVN->isSplat()) 2394 break; 2395 int Idx = SVN->getSplatIndex(); 2396 int NumElts = V.getValueType().getVectorNumElements(); 2397 SplatIdx = Idx % NumElts; 2398 return V.getOperand(Idx / NumElts); 2399 } 2400 } 2401 2402 return SDValue(); 2403 } 2404 2405 SDValue SelectionDAG::getSplatValue(SDValue V) { 2406 int SplatIdx; 2407 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2408 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2409 SrcVector.getValueType().getScalarType(), SrcVector, 2410 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2411 return SDValue(); 2412 } 2413 2414 const APInt * 2415 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2416 const APInt &DemandedElts) const { 2417 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2418 V.getOpcode() == ISD::SRA) && 2419 "Unknown shift node"); 2420 unsigned BitWidth = V.getScalarValueSizeInBits(); 2421 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2422 // Shifting more than the bitwidth is not valid. 2423 const APInt &ShAmt = SA->getAPIntValue(); 2424 if (ShAmt.ult(BitWidth)) 2425 return &ShAmt; 2426 } 2427 return nullptr; 2428 } 2429 2430 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2431 SDValue V, const APInt &DemandedElts) const { 2432 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2433 V.getOpcode() == ISD::SRA) && 2434 "Unknown shift node"); 2435 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2436 return ValidAmt; 2437 unsigned BitWidth = V.getScalarValueSizeInBits(); 2438 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2439 if (!BV) 2440 return nullptr; 2441 const APInt *MinShAmt = nullptr; 2442 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2443 if (!DemandedElts[i]) 2444 continue; 2445 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2446 if (!SA) 2447 return nullptr; 2448 // Shifting more than the bitwidth is not valid. 2449 const APInt &ShAmt = SA->getAPIntValue(); 2450 if (ShAmt.uge(BitWidth)) 2451 return nullptr; 2452 if (MinShAmt && MinShAmt->ule(ShAmt)) 2453 continue; 2454 MinShAmt = &ShAmt; 2455 } 2456 return MinShAmt; 2457 } 2458 2459 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2460 SDValue V, const APInt &DemandedElts) const { 2461 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2462 V.getOpcode() == ISD::SRA) && 2463 "Unknown shift node"); 2464 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2465 return ValidAmt; 2466 unsigned BitWidth = V.getScalarValueSizeInBits(); 2467 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2468 if (!BV) 2469 return nullptr; 2470 const APInt *MaxShAmt = nullptr; 2471 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2472 if (!DemandedElts[i]) 2473 continue; 2474 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2475 if (!SA) 2476 return nullptr; 2477 // Shifting more than the bitwidth is not valid. 2478 const APInt &ShAmt = SA->getAPIntValue(); 2479 if (ShAmt.uge(BitWidth)) 2480 return nullptr; 2481 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2482 continue; 2483 MaxShAmt = &ShAmt; 2484 } 2485 return MaxShAmt; 2486 } 2487 2488 /// Determine which bits of Op are known to be either zero or one and return 2489 /// them in Known. For vectors, the known bits are those that are shared by 2490 /// every vector element. 2491 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2492 EVT VT = Op.getValueType(); 2493 APInt DemandedElts = VT.isVector() 2494 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2495 : APInt(1, 1); 2496 return computeKnownBits(Op, DemandedElts, Depth); 2497 } 2498 2499 /// Determine which bits of Op are known to be either zero or one and return 2500 /// them in Known. The DemandedElts argument allows us to only collect the known 2501 /// bits that are shared by the requested vector elements. 2502 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2503 unsigned Depth) const { 2504 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2505 2506 KnownBits Known(BitWidth); // Don't know anything. 2507 2508 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2509 // We know all of the bits for a constant! 2510 Known.One = C->getAPIntValue(); 2511 Known.Zero = ~Known.One; 2512 return Known; 2513 } 2514 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2515 // We know all of the bits for a constant fp! 2516 Known.One = C->getValueAPF().bitcastToAPInt(); 2517 Known.Zero = ~Known.One; 2518 return Known; 2519 } 2520 2521 if (Depth >= MaxRecursionDepth) 2522 return Known; // Limit search depth. 2523 2524 KnownBits Known2; 2525 unsigned NumElts = DemandedElts.getBitWidth(); 2526 assert((!Op.getValueType().isVector() || 2527 NumElts == Op.getValueType().getVectorNumElements()) && 2528 "Unexpected vector size"); 2529 2530 if (!DemandedElts) 2531 return Known; // No demanded elts, better to assume we don't know anything. 2532 2533 unsigned Opcode = Op.getOpcode(); 2534 switch (Opcode) { 2535 case ISD::BUILD_VECTOR: 2536 // Collect the known bits that are shared by every demanded vector element. 2537 Known.Zero.setAllBits(); Known.One.setAllBits(); 2538 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2539 if (!DemandedElts[i]) 2540 continue; 2541 2542 SDValue SrcOp = Op.getOperand(i); 2543 Known2 = computeKnownBits(SrcOp, Depth + 1); 2544 2545 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2546 if (SrcOp.getValueSizeInBits() != BitWidth) { 2547 assert(SrcOp.getValueSizeInBits() > BitWidth && 2548 "Expected BUILD_VECTOR implicit truncation"); 2549 Known2 = Known2.trunc(BitWidth); 2550 } 2551 2552 // Known bits are the values that are shared by every demanded element. 2553 Known.One &= Known2.One; 2554 Known.Zero &= Known2.Zero; 2555 2556 // If we don't know any bits, early out. 2557 if (Known.isUnknown()) 2558 break; 2559 } 2560 break; 2561 case ISD::VECTOR_SHUFFLE: { 2562 // Collect the known bits that are shared by every vector element referenced 2563 // by the shuffle. 2564 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2565 Known.Zero.setAllBits(); Known.One.setAllBits(); 2566 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2567 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2568 for (unsigned i = 0; i != NumElts; ++i) { 2569 if (!DemandedElts[i]) 2570 continue; 2571 2572 int M = SVN->getMaskElt(i); 2573 if (M < 0) { 2574 // For UNDEF elements, we don't know anything about the common state of 2575 // the shuffle result. 2576 Known.resetAll(); 2577 DemandedLHS.clearAllBits(); 2578 DemandedRHS.clearAllBits(); 2579 break; 2580 } 2581 2582 if ((unsigned)M < NumElts) 2583 DemandedLHS.setBit((unsigned)M % NumElts); 2584 else 2585 DemandedRHS.setBit((unsigned)M % NumElts); 2586 } 2587 // Known bits are the values that are shared by every demanded element. 2588 if (!!DemandedLHS) { 2589 SDValue LHS = Op.getOperand(0); 2590 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2591 Known.One &= Known2.One; 2592 Known.Zero &= Known2.Zero; 2593 } 2594 // If we don't know any bits, early out. 2595 if (Known.isUnknown()) 2596 break; 2597 if (!!DemandedRHS) { 2598 SDValue RHS = Op.getOperand(1); 2599 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2600 Known.One &= Known2.One; 2601 Known.Zero &= Known2.Zero; 2602 } 2603 break; 2604 } 2605 case ISD::CONCAT_VECTORS: { 2606 // Split DemandedElts and test each of the demanded subvectors. 2607 Known.Zero.setAllBits(); Known.One.setAllBits(); 2608 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2609 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2610 unsigned NumSubVectors = Op.getNumOperands(); 2611 for (unsigned i = 0; i != NumSubVectors; ++i) { 2612 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2613 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2614 if (!!DemandedSub) { 2615 SDValue Sub = Op.getOperand(i); 2616 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2617 Known.One &= Known2.One; 2618 Known.Zero &= Known2.Zero; 2619 } 2620 // If we don't know any bits, early out. 2621 if (Known.isUnknown()) 2622 break; 2623 } 2624 break; 2625 } 2626 case ISD::INSERT_SUBVECTOR: { 2627 // If we know the element index, demand any elements from the subvector and 2628 // the remainder from the src its inserted into, otherwise assume we need 2629 // the original demanded base elements and ALL the inserted subvector 2630 // elements. 2631 SDValue Src = Op.getOperand(0); 2632 SDValue Sub = Op.getOperand(1); 2633 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2634 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2635 APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts); 2636 APInt DemandedSrcElts = DemandedElts; 2637 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2638 uint64_t Idx = SubIdx->getZExtValue(); 2639 DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2640 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2641 } 2642 Known.One.setAllBits(); 2643 Known.Zero.setAllBits(); 2644 if (!!DemandedSubElts) { 2645 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2646 if (Known.isUnknown()) 2647 break; // early-out. 2648 } 2649 if (!!DemandedSrcElts) { 2650 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2651 Known.One &= Known2.One; 2652 Known.Zero &= Known2.Zero; 2653 } 2654 break; 2655 } 2656 case ISD::EXTRACT_SUBVECTOR: { 2657 // If we know the element index, just demand that subvector elements, 2658 // otherwise demand them all. 2659 SDValue Src = Op.getOperand(0); 2660 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2661 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2662 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 2663 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2664 // Offset the demanded elts by the subvector index. 2665 uint64_t Idx = SubIdx->getZExtValue(); 2666 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2667 } 2668 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2669 break; 2670 } 2671 case ISD::SCALAR_TO_VECTOR: { 2672 // We know about scalar_to_vector as much as we know about it source, 2673 // which becomes the first element of otherwise unknown vector. 2674 if (DemandedElts != 1) 2675 break; 2676 2677 SDValue N0 = Op.getOperand(0); 2678 Known = computeKnownBits(N0, Depth + 1); 2679 if (N0.getValueSizeInBits() != BitWidth) 2680 Known = Known.trunc(BitWidth); 2681 2682 break; 2683 } 2684 case ISD::BITCAST: { 2685 SDValue N0 = Op.getOperand(0); 2686 EVT SubVT = N0.getValueType(); 2687 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2688 2689 // Ignore bitcasts from unsupported types. 2690 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2691 break; 2692 2693 // Fast handling of 'identity' bitcasts. 2694 if (BitWidth == SubBitWidth) { 2695 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2696 break; 2697 } 2698 2699 bool IsLE = getDataLayout().isLittleEndian(); 2700 2701 // Bitcast 'small element' vector to 'large element' scalar/vector. 2702 if ((BitWidth % SubBitWidth) == 0) { 2703 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2704 2705 // Collect known bits for the (larger) output by collecting the known 2706 // bits from each set of sub elements and shift these into place. 2707 // We need to separately call computeKnownBits for each set of 2708 // sub elements as the knownbits for each is likely to be different. 2709 unsigned SubScale = BitWidth / SubBitWidth; 2710 APInt SubDemandedElts(NumElts * SubScale, 0); 2711 for (unsigned i = 0; i != NumElts; ++i) 2712 if (DemandedElts[i]) 2713 SubDemandedElts.setBit(i * SubScale); 2714 2715 for (unsigned i = 0; i != SubScale; ++i) { 2716 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2717 Depth + 1); 2718 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2719 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2720 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2721 } 2722 } 2723 2724 // Bitcast 'large element' scalar/vector to 'small element' vector. 2725 if ((SubBitWidth % BitWidth) == 0) { 2726 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2727 2728 // Collect known bits for the (smaller) output by collecting the known 2729 // bits from the overlapping larger input elements and extracting the 2730 // sub sections we actually care about. 2731 unsigned SubScale = SubBitWidth / BitWidth; 2732 APInt SubDemandedElts(NumElts / SubScale, 0); 2733 for (unsigned i = 0; i != NumElts; ++i) 2734 if (DemandedElts[i]) 2735 SubDemandedElts.setBit(i / SubScale); 2736 2737 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2738 2739 Known.Zero.setAllBits(); Known.One.setAllBits(); 2740 for (unsigned i = 0; i != NumElts; ++i) 2741 if (DemandedElts[i]) { 2742 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2743 unsigned Offset = (Shifts % SubScale) * BitWidth; 2744 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2745 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2746 // If we don't know any bits, early out. 2747 if (Known.isUnknown()) 2748 break; 2749 } 2750 } 2751 break; 2752 } 2753 case ISD::AND: 2754 // If either the LHS or the RHS are Zero, the result is zero. 2755 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2756 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2757 2758 // Output known-1 bits are only known if set in both the LHS & RHS. 2759 Known.One &= Known2.One; 2760 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2761 Known.Zero |= Known2.Zero; 2762 break; 2763 case ISD::OR: 2764 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2765 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2766 2767 // Output known-0 bits are only known if clear in both the LHS & RHS. 2768 Known.Zero &= Known2.Zero; 2769 // Output known-1 are known to be set if set in either the LHS | RHS. 2770 Known.One |= Known2.One; 2771 break; 2772 case ISD::XOR: { 2773 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2774 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2775 2776 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2777 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2778 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2779 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2780 Known.Zero = KnownZeroOut; 2781 break; 2782 } 2783 case ISD::MUL: { 2784 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2785 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2786 2787 // If low bits are zero in either operand, output low known-0 bits. 2788 // Also compute a conservative estimate for high known-0 bits. 2789 // More trickiness is possible, but this is sufficient for the 2790 // interesting case of alignment computation. 2791 unsigned TrailZ = Known.countMinTrailingZeros() + 2792 Known2.countMinTrailingZeros(); 2793 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2794 Known2.countMinLeadingZeros(), 2795 BitWidth) - BitWidth; 2796 2797 Known.resetAll(); 2798 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2799 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2800 break; 2801 } 2802 case ISD::UDIV: { 2803 // For the purposes of computing leading zeros we can conservatively 2804 // treat a udiv as a logical right shift by the power of 2 known to 2805 // be less than the denominator. 2806 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2807 unsigned LeadZ = Known2.countMinLeadingZeros(); 2808 2809 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2810 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2811 if (RHSMaxLeadingZeros != BitWidth) 2812 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2813 2814 Known.Zero.setHighBits(LeadZ); 2815 break; 2816 } 2817 case ISD::SELECT: 2818 case ISD::VSELECT: 2819 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2820 // If we don't know any bits, early out. 2821 if (Known.isUnknown()) 2822 break; 2823 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2824 2825 // Only known if known in both the LHS and RHS. 2826 Known.One &= Known2.One; 2827 Known.Zero &= Known2.Zero; 2828 break; 2829 case ISD::SELECT_CC: 2830 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2831 // If we don't know any bits, early out. 2832 if (Known.isUnknown()) 2833 break; 2834 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2835 2836 // Only known if known in both the LHS and RHS. 2837 Known.One &= Known2.One; 2838 Known.Zero &= Known2.Zero; 2839 break; 2840 case ISD::SMULO: 2841 case ISD::UMULO: 2842 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2843 if (Op.getResNo() != 1) 2844 break; 2845 // The boolean result conforms to getBooleanContents. 2846 // If we know the result of a setcc has the top bits zero, use this info. 2847 // We know that we have an integer-based boolean since these operations 2848 // are only available for integer. 2849 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2850 TargetLowering::ZeroOrOneBooleanContent && 2851 BitWidth > 1) 2852 Known.Zero.setBitsFrom(1); 2853 break; 2854 case ISD::SETCC: 2855 case ISD::STRICT_FSETCC: 2856 case ISD::STRICT_FSETCCS: { 2857 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2858 // If we know the result of a setcc has the top bits zero, use this info. 2859 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2860 TargetLowering::ZeroOrOneBooleanContent && 2861 BitWidth > 1) 2862 Known.Zero.setBitsFrom(1); 2863 break; 2864 } 2865 case ISD::SHL: 2866 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2867 2868 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2869 unsigned Shift = ShAmt->getZExtValue(); 2870 Known.Zero <<= Shift; 2871 Known.One <<= Shift; 2872 // Low bits are known zero. 2873 Known.Zero.setLowBits(Shift); 2874 break; 2875 } 2876 2877 // No matter the shift amount, the trailing zeros will stay zero. 2878 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2879 Known.One.clearAllBits(); 2880 2881 // Minimum shift low bits are known zero. 2882 if (const APInt *ShMinAmt = 2883 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2884 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2885 break; 2886 case ISD::SRL: 2887 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2888 2889 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2890 unsigned Shift = ShAmt->getZExtValue(); 2891 Known.Zero.lshrInPlace(Shift); 2892 Known.One.lshrInPlace(Shift); 2893 // High bits are known zero. 2894 Known.Zero.setHighBits(Shift); 2895 break; 2896 } 2897 2898 // No matter the shift amount, the leading zeros will stay zero. 2899 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2900 Known.One.clearAllBits(); 2901 2902 // Minimum shift high bits are known zero. 2903 if (const APInt *ShMinAmt = 2904 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2905 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2906 break; 2907 case ISD::SRA: 2908 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2909 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2910 unsigned Shift = ShAmt->getZExtValue(); 2911 // Sign extend known zero/one bit (else is unknown). 2912 Known.Zero.ashrInPlace(Shift); 2913 Known.One.ashrInPlace(Shift); 2914 } 2915 break; 2916 case ISD::FSHL: 2917 case ISD::FSHR: 2918 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2919 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2920 2921 // For fshl, 0-shift returns the 1st arg. 2922 // For fshr, 0-shift returns the 2nd arg. 2923 if (Amt == 0) { 2924 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2925 DemandedElts, Depth + 1); 2926 break; 2927 } 2928 2929 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2930 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2931 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2932 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2933 if (Opcode == ISD::FSHL) { 2934 Known.One <<= Amt; 2935 Known.Zero <<= Amt; 2936 Known2.One.lshrInPlace(BitWidth - Amt); 2937 Known2.Zero.lshrInPlace(BitWidth - Amt); 2938 } else { 2939 Known.One <<= BitWidth - Amt; 2940 Known.Zero <<= BitWidth - Amt; 2941 Known2.One.lshrInPlace(Amt); 2942 Known2.Zero.lshrInPlace(Amt); 2943 } 2944 Known.One |= Known2.One; 2945 Known.Zero |= Known2.Zero; 2946 } 2947 break; 2948 case ISD::SIGN_EXTEND_INREG: { 2949 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2950 unsigned EBits = EVT.getScalarSizeInBits(); 2951 2952 // Sign extension. Compute the demanded bits in the result that are not 2953 // present in the input. 2954 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2955 2956 APInt InSignMask = APInt::getSignMask(EBits); 2957 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2958 2959 // If the sign extended bits are demanded, we know that the sign 2960 // bit is demanded. 2961 InSignMask = InSignMask.zext(BitWidth); 2962 if (NewBits.getBoolValue()) 2963 InputDemandedBits |= InSignMask; 2964 2965 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2966 Known.One &= InputDemandedBits; 2967 Known.Zero &= InputDemandedBits; 2968 2969 // If the sign bit of the input is known set or clear, then we know the 2970 // top bits of the result. 2971 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2972 Known.Zero |= NewBits; 2973 Known.One &= ~NewBits; 2974 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2975 Known.One |= NewBits; 2976 Known.Zero &= ~NewBits; 2977 } else { // Input sign bit unknown 2978 Known.Zero &= ~NewBits; 2979 Known.One &= ~NewBits; 2980 } 2981 break; 2982 } 2983 case ISD::CTTZ: 2984 case ISD::CTTZ_ZERO_UNDEF: { 2985 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2986 // If we have a known 1, its position is our upper bound. 2987 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2988 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2989 Known.Zero.setBitsFrom(LowBits); 2990 break; 2991 } 2992 case ISD::CTLZ: 2993 case ISD::CTLZ_ZERO_UNDEF: { 2994 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2995 // If we have a known 1, its position is our upper bound. 2996 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2997 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2998 Known.Zero.setBitsFrom(LowBits); 2999 break; 3000 } 3001 case ISD::CTPOP: { 3002 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3003 // If we know some of the bits are zero, they can't be one. 3004 unsigned PossibleOnes = Known2.countMaxPopulation(); 3005 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3006 break; 3007 } 3008 case ISD::LOAD: { 3009 LoadSDNode *LD = cast<LoadSDNode>(Op); 3010 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3011 if (ISD::isNON_EXTLoad(LD) && Cst) { 3012 // Determine any common known bits from the loaded constant pool value. 3013 Type *CstTy = Cst->getType(); 3014 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3015 // If its a vector splat, then we can (quickly) reuse the scalar path. 3016 // NOTE: We assume all elements match and none are UNDEF. 3017 if (CstTy->isVectorTy()) { 3018 if (const Constant *Splat = Cst->getSplatValue()) { 3019 Cst = Splat; 3020 CstTy = Cst->getType(); 3021 } 3022 } 3023 // TODO - do we need to handle different bitwidths? 3024 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3025 // Iterate across all vector elements finding common known bits. 3026 Known.One.setAllBits(); 3027 Known.Zero.setAllBits(); 3028 for (unsigned i = 0; i != NumElts; ++i) { 3029 if (!DemandedElts[i]) 3030 continue; 3031 if (Constant *Elt = Cst->getAggregateElement(i)) { 3032 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3033 const APInt &Value = CInt->getValue(); 3034 Known.One &= Value; 3035 Known.Zero &= ~Value; 3036 continue; 3037 } 3038 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3039 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3040 Known.One &= Value; 3041 Known.Zero &= ~Value; 3042 continue; 3043 } 3044 } 3045 Known.One.clearAllBits(); 3046 Known.Zero.clearAllBits(); 3047 break; 3048 } 3049 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3050 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3051 const APInt &Value = CInt->getValue(); 3052 Known.One = Value; 3053 Known.Zero = ~Value; 3054 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3055 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3056 Known.One = Value; 3057 Known.Zero = ~Value; 3058 } 3059 } 3060 } 3061 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3062 // If this is a ZEXTLoad and we are looking at the loaded value. 3063 EVT VT = LD->getMemoryVT(); 3064 unsigned MemBits = VT.getScalarSizeInBits(); 3065 Known.Zero.setBitsFrom(MemBits); 3066 } else if (const MDNode *Ranges = LD->getRanges()) { 3067 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3068 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3069 } 3070 break; 3071 } 3072 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3073 EVT InVT = Op.getOperand(0).getValueType(); 3074 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3075 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3076 Known = Known.zext(BitWidth); 3077 break; 3078 } 3079 case ISD::ZERO_EXTEND: { 3080 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 Known = Known.zext(BitWidth); 3082 break; 3083 } 3084 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3085 EVT InVT = Op.getOperand(0).getValueType(); 3086 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3087 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3088 // If the sign bit is known to be zero or one, then sext will extend 3089 // it to the top bits, else it will just zext. 3090 Known = Known.sext(BitWidth); 3091 break; 3092 } 3093 case ISD::SIGN_EXTEND: { 3094 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3095 // If the sign bit is known to be zero or one, then sext will extend 3096 // it to the top bits, else it will just zext. 3097 Known = Known.sext(BitWidth); 3098 break; 3099 } 3100 case ISD::ANY_EXTEND_VECTOR_INREG: { 3101 EVT InVT = Op.getOperand(0).getValueType(); 3102 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3103 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3104 Known = Known.anyext(BitWidth); 3105 break; 3106 } 3107 case ISD::ANY_EXTEND: { 3108 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3109 Known = Known.anyext(BitWidth); 3110 break; 3111 } 3112 case ISD::TRUNCATE: { 3113 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3114 Known = Known.trunc(BitWidth); 3115 break; 3116 } 3117 case ISD::AssertZext: { 3118 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3119 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3120 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3121 Known.Zero |= (~InMask); 3122 Known.One &= (~Known.Zero); 3123 break; 3124 } 3125 case ISD::FGETSIGN: 3126 // All bits are zero except the low bit. 3127 Known.Zero.setBitsFrom(1); 3128 break; 3129 case ISD::USUBO: 3130 case ISD::SSUBO: 3131 if (Op.getResNo() == 1) { 3132 // If we know the result of a setcc has the top bits zero, use this info. 3133 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3134 TargetLowering::ZeroOrOneBooleanContent && 3135 BitWidth > 1) 3136 Known.Zero.setBitsFrom(1); 3137 break; 3138 } 3139 LLVM_FALLTHROUGH; 3140 case ISD::SUB: 3141 case ISD::SUBC: { 3142 assert(Op.getResNo() == 0 && 3143 "We only compute knownbits for the difference here."); 3144 3145 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3146 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3147 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3148 Known, Known2); 3149 break; 3150 } 3151 case ISD::UADDO: 3152 case ISD::SADDO: 3153 case ISD::ADDCARRY: 3154 if (Op.getResNo() == 1) { 3155 // If we know the result of a setcc has the top bits zero, use this info. 3156 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3157 TargetLowering::ZeroOrOneBooleanContent && 3158 BitWidth > 1) 3159 Known.Zero.setBitsFrom(1); 3160 break; 3161 } 3162 LLVM_FALLTHROUGH; 3163 case ISD::ADD: 3164 case ISD::ADDC: 3165 case ISD::ADDE: { 3166 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3167 3168 // With ADDE and ADDCARRY, a carry bit may be added in. 3169 KnownBits Carry(1); 3170 if (Opcode == ISD::ADDE) 3171 // Can't track carry from glue, set carry to unknown. 3172 Carry.resetAll(); 3173 else if (Opcode == ISD::ADDCARRY) 3174 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3175 // the trouble (how often will we find a known carry bit). And I haven't 3176 // tested this very much yet, but something like this might work: 3177 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3178 // Carry = Carry.zextOrTrunc(1, false); 3179 Carry.resetAll(); 3180 else 3181 Carry.setAllZero(); 3182 3183 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3184 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3185 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3186 break; 3187 } 3188 case ISD::SREM: 3189 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3190 const APInt &RA = Rem->getAPIntValue().abs(); 3191 if (RA.isPowerOf2()) { 3192 APInt LowBits = RA - 1; 3193 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3194 3195 // The low bits of the first operand are unchanged by the srem. 3196 Known.Zero = Known2.Zero & LowBits; 3197 Known.One = Known2.One & LowBits; 3198 3199 // If the first operand is non-negative or has all low bits zero, then 3200 // the upper bits are all zero. 3201 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3202 Known.Zero |= ~LowBits; 3203 3204 // If the first operand is negative and not all low bits are zero, then 3205 // the upper bits are all one. 3206 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3207 Known.One |= ~LowBits; 3208 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3209 } 3210 } 3211 break; 3212 case ISD::UREM: { 3213 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3214 const APInt &RA = Rem->getAPIntValue(); 3215 if (RA.isPowerOf2()) { 3216 APInt LowBits = (RA - 1); 3217 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3218 3219 // The upper bits are all zero, the lower ones are unchanged. 3220 Known.Zero = Known2.Zero | ~LowBits; 3221 Known.One = Known2.One & LowBits; 3222 break; 3223 } 3224 } 3225 3226 // Since the result is less than or equal to either operand, any leading 3227 // zero bits in either operand must also exist in the result. 3228 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3229 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3230 3231 uint32_t Leaders = 3232 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3233 Known.resetAll(); 3234 Known.Zero.setHighBits(Leaders); 3235 break; 3236 } 3237 case ISD::EXTRACT_ELEMENT: { 3238 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3239 const unsigned Index = Op.getConstantOperandVal(1); 3240 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3241 3242 // Remove low part of known bits mask 3243 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3244 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3245 3246 // Remove high part of known bit mask 3247 Known = Known.trunc(EltBitWidth); 3248 break; 3249 } 3250 case ISD::EXTRACT_VECTOR_ELT: { 3251 SDValue InVec = Op.getOperand(0); 3252 SDValue EltNo = Op.getOperand(1); 3253 EVT VecVT = InVec.getValueType(); 3254 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3255 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3256 3257 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3258 // anything about the extended bits. 3259 if (BitWidth > EltBitWidth) 3260 Known = Known.trunc(EltBitWidth); 3261 3262 // If we know the element index, just demand that vector element, else for 3263 // an unknown element index, ignore DemandedElts and demand them all. 3264 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3265 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3266 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3267 DemandedSrcElts = 3268 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3269 3270 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3271 if (BitWidth > EltBitWidth) 3272 Known = Known.anyext(BitWidth); 3273 break; 3274 } 3275 case ISD::INSERT_VECTOR_ELT: { 3276 // If we know the element index, split the demand between the 3277 // source vector and the inserted element, otherwise assume we need 3278 // the original demanded vector elements and the value. 3279 SDValue InVec = Op.getOperand(0); 3280 SDValue InVal = Op.getOperand(1); 3281 SDValue EltNo = Op.getOperand(2); 3282 bool DemandedVal = true; 3283 APInt DemandedVecElts = DemandedElts; 3284 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3285 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3286 unsigned EltIdx = CEltNo->getZExtValue(); 3287 DemandedVal = !!DemandedElts[EltIdx]; 3288 DemandedVecElts.clearBit(EltIdx); 3289 } 3290 Known.One.setAllBits(); 3291 Known.Zero.setAllBits(); 3292 if (DemandedVal) { 3293 Known2 = computeKnownBits(InVal, Depth + 1); 3294 Known.One &= Known2.One.zextOrTrunc(BitWidth); 3295 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); 3296 } 3297 if (!!DemandedVecElts) { 3298 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3299 Known.One &= Known2.One; 3300 Known.Zero &= Known2.Zero; 3301 } 3302 break; 3303 } 3304 case ISD::BITREVERSE: { 3305 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3306 Known.Zero = Known2.Zero.reverseBits(); 3307 Known.One = Known2.One.reverseBits(); 3308 break; 3309 } 3310 case ISD::BSWAP: { 3311 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3312 Known.Zero = Known2.Zero.byteSwap(); 3313 Known.One = Known2.One.byteSwap(); 3314 break; 3315 } 3316 case ISD::ABS: { 3317 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3318 3319 // If the source's MSB is zero then we know the rest of the bits already. 3320 if (Known2.isNonNegative()) { 3321 Known.Zero = Known2.Zero; 3322 Known.One = Known2.One; 3323 break; 3324 } 3325 3326 // We only know that the absolute values's MSB will be zero iff there is 3327 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3328 Known2.One.clearSignBit(); 3329 if (Known2.One.getBoolValue()) { 3330 Known.Zero = APInt::getSignMask(BitWidth); 3331 break; 3332 } 3333 break; 3334 } 3335 case ISD::UMIN: { 3336 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3337 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3338 3339 // UMIN - we know that the result will have the maximum of the 3340 // known zero leading bits of the inputs. 3341 unsigned LeadZero = Known.countMinLeadingZeros(); 3342 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3343 3344 Known.Zero &= Known2.Zero; 3345 Known.One &= Known2.One; 3346 Known.Zero.setHighBits(LeadZero); 3347 break; 3348 } 3349 case ISD::UMAX: { 3350 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3352 3353 // UMAX - we know that the result will have the maximum of the 3354 // known one leading bits of the inputs. 3355 unsigned LeadOne = Known.countMinLeadingOnes(); 3356 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3357 3358 Known.Zero &= Known2.Zero; 3359 Known.One &= Known2.One; 3360 Known.One.setHighBits(LeadOne); 3361 break; 3362 } 3363 case ISD::SMIN: 3364 case ISD::SMAX: { 3365 // If we have a clamp pattern, we know that the number of sign bits will be 3366 // the minimum of the clamp min/max range. 3367 bool IsMax = (Opcode == ISD::SMAX); 3368 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3369 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3370 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3371 CstHigh = 3372 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3373 if (CstLow && CstHigh) { 3374 if (!IsMax) 3375 std::swap(CstLow, CstHigh); 3376 3377 const APInt &ValueLow = CstLow->getAPIntValue(); 3378 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3379 if (ValueLow.sle(ValueHigh)) { 3380 unsigned LowSignBits = ValueLow.getNumSignBits(); 3381 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3382 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3383 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3384 Known.One.setHighBits(MinSignBits); 3385 break; 3386 } 3387 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3388 Known.Zero.setHighBits(MinSignBits); 3389 break; 3390 } 3391 } 3392 } 3393 3394 // Fallback - just get the shared known bits of the operands. 3395 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3396 if (Known.isUnknown()) break; // Early-out 3397 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3398 Known.Zero &= Known2.Zero; 3399 Known.One &= Known2.One; 3400 break; 3401 } 3402 case ISD::FrameIndex: 3403 case ISD::TargetFrameIndex: 3404 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3405 break; 3406 3407 default: 3408 if (Opcode < ISD::BUILTIN_OP_END) 3409 break; 3410 LLVM_FALLTHROUGH; 3411 case ISD::INTRINSIC_WO_CHAIN: 3412 case ISD::INTRINSIC_W_CHAIN: 3413 case ISD::INTRINSIC_VOID: 3414 // Allow the target to implement this method for its nodes. 3415 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3416 break; 3417 } 3418 3419 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3420 return Known; 3421 } 3422 3423 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3424 SDValue N1) const { 3425 // X + 0 never overflow 3426 if (isNullConstant(N1)) 3427 return OFK_Never; 3428 3429 KnownBits N1Known = computeKnownBits(N1); 3430 if (N1Known.Zero.getBoolValue()) { 3431 KnownBits N0Known = computeKnownBits(N0); 3432 3433 bool overflow; 3434 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3435 if (!overflow) 3436 return OFK_Never; 3437 } 3438 3439 // mulhi + 1 never overflow 3440 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3441 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3442 return OFK_Never; 3443 3444 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3445 KnownBits N0Known = computeKnownBits(N0); 3446 3447 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3448 return OFK_Never; 3449 } 3450 3451 return OFK_Sometime; 3452 } 3453 3454 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3455 EVT OpVT = Val.getValueType(); 3456 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3457 3458 // Is the constant a known power of 2? 3459 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3460 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3461 3462 // A left-shift of a constant one will have exactly one bit set because 3463 // shifting the bit off the end is undefined. 3464 if (Val.getOpcode() == ISD::SHL) { 3465 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3466 if (C && C->getAPIntValue() == 1) 3467 return true; 3468 } 3469 3470 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3471 // one bit set. 3472 if (Val.getOpcode() == ISD::SRL) { 3473 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3474 if (C && C->getAPIntValue().isSignMask()) 3475 return true; 3476 } 3477 3478 // Are all operands of a build vector constant powers of two? 3479 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3480 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3481 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3482 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3483 return false; 3484 })) 3485 return true; 3486 3487 // More could be done here, though the above checks are enough 3488 // to handle some common cases. 3489 3490 // Fall back to computeKnownBits to catch other known cases. 3491 KnownBits Known = computeKnownBits(Val); 3492 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3493 } 3494 3495 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3496 EVT VT = Op.getValueType(); 3497 APInt DemandedElts = VT.isVector() 3498 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3499 : APInt(1, 1); 3500 return ComputeNumSignBits(Op, DemandedElts, Depth); 3501 } 3502 3503 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3504 unsigned Depth) const { 3505 EVT VT = Op.getValueType(); 3506 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3507 unsigned VTBits = VT.getScalarSizeInBits(); 3508 unsigned NumElts = DemandedElts.getBitWidth(); 3509 unsigned Tmp, Tmp2; 3510 unsigned FirstAnswer = 1; 3511 3512 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3513 const APInt &Val = C->getAPIntValue(); 3514 return Val.getNumSignBits(); 3515 } 3516 3517 if (Depth >= MaxRecursionDepth) 3518 return 1; // Limit search depth. 3519 3520 if (!DemandedElts) 3521 return 1; // No demanded elts, better to assume we don't know anything. 3522 3523 unsigned Opcode = Op.getOpcode(); 3524 switch (Opcode) { 3525 default: break; 3526 case ISD::AssertSext: 3527 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3528 return VTBits-Tmp+1; 3529 case ISD::AssertZext: 3530 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3531 return VTBits-Tmp; 3532 3533 case ISD::BUILD_VECTOR: 3534 Tmp = VTBits; 3535 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3536 if (!DemandedElts[i]) 3537 continue; 3538 3539 SDValue SrcOp = Op.getOperand(i); 3540 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3541 3542 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3543 if (SrcOp.getValueSizeInBits() != VTBits) { 3544 assert(SrcOp.getValueSizeInBits() > VTBits && 3545 "Expected BUILD_VECTOR implicit truncation"); 3546 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3547 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3548 } 3549 Tmp = std::min(Tmp, Tmp2); 3550 } 3551 return Tmp; 3552 3553 case ISD::VECTOR_SHUFFLE: { 3554 // Collect the minimum number of sign bits that are shared by every vector 3555 // element referenced by the shuffle. 3556 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3557 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3558 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3559 for (unsigned i = 0; i != NumElts; ++i) { 3560 int M = SVN->getMaskElt(i); 3561 if (!DemandedElts[i]) 3562 continue; 3563 // For UNDEF elements, we don't know anything about the common state of 3564 // the shuffle result. 3565 if (M < 0) 3566 return 1; 3567 if ((unsigned)M < NumElts) 3568 DemandedLHS.setBit((unsigned)M % NumElts); 3569 else 3570 DemandedRHS.setBit((unsigned)M % NumElts); 3571 } 3572 Tmp = std::numeric_limits<unsigned>::max(); 3573 if (!!DemandedLHS) 3574 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3575 if (!!DemandedRHS) { 3576 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3577 Tmp = std::min(Tmp, Tmp2); 3578 } 3579 // If we don't know anything, early out and try computeKnownBits fall-back. 3580 if (Tmp == 1) 3581 break; 3582 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3583 return Tmp; 3584 } 3585 3586 case ISD::BITCAST: { 3587 SDValue N0 = Op.getOperand(0); 3588 EVT SrcVT = N0.getValueType(); 3589 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3590 3591 // Ignore bitcasts from unsupported types.. 3592 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3593 break; 3594 3595 // Fast handling of 'identity' bitcasts. 3596 if (VTBits == SrcBits) 3597 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3598 3599 bool IsLE = getDataLayout().isLittleEndian(); 3600 3601 // Bitcast 'large element' scalar/vector to 'small element' vector. 3602 if ((SrcBits % VTBits) == 0) { 3603 assert(VT.isVector() && "Expected bitcast to vector"); 3604 3605 unsigned Scale = SrcBits / VTBits; 3606 APInt SrcDemandedElts(NumElts / Scale, 0); 3607 for (unsigned i = 0; i != NumElts; ++i) 3608 if (DemandedElts[i]) 3609 SrcDemandedElts.setBit(i / Scale); 3610 3611 // Fast case - sign splat can be simply split across the small elements. 3612 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3613 if (Tmp == SrcBits) 3614 return VTBits; 3615 3616 // Slow case - determine how far the sign extends into each sub-element. 3617 Tmp2 = VTBits; 3618 for (unsigned i = 0; i != NumElts; ++i) 3619 if (DemandedElts[i]) { 3620 unsigned SubOffset = i % Scale; 3621 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3622 SubOffset = SubOffset * VTBits; 3623 if (Tmp <= SubOffset) 3624 return 1; 3625 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3626 } 3627 return Tmp2; 3628 } 3629 break; 3630 } 3631 3632 case ISD::SIGN_EXTEND: 3633 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3634 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3635 case ISD::SIGN_EXTEND_INREG: 3636 // Max of the input and what this extends. 3637 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3638 Tmp = VTBits-Tmp+1; 3639 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3640 return std::max(Tmp, Tmp2); 3641 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3642 SDValue Src = Op.getOperand(0); 3643 EVT SrcVT = Src.getValueType(); 3644 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3645 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3646 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3647 } 3648 case ISD::SRA: 3649 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3650 // SRA X, C -> adds C sign bits. 3651 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) 3652 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3653 else if (const APInt *ShAmt = 3654 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3655 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3656 return Tmp; 3657 case ISD::SHL: 3658 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 3659 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3660 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3661 if (ShAmt->ult(Tmp)) 3662 return Tmp - ShAmt->getZExtValue(); 3663 } else if (const APInt *ShAmt = 3664 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3665 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 if (ShAmt->ult(Tmp)) 3667 return Tmp - ShAmt->getZExtValue(); 3668 } 3669 break; 3670 case ISD::AND: 3671 case ISD::OR: 3672 case ISD::XOR: // NOT is handled here. 3673 // Logical binary ops preserve the number of sign bits at the worst. 3674 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3675 if (Tmp != 1) { 3676 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3677 FirstAnswer = std::min(Tmp, Tmp2); 3678 // We computed what we know about the sign bits as our first 3679 // answer. Now proceed to the generic code that uses 3680 // computeKnownBits, and pick whichever answer is better. 3681 } 3682 break; 3683 3684 case ISD::SELECT: 3685 case ISD::VSELECT: 3686 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3687 if (Tmp == 1) return 1; // Early out. 3688 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3689 return std::min(Tmp, Tmp2); 3690 case ISD::SELECT_CC: 3691 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3692 if (Tmp == 1) return 1; // Early out. 3693 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3694 return std::min(Tmp, Tmp2); 3695 3696 case ISD::SMIN: 3697 case ISD::SMAX: { 3698 // If we have a clamp pattern, we know that the number of sign bits will be 3699 // the minimum of the clamp min/max range. 3700 bool IsMax = (Opcode == ISD::SMAX); 3701 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3702 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3703 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3704 CstHigh = 3705 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3706 if (CstLow && CstHigh) { 3707 if (!IsMax) 3708 std::swap(CstLow, CstHigh); 3709 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3710 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3711 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3712 return std::min(Tmp, Tmp2); 3713 } 3714 } 3715 3716 // Fallback - just get the minimum number of sign bits of the operands. 3717 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3718 if (Tmp == 1) 3719 return 1; // Early out. 3720 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3721 return std::min(Tmp, Tmp2); 3722 } 3723 case ISD::UMIN: 3724 case ISD::UMAX: 3725 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3726 if (Tmp == 1) 3727 return 1; // Early out. 3728 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3729 return std::min(Tmp, Tmp2); 3730 case ISD::SADDO: 3731 case ISD::UADDO: 3732 case ISD::SSUBO: 3733 case ISD::USUBO: 3734 case ISD::SMULO: 3735 case ISD::UMULO: 3736 if (Op.getResNo() != 1) 3737 break; 3738 // The boolean result conforms to getBooleanContents. Fall through. 3739 // If setcc returns 0/-1, all bits are sign bits. 3740 // We know that we have an integer-based boolean since these operations 3741 // are only available for integer. 3742 if (TLI->getBooleanContents(VT.isVector(), false) == 3743 TargetLowering::ZeroOrNegativeOneBooleanContent) 3744 return VTBits; 3745 break; 3746 case ISD::SETCC: 3747 case ISD::STRICT_FSETCC: 3748 case ISD::STRICT_FSETCCS: { 3749 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3750 // If setcc returns 0/-1, all bits are sign bits. 3751 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3752 TargetLowering::ZeroOrNegativeOneBooleanContent) 3753 return VTBits; 3754 break; 3755 } 3756 case ISD::ROTL: 3757 case ISD::ROTR: 3758 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3759 3760 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3761 if (Tmp == VTBits) 3762 return VTBits; 3763 3764 if (ConstantSDNode *C = 3765 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3766 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3767 3768 // Handle rotate right by N like a rotate left by 32-N. 3769 if (Opcode == ISD::ROTR) 3770 RotAmt = (VTBits - RotAmt) % VTBits; 3771 3772 // If we aren't rotating out all of the known-in sign bits, return the 3773 // number that are left. This handles rotl(sext(x), 1) for example. 3774 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3775 } 3776 break; 3777 case ISD::ADD: 3778 case ISD::ADDC: 3779 // Add can have at most one carry bit. Thus we know that the output 3780 // is, at worst, one more bit than the inputs. 3781 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3782 if (Tmp == 1) return 1; // Early out. 3783 3784 // Special case decrementing a value (ADD X, -1): 3785 if (ConstantSDNode *CRHS = 3786 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3787 if (CRHS->isAllOnesValue()) { 3788 KnownBits Known = 3789 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3790 3791 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3792 // sign bits set. 3793 if ((Known.Zero | 1).isAllOnesValue()) 3794 return VTBits; 3795 3796 // If we are subtracting one from a positive number, there is no carry 3797 // out of the result. 3798 if (Known.isNonNegative()) 3799 return Tmp; 3800 } 3801 3802 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3803 if (Tmp2 == 1) return 1; // Early out. 3804 return std::min(Tmp, Tmp2) - 1; 3805 case ISD::SUB: 3806 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3807 if (Tmp2 == 1) return 1; // Early out. 3808 3809 // Handle NEG. 3810 if (ConstantSDNode *CLHS = 3811 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3812 if (CLHS->isNullValue()) { 3813 KnownBits Known = 3814 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3815 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3816 // sign bits set. 3817 if ((Known.Zero | 1).isAllOnesValue()) 3818 return VTBits; 3819 3820 // If the input is known to be positive (the sign bit is known clear), 3821 // the output of the NEG has the same number of sign bits as the input. 3822 if (Known.isNonNegative()) 3823 return Tmp2; 3824 3825 // Otherwise, we treat this like a SUB. 3826 } 3827 3828 // Sub can have at most one carry bit. Thus we know that the output 3829 // is, at worst, one more bit than the inputs. 3830 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3831 if (Tmp == 1) return 1; // Early out. 3832 return std::min(Tmp, Tmp2) - 1; 3833 case ISD::MUL: { 3834 // The output of the Mul can be at most twice the valid bits in the inputs. 3835 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3836 if (SignBitsOp0 == 1) 3837 break; 3838 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3839 if (SignBitsOp1 == 1) 3840 break; 3841 unsigned OutValidBits = 3842 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3843 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3844 } 3845 case ISD::TRUNCATE: { 3846 // Check if the sign bits of source go down as far as the truncated value. 3847 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3848 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3849 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3850 return NumSrcSignBits - (NumSrcBits - VTBits); 3851 break; 3852 } 3853 case ISD::EXTRACT_ELEMENT: { 3854 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3855 const int BitWidth = Op.getValueSizeInBits(); 3856 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3857 3858 // Get reverse index (starting from 1), Op1 value indexes elements from 3859 // little end. Sign starts at big end. 3860 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3861 3862 // If the sign portion ends in our element the subtraction gives correct 3863 // result. Otherwise it gives either negative or > bitwidth result 3864 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3865 } 3866 case ISD::INSERT_VECTOR_ELT: { 3867 // If we know the element index, split the demand between the 3868 // source vector and the inserted element, otherwise assume we need 3869 // the original demanded vector elements and the value. 3870 SDValue InVec = Op.getOperand(0); 3871 SDValue InVal = Op.getOperand(1); 3872 SDValue EltNo = Op.getOperand(2); 3873 bool DemandedVal = true; 3874 APInt DemandedVecElts = DemandedElts; 3875 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3876 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3877 unsigned EltIdx = CEltNo->getZExtValue(); 3878 DemandedVal = !!DemandedElts[EltIdx]; 3879 DemandedVecElts.clearBit(EltIdx); 3880 } 3881 Tmp = std::numeric_limits<unsigned>::max(); 3882 if (DemandedVal) { 3883 // TODO - handle implicit truncation of inserted elements. 3884 if (InVal.getScalarValueSizeInBits() != VTBits) 3885 break; 3886 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3887 Tmp = std::min(Tmp, Tmp2); 3888 } 3889 if (!!DemandedVecElts) { 3890 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3891 Tmp = std::min(Tmp, Tmp2); 3892 } 3893 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3894 return Tmp; 3895 } 3896 case ISD::EXTRACT_VECTOR_ELT: { 3897 SDValue InVec = Op.getOperand(0); 3898 SDValue EltNo = Op.getOperand(1); 3899 EVT VecVT = InVec.getValueType(); 3900 const unsigned BitWidth = Op.getValueSizeInBits(); 3901 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3902 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3903 3904 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3905 // anything about sign bits. But if the sizes match we can derive knowledge 3906 // about sign bits from the vector operand. 3907 if (BitWidth != EltBitWidth) 3908 break; 3909 3910 // If we know the element index, just demand that vector element, else for 3911 // an unknown element index, ignore DemandedElts and demand them all. 3912 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3913 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3914 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3915 DemandedSrcElts = 3916 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3917 3918 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3919 } 3920 case ISD::EXTRACT_SUBVECTOR: { 3921 // If we know the element index, just demand that subvector elements, 3922 // otherwise demand them all. 3923 SDValue Src = Op.getOperand(0); 3924 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3925 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3926 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 3927 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3928 // Offset the demanded elts by the subvector index. 3929 uint64_t Idx = SubIdx->getZExtValue(); 3930 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3931 } 3932 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3933 } 3934 case ISD::CONCAT_VECTORS: { 3935 // Determine the minimum number of sign bits across all demanded 3936 // elts of the input vectors. Early out if the result is already 1. 3937 Tmp = std::numeric_limits<unsigned>::max(); 3938 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3939 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3940 unsigned NumSubVectors = Op.getNumOperands(); 3941 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3942 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3943 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3944 if (!DemandedSub) 3945 continue; 3946 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3947 Tmp = std::min(Tmp, Tmp2); 3948 } 3949 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3950 return Tmp; 3951 } 3952 case ISD::INSERT_SUBVECTOR: { 3953 // If we know the element index, demand any elements from the subvector and 3954 // the remainder from the src its inserted into, otherwise assume we need 3955 // the original demanded base elements and ALL the inserted subvector 3956 // elements. 3957 SDValue Src = Op.getOperand(0); 3958 SDValue Sub = Op.getOperand(1); 3959 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3960 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3961 APInt DemandedSubElts = APInt::getAllOnesValue(NumSubElts); 3962 APInt DemandedSrcElts = DemandedElts; 3963 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3964 uint64_t Idx = SubIdx->getZExtValue(); 3965 DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3966 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3967 } 3968 Tmp = std::numeric_limits<unsigned>::max(); 3969 if (!!DemandedSubElts) { 3970 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3971 if (Tmp == 1) 3972 return 1; // early-out 3973 } 3974 if (!!DemandedSrcElts) { 3975 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3976 Tmp = std::min(Tmp, Tmp2); 3977 } 3978 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3979 return Tmp; 3980 } 3981 } 3982 3983 // If we are looking at the loaded value of the SDNode. 3984 if (Op.getResNo() == 0) { 3985 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3986 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3987 unsigned ExtType = LD->getExtensionType(); 3988 switch (ExtType) { 3989 default: break; 3990 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3991 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3992 return VTBits - Tmp + 1; 3993 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3994 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3995 return VTBits - Tmp; 3996 case ISD::NON_EXTLOAD: 3997 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3998 // We only need to handle vectors - computeKnownBits should handle 3999 // scalar cases. 4000 Type *CstTy = Cst->getType(); 4001 if (CstTy->isVectorTy() && 4002 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4003 Tmp = VTBits; 4004 for (unsigned i = 0; i != NumElts; ++i) { 4005 if (!DemandedElts[i]) 4006 continue; 4007 if (Constant *Elt = Cst->getAggregateElement(i)) { 4008 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4009 const APInt &Value = CInt->getValue(); 4010 Tmp = std::min(Tmp, Value.getNumSignBits()); 4011 continue; 4012 } 4013 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4014 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4015 Tmp = std::min(Tmp, Value.getNumSignBits()); 4016 continue; 4017 } 4018 } 4019 // Unknown type. Conservatively assume no bits match sign bit. 4020 return 1; 4021 } 4022 return Tmp; 4023 } 4024 } 4025 break; 4026 } 4027 } 4028 } 4029 4030 // Allow the target to implement this method for its nodes. 4031 if (Opcode >= ISD::BUILTIN_OP_END || 4032 Opcode == ISD::INTRINSIC_WO_CHAIN || 4033 Opcode == ISD::INTRINSIC_W_CHAIN || 4034 Opcode == ISD::INTRINSIC_VOID) { 4035 unsigned NumBits = 4036 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4037 if (NumBits > 1) 4038 FirstAnswer = std::max(FirstAnswer, NumBits); 4039 } 4040 4041 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4042 // use this information. 4043 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4044 4045 APInt Mask; 4046 if (Known.isNonNegative()) { // sign bit is 0 4047 Mask = Known.Zero; 4048 } else if (Known.isNegative()) { // sign bit is 1; 4049 Mask = Known.One; 4050 } else { 4051 // Nothing known. 4052 return FirstAnswer; 4053 } 4054 4055 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4056 // the number of identical bits in the top of the input value. 4057 Mask <<= Mask.getBitWidth()-VTBits; 4058 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4059 } 4060 4061 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4062 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4063 !isa<ConstantSDNode>(Op.getOperand(1))) 4064 return false; 4065 4066 if (Op.getOpcode() == ISD::OR && 4067 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4068 return false; 4069 4070 return true; 4071 } 4072 4073 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4074 // If we're told that NaNs won't happen, assume they won't. 4075 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4076 return true; 4077 4078 if (Depth >= MaxRecursionDepth) 4079 return false; // Limit search depth. 4080 4081 // TODO: Handle vectors. 4082 // If the value is a constant, we can obviously see if it is a NaN or not. 4083 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4084 return !C->getValueAPF().isNaN() || 4085 (SNaN && !C->getValueAPF().isSignaling()); 4086 } 4087 4088 unsigned Opcode = Op.getOpcode(); 4089 switch (Opcode) { 4090 case ISD::FADD: 4091 case ISD::FSUB: 4092 case ISD::FMUL: 4093 case ISD::FDIV: 4094 case ISD::FREM: 4095 case ISD::FSIN: 4096 case ISD::FCOS: { 4097 if (SNaN) 4098 return true; 4099 // TODO: Need isKnownNeverInfinity 4100 return false; 4101 } 4102 case ISD::FCANONICALIZE: 4103 case ISD::FEXP: 4104 case ISD::FEXP2: 4105 case ISD::FTRUNC: 4106 case ISD::FFLOOR: 4107 case ISD::FCEIL: 4108 case ISD::FROUND: 4109 case ISD::FRINT: 4110 case ISD::FNEARBYINT: { 4111 if (SNaN) 4112 return true; 4113 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4114 } 4115 case ISD::FABS: 4116 case ISD::FNEG: 4117 case ISD::FCOPYSIGN: { 4118 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4119 } 4120 case ISD::SELECT: 4121 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4122 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4123 case ISD::FP_EXTEND: 4124 case ISD::FP_ROUND: { 4125 if (SNaN) 4126 return true; 4127 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4128 } 4129 case ISD::SINT_TO_FP: 4130 case ISD::UINT_TO_FP: 4131 return true; 4132 case ISD::FMA: 4133 case ISD::FMAD: { 4134 if (SNaN) 4135 return true; 4136 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4137 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4138 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4139 } 4140 case ISD::FSQRT: // Need is known positive 4141 case ISD::FLOG: 4142 case ISD::FLOG2: 4143 case ISD::FLOG10: 4144 case ISD::FPOWI: 4145 case ISD::FPOW: { 4146 if (SNaN) 4147 return true; 4148 // TODO: Refine on operand 4149 return false; 4150 } 4151 case ISD::FMINNUM: 4152 case ISD::FMAXNUM: { 4153 // Only one needs to be known not-nan, since it will be returned if the 4154 // other ends up being one. 4155 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4156 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4157 } 4158 case ISD::FMINNUM_IEEE: 4159 case ISD::FMAXNUM_IEEE: { 4160 if (SNaN) 4161 return true; 4162 // This can return a NaN if either operand is an sNaN, or if both operands 4163 // are NaN. 4164 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4165 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4166 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4167 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4168 } 4169 case ISD::FMINIMUM: 4170 case ISD::FMAXIMUM: { 4171 // TODO: Does this quiet or return the origina NaN as-is? 4172 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4173 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4174 } 4175 case ISD::EXTRACT_VECTOR_ELT: { 4176 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4177 } 4178 default: 4179 if (Opcode >= ISD::BUILTIN_OP_END || 4180 Opcode == ISD::INTRINSIC_WO_CHAIN || 4181 Opcode == ISD::INTRINSIC_W_CHAIN || 4182 Opcode == ISD::INTRINSIC_VOID) { 4183 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4184 } 4185 4186 return false; 4187 } 4188 } 4189 4190 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4191 assert(Op.getValueType().isFloatingPoint() && 4192 "Floating point type expected"); 4193 4194 // If the value is a constant, we can obviously see if it is a zero or not. 4195 // TODO: Add BuildVector support. 4196 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4197 return !C->isZero(); 4198 return false; 4199 } 4200 4201 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4202 assert(!Op.getValueType().isFloatingPoint() && 4203 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4204 4205 // If the value is a constant, we can obviously see if it is a zero or not. 4206 if (ISD::matchUnaryPredicate( 4207 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4208 return true; 4209 4210 // TODO: Recognize more cases here. 4211 switch (Op.getOpcode()) { 4212 default: break; 4213 case ISD::OR: 4214 if (isKnownNeverZero(Op.getOperand(1)) || 4215 isKnownNeverZero(Op.getOperand(0))) 4216 return true; 4217 break; 4218 } 4219 4220 return false; 4221 } 4222 4223 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4224 // Check the obvious case. 4225 if (A == B) return true; 4226 4227 // For for negative and positive zero. 4228 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4229 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4230 if (CA->isZero() && CB->isZero()) return true; 4231 4232 // Otherwise they may not be equal. 4233 return false; 4234 } 4235 4236 // FIXME: unify with llvm::haveNoCommonBitsSet. 4237 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4238 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4239 assert(A.getValueType() == B.getValueType() && 4240 "Values must have the same type"); 4241 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4242 } 4243 4244 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4245 ArrayRef<SDValue> Ops, 4246 SelectionDAG &DAG) { 4247 int NumOps = Ops.size(); 4248 assert(NumOps != 0 && "Can't build an empty vector!"); 4249 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4250 "Incorrect element count in BUILD_VECTOR!"); 4251 4252 // BUILD_VECTOR of UNDEFs is UNDEF. 4253 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4254 return DAG.getUNDEF(VT); 4255 4256 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4257 SDValue IdentitySrc; 4258 bool IsIdentity = true; 4259 for (int i = 0; i != NumOps; ++i) { 4260 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4261 Ops[i].getOperand(0).getValueType() != VT || 4262 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4263 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4264 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4265 IsIdentity = false; 4266 break; 4267 } 4268 IdentitySrc = Ops[i].getOperand(0); 4269 } 4270 if (IsIdentity) 4271 return IdentitySrc; 4272 4273 return SDValue(); 4274 } 4275 4276 /// Try to simplify vector concatenation to an input value, undef, or build 4277 /// vector. 4278 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4279 ArrayRef<SDValue> Ops, 4280 SelectionDAG &DAG) { 4281 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4282 assert(llvm::all_of(Ops, 4283 [Ops](SDValue Op) { 4284 return Ops[0].getValueType() == Op.getValueType(); 4285 }) && 4286 "Concatenation of vectors with inconsistent value types!"); 4287 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4288 VT.getVectorNumElements() && 4289 "Incorrect element count in vector concatenation!"); 4290 4291 if (Ops.size() == 1) 4292 return Ops[0]; 4293 4294 // Concat of UNDEFs is UNDEF. 4295 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4296 return DAG.getUNDEF(VT); 4297 4298 // Scan the operands and look for extract operations from a single source 4299 // that correspond to insertion at the same location via this concatenation: 4300 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4301 SDValue IdentitySrc; 4302 bool IsIdentity = true; 4303 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4304 SDValue Op = Ops[i]; 4305 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4306 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4307 Op.getOperand(0).getValueType() != VT || 4308 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4309 !isa<ConstantSDNode>(Op.getOperand(1)) || 4310 Op.getConstantOperandVal(1) != IdentityIndex) { 4311 IsIdentity = false; 4312 break; 4313 } 4314 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4315 "Unexpected identity source vector for concat of extracts"); 4316 IdentitySrc = Op.getOperand(0); 4317 } 4318 if (IsIdentity) { 4319 assert(IdentitySrc && "Failed to set source vector of extracts"); 4320 return IdentitySrc; 4321 } 4322 4323 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4324 // simplified to one big BUILD_VECTOR. 4325 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4326 EVT SVT = VT.getScalarType(); 4327 SmallVector<SDValue, 16> Elts; 4328 for (SDValue Op : Ops) { 4329 EVT OpVT = Op.getValueType(); 4330 if (Op.isUndef()) 4331 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4332 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4333 Elts.append(Op->op_begin(), Op->op_end()); 4334 else 4335 return SDValue(); 4336 } 4337 4338 // BUILD_VECTOR requires all inputs to be of the same type, find the 4339 // maximum type and extend them all. 4340 for (SDValue Op : Elts) 4341 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4342 4343 if (SVT.bitsGT(VT.getScalarType())) 4344 for (SDValue &Op : Elts) 4345 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4346 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4347 : DAG.getSExtOrTrunc(Op, DL, SVT); 4348 4349 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4350 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4351 return V; 4352 } 4353 4354 /// Gets or creates the specified node. 4355 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4356 FoldingSetNodeID ID; 4357 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4358 void *IP = nullptr; 4359 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4360 return SDValue(E, 0); 4361 4362 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4363 getVTList(VT)); 4364 CSEMap.InsertNode(N, IP); 4365 4366 InsertNode(N); 4367 SDValue V = SDValue(N, 0); 4368 NewSDValueDbgMsg(V, "Creating new node: ", this); 4369 return V; 4370 } 4371 4372 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4373 SDValue Operand, const SDNodeFlags Flags) { 4374 // Constant fold unary operations with an integer constant operand. Even 4375 // opaque constant will be folded, because the folding of unary operations 4376 // doesn't create new constants with different values. Nevertheless, the 4377 // opaque flag is preserved during folding to prevent future folding with 4378 // other constants. 4379 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4380 const APInt &Val = C->getAPIntValue(); 4381 switch (Opcode) { 4382 default: break; 4383 case ISD::SIGN_EXTEND: 4384 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4385 C->isTargetOpcode(), C->isOpaque()); 4386 case ISD::TRUNCATE: 4387 if (C->isOpaque()) 4388 break; 4389 LLVM_FALLTHROUGH; 4390 case ISD::ANY_EXTEND: 4391 case ISD::ZERO_EXTEND: 4392 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4393 C->isTargetOpcode(), C->isOpaque()); 4394 case ISD::UINT_TO_FP: 4395 case ISD::SINT_TO_FP: { 4396 APFloat apf(EVTToAPFloatSemantics(VT), 4397 APInt::getNullValue(VT.getSizeInBits())); 4398 (void)apf.convertFromAPInt(Val, 4399 Opcode==ISD::SINT_TO_FP, 4400 APFloat::rmNearestTiesToEven); 4401 return getConstantFP(apf, DL, VT); 4402 } 4403 case ISD::BITCAST: 4404 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4405 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4406 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4407 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4408 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4409 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4410 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4411 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4412 break; 4413 case ISD::ABS: 4414 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4415 C->isOpaque()); 4416 case ISD::BITREVERSE: 4417 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4418 C->isOpaque()); 4419 case ISD::BSWAP: 4420 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4421 C->isOpaque()); 4422 case ISD::CTPOP: 4423 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4424 C->isOpaque()); 4425 case ISD::CTLZ: 4426 case ISD::CTLZ_ZERO_UNDEF: 4427 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4428 C->isOpaque()); 4429 case ISD::CTTZ: 4430 case ISD::CTTZ_ZERO_UNDEF: 4431 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4432 C->isOpaque()); 4433 case ISD::FP16_TO_FP: { 4434 bool Ignored; 4435 APFloat FPV(APFloat::IEEEhalf(), 4436 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4437 4438 // This can return overflow, underflow, or inexact; we don't care. 4439 // FIXME need to be more flexible about rounding mode. 4440 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4441 APFloat::rmNearestTiesToEven, &Ignored); 4442 return getConstantFP(FPV, DL, VT); 4443 } 4444 } 4445 } 4446 4447 // Constant fold unary operations with a floating point constant operand. 4448 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4449 APFloat V = C->getValueAPF(); // make copy 4450 switch (Opcode) { 4451 case ISD::FNEG: 4452 V.changeSign(); 4453 return getConstantFP(V, DL, VT); 4454 case ISD::FABS: 4455 V.clearSign(); 4456 return getConstantFP(V, DL, VT); 4457 case ISD::FCEIL: { 4458 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4459 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4460 return getConstantFP(V, DL, VT); 4461 break; 4462 } 4463 case ISD::FTRUNC: { 4464 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4465 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4466 return getConstantFP(V, DL, VT); 4467 break; 4468 } 4469 case ISD::FFLOOR: { 4470 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4471 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4472 return getConstantFP(V, DL, VT); 4473 break; 4474 } 4475 case ISD::FP_EXTEND: { 4476 bool ignored; 4477 // This can return overflow, underflow, or inexact; we don't care. 4478 // FIXME need to be more flexible about rounding mode. 4479 (void)V.convert(EVTToAPFloatSemantics(VT), 4480 APFloat::rmNearestTiesToEven, &ignored); 4481 return getConstantFP(V, DL, VT); 4482 } 4483 case ISD::FP_TO_SINT: 4484 case ISD::FP_TO_UINT: { 4485 bool ignored; 4486 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4487 // FIXME need to be more flexible about rounding mode. 4488 APFloat::opStatus s = 4489 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4490 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4491 break; 4492 return getConstant(IntVal, DL, VT); 4493 } 4494 case ISD::BITCAST: 4495 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4496 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4497 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4498 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4499 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4500 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4501 break; 4502 case ISD::FP_TO_FP16: { 4503 bool Ignored; 4504 // This can return overflow, underflow, or inexact; we don't care. 4505 // FIXME need to be more flexible about rounding mode. 4506 (void)V.convert(APFloat::IEEEhalf(), 4507 APFloat::rmNearestTiesToEven, &Ignored); 4508 return getConstant(V.bitcastToAPInt(), DL, VT); 4509 } 4510 } 4511 } 4512 4513 // Constant fold unary operations with a vector integer or float operand. 4514 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4515 if (BV->isConstant()) { 4516 switch (Opcode) { 4517 default: 4518 // FIXME: Entirely reasonable to perform folding of other unary 4519 // operations here as the need arises. 4520 break; 4521 case ISD::FNEG: 4522 case ISD::FABS: 4523 case ISD::FCEIL: 4524 case ISD::FTRUNC: 4525 case ISD::FFLOOR: 4526 case ISD::FP_EXTEND: 4527 case ISD::FP_TO_SINT: 4528 case ISD::FP_TO_UINT: 4529 case ISD::TRUNCATE: 4530 case ISD::ANY_EXTEND: 4531 case ISD::ZERO_EXTEND: 4532 case ISD::SIGN_EXTEND: 4533 case ISD::UINT_TO_FP: 4534 case ISD::SINT_TO_FP: 4535 case ISD::ABS: 4536 case ISD::BITREVERSE: 4537 case ISD::BSWAP: 4538 case ISD::CTLZ: 4539 case ISD::CTLZ_ZERO_UNDEF: 4540 case ISD::CTTZ: 4541 case ISD::CTTZ_ZERO_UNDEF: 4542 case ISD::CTPOP: { 4543 SDValue Ops = { Operand }; 4544 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4545 return Fold; 4546 } 4547 } 4548 } 4549 } 4550 4551 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4552 switch (Opcode) { 4553 case ISD::FREEZE: 4554 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4555 break; 4556 case ISD::TokenFactor: 4557 case ISD::MERGE_VALUES: 4558 case ISD::CONCAT_VECTORS: 4559 return Operand; // Factor, merge or concat of one node? No need. 4560 case ISD::BUILD_VECTOR: { 4561 // Attempt to simplify BUILD_VECTOR. 4562 SDValue Ops[] = {Operand}; 4563 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4564 return V; 4565 break; 4566 } 4567 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4568 case ISD::FP_EXTEND: 4569 assert(VT.isFloatingPoint() && 4570 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4571 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4572 assert((!VT.isVector() || 4573 VT.getVectorNumElements() == 4574 Operand.getValueType().getVectorNumElements()) && 4575 "Vector element count mismatch!"); 4576 assert(Operand.getValueType().bitsLT(VT) && 4577 "Invalid fpext node, dst < src!"); 4578 if (Operand.isUndef()) 4579 return getUNDEF(VT); 4580 break; 4581 case ISD::FP_TO_SINT: 4582 case ISD::FP_TO_UINT: 4583 if (Operand.isUndef()) 4584 return getUNDEF(VT); 4585 break; 4586 case ISD::SINT_TO_FP: 4587 case ISD::UINT_TO_FP: 4588 // [us]itofp(undef) = 0, because the result value is bounded. 4589 if (Operand.isUndef()) 4590 return getConstantFP(0.0, DL, VT); 4591 break; 4592 case ISD::SIGN_EXTEND: 4593 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4594 "Invalid SIGN_EXTEND!"); 4595 assert(VT.isVector() == Operand.getValueType().isVector() && 4596 "SIGN_EXTEND result type type should be vector iff the operand " 4597 "type is vector!"); 4598 if (Operand.getValueType() == VT) return Operand; // noop extension 4599 assert((!VT.isVector() || 4600 VT.getVectorNumElements() == 4601 Operand.getValueType().getVectorNumElements()) && 4602 "Vector element count mismatch!"); 4603 assert(Operand.getValueType().bitsLT(VT) && 4604 "Invalid sext node, dst < src!"); 4605 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4606 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4607 else if (OpOpcode == ISD::UNDEF) 4608 // sext(undef) = 0, because the top bits will all be the same. 4609 return getConstant(0, DL, VT); 4610 break; 4611 case ISD::ZERO_EXTEND: 4612 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4613 "Invalid ZERO_EXTEND!"); 4614 assert(VT.isVector() == Operand.getValueType().isVector() && 4615 "ZERO_EXTEND result type type should be vector iff the operand " 4616 "type is vector!"); 4617 if (Operand.getValueType() == VT) return Operand; // noop extension 4618 assert((!VT.isVector() || 4619 VT.getVectorNumElements() == 4620 Operand.getValueType().getVectorNumElements()) && 4621 "Vector element count mismatch!"); 4622 assert(Operand.getValueType().bitsLT(VT) && 4623 "Invalid zext node, dst < src!"); 4624 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4625 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4626 else if (OpOpcode == ISD::UNDEF) 4627 // zext(undef) = 0, because the top bits will be zero. 4628 return getConstant(0, DL, VT); 4629 break; 4630 case ISD::ANY_EXTEND: 4631 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4632 "Invalid ANY_EXTEND!"); 4633 assert(VT.isVector() == Operand.getValueType().isVector() && 4634 "ANY_EXTEND result type type should be vector iff the operand " 4635 "type is vector!"); 4636 if (Operand.getValueType() == VT) return Operand; // noop extension 4637 assert((!VT.isVector() || 4638 VT.getVectorNumElements() == 4639 Operand.getValueType().getVectorNumElements()) && 4640 "Vector element count mismatch!"); 4641 assert(Operand.getValueType().bitsLT(VT) && 4642 "Invalid anyext node, dst < src!"); 4643 4644 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4645 OpOpcode == ISD::ANY_EXTEND) 4646 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4647 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4648 else if (OpOpcode == ISD::UNDEF) 4649 return getUNDEF(VT); 4650 4651 // (ext (trunc x)) -> x 4652 if (OpOpcode == ISD::TRUNCATE) { 4653 SDValue OpOp = Operand.getOperand(0); 4654 if (OpOp.getValueType() == VT) { 4655 transferDbgValues(Operand, OpOp); 4656 return OpOp; 4657 } 4658 } 4659 break; 4660 case ISD::TRUNCATE: 4661 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4662 "Invalid TRUNCATE!"); 4663 assert(VT.isVector() == Operand.getValueType().isVector() && 4664 "TRUNCATE result type type should be vector iff the operand " 4665 "type is vector!"); 4666 if (Operand.getValueType() == VT) return Operand; // noop truncate 4667 assert((!VT.isVector() || 4668 VT.getVectorNumElements() == 4669 Operand.getValueType().getVectorNumElements()) && 4670 "Vector element count mismatch!"); 4671 assert(Operand.getValueType().bitsGT(VT) && 4672 "Invalid truncate node, src < dst!"); 4673 if (OpOpcode == ISD::TRUNCATE) 4674 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4675 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4676 OpOpcode == ISD::ANY_EXTEND) { 4677 // If the source is smaller than the dest, we still need an extend. 4678 if (Operand.getOperand(0).getValueType().getScalarType() 4679 .bitsLT(VT.getScalarType())) 4680 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4681 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4682 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4683 return Operand.getOperand(0); 4684 } 4685 if (OpOpcode == ISD::UNDEF) 4686 return getUNDEF(VT); 4687 break; 4688 case ISD::ANY_EXTEND_VECTOR_INREG: 4689 case ISD::ZERO_EXTEND_VECTOR_INREG: 4690 case ISD::SIGN_EXTEND_VECTOR_INREG: 4691 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4692 assert(Operand.getValueType().bitsLE(VT) && 4693 "The input must be the same size or smaller than the result."); 4694 assert(VT.getVectorNumElements() < 4695 Operand.getValueType().getVectorNumElements() && 4696 "The destination vector type must have fewer lanes than the input."); 4697 break; 4698 case ISD::ABS: 4699 assert(VT.isInteger() && VT == Operand.getValueType() && 4700 "Invalid ABS!"); 4701 if (OpOpcode == ISD::UNDEF) 4702 return getUNDEF(VT); 4703 break; 4704 case ISD::BSWAP: 4705 assert(VT.isInteger() && VT == Operand.getValueType() && 4706 "Invalid BSWAP!"); 4707 assert((VT.getScalarSizeInBits() % 16 == 0) && 4708 "BSWAP types must be a multiple of 16 bits!"); 4709 if (OpOpcode == ISD::UNDEF) 4710 return getUNDEF(VT); 4711 break; 4712 case ISD::BITREVERSE: 4713 assert(VT.isInteger() && VT == Operand.getValueType() && 4714 "Invalid BITREVERSE!"); 4715 if (OpOpcode == ISD::UNDEF) 4716 return getUNDEF(VT); 4717 break; 4718 case ISD::BITCAST: 4719 // Basic sanity checking. 4720 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4721 "Cannot BITCAST between types of different sizes!"); 4722 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4723 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4724 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4725 if (OpOpcode == ISD::UNDEF) 4726 return getUNDEF(VT); 4727 break; 4728 case ISD::SCALAR_TO_VECTOR: 4729 assert(VT.isVector() && !Operand.getValueType().isVector() && 4730 (VT.getVectorElementType() == Operand.getValueType() || 4731 (VT.getVectorElementType().isInteger() && 4732 Operand.getValueType().isInteger() && 4733 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4734 "Illegal SCALAR_TO_VECTOR node!"); 4735 if (OpOpcode == ISD::UNDEF) 4736 return getUNDEF(VT); 4737 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4738 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4739 isa<ConstantSDNode>(Operand.getOperand(1)) && 4740 Operand.getConstantOperandVal(1) == 0 && 4741 Operand.getOperand(0).getValueType() == VT) 4742 return Operand.getOperand(0); 4743 break; 4744 case ISD::FNEG: 4745 // Negation of an unknown bag of bits is still completely undefined. 4746 if (OpOpcode == ISD::UNDEF) 4747 return getUNDEF(VT); 4748 4749 if (OpOpcode == ISD::FNEG) // --X -> X 4750 return Operand.getOperand(0); 4751 break; 4752 case ISD::FABS: 4753 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4754 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4755 break; 4756 } 4757 4758 SDNode *N; 4759 SDVTList VTs = getVTList(VT); 4760 SDValue Ops[] = {Operand}; 4761 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4762 FoldingSetNodeID ID; 4763 AddNodeIDNode(ID, Opcode, VTs, Ops); 4764 void *IP = nullptr; 4765 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4766 E->intersectFlagsWith(Flags); 4767 return SDValue(E, 0); 4768 } 4769 4770 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4771 N->setFlags(Flags); 4772 createOperands(N, Ops); 4773 CSEMap.InsertNode(N, IP); 4774 } else { 4775 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4776 createOperands(N, Ops); 4777 } 4778 4779 InsertNode(N); 4780 SDValue V = SDValue(N, 0); 4781 NewSDValueDbgMsg(V, "Creating new node: ", this); 4782 return V; 4783 } 4784 4785 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4786 const APInt &C2) { 4787 switch (Opcode) { 4788 case ISD::ADD: return C1 + C2; 4789 case ISD::SUB: return C1 - C2; 4790 case ISD::MUL: return C1 * C2; 4791 case ISD::AND: return C1 & C2; 4792 case ISD::OR: return C1 | C2; 4793 case ISD::XOR: return C1 ^ C2; 4794 case ISD::SHL: return C1 << C2; 4795 case ISD::SRL: return C1.lshr(C2); 4796 case ISD::SRA: return C1.ashr(C2); 4797 case ISD::ROTL: return C1.rotl(C2); 4798 case ISD::ROTR: return C1.rotr(C2); 4799 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4800 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4801 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4802 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4803 case ISD::SADDSAT: return C1.sadd_sat(C2); 4804 case ISD::UADDSAT: return C1.uadd_sat(C2); 4805 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4806 case ISD::USUBSAT: return C1.usub_sat(C2); 4807 case ISD::UDIV: 4808 if (!C2.getBoolValue()) 4809 break; 4810 return C1.udiv(C2); 4811 case ISD::UREM: 4812 if (!C2.getBoolValue()) 4813 break; 4814 return C1.urem(C2); 4815 case ISD::SDIV: 4816 if (!C2.getBoolValue()) 4817 break; 4818 return C1.sdiv(C2); 4819 case ISD::SREM: 4820 if (!C2.getBoolValue()) 4821 break; 4822 return C1.srem(C2); 4823 } 4824 return llvm::None; 4825 } 4826 4827 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4828 const GlobalAddressSDNode *GA, 4829 const SDNode *N2) { 4830 if (GA->getOpcode() != ISD::GlobalAddress) 4831 return SDValue(); 4832 if (!TLI->isOffsetFoldingLegal(GA)) 4833 return SDValue(); 4834 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4835 if (!C2) 4836 return SDValue(); 4837 int64_t Offset = C2->getSExtValue(); 4838 switch (Opcode) { 4839 case ISD::ADD: break; 4840 case ISD::SUB: Offset = -uint64_t(Offset); break; 4841 default: return SDValue(); 4842 } 4843 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4844 GA->getOffset() + uint64_t(Offset)); 4845 } 4846 4847 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4848 switch (Opcode) { 4849 case ISD::SDIV: 4850 case ISD::UDIV: 4851 case ISD::SREM: 4852 case ISD::UREM: { 4853 // If a divisor is zero/undef or any element of a divisor vector is 4854 // zero/undef, the whole op is undef. 4855 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4856 SDValue Divisor = Ops[1]; 4857 if (Divisor.isUndef() || isNullConstant(Divisor)) 4858 return true; 4859 4860 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4861 llvm::any_of(Divisor->op_values(), 4862 [](SDValue V) { return V.isUndef() || 4863 isNullConstant(V); }); 4864 // TODO: Handle signed overflow. 4865 } 4866 // TODO: Handle oversized shifts. 4867 default: 4868 return false; 4869 } 4870 } 4871 4872 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4873 EVT VT, ArrayRef<SDValue> Ops) { 4874 // If the opcode is a target-specific ISD node, there's nothing we can 4875 // do here and the operand rules may not line up with the below, so 4876 // bail early. 4877 if (Opcode >= ISD::BUILTIN_OP_END) 4878 return SDValue(); 4879 4880 // For now, the array Ops should only contain two values. 4881 // This enforcement will be removed once this function is merged with 4882 // FoldConstantVectorArithmetic 4883 if (Ops.size() != 2) 4884 return SDValue(); 4885 4886 if (isUndef(Opcode, Ops)) 4887 return getUNDEF(VT); 4888 4889 SDNode *N1 = Ops[0].getNode(); 4890 SDNode *N2 = Ops[1].getNode(); 4891 4892 // Handle the case of two scalars. 4893 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4894 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4895 if (C1->isOpaque() || C2->isOpaque()) 4896 return SDValue(); 4897 4898 Optional<APInt> FoldAttempt = 4899 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4900 if (!FoldAttempt) 4901 return SDValue(); 4902 4903 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4904 assert((!Folded || !VT.isVector()) && 4905 "Can't fold vectors ops with scalar operands"); 4906 return Folded; 4907 } 4908 } 4909 4910 // fold (add Sym, c) -> Sym+c 4911 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4912 return FoldSymbolOffset(Opcode, VT, GA, N2); 4913 if (TLI->isCommutativeBinOp(Opcode)) 4914 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4915 return FoldSymbolOffset(Opcode, VT, GA, N1); 4916 4917 // For vectors, extract each constant element and fold them individually. 4918 // Either input may be an undef value. 4919 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4920 if (!BV1 && !N1->isUndef()) 4921 return SDValue(); 4922 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4923 if (!BV2 && !N2->isUndef()) 4924 return SDValue(); 4925 // If both operands are undef, that's handled the same way as scalars. 4926 if (!BV1 && !BV2) 4927 return SDValue(); 4928 4929 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4930 "Vector binop with different number of elements in operands?"); 4931 4932 EVT SVT = VT.getScalarType(); 4933 EVT LegalSVT = SVT; 4934 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4935 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4936 if (LegalSVT.bitsLT(SVT)) 4937 return SDValue(); 4938 } 4939 SmallVector<SDValue, 4> Outputs; 4940 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4941 for (unsigned I = 0; I != NumOps; ++I) { 4942 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4943 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4944 if (SVT.isInteger()) { 4945 if (V1->getValueType(0).bitsGT(SVT)) 4946 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4947 if (V2->getValueType(0).bitsGT(SVT)) 4948 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4949 } 4950 4951 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4952 return SDValue(); 4953 4954 // Fold one vector element. 4955 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4956 if (LegalSVT != SVT) 4957 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4958 4959 // Scalar folding only succeeded if the result is a constant or UNDEF. 4960 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4961 ScalarResult.getOpcode() != ISD::ConstantFP) 4962 return SDValue(); 4963 Outputs.push_back(ScalarResult); 4964 } 4965 4966 assert(VT.getVectorNumElements() == Outputs.size() && 4967 "Vector size mismatch!"); 4968 4969 // We may have a vector type but a scalar result. Create a splat. 4970 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4971 4972 // Build a big vector out of the scalar elements we generated. 4973 return getBuildVector(VT, SDLoc(), Outputs); 4974 } 4975 4976 // TODO: Merge with FoldConstantArithmetic 4977 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4978 const SDLoc &DL, EVT VT, 4979 ArrayRef<SDValue> Ops, 4980 const SDNodeFlags Flags) { 4981 // If the opcode is a target-specific ISD node, there's nothing we can 4982 // do here and the operand rules may not line up with the below, so 4983 // bail early. 4984 if (Opcode >= ISD::BUILTIN_OP_END) 4985 return SDValue(); 4986 4987 if (isUndef(Opcode, Ops)) 4988 return getUNDEF(VT); 4989 4990 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4991 if (!VT.isVector()) 4992 return SDValue(); 4993 4994 unsigned NumElts = VT.getVectorNumElements(); 4995 4996 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4997 return !Op.getValueType().isVector() || 4998 Op.getValueType().getVectorNumElements() == NumElts; 4999 }; 5000 5001 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5002 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5003 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5004 (BV && BV->isConstant()); 5005 }; 5006 5007 // All operands must be vector types with the same number of elements as 5008 // the result type and must be either UNDEF or a build vector of constant 5009 // or UNDEF scalars. 5010 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5011 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5012 return SDValue(); 5013 5014 // If we are comparing vectors, then the result needs to be a i1 boolean 5015 // that is then sign-extended back to the legal result type. 5016 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5017 5018 // Find legal integer scalar type for constant promotion and 5019 // ensure that its scalar size is at least as large as source. 5020 EVT LegalSVT = VT.getScalarType(); 5021 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5022 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5023 if (LegalSVT.bitsLT(VT.getScalarType())) 5024 return SDValue(); 5025 } 5026 5027 // Constant fold each scalar lane separately. 5028 SmallVector<SDValue, 4> ScalarResults; 5029 for (unsigned i = 0; i != NumElts; i++) { 5030 SmallVector<SDValue, 4> ScalarOps; 5031 for (SDValue Op : Ops) { 5032 EVT InSVT = Op.getValueType().getScalarType(); 5033 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5034 if (!InBV) { 5035 // We've checked that this is UNDEF or a constant of some kind. 5036 if (Op.isUndef()) 5037 ScalarOps.push_back(getUNDEF(InSVT)); 5038 else 5039 ScalarOps.push_back(Op); 5040 continue; 5041 } 5042 5043 SDValue ScalarOp = InBV->getOperand(i); 5044 EVT ScalarVT = ScalarOp.getValueType(); 5045 5046 // Build vector (integer) scalar operands may need implicit 5047 // truncation - do this before constant folding. 5048 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5049 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5050 5051 ScalarOps.push_back(ScalarOp); 5052 } 5053 5054 // Constant fold the scalar operands. 5055 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5056 5057 // Legalize the (integer) scalar constant if necessary. 5058 if (LegalSVT != SVT) 5059 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5060 5061 // Scalar folding only succeeded if the result is a constant or UNDEF. 5062 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5063 ScalarResult.getOpcode() != ISD::ConstantFP) 5064 return SDValue(); 5065 ScalarResults.push_back(ScalarResult); 5066 } 5067 5068 SDValue V = getBuildVector(VT, DL, ScalarResults); 5069 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5070 return V; 5071 } 5072 5073 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5074 EVT VT, SDValue N1, SDValue N2) { 5075 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5076 // should. That will require dealing with a potentially non-default 5077 // rounding mode, checking the "opStatus" return value from the APFloat 5078 // math calculations, and possibly other variations. 5079 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5080 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5081 if (N1CFP && N2CFP) { 5082 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5083 switch (Opcode) { 5084 case ISD::FADD: 5085 C1.add(C2, APFloat::rmNearestTiesToEven); 5086 return getConstantFP(C1, DL, VT); 5087 case ISD::FSUB: 5088 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5089 return getConstantFP(C1, DL, VT); 5090 case ISD::FMUL: 5091 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5092 return getConstantFP(C1, DL, VT); 5093 case ISD::FDIV: 5094 C1.divide(C2, APFloat::rmNearestTiesToEven); 5095 return getConstantFP(C1, DL, VT); 5096 case ISD::FREM: 5097 C1.mod(C2); 5098 return getConstantFP(C1, DL, VT); 5099 case ISD::FCOPYSIGN: 5100 C1.copySign(C2); 5101 return getConstantFP(C1, DL, VT); 5102 default: break; 5103 } 5104 } 5105 if (N1CFP && Opcode == ISD::FP_ROUND) { 5106 APFloat C1 = N1CFP->getValueAPF(); // make copy 5107 bool Unused; 5108 // This can return overflow, underflow, or inexact; we don't care. 5109 // FIXME need to be more flexible about rounding mode. 5110 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5111 &Unused); 5112 return getConstantFP(C1, DL, VT); 5113 } 5114 5115 switch (Opcode) { 5116 case ISD::FSUB: 5117 // -0.0 - undef --> undef (consistent with "fneg undef") 5118 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5119 return getUNDEF(VT); 5120 LLVM_FALLTHROUGH; 5121 5122 case ISD::FADD: 5123 case ISD::FMUL: 5124 case ISD::FDIV: 5125 case ISD::FREM: 5126 // If both operands are undef, the result is undef. If 1 operand is undef, 5127 // the result is NaN. This should match the behavior of the IR optimizer. 5128 if (N1.isUndef() && N2.isUndef()) 5129 return getUNDEF(VT); 5130 if (N1.isUndef() || N2.isUndef()) 5131 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5132 } 5133 return SDValue(); 5134 } 5135 5136 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5137 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5138 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5139 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5140 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5141 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5142 5143 // Canonicalize constant to RHS if commutative. 5144 if (TLI->isCommutativeBinOp(Opcode)) { 5145 if (N1C && !N2C) { 5146 std::swap(N1C, N2C); 5147 std::swap(N1, N2); 5148 } else if (N1CFP && !N2CFP) { 5149 std::swap(N1CFP, N2CFP); 5150 std::swap(N1, N2); 5151 } 5152 } 5153 5154 switch (Opcode) { 5155 default: break; 5156 case ISD::TokenFactor: 5157 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5158 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5159 // Fold trivial token factors. 5160 if (N1.getOpcode() == ISD::EntryToken) return N2; 5161 if (N2.getOpcode() == ISD::EntryToken) return N1; 5162 if (N1 == N2) return N1; 5163 break; 5164 case ISD::BUILD_VECTOR: { 5165 // Attempt to simplify BUILD_VECTOR. 5166 SDValue Ops[] = {N1, N2}; 5167 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5168 return V; 5169 break; 5170 } 5171 case ISD::CONCAT_VECTORS: { 5172 SDValue Ops[] = {N1, N2}; 5173 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5174 return V; 5175 break; 5176 } 5177 case ISD::AND: 5178 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5179 assert(N1.getValueType() == N2.getValueType() && 5180 N1.getValueType() == VT && "Binary operator types must match!"); 5181 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5182 // worth handling here. 5183 if (N2C && N2C->isNullValue()) 5184 return N2; 5185 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5186 return N1; 5187 break; 5188 case ISD::OR: 5189 case ISD::XOR: 5190 case ISD::ADD: 5191 case ISD::SUB: 5192 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5193 assert(N1.getValueType() == N2.getValueType() && 5194 N1.getValueType() == VT && "Binary operator types must match!"); 5195 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5196 // it's worth handling here. 5197 if (N2C && N2C->isNullValue()) 5198 return N1; 5199 break; 5200 case ISD::MUL: 5201 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5202 assert(N1.getValueType() == N2.getValueType() && 5203 N1.getValueType() == VT && "Binary operator types must match!"); 5204 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5205 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5206 APInt N2CImm = N2C->getAPIntValue(); 5207 return getVScale(DL, VT, MulImm * N2CImm); 5208 } 5209 break; 5210 case ISD::UDIV: 5211 case ISD::UREM: 5212 case ISD::MULHU: 5213 case ISD::MULHS: 5214 case ISD::SDIV: 5215 case ISD::SREM: 5216 case ISD::SMIN: 5217 case ISD::SMAX: 5218 case ISD::UMIN: 5219 case ISD::UMAX: 5220 case ISD::SADDSAT: 5221 case ISD::SSUBSAT: 5222 case ISD::UADDSAT: 5223 case ISD::USUBSAT: 5224 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5225 assert(N1.getValueType() == N2.getValueType() && 5226 N1.getValueType() == VT && "Binary operator types must match!"); 5227 break; 5228 case ISD::FADD: 5229 case ISD::FSUB: 5230 case ISD::FMUL: 5231 case ISD::FDIV: 5232 case ISD::FREM: 5233 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5234 assert(N1.getValueType() == N2.getValueType() && 5235 N1.getValueType() == VT && "Binary operator types must match!"); 5236 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5237 return V; 5238 break; 5239 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5240 assert(N1.getValueType() == VT && 5241 N1.getValueType().isFloatingPoint() && 5242 N2.getValueType().isFloatingPoint() && 5243 "Invalid FCOPYSIGN!"); 5244 break; 5245 case ISD::SHL: 5246 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5247 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5248 APInt ShiftImm = N2C->getAPIntValue(); 5249 return getVScale(DL, VT, MulImm << ShiftImm); 5250 } 5251 LLVM_FALLTHROUGH; 5252 case ISD::SRA: 5253 case ISD::SRL: 5254 if (SDValue V = simplifyShift(N1, N2)) 5255 return V; 5256 LLVM_FALLTHROUGH; 5257 case ISD::ROTL: 5258 case ISD::ROTR: 5259 assert(VT == N1.getValueType() && 5260 "Shift operators return type must be the same as their first arg"); 5261 assert(VT.isInteger() && N2.getValueType().isInteger() && 5262 "Shifts only work on integers"); 5263 assert((!VT.isVector() || VT == N2.getValueType()) && 5264 "Vector shift amounts must be in the same as their first arg"); 5265 // Verify that the shift amount VT is big enough to hold valid shift 5266 // amounts. This catches things like trying to shift an i1024 value by an 5267 // i8, which is easy to fall into in generic code that uses 5268 // TLI.getShiftAmount(). 5269 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= 5270 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && 5271 "Invalid use of small shift amount with oversized value!"); 5272 5273 // Always fold shifts of i1 values so the code generator doesn't need to 5274 // handle them. Since we know the size of the shift has to be less than the 5275 // size of the value, the shift/rotate count is guaranteed to be zero. 5276 if (VT == MVT::i1) 5277 return N1; 5278 if (N2C && N2C->isNullValue()) 5279 return N1; 5280 break; 5281 case ISD::FP_ROUND: 5282 assert(VT.isFloatingPoint() && 5283 N1.getValueType().isFloatingPoint() && 5284 VT.bitsLE(N1.getValueType()) && 5285 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5286 "Invalid FP_ROUND!"); 5287 if (N1.getValueType() == VT) return N1; // noop conversion. 5288 break; 5289 case ISD::AssertSext: 5290 case ISD::AssertZext: { 5291 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5292 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5293 assert(VT.isInteger() && EVT.isInteger() && 5294 "Cannot *_EXTEND_INREG FP types"); 5295 assert(!EVT.isVector() && 5296 "AssertSExt/AssertZExt type should be the vector element type " 5297 "rather than the vector type!"); 5298 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5299 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5300 break; 5301 } 5302 case ISD::SIGN_EXTEND_INREG: { 5303 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5304 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5305 assert(VT.isInteger() && EVT.isInteger() && 5306 "Cannot *_EXTEND_INREG FP types"); 5307 assert(EVT.isVector() == VT.isVector() && 5308 "SIGN_EXTEND_INREG type should be vector iff the operand " 5309 "type is vector!"); 5310 assert((!EVT.isVector() || 5311 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5312 "Vector element counts must match in SIGN_EXTEND_INREG"); 5313 assert(EVT.bitsLE(VT) && "Not extending!"); 5314 if (EVT == VT) return N1; // Not actually extending 5315 5316 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5317 unsigned FromBits = EVT.getScalarSizeInBits(); 5318 Val <<= Val.getBitWidth() - FromBits; 5319 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5320 return getConstant(Val, DL, ConstantVT); 5321 }; 5322 5323 if (N1C) { 5324 const APInt &Val = N1C->getAPIntValue(); 5325 return SignExtendInReg(Val, VT); 5326 } 5327 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5328 SmallVector<SDValue, 8> Ops; 5329 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5330 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5331 SDValue Op = N1.getOperand(i); 5332 if (Op.isUndef()) { 5333 Ops.push_back(getUNDEF(OpVT)); 5334 continue; 5335 } 5336 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5337 APInt Val = C->getAPIntValue(); 5338 Ops.push_back(SignExtendInReg(Val, OpVT)); 5339 } 5340 return getBuildVector(VT, DL, Ops); 5341 } 5342 break; 5343 } 5344 case ISD::EXTRACT_VECTOR_ELT: 5345 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5346 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5347 element type of the vector."); 5348 5349 // Extract from an undefined value or using an undefined index is undefined. 5350 if (N1.isUndef() || N2.isUndef()) 5351 return getUNDEF(VT); 5352 5353 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5354 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5355 return getUNDEF(VT); 5356 5357 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5358 // expanding copies of large vectors from registers. 5359 if (N2C && 5360 N1.getOpcode() == ISD::CONCAT_VECTORS && 5361 N1.getNumOperands() > 0) { 5362 unsigned Factor = 5363 N1.getOperand(0).getValueType().getVectorNumElements(); 5364 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5365 N1.getOperand(N2C->getZExtValue() / Factor), 5366 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5367 } 5368 5369 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5370 // expanding large vector constants. 5371 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5372 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5373 5374 if (VT != Elt.getValueType()) 5375 // If the vector element type is not legal, the BUILD_VECTOR operands 5376 // are promoted and implicitly truncated, and the result implicitly 5377 // extended. Make that explicit here. 5378 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5379 5380 return Elt; 5381 } 5382 5383 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5384 // operations are lowered to scalars. 5385 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5386 // If the indices are the same, return the inserted element else 5387 // if the indices are known different, extract the element from 5388 // the original vector. 5389 SDValue N1Op2 = N1.getOperand(2); 5390 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5391 5392 if (N1Op2C && N2C) { 5393 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5394 if (VT == N1.getOperand(1).getValueType()) 5395 return N1.getOperand(1); 5396 else 5397 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5398 } 5399 5400 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5401 } 5402 } 5403 5404 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5405 // when vector types are scalarized and v1iX is legal. 5406 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5407 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5408 N1.getValueType().getVectorNumElements() == 1) { 5409 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5410 N1.getOperand(1)); 5411 } 5412 break; 5413 case ISD::EXTRACT_ELEMENT: 5414 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5415 assert(!N1.getValueType().isVector() && !VT.isVector() && 5416 (N1.getValueType().isInteger() == VT.isInteger()) && 5417 N1.getValueType() != VT && 5418 "Wrong types for EXTRACT_ELEMENT!"); 5419 5420 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5421 // 64-bit integers into 32-bit parts. Instead of building the extract of 5422 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5423 if (N1.getOpcode() == ISD::BUILD_PAIR) 5424 return N1.getOperand(N2C->getZExtValue()); 5425 5426 // EXTRACT_ELEMENT of a constant int is also very common. 5427 if (N1C) { 5428 unsigned ElementSize = VT.getSizeInBits(); 5429 unsigned Shift = ElementSize * N2C->getZExtValue(); 5430 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5431 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5432 } 5433 break; 5434 case ISD::EXTRACT_SUBVECTOR: 5435 if (VT.isSimple() && N1.getValueType().isSimple()) { 5436 assert(VT.isVector() && N1.getValueType().isVector() && 5437 "Extract subvector VTs must be a vectors!"); 5438 assert(VT.getVectorElementType() == 5439 N1.getValueType().getVectorElementType() && 5440 "Extract subvector VTs must have the same element type!"); 5441 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5442 "Extract subvector must be from larger vector to smaller vector!"); 5443 5444 if (N2C) { 5445 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5446 <= N1.getValueType().getVectorNumElements()) 5447 && "Extract subvector overflow!"); 5448 } 5449 5450 // Trivial extraction. 5451 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5452 return N1; 5453 5454 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5455 if (N1.isUndef()) 5456 return getUNDEF(VT); 5457 5458 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5459 // the concat have the same type as the extract. 5460 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5461 N1.getNumOperands() > 0 && 5462 VT == N1.getOperand(0).getValueType()) { 5463 unsigned Factor = VT.getVectorNumElements(); 5464 return N1.getOperand(N2C->getZExtValue() / Factor); 5465 } 5466 5467 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5468 // during shuffle legalization. 5469 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5470 VT == N1.getOperand(1).getValueType()) 5471 return N1.getOperand(1); 5472 } 5473 break; 5474 } 5475 5476 // Perform trivial constant folding. 5477 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5478 return SV; 5479 5480 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5481 return V; 5482 5483 // Canonicalize an UNDEF to the RHS, even over a constant. 5484 if (N1.isUndef()) { 5485 if (TLI->isCommutativeBinOp(Opcode)) { 5486 std::swap(N1, N2); 5487 } else { 5488 switch (Opcode) { 5489 case ISD::SIGN_EXTEND_INREG: 5490 case ISD::SUB: 5491 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5492 case ISD::UDIV: 5493 case ISD::SDIV: 5494 case ISD::UREM: 5495 case ISD::SREM: 5496 case ISD::SSUBSAT: 5497 case ISD::USUBSAT: 5498 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5499 } 5500 } 5501 } 5502 5503 // Fold a bunch of operators when the RHS is undef. 5504 if (N2.isUndef()) { 5505 switch (Opcode) { 5506 case ISD::XOR: 5507 if (N1.isUndef()) 5508 // Handle undef ^ undef -> 0 special case. This is a common 5509 // idiom (misuse). 5510 return getConstant(0, DL, VT); 5511 LLVM_FALLTHROUGH; 5512 case ISD::ADD: 5513 case ISD::SUB: 5514 case ISD::UDIV: 5515 case ISD::SDIV: 5516 case ISD::UREM: 5517 case ISD::SREM: 5518 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5519 case ISD::MUL: 5520 case ISD::AND: 5521 case ISD::SSUBSAT: 5522 case ISD::USUBSAT: 5523 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5524 case ISD::OR: 5525 case ISD::SADDSAT: 5526 case ISD::UADDSAT: 5527 return getAllOnesConstant(DL, VT); 5528 } 5529 } 5530 5531 // Memoize this node if possible. 5532 SDNode *N; 5533 SDVTList VTs = getVTList(VT); 5534 SDValue Ops[] = {N1, N2}; 5535 if (VT != MVT::Glue) { 5536 FoldingSetNodeID ID; 5537 AddNodeIDNode(ID, Opcode, VTs, Ops); 5538 void *IP = nullptr; 5539 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5540 E->intersectFlagsWith(Flags); 5541 return SDValue(E, 0); 5542 } 5543 5544 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5545 N->setFlags(Flags); 5546 createOperands(N, Ops); 5547 CSEMap.InsertNode(N, IP); 5548 } else { 5549 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5550 createOperands(N, Ops); 5551 } 5552 5553 InsertNode(N); 5554 SDValue V = SDValue(N, 0); 5555 NewSDValueDbgMsg(V, "Creating new node: ", this); 5556 return V; 5557 } 5558 5559 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5560 SDValue N1, SDValue N2, SDValue N3, 5561 const SDNodeFlags Flags) { 5562 // Perform various simplifications. 5563 switch (Opcode) { 5564 case ISD::FMA: { 5565 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5566 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5567 N3.getValueType() == VT && "FMA types must match!"); 5568 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5569 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5570 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5571 if (N1CFP && N2CFP && N3CFP) { 5572 APFloat V1 = N1CFP->getValueAPF(); 5573 const APFloat &V2 = N2CFP->getValueAPF(); 5574 const APFloat &V3 = N3CFP->getValueAPF(); 5575 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5576 return getConstantFP(V1, DL, VT); 5577 } 5578 break; 5579 } 5580 case ISD::BUILD_VECTOR: { 5581 // Attempt to simplify BUILD_VECTOR. 5582 SDValue Ops[] = {N1, N2, N3}; 5583 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5584 return V; 5585 break; 5586 } 5587 case ISD::CONCAT_VECTORS: { 5588 SDValue Ops[] = {N1, N2, N3}; 5589 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5590 return V; 5591 break; 5592 } 5593 case ISD::SETCC: { 5594 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5595 assert(N1.getValueType() == N2.getValueType() && 5596 "SETCC operands must have the same type!"); 5597 assert(VT.isVector() == N1.getValueType().isVector() && 5598 "SETCC type should be vector iff the operand type is vector!"); 5599 assert((!VT.isVector() || 5600 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5601 "SETCC vector element counts must match!"); 5602 // Use FoldSetCC to simplify SETCC's. 5603 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5604 return V; 5605 // Vector constant folding. 5606 SDValue Ops[] = {N1, N2, N3}; 5607 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5608 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5609 return V; 5610 } 5611 break; 5612 } 5613 case ISD::SELECT: 5614 case ISD::VSELECT: 5615 if (SDValue V = simplifySelect(N1, N2, N3)) 5616 return V; 5617 break; 5618 case ISD::VECTOR_SHUFFLE: 5619 llvm_unreachable("should use getVectorShuffle constructor!"); 5620 case ISD::INSERT_VECTOR_ELT: { 5621 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5622 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5623 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5624 return getUNDEF(VT); 5625 5626 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5627 if (N3.isUndef()) 5628 return getUNDEF(VT); 5629 5630 // If the inserted element is an UNDEF, just use the input vector. 5631 if (N2.isUndef()) 5632 return N1; 5633 5634 break; 5635 } 5636 case ISD::INSERT_SUBVECTOR: { 5637 // Inserting undef into undef is still undef. 5638 if (N1.isUndef() && N2.isUndef()) 5639 return getUNDEF(VT); 5640 SDValue Index = N3; 5641 if (VT.isSimple() && N1.getValueType().isSimple() 5642 && N2.getValueType().isSimple()) { 5643 assert(VT.isVector() && N1.getValueType().isVector() && 5644 N2.getValueType().isVector() && 5645 "Insert subvector VTs must be a vectors"); 5646 assert(VT == N1.getValueType() && 5647 "Dest and insert subvector source types must match!"); 5648 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5649 "Insert subvector must be from smaller vector to larger vector!"); 5650 if (isa<ConstantSDNode>(Index)) { 5651 assert((N2.getValueType().getVectorNumElements() + 5652 cast<ConstantSDNode>(Index)->getZExtValue() 5653 <= VT.getVectorNumElements()) 5654 && "Insert subvector overflow!"); 5655 } 5656 5657 // Trivial insertion. 5658 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5659 return N2; 5660 5661 // If this is an insert of an extracted vector into an undef vector, we 5662 // can just use the input to the extract. 5663 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5664 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5665 return N2.getOperand(0); 5666 } 5667 break; 5668 } 5669 case ISD::BITCAST: 5670 // Fold bit_convert nodes from a type to themselves. 5671 if (N1.getValueType() == VT) 5672 return N1; 5673 break; 5674 } 5675 5676 // Memoize node if it doesn't produce a flag. 5677 SDNode *N; 5678 SDVTList VTs = getVTList(VT); 5679 SDValue Ops[] = {N1, N2, N3}; 5680 if (VT != MVT::Glue) { 5681 FoldingSetNodeID ID; 5682 AddNodeIDNode(ID, Opcode, VTs, Ops); 5683 void *IP = nullptr; 5684 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5685 E->intersectFlagsWith(Flags); 5686 return SDValue(E, 0); 5687 } 5688 5689 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5690 N->setFlags(Flags); 5691 createOperands(N, Ops); 5692 CSEMap.InsertNode(N, IP); 5693 } else { 5694 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5695 createOperands(N, Ops); 5696 } 5697 5698 InsertNode(N); 5699 SDValue V = SDValue(N, 0); 5700 NewSDValueDbgMsg(V, "Creating new node: ", this); 5701 return V; 5702 } 5703 5704 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5705 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5706 SDValue Ops[] = { N1, N2, N3, N4 }; 5707 return getNode(Opcode, DL, VT, Ops); 5708 } 5709 5710 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5711 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5712 SDValue N5) { 5713 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5714 return getNode(Opcode, DL, VT, Ops); 5715 } 5716 5717 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5718 /// the incoming stack arguments to be loaded from the stack. 5719 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5720 SmallVector<SDValue, 8> ArgChains; 5721 5722 // Include the original chain at the beginning of the list. When this is 5723 // used by target LowerCall hooks, this helps legalize find the 5724 // CALLSEQ_BEGIN node. 5725 ArgChains.push_back(Chain); 5726 5727 // Add a chain value for each stack argument. 5728 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5729 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5730 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5731 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5732 if (FI->getIndex() < 0) 5733 ArgChains.push_back(SDValue(L, 1)); 5734 5735 // Build a tokenfactor for all the chains. 5736 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5737 } 5738 5739 /// getMemsetValue - Vectorized representation of the memset value 5740 /// operand. 5741 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5742 const SDLoc &dl) { 5743 assert(!Value.isUndef()); 5744 5745 unsigned NumBits = VT.getScalarSizeInBits(); 5746 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5747 assert(C->getAPIntValue().getBitWidth() == 8); 5748 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5749 if (VT.isInteger()) { 5750 bool IsOpaque = VT.getSizeInBits() > 64 || 5751 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5752 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5753 } 5754 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5755 VT); 5756 } 5757 5758 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5759 EVT IntVT = VT.getScalarType(); 5760 if (!IntVT.isInteger()) 5761 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5762 5763 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5764 if (NumBits > 8) { 5765 // Use a multiplication with 0x010101... to extend the input to the 5766 // required length. 5767 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5768 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5769 DAG.getConstant(Magic, dl, IntVT)); 5770 } 5771 5772 if (VT != Value.getValueType() && !VT.isInteger()) 5773 Value = DAG.getBitcast(VT.getScalarType(), Value); 5774 if (VT != Value.getValueType()) 5775 Value = DAG.getSplatBuildVector(VT, dl, Value); 5776 5777 return Value; 5778 } 5779 5780 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5781 /// used when a memcpy is turned into a memset when the source is a constant 5782 /// string ptr. 5783 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5784 const TargetLowering &TLI, 5785 const ConstantDataArraySlice &Slice) { 5786 // Handle vector with all elements zero. 5787 if (Slice.Array == nullptr) { 5788 if (VT.isInteger()) 5789 return DAG.getConstant(0, dl, VT); 5790 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5791 return DAG.getConstantFP(0.0, dl, VT); 5792 else if (VT.isVector()) { 5793 unsigned NumElts = VT.getVectorNumElements(); 5794 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5795 return DAG.getNode(ISD::BITCAST, dl, VT, 5796 DAG.getConstant(0, dl, 5797 EVT::getVectorVT(*DAG.getContext(), 5798 EltVT, NumElts))); 5799 } else 5800 llvm_unreachable("Expected type!"); 5801 } 5802 5803 assert(!VT.isVector() && "Can't handle vector type here!"); 5804 unsigned NumVTBits = VT.getSizeInBits(); 5805 unsigned NumVTBytes = NumVTBits / 8; 5806 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5807 5808 APInt Val(NumVTBits, 0); 5809 if (DAG.getDataLayout().isLittleEndian()) { 5810 for (unsigned i = 0; i != NumBytes; ++i) 5811 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5812 } else { 5813 for (unsigned i = 0; i != NumBytes; ++i) 5814 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5815 } 5816 5817 // If the "cost" of materializing the integer immediate is less than the cost 5818 // of a load, then it is cost effective to turn the load into the immediate. 5819 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5820 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5821 return DAG.getConstant(Val, dl, VT); 5822 return SDValue(nullptr, 0); 5823 } 5824 5825 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5826 const SDLoc &DL, 5827 const SDNodeFlags Flags) { 5828 EVT VT = Base.getValueType(); 5829 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5830 } 5831 5832 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5833 const SDLoc &DL, 5834 const SDNodeFlags Flags) { 5835 assert(Offset.getValueType().isInteger()); 5836 EVT BasePtrVT = Ptr.getValueType(); 5837 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5838 } 5839 5840 /// Returns true if memcpy source is constant data. 5841 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5842 uint64_t SrcDelta = 0; 5843 GlobalAddressSDNode *G = nullptr; 5844 if (Src.getOpcode() == ISD::GlobalAddress) 5845 G = cast<GlobalAddressSDNode>(Src); 5846 else if (Src.getOpcode() == ISD::ADD && 5847 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5848 Src.getOperand(1).getOpcode() == ISD::Constant) { 5849 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5850 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5851 } 5852 if (!G) 5853 return false; 5854 5855 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5856 SrcDelta + G->getOffset()); 5857 } 5858 5859 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5860 SelectionDAG &DAG) { 5861 // On Darwin, -Os means optimize for size without hurting performance, so 5862 // only really optimize for size when -Oz (MinSize) is used. 5863 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5864 return MF.getFunction().hasMinSize(); 5865 return DAG.shouldOptForSize(); 5866 } 5867 5868 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5869 SmallVector<SDValue, 32> &OutChains, unsigned From, 5870 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5871 SmallVector<SDValue, 16> &OutStoreChains) { 5872 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5873 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5874 SmallVector<SDValue, 16> GluedLoadChains; 5875 for (unsigned i = From; i < To; ++i) { 5876 OutChains.push_back(OutLoadChains[i]); 5877 GluedLoadChains.push_back(OutLoadChains[i]); 5878 } 5879 5880 // Chain for all loads. 5881 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5882 GluedLoadChains); 5883 5884 for (unsigned i = From; i < To; ++i) { 5885 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5886 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5887 ST->getBasePtr(), ST->getMemoryVT(), 5888 ST->getMemOperand()); 5889 OutChains.push_back(NewStore); 5890 } 5891 } 5892 5893 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5894 SDValue Chain, SDValue Dst, SDValue Src, 5895 uint64_t Size, Align Alignment, 5896 bool isVol, bool AlwaysInline, 5897 MachinePointerInfo DstPtrInfo, 5898 MachinePointerInfo SrcPtrInfo) { 5899 // Turn a memcpy of undef to nop. 5900 // FIXME: We need to honor volatile even is Src is undef. 5901 if (Src.isUndef()) 5902 return Chain; 5903 5904 // Expand memcpy to a series of load and store ops if the size operand falls 5905 // below a certain threshold. 5906 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5907 // rather than maybe a humongous number of loads and stores. 5908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5909 const DataLayout &DL = DAG.getDataLayout(); 5910 LLVMContext &C = *DAG.getContext(); 5911 std::vector<EVT> MemOps; 5912 bool DstAlignCanChange = false; 5913 MachineFunction &MF = DAG.getMachineFunction(); 5914 MachineFrameInfo &MFI = MF.getFrameInfo(); 5915 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5916 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5917 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5918 DstAlignCanChange = true; 5919 MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src)); 5920 if (!SrcAlign || Alignment > *SrcAlign) 5921 SrcAlign = Alignment; 5922 assert(SrcAlign && "SrcAlign must be set"); 5923 ConstantDataArraySlice Slice; 5924 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5925 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5926 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5927 const MemOp Op = isZeroConstant 5928 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 5929 /*IsZeroMemset*/ true, isVol) 5930 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 5931 *SrcAlign, isVol, CopyFromConstant); 5932 if (!TLI.findOptimalMemOpLowering( 5933 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 5934 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5935 return SDValue(); 5936 5937 if (DstAlignCanChange) { 5938 Type *Ty = MemOps[0].getTypeForEVT(C); 5939 Align NewAlign = DL.getABITypeAlign(Ty); 5940 5941 // Don't promote to an alignment that would require dynamic stack 5942 // realignment. 5943 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5944 if (!TRI->needsStackRealignment(MF)) 5945 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 5946 NewAlign = NewAlign / 2; 5947 5948 if (NewAlign > Alignment) { 5949 // Give the stack frame object a larger alignment if needed. 5950 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 5951 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5952 Alignment = NewAlign; 5953 } 5954 } 5955 5956 MachineMemOperand::Flags MMOFlags = 5957 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5958 SmallVector<SDValue, 16> OutLoadChains; 5959 SmallVector<SDValue, 16> OutStoreChains; 5960 SmallVector<SDValue, 32> OutChains; 5961 unsigned NumMemOps = MemOps.size(); 5962 uint64_t SrcOff = 0, DstOff = 0; 5963 for (unsigned i = 0; i != NumMemOps; ++i) { 5964 EVT VT = MemOps[i]; 5965 unsigned VTSize = VT.getSizeInBits() / 8; 5966 SDValue Value, Store; 5967 5968 if (VTSize > Size) { 5969 // Issuing an unaligned load / store pair that overlaps with the previous 5970 // pair. Adjust the offset accordingly. 5971 assert(i == NumMemOps-1 && i != 0); 5972 SrcOff -= VTSize - Size; 5973 DstOff -= VTSize - Size; 5974 } 5975 5976 if (CopyFromConstant && 5977 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5978 // It's unlikely a store of a vector immediate can be done in a single 5979 // instruction. It would require a load from a constantpool first. 5980 // We only handle zero vectors here. 5981 // FIXME: Handle other cases where store of vector immediate is done in 5982 // a single instruction. 5983 ConstantDataArraySlice SubSlice; 5984 if (SrcOff < Slice.Length) { 5985 SubSlice = Slice; 5986 SubSlice.move(SrcOff); 5987 } else { 5988 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5989 SubSlice.Array = nullptr; 5990 SubSlice.Offset = 0; 5991 SubSlice.Length = VTSize; 5992 } 5993 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5994 if (Value.getNode()) { 5995 Store = DAG.getStore( 5996 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5997 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 5998 OutChains.push_back(Store); 5999 } 6000 } 6001 6002 if (!Store.getNode()) { 6003 // The type might not be legal for the target. This should only happen 6004 // if the type is smaller than a legal type, as on PPC, so the right 6005 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6006 // to Load/Store if NVT==VT. 6007 // FIXME does the case above also need this? 6008 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6009 assert(NVT.bitsGE(VT)); 6010 6011 bool isDereferenceable = 6012 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6013 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6014 if (isDereferenceable) 6015 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6016 6017 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 6018 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6019 SrcPtrInfo.getWithOffset(SrcOff), VT, 6020 commonAlignment(*SrcAlign, SrcOff).value(), 6021 SrcMMOFlags); 6022 OutLoadChains.push_back(Value.getValue(1)); 6023 6024 Store = DAG.getTruncStore( 6025 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6026 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); 6027 OutStoreChains.push_back(Store); 6028 } 6029 SrcOff += VTSize; 6030 DstOff += VTSize; 6031 Size -= VTSize; 6032 } 6033 6034 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6035 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6036 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6037 6038 if (NumLdStInMemcpy) { 6039 // It may be that memcpy might be converted to memset if it's memcpy 6040 // of constants. In such a case, we won't have loads and stores, but 6041 // just stores. In the absence of loads, there is nothing to gang up. 6042 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6043 // If target does not care, just leave as it. 6044 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6045 OutChains.push_back(OutLoadChains[i]); 6046 OutChains.push_back(OutStoreChains[i]); 6047 } 6048 } else { 6049 // Ld/St less than/equal limit set by target. 6050 if (NumLdStInMemcpy <= GluedLdStLimit) { 6051 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6052 NumLdStInMemcpy, OutLoadChains, 6053 OutStoreChains); 6054 } else { 6055 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6056 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6057 unsigned GlueIter = 0; 6058 6059 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6060 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6061 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6062 6063 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6064 OutLoadChains, OutStoreChains); 6065 GlueIter += GluedLdStLimit; 6066 } 6067 6068 // Residual ld/st. 6069 if (RemainingLdStInMemcpy) { 6070 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6071 RemainingLdStInMemcpy, OutLoadChains, 6072 OutStoreChains); 6073 } 6074 } 6075 } 6076 } 6077 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6078 } 6079 6080 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6081 SDValue Chain, SDValue Dst, SDValue Src, 6082 uint64_t Size, Align Alignment, 6083 bool isVol, bool AlwaysInline, 6084 MachinePointerInfo DstPtrInfo, 6085 MachinePointerInfo SrcPtrInfo) { 6086 // Turn a memmove of undef to nop. 6087 // FIXME: We need to honor volatile even is Src is undef. 6088 if (Src.isUndef()) 6089 return Chain; 6090 6091 // Expand memmove to a series of load and store ops if the size operand falls 6092 // below a certain threshold. 6093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6094 const DataLayout &DL = DAG.getDataLayout(); 6095 LLVMContext &C = *DAG.getContext(); 6096 std::vector<EVT> MemOps; 6097 bool DstAlignCanChange = false; 6098 MachineFunction &MF = DAG.getMachineFunction(); 6099 MachineFrameInfo &MFI = MF.getFrameInfo(); 6100 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6101 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6102 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6103 DstAlignCanChange = true; 6104 MaybeAlign SrcAlign(DAG.InferPtrAlignment(Src)); 6105 if (!SrcAlign || Alignment > *SrcAlign) 6106 SrcAlign = Alignment; 6107 assert(SrcAlign && "SrcAlign must be set"); 6108 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6109 if (!TLI.findOptimalMemOpLowering( 6110 MemOps, Limit, 6111 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6112 /*IsVolatile*/ true), 6113 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6114 MF.getFunction().getAttributes())) 6115 return SDValue(); 6116 6117 if (DstAlignCanChange) { 6118 Type *Ty = MemOps[0].getTypeForEVT(C); 6119 Align NewAlign = DL.getABITypeAlign(Ty); 6120 if (NewAlign > Alignment) { 6121 // Give the stack frame object a larger alignment if needed. 6122 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6123 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6124 Alignment = NewAlign; 6125 } 6126 } 6127 6128 MachineMemOperand::Flags MMOFlags = 6129 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6130 uint64_t SrcOff = 0, DstOff = 0; 6131 SmallVector<SDValue, 8> LoadValues; 6132 SmallVector<SDValue, 8> LoadChains; 6133 SmallVector<SDValue, 8> OutChains; 6134 unsigned NumMemOps = MemOps.size(); 6135 for (unsigned i = 0; i < NumMemOps; i++) { 6136 EVT VT = MemOps[i]; 6137 unsigned VTSize = VT.getSizeInBits() / 8; 6138 SDValue Value; 6139 6140 bool isDereferenceable = 6141 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6142 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6143 if (isDereferenceable) 6144 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6145 6146 Value = DAG.getLoad( 6147 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6148 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); 6149 LoadValues.push_back(Value); 6150 LoadChains.push_back(Value.getValue(1)); 6151 SrcOff += VTSize; 6152 } 6153 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6154 OutChains.clear(); 6155 for (unsigned i = 0; i < NumMemOps; i++) { 6156 EVT VT = MemOps[i]; 6157 unsigned VTSize = VT.getSizeInBits() / 8; 6158 SDValue Store; 6159 6160 Store = DAG.getStore( 6161 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6162 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); 6163 OutChains.push_back(Store); 6164 DstOff += VTSize; 6165 } 6166 6167 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6168 } 6169 6170 /// Lower the call to 'memset' intrinsic function into a series of store 6171 /// operations. 6172 /// 6173 /// \param DAG Selection DAG where lowered code is placed. 6174 /// \param dl Link to corresponding IR location. 6175 /// \param Chain Control flow dependency. 6176 /// \param Dst Pointer to destination memory location. 6177 /// \param Src Value of byte to write into the memory. 6178 /// \param Size Number of bytes to write. 6179 /// \param Alignment Alignment of the destination in bytes. 6180 /// \param isVol True if destination is volatile. 6181 /// \param DstPtrInfo IR information on the memory pointer. 6182 /// \returns New head in the control flow, if lowering was successful, empty 6183 /// SDValue otherwise. 6184 /// 6185 /// The function tries to replace 'llvm.memset' intrinsic with several store 6186 /// operations and value calculation code. This is usually profitable for small 6187 /// memory size. 6188 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6189 SDValue Chain, SDValue Dst, SDValue Src, 6190 uint64_t Size, Align Alignment, bool isVol, 6191 MachinePointerInfo DstPtrInfo) { 6192 // Turn a memset of undef to nop. 6193 // FIXME: We need to honor volatile even is Src is undef. 6194 if (Src.isUndef()) 6195 return Chain; 6196 6197 // Expand memset to a series of load/store ops if the size operand 6198 // falls below a certain threshold. 6199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6200 std::vector<EVT> MemOps; 6201 bool DstAlignCanChange = false; 6202 MachineFunction &MF = DAG.getMachineFunction(); 6203 MachineFrameInfo &MFI = MF.getFrameInfo(); 6204 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6205 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6206 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6207 DstAlignCanChange = true; 6208 bool IsZeroVal = 6209 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6210 if (!TLI.findOptimalMemOpLowering( 6211 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6212 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6213 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6214 return SDValue(); 6215 6216 if (DstAlignCanChange) { 6217 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6218 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6219 if (NewAlign > Alignment) { 6220 // Give the stack frame object a larger alignment if needed. 6221 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6222 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6223 Alignment = NewAlign; 6224 } 6225 } 6226 6227 SmallVector<SDValue, 8> OutChains; 6228 uint64_t DstOff = 0; 6229 unsigned NumMemOps = MemOps.size(); 6230 6231 // Find the largest store and generate the bit pattern for it. 6232 EVT LargestVT = MemOps[0]; 6233 for (unsigned i = 1; i < NumMemOps; i++) 6234 if (MemOps[i].bitsGT(LargestVT)) 6235 LargestVT = MemOps[i]; 6236 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6237 6238 for (unsigned i = 0; i < NumMemOps; i++) { 6239 EVT VT = MemOps[i]; 6240 unsigned VTSize = VT.getSizeInBits() / 8; 6241 if (VTSize > Size) { 6242 // Issuing an unaligned load / store pair that overlaps with the previous 6243 // pair. Adjust the offset accordingly. 6244 assert(i == NumMemOps-1 && i != 0); 6245 DstOff -= VTSize - Size; 6246 } 6247 6248 // If this store is smaller than the largest store see whether we can get 6249 // the smaller value for free with a truncate. 6250 SDValue Value = MemSetValue; 6251 if (VT.bitsLT(LargestVT)) { 6252 if (!LargestVT.isVector() && !VT.isVector() && 6253 TLI.isTruncateFree(LargestVT, VT)) 6254 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6255 else 6256 Value = getMemsetValue(Src, VT, DAG, dl); 6257 } 6258 assert(Value.getValueType() == VT && "Value with wrong type."); 6259 SDValue Store = DAG.getStore( 6260 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6261 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), 6262 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6263 OutChains.push_back(Store); 6264 DstOff += VT.getSizeInBits() / 8; 6265 Size -= VTSize; 6266 } 6267 6268 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6269 } 6270 6271 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6272 unsigned AS) { 6273 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6274 // pointer operands can be losslessly bitcasted to pointers of address space 0 6275 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6276 report_fatal_error("cannot lower memory intrinsic in address space " + 6277 Twine(AS)); 6278 } 6279 } 6280 6281 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6282 SDValue Src, SDValue Size, Align Alignment, 6283 bool isVol, bool AlwaysInline, bool isTailCall, 6284 MachinePointerInfo DstPtrInfo, 6285 MachinePointerInfo SrcPtrInfo) { 6286 // Check to see if we should lower the memcpy to loads and stores first. 6287 // For cases within the target-specified limits, this is the best choice. 6288 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6289 if (ConstantSize) { 6290 // Memcpy with size zero? Just return the original chain. 6291 if (ConstantSize->isNullValue()) 6292 return Chain; 6293 6294 SDValue Result = getMemcpyLoadsAndStores( 6295 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6296 isVol, false, DstPtrInfo, SrcPtrInfo); 6297 if (Result.getNode()) 6298 return Result; 6299 } 6300 6301 // Then check to see if we should lower the memcpy with target-specific 6302 // code. If the target chooses to do this, this is the next best. 6303 if (TSI) { 6304 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6305 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, 6306 AlwaysInline, DstPtrInfo, SrcPtrInfo); 6307 if (Result.getNode()) 6308 return Result; 6309 } 6310 6311 // If we really need inline code and the target declined to provide it, 6312 // use a (potentially long) sequence of loads and stores. 6313 if (AlwaysInline) { 6314 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6315 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6316 ConstantSize->getZExtValue(), Alignment, 6317 isVol, true, DstPtrInfo, SrcPtrInfo); 6318 } 6319 6320 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6321 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6322 6323 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6324 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6325 // respect volatile, so they may do things like read or write memory 6326 // beyond the given memory regions. But fixing this isn't easy, and most 6327 // people don't care. 6328 6329 // Emit a library call. 6330 TargetLowering::ArgListTy Args; 6331 TargetLowering::ArgListEntry Entry; 6332 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6333 Entry.Node = Dst; Args.push_back(Entry); 6334 Entry.Node = Src; Args.push_back(Entry); 6335 6336 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6337 Entry.Node = Size; Args.push_back(Entry); 6338 // FIXME: pass in SDLoc 6339 TargetLowering::CallLoweringInfo CLI(*this); 6340 CLI.setDebugLoc(dl) 6341 .setChain(Chain) 6342 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6343 Dst.getValueType().getTypeForEVT(*getContext()), 6344 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6345 TLI->getPointerTy(getDataLayout())), 6346 std::move(Args)) 6347 .setDiscardResult() 6348 .setTailCall(isTailCall); 6349 6350 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6351 return CallResult.second; 6352 } 6353 6354 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6355 SDValue Dst, unsigned DstAlign, 6356 SDValue Src, unsigned SrcAlign, 6357 SDValue Size, Type *SizeTy, 6358 unsigned ElemSz, bool isTailCall, 6359 MachinePointerInfo DstPtrInfo, 6360 MachinePointerInfo SrcPtrInfo) { 6361 // Emit a library call. 6362 TargetLowering::ArgListTy Args; 6363 TargetLowering::ArgListEntry Entry; 6364 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6365 Entry.Node = Dst; 6366 Args.push_back(Entry); 6367 6368 Entry.Node = Src; 6369 Args.push_back(Entry); 6370 6371 Entry.Ty = SizeTy; 6372 Entry.Node = Size; 6373 Args.push_back(Entry); 6374 6375 RTLIB::Libcall LibraryCall = 6376 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6377 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6378 report_fatal_error("Unsupported element size"); 6379 6380 TargetLowering::CallLoweringInfo CLI(*this); 6381 CLI.setDebugLoc(dl) 6382 .setChain(Chain) 6383 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6384 Type::getVoidTy(*getContext()), 6385 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6386 TLI->getPointerTy(getDataLayout())), 6387 std::move(Args)) 6388 .setDiscardResult() 6389 .setTailCall(isTailCall); 6390 6391 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6392 return CallResult.second; 6393 } 6394 6395 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6396 SDValue Src, SDValue Size, Align Alignment, 6397 bool isVol, bool isTailCall, 6398 MachinePointerInfo DstPtrInfo, 6399 MachinePointerInfo SrcPtrInfo) { 6400 // Check to see if we should lower the memmove to loads and stores first. 6401 // For cases within the target-specified limits, this is the best choice. 6402 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6403 if (ConstantSize) { 6404 // Memmove with size zero? Just return the original chain. 6405 if (ConstantSize->isNullValue()) 6406 return Chain; 6407 6408 SDValue Result = getMemmoveLoadsAndStores( 6409 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6410 isVol, false, DstPtrInfo, SrcPtrInfo); 6411 if (Result.getNode()) 6412 return Result; 6413 } 6414 6415 // Then check to see if we should lower the memmove with target-specific 6416 // code. If the target chooses to do this, this is the next best. 6417 if (TSI) { 6418 SDValue Result = TSI->EmitTargetCodeForMemmove( 6419 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo, 6420 SrcPtrInfo); 6421 if (Result.getNode()) 6422 return Result; 6423 } 6424 6425 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6426 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6427 6428 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6429 // not be safe. See memcpy above for more details. 6430 6431 // Emit a library call. 6432 TargetLowering::ArgListTy Args; 6433 TargetLowering::ArgListEntry Entry; 6434 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6435 Entry.Node = Dst; Args.push_back(Entry); 6436 Entry.Node = Src; Args.push_back(Entry); 6437 6438 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6439 Entry.Node = Size; Args.push_back(Entry); 6440 // FIXME: pass in SDLoc 6441 TargetLowering::CallLoweringInfo CLI(*this); 6442 CLI.setDebugLoc(dl) 6443 .setChain(Chain) 6444 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6445 Dst.getValueType().getTypeForEVT(*getContext()), 6446 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6447 TLI->getPointerTy(getDataLayout())), 6448 std::move(Args)) 6449 .setDiscardResult() 6450 .setTailCall(isTailCall); 6451 6452 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6453 return CallResult.second; 6454 } 6455 6456 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6457 SDValue Dst, unsigned DstAlign, 6458 SDValue Src, unsigned SrcAlign, 6459 SDValue Size, Type *SizeTy, 6460 unsigned ElemSz, bool isTailCall, 6461 MachinePointerInfo DstPtrInfo, 6462 MachinePointerInfo SrcPtrInfo) { 6463 // Emit a library call. 6464 TargetLowering::ArgListTy Args; 6465 TargetLowering::ArgListEntry Entry; 6466 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6467 Entry.Node = Dst; 6468 Args.push_back(Entry); 6469 6470 Entry.Node = Src; 6471 Args.push_back(Entry); 6472 6473 Entry.Ty = SizeTy; 6474 Entry.Node = Size; 6475 Args.push_back(Entry); 6476 6477 RTLIB::Libcall LibraryCall = 6478 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6479 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6480 report_fatal_error("Unsupported element size"); 6481 6482 TargetLowering::CallLoweringInfo CLI(*this); 6483 CLI.setDebugLoc(dl) 6484 .setChain(Chain) 6485 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6486 Type::getVoidTy(*getContext()), 6487 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6488 TLI->getPointerTy(getDataLayout())), 6489 std::move(Args)) 6490 .setDiscardResult() 6491 .setTailCall(isTailCall); 6492 6493 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6494 return CallResult.second; 6495 } 6496 6497 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6498 SDValue Src, SDValue Size, Align Alignment, 6499 bool isVol, bool isTailCall, 6500 MachinePointerInfo DstPtrInfo) { 6501 // Check to see if we should lower the memset to stores first. 6502 // For cases within the target-specified limits, this is the best choice. 6503 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6504 if (ConstantSize) { 6505 // Memset with size zero? Just return the original chain. 6506 if (ConstantSize->isNullValue()) 6507 return Chain; 6508 6509 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6510 ConstantSize->getZExtValue(), Alignment, 6511 isVol, DstPtrInfo); 6512 6513 if (Result.getNode()) 6514 return Result; 6515 } 6516 6517 // Then check to see if we should lower the memset with target-specific 6518 // code. If the target chooses to do this, this is the next best. 6519 if (TSI) { 6520 SDValue Result = TSI->EmitTargetCodeForMemset( 6521 *this, dl, Chain, Dst, Src, Size, Alignment.value(), isVol, DstPtrInfo); 6522 if (Result.getNode()) 6523 return Result; 6524 } 6525 6526 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6527 6528 // Emit a library call. 6529 TargetLowering::ArgListTy Args; 6530 TargetLowering::ArgListEntry Entry; 6531 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6532 Args.push_back(Entry); 6533 Entry.Node = Src; 6534 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6535 Args.push_back(Entry); 6536 Entry.Node = Size; 6537 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6538 Args.push_back(Entry); 6539 6540 // FIXME: pass in SDLoc 6541 TargetLowering::CallLoweringInfo CLI(*this); 6542 CLI.setDebugLoc(dl) 6543 .setChain(Chain) 6544 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6545 Dst.getValueType().getTypeForEVT(*getContext()), 6546 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6547 TLI->getPointerTy(getDataLayout())), 6548 std::move(Args)) 6549 .setDiscardResult() 6550 .setTailCall(isTailCall); 6551 6552 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6553 return CallResult.second; 6554 } 6555 6556 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6557 SDValue Dst, unsigned DstAlign, 6558 SDValue Value, SDValue Size, Type *SizeTy, 6559 unsigned ElemSz, bool isTailCall, 6560 MachinePointerInfo DstPtrInfo) { 6561 // Emit a library call. 6562 TargetLowering::ArgListTy Args; 6563 TargetLowering::ArgListEntry Entry; 6564 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6565 Entry.Node = Dst; 6566 Args.push_back(Entry); 6567 6568 Entry.Ty = Type::getInt8Ty(*getContext()); 6569 Entry.Node = Value; 6570 Args.push_back(Entry); 6571 6572 Entry.Ty = SizeTy; 6573 Entry.Node = Size; 6574 Args.push_back(Entry); 6575 6576 RTLIB::Libcall LibraryCall = 6577 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6578 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6579 report_fatal_error("Unsupported element size"); 6580 6581 TargetLowering::CallLoweringInfo CLI(*this); 6582 CLI.setDebugLoc(dl) 6583 .setChain(Chain) 6584 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6585 Type::getVoidTy(*getContext()), 6586 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6587 TLI->getPointerTy(getDataLayout())), 6588 std::move(Args)) 6589 .setDiscardResult() 6590 .setTailCall(isTailCall); 6591 6592 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6593 return CallResult.second; 6594 } 6595 6596 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6597 SDVTList VTList, ArrayRef<SDValue> Ops, 6598 MachineMemOperand *MMO) { 6599 FoldingSetNodeID ID; 6600 ID.AddInteger(MemVT.getRawBits()); 6601 AddNodeIDNode(ID, Opcode, VTList, Ops); 6602 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6603 void* IP = nullptr; 6604 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6605 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6606 return SDValue(E, 0); 6607 } 6608 6609 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6610 VTList, MemVT, MMO); 6611 createOperands(N, Ops); 6612 6613 CSEMap.InsertNode(N, IP); 6614 InsertNode(N); 6615 return SDValue(N, 0); 6616 } 6617 6618 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6619 EVT MemVT, SDVTList VTs, SDValue Chain, 6620 SDValue Ptr, SDValue Cmp, SDValue Swp, 6621 MachineMemOperand *MMO) { 6622 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6623 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6624 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6625 6626 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6627 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6628 } 6629 6630 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6631 SDValue Chain, SDValue Ptr, SDValue Val, 6632 MachineMemOperand *MMO) { 6633 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6634 Opcode == ISD::ATOMIC_LOAD_SUB || 6635 Opcode == ISD::ATOMIC_LOAD_AND || 6636 Opcode == ISD::ATOMIC_LOAD_CLR || 6637 Opcode == ISD::ATOMIC_LOAD_OR || 6638 Opcode == ISD::ATOMIC_LOAD_XOR || 6639 Opcode == ISD::ATOMIC_LOAD_NAND || 6640 Opcode == ISD::ATOMIC_LOAD_MIN || 6641 Opcode == ISD::ATOMIC_LOAD_MAX || 6642 Opcode == ISD::ATOMIC_LOAD_UMIN || 6643 Opcode == ISD::ATOMIC_LOAD_UMAX || 6644 Opcode == ISD::ATOMIC_LOAD_FADD || 6645 Opcode == ISD::ATOMIC_LOAD_FSUB || 6646 Opcode == ISD::ATOMIC_SWAP || 6647 Opcode == ISD::ATOMIC_STORE) && 6648 "Invalid Atomic Op"); 6649 6650 EVT VT = Val.getValueType(); 6651 6652 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6653 getVTList(VT, MVT::Other); 6654 SDValue Ops[] = {Chain, Ptr, Val}; 6655 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6656 } 6657 6658 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6659 EVT VT, SDValue Chain, SDValue Ptr, 6660 MachineMemOperand *MMO) { 6661 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6662 6663 SDVTList VTs = getVTList(VT, MVT::Other); 6664 SDValue Ops[] = {Chain, Ptr}; 6665 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6666 } 6667 6668 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6669 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6670 if (Ops.size() == 1) 6671 return Ops[0]; 6672 6673 SmallVector<EVT, 4> VTs; 6674 VTs.reserve(Ops.size()); 6675 for (unsigned i = 0; i < Ops.size(); ++i) 6676 VTs.push_back(Ops[i].getValueType()); 6677 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6678 } 6679 6680 SDValue SelectionDAG::getMemIntrinsicNode( 6681 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6682 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Alignment, 6683 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6684 if (!Size && MemVT.isScalableVector()) 6685 Size = MemoryLocation::UnknownSize; 6686 else if (!Size) 6687 Size = MemVT.getStoreSize(); 6688 6689 MachineFunction &MF = getMachineFunction(); 6690 MachineMemOperand *MMO = MF.getMachineMemOperand( 6691 PtrInfo, Flags, Size, Alignment ? Align(Alignment) : getEVTAlign(MemVT), 6692 AAInfo); 6693 6694 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6695 } 6696 6697 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6698 SDVTList VTList, 6699 ArrayRef<SDValue> Ops, EVT MemVT, 6700 MachineMemOperand *MMO) { 6701 assert((Opcode == ISD::INTRINSIC_VOID || 6702 Opcode == ISD::INTRINSIC_W_CHAIN || 6703 Opcode == ISD::PREFETCH || 6704 ((int)Opcode <= std::numeric_limits<int>::max() && 6705 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6706 "Opcode is not a memory-accessing opcode!"); 6707 6708 // Memoize the node unless it returns a flag. 6709 MemIntrinsicSDNode *N; 6710 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6711 FoldingSetNodeID ID; 6712 AddNodeIDNode(ID, Opcode, VTList, Ops); 6713 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6714 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6715 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6716 void *IP = nullptr; 6717 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6718 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6719 return SDValue(E, 0); 6720 } 6721 6722 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6723 VTList, MemVT, MMO); 6724 createOperands(N, Ops); 6725 6726 CSEMap.InsertNode(N, IP); 6727 } else { 6728 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6729 VTList, MemVT, MMO); 6730 createOperands(N, Ops); 6731 } 6732 InsertNode(N); 6733 SDValue V(N, 0); 6734 NewSDValueDbgMsg(V, "Creating new node: ", this); 6735 return V; 6736 } 6737 6738 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6739 SDValue Chain, int FrameIndex, 6740 int64_t Size, int64_t Offset) { 6741 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6742 const auto VTs = getVTList(MVT::Other); 6743 SDValue Ops[2] = { 6744 Chain, 6745 getFrameIndex(FrameIndex, 6746 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6747 true)}; 6748 6749 FoldingSetNodeID ID; 6750 AddNodeIDNode(ID, Opcode, VTs, Ops); 6751 ID.AddInteger(FrameIndex); 6752 ID.AddInteger(Size); 6753 ID.AddInteger(Offset); 6754 void *IP = nullptr; 6755 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6756 return SDValue(E, 0); 6757 6758 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6759 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6760 createOperands(N, Ops); 6761 CSEMap.InsertNode(N, IP); 6762 InsertNode(N); 6763 SDValue V(N, 0); 6764 NewSDValueDbgMsg(V, "Creating new node: ", this); 6765 return V; 6766 } 6767 6768 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6769 /// MachinePointerInfo record from it. This is particularly useful because the 6770 /// code generator has many cases where it doesn't bother passing in a 6771 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6772 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6773 SelectionDAG &DAG, SDValue Ptr, 6774 int64_t Offset = 0) { 6775 // If this is FI+Offset, we can model it. 6776 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6777 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6778 FI->getIndex(), Offset); 6779 6780 // If this is (FI+Offset1)+Offset2, we can model it. 6781 if (Ptr.getOpcode() != ISD::ADD || 6782 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6783 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6784 return Info; 6785 6786 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6787 return MachinePointerInfo::getFixedStack( 6788 DAG.getMachineFunction(), FI, 6789 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6790 } 6791 6792 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6793 /// MachinePointerInfo record from it. This is particularly useful because the 6794 /// code generator has many cases where it doesn't bother passing in a 6795 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6796 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6797 SelectionDAG &DAG, SDValue Ptr, 6798 SDValue OffsetOp) { 6799 // If the 'Offset' value isn't a constant, we can't handle this. 6800 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6801 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6802 if (OffsetOp.isUndef()) 6803 return InferPointerInfo(Info, DAG, Ptr); 6804 return Info; 6805 } 6806 6807 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6808 EVT VT, const SDLoc &dl, SDValue Chain, 6809 SDValue Ptr, SDValue Offset, 6810 MachinePointerInfo PtrInfo, EVT MemVT, 6811 Align Alignment, 6812 MachineMemOperand::Flags MMOFlags, 6813 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6814 assert(Chain.getValueType() == MVT::Other && 6815 "Invalid chain type"); 6816 6817 MMOFlags |= MachineMemOperand::MOLoad; 6818 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6819 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6820 // clients. 6821 if (PtrInfo.V.isNull()) 6822 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6823 6824 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 6825 MachineFunction &MF = getMachineFunction(); 6826 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 6827 Alignment, AAInfo, Ranges); 6828 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6829 } 6830 6831 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6832 EVT VT, const SDLoc &dl, SDValue Chain, 6833 SDValue Ptr, SDValue Offset, EVT MemVT, 6834 MachineMemOperand *MMO) { 6835 if (VT == MemVT) { 6836 ExtType = ISD::NON_EXTLOAD; 6837 } else if (ExtType == ISD::NON_EXTLOAD) { 6838 assert(VT == MemVT && "Non-extending load from different memory type!"); 6839 } else { 6840 // Extending load. 6841 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6842 "Should only be an extending load, not truncating!"); 6843 assert(VT.isInteger() == MemVT.isInteger() && 6844 "Cannot convert from FP to Int or Int -> FP!"); 6845 assert(VT.isVector() == MemVT.isVector() && 6846 "Cannot use an ext load to convert to or from a vector!"); 6847 assert((!VT.isVector() || 6848 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6849 "Cannot use an ext load to change the number of vector elements!"); 6850 } 6851 6852 bool Indexed = AM != ISD::UNINDEXED; 6853 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6854 6855 SDVTList VTs = Indexed ? 6856 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6857 SDValue Ops[] = { Chain, Ptr, Offset }; 6858 FoldingSetNodeID ID; 6859 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6860 ID.AddInteger(MemVT.getRawBits()); 6861 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6862 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6863 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6864 void *IP = nullptr; 6865 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6866 cast<LoadSDNode>(E)->refineAlignment(MMO); 6867 return SDValue(E, 0); 6868 } 6869 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6870 ExtType, MemVT, MMO); 6871 createOperands(N, Ops); 6872 6873 CSEMap.InsertNode(N, IP); 6874 InsertNode(N); 6875 SDValue V(N, 0); 6876 NewSDValueDbgMsg(V, "Creating new node: ", this); 6877 return V; 6878 } 6879 6880 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6881 SDValue Ptr, MachinePointerInfo PtrInfo, 6882 MaybeAlign Alignment, 6883 MachineMemOperand::Flags MMOFlags, 6884 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6885 SDValue Undef = getUNDEF(Ptr.getValueType()); 6886 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6887 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6888 } 6889 6890 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6891 SDValue Ptr, MachineMemOperand *MMO) { 6892 SDValue Undef = getUNDEF(Ptr.getValueType()); 6893 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6894 VT, MMO); 6895 } 6896 6897 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6898 EVT VT, SDValue Chain, SDValue Ptr, 6899 MachinePointerInfo PtrInfo, EVT MemVT, 6900 MaybeAlign Alignment, 6901 MachineMemOperand::Flags MMOFlags, 6902 const AAMDNodes &AAInfo) { 6903 SDValue Undef = getUNDEF(Ptr.getValueType()); 6904 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6905 MemVT, Alignment, MMOFlags, AAInfo); 6906 } 6907 6908 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6909 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6910 MachineMemOperand *MMO) { 6911 SDValue Undef = getUNDEF(Ptr.getValueType()); 6912 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6913 MemVT, MMO); 6914 } 6915 6916 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6917 SDValue Base, SDValue Offset, 6918 ISD::MemIndexedMode AM) { 6919 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6920 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6921 // Don't propagate the invariant or dereferenceable flags. 6922 auto MMOFlags = 6923 LD->getMemOperand()->getFlags() & 6924 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6925 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6926 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6927 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6928 LD->getAAInfo()); 6929 } 6930 6931 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6932 SDValue Ptr, MachinePointerInfo PtrInfo, 6933 Align Alignment, 6934 MachineMemOperand::Flags MMOFlags, 6935 const AAMDNodes &AAInfo) { 6936 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6937 6938 MMOFlags |= MachineMemOperand::MOStore; 6939 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6940 6941 if (PtrInfo.V.isNull()) 6942 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6943 6944 MachineFunction &MF = getMachineFunction(); 6945 uint64_t Size = 6946 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 6947 MachineMemOperand *MMO = 6948 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 6949 return getStore(Chain, dl, Val, Ptr, MMO); 6950 } 6951 6952 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6953 SDValue Ptr, MachineMemOperand *MMO) { 6954 assert(Chain.getValueType() == MVT::Other && 6955 "Invalid chain type"); 6956 EVT VT = Val.getValueType(); 6957 SDVTList VTs = getVTList(MVT::Other); 6958 SDValue Undef = getUNDEF(Ptr.getValueType()); 6959 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6960 FoldingSetNodeID ID; 6961 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6962 ID.AddInteger(VT.getRawBits()); 6963 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6964 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6965 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6966 void *IP = nullptr; 6967 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6968 cast<StoreSDNode>(E)->refineAlignment(MMO); 6969 return SDValue(E, 0); 6970 } 6971 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6972 ISD::UNINDEXED, false, VT, MMO); 6973 createOperands(N, Ops); 6974 6975 CSEMap.InsertNode(N, IP); 6976 InsertNode(N); 6977 SDValue V(N, 0); 6978 NewSDValueDbgMsg(V, "Creating new node: ", this); 6979 return V; 6980 } 6981 6982 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6983 SDValue Ptr, MachinePointerInfo PtrInfo, 6984 EVT SVT, Align Alignment, 6985 MachineMemOperand::Flags MMOFlags, 6986 const AAMDNodes &AAInfo) { 6987 assert(Chain.getValueType() == MVT::Other && 6988 "Invalid chain type"); 6989 6990 MMOFlags |= MachineMemOperand::MOStore; 6991 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6992 6993 if (PtrInfo.V.isNull()) 6994 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6995 6996 MachineFunction &MF = getMachineFunction(); 6997 MachineMemOperand *MMO = MF.getMachineMemOperand( 6998 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6999 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7000 } 7001 7002 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7003 SDValue Ptr, EVT SVT, 7004 MachineMemOperand *MMO) { 7005 EVT VT = Val.getValueType(); 7006 7007 assert(Chain.getValueType() == MVT::Other && 7008 "Invalid chain type"); 7009 if (VT == SVT) 7010 return getStore(Chain, dl, Val, Ptr, MMO); 7011 7012 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7013 "Should only be a truncating store, not extending!"); 7014 assert(VT.isInteger() == SVT.isInteger() && 7015 "Can't do FP-INT conversion!"); 7016 assert(VT.isVector() == SVT.isVector() && 7017 "Cannot use trunc store to convert to or from a vector!"); 7018 assert((!VT.isVector() || 7019 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7020 "Cannot use trunc store to change the number of vector elements!"); 7021 7022 SDVTList VTs = getVTList(MVT::Other); 7023 SDValue Undef = getUNDEF(Ptr.getValueType()); 7024 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7025 FoldingSetNodeID ID; 7026 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7027 ID.AddInteger(SVT.getRawBits()); 7028 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7029 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7030 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7031 void *IP = nullptr; 7032 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7033 cast<StoreSDNode>(E)->refineAlignment(MMO); 7034 return SDValue(E, 0); 7035 } 7036 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7037 ISD::UNINDEXED, true, SVT, MMO); 7038 createOperands(N, Ops); 7039 7040 CSEMap.InsertNode(N, IP); 7041 InsertNode(N); 7042 SDValue V(N, 0); 7043 NewSDValueDbgMsg(V, "Creating new node: ", this); 7044 return V; 7045 } 7046 7047 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7048 SDValue Base, SDValue Offset, 7049 ISD::MemIndexedMode AM) { 7050 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7051 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7052 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7053 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7054 FoldingSetNodeID ID; 7055 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7056 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7057 ID.AddInteger(ST->getRawSubclassData()); 7058 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7059 void *IP = nullptr; 7060 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7061 return SDValue(E, 0); 7062 7063 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7064 ST->isTruncatingStore(), ST->getMemoryVT(), 7065 ST->getMemOperand()); 7066 createOperands(N, Ops); 7067 7068 CSEMap.InsertNode(N, IP); 7069 InsertNode(N); 7070 SDValue V(N, 0); 7071 NewSDValueDbgMsg(V, "Creating new node: ", this); 7072 return V; 7073 } 7074 7075 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7076 SDValue Base, SDValue Offset, SDValue Mask, 7077 SDValue PassThru, EVT MemVT, 7078 MachineMemOperand *MMO, 7079 ISD::MemIndexedMode AM, 7080 ISD::LoadExtType ExtTy, bool isExpanding) { 7081 bool Indexed = AM != ISD::UNINDEXED; 7082 assert((Indexed || Offset.isUndef()) && 7083 "Unindexed masked load with an offset!"); 7084 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7085 : getVTList(VT, MVT::Other); 7086 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7087 FoldingSetNodeID ID; 7088 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7089 ID.AddInteger(MemVT.getRawBits()); 7090 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7091 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7092 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7093 void *IP = nullptr; 7094 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7095 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7096 return SDValue(E, 0); 7097 } 7098 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7099 AM, ExtTy, isExpanding, MemVT, MMO); 7100 createOperands(N, Ops); 7101 7102 CSEMap.InsertNode(N, IP); 7103 InsertNode(N); 7104 SDValue V(N, 0); 7105 NewSDValueDbgMsg(V, "Creating new node: ", this); 7106 return V; 7107 } 7108 7109 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7110 SDValue Base, SDValue Offset, 7111 ISD::MemIndexedMode AM) { 7112 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7113 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7114 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7115 Offset, LD->getMask(), LD->getPassThru(), 7116 LD->getMemoryVT(), LD->getMemOperand(), AM, 7117 LD->getExtensionType(), LD->isExpandingLoad()); 7118 } 7119 7120 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7121 SDValue Val, SDValue Base, SDValue Offset, 7122 SDValue Mask, EVT MemVT, 7123 MachineMemOperand *MMO, 7124 ISD::MemIndexedMode AM, bool IsTruncating, 7125 bool IsCompressing) { 7126 assert(Chain.getValueType() == MVT::Other && 7127 "Invalid chain type"); 7128 bool Indexed = AM != ISD::UNINDEXED; 7129 assert((Indexed || Offset.isUndef()) && 7130 "Unindexed masked store with an offset!"); 7131 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7132 : getVTList(MVT::Other); 7133 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7134 FoldingSetNodeID ID; 7135 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7136 ID.AddInteger(MemVT.getRawBits()); 7137 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7138 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7139 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7140 void *IP = nullptr; 7141 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7142 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7143 return SDValue(E, 0); 7144 } 7145 auto *N = 7146 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7147 IsTruncating, IsCompressing, MemVT, MMO); 7148 createOperands(N, Ops); 7149 7150 CSEMap.InsertNode(N, IP); 7151 InsertNode(N); 7152 SDValue V(N, 0); 7153 NewSDValueDbgMsg(V, "Creating new node: ", this); 7154 return V; 7155 } 7156 7157 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7158 SDValue Base, SDValue Offset, 7159 ISD::MemIndexedMode AM) { 7160 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7161 assert(ST->getOffset().isUndef() && 7162 "Masked store is already a indexed store!"); 7163 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7164 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7165 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7166 } 7167 7168 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7169 ArrayRef<SDValue> Ops, 7170 MachineMemOperand *MMO, 7171 ISD::MemIndexType IndexType) { 7172 assert(Ops.size() == 6 && "Incompatible number of operands"); 7173 7174 FoldingSetNodeID ID; 7175 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7176 ID.AddInteger(VT.getRawBits()); 7177 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7178 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7179 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7180 void *IP = nullptr; 7181 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7182 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7183 return SDValue(E, 0); 7184 } 7185 7186 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7187 VTs, VT, MMO, IndexType); 7188 createOperands(N, Ops); 7189 7190 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7191 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7192 assert(N->getMask().getValueType().getVectorNumElements() == 7193 N->getValueType(0).getVectorNumElements() && 7194 "Vector width mismatch between mask and data"); 7195 assert(N->getIndex().getValueType().getVectorNumElements() >= 7196 N->getValueType(0).getVectorNumElements() && 7197 "Vector width mismatch between index and data"); 7198 assert(isa<ConstantSDNode>(N->getScale()) && 7199 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7200 "Scale should be a constant power of 2"); 7201 7202 CSEMap.InsertNode(N, IP); 7203 InsertNode(N); 7204 SDValue V(N, 0); 7205 NewSDValueDbgMsg(V, "Creating new node: ", this); 7206 return V; 7207 } 7208 7209 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7210 ArrayRef<SDValue> Ops, 7211 MachineMemOperand *MMO, 7212 ISD::MemIndexType IndexType) { 7213 assert(Ops.size() == 6 && "Incompatible number of operands"); 7214 7215 FoldingSetNodeID ID; 7216 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7217 ID.AddInteger(VT.getRawBits()); 7218 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7219 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7220 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7221 void *IP = nullptr; 7222 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7223 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7224 return SDValue(E, 0); 7225 } 7226 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7227 VTs, VT, MMO, IndexType); 7228 createOperands(N, Ops); 7229 7230 assert(N->getMask().getValueType().getVectorNumElements() == 7231 N->getValue().getValueType().getVectorNumElements() && 7232 "Vector width mismatch between mask and data"); 7233 assert(N->getIndex().getValueType().getVectorNumElements() >= 7234 N->getValue().getValueType().getVectorNumElements() && 7235 "Vector width mismatch between index and data"); 7236 assert(isa<ConstantSDNode>(N->getScale()) && 7237 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7238 "Scale should be a constant power of 2"); 7239 7240 CSEMap.InsertNode(N, IP); 7241 InsertNode(N); 7242 SDValue V(N, 0); 7243 NewSDValueDbgMsg(V, "Creating new node: ", this); 7244 return V; 7245 } 7246 7247 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7248 // select undef, T, F --> T (if T is a constant), otherwise F 7249 // select, ?, undef, F --> F 7250 // select, ?, T, undef --> T 7251 if (Cond.isUndef()) 7252 return isConstantValueOfAnyType(T) ? T : F; 7253 if (T.isUndef()) 7254 return F; 7255 if (F.isUndef()) 7256 return T; 7257 7258 // select true, T, F --> T 7259 // select false, T, F --> F 7260 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7261 return CondC->isNullValue() ? F : T; 7262 7263 // TODO: This should simplify VSELECT with constant condition using something 7264 // like this (but check boolean contents to be complete?): 7265 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7266 // return T; 7267 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7268 // return F; 7269 7270 // select ?, T, T --> T 7271 if (T == F) 7272 return T; 7273 7274 return SDValue(); 7275 } 7276 7277 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7278 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7279 if (X.isUndef()) 7280 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7281 // shift X, undef --> undef (because it may shift by the bitwidth) 7282 if (Y.isUndef()) 7283 return getUNDEF(X.getValueType()); 7284 7285 // shift 0, Y --> 0 7286 // shift X, 0 --> X 7287 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7288 return X; 7289 7290 // shift X, C >= bitwidth(X) --> undef 7291 // All vector elements must be too big (or undef) to avoid partial undefs. 7292 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7293 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7294 }; 7295 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7296 return getUNDEF(X.getValueType()); 7297 7298 return SDValue(); 7299 } 7300 7301 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7302 SDNodeFlags Flags) { 7303 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7304 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7305 // operation is poison. That result can be relaxed to undef. 7306 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7307 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7308 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7309 (YC && YC->getValueAPF().isNaN()); 7310 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7311 (YC && YC->getValueAPF().isInfinity()); 7312 7313 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7314 return getUNDEF(X.getValueType()); 7315 7316 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7317 return getUNDEF(X.getValueType()); 7318 7319 if (!YC) 7320 return SDValue(); 7321 7322 // X + -0.0 --> X 7323 if (Opcode == ISD::FADD) 7324 if (YC->getValueAPF().isNegZero()) 7325 return X; 7326 7327 // X - +0.0 --> X 7328 if (Opcode == ISD::FSUB) 7329 if (YC->getValueAPF().isPosZero()) 7330 return X; 7331 7332 // X * 1.0 --> X 7333 // X / 1.0 --> X 7334 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7335 if (YC->getValueAPF().isExactlyValue(1.0)) 7336 return X; 7337 7338 return SDValue(); 7339 } 7340 7341 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7342 SDValue Ptr, SDValue SV, unsigned Align) { 7343 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7344 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7345 } 7346 7347 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7348 ArrayRef<SDUse> Ops) { 7349 switch (Ops.size()) { 7350 case 0: return getNode(Opcode, DL, VT); 7351 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7352 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7353 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7354 default: break; 7355 } 7356 7357 // Copy from an SDUse array into an SDValue array for use with 7358 // the regular getNode logic. 7359 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7360 return getNode(Opcode, DL, VT, NewOps); 7361 } 7362 7363 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7364 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7365 unsigned NumOps = Ops.size(); 7366 switch (NumOps) { 7367 case 0: return getNode(Opcode, DL, VT); 7368 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7369 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7370 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7371 default: break; 7372 } 7373 7374 switch (Opcode) { 7375 default: break; 7376 case ISD::BUILD_VECTOR: 7377 // Attempt to simplify BUILD_VECTOR. 7378 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7379 return V; 7380 break; 7381 case ISD::CONCAT_VECTORS: 7382 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7383 return V; 7384 break; 7385 case ISD::SELECT_CC: 7386 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7387 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7388 "LHS and RHS of condition must have same type!"); 7389 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7390 "True and False arms of SelectCC must have same type!"); 7391 assert(Ops[2].getValueType() == VT && 7392 "select_cc node must be of same type as true and false value!"); 7393 break; 7394 case ISD::BR_CC: 7395 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7396 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7397 "LHS/RHS of comparison should match types!"); 7398 break; 7399 } 7400 7401 // Memoize nodes. 7402 SDNode *N; 7403 SDVTList VTs = getVTList(VT); 7404 7405 if (VT != MVT::Glue) { 7406 FoldingSetNodeID ID; 7407 AddNodeIDNode(ID, Opcode, VTs, Ops); 7408 void *IP = nullptr; 7409 7410 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7411 return SDValue(E, 0); 7412 7413 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7414 createOperands(N, Ops); 7415 7416 CSEMap.InsertNode(N, IP); 7417 } else { 7418 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7419 createOperands(N, Ops); 7420 } 7421 7422 InsertNode(N); 7423 SDValue V(N, 0); 7424 NewSDValueDbgMsg(V, "Creating new node: ", this); 7425 return V; 7426 } 7427 7428 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7429 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7430 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7431 } 7432 7433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7434 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7435 if (VTList.NumVTs == 1) 7436 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7437 7438 switch (Opcode) { 7439 case ISD::STRICT_FP_EXTEND: 7440 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7441 "Invalid STRICT_FP_EXTEND!"); 7442 assert(VTList.VTs[0].isFloatingPoint() && 7443 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7444 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7445 "STRICT_FP_EXTEND result type should be vector iff the operand " 7446 "type is vector!"); 7447 assert((!VTList.VTs[0].isVector() || 7448 VTList.VTs[0].getVectorNumElements() == 7449 Ops[1].getValueType().getVectorNumElements()) && 7450 "Vector element count mismatch!"); 7451 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7452 "Invalid fpext node, dst <= src!"); 7453 break; 7454 case ISD::STRICT_FP_ROUND: 7455 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7456 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7457 "STRICT_FP_ROUND result type should be vector iff the operand " 7458 "type is vector!"); 7459 assert((!VTList.VTs[0].isVector() || 7460 VTList.VTs[0].getVectorNumElements() == 7461 Ops[1].getValueType().getVectorNumElements()) && 7462 "Vector element count mismatch!"); 7463 assert(VTList.VTs[0].isFloatingPoint() && 7464 Ops[1].getValueType().isFloatingPoint() && 7465 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7466 isa<ConstantSDNode>(Ops[2]) && 7467 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7468 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7469 "Invalid STRICT_FP_ROUND!"); 7470 break; 7471 #if 0 7472 // FIXME: figure out how to safely handle things like 7473 // int foo(int x) { return 1 << (x & 255); } 7474 // int bar() { return foo(256); } 7475 case ISD::SRA_PARTS: 7476 case ISD::SRL_PARTS: 7477 case ISD::SHL_PARTS: 7478 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7479 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7480 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7481 else if (N3.getOpcode() == ISD::AND) 7482 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7483 // If the and is only masking out bits that cannot effect the shift, 7484 // eliminate the and. 7485 unsigned NumBits = VT.getScalarSizeInBits()*2; 7486 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7487 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7488 } 7489 break; 7490 #endif 7491 } 7492 7493 // Memoize the node unless it returns a flag. 7494 SDNode *N; 7495 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7496 FoldingSetNodeID ID; 7497 AddNodeIDNode(ID, Opcode, VTList, Ops); 7498 void *IP = nullptr; 7499 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7500 return SDValue(E, 0); 7501 7502 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7503 N->setFlags(Flags); 7504 createOperands(N, Ops); 7505 CSEMap.InsertNode(N, IP); 7506 } else { 7507 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7508 createOperands(N, Ops); 7509 } 7510 InsertNode(N); 7511 SDValue V(N, 0); 7512 NewSDValueDbgMsg(V, "Creating new node: ", this); 7513 return V; 7514 } 7515 7516 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7517 SDVTList VTList) { 7518 return getNode(Opcode, DL, VTList, None); 7519 } 7520 7521 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7522 SDValue N1) { 7523 SDValue Ops[] = { N1 }; 7524 return getNode(Opcode, DL, VTList, Ops); 7525 } 7526 7527 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7528 SDValue N1, SDValue N2) { 7529 SDValue Ops[] = { N1, N2 }; 7530 return getNode(Opcode, DL, VTList, Ops); 7531 } 7532 7533 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7534 SDValue N1, SDValue N2, SDValue N3) { 7535 SDValue Ops[] = { N1, N2, N3 }; 7536 return getNode(Opcode, DL, VTList, Ops); 7537 } 7538 7539 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7540 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7541 SDValue Ops[] = { N1, N2, N3, N4 }; 7542 return getNode(Opcode, DL, VTList, Ops); 7543 } 7544 7545 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7546 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7547 SDValue N5) { 7548 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7549 return getNode(Opcode, DL, VTList, Ops); 7550 } 7551 7552 SDVTList SelectionDAG::getVTList(EVT VT) { 7553 return makeVTList(SDNode::getValueTypeList(VT), 1); 7554 } 7555 7556 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7557 FoldingSetNodeID ID; 7558 ID.AddInteger(2U); 7559 ID.AddInteger(VT1.getRawBits()); 7560 ID.AddInteger(VT2.getRawBits()); 7561 7562 void *IP = nullptr; 7563 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7564 if (!Result) { 7565 EVT *Array = Allocator.Allocate<EVT>(2); 7566 Array[0] = VT1; 7567 Array[1] = VT2; 7568 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7569 VTListMap.InsertNode(Result, IP); 7570 } 7571 return Result->getSDVTList(); 7572 } 7573 7574 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7575 FoldingSetNodeID ID; 7576 ID.AddInteger(3U); 7577 ID.AddInteger(VT1.getRawBits()); 7578 ID.AddInteger(VT2.getRawBits()); 7579 ID.AddInteger(VT3.getRawBits()); 7580 7581 void *IP = nullptr; 7582 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7583 if (!Result) { 7584 EVT *Array = Allocator.Allocate<EVT>(3); 7585 Array[0] = VT1; 7586 Array[1] = VT2; 7587 Array[2] = VT3; 7588 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7589 VTListMap.InsertNode(Result, IP); 7590 } 7591 return Result->getSDVTList(); 7592 } 7593 7594 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7595 FoldingSetNodeID ID; 7596 ID.AddInteger(4U); 7597 ID.AddInteger(VT1.getRawBits()); 7598 ID.AddInteger(VT2.getRawBits()); 7599 ID.AddInteger(VT3.getRawBits()); 7600 ID.AddInteger(VT4.getRawBits()); 7601 7602 void *IP = nullptr; 7603 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7604 if (!Result) { 7605 EVT *Array = Allocator.Allocate<EVT>(4); 7606 Array[0] = VT1; 7607 Array[1] = VT2; 7608 Array[2] = VT3; 7609 Array[3] = VT4; 7610 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7611 VTListMap.InsertNode(Result, IP); 7612 } 7613 return Result->getSDVTList(); 7614 } 7615 7616 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7617 unsigned NumVTs = VTs.size(); 7618 FoldingSetNodeID ID; 7619 ID.AddInteger(NumVTs); 7620 for (unsigned index = 0; index < NumVTs; index++) { 7621 ID.AddInteger(VTs[index].getRawBits()); 7622 } 7623 7624 void *IP = nullptr; 7625 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7626 if (!Result) { 7627 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7628 llvm::copy(VTs, Array); 7629 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7630 VTListMap.InsertNode(Result, IP); 7631 } 7632 return Result->getSDVTList(); 7633 } 7634 7635 7636 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7637 /// specified operands. If the resultant node already exists in the DAG, 7638 /// this does not modify the specified node, instead it returns the node that 7639 /// already exists. If the resultant node does not exist in the DAG, the 7640 /// input node is returned. As a degenerate case, if you specify the same 7641 /// input operands as the node already has, the input node is returned. 7642 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7643 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7644 7645 // Check to see if there is no change. 7646 if (Op == N->getOperand(0)) return N; 7647 7648 // See if the modified node already exists. 7649 void *InsertPos = nullptr; 7650 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7651 return Existing; 7652 7653 // Nope it doesn't. Remove the node from its current place in the maps. 7654 if (InsertPos) 7655 if (!RemoveNodeFromCSEMaps(N)) 7656 InsertPos = nullptr; 7657 7658 // Now we update the operands. 7659 N->OperandList[0].set(Op); 7660 7661 updateDivergence(N); 7662 // If this gets put into a CSE map, add it. 7663 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7664 return N; 7665 } 7666 7667 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7668 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7669 7670 // Check to see if there is no change. 7671 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7672 return N; // No operands changed, just return the input node. 7673 7674 // See if the modified node already exists. 7675 void *InsertPos = nullptr; 7676 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7677 return Existing; 7678 7679 // Nope it doesn't. Remove the node from its current place in the maps. 7680 if (InsertPos) 7681 if (!RemoveNodeFromCSEMaps(N)) 7682 InsertPos = nullptr; 7683 7684 // Now we update the operands. 7685 if (N->OperandList[0] != Op1) 7686 N->OperandList[0].set(Op1); 7687 if (N->OperandList[1] != Op2) 7688 N->OperandList[1].set(Op2); 7689 7690 updateDivergence(N); 7691 // If this gets put into a CSE map, add it. 7692 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7693 return N; 7694 } 7695 7696 SDNode *SelectionDAG:: 7697 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7698 SDValue Ops[] = { Op1, Op2, Op3 }; 7699 return UpdateNodeOperands(N, Ops); 7700 } 7701 7702 SDNode *SelectionDAG:: 7703 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7704 SDValue Op3, SDValue Op4) { 7705 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7706 return UpdateNodeOperands(N, Ops); 7707 } 7708 7709 SDNode *SelectionDAG:: 7710 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7711 SDValue Op3, SDValue Op4, SDValue Op5) { 7712 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7713 return UpdateNodeOperands(N, Ops); 7714 } 7715 7716 SDNode *SelectionDAG:: 7717 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7718 unsigned NumOps = Ops.size(); 7719 assert(N->getNumOperands() == NumOps && 7720 "Update with wrong number of operands"); 7721 7722 // If no operands changed just return the input node. 7723 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7724 return N; 7725 7726 // See if the modified node already exists. 7727 void *InsertPos = nullptr; 7728 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7729 return Existing; 7730 7731 // Nope it doesn't. Remove the node from its current place in the maps. 7732 if (InsertPos) 7733 if (!RemoveNodeFromCSEMaps(N)) 7734 InsertPos = nullptr; 7735 7736 // Now we update the operands. 7737 for (unsigned i = 0; i != NumOps; ++i) 7738 if (N->OperandList[i] != Ops[i]) 7739 N->OperandList[i].set(Ops[i]); 7740 7741 updateDivergence(N); 7742 // If this gets put into a CSE map, add it. 7743 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7744 return N; 7745 } 7746 7747 /// DropOperands - Release the operands and set this node to have 7748 /// zero operands. 7749 void SDNode::DropOperands() { 7750 // Unlike the code in MorphNodeTo that does this, we don't need to 7751 // watch for dead nodes here. 7752 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7753 SDUse &Use = *I++; 7754 Use.set(SDValue()); 7755 } 7756 } 7757 7758 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7759 ArrayRef<MachineMemOperand *> NewMemRefs) { 7760 if (NewMemRefs.empty()) { 7761 N->clearMemRefs(); 7762 return; 7763 } 7764 7765 // Check if we can avoid allocating by storing a single reference directly. 7766 if (NewMemRefs.size() == 1) { 7767 N->MemRefs = NewMemRefs[0]; 7768 N->NumMemRefs = 1; 7769 return; 7770 } 7771 7772 MachineMemOperand **MemRefsBuffer = 7773 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7774 llvm::copy(NewMemRefs, MemRefsBuffer); 7775 N->MemRefs = MemRefsBuffer; 7776 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7777 } 7778 7779 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7780 /// machine opcode. 7781 /// 7782 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7783 EVT VT) { 7784 SDVTList VTs = getVTList(VT); 7785 return SelectNodeTo(N, MachineOpc, VTs, None); 7786 } 7787 7788 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7789 EVT VT, SDValue Op1) { 7790 SDVTList VTs = getVTList(VT); 7791 SDValue Ops[] = { Op1 }; 7792 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7793 } 7794 7795 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7796 EVT VT, SDValue Op1, 7797 SDValue Op2) { 7798 SDVTList VTs = getVTList(VT); 7799 SDValue Ops[] = { Op1, Op2 }; 7800 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7801 } 7802 7803 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7804 EVT VT, SDValue Op1, 7805 SDValue Op2, SDValue Op3) { 7806 SDVTList VTs = getVTList(VT); 7807 SDValue Ops[] = { Op1, Op2, Op3 }; 7808 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7809 } 7810 7811 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7812 EVT VT, ArrayRef<SDValue> Ops) { 7813 SDVTList VTs = getVTList(VT); 7814 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7815 } 7816 7817 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7818 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7819 SDVTList VTs = getVTList(VT1, VT2); 7820 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7821 } 7822 7823 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7824 EVT VT1, EVT VT2) { 7825 SDVTList VTs = getVTList(VT1, VT2); 7826 return SelectNodeTo(N, MachineOpc, VTs, None); 7827 } 7828 7829 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7830 EVT VT1, EVT VT2, EVT VT3, 7831 ArrayRef<SDValue> Ops) { 7832 SDVTList VTs = getVTList(VT1, VT2, VT3); 7833 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7834 } 7835 7836 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7837 EVT VT1, EVT VT2, 7838 SDValue Op1, SDValue Op2) { 7839 SDVTList VTs = getVTList(VT1, VT2); 7840 SDValue Ops[] = { Op1, Op2 }; 7841 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7842 } 7843 7844 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7845 SDVTList VTs,ArrayRef<SDValue> Ops) { 7846 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7847 // Reset the NodeID to -1. 7848 New->setNodeId(-1); 7849 if (New != N) { 7850 ReplaceAllUsesWith(N, New); 7851 RemoveDeadNode(N); 7852 } 7853 return New; 7854 } 7855 7856 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7857 /// the line number information on the merged node since it is not possible to 7858 /// preserve the information that operation is associated with multiple lines. 7859 /// This will make the debugger working better at -O0, were there is a higher 7860 /// probability having other instructions associated with that line. 7861 /// 7862 /// For IROrder, we keep the smaller of the two 7863 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7864 DebugLoc NLoc = N->getDebugLoc(); 7865 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7866 N->setDebugLoc(DebugLoc()); 7867 } 7868 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7869 N->setIROrder(Order); 7870 return N; 7871 } 7872 7873 /// MorphNodeTo - This *mutates* the specified node to have the specified 7874 /// return type, opcode, and operands. 7875 /// 7876 /// Note that MorphNodeTo returns the resultant node. If there is already a 7877 /// node of the specified opcode and operands, it returns that node instead of 7878 /// the current one. Note that the SDLoc need not be the same. 7879 /// 7880 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7881 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7882 /// node, and because it doesn't require CSE recalculation for any of 7883 /// the node's users. 7884 /// 7885 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7886 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7887 /// the legalizer which maintain worklists that would need to be updated when 7888 /// deleting things. 7889 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7890 SDVTList VTs, ArrayRef<SDValue> Ops) { 7891 // If an identical node already exists, use it. 7892 void *IP = nullptr; 7893 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7894 FoldingSetNodeID ID; 7895 AddNodeIDNode(ID, Opc, VTs, Ops); 7896 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7897 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7898 } 7899 7900 if (!RemoveNodeFromCSEMaps(N)) 7901 IP = nullptr; 7902 7903 // Start the morphing. 7904 N->NodeType = Opc; 7905 N->ValueList = VTs.VTs; 7906 N->NumValues = VTs.NumVTs; 7907 7908 // Clear the operands list, updating used nodes to remove this from their 7909 // use list. Keep track of any operands that become dead as a result. 7910 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7911 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7912 SDUse &Use = *I++; 7913 SDNode *Used = Use.getNode(); 7914 Use.set(SDValue()); 7915 if (Used->use_empty()) 7916 DeadNodeSet.insert(Used); 7917 } 7918 7919 // For MachineNode, initialize the memory references information. 7920 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7921 MN->clearMemRefs(); 7922 7923 // Swap for an appropriately sized array from the recycler. 7924 removeOperands(N); 7925 createOperands(N, Ops); 7926 7927 // Delete any nodes that are still dead after adding the uses for the 7928 // new operands. 7929 if (!DeadNodeSet.empty()) { 7930 SmallVector<SDNode *, 16> DeadNodes; 7931 for (SDNode *N : DeadNodeSet) 7932 if (N->use_empty()) 7933 DeadNodes.push_back(N); 7934 RemoveDeadNodes(DeadNodes); 7935 } 7936 7937 if (IP) 7938 CSEMap.InsertNode(N, IP); // Memoize the new node. 7939 return N; 7940 } 7941 7942 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7943 unsigned OrigOpc = Node->getOpcode(); 7944 unsigned NewOpc; 7945 switch (OrigOpc) { 7946 default: 7947 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7948 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7949 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7950 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7951 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 7952 #include "llvm/IR/ConstrainedOps.def" 7953 } 7954 7955 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7956 7957 // We're taking this node out of the chain, so we need to re-link things. 7958 SDValue InputChain = Node->getOperand(0); 7959 SDValue OutputChain = SDValue(Node, 1); 7960 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7961 7962 SmallVector<SDValue, 3> Ops; 7963 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7964 Ops.push_back(Node->getOperand(i)); 7965 7966 SDVTList VTs = getVTList(Node->getValueType(0)); 7967 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7968 7969 // MorphNodeTo can operate in two ways: if an existing node with the 7970 // specified operands exists, it can just return it. Otherwise, it 7971 // updates the node in place to have the requested operands. 7972 if (Res == Node) { 7973 // If we updated the node in place, reset the node ID. To the isel, 7974 // this should be just like a newly allocated machine node. 7975 Res->setNodeId(-1); 7976 } else { 7977 ReplaceAllUsesWith(Node, Res); 7978 RemoveDeadNode(Node); 7979 } 7980 7981 return Res; 7982 } 7983 7984 /// getMachineNode - These are used for target selectors to create a new node 7985 /// with specified return type(s), MachineInstr opcode, and operands. 7986 /// 7987 /// Note that getMachineNode returns the resultant node. If there is already a 7988 /// node of the specified opcode and operands, it returns that node instead of 7989 /// the current one. 7990 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7991 EVT VT) { 7992 SDVTList VTs = getVTList(VT); 7993 return getMachineNode(Opcode, dl, VTs, None); 7994 } 7995 7996 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7997 EVT VT, SDValue Op1) { 7998 SDVTList VTs = getVTList(VT); 7999 SDValue Ops[] = { Op1 }; 8000 return getMachineNode(Opcode, dl, VTs, Ops); 8001 } 8002 8003 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8004 EVT VT, SDValue Op1, SDValue Op2) { 8005 SDVTList VTs = getVTList(VT); 8006 SDValue Ops[] = { Op1, Op2 }; 8007 return getMachineNode(Opcode, dl, VTs, Ops); 8008 } 8009 8010 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8011 EVT VT, SDValue Op1, SDValue Op2, 8012 SDValue Op3) { 8013 SDVTList VTs = getVTList(VT); 8014 SDValue Ops[] = { Op1, Op2, Op3 }; 8015 return getMachineNode(Opcode, dl, VTs, Ops); 8016 } 8017 8018 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8019 EVT VT, ArrayRef<SDValue> Ops) { 8020 SDVTList VTs = getVTList(VT); 8021 return getMachineNode(Opcode, dl, VTs, Ops); 8022 } 8023 8024 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8025 EVT VT1, EVT VT2, SDValue Op1, 8026 SDValue Op2) { 8027 SDVTList VTs = getVTList(VT1, VT2); 8028 SDValue Ops[] = { Op1, Op2 }; 8029 return getMachineNode(Opcode, dl, VTs, Ops); 8030 } 8031 8032 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8033 EVT VT1, EVT VT2, SDValue Op1, 8034 SDValue Op2, SDValue Op3) { 8035 SDVTList VTs = getVTList(VT1, VT2); 8036 SDValue Ops[] = { Op1, Op2, Op3 }; 8037 return getMachineNode(Opcode, dl, VTs, Ops); 8038 } 8039 8040 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8041 EVT VT1, EVT VT2, 8042 ArrayRef<SDValue> Ops) { 8043 SDVTList VTs = getVTList(VT1, VT2); 8044 return getMachineNode(Opcode, dl, VTs, Ops); 8045 } 8046 8047 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8048 EVT VT1, EVT VT2, EVT VT3, 8049 SDValue Op1, SDValue Op2) { 8050 SDVTList VTs = getVTList(VT1, VT2, VT3); 8051 SDValue Ops[] = { Op1, Op2 }; 8052 return getMachineNode(Opcode, dl, VTs, Ops); 8053 } 8054 8055 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8056 EVT VT1, EVT VT2, EVT VT3, 8057 SDValue Op1, SDValue Op2, 8058 SDValue Op3) { 8059 SDVTList VTs = getVTList(VT1, VT2, VT3); 8060 SDValue Ops[] = { Op1, Op2, Op3 }; 8061 return getMachineNode(Opcode, dl, VTs, Ops); 8062 } 8063 8064 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8065 EVT VT1, EVT VT2, EVT VT3, 8066 ArrayRef<SDValue> Ops) { 8067 SDVTList VTs = getVTList(VT1, VT2, VT3); 8068 return getMachineNode(Opcode, dl, VTs, Ops); 8069 } 8070 8071 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8072 ArrayRef<EVT> ResultTys, 8073 ArrayRef<SDValue> Ops) { 8074 SDVTList VTs = getVTList(ResultTys); 8075 return getMachineNode(Opcode, dl, VTs, Ops); 8076 } 8077 8078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8079 SDVTList VTs, 8080 ArrayRef<SDValue> Ops) { 8081 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8082 MachineSDNode *N; 8083 void *IP = nullptr; 8084 8085 if (DoCSE) { 8086 FoldingSetNodeID ID; 8087 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8088 IP = nullptr; 8089 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8090 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8091 } 8092 } 8093 8094 // Allocate a new MachineSDNode. 8095 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8096 createOperands(N, Ops); 8097 8098 if (DoCSE) 8099 CSEMap.InsertNode(N, IP); 8100 8101 InsertNode(N); 8102 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8103 return N; 8104 } 8105 8106 /// getTargetExtractSubreg - A convenience function for creating 8107 /// TargetOpcode::EXTRACT_SUBREG nodes. 8108 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8109 SDValue Operand) { 8110 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8111 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8112 VT, Operand, SRIdxVal); 8113 return SDValue(Subreg, 0); 8114 } 8115 8116 /// getTargetInsertSubreg - A convenience function for creating 8117 /// TargetOpcode::INSERT_SUBREG nodes. 8118 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8119 SDValue Operand, SDValue Subreg) { 8120 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8121 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8122 VT, Operand, Subreg, SRIdxVal); 8123 return SDValue(Result, 0); 8124 } 8125 8126 /// getNodeIfExists - Get the specified node if it's already available, or 8127 /// else return NULL. 8128 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8129 ArrayRef<SDValue> Ops, 8130 const SDNodeFlags Flags) { 8131 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8132 FoldingSetNodeID ID; 8133 AddNodeIDNode(ID, Opcode, VTList, Ops); 8134 void *IP = nullptr; 8135 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8136 E->intersectFlagsWith(Flags); 8137 return E; 8138 } 8139 } 8140 return nullptr; 8141 } 8142 8143 /// getDbgValue - Creates a SDDbgValue node. 8144 /// 8145 /// SDNode 8146 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8147 SDNode *N, unsigned R, bool IsIndirect, 8148 const DebugLoc &DL, unsigned O) { 8149 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8150 "Expected inlined-at fields to agree"); 8151 return new (DbgInfo->getAlloc()) 8152 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8153 } 8154 8155 /// Constant 8156 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8157 DIExpression *Expr, 8158 const Value *C, 8159 const DebugLoc &DL, unsigned O) { 8160 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8161 "Expected inlined-at fields to agree"); 8162 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8163 } 8164 8165 /// FrameIndex 8166 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8167 DIExpression *Expr, unsigned FI, 8168 bool IsIndirect, 8169 const DebugLoc &DL, 8170 unsigned O) { 8171 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8172 "Expected inlined-at fields to agree"); 8173 return new (DbgInfo->getAlloc()) 8174 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8175 } 8176 8177 /// VReg 8178 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8179 DIExpression *Expr, 8180 unsigned VReg, bool IsIndirect, 8181 const DebugLoc &DL, unsigned O) { 8182 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8183 "Expected inlined-at fields to agree"); 8184 return new (DbgInfo->getAlloc()) 8185 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8186 } 8187 8188 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8189 unsigned OffsetInBits, unsigned SizeInBits, 8190 bool InvalidateDbg) { 8191 SDNode *FromNode = From.getNode(); 8192 SDNode *ToNode = To.getNode(); 8193 assert(FromNode && ToNode && "Can't modify dbg values"); 8194 8195 // PR35338 8196 // TODO: assert(From != To && "Redundant dbg value transfer"); 8197 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8198 if (From == To || FromNode == ToNode) 8199 return; 8200 8201 if (!FromNode->getHasDebugValue()) 8202 return; 8203 8204 SmallVector<SDDbgValue *, 2> ClonedDVs; 8205 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8206 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8207 continue; 8208 8209 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8210 8211 // Just transfer the dbg value attached to From. 8212 if (Dbg->getResNo() != From.getResNo()) 8213 continue; 8214 8215 DIVariable *Var = Dbg->getVariable(); 8216 auto *Expr = Dbg->getExpression(); 8217 // If a fragment is requested, update the expression. 8218 if (SizeInBits) { 8219 // When splitting a larger (e.g., sign-extended) value whose 8220 // lower bits are described with an SDDbgValue, do not attempt 8221 // to transfer the SDDbgValue to the upper bits. 8222 if (auto FI = Expr->getFragmentInfo()) 8223 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8224 continue; 8225 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8226 SizeInBits); 8227 if (!Fragment) 8228 continue; 8229 Expr = *Fragment; 8230 } 8231 // Clone the SDDbgValue and move it to To. 8232 SDDbgValue *Clone = getDbgValue( 8233 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8234 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8235 ClonedDVs.push_back(Clone); 8236 8237 if (InvalidateDbg) { 8238 // Invalidate value and indicate the SDDbgValue should not be emitted. 8239 Dbg->setIsInvalidated(); 8240 Dbg->setIsEmitted(); 8241 } 8242 } 8243 8244 for (SDDbgValue *Dbg : ClonedDVs) 8245 AddDbgValue(Dbg, ToNode, false); 8246 } 8247 8248 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8249 if (!N.getHasDebugValue()) 8250 return; 8251 8252 SmallVector<SDDbgValue *, 2> ClonedDVs; 8253 for (auto DV : GetDbgValues(&N)) { 8254 if (DV->isInvalidated()) 8255 continue; 8256 switch (N.getOpcode()) { 8257 default: 8258 break; 8259 case ISD::ADD: 8260 SDValue N0 = N.getOperand(0); 8261 SDValue N1 = N.getOperand(1); 8262 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8263 isConstantIntBuildVectorOrConstantInt(N1)) { 8264 uint64_t Offset = N.getConstantOperandVal(1); 8265 // Rewrite an ADD constant node into a DIExpression. Since we are 8266 // performing arithmetic to compute the variable's *value* in the 8267 // DIExpression, we need to mark the expression with a 8268 // DW_OP_stack_value. 8269 auto *DIExpr = DV->getExpression(); 8270 DIExpr = 8271 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8272 SDDbgValue *Clone = 8273 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8274 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8275 ClonedDVs.push_back(Clone); 8276 DV->setIsInvalidated(); 8277 DV->setIsEmitted(); 8278 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8279 N0.getNode()->dumprFull(this); 8280 dbgs() << " into " << *DIExpr << '\n'); 8281 } 8282 } 8283 } 8284 8285 for (SDDbgValue *Dbg : ClonedDVs) 8286 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8287 } 8288 8289 /// Creates a SDDbgLabel node. 8290 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8291 const DebugLoc &DL, unsigned O) { 8292 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8293 "Expected inlined-at fields to agree"); 8294 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8295 } 8296 8297 namespace { 8298 8299 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8300 /// pointed to by a use iterator is deleted, increment the use iterator 8301 /// so that it doesn't dangle. 8302 /// 8303 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8304 SDNode::use_iterator &UI; 8305 SDNode::use_iterator &UE; 8306 8307 void NodeDeleted(SDNode *N, SDNode *E) override { 8308 // Increment the iterator as needed. 8309 while (UI != UE && N == *UI) 8310 ++UI; 8311 } 8312 8313 public: 8314 RAUWUpdateListener(SelectionDAG &d, 8315 SDNode::use_iterator &ui, 8316 SDNode::use_iterator &ue) 8317 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8318 }; 8319 8320 } // end anonymous namespace 8321 8322 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8323 /// This can cause recursive merging of nodes in the DAG. 8324 /// 8325 /// This version assumes From has a single result value. 8326 /// 8327 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8328 SDNode *From = FromN.getNode(); 8329 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8330 "Cannot replace with this method!"); 8331 assert(From != To.getNode() && "Cannot replace uses of with self"); 8332 8333 // Preserve Debug Values 8334 transferDbgValues(FromN, To); 8335 8336 // Iterate over all the existing uses of From. New uses will be added 8337 // to the beginning of the use list, which we avoid visiting. 8338 // This specifically avoids visiting uses of From that arise while the 8339 // replacement is happening, because any such uses would be the result 8340 // of CSE: If an existing node looks like From after one of its operands 8341 // is replaced by To, we don't want to replace of all its users with To 8342 // too. See PR3018 for more info. 8343 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8344 RAUWUpdateListener Listener(*this, UI, UE); 8345 while (UI != UE) { 8346 SDNode *User = *UI; 8347 8348 // This node is about to morph, remove its old self from the CSE maps. 8349 RemoveNodeFromCSEMaps(User); 8350 8351 // A user can appear in a use list multiple times, and when this 8352 // happens the uses are usually next to each other in the list. 8353 // To help reduce the number of CSE recomputations, process all 8354 // the uses of this user that we can find this way. 8355 do { 8356 SDUse &Use = UI.getUse(); 8357 ++UI; 8358 Use.set(To); 8359 if (To->isDivergent() != From->isDivergent()) 8360 updateDivergence(User); 8361 } while (UI != UE && *UI == User); 8362 // Now that we have modified User, add it back to the CSE maps. If it 8363 // already exists there, recursively merge the results together. 8364 AddModifiedNodeToCSEMaps(User); 8365 } 8366 8367 // If we just RAUW'd the root, take note. 8368 if (FromN == getRoot()) 8369 setRoot(To); 8370 } 8371 8372 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8373 /// This can cause recursive merging of nodes in the DAG. 8374 /// 8375 /// This version assumes that for each value of From, there is a 8376 /// corresponding value in To in the same position with the same type. 8377 /// 8378 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8379 #ifndef NDEBUG 8380 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8381 assert((!From->hasAnyUseOfValue(i) || 8382 From->getValueType(i) == To->getValueType(i)) && 8383 "Cannot use this version of ReplaceAllUsesWith!"); 8384 #endif 8385 8386 // Handle the trivial case. 8387 if (From == To) 8388 return; 8389 8390 // Preserve Debug Info. Only do this if there's a use. 8391 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8392 if (From->hasAnyUseOfValue(i)) { 8393 assert((i < To->getNumValues()) && "Invalid To location"); 8394 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8395 } 8396 8397 // Iterate over just the existing users of From. See the comments in 8398 // the ReplaceAllUsesWith above. 8399 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8400 RAUWUpdateListener Listener(*this, UI, UE); 8401 while (UI != UE) { 8402 SDNode *User = *UI; 8403 8404 // This node is about to morph, remove its old self from the CSE maps. 8405 RemoveNodeFromCSEMaps(User); 8406 8407 // A user can appear in a use list multiple times, and when this 8408 // happens the uses are usually next to each other in the list. 8409 // To help reduce the number of CSE recomputations, process all 8410 // the uses of this user that we can find this way. 8411 do { 8412 SDUse &Use = UI.getUse(); 8413 ++UI; 8414 Use.setNode(To); 8415 if (To->isDivergent() != From->isDivergent()) 8416 updateDivergence(User); 8417 } while (UI != UE && *UI == User); 8418 8419 // Now that we have modified User, add it back to the CSE maps. If it 8420 // already exists there, recursively merge the results together. 8421 AddModifiedNodeToCSEMaps(User); 8422 } 8423 8424 // If we just RAUW'd the root, take note. 8425 if (From == getRoot().getNode()) 8426 setRoot(SDValue(To, getRoot().getResNo())); 8427 } 8428 8429 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8430 /// This can cause recursive merging of nodes in the DAG. 8431 /// 8432 /// This version can replace From with any result values. To must match the 8433 /// number and types of values returned by From. 8434 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8435 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8436 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8437 8438 // Preserve Debug Info. 8439 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8440 transferDbgValues(SDValue(From, i), To[i]); 8441 8442 // Iterate over just the existing users of From. See the comments in 8443 // the ReplaceAllUsesWith above. 8444 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8445 RAUWUpdateListener Listener(*this, UI, UE); 8446 while (UI != UE) { 8447 SDNode *User = *UI; 8448 8449 // This node is about to morph, remove its old self from the CSE maps. 8450 RemoveNodeFromCSEMaps(User); 8451 8452 // A user can appear in a use list multiple times, and when this happens the 8453 // uses are usually next to each other in the list. To help reduce the 8454 // number of CSE and divergence recomputations, process all the uses of this 8455 // user that we can find this way. 8456 bool To_IsDivergent = false; 8457 do { 8458 SDUse &Use = UI.getUse(); 8459 const SDValue &ToOp = To[Use.getResNo()]; 8460 ++UI; 8461 Use.set(ToOp); 8462 To_IsDivergent |= ToOp->isDivergent(); 8463 } while (UI != UE && *UI == User); 8464 8465 if (To_IsDivergent != From->isDivergent()) 8466 updateDivergence(User); 8467 8468 // Now that we have modified User, add it back to the CSE maps. If it 8469 // already exists there, recursively merge the results together. 8470 AddModifiedNodeToCSEMaps(User); 8471 } 8472 8473 // If we just RAUW'd the root, take note. 8474 if (From == getRoot().getNode()) 8475 setRoot(SDValue(To[getRoot().getResNo()])); 8476 } 8477 8478 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8479 /// uses of other values produced by From.getNode() alone. The Deleted 8480 /// vector is handled the same way as for ReplaceAllUsesWith. 8481 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8482 // Handle the really simple, really trivial case efficiently. 8483 if (From == To) return; 8484 8485 // Handle the simple, trivial, case efficiently. 8486 if (From.getNode()->getNumValues() == 1) { 8487 ReplaceAllUsesWith(From, To); 8488 return; 8489 } 8490 8491 // Preserve Debug Info. 8492 transferDbgValues(From, To); 8493 8494 // Iterate over just the existing users of From. See the comments in 8495 // the ReplaceAllUsesWith above. 8496 SDNode::use_iterator UI = From.getNode()->use_begin(), 8497 UE = From.getNode()->use_end(); 8498 RAUWUpdateListener Listener(*this, UI, UE); 8499 while (UI != UE) { 8500 SDNode *User = *UI; 8501 bool UserRemovedFromCSEMaps = false; 8502 8503 // A user can appear in a use list multiple times, and when this 8504 // happens the uses are usually next to each other in the list. 8505 // To help reduce the number of CSE recomputations, process all 8506 // the uses of this user that we can find this way. 8507 do { 8508 SDUse &Use = UI.getUse(); 8509 8510 // Skip uses of different values from the same node. 8511 if (Use.getResNo() != From.getResNo()) { 8512 ++UI; 8513 continue; 8514 } 8515 8516 // If this node hasn't been modified yet, it's still in the CSE maps, 8517 // so remove its old self from the CSE maps. 8518 if (!UserRemovedFromCSEMaps) { 8519 RemoveNodeFromCSEMaps(User); 8520 UserRemovedFromCSEMaps = true; 8521 } 8522 8523 ++UI; 8524 Use.set(To); 8525 if (To->isDivergent() != From->isDivergent()) 8526 updateDivergence(User); 8527 } while (UI != UE && *UI == User); 8528 // We are iterating over all uses of the From node, so if a use 8529 // doesn't use the specific value, no changes are made. 8530 if (!UserRemovedFromCSEMaps) 8531 continue; 8532 8533 // Now that we have modified User, add it back to the CSE maps. If it 8534 // already exists there, recursively merge the results together. 8535 AddModifiedNodeToCSEMaps(User); 8536 } 8537 8538 // If we just RAUW'd the root, take note. 8539 if (From == getRoot()) 8540 setRoot(To); 8541 } 8542 8543 namespace { 8544 8545 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8546 /// to record information about a use. 8547 struct UseMemo { 8548 SDNode *User; 8549 unsigned Index; 8550 SDUse *Use; 8551 }; 8552 8553 /// operator< - Sort Memos by User. 8554 bool operator<(const UseMemo &L, const UseMemo &R) { 8555 return (intptr_t)L.User < (intptr_t)R.User; 8556 } 8557 8558 } // end anonymous namespace 8559 8560 void SelectionDAG::updateDivergence(SDNode * N) 8561 { 8562 if (TLI->isSDNodeAlwaysUniform(N)) 8563 return; 8564 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8565 for (auto &Op : N->ops()) { 8566 if (Op.Val.getValueType() != MVT::Other) 8567 IsDivergent |= Op.getNode()->isDivergent(); 8568 } 8569 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8570 N->SDNodeBits.IsDivergent = IsDivergent; 8571 for (auto U : N->uses()) { 8572 updateDivergence(U); 8573 } 8574 } 8575 } 8576 8577 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8578 DenseMap<SDNode *, unsigned> Degree; 8579 Order.reserve(AllNodes.size()); 8580 for (auto &N : allnodes()) { 8581 unsigned NOps = N.getNumOperands(); 8582 Degree[&N] = NOps; 8583 if (0 == NOps) 8584 Order.push_back(&N); 8585 } 8586 for (size_t I = 0; I != Order.size(); ++I) { 8587 SDNode *N = Order[I]; 8588 for (auto U : N->uses()) { 8589 unsigned &UnsortedOps = Degree[U]; 8590 if (0 == --UnsortedOps) 8591 Order.push_back(U); 8592 } 8593 } 8594 } 8595 8596 #ifndef NDEBUG 8597 void SelectionDAG::VerifyDAGDiverence() { 8598 std::vector<SDNode *> TopoOrder; 8599 CreateTopologicalOrder(TopoOrder); 8600 const TargetLowering &TLI = getTargetLoweringInfo(); 8601 DenseMap<const SDNode *, bool> DivergenceMap; 8602 for (auto &N : allnodes()) { 8603 DivergenceMap[&N] = false; 8604 } 8605 for (auto N : TopoOrder) { 8606 bool IsDivergent = DivergenceMap[N]; 8607 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8608 for (auto &Op : N->ops()) { 8609 if (Op.Val.getValueType() != MVT::Other) 8610 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8611 } 8612 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8613 DivergenceMap[N] = true; 8614 } 8615 } 8616 for (auto &N : allnodes()) { 8617 (void)N; 8618 assert(DivergenceMap[&N] == N.isDivergent() && 8619 "Divergence bit inconsistency detected\n"); 8620 } 8621 } 8622 #endif 8623 8624 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8625 /// uses of other values produced by From.getNode() alone. The same value 8626 /// may appear in both the From and To list. The Deleted vector is 8627 /// handled the same way as for ReplaceAllUsesWith. 8628 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8629 const SDValue *To, 8630 unsigned Num){ 8631 // Handle the simple, trivial case efficiently. 8632 if (Num == 1) 8633 return ReplaceAllUsesOfValueWith(*From, *To); 8634 8635 transferDbgValues(*From, *To); 8636 8637 // Read up all the uses and make records of them. This helps 8638 // processing new uses that are introduced during the 8639 // replacement process. 8640 SmallVector<UseMemo, 4> Uses; 8641 for (unsigned i = 0; i != Num; ++i) { 8642 unsigned FromResNo = From[i].getResNo(); 8643 SDNode *FromNode = From[i].getNode(); 8644 for (SDNode::use_iterator UI = FromNode->use_begin(), 8645 E = FromNode->use_end(); UI != E; ++UI) { 8646 SDUse &Use = UI.getUse(); 8647 if (Use.getResNo() == FromResNo) { 8648 UseMemo Memo = { *UI, i, &Use }; 8649 Uses.push_back(Memo); 8650 } 8651 } 8652 } 8653 8654 // Sort the uses, so that all the uses from a given User are together. 8655 llvm::sort(Uses); 8656 8657 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8658 UseIndex != UseIndexEnd; ) { 8659 // We know that this user uses some value of From. If it is the right 8660 // value, update it. 8661 SDNode *User = Uses[UseIndex].User; 8662 8663 // This node is about to morph, remove its old self from the CSE maps. 8664 RemoveNodeFromCSEMaps(User); 8665 8666 // The Uses array is sorted, so all the uses for a given User 8667 // are next to each other in the list. 8668 // To help reduce the number of CSE recomputations, process all 8669 // the uses of this user that we can find this way. 8670 do { 8671 unsigned i = Uses[UseIndex].Index; 8672 SDUse &Use = *Uses[UseIndex].Use; 8673 ++UseIndex; 8674 8675 Use.set(To[i]); 8676 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8677 8678 // Now that we have modified User, add it back to the CSE maps. If it 8679 // already exists there, recursively merge the results together. 8680 AddModifiedNodeToCSEMaps(User); 8681 } 8682 } 8683 8684 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8685 /// based on their topological order. It returns the maximum id and a vector 8686 /// of the SDNodes* in assigned order by reference. 8687 unsigned SelectionDAG::AssignTopologicalOrder() { 8688 unsigned DAGSize = 0; 8689 8690 // SortedPos tracks the progress of the algorithm. Nodes before it are 8691 // sorted, nodes after it are unsorted. When the algorithm completes 8692 // it is at the end of the list. 8693 allnodes_iterator SortedPos = allnodes_begin(); 8694 8695 // Visit all the nodes. Move nodes with no operands to the front of 8696 // the list immediately. Annotate nodes that do have operands with their 8697 // operand count. Before we do this, the Node Id fields of the nodes 8698 // may contain arbitrary values. After, the Node Id fields for nodes 8699 // before SortedPos will contain the topological sort index, and the 8700 // Node Id fields for nodes At SortedPos and after will contain the 8701 // count of outstanding operands. 8702 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8703 SDNode *N = &*I++; 8704 checkForCycles(N, this); 8705 unsigned Degree = N->getNumOperands(); 8706 if (Degree == 0) { 8707 // A node with no uses, add it to the result array immediately. 8708 N->setNodeId(DAGSize++); 8709 allnodes_iterator Q(N); 8710 if (Q != SortedPos) 8711 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8712 assert(SortedPos != AllNodes.end() && "Overran node list"); 8713 ++SortedPos; 8714 } else { 8715 // Temporarily use the Node Id as scratch space for the degree count. 8716 N->setNodeId(Degree); 8717 } 8718 } 8719 8720 // Visit all the nodes. As we iterate, move nodes into sorted order, 8721 // such that by the time the end is reached all nodes will be sorted. 8722 for (SDNode &Node : allnodes()) { 8723 SDNode *N = &Node; 8724 checkForCycles(N, this); 8725 // N is in sorted position, so all its uses have one less operand 8726 // that needs to be sorted. 8727 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8728 UI != UE; ++UI) { 8729 SDNode *P = *UI; 8730 unsigned Degree = P->getNodeId(); 8731 assert(Degree != 0 && "Invalid node degree"); 8732 --Degree; 8733 if (Degree == 0) { 8734 // All of P's operands are sorted, so P may sorted now. 8735 P->setNodeId(DAGSize++); 8736 if (P->getIterator() != SortedPos) 8737 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8738 assert(SortedPos != AllNodes.end() && "Overran node list"); 8739 ++SortedPos; 8740 } else { 8741 // Update P's outstanding operand count. 8742 P->setNodeId(Degree); 8743 } 8744 } 8745 if (Node.getIterator() == SortedPos) { 8746 #ifndef NDEBUG 8747 allnodes_iterator I(N); 8748 SDNode *S = &*++I; 8749 dbgs() << "Overran sorted position:\n"; 8750 S->dumprFull(this); dbgs() << "\n"; 8751 dbgs() << "Checking if this is due to cycles\n"; 8752 checkForCycles(this, true); 8753 #endif 8754 llvm_unreachable(nullptr); 8755 } 8756 } 8757 8758 assert(SortedPos == AllNodes.end() && 8759 "Topological sort incomplete!"); 8760 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8761 "First node in topological sort is not the entry token!"); 8762 assert(AllNodes.front().getNodeId() == 0 && 8763 "First node in topological sort has non-zero id!"); 8764 assert(AllNodes.front().getNumOperands() == 0 && 8765 "First node in topological sort has operands!"); 8766 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8767 "Last node in topologic sort has unexpected id!"); 8768 assert(AllNodes.back().use_empty() && 8769 "Last node in topologic sort has users!"); 8770 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8771 return DAGSize; 8772 } 8773 8774 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8775 /// value is produced by SD. 8776 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8777 if (SD) { 8778 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8779 SD->setHasDebugValue(true); 8780 } 8781 DbgInfo->add(DB, SD, isParameter); 8782 } 8783 8784 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8785 DbgInfo->add(DB); 8786 } 8787 8788 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8789 SDValue NewMemOp) { 8790 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8791 // The new memory operation must have the same position as the old load in 8792 // terms of memory dependency. Create a TokenFactor for the old load and new 8793 // memory operation and update uses of the old load's output chain to use that 8794 // TokenFactor. 8795 SDValue OldChain = SDValue(OldLoad, 1); 8796 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8797 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8798 return NewChain; 8799 8800 SDValue TokenFactor = 8801 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8802 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8803 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8804 return TokenFactor; 8805 } 8806 8807 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8808 Function **OutFunction) { 8809 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8810 8811 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8812 auto *Module = MF->getFunction().getParent(); 8813 auto *Function = Module->getFunction(Symbol); 8814 8815 if (OutFunction != nullptr) 8816 *OutFunction = Function; 8817 8818 if (Function != nullptr) { 8819 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8820 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8821 } 8822 8823 std::string ErrorStr; 8824 raw_string_ostream ErrorFormatter(ErrorStr); 8825 8826 ErrorFormatter << "Undefined external symbol "; 8827 ErrorFormatter << '"' << Symbol << '"'; 8828 ErrorFormatter.flush(); 8829 8830 report_fatal_error(ErrorStr); 8831 } 8832 8833 //===----------------------------------------------------------------------===// 8834 // SDNode Class 8835 //===----------------------------------------------------------------------===// 8836 8837 bool llvm::isNullConstant(SDValue V) { 8838 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8839 return Const != nullptr && Const->isNullValue(); 8840 } 8841 8842 bool llvm::isNullFPConstant(SDValue V) { 8843 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8844 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8845 } 8846 8847 bool llvm::isAllOnesConstant(SDValue V) { 8848 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8849 return Const != nullptr && Const->isAllOnesValue(); 8850 } 8851 8852 bool llvm::isOneConstant(SDValue V) { 8853 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8854 return Const != nullptr && Const->isOne(); 8855 } 8856 8857 SDValue llvm::peekThroughBitcasts(SDValue V) { 8858 while (V.getOpcode() == ISD::BITCAST) 8859 V = V.getOperand(0); 8860 return V; 8861 } 8862 8863 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8864 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8865 V = V.getOperand(0); 8866 return V; 8867 } 8868 8869 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8870 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8871 V = V.getOperand(0); 8872 return V; 8873 } 8874 8875 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8876 if (V.getOpcode() != ISD::XOR) 8877 return false; 8878 V = peekThroughBitcasts(V.getOperand(1)); 8879 unsigned NumBits = V.getScalarValueSizeInBits(); 8880 ConstantSDNode *C = 8881 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8882 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8883 } 8884 8885 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8886 bool AllowTruncation) { 8887 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8888 return CN; 8889 8890 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8891 BitVector UndefElements; 8892 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8893 8894 // BuildVectors can truncate their operands. Ignore that case here unless 8895 // AllowTruncation is set. 8896 if (CN && (UndefElements.none() || AllowUndefs)) { 8897 EVT CVT = CN->getValueType(0); 8898 EVT NSVT = N.getValueType().getScalarType(); 8899 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8900 if (AllowTruncation || (CVT == NSVT)) 8901 return CN; 8902 } 8903 } 8904 8905 return nullptr; 8906 } 8907 8908 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8909 bool AllowUndefs, 8910 bool AllowTruncation) { 8911 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8912 return CN; 8913 8914 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8915 BitVector UndefElements; 8916 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8917 8918 // BuildVectors can truncate their operands. Ignore that case here unless 8919 // AllowTruncation is set. 8920 if (CN && (UndefElements.none() || AllowUndefs)) { 8921 EVT CVT = CN->getValueType(0); 8922 EVT NSVT = N.getValueType().getScalarType(); 8923 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8924 if (AllowTruncation || (CVT == NSVT)) 8925 return CN; 8926 } 8927 } 8928 8929 return nullptr; 8930 } 8931 8932 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8933 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8934 return CN; 8935 8936 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8937 BitVector UndefElements; 8938 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8939 if (CN && (UndefElements.none() || AllowUndefs)) 8940 return CN; 8941 } 8942 8943 return nullptr; 8944 } 8945 8946 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8947 const APInt &DemandedElts, 8948 bool AllowUndefs) { 8949 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8950 return CN; 8951 8952 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8953 BitVector UndefElements; 8954 ConstantFPSDNode *CN = 8955 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8956 if (CN && (UndefElements.none() || AllowUndefs)) 8957 return CN; 8958 } 8959 8960 return nullptr; 8961 } 8962 8963 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8964 // TODO: may want to use peekThroughBitcast() here. 8965 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8966 return C && C->isNullValue(); 8967 } 8968 8969 bool llvm::isOneOrOneSplat(SDValue N) { 8970 // TODO: may want to use peekThroughBitcast() here. 8971 unsigned BitWidth = N.getScalarValueSizeInBits(); 8972 ConstantSDNode *C = isConstOrConstSplat(N); 8973 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8974 } 8975 8976 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8977 N = peekThroughBitcasts(N); 8978 unsigned BitWidth = N.getScalarValueSizeInBits(); 8979 ConstantSDNode *C = isConstOrConstSplat(N); 8980 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8981 } 8982 8983 HandleSDNode::~HandleSDNode() { 8984 DropOperands(); 8985 } 8986 8987 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8988 const DebugLoc &DL, 8989 const GlobalValue *GA, EVT VT, 8990 int64_t o, unsigned TF) 8991 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8992 TheGlobal = GA; 8993 } 8994 8995 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8996 EVT VT, unsigned SrcAS, 8997 unsigned DestAS) 8998 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8999 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9000 9001 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9002 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9003 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9004 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9005 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9006 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9007 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9008 9009 // We check here that the size of the memory operand fits within the size of 9010 // the MMO. This is because the MMO might indicate only a possible address 9011 // range instead of specifying the affected memory addresses precisely. 9012 // TODO: Make MachineMemOperands aware of scalable vectors. 9013 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9014 "Size mismatch!"); 9015 } 9016 9017 /// Profile - Gather unique data for the node. 9018 /// 9019 void SDNode::Profile(FoldingSetNodeID &ID) const { 9020 AddNodeIDNode(ID, this); 9021 } 9022 9023 namespace { 9024 9025 struct EVTArray { 9026 std::vector<EVT> VTs; 9027 9028 EVTArray() { 9029 VTs.reserve(MVT::LAST_VALUETYPE); 9030 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9031 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9032 } 9033 }; 9034 9035 } // end anonymous namespace 9036 9037 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9038 static ManagedStatic<EVTArray> SimpleVTArray; 9039 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9040 9041 /// getValueTypeList - Return a pointer to the specified value type. 9042 /// 9043 const EVT *SDNode::getValueTypeList(EVT VT) { 9044 if (VT.isExtended()) { 9045 sys::SmartScopedLock<true> Lock(*VTMutex); 9046 return &(*EVTs->insert(VT).first); 9047 } else { 9048 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9049 "Value type out of range!"); 9050 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9051 } 9052 } 9053 9054 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9055 /// indicated value. This method ignores uses of other values defined by this 9056 /// operation. 9057 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9058 assert(Value < getNumValues() && "Bad value!"); 9059 9060 // TODO: Only iterate over uses of a given value of the node 9061 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9062 if (UI.getUse().getResNo() == Value) { 9063 if (NUses == 0) 9064 return false; 9065 --NUses; 9066 } 9067 } 9068 9069 // Found exactly the right number of uses? 9070 return NUses == 0; 9071 } 9072 9073 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9074 /// value. This method ignores uses of other values defined by this operation. 9075 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9076 assert(Value < getNumValues() && "Bad value!"); 9077 9078 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9079 if (UI.getUse().getResNo() == Value) 9080 return true; 9081 9082 return false; 9083 } 9084 9085 /// isOnlyUserOf - Return true if this node is the only use of N. 9086 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9087 bool Seen = false; 9088 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9089 SDNode *User = *I; 9090 if (User == this) 9091 Seen = true; 9092 else 9093 return false; 9094 } 9095 9096 return Seen; 9097 } 9098 9099 /// Return true if the only users of N are contained in Nodes. 9100 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9101 bool Seen = false; 9102 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9103 SDNode *User = *I; 9104 if (llvm::any_of(Nodes, 9105 [&User](const SDNode *Node) { return User == Node; })) 9106 Seen = true; 9107 else 9108 return false; 9109 } 9110 9111 return Seen; 9112 } 9113 9114 /// isOperand - Return true if this node is an operand of N. 9115 bool SDValue::isOperandOf(const SDNode *N) const { 9116 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9117 } 9118 9119 bool SDNode::isOperandOf(const SDNode *N) const { 9120 return any_of(N->op_values(), 9121 [this](SDValue Op) { return this == Op.getNode(); }); 9122 } 9123 9124 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9125 /// be a chain) reaches the specified operand without crossing any 9126 /// side-effecting instructions on any chain path. In practice, this looks 9127 /// through token factors and non-volatile loads. In order to remain efficient, 9128 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9129 /// 9130 /// Note that we only need to examine chains when we're searching for 9131 /// side-effects; SelectionDAG requires that all side-effects are represented 9132 /// by chains, even if another operand would force a specific ordering. This 9133 /// constraint is necessary to allow transformations like splitting loads. 9134 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9135 unsigned Depth) const { 9136 if (*this == Dest) return true; 9137 9138 // Don't search too deeply, we just want to be able to see through 9139 // TokenFactor's etc. 9140 if (Depth == 0) return false; 9141 9142 // If this is a token factor, all inputs to the TF happen in parallel. 9143 if (getOpcode() == ISD::TokenFactor) { 9144 // First, try a shallow search. 9145 if (is_contained((*this)->ops(), Dest)) { 9146 // We found the chain we want as an operand of this TokenFactor. 9147 // Essentially, we reach the chain without side-effects if we could 9148 // serialize the TokenFactor into a simple chain of operations with 9149 // Dest as the last operation. This is automatically true if the 9150 // chain has one use: there are no other ordering constraints. 9151 // If the chain has more than one use, we give up: some other 9152 // use of Dest might force a side-effect between Dest and the current 9153 // node. 9154 if (Dest.hasOneUse()) 9155 return true; 9156 } 9157 // Next, try a deep search: check whether every operand of the TokenFactor 9158 // reaches Dest. 9159 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9160 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9161 }); 9162 } 9163 9164 // Loads don't have side effects, look through them. 9165 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9166 if (Ld->isUnordered()) 9167 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9168 } 9169 return false; 9170 } 9171 9172 bool SDNode::hasPredecessor(const SDNode *N) const { 9173 SmallPtrSet<const SDNode *, 32> Visited; 9174 SmallVector<const SDNode *, 16> Worklist; 9175 Worklist.push_back(this); 9176 return hasPredecessorHelper(N, Visited, Worklist); 9177 } 9178 9179 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9180 this->Flags.intersectWith(Flags); 9181 } 9182 9183 SDValue 9184 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9185 ArrayRef<ISD::NodeType> CandidateBinOps, 9186 bool AllowPartials) { 9187 // The pattern must end in an extract from index 0. 9188 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9189 !isNullConstant(Extract->getOperand(1))) 9190 return SDValue(); 9191 9192 // Match against one of the candidate binary ops. 9193 SDValue Op = Extract->getOperand(0); 9194 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9195 return Op.getOpcode() == unsigned(BinOp); 9196 })) 9197 return SDValue(); 9198 9199 // Floating-point reductions may require relaxed constraints on the final step 9200 // of the reduction because they may reorder intermediate operations. 9201 unsigned CandidateBinOp = Op.getOpcode(); 9202 if (Op.getValueType().isFloatingPoint()) { 9203 SDNodeFlags Flags = Op->getFlags(); 9204 switch (CandidateBinOp) { 9205 case ISD::FADD: 9206 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9207 return SDValue(); 9208 break; 9209 default: 9210 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9211 } 9212 } 9213 9214 // Matching failed - attempt to see if we did enough stages that a partial 9215 // reduction from a subvector is possible. 9216 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9217 if (!AllowPartials || !Op) 9218 return SDValue(); 9219 EVT OpVT = Op.getValueType(); 9220 EVT OpSVT = OpVT.getScalarType(); 9221 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9222 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9223 return SDValue(); 9224 BinOp = (ISD::NodeType)CandidateBinOp; 9225 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9226 getVectorIdxConstant(0, SDLoc(Op))); 9227 }; 9228 9229 // At each stage, we're looking for something that looks like: 9230 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9231 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9232 // i32 undef, i32 undef, i32 undef, i32 undef> 9233 // %a = binop <8 x i32> %op, %s 9234 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9235 // we expect something like: 9236 // <4,5,6,7,u,u,u,u> 9237 // <2,3,u,u,u,u,u,u> 9238 // <1,u,u,u,u,u,u,u> 9239 // While a partial reduction match would be: 9240 // <2,3,u,u,u,u,u,u> 9241 // <1,u,u,u,u,u,u,u> 9242 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9243 SDValue PrevOp; 9244 for (unsigned i = 0; i < Stages; ++i) { 9245 unsigned MaskEnd = (1 << i); 9246 9247 if (Op.getOpcode() != CandidateBinOp) 9248 return PartialReduction(PrevOp, MaskEnd); 9249 9250 SDValue Op0 = Op.getOperand(0); 9251 SDValue Op1 = Op.getOperand(1); 9252 9253 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9254 if (Shuffle) { 9255 Op = Op1; 9256 } else { 9257 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9258 Op = Op0; 9259 } 9260 9261 // The first operand of the shuffle should be the same as the other operand 9262 // of the binop. 9263 if (!Shuffle || Shuffle->getOperand(0) != Op) 9264 return PartialReduction(PrevOp, MaskEnd); 9265 9266 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9267 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9268 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9269 return PartialReduction(PrevOp, MaskEnd); 9270 9271 PrevOp = Op; 9272 } 9273 9274 BinOp = (ISD::NodeType)CandidateBinOp; 9275 return Op; 9276 } 9277 9278 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9279 assert(N->getNumValues() == 1 && 9280 "Can't unroll a vector with multiple results!"); 9281 9282 EVT VT = N->getValueType(0); 9283 unsigned NE = VT.getVectorNumElements(); 9284 EVT EltVT = VT.getVectorElementType(); 9285 SDLoc dl(N); 9286 9287 SmallVector<SDValue, 8> Scalars; 9288 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9289 9290 // If ResNE is 0, fully unroll the vector op. 9291 if (ResNE == 0) 9292 ResNE = NE; 9293 else if (NE > ResNE) 9294 NE = ResNE; 9295 9296 unsigned i; 9297 for (i= 0; i != NE; ++i) { 9298 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9299 SDValue Operand = N->getOperand(j); 9300 EVT OperandVT = Operand.getValueType(); 9301 if (OperandVT.isVector()) { 9302 // A vector operand; extract a single element. 9303 EVT OperandEltVT = OperandVT.getVectorElementType(); 9304 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9305 Operand, getVectorIdxConstant(i, dl)); 9306 } else { 9307 // A scalar operand; just use it as is. 9308 Operands[j] = Operand; 9309 } 9310 } 9311 9312 switch (N->getOpcode()) { 9313 default: { 9314 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9315 N->getFlags())); 9316 break; 9317 } 9318 case ISD::VSELECT: 9319 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9320 break; 9321 case ISD::SHL: 9322 case ISD::SRA: 9323 case ISD::SRL: 9324 case ISD::ROTL: 9325 case ISD::ROTR: 9326 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9327 getShiftAmountOperand(Operands[0].getValueType(), 9328 Operands[1]))); 9329 break; 9330 case ISD::SIGN_EXTEND_INREG: { 9331 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9332 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9333 Operands[0], 9334 getValueType(ExtVT))); 9335 } 9336 } 9337 } 9338 9339 for (; i < ResNE; ++i) 9340 Scalars.push_back(getUNDEF(EltVT)); 9341 9342 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9343 return getBuildVector(VecVT, dl, Scalars); 9344 } 9345 9346 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9347 SDNode *N, unsigned ResNE) { 9348 unsigned Opcode = N->getOpcode(); 9349 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9350 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9351 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9352 "Expected an overflow opcode"); 9353 9354 EVT ResVT = N->getValueType(0); 9355 EVT OvVT = N->getValueType(1); 9356 EVT ResEltVT = ResVT.getVectorElementType(); 9357 EVT OvEltVT = OvVT.getVectorElementType(); 9358 SDLoc dl(N); 9359 9360 // If ResNE is 0, fully unroll the vector op. 9361 unsigned NE = ResVT.getVectorNumElements(); 9362 if (ResNE == 0) 9363 ResNE = NE; 9364 else if (NE > ResNE) 9365 NE = ResNE; 9366 9367 SmallVector<SDValue, 8> LHSScalars; 9368 SmallVector<SDValue, 8> RHSScalars; 9369 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9370 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9371 9372 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9373 SDVTList VTs = getVTList(ResEltVT, SVT); 9374 SmallVector<SDValue, 8> ResScalars; 9375 SmallVector<SDValue, 8> OvScalars; 9376 for (unsigned i = 0; i < NE; ++i) { 9377 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9378 SDValue Ov = 9379 getSelect(dl, OvEltVT, Res.getValue(1), 9380 getBoolConstant(true, dl, OvEltVT, ResVT), 9381 getConstant(0, dl, OvEltVT)); 9382 9383 ResScalars.push_back(Res); 9384 OvScalars.push_back(Ov); 9385 } 9386 9387 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9388 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9389 9390 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9391 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9392 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9393 getBuildVector(NewOvVT, dl, OvScalars)); 9394 } 9395 9396 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9397 LoadSDNode *Base, 9398 unsigned Bytes, 9399 int Dist) const { 9400 if (LD->isVolatile() || Base->isVolatile()) 9401 return false; 9402 // TODO: probably too restrictive for atomics, revisit 9403 if (!LD->isSimple()) 9404 return false; 9405 if (LD->isIndexed() || Base->isIndexed()) 9406 return false; 9407 if (LD->getChain() != Base->getChain()) 9408 return false; 9409 EVT VT = LD->getValueType(0); 9410 if (VT.getSizeInBits() / 8 != Bytes) 9411 return false; 9412 9413 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9414 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9415 9416 int64_t Offset = 0; 9417 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9418 return (Dist * Bytes == Offset); 9419 return false; 9420 } 9421 9422 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9423 /// it cannot be inferred. 9424 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9425 // If this is a GlobalAddress + cst, return the alignment. 9426 const GlobalValue *GV = nullptr; 9427 int64_t GVOffset = 0; 9428 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9429 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9430 KnownBits Known(PtrWidth); 9431 llvm::computeKnownBits(GV, Known, getDataLayout()); 9432 unsigned AlignBits = Known.countMinTrailingZeros(); 9433 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9434 if (Align) 9435 return MinAlign(Align, GVOffset); 9436 } 9437 9438 // If this is a direct reference to a stack slot, use information about the 9439 // stack slot's alignment. 9440 int FrameIdx = INT_MIN; 9441 int64_t FrameOffset = 0; 9442 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9443 FrameIdx = FI->getIndex(); 9444 } else if (isBaseWithConstantOffset(Ptr) && 9445 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9446 // Handle FI+Cst 9447 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9448 FrameOffset = Ptr.getConstantOperandVal(1); 9449 } 9450 9451 if (FrameIdx != INT_MIN) { 9452 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9453 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9454 FrameOffset); 9455 return FIInfoAlign; 9456 } 9457 9458 return 0; 9459 } 9460 9461 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9462 /// which is split (or expanded) into two not necessarily identical pieces. 9463 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9464 // Currently all types are split in half. 9465 EVT LoVT, HiVT; 9466 if (!VT.isVector()) 9467 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9468 else 9469 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9470 9471 return std::make_pair(LoVT, HiVT); 9472 } 9473 9474 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9475 /// low/high part. 9476 std::pair<SDValue, SDValue> 9477 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9478 const EVT &HiVT) { 9479 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9480 N.getValueType().getVectorNumElements() && 9481 "More vector elements requested than available!"); 9482 SDValue Lo, Hi; 9483 Lo = 9484 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9485 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9486 getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); 9487 return std::make_pair(Lo, Hi); 9488 } 9489 9490 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9491 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9492 EVT VT = N.getValueType(); 9493 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9494 NextPowerOf2(VT.getVectorNumElements())); 9495 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9496 getVectorIdxConstant(0, DL)); 9497 } 9498 9499 void SelectionDAG::ExtractVectorElements(SDValue Op, 9500 SmallVectorImpl<SDValue> &Args, 9501 unsigned Start, unsigned Count, 9502 EVT EltVT) { 9503 EVT VT = Op.getValueType(); 9504 if (Count == 0) 9505 Count = VT.getVectorNumElements(); 9506 if (EltVT == EVT()) 9507 EltVT = VT.getVectorElementType(); 9508 SDLoc SL(Op); 9509 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9510 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9511 getVectorIdxConstant(i, SL))); 9512 } 9513 } 9514 9515 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9516 unsigned GlobalAddressSDNode::getAddressSpace() const { 9517 return getGlobal()->getType()->getAddressSpace(); 9518 } 9519 9520 Type *ConstantPoolSDNode::getType() const { 9521 if (isMachineConstantPoolEntry()) 9522 return Val.MachineCPVal->getType(); 9523 return Val.ConstVal->getType(); 9524 } 9525 9526 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9527 unsigned &SplatBitSize, 9528 bool &HasAnyUndefs, 9529 unsigned MinSplatBits, 9530 bool IsBigEndian) const { 9531 EVT VT = getValueType(0); 9532 assert(VT.isVector() && "Expected a vector type"); 9533 unsigned VecWidth = VT.getSizeInBits(); 9534 if (MinSplatBits > VecWidth) 9535 return false; 9536 9537 // FIXME: The widths are based on this node's type, but build vectors can 9538 // truncate their operands. 9539 SplatValue = APInt(VecWidth, 0); 9540 SplatUndef = APInt(VecWidth, 0); 9541 9542 // Get the bits. Bits with undefined values (when the corresponding element 9543 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9544 // in SplatValue. If any of the values are not constant, give up and return 9545 // false. 9546 unsigned int NumOps = getNumOperands(); 9547 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9548 unsigned EltWidth = VT.getScalarSizeInBits(); 9549 9550 for (unsigned j = 0; j < NumOps; ++j) { 9551 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9552 SDValue OpVal = getOperand(i); 9553 unsigned BitPos = j * EltWidth; 9554 9555 if (OpVal.isUndef()) 9556 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9557 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9558 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9559 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9560 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9561 else 9562 return false; 9563 } 9564 9565 // The build_vector is all constants or undefs. Find the smallest element 9566 // size that splats the vector. 9567 HasAnyUndefs = (SplatUndef != 0); 9568 9569 // FIXME: This does not work for vectors with elements less than 8 bits. 9570 while (VecWidth > 8) { 9571 unsigned HalfSize = VecWidth / 2; 9572 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9573 APInt LowValue = SplatValue.trunc(HalfSize); 9574 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9575 APInt LowUndef = SplatUndef.trunc(HalfSize); 9576 9577 // If the two halves do not match (ignoring undef bits), stop here. 9578 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9579 MinSplatBits > HalfSize) 9580 break; 9581 9582 SplatValue = HighValue | LowValue; 9583 SplatUndef = HighUndef & LowUndef; 9584 9585 VecWidth = HalfSize; 9586 } 9587 9588 SplatBitSize = VecWidth; 9589 return true; 9590 } 9591 9592 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9593 BitVector *UndefElements) const { 9594 if (UndefElements) { 9595 UndefElements->clear(); 9596 UndefElements->resize(getNumOperands()); 9597 } 9598 assert(getNumOperands() == DemandedElts.getBitWidth() && 9599 "Unexpected vector size"); 9600 if (!DemandedElts) 9601 return SDValue(); 9602 SDValue Splatted; 9603 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9604 if (!DemandedElts[i]) 9605 continue; 9606 SDValue Op = getOperand(i); 9607 if (Op.isUndef()) { 9608 if (UndefElements) 9609 (*UndefElements)[i] = true; 9610 } else if (!Splatted) { 9611 Splatted = Op; 9612 } else if (Splatted != Op) { 9613 return SDValue(); 9614 } 9615 } 9616 9617 if (!Splatted) { 9618 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9619 assert(getOperand(FirstDemandedIdx).isUndef() && 9620 "Can only have a splat without a constant for all undefs."); 9621 return getOperand(FirstDemandedIdx); 9622 } 9623 9624 return Splatted; 9625 } 9626 9627 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9628 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9629 return getSplatValue(DemandedElts, UndefElements); 9630 } 9631 9632 ConstantSDNode * 9633 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9634 BitVector *UndefElements) const { 9635 return dyn_cast_or_null<ConstantSDNode>( 9636 getSplatValue(DemandedElts, UndefElements)); 9637 } 9638 9639 ConstantSDNode * 9640 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9641 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9642 } 9643 9644 ConstantFPSDNode * 9645 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9646 BitVector *UndefElements) const { 9647 return dyn_cast_or_null<ConstantFPSDNode>( 9648 getSplatValue(DemandedElts, UndefElements)); 9649 } 9650 9651 ConstantFPSDNode * 9652 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9653 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9654 } 9655 9656 int32_t 9657 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9658 uint32_t BitWidth) const { 9659 if (ConstantFPSDNode *CN = 9660 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9661 bool IsExact; 9662 APSInt IntVal(BitWidth); 9663 const APFloat &APF = CN->getValueAPF(); 9664 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9665 APFloat::opOK || 9666 !IsExact) 9667 return -1; 9668 9669 return IntVal.exactLogBase2(); 9670 } 9671 return -1; 9672 } 9673 9674 bool BuildVectorSDNode::isConstant() const { 9675 for (const SDValue &Op : op_values()) { 9676 unsigned Opc = Op.getOpcode(); 9677 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9678 return false; 9679 } 9680 return true; 9681 } 9682 9683 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9684 // Find the first non-undef value in the shuffle mask. 9685 unsigned i, e; 9686 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9687 /* search */; 9688 9689 // If all elements are undefined, this shuffle can be considered a splat 9690 // (although it should eventually get simplified away completely). 9691 if (i == e) 9692 return true; 9693 9694 // Make sure all remaining elements are either undef or the same as the first 9695 // non-undef value. 9696 for (int Idx = Mask[i]; i != e; ++i) 9697 if (Mask[i] >= 0 && Mask[i] != Idx) 9698 return false; 9699 return true; 9700 } 9701 9702 // Returns the SDNode if it is a constant integer BuildVector 9703 // or constant integer. 9704 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9705 if (isa<ConstantSDNode>(N)) 9706 return N.getNode(); 9707 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9708 return N.getNode(); 9709 // Treat a GlobalAddress supporting constant offset folding as a 9710 // constant integer. 9711 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9712 if (GA->getOpcode() == ISD::GlobalAddress && 9713 TLI->isOffsetFoldingLegal(GA)) 9714 return GA; 9715 return nullptr; 9716 } 9717 9718 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9719 if (isa<ConstantFPSDNode>(N)) 9720 return N.getNode(); 9721 9722 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9723 return N.getNode(); 9724 9725 return nullptr; 9726 } 9727 9728 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9729 assert(!Node->OperandList && "Node already has operands"); 9730 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9731 "too many operands to fit into SDNode"); 9732 SDUse *Ops = OperandRecycler.allocate( 9733 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9734 9735 bool IsDivergent = false; 9736 for (unsigned I = 0; I != Vals.size(); ++I) { 9737 Ops[I].setUser(Node); 9738 Ops[I].setInitial(Vals[I]); 9739 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9740 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9741 } 9742 Node->NumOperands = Vals.size(); 9743 Node->OperandList = Ops; 9744 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9745 if (!TLI->isSDNodeAlwaysUniform(Node)) 9746 Node->SDNodeBits.IsDivergent = IsDivergent; 9747 checkForCycles(Node); 9748 } 9749 9750 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9751 SmallVectorImpl<SDValue> &Vals) { 9752 size_t Limit = SDNode::getMaxNumOperands(); 9753 while (Vals.size() > Limit) { 9754 unsigned SliceIdx = Vals.size() - Limit; 9755 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9756 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9757 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9758 Vals.emplace_back(NewTF); 9759 } 9760 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9761 } 9762 9763 #ifndef NDEBUG 9764 static void checkForCyclesHelper(const SDNode *N, 9765 SmallPtrSetImpl<const SDNode*> &Visited, 9766 SmallPtrSetImpl<const SDNode*> &Checked, 9767 const llvm::SelectionDAG *DAG) { 9768 // If this node has already been checked, don't check it again. 9769 if (Checked.count(N)) 9770 return; 9771 9772 // If a node has already been visited on this depth-first walk, reject it as 9773 // a cycle. 9774 if (!Visited.insert(N).second) { 9775 errs() << "Detected cycle in SelectionDAG\n"; 9776 dbgs() << "Offending node:\n"; 9777 N->dumprFull(DAG); dbgs() << "\n"; 9778 abort(); 9779 } 9780 9781 for (const SDValue &Op : N->op_values()) 9782 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9783 9784 Checked.insert(N); 9785 Visited.erase(N); 9786 } 9787 #endif 9788 9789 void llvm::checkForCycles(const llvm::SDNode *N, 9790 const llvm::SelectionDAG *DAG, 9791 bool force) { 9792 #ifndef NDEBUG 9793 bool check = force; 9794 #ifdef EXPENSIVE_CHECKS 9795 check = true; 9796 #endif // EXPENSIVE_CHECKS 9797 if (check) { 9798 assert(N && "Checking nonexistent SDNode"); 9799 SmallPtrSet<const SDNode*, 32> visited; 9800 SmallPtrSet<const SDNode*, 32> checked; 9801 checkForCyclesHelper(N, visited, checked, DAG); 9802 } 9803 #endif // !NDEBUG 9804 } 9805 9806 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9807 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9808 } 9809