1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/TargetLowering.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/CodeGen/ValueTypes.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CodeGen.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/KnownBits.h" 61 #include "llvm/Support/ManagedStatic.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/Mutex.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <cstdlib> 71 #include <limits> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 /// makeVTList - Return an instance of the SDVTList struct initialized with the 80 /// specified members. 81 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 82 SDVTList Res = {VTs, NumVTs}; 83 return Res; 84 } 85 86 // Default null implementations of the callbacks. 87 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 89 90 #define DEBUG_TYPE "selectiondag" 91 92 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 93 DEBUG( 94 dbgs() << Msg; 95 V.getNode()->dump(G); 96 ); 97 } 98 99 //===----------------------------------------------------------------------===// 100 // ConstantFPSDNode Class 101 //===----------------------------------------------------------------------===// 102 103 /// isExactlyValue - We don't rely on operator== working on double values, as 104 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 105 /// As such, this method can be used to do an exact bit-for-bit comparison of 106 /// two floating point values. 107 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 108 return getValueAPF().bitwiseIsEqual(V); 109 } 110 111 bool ConstantFPSDNode::isValueValidForType(EVT VT, 112 const APFloat& Val) { 113 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 114 115 // convert modifies in place, so make a copy. 116 APFloat Val2 = APFloat(Val); 117 bool losesInfo; 118 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 119 APFloat::rmNearestTiesToEven, 120 &losesInfo); 121 return !losesInfo; 122 } 123 124 //===----------------------------------------------------------------------===// 125 // ISD Namespace 126 //===----------------------------------------------------------------------===// 127 128 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 129 auto *BV = dyn_cast<BuildVectorSDNode>(N); 130 if (!BV) 131 return false; 132 133 APInt SplatUndef; 134 unsigned SplatBitSize; 135 bool HasUndefs; 136 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 137 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 138 EltSize) && 139 EltSize == SplatBitSize; 140 } 141 142 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 143 // specializations of the more general isConstantSplatVector()? 144 145 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 146 // Look through a bit convert. 147 while (N->getOpcode() == ISD::BITCAST) 148 N = N->getOperand(0).getNode(); 149 150 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 151 152 unsigned i = 0, e = N->getNumOperands(); 153 154 // Skip over all of the undef values. 155 while (i != e && N->getOperand(i).isUndef()) 156 ++i; 157 158 // Do not accept an all-undef vector. 159 if (i == e) return false; 160 161 // Do not accept build_vectors that aren't all constants or which have non-~0 162 // elements. We have to be a bit careful here, as the type of the constant 163 // may not be the same as the type of the vector elements due to type 164 // legalization (the elements are promoted to a legal type for the target and 165 // a vector of a type may be legal when the base element type is not). 166 // We only want to check enough bits to cover the vector elements, because 167 // we care if the resultant vector is all ones, not whether the individual 168 // constants are. 169 SDValue NotZero = N->getOperand(i); 170 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 171 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 172 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 173 return false; 174 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 175 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 176 return false; 177 } else 178 return false; 179 180 // Okay, we have at least one ~0 value, check to see if the rest match or are 181 // undefs. Even with the above element type twiddling, this should be OK, as 182 // the same type legalization should have applied to all the elements. 183 for (++i; i != e; ++i) 184 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 185 return false; 186 return true; 187 } 188 189 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 190 // Look through a bit convert. 191 while (N->getOpcode() == ISD::BITCAST) 192 N = N->getOperand(0).getNode(); 193 194 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 195 196 bool IsAllUndef = true; 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 IsAllUndef = false; 201 // Do not accept build_vectors that aren't all constants or which have non-0 202 // elements. We have to be a bit careful here, as the type of the constant 203 // may not be the same as the type of the vector elements due to type 204 // legalization (the elements are promoted to a legal type for the target 205 // and a vector of a type may be legal when the base element type is not). 206 // We only want to check enough bits to cover the vector elements, because 207 // we care if the resultant vector is all zeros, not whether the individual 208 // constants are. 209 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 210 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 211 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 212 return false; 213 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 214 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 215 return false; 216 } else 217 return false; 218 } 219 220 // Do not accept an all-undef vector. 221 if (IsAllUndef) 222 return false; 223 return true; 224 } 225 226 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 227 if (N->getOpcode() != ISD::BUILD_VECTOR) 228 return false; 229 230 for (const SDValue &Op : N->op_values()) { 231 if (Op.isUndef()) 232 continue; 233 if (!isa<ConstantSDNode>(Op)) 234 return false; 235 } 236 return true; 237 } 238 239 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 240 if (N->getOpcode() != ISD::BUILD_VECTOR) 241 return false; 242 243 for (const SDValue &Op : N->op_values()) { 244 if (Op.isUndef()) 245 continue; 246 if (!isa<ConstantFPSDNode>(Op)) 247 return false; 248 } 249 return true; 250 } 251 252 bool ISD::allOperandsUndef(const SDNode *N) { 253 // Return false if the node has no operands. 254 // This is "logically inconsistent" with the definition of "all" but 255 // is probably the desired behavior. 256 if (N->getNumOperands() == 0) 257 return false; 258 259 for (const SDValue &Op : N->op_values()) 260 if (!Op.isUndef()) 261 return false; 262 263 return true; 264 } 265 266 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 267 switch (ExtType) { 268 case ISD::EXTLOAD: 269 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 270 case ISD::SEXTLOAD: 271 return ISD::SIGN_EXTEND; 272 case ISD::ZEXTLOAD: 273 return ISD::ZERO_EXTEND; 274 default: 275 break; 276 } 277 278 llvm_unreachable("Invalid LoadExtType"); 279 } 280 281 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 282 // To perform this operation, we just need to swap the L and G bits of the 283 // operation. 284 unsigned OldL = (Operation >> 2) & 1; 285 unsigned OldG = (Operation >> 1) & 1; 286 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 287 (OldL << 1) | // New G bit 288 (OldG << 2)); // New L bit. 289 } 290 291 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 292 unsigned Operation = Op; 293 if (isInteger) 294 Operation ^= 7; // Flip L, G, E bits, but not U. 295 else 296 Operation ^= 15; // Flip all of the condition bits. 297 298 if (Operation > ISD::SETTRUE2) 299 Operation &= ~8; // Don't let N and U bits get set. 300 301 return ISD::CondCode(Operation); 302 } 303 304 /// For an integer comparison, return 1 if the comparison is a signed operation 305 /// and 2 if the result is an unsigned comparison. Return zero if the operation 306 /// does not depend on the sign of the input (setne and seteq). 307 static int isSignedOp(ISD::CondCode Opcode) { 308 switch (Opcode) { 309 default: llvm_unreachable("Illegal integer setcc operation!"); 310 case ISD::SETEQ: 311 case ISD::SETNE: return 0; 312 case ISD::SETLT: 313 case ISD::SETLE: 314 case ISD::SETGT: 315 case ISD::SETGE: return 1; 316 case ISD::SETULT: 317 case ISD::SETULE: 318 case ISD::SETUGT: 319 case ISD::SETUGE: return 2; 320 } 321 } 322 323 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 324 bool IsInteger) { 325 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 326 // Cannot fold a signed integer setcc with an unsigned integer setcc. 327 return ISD::SETCC_INVALID; 328 329 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 330 331 // If the N and U bits get set, then the resultant comparison DOES suddenly 332 // care about orderedness, and it is true when ordered. 333 if (Op > ISD::SETTRUE2) 334 Op &= ~16; // Clear the U bit if the N bit is set. 335 336 // Canonicalize illegal integer setcc's. 337 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 338 Op = ISD::SETNE; 339 340 return ISD::CondCode(Op); 341 } 342 343 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 344 bool IsInteger) { 345 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 346 // Cannot fold a signed setcc with an unsigned setcc. 347 return ISD::SETCC_INVALID; 348 349 // Combine all of the condition bits. 350 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 351 352 // Canonicalize illegal integer setcc's. 353 if (IsInteger) { 354 switch (Result) { 355 default: break; 356 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 357 case ISD::SETOEQ: // SETEQ & SETU[LG]E 358 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 359 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 360 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 361 } 362 } 363 364 return Result; 365 } 366 367 //===----------------------------------------------------------------------===// 368 // SDNode Profile Support 369 //===----------------------------------------------------------------------===// 370 371 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 372 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 373 ID.AddInteger(OpC); 374 } 375 376 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 377 /// solely with their pointer. 378 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 379 ID.AddPointer(VTList.VTs); 380 } 381 382 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 383 static void AddNodeIDOperands(FoldingSetNodeID &ID, 384 ArrayRef<SDValue> Ops) { 385 for (auto& Op : Ops) { 386 ID.AddPointer(Op.getNode()); 387 ID.AddInteger(Op.getResNo()); 388 } 389 } 390 391 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 392 static void AddNodeIDOperands(FoldingSetNodeID &ID, 393 ArrayRef<SDUse> Ops) { 394 for (auto& Op : Ops) { 395 ID.AddPointer(Op.getNode()); 396 ID.AddInteger(Op.getResNo()); 397 } 398 } 399 400 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 401 SDVTList VTList, ArrayRef<SDValue> OpList) { 402 AddNodeIDOpcode(ID, OpC); 403 AddNodeIDValueTypes(ID, VTList); 404 AddNodeIDOperands(ID, OpList); 405 } 406 407 /// If this is an SDNode with special info, add this info to the NodeID data. 408 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 409 switch (N->getOpcode()) { 410 case ISD::TargetExternalSymbol: 411 case ISD::ExternalSymbol: 412 case ISD::MCSymbol: 413 llvm_unreachable("Should only be used on nodes with operands"); 414 default: break; // Normal nodes don't need extra info. 415 case ISD::TargetConstant: 416 case ISD::Constant: { 417 const ConstantSDNode *C = cast<ConstantSDNode>(N); 418 ID.AddPointer(C->getConstantIntValue()); 419 ID.AddBoolean(C->isOpaque()); 420 break; 421 } 422 case ISD::TargetConstantFP: 423 case ISD::ConstantFP: 424 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 425 break; 426 case ISD::TargetGlobalAddress: 427 case ISD::GlobalAddress: 428 case ISD::TargetGlobalTLSAddress: 429 case ISD::GlobalTLSAddress: { 430 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 431 ID.AddPointer(GA->getGlobal()); 432 ID.AddInteger(GA->getOffset()); 433 ID.AddInteger(GA->getTargetFlags()); 434 break; 435 } 436 case ISD::BasicBlock: 437 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 438 break; 439 case ISD::Register: 440 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 441 break; 442 case ISD::RegisterMask: 443 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 444 break; 445 case ISD::SRCVALUE: 446 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 447 break; 448 case ISD::FrameIndex: 449 case ISD::TargetFrameIndex: 450 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 451 break; 452 case ISD::JumpTable: 453 case ISD::TargetJumpTable: 454 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 455 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 456 break; 457 case ISD::ConstantPool: 458 case ISD::TargetConstantPool: { 459 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 460 ID.AddInteger(CP->getAlignment()); 461 ID.AddInteger(CP->getOffset()); 462 if (CP->isMachineConstantPoolEntry()) 463 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 464 else 465 ID.AddPointer(CP->getConstVal()); 466 ID.AddInteger(CP->getTargetFlags()); 467 break; 468 } 469 case ISD::TargetIndex: { 470 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 471 ID.AddInteger(TI->getIndex()); 472 ID.AddInteger(TI->getOffset()); 473 ID.AddInteger(TI->getTargetFlags()); 474 break; 475 } 476 case ISD::LOAD: { 477 const LoadSDNode *LD = cast<LoadSDNode>(N); 478 ID.AddInteger(LD->getMemoryVT().getRawBits()); 479 ID.AddInteger(LD->getRawSubclassData()); 480 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::STORE: { 484 const StoreSDNode *ST = cast<StoreSDNode>(N); 485 ID.AddInteger(ST->getMemoryVT().getRawBits()); 486 ID.AddInteger(ST->getRawSubclassData()); 487 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 488 break; 489 } 490 case ISD::ATOMIC_CMP_SWAP: 491 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 492 case ISD::ATOMIC_SWAP: 493 case ISD::ATOMIC_LOAD_ADD: 494 case ISD::ATOMIC_LOAD_SUB: 495 case ISD::ATOMIC_LOAD_AND: 496 case ISD::ATOMIC_LOAD_OR: 497 case ISD::ATOMIC_LOAD_XOR: 498 case ISD::ATOMIC_LOAD_NAND: 499 case ISD::ATOMIC_LOAD_MIN: 500 case ISD::ATOMIC_LOAD_MAX: 501 case ISD::ATOMIC_LOAD_UMIN: 502 case ISD::ATOMIC_LOAD_UMAX: 503 case ISD::ATOMIC_LOAD: 504 case ISD::ATOMIC_STORE: { 505 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 506 ID.AddInteger(AT->getMemoryVT().getRawBits()); 507 ID.AddInteger(AT->getRawSubclassData()); 508 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 509 break; 510 } 511 case ISD::PREFETCH: { 512 const MemSDNode *PF = cast<MemSDNode>(N); 513 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 514 break; 515 } 516 case ISD::VECTOR_SHUFFLE: { 517 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 518 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 519 i != e; ++i) 520 ID.AddInteger(SVN->getMaskElt(i)); 521 break; 522 } 523 case ISD::TargetBlockAddress: 524 case ISD::BlockAddress: { 525 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 526 ID.AddPointer(BA->getBlockAddress()); 527 ID.AddInteger(BA->getOffset()); 528 ID.AddInteger(BA->getTargetFlags()); 529 break; 530 } 531 } // end switch (N->getOpcode()) 532 533 // Target specific memory nodes could also have address spaces to check. 534 if (N->isTargetMemoryOpcode()) 535 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 536 } 537 538 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 539 /// data. 540 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 541 AddNodeIDOpcode(ID, N->getOpcode()); 542 // Add the return value info. 543 AddNodeIDValueTypes(ID, N->getVTList()); 544 // Add the operand info. 545 AddNodeIDOperands(ID, N->ops()); 546 547 // Handle SDNode leafs with special info. 548 AddNodeIDCustom(ID, N); 549 } 550 551 //===----------------------------------------------------------------------===// 552 // SelectionDAG Class 553 //===----------------------------------------------------------------------===// 554 555 /// doNotCSE - Return true if CSE should not be performed for this node. 556 static bool doNotCSE(SDNode *N) { 557 if (N->getValueType(0) == MVT::Glue) 558 return true; // Never CSE anything that produces a flag. 559 560 switch (N->getOpcode()) { 561 default: break; 562 case ISD::HANDLENODE: 563 case ISD::EH_LABEL: 564 return true; // Never CSE these nodes. 565 } 566 567 // Check that remaining values produced are not flags. 568 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 569 if (N->getValueType(i) == MVT::Glue) 570 return true; // Never CSE anything that produces a flag. 571 572 return false; 573 } 574 575 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 576 /// SelectionDAG. 577 void SelectionDAG::RemoveDeadNodes() { 578 // Create a dummy node (which is not added to allnodes), that adds a reference 579 // to the root node, preventing it from being deleted. 580 HandleSDNode Dummy(getRoot()); 581 582 SmallVector<SDNode*, 128> DeadNodes; 583 584 // Add all obviously-dead nodes to the DeadNodes worklist. 585 for (SDNode &Node : allnodes()) 586 if (Node.use_empty()) 587 DeadNodes.push_back(&Node); 588 589 RemoveDeadNodes(DeadNodes); 590 591 // If the root changed (e.g. it was a dead load, update the root). 592 setRoot(Dummy.getValue()); 593 } 594 595 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 596 /// given list, and any nodes that become unreachable as a result. 597 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 598 599 // Process the worklist, deleting the nodes and adding their uses to the 600 // worklist. 601 while (!DeadNodes.empty()) { 602 SDNode *N = DeadNodes.pop_back_val(); 603 // Skip to next node if we've already managed to delete the node. This could 604 // happen if replacing a node causes a node previously added to the node to 605 // be deleted. 606 if (N->getOpcode() == ISD::DELETED_NODE) 607 continue; 608 609 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 610 DUL->NodeDeleted(N, nullptr); 611 612 // Take the node out of the appropriate CSE map. 613 RemoveNodeFromCSEMaps(N); 614 615 // Next, brutally remove the operand list. This is safe to do, as there are 616 // no cycles in the graph. 617 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 618 SDUse &Use = *I++; 619 SDNode *Operand = Use.getNode(); 620 Use.set(SDValue()); 621 622 // Now that we removed this operand, see if there are no uses of it left. 623 if (Operand->use_empty()) 624 DeadNodes.push_back(Operand); 625 } 626 627 DeallocateNode(N); 628 } 629 } 630 631 void SelectionDAG::RemoveDeadNode(SDNode *N){ 632 SmallVector<SDNode*, 16> DeadNodes(1, N); 633 634 // Create a dummy node that adds a reference to the root node, preventing 635 // it from being deleted. (This matters if the root is an operand of the 636 // dead node.) 637 HandleSDNode Dummy(getRoot()); 638 639 RemoveDeadNodes(DeadNodes); 640 } 641 642 void SelectionDAG::DeleteNode(SDNode *N) { 643 // First take this out of the appropriate CSE map. 644 RemoveNodeFromCSEMaps(N); 645 646 // Finally, remove uses due to operands of this node, remove from the 647 // AllNodes list, and delete the node. 648 DeleteNodeNotInCSEMaps(N); 649 } 650 651 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 652 assert(N->getIterator() != AllNodes.begin() && 653 "Cannot delete the entry node!"); 654 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 655 656 // Drop all of the operands and decrement used node's use counts. 657 N->DropOperands(); 658 659 DeallocateNode(N); 660 } 661 662 void SDDbgInfo::erase(const SDNode *Node) { 663 DbgValMapType::iterator I = DbgValMap.find(Node); 664 if (I == DbgValMap.end()) 665 return; 666 for (auto &Val: I->second) 667 Val->setIsInvalidated(); 668 DbgValMap.erase(I); 669 } 670 671 void SelectionDAG::DeallocateNode(SDNode *N) { 672 // If we have operands, deallocate them. 673 removeOperands(N); 674 675 NodeAllocator.Deallocate(AllNodes.remove(N)); 676 677 // Set the opcode to DELETED_NODE to help catch bugs when node 678 // memory is reallocated. 679 // FIXME: There are places in SDag that have grown a dependency on the opcode 680 // value in the released node. 681 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 682 N->NodeType = ISD::DELETED_NODE; 683 684 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 685 // them and forget about that node. 686 DbgInfo->erase(N); 687 } 688 689 #ifndef NDEBUG 690 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 691 static void VerifySDNode(SDNode *N) { 692 switch (N->getOpcode()) { 693 default: 694 break; 695 case ISD::BUILD_PAIR: { 696 EVT VT = N->getValueType(0); 697 assert(N->getNumValues() == 1 && "Too many results!"); 698 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 699 "Wrong return type!"); 700 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 701 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 702 "Mismatched operand types!"); 703 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 704 "Wrong operand type!"); 705 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 706 "Wrong return type size"); 707 break; 708 } 709 case ISD::BUILD_VECTOR: { 710 assert(N->getNumValues() == 1 && "Too many results!"); 711 assert(N->getValueType(0).isVector() && "Wrong return type!"); 712 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 713 "Wrong number of operands!"); 714 EVT EltVT = N->getValueType(0).getVectorElementType(); 715 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 716 assert((I->getValueType() == EltVT || 717 (EltVT.isInteger() && I->getValueType().isInteger() && 718 EltVT.bitsLE(I->getValueType()))) && 719 "Wrong operand type!"); 720 assert(I->getValueType() == N->getOperand(0).getValueType() && 721 "Operands must all have the same type"); 722 } 723 break; 724 } 725 } 726 } 727 #endif // NDEBUG 728 729 /// \brief Insert a newly allocated node into the DAG. 730 /// 731 /// Handles insertion into the all nodes list and CSE map, as well as 732 /// verification and other common operations when a new node is allocated. 733 void SelectionDAG::InsertNode(SDNode *N) { 734 AllNodes.push_back(N); 735 #ifndef NDEBUG 736 N->PersistentId = NextPersistentId++; 737 VerifySDNode(N); 738 #endif 739 } 740 741 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 742 /// correspond to it. This is useful when we're about to delete or repurpose 743 /// the node. We don't want future request for structurally identical nodes 744 /// to return N anymore. 745 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 746 bool Erased = false; 747 switch (N->getOpcode()) { 748 case ISD::HANDLENODE: return false; // noop. 749 case ISD::CONDCODE: 750 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 751 "Cond code doesn't exist!"); 752 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 753 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 754 break; 755 case ISD::ExternalSymbol: 756 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 757 break; 758 case ISD::TargetExternalSymbol: { 759 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 760 Erased = TargetExternalSymbols.erase( 761 std::pair<std::string,unsigned char>(ESN->getSymbol(), 762 ESN->getTargetFlags())); 763 break; 764 } 765 case ISD::MCSymbol: { 766 auto *MCSN = cast<MCSymbolSDNode>(N); 767 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 768 break; 769 } 770 case ISD::VALUETYPE: { 771 EVT VT = cast<VTSDNode>(N)->getVT(); 772 if (VT.isExtended()) { 773 Erased = ExtendedValueTypeNodes.erase(VT); 774 } else { 775 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 776 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 777 } 778 break; 779 } 780 default: 781 // Remove it from the CSE Map. 782 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 783 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 784 Erased = CSEMap.RemoveNode(N); 785 break; 786 } 787 #ifndef NDEBUG 788 // Verify that the node was actually in one of the CSE maps, unless it has a 789 // flag result (which cannot be CSE'd) or is one of the special cases that are 790 // not subject to CSE. 791 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 792 !N->isMachineOpcode() && !doNotCSE(N)) { 793 N->dump(this); 794 dbgs() << "\n"; 795 llvm_unreachable("Node is not in map!"); 796 } 797 #endif 798 return Erased; 799 } 800 801 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 802 /// maps and modified in place. Add it back to the CSE maps, unless an identical 803 /// node already exists, in which case transfer all its users to the existing 804 /// node. This transfer can potentially trigger recursive merging. 805 void 806 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 807 // For node types that aren't CSE'd, just act as if no identical node 808 // already exists. 809 if (!doNotCSE(N)) { 810 SDNode *Existing = CSEMap.GetOrInsertNode(N); 811 if (Existing != N) { 812 // If there was already an existing matching node, use ReplaceAllUsesWith 813 // to replace the dead one with the existing one. This can cause 814 // recursive merging of other unrelated nodes down the line. 815 ReplaceAllUsesWith(N, Existing); 816 817 // N is now dead. Inform the listeners and delete it. 818 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 819 DUL->NodeDeleted(N, Existing); 820 DeleteNodeNotInCSEMaps(N); 821 return; 822 } 823 } 824 825 // If the node doesn't already exist, we updated it. Inform listeners. 826 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 827 DUL->NodeUpdated(N); 828 } 829 830 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 831 /// were replaced with those specified. If this node is never memoized, 832 /// return null, otherwise return a pointer to the slot it would take. If a 833 /// node already exists with these operands, the slot will be non-null. 834 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 835 void *&InsertPos) { 836 if (doNotCSE(N)) 837 return nullptr; 838 839 SDValue Ops[] = { Op }; 840 FoldingSetNodeID ID; 841 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 842 AddNodeIDCustom(ID, N); 843 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 844 if (Node) 845 Node->intersectFlagsWith(N->getFlags()); 846 return Node; 847 } 848 849 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 850 /// were replaced with those specified. If this node is never memoized, 851 /// return null, otherwise return a pointer to the slot it would take. If a 852 /// node already exists with these operands, the slot will be non-null. 853 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 854 SDValue Op1, SDValue Op2, 855 void *&InsertPos) { 856 if (doNotCSE(N)) 857 return nullptr; 858 859 SDValue Ops[] = { Op1, Op2 }; 860 FoldingSetNodeID ID; 861 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 862 AddNodeIDCustom(ID, N); 863 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 864 if (Node) 865 Node->intersectFlagsWith(N->getFlags()); 866 return Node; 867 } 868 869 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 870 /// were replaced with those specified. If this node is never memoized, 871 /// return null, otherwise return a pointer to the slot it would take. If a 872 /// node already exists with these operands, the slot will be non-null. 873 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 874 void *&InsertPos) { 875 if (doNotCSE(N)) 876 return nullptr; 877 878 FoldingSetNodeID ID; 879 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 880 AddNodeIDCustom(ID, N); 881 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 882 if (Node) 883 Node->intersectFlagsWith(N->getFlags()); 884 return Node; 885 } 886 887 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 888 Type *Ty = VT == MVT::iPTR ? 889 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 890 VT.getTypeForEVT(*getContext()); 891 892 return getDataLayout().getABITypeAlignment(Ty); 893 } 894 895 // EntryNode could meaningfully have debug info if we can find it... 896 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 897 : TM(tm), OptLevel(OL), 898 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 899 Root(getEntryNode()) { 900 InsertNode(&EntryNode); 901 DbgInfo = new SDDbgInfo(); 902 } 903 904 void SelectionDAG::init(MachineFunction &NewMF, 905 OptimizationRemarkEmitter &NewORE, 906 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo) { 907 MF = &NewMF; 908 SDAGISelPass = PassPtr; 909 ORE = &NewORE; 910 TLI = getSubtarget().getTargetLowering(); 911 TSI = getSubtarget().getSelectionDAGInfo(); 912 LibInfo = LibraryInfo; 913 Context = &MF->getFunction().getContext(); 914 } 915 916 SelectionDAG::~SelectionDAG() { 917 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 918 allnodes_clear(); 919 OperandRecycler.clear(OperandAllocator); 920 delete DbgInfo; 921 } 922 923 void SelectionDAG::allnodes_clear() { 924 assert(&*AllNodes.begin() == &EntryNode); 925 AllNodes.remove(AllNodes.begin()); 926 while (!AllNodes.empty()) 927 DeallocateNode(&AllNodes.front()); 928 #ifndef NDEBUG 929 NextPersistentId = 0; 930 #endif 931 } 932 933 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 934 void *&InsertPos) { 935 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 936 if (N) { 937 switch (N->getOpcode()) { 938 default: break; 939 case ISD::Constant: 940 case ISD::ConstantFP: 941 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 942 "debug location. Use another overload."); 943 } 944 } 945 return N; 946 } 947 948 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 949 const SDLoc &DL, void *&InsertPos) { 950 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 951 if (N) { 952 switch (N->getOpcode()) { 953 case ISD::Constant: 954 case ISD::ConstantFP: 955 // Erase debug location from the node if the node is used at several 956 // different places. Do not propagate one location to all uses as it 957 // will cause a worse single stepping debugging experience. 958 if (N->getDebugLoc() != DL.getDebugLoc()) 959 N->setDebugLoc(DebugLoc()); 960 break; 961 default: 962 // When the node's point of use is located earlier in the instruction 963 // sequence than its prior point of use, update its debug info to the 964 // earlier location. 965 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 966 N->setDebugLoc(DL.getDebugLoc()); 967 break; 968 } 969 } 970 return N; 971 } 972 973 void SelectionDAG::clear() { 974 allnodes_clear(); 975 OperandRecycler.clear(OperandAllocator); 976 OperandAllocator.Reset(); 977 CSEMap.clear(); 978 979 ExtendedValueTypeNodes.clear(); 980 ExternalSymbols.clear(); 981 TargetExternalSymbols.clear(); 982 MCSymbols.clear(); 983 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 984 static_cast<CondCodeSDNode*>(nullptr)); 985 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 986 static_cast<SDNode*>(nullptr)); 987 988 EntryNode.UseList = nullptr; 989 InsertNode(&EntryNode); 990 Root = getEntryNode(); 991 DbgInfo->clear(); 992 } 993 994 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 995 return VT.bitsGT(Op.getValueType()) 996 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 997 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 998 } 999 1000 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1001 return VT.bitsGT(Op.getValueType()) ? 1002 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1003 getNode(ISD::TRUNCATE, DL, VT, Op); 1004 } 1005 1006 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1007 return VT.bitsGT(Op.getValueType()) ? 1008 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1009 getNode(ISD::TRUNCATE, DL, VT, Op); 1010 } 1011 1012 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1013 return VT.bitsGT(Op.getValueType()) ? 1014 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1015 getNode(ISD::TRUNCATE, DL, VT, Op); 1016 } 1017 1018 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1019 EVT OpVT) { 1020 if (VT.bitsLE(Op.getValueType())) 1021 return getNode(ISD::TRUNCATE, SL, VT, Op); 1022 1023 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1024 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1025 } 1026 1027 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1028 assert(!VT.isVector() && 1029 "getZeroExtendInReg should use the vector element type instead of " 1030 "the vector type!"); 1031 if (Op.getValueType().getScalarType() == VT) return Op; 1032 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1033 APInt Imm = APInt::getLowBitsSet(BitWidth, 1034 VT.getSizeInBits()); 1035 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1036 getConstant(Imm, DL, Op.getValueType())); 1037 } 1038 1039 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1040 EVT VT) { 1041 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1042 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1043 "The sizes of the input and result must match in order to perform the " 1044 "extend in-register."); 1045 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1046 "The destination vector type must have fewer lanes than the input."); 1047 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1048 } 1049 1050 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1051 EVT VT) { 1052 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1053 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1054 "The sizes of the input and result must match in order to perform the " 1055 "extend in-register."); 1056 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1057 "The destination vector type must have fewer lanes than the input."); 1058 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1059 } 1060 1061 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1062 EVT VT) { 1063 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1064 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1065 "The sizes of the input and result must match in order to perform the " 1066 "extend in-register."); 1067 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1068 "The destination vector type must have fewer lanes than the input."); 1069 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1070 } 1071 1072 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1073 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1074 EVT EltVT = VT.getScalarType(); 1075 SDValue NegOne = 1076 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1077 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1078 } 1079 1080 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1081 EVT EltVT = VT.getScalarType(); 1082 SDValue TrueValue; 1083 switch (TLI->getBooleanContents(VT)) { 1084 case TargetLowering::ZeroOrOneBooleanContent: 1085 case TargetLowering::UndefinedBooleanContent: 1086 TrueValue = getConstant(1, DL, VT); 1087 break; 1088 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1089 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1090 VT); 1091 break; 1092 } 1093 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1094 } 1095 1096 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1097 bool isT, bool isO) { 1098 EVT EltVT = VT.getScalarType(); 1099 assert((EltVT.getSizeInBits() >= 64 || 1100 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1101 "getConstant with a uint64_t value that doesn't fit in the type!"); 1102 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1103 } 1104 1105 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1106 bool isT, bool isO) { 1107 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1108 } 1109 1110 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1111 EVT VT, bool isT, bool isO) { 1112 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1113 1114 EVT EltVT = VT.getScalarType(); 1115 const ConstantInt *Elt = &Val; 1116 1117 // In some cases the vector type is legal but the element type is illegal and 1118 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1119 // inserted value (the type does not need to match the vector element type). 1120 // Any extra bits introduced will be truncated away. 1121 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1122 TargetLowering::TypePromoteInteger) { 1123 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1124 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1125 Elt = ConstantInt::get(*getContext(), NewVal); 1126 } 1127 // In other cases the element type is illegal and needs to be expanded, for 1128 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1129 // the value into n parts and use a vector type with n-times the elements. 1130 // Then bitcast to the type requested. 1131 // Legalizing constants too early makes the DAGCombiner's job harder so we 1132 // only legalize if the DAG tells us we must produce legal types. 1133 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1134 TLI->getTypeAction(*getContext(), EltVT) == 1135 TargetLowering::TypeExpandInteger) { 1136 const APInt &NewVal = Elt->getValue(); 1137 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1138 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1139 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1140 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1141 1142 // Check the temporary vector is the correct size. If this fails then 1143 // getTypeToTransformTo() probably returned a type whose size (in bits) 1144 // isn't a power-of-2 factor of the requested type size. 1145 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1146 1147 SmallVector<SDValue, 2> EltParts; 1148 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1149 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1150 .zextOrTrunc(ViaEltSizeInBits), DL, 1151 ViaEltVT, isT, isO)); 1152 } 1153 1154 // EltParts is currently in little endian order. If we actually want 1155 // big-endian order then reverse it now. 1156 if (getDataLayout().isBigEndian()) 1157 std::reverse(EltParts.begin(), EltParts.end()); 1158 1159 // The elements must be reversed when the element order is different 1160 // to the endianness of the elements (because the BITCAST is itself a 1161 // vector shuffle in this situation). However, we do not need any code to 1162 // perform this reversal because getConstant() is producing a vector 1163 // splat. 1164 // This situation occurs in MIPS MSA. 1165 1166 SmallVector<SDValue, 8> Ops; 1167 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1168 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1169 1170 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1171 return V; 1172 } 1173 1174 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1175 "APInt size does not match type size!"); 1176 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1177 FoldingSetNodeID ID; 1178 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1179 ID.AddPointer(Elt); 1180 ID.AddBoolean(isO); 1181 void *IP = nullptr; 1182 SDNode *N = nullptr; 1183 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1184 if (!VT.isVector()) 1185 return SDValue(N, 0); 1186 1187 if (!N) { 1188 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1189 CSEMap.InsertNode(N, IP); 1190 InsertNode(N); 1191 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1192 } 1193 1194 SDValue Result(N, 0); 1195 if (VT.isVector()) 1196 Result = getSplatBuildVector(VT, DL, Result); 1197 1198 return Result; 1199 } 1200 1201 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1202 bool isTarget) { 1203 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1204 } 1205 1206 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1207 bool isTarget) { 1208 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1209 } 1210 1211 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1212 EVT VT, bool isTarget) { 1213 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1214 1215 EVT EltVT = VT.getScalarType(); 1216 1217 // Do the map lookup using the actual bit pattern for the floating point 1218 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1219 // we don't have issues with SNANs. 1220 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1221 FoldingSetNodeID ID; 1222 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1223 ID.AddPointer(&V); 1224 void *IP = nullptr; 1225 SDNode *N = nullptr; 1226 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1227 if (!VT.isVector()) 1228 return SDValue(N, 0); 1229 1230 if (!N) { 1231 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1232 CSEMap.InsertNode(N, IP); 1233 InsertNode(N); 1234 } 1235 1236 SDValue Result(N, 0); 1237 if (VT.isVector()) 1238 Result = getSplatBuildVector(VT, DL, Result); 1239 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1240 return Result; 1241 } 1242 1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1244 bool isTarget) { 1245 EVT EltVT = VT.getScalarType(); 1246 if (EltVT == MVT::f32) 1247 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1248 else if (EltVT == MVT::f64) 1249 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1250 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1251 EltVT == MVT::f16) { 1252 bool Ignored; 1253 APFloat APF = APFloat(Val); 1254 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1255 &Ignored); 1256 return getConstantFP(APF, DL, VT, isTarget); 1257 } else 1258 llvm_unreachable("Unsupported type in getConstantFP"); 1259 } 1260 1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1262 EVT VT, int64_t Offset, bool isTargetGA, 1263 unsigned char TargetFlags) { 1264 assert((TargetFlags == 0 || isTargetGA) && 1265 "Cannot set target flags on target-independent globals"); 1266 1267 // Truncate (with sign-extension) the offset value to the pointer size. 1268 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1269 if (BitWidth < 64) 1270 Offset = SignExtend64(Offset, BitWidth); 1271 1272 unsigned Opc; 1273 if (GV->isThreadLocal()) 1274 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1275 else 1276 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1277 1278 FoldingSetNodeID ID; 1279 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1280 ID.AddPointer(GV); 1281 ID.AddInteger(Offset); 1282 ID.AddInteger(TargetFlags); 1283 void *IP = nullptr; 1284 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1285 return SDValue(E, 0); 1286 1287 auto *N = newSDNode<GlobalAddressSDNode>( 1288 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1289 CSEMap.InsertNode(N, IP); 1290 InsertNode(N); 1291 return SDValue(N, 0); 1292 } 1293 1294 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1295 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1296 FoldingSetNodeID ID; 1297 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1298 ID.AddInteger(FI); 1299 void *IP = nullptr; 1300 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1301 return SDValue(E, 0); 1302 1303 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1304 CSEMap.InsertNode(N, IP); 1305 InsertNode(N); 1306 return SDValue(N, 0); 1307 } 1308 1309 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1310 unsigned char TargetFlags) { 1311 assert((TargetFlags == 0 || isTarget) && 1312 "Cannot set target flags on target-independent jump tables"); 1313 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1316 ID.AddInteger(JTI); 1317 ID.AddInteger(TargetFlags); 1318 void *IP = nullptr; 1319 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1320 return SDValue(E, 0); 1321 1322 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1323 CSEMap.InsertNode(N, IP); 1324 InsertNode(N); 1325 return SDValue(N, 0); 1326 } 1327 1328 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1329 unsigned Alignment, int Offset, 1330 bool isTarget, 1331 unsigned char TargetFlags) { 1332 assert((TargetFlags == 0 || isTarget) && 1333 "Cannot set target flags on target-independent globals"); 1334 if (Alignment == 0) 1335 Alignment = MF->getFunction().optForSize() 1336 ? getDataLayout().getABITypeAlignment(C->getType()) 1337 : getDataLayout().getPrefTypeAlignment(C->getType()); 1338 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1339 FoldingSetNodeID ID; 1340 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1341 ID.AddInteger(Alignment); 1342 ID.AddInteger(Offset); 1343 ID.AddPointer(C); 1344 ID.AddInteger(TargetFlags); 1345 void *IP = nullptr; 1346 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1347 return SDValue(E, 0); 1348 1349 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1350 TargetFlags); 1351 CSEMap.InsertNode(N, IP); 1352 InsertNode(N); 1353 return SDValue(N, 0); 1354 } 1355 1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1357 unsigned Alignment, int Offset, 1358 bool isTarget, 1359 unsigned char TargetFlags) { 1360 assert((TargetFlags == 0 || isTarget) && 1361 "Cannot set target flags on target-independent globals"); 1362 if (Alignment == 0) 1363 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1364 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1365 FoldingSetNodeID ID; 1366 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1367 ID.AddInteger(Alignment); 1368 ID.AddInteger(Offset); 1369 C->addSelectionDAGCSEId(ID); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1376 TargetFlags); 1377 CSEMap.InsertNode(N, IP); 1378 InsertNode(N); 1379 return SDValue(N, 0); 1380 } 1381 1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1383 unsigned char TargetFlags) { 1384 FoldingSetNodeID ID; 1385 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1386 ID.AddInteger(Index); 1387 ID.AddInteger(Offset); 1388 ID.AddInteger(TargetFlags); 1389 void *IP = nullptr; 1390 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1391 return SDValue(E, 0); 1392 1393 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1394 CSEMap.InsertNode(N, IP); 1395 InsertNode(N); 1396 return SDValue(N, 0); 1397 } 1398 1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1400 FoldingSetNodeID ID; 1401 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1402 ID.AddPointer(MBB); 1403 void *IP = nullptr; 1404 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1405 return SDValue(E, 0); 1406 1407 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1408 CSEMap.InsertNode(N, IP); 1409 InsertNode(N); 1410 return SDValue(N, 0); 1411 } 1412 1413 SDValue SelectionDAG::getValueType(EVT VT) { 1414 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1415 ValueTypeNodes.size()) 1416 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1417 1418 SDNode *&N = VT.isExtended() ? 1419 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1420 1421 if (N) return SDValue(N, 0); 1422 N = newSDNode<VTSDNode>(VT); 1423 InsertNode(N); 1424 return SDValue(N, 0); 1425 } 1426 1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1428 SDNode *&N = ExternalSymbols[Sym]; 1429 if (N) return SDValue(N, 0); 1430 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1431 InsertNode(N); 1432 return SDValue(N, 0); 1433 } 1434 1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1436 SDNode *&N = MCSymbols[Sym]; 1437 if (N) 1438 return SDValue(N, 0); 1439 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1440 InsertNode(N); 1441 return SDValue(N, 0); 1442 } 1443 1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1445 unsigned char TargetFlags) { 1446 SDNode *&N = 1447 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1448 TargetFlags)]; 1449 if (N) return SDValue(N, 0); 1450 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1451 InsertNode(N); 1452 return SDValue(N, 0); 1453 } 1454 1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1456 if ((unsigned)Cond >= CondCodeNodes.size()) 1457 CondCodeNodes.resize(Cond+1); 1458 1459 if (!CondCodeNodes[Cond]) { 1460 auto *N = newSDNode<CondCodeSDNode>(Cond); 1461 CondCodeNodes[Cond] = N; 1462 InsertNode(N); 1463 } 1464 1465 return SDValue(CondCodeNodes[Cond], 0); 1466 } 1467 1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1471 std::swap(N1, N2); 1472 ShuffleVectorSDNode::commuteMask(M); 1473 } 1474 1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1476 SDValue N2, ArrayRef<int> Mask) { 1477 assert(VT.getVectorNumElements() == Mask.size() && 1478 "Must have the same number of vector elements as mask elements!"); 1479 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1480 "Invalid VECTOR_SHUFFLE"); 1481 1482 // Canonicalize shuffle undef, undef -> undef 1483 if (N1.isUndef() && N2.isUndef()) 1484 return getUNDEF(VT); 1485 1486 // Validate that all indices in Mask are within the range of the elements 1487 // input to the shuffle. 1488 int NElts = Mask.size(); 1489 assert(llvm::all_of(Mask, 1490 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1491 "Index out of range"); 1492 1493 // Copy the mask so we can do any needed cleanup. 1494 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1495 1496 // Canonicalize shuffle v, v -> v, undef 1497 if (N1 == N2) { 1498 N2 = getUNDEF(VT); 1499 for (int i = 0; i != NElts; ++i) 1500 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1501 } 1502 1503 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1504 if (N1.isUndef()) 1505 commuteShuffle(N1, N2, MaskVec); 1506 1507 // If shuffling a splat, try to blend the splat instead. We do this here so 1508 // that even when this arises during lowering we don't have to re-handle it. 1509 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1510 BitVector UndefElements; 1511 SDValue Splat = BV->getSplatValue(&UndefElements); 1512 if (!Splat) 1513 return; 1514 1515 for (int i = 0; i < NElts; ++i) { 1516 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1517 continue; 1518 1519 // If this input comes from undef, mark it as such. 1520 if (UndefElements[MaskVec[i] - Offset]) { 1521 MaskVec[i] = -1; 1522 continue; 1523 } 1524 1525 // If we can blend a non-undef lane, use that instead. 1526 if (!UndefElements[i]) 1527 MaskVec[i] = i + Offset; 1528 } 1529 }; 1530 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1531 BlendSplat(N1BV, 0); 1532 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1533 BlendSplat(N2BV, NElts); 1534 1535 // Canonicalize all index into lhs, -> shuffle lhs, undef 1536 // Canonicalize all index into rhs, -> shuffle rhs, undef 1537 bool AllLHS = true, AllRHS = true; 1538 bool N2Undef = N2.isUndef(); 1539 for (int i = 0; i != NElts; ++i) { 1540 if (MaskVec[i] >= NElts) { 1541 if (N2Undef) 1542 MaskVec[i] = -1; 1543 else 1544 AllLHS = false; 1545 } else if (MaskVec[i] >= 0) { 1546 AllRHS = false; 1547 } 1548 } 1549 if (AllLHS && AllRHS) 1550 return getUNDEF(VT); 1551 if (AllLHS && !N2Undef) 1552 N2 = getUNDEF(VT); 1553 if (AllRHS) { 1554 N1 = getUNDEF(VT); 1555 commuteShuffle(N1, N2, MaskVec); 1556 } 1557 // Reset our undef status after accounting for the mask. 1558 N2Undef = N2.isUndef(); 1559 // Re-check whether both sides ended up undef. 1560 if (N1.isUndef() && N2Undef) 1561 return getUNDEF(VT); 1562 1563 // If Identity shuffle return that node. 1564 bool Identity = true, AllSame = true; 1565 for (int i = 0; i != NElts; ++i) { 1566 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1567 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1568 } 1569 if (Identity && NElts) 1570 return N1; 1571 1572 // Shuffling a constant splat doesn't change the result. 1573 if (N2Undef) { 1574 SDValue V = N1; 1575 1576 // Look through any bitcasts. We check that these don't change the number 1577 // (and size) of elements and just changes their types. 1578 while (V.getOpcode() == ISD::BITCAST) 1579 V = V->getOperand(0); 1580 1581 // A splat should always show up as a build vector node. 1582 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1583 BitVector UndefElements; 1584 SDValue Splat = BV->getSplatValue(&UndefElements); 1585 // If this is a splat of an undef, shuffling it is also undef. 1586 if (Splat && Splat.isUndef()) 1587 return getUNDEF(VT); 1588 1589 bool SameNumElts = 1590 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1591 1592 // We only have a splat which can skip shuffles if there is a splatted 1593 // value and no undef lanes rearranged by the shuffle. 1594 if (Splat && UndefElements.none()) { 1595 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1596 // number of elements match or the value splatted is a zero constant. 1597 if (SameNumElts) 1598 return N1; 1599 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1600 if (C->isNullValue()) 1601 return N1; 1602 } 1603 1604 // If the shuffle itself creates a splat, build the vector directly. 1605 if (AllSame && SameNumElts) { 1606 EVT BuildVT = BV->getValueType(0); 1607 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1608 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1609 1610 // We may have jumped through bitcasts, so the type of the 1611 // BUILD_VECTOR may not match the type of the shuffle. 1612 if (BuildVT != VT) 1613 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1614 return NewBV; 1615 } 1616 } 1617 } 1618 1619 FoldingSetNodeID ID; 1620 SDValue Ops[2] = { N1, N2 }; 1621 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1622 for (int i = 0; i != NElts; ++i) 1623 ID.AddInteger(MaskVec[i]); 1624 1625 void* IP = nullptr; 1626 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1627 return SDValue(E, 0); 1628 1629 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1630 // SDNode doesn't have access to it. This memory will be "leaked" when 1631 // the node is deallocated, but recovered when the NodeAllocator is released. 1632 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1633 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1634 1635 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1636 dl.getDebugLoc(), MaskAlloc); 1637 createOperands(N, Ops); 1638 1639 CSEMap.InsertNode(N, IP); 1640 InsertNode(N); 1641 SDValue V = SDValue(N, 0); 1642 NewSDValueDbgMsg(V, "Creating new node: ", this); 1643 return V; 1644 } 1645 1646 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1647 MVT VT = SV.getSimpleValueType(0); 1648 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1649 ShuffleVectorSDNode::commuteMask(MaskVec); 1650 1651 SDValue Op0 = SV.getOperand(0); 1652 SDValue Op1 = SV.getOperand(1); 1653 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1654 } 1655 1656 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1657 FoldingSetNodeID ID; 1658 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1659 ID.AddInteger(RegNo); 1660 void *IP = nullptr; 1661 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1662 return SDValue(E, 0); 1663 1664 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1665 CSEMap.InsertNode(N, IP); 1666 InsertNode(N); 1667 return SDValue(N, 0); 1668 } 1669 1670 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1671 FoldingSetNodeID ID; 1672 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1673 ID.AddPointer(RegMask); 1674 void *IP = nullptr; 1675 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1676 return SDValue(E, 0); 1677 1678 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1679 CSEMap.InsertNode(N, IP); 1680 InsertNode(N); 1681 return SDValue(N, 0); 1682 } 1683 1684 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1685 MCSymbol *Label) { 1686 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1687 } 1688 1689 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1690 SDValue Root, MCSymbol *Label) { 1691 FoldingSetNodeID ID; 1692 SDValue Ops[] = { Root }; 1693 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1694 ID.AddPointer(Label); 1695 void *IP = nullptr; 1696 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1697 return SDValue(E, 0); 1698 1699 auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1700 createOperands(N, Ops); 1701 1702 CSEMap.InsertNode(N, IP); 1703 InsertNode(N); 1704 return SDValue(N, 0); 1705 } 1706 1707 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1708 int64_t Offset, 1709 bool isTarget, 1710 unsigned char TargetFlags) { 1711 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1712 1713 FoldingSetNodeID ID; 1714 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1715 ID.AddPointer(BA); 1716 ID.AddInteger(Offset); 1717 ID.AddInteger(TargetFlags); 1718 void *IP = nullptr; 1719 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1720 return SDValue(E, 0); 1721 1722 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1723 CSEMap.InsertNode(N, IP); 1724 InsertNode(N); 1725 return SDValue(N, 0); 1726 } 1727 1728 SDValue SelectionDAG::getSrcValue(const Value *V) { 1729 assert((!V || V->getType()->isPointerTy()) && 1730 "SrcValue is not a pointer?"); 1731 1732 FoldingSetNodeID ID; 1733 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1734 ID.AddPointer(V); 1735 1736 void *IP = nullptr; 1737 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1738 return SDValue(E, 0); 1739 1740 auto *N = newSDNode<SrcValueSDNode>(V); 1741 CSEMap.InsertNode(N, IP); 1742 InsertNode(N); 1743 return SDValue(N, 0); 1744 } 1745 1746 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1747 FoldingSetNodeID ID; 1748 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1749 ID.AddPointer(MD); 1750 1751 void *IP = nullptr; 1752 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1753 return SDValue(E, 0); 1754 1755 auto *N = newSDNode<MDNodeSDNode>(MD); 1756 CSEMap.InsertNode(N, IP); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1762 if (VT == V.getValueType()) 1763 return V; 1764 1765 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1766 } 1767 1768 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1769 unsigned SrcAS, unsigned DestAS) { 1770 SDValue Ops[] = {Ptr}; 1771 FoldingSetNodeID ID; 1772 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1773 ID.AddInteger(SrcAS); 1774 ID.AddInteger(DestAS); 1775 1776 void *IP = nullptr; 1777 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1778 return SDValue(E, 0); 1779 1780 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1781 VT, SrcAS, DestAS); 1782 createOperands(N, Ops); 1783 1784 CSEMap.InsertNode(N, IP); 1785 InsertNode(N); 1786 return SDValue(N, 0); 1787 } 1788 1789 /// getShiftAmountOperand - Return the specified value casted to 1790 /// the target's desired shift amount type. 1791 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1792 EVT OpTy = Op.getValueType(); 1793 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1794 if (OpTy == ShTy || OpTy.isVector()) return Op; 1795 1796 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1797 } 1798 1799 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1800 SDLoc dl(Node); 1801 const TargetLowering &TLI = getTargetLoweringInfo(); 1802 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1803 EVT VT = Node->getValueType(0); 1804 SDValue Tmp1 = Node->getOperand(0); 1805 SDValue Tmp2 = Node->getOperand(1); 1806 unsigned Align = Node->getConstantOperandVal(3); 1807 1808 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1809 Tmp2, MachinePointerInfo(V)); 1810 SDValue VAList = VAListLoad; 1811 1812 if (Align > TLI.getMinStackArgumentAlignment()) { 1813 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1814 1815 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1816 getConstant(Align - 1, dl, VAList.getValueType())); 1817 1818 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1819 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1820 } 1821 1822 // Increment the pointer, VAList, to the next vaarg 1823 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1824 getConstant(getDataLayout().getTypeAllocSize( 1825 VT.getTypeForEVT(*getContext())), 1826 dl, VAList.getValueType())); 1827 // Store the incremented VAList to the legalized pointer 1828 Tmp1 = 1829 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1830 // Load the actual argument out of the pointer VAList 1831 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1832 } 1833 1834 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1835 SDLoc dl(Node); 1836 const TargetLowering &TLI = getTargetLoweringInfo(); 1837 // This defaults to loading a pointer from the input and storing it to the 1838 // output, returning the chain. 1839 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1840 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1841 SDValue Tmp1 = 1842 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1843 Node->getOperand(2), MachinePointerInfo(VS)); 1844 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1845 MachinePointerInfo(VD)); 1846 } 1847 1848 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1849 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1850 unsigned ByteSize = VT.getStoreSize(); 1851 Type *Ty = VT.getTypeForEVT(*getContext()); 1852 unsigned StackAlign = 1853 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1854 1855 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1856 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1857 } 1858 1859 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1860 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1861 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1862 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1863 const DataLayout &DL = getDataLayout(); 1864 unsigned Align = 1865 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1866 1867 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1868 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1869 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1870 } 1871 1872 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1873 ISD::CondCode Cond, const SDLoc &dl) { 1874 // These setcc operations always fold. 1875 switch (Cond) { 1876 default: break; 1877 case ISD::SETFALSE: 1878 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1879 case ISD::SETTRUE: 1880 case ISD::SETTRUE2: { 1881 TargetLowering::BooleanContent Cnt = 1882 TLI->getBooleanContents(N1->getValueType(0)); 1883 return getConstant( 1884 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1885 VT); 1886 } 1887 1888 case ISD::SETOEQ: 1889 case ISD::SETOGT: 1890 case ISD::SETOGE: 1891 case ISD::SETOLT: 1892 case ISD::SETOLE: 1893 case ISD::SETONE: 1894 case ISD::SETO: 1895 case ISD::SETUO: 1896 case ISD::SETUEQ: 1897 case ISD::SETUNE: 1898 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1899 break; 1900 } 1901 1902 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1903 const APInt &C2 = N2C->getAPIntValue(); 1904 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1905 const APInt &C1 = N1C->getAPIntValue(); 1906 1907 switch (Cond) { 1908 default: llvm_unreachable("Unknown integer setcc!"); 1909 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1910 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1911 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1912 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1913 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1914 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1915 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1916 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1917 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1918 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1919 } 1920 } 1921 } 1922 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1923 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1924 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1925 switch (Cond) { 1926 default: break; 1927 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1928 return getUNDEF(VT); 1929 LLVM_FALLTHROUGH; 1930 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1931 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1932 return getUNDEF(VT); 1933 LLVM_FALLTHROUGH; 1934 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1935 R==APFloat::cmpLessThan, dl, VT); 1936 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1937 return getUNDEF(VT); 1938 LLVM_FALLTHROUGH; 1939 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1940 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1941 return getUNDEF(VT); 1942 LLVM_FALLTHROUGH; 1943 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1944 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1945 return getUNDEF(VT); 1946 LLVM_FALLTHROUGH; 1947 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1948 R==APFloat::cmpEqual, dl, VT); 1949 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1950 return getUNDEF(VT); 1951 LLVM_FALLTHROUGH; 1952 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1953 R==APFloat::cmpEqual, dl, VT); 1954 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1955 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1956 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1957 R==APFloat::cmpEqual, dl, VT); 1958 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1959 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1960 R==APFloat::cmpLessThan, dl, VT); 1961 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1962 R==APFloat::cmpUnordered, dl, VT); 1963 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1964 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1965 } 1966 } else { 1967 // Ensure that the constant occurs on the RHS. 1968 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1969 MVT CompVT = N1.getValueType().getSimpleVT(); 1970 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1971 return SDValue(); 1972 1973 return getSetCC(dl, VT, N2, N1, SwappedCond); 1974 } 1975 } 1976 1977 // Could not fold it. 1978 return SDValue(); 1979 } 1980 1981 /// See if the specified operand can be simplified with the knowledge that only 1982 /// the bits specified by Mask are used. 1983 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) { 1984 switch (V.getOpcode()) { 1985 default: 1986 break; 1987 case ISD::Constant: { 1988 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 1989 assert(CV && "Const value should be ConstSDNode."); 1990 const APInt &CVal = CV->getAPIntValue(); 1991 APInt NewVal = CVal & Mask; 1992 if (NewVal != CVal) 1993 return getConstant(NewVal, SDLoc(V), V.getValueType()); 1994 break; 1995 } 1996 case ISD::OR: 1997 case ISD::XOR: 1998 // If the LHS or RHS don't contribute bits to the or, drop them. 1999 if (MaskedValueIsZero(V.getOperand(0), Mask)) 2000 return V.getOperand(1); 2001 if (MaskedValueIsZero(V.getOperand(1), Mask)) 2002 return V.getOperand(0); 2003 break; 2004 case ISD::SRL: 2005 // Only look at single-use SRLs. 2006 if (!V.getNode()->hasOneUse()) 2007 break; 2008 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2009 // See if we can recursively simplify the LHS. 2010 unsigned Amt = RHSC->getZExtValue(); 2011 2012 // Watch out for shift count overflow though. 2013 if (Amt >= Mask.getBitWidth()) 2014 break; 2015 APInt NewMask = Mask << Amt; 2016 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 2017 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2018 V.getOperand(1)); 2019 } 2020 break; 2021 case ISD::AND: { 2022 // X & -1 -> X (ignoring bits which aren't demanded). 2023 ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1)); 2024 if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue())) 2025 return V.getOperand(0); 2026 break; 2027 } 2028 case ISD::ANY_EXTEND: { 2029 SDValue Src = V.getOperand(0); 2030 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2031 // Being conservative here - only peek through if we only demand bits in the 2032 // non-extended source (even though the extended bits are technically undef). 2033 if (Mask.getActiveBits() > SrcBitWidth) 2034 break; 2035 APInt SrcMask = Mask.trunc(SrcBitWidth); 2036 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask)) 2037 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2038 break; 2039 } 2040 } 2041 return SDValue(); 2042 } 2043 2044 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2045 /// use this predicate to simplify operations downstream. 2046 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2047 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2048 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2049 } 2050 2051 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2052 /// this predicate to simplify operations downstream. Mask is known to be zero 2053 /// for bits that V cannot have. 2054 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 2055 unsigned Depth) const { 2056 KnownBits Known; 2057 computeKnownBits(Op, Known, Depth); 2058 return Mask.isSubsetOf(Known.Zero); 2059 } 2060 2061 /// Helper function that checks to see if a node is a constant or a 2062 /// build vector of splat constants at least within the demanded elts. 2063 static ConstantSDNode *isConstOrDemandedConstSplat(SDValue N, 2064 const APInt &DemandedElts) { 2065 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 2066 return CN; 2067 if (N.getOpcode() != ISD::BUILD_VECTOR) 2068 return nullptr; 2069 EVT VT = N.getValueType(); 2070 ConstantSDNode *Cst = nullptr; 2071 unsigned NumElts = VT.getVectorNumElements(); 2072 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected vector size"); 2073 for (unsigned i = 0; i != NumElts; ++i) { 2074 if (!DemandedElts[i]) 2075 continue; 2076 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(i)); 2077 if (!C || (Cst && Cst->getAPIntValue() != C->getAPIntValue()) || 2078 C->getValueType(0) != VT.getScalarType()) 2079 return nullptr; 2080 Cst = C; 2081 } 2082 return Cst; 2083 } 2084 2085 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2086 /// is less than the element bit-width of the shift node, return it. 2087 static const APInt *getValidShiftAmountConstant(SDValue V) { 2088 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2089 // Shifting more than the bitwidth is not valid. 2090 const APInt &ShAmt = SA->getAPIntValue(); 2091 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2092 return &ShAmt; 2093 } 2094 return nullptr; 2095 } 2096 2097 /// Determine which bits of Op are known to be either zero or one and return 2098 /// them in Known. For vectors, the known bits are those that are shared by 2099 /// every vector element. 2100 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2101 unsigned Depth) const { 2102 EVT VT = Op.getValueType(); 2103 APInt DemandedElts = VT.isVector() 2104 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2105 : APInt(1, 1); 2106 computeKnownBits(Op, Known, DemandedElts, Depth); 2107 } 2108 2109 /// Determine which bits of Op are known to be either zero or one and return 2110 /// them in Known. The DemandedElts argument allows us to only collect the known 2111 /// bits that are shared by the requested vector elements. 2112 void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, 2113 const APInt &DemandedElts, 2114 unsigned Depth) const { 2115 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2116 2117 Known = KnownBits(BitWidth); // Don't know anything. 2118 2119 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2120 // We know all of the bits for a constant! 2121 Known.One = C->getAPIntValue(); 2122 Known.Zero = ~Known.One; 2123 return; 2124 } 2125 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2126 // We know all of the bits for a constant fp! 2127 Known.One = C->getValueAPF().bitcastToAPInt(); 2128 Known.Zero = ~Known.One; 2129 return; 2130 } 2131 2132 if (Depth == 6) 2133 return; // Limit search depth. 2134 2135 KnownBits Known2; 2136 unsigned NumElts = DemandedElts.getBitWidth(); 2137 2138 if (!DemandedElts) 2139 return; // No demanded elts, better to assume we don't know anything. 2140 2141 unsigned Opcode = Op.getOpcode(); 2142 switch (Opcode) { 2143 case ISD::BUILD_VECTOR: 2144 // Collect the known bits that are shared by every demanded vector element. 2145 assert(NumElts == Op.getValueType().getVectorNumElements() && 2146 "Unexpected vector size"); 2147 Known.Zero.setAllBits(); Known.One.setAllBits(); 2148 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2149 if (!DemandedElts[i]) 2150 continue; 2151 2152 SDValue SrcOp = Op.getOperand(i); 2153 computeKnownBits(SrcOp, Known2, Depth + 1); 2154 2155 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2156 if (SrcOp.getValueSizeInBits() != BitWidth) { 2157 assert(SrcOp.getValueSizeInBits() > BitWidth && 2158 "Expected BUILD_VECTOR implicit truncation"); 2159 Known2 = Known2.trunc(BitWidth); 2160 } 2161 2162 // Known bits are the values that are shared by every demanded element. 2163 Known.One &= Known2.One; 2164 Known.Zero &= Known2.Zero; 2165 2166 // If we don't know any bits, early out. 2167 if (Known.isUnknown()) 2168 break; 2169 } 2170 break; 2171 case ISD::VECTOR_SHUFFLE: { 2172 // Collect the known bits that are shared by every vector element referenced 2173 // by the shuffle. 2174 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2175 Known.Zero.setAllBits(); Known.One.setAllBits(); 2176 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2177 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2178 for (unsigned i = 0; i != NumElts; ++i) { 2179 if (!DemandedElts[i]) 2180 continue; 2181 2182 int M = SVN->getMaskElt(i); 2183 if (M < 0) { 2184 // For UNDEF elements, we don't know anything about the common state of 2185 // the shuffle result. 2186 Known.resetAll(); 2187 DemandedLHS.clearAllBits(); 2188 DemandedRHS.clearAllBits(); 2189 break; 2190 } 2191 2192 if ((unsigned)M < NumElts) 2193 DemandedLHS.setBit((unsigned)M % NumElts); 2194 else 2195 DemandedRHS.setBit((unsigned)M % NumElts); 2196 } 2197 // Known bits are the values that are shared by every demanded element. 2198 if (!!DemandedLHS) { 2199 SDValue LHS = Op.getOperand(0); 2200 computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1); 2201 Known.One &= Known2.One; 2202 Known.Zero &= Known2.Zero; 2203 } 2204 // If we don't know any bits, early out. 2205 if (Known.isUnknown()) 2206 break; 2207 if (!!DemandedRHS) { 2208 SDValue RHS = Op.getOperand(1); 2209 computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1); 2210 Known.One &= Known2.One; 2211 Known.Zero &= Known2.Zero; 2212 } 2213 break; 2214 } 2215 case ISD::CONCAT_VECTORS: { 2216 // Split DemandedElts and test each of the demanded subvectors. 2217 Known.Zero.setAllBits(); Known.One.setAllBits(); 2218 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2219 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2220 unsigned NumSubVectors = Op.getNumOperands(); 2221 for (unsigned i = 0; i != NumSubVectors; ++i) { 2222 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2223 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2224 if (!!DemandedSub) { 2225 SDValue Sub = Op.getOperand(i); 2226 computeKnownBits(Sub, Known2, DemandedSub, Depth + 1); 2227 Known.One &= Known2.One; 2228 Known.Zero &= Known2.Zero; 2229 } 2230 // If we don't know any bits, early out. 2231 if (Known.isUnknown()) 2232 break; 2233 } 2234 break; 2235 } 2236 case ISD::INSERT_SUBVECTOR: { 2237 // If we know the element index, demand any elements from the subvector and 2238 // the remainder from the src its inserted into, otherwise demand them all. 2239 SDValue Src = Op.getOperand(0); 2240 SDValue Sub = Op.getOperand(1); 2241 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2242 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2243 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2244 Known.One.setAllBits(); 2245 Known.Zero.setAllBits(); 2246 uint64_t Idx = SubIdx->getZExtValue(); 2247 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2248 if (!!DemandedSubElts) { 2249 computeKnownBits(Sub, Known, DemandedSubElts, Depth + 1); 2250 if (Known.isUnknown()) 2251 break; // early-out. 2252 } 2253 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2254 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2255 if (!!DemandedSrcElts) { 2256 computeKnownBits(Src, Known2, DemandedSrcElts, Depth + 1); 2257 Known.One &= Known2.One; 2258 Known.Zero &= Known2.Zero; 2259 } 2260 } else { 2261 computeKnownBits(Sub, Known, Depth + 1); 2262 if (Known.isUnknown()) 2263 break; // early-out. 2264 computeKnownBits(Src, Known2, Depth + 1); 2265 Known.One &= Known2.One; 2266 Known.Zero &= Known2.Zero; 2267 } 2268 break; 2269 } 2270 case ISD::EXTRACT_SUBVECTOR: { 2271 // If we know the element index, just demand that subvector elements, 2272 // otherwise demand them all. 2273 SDValue Src = Op.getOperand(0); 2274 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2275 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2276 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2277 // Offset the demanded elts by the subvector index. 2278 uint64_t Idx = SubIdx->getZExtValue(); 2279 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2280 computeKnownBits(Src, Known, DemandedSrc, Depth + 1); 2281 } else { 2282 computeKnownBits(Src, Known, Depth + 1); 2283 } 2284 break; 2285 } 2286 case ISD::BITCAST: { 2287 SDValue N0 = Op.getOperand(0); 2288 EVT SubVT = N0.getValueType(); 2289 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2290 2291 // Ignore bitcasts from unsupported types. 2292 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2293 break; 2294 2295 // Fast handling of 'identity' bitcasts. 2296 if (BitWidth == SubBitWidth) { 2297 computeKnownBits(N0, Known, DemandedElts, Depth + 1); 2298 break; 2299 } 2300 2301 // Support big-endian targets when it becomes useful. 2302 bool IsLE = getDataLayout().isLittleEndian(); 2303 if (!IsLE) 2304 break; 2305 2306 // Bitcast 'small element' vector to 'large element' scalar/vector. 2307 if ((BitWidth % SubBitWidth) == 0) { 2308 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2309 2310 // Collect known bits for the (larger) output by collecting the known 2311 // bits from each set of sub elements and shift these into place. 2312 // We need to separately call computeKnownBits for each set of 2313 // sub elements as the knownbits for each is likely to be different. 2314 unsigned SubScale = BitWidth / SubBitWidth; 2315 APInt SubDemandedElts(NumElts * SubScale, 0); 2316 for (unsigned i = 0; i != NumElts; ++i) 2317 if (DemandedElts[i]) 2318 SubDemandedElts.setBit(i * SubScale); 2319 2320 for (unsigned i = 0; i != SubScale; ++i) { 2321 computeKnownBits(N0, Known2, SubDemandedElts.shl(i), 2322 Depth + 1); 2323 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i); 2324 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i); 2325 } 2326 } 2327 2328 // Bitcast 'large element' scalar/vector to 'small element' vector. 2329 if ((SubBitWidth % BitWidth) == 0) { 2330 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2331 2332 // Collect known bits for the (smaller) output by collecting the known 2333 // bits from the overlapping larger input elements and extracting the 2334 // sub sections we actually care about. 2335 unsigned SubScale = SubBitWidth / BitWidth; 2336 APInt SubDemandedElts(NumElts / SubScale, 0); 2337 for (unsigned i = 0; i != NumElts; ++i) 2338 if (DemandedElts[i]) 2339 SubDemandedElts.setBit(i / SubScale); 2340 2341 computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1); 2342 2343 Known.Zero.setAllBits(); Known.One.setAllBits(); 2344 for (unsigned i = 0; i != NumElts; ++i) 2345 if (DemandedElts[i]) { 2346 unsigned Offset = (i % SubScale) * BitWidth; 2347 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2348 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2349 // If we don't know any bits, early out. 2350 if (Known.isUnknown()) 2351 break; 2352 } 2353 } 2354 break; 2355 } 2356 case ISD::AND: 2357 // If either the LHS or the RHS are Zero, the result is zero. 2358 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2359 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2360 2361 // Output known-1 bits are only known if set in both the LHS & RHS. 2362 Known.One &= Known2.One; 2363 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2364 Known.Zero |= Known2.Zero; 2365 break; 2366 case ISD::OR: 2367 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2368 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2369 2370 // Output known-0 bits are only known if clear in both the LHS & RHS. 2371 Known.Zero &= Known2.Zero; 2372 // Output known-1 are known to be set if set in either the LHS | RHS. 2373 Known.One |= Known2.One; 2374 break; 2375 case ISD::XOR: { 2376 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2377 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2378 2379 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2380 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2381 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2382 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2383 Known.Zero = KnownZeroOut; 2384 break; 2385 } 2386 case ISD::MUL: { 2387 computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); 2388 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2389 2390 // If low bits are zero in either operand, output low known-0 bits. 2391 // Also compute a conservative estimate for high known-0 bits. 2392 // More trickiness is possible, but this is sufficient for the 2393 // interesting case of alignment computation. 2394 unsigned TrailZ = Known.countMinTrailingZeros() + 2395 Known2.countMinTrailingZeros(); 2396 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2397 Known2.countMinLeadingZeros(), 2398 BitWidth) - BitWidth; 2399 2400 Known.resetAll(); 2401 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2402 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2403 break; 2404 } 2405 case ISD::UDIV: { 2406 // For the purposes of computing leading zeros we can conservatively 2407 // treat a udiv as a logical right shift by the power of 2 known to 2408 // be less than the denominator. 2409 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2410 unsigned LeadZ = Known2.countMinLeadingZeros(); 2411 2412 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2413 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2414 if (RHSMaxLeadingZeros != BitWidth) 2415 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2416 2417 Known.Zero.setHighBits(LeadZ); 2418 break; 2419 } 2420 case ISD::SELECT: 2421 case ISD::VSELECT: 2422 computeKnownBits(Op.getOperand(2), Known, DemandedElts, Depth+1); 2423 // If we don't know any bits, early out. 2424 if (Known.isUnknown()) 2425 break; 2426 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth+1); 2427 2428 // Only known if known in both the LHS and RHS. 2429 Known.One &= Known2.One; 2430 Known.Zero &= Known2.Zero; 2431 break; 2432 case ISD::SELECT_CC: 2433 computeKnownBits(Op.getOperand(3), Known, DemandedElts, Depth+1); 2434 // If we don't know any bits, early out. 2435 if (Known.isUnknown()) 2436 break; 2437 computeKnownBits(Op.getOperand(2), Known2, DemandedElts, Depth+1); 2438 2439 // Only known if known in both the LHS and RHS. 2440 Known.One &= Known2.One; 2441 Known.Zero &= Known2.Zero; 2442 break; 2443 case ISD::SMULO: 2444 case ISD::UMULO: 2445 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2446 if (Op.getResNo() != 1) 2447 break; 2448 // The boolean result conforms to getBooleanContents. 2449 // If we know the result of a setcc has the top bits zero, use this info. 2450 // We know that we have an integer-based boolean since these operations 2451 // are only available for integer. 2452 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2453 TargetLowering::ZeroOrOneBooleanContent && 2454 BitWidth > 1) 2455 Known.Zero.setBitsFrom(1); 2456 break; 2457 case ISD::SETCC: 2458 // If we know the result of a setcc has the top bits zero, use this info. 2459 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2460 TargetLowering::ZeroOrOneBooleanContent && 2461 BitWidth > 1) 2462 Known.Zero.setBitsFrom(1); 2463 break; 2464 case ISD::SHL: 2465 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2466 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2467 unsigned Shift = ShAmt->getZExtValue(); 2468 Known.Zero <<= Shift; 2469 Known.One <<= Shift; 2470 // Low bits are known zero. 2471 Known.Zero.setLowBits(Shift); 2472 } 2473 break; 2474 case ISD::SRL: 2475 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2476 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2477 unsigned Shift = ShAmt->getZExtValue(); 2478 Known.Zero.lshrInPlace(Shift); 2479 Known.One.lshrInPlace(Shift); 2480 // High bits are known zero. 2481 Known.Zero.setHighBits(Shift); 2482 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2483 // If the shift amount is a vector of constants see if we can bound 2484 // the number of upper zero bits. 2485 unsigned ShiftAmountMin = BitWidth; 2486 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2487 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2488 const APInt &ShAmt = C->getAPIntValue(); 2489 if (ShAmt.ult(BitWidth)) { 2490 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2491 ShAmt.getZExtValue()); 2492 continue; 2493 } 2494 } 2495 // Don't know anything. 2496 ShiftAmountMin = 0; 2497 break; 2498 } 2499 2500 Known.Zero.setHighBits(ShiftAmountMin); 2501 } 2502 break; 2503 case ISD::SRA: 2504 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2505 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2506 unsigned Shift = ShAmt->getZExtValue(); 2507 // Sign extend known zero/one bit (else is unknown). 2508 Known.Zero.ashrInPlace(Shift); 2509 Known.One.ashrInPlace(Shift); 2510 } 2511 break; 2512 case ISD::SIGN_EXTEND_INREG: { 2513 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2514 unsigned EBits = EVT.getScalarSizeInBits(); 2515 2516 // Sign extension. Compute the demanded bits in the result that are not 2517 // present in the input. 2518 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2519 2520 APInt InSignMask = APInt::getSignMask(EBits); 2521 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2522 2523 // If the sign extended bits are demanded, we know that the sign 2524 // bit is demanded. 2525 InSignMask = InSignMask.zext(BitWidth); 2526 if (NewBits.getBoolValue()) 2527 InputDemandedBits |= InSignMask; 2528 2529 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2530 Known.One &= InputDemandedBits; 2531 Known.Zero &= InputDemandedBits; 2532 2533 // If the sign bit of the input is known set or clear, then we know the 2534 // top bits of the result. 2535 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2536 Known.Zero |= NewBits; 2537 Known.One &= ~NewBits; 2538 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2539 Known.One |= NewBits; 2540 Known.Zero &= ~NewBits; 2541 } else { // Input sign bit unknown 2542 Known.Zero &= ~NewBits; 2543 Known.One &= ~NewBits; 2544 } 2545 break; 2546 } 2547 case ISD::CTTZ: 2548 case ISD::CTTZ_ZERO_UNDEF: { 2549 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2550 // If we have a known 1, its position is our upper bound. 2551 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2552 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2553 Known.Zero.setBitsFrom(LowBits); 2554 break; 2555 } 2556 case ISD::CTLZ: 2557 case ISD::CTLZ_ZERO_UNDEF: { 2558 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2559 // If we have a known 1, its position is our upper bound. 2560 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2561 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2562 Known.Zero.setBitsFrom(LowBits); 2563 break; 2564 } 2565 case ISD::CTPOP: { 2566 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2567 // If we know some of the bits are zero, they can't be one. 2568 unsigned PossibleOnes = Known2.countMaxPopulation(); 2569 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2570 break; 2571 } 2572 case ISD::LOAD: { 2573 LoadSDNode *LD = cast<LoadSDNode>(Op); 2574 // If this is a ZEXTLoad and we are looking at the loaded value. 2575 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2576 EVT VT = LD->getMemoryVT(); 2577 unsigned MemBits = VT.getScalarSizeInBits(); 2578 Known.Zero.setBitsFrom(MemBits); 2579 } else if (const MDNode *Ranges = LD->getRanges()) { 2580 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2581 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2582 } 2583 break; 2584 } 2585 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2586 EVT InVT = Op.getOperand(0).getValueType(); 2587 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 2588 computeKnownBits(Op.getOperand(0), Known, InDemandedElts, Depth + 1); 2589 Known = Known.zext(BitWidth); 2590 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2591 break; 2592 } 2593 case ISD::ZERO_EXTEND: { 2594 EVT InVT = Op.getOperand(0).getValueType(); 2595 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2596 Known = Known.zext(BitWidth); 2597 Known.Zero.setBitsFrom(InVT.getScalarSizeInBits()); 2598 break; 2599 } 2600 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2601 case ISD::SIGN_EXTEND: { 2602 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2603 // If the sign bit is known to be zero or one, then sext will extend 2604 // it to the top bits, else it will just zext. 2605 Known = Known.sext(BitWidth); 2606 break; 2607 } 2608 case ISD::ANY_EXTEND: { 2609 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2610 Known = Known.zext(BitWidth); 2611 break; 2612 } 2613 case ISD::TRUNCATE: { 2614 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2615 Known = Known.trunc(BitWidth); 2616 break; 2617 } 2618 case ISD::AssertZext: { 2619 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2620 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2621 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2622 Known.Zero |= (~InMask); 2623 Known.One &= (~Known.Zero); 2624 break; 2625 } 2626 case ISD::FGETSIGN: 2627 // All bits are zero except the low bit. 2628 Known.Zero.setBitsFrom(1); 2629 break; 2630 case ISD::USUBO: 2631 case ISD::SSUBO: 2632 if (Op.getResNo() == 1) { 2633 // If we know the result of a setcc has the top bits zero, use this info. 2634 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2635 TargetLowering::ZeroOrOneBooleanContent && 2636 BitWidth > 1) 2637 Known.Zero.setBitsFrom(1); 2638 break; 2639 } 2640 LLVM_FALLTHROUGH; 2641 case ISD::SUB: 2642 case ISD::SUBC: { 2643 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2644 // We know that the top bits of C-X are clear if X contains less bits 2645 // than C (i.e. no wrap-around can happen). For example, 20-X is 2646 // positive if we can prove that X is >= 0 and < 16. 2647 if (CLHS->getAPIntValue().isNonNegative()) { 2648 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2649 // NLZ can't be BitWidth with no sign bit 2650 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2651 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2652 Depth + 1); 2653 2654 // If all of the MaskV bits are known to be zero, then we know the 2655 // output top bits are zero, because we now know that the output is 2656 // from [0-C]. 2657 if ((Known2.Zero & MaskV) == MaskV) { 2658 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2659 // Top bits known zero. 2660 Known.Zero.setHighBits(NLZ2); 2661 } 2662 } 2663 } 2664 2665 // If low bits are know to be zero in both operands, then we know they are 2666 // going to be 0 in the result. Both addition and complement operations 2667 // preserve the low zero bits. 2668 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2669 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2670 if (KnownZeroLow == 0) 2671 break; 2672 2673 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2674 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2675 Known.Zero.setLowBits(KnownZeroLow); 2676 break; 2677 } 2678 case ISD::UADDO: 2679 case ISD::SADDO: 2680 case ISD::ADDCARRY: 2681 if (Op.getResNo() == 1) { 2682 // If we know the result of a setcc has the top bits zero, use this info. 2683 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2684 TargetLowering::ZeroOrOneBooleanContent && 2685 BitWidth > 1) 2686 Known.Zero.setBitsFrom(1); 2687 break; 2688 } 2689 LLVM_FALLTHROUGH; 2690 case ISD::ADD: 2691 case ISD::ADDC: 2692 case ISD::ADDE: { 2693 // Output known-0 bits are known if clear or set in both the low clear bits 2694 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2695 // low 3 bits clear. 2696 // Output known-0 bits are also known if the top bits of each input are 2697 // known to be clear. For example, if one input has the top 10 bits clear 2698 // and the other has the top 8 bits clear, we know the top 7 bits of the 2699 // output must be clear. 2700 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2701 unsigned KnownZeroHigh = Known2.countMinLeadingZeros(); 2702 unsigned KnownZeroLow = Known2.countMinTrailingZeros(); 2703 2704 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, 2705 Depth + 1); 2706 KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros()); 2707 KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros()); 2708 2709 if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) { 2710 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only 2711 // use this information if we know (at least) that the low two bits are 2712 // clear. We then return to the caller that the low bit is unknown but 2713 // that other bits are known zero. 2714 if (KnownZeroLow >= 2) 2715 Known.Zero.setBits(1, KnownZeroLow); 2716 break; 2717 } 2718 2719 Known.Zero.setLowBits(KnownZeroLow); 2720 if (KnownZeroHigh > 1) 2721 Known.Zero.setHighBits(KnownZeroHigh - 1); 2722 break; 2723 } 2724 case ISD::SREM: 2725 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2726 const APInt &RA = Rem->getAPIntValue().abs(); 2727 if (RA.isPowerOf2()) { 2728 APInt LowBits = RA - 1; 2729 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2730 2731 // The low bits of the first operand are unchanged by the srem. 2732 Known.Zero = Known2.Zero & LowBits; 2733 Known.One = Known2.One & LowBits; 2734 2735 // If the first operand is non-negative or has all low bits zero, then 2736 // the upper bits are all zero. 2737 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 2738 Known.Zero |= ~LowBits; 2739 2740 // If the first operand is negative and not all low bits are zero, then 2741 // the upper bits are all one. 2742 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 2743 Known.One |= ~LowBits; 2744 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 2745 } 2746 } 2747 break; 2748 case ISD::UREM: { 2749 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2750 const APInt &RA = Rem->getAPIntValue(); 2751 if (RA.isPowerOf2()) { 2752 APInt LowBits = (RA - 1); 2753 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2754 2755 // The upper bits are all zero, the lower ones are unchanged. 2756 Known.Zero = Known2.Zero | ~LowBits; 2757 Known.One = Known2.One & LowBits; 2758 break; 2759 } 2760 } 2761 2762 // Since the result is less than or equal to either operand, any leading 2763 // zero bits in either operand must also exist in the result. 2764 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2765 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2766 2767 uint32_t Leaders = 2768 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 2769 Known.resetAll(); 2770 Known.Zero.setHighBits(Leaders); 2771 break; 2772 } 2773 case ISD::EXTRACT_ELEMENT: { 2774 computeKnownBits(Op.getOperand(0), Known, Depth+1); 2775 const unsigned Index = Op.getConstantOperandVal(1); 2776 const unsigned BitWidth = Op.getValueSizeInBits(); 2777 2778 // Remove low part of known bits mask 2779 Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); 2780 Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); 2781 2782 // Remove high part of known bit mask 2783 Known = Known.trunc(BitWidth); 2784 break; 2785 } 2786 case ISD::EXTRACT_VECTOR_ELT: { 2787 SDValue InVec = Op.getOperand(0); 2788 SDValue EltNo = Op.getOperand(1); 2789 EVT VecVT = InVec.getValueType(); 2790 const unsigned BitWidth = Op.getValueSizeInBits(); 2791 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2792 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2793 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2794 // anything about the extended bits. 2795 if (BitWidth > EltBitWidth) 2796 Known = Known.trunc(EltBitWidth); 2797 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2798 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2799 // If we know the element index, just demand that vector element. 2800 unsigned Idx = ConstEltNo->getZExtValue(); 2801 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2802 computeKnownBits(InVec, Known, DemandedElt, Depth + 1); 2803 } else { 2804 // Unknown element index, so ignore DemandedElts and demand them all. 2805 computeKnownBits(InVec, Known, Depth + 1); 2806 } 2807 if (BitWidth > EltBitWidth) 2808 Known = Known.zext(BitWidth); 2809 break; 2810 } 2811 case ISD::INSERT_VECTOR_ELT: { 2812 SDValue InVec = Op.getOperand(0); 2813 SDValue InVal = Op.getOperand(1); 2814 SDValue EltNo = Op.getOperand(2); 2815 2816 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2817 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2818 // If we know the element index, split the demand between the 2819 // source vector and the inserted element. 2820 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 2821 unsigned EltIdx = CEltNo->getZExtValue(); 2822 2823 // If we demand the inserted element then add its common known bits. 2824 if (DemandedElts[EltIdx]) { 2825 computeKnownBits(InVal, Known2, Depth + 1); 2826 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2827 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2828 } 2829 2830 // If we demand the source vector then add its common known bits, ensuring 2831 // that we don't demand the inserted element. 2832 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2833 if (!!VectorElts) { 2834 computeKnownBits(InVec, Known2, VectorElts, Depth + 1); 2835 Known.One &= Known2.One; 2836 Known.Zero &= Known2.Zero; 2837 } 2838 } else { 2839 // Unknown element index, so ignore DemandedElts and demand them all. 2840 computeKnownBits(InVec, Known, Depth + 1); 2841 computeKnownBits(InVal, Known2, Depth + 1); 2842 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 2843 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 2844 } 2845 break; 2846 } 2847 case ISD::BITREVERSE: { 2848 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2849 Known.Zero = Known2.Zero.reverseBits(); 2850 Known.One = Known2.One.reverseBits(); 2851 break; 2852 } 2853 case ISD::BSWAP: { 2854 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2855 Known.Zero = Known2.Zero.byteSwap(); 2856 Known.One = Known2.One.byteSwap(); 2857 break; 2858 } 2859 case ISD::ABS: { 2860 computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); 2861 2862 // If the source's MSB is zero then we know the rest of the bits already. 2863 if (Known2.isNonNegative()) { 2864 Known.Zero = Known2.Zero; 2865 Known.One = Known2.One; 2866 break; 2867 } 2868 2869 // We only know that the absolute values's MSB will be zero iff there is 2870 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 2871 Known2.One.clearSignBit(); 2872 if (Known2.One.getBoolValue()) { 2873 Known.Zero = APInt::getSignMask(BitWidth); 2874 break; 2875 } 2876 break; 2877 } 2878 case ISD::UMIN: { 2879 computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); 2880 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2881 2882 // UMIN - we know that the result will have the maximum of the 2883 // known zero leading bits of the inputs. 2884 unsigned LeadZero = Known.countMinLeadingZeros(); 2885 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 2886 2887 Known.Zero &= Known2.Zero; 2888 Known.One &= Known2.One; 2889 Known.Zero.setHighBits(LeadZero); 2890 break; 2891 } 2892 case ISD::UMAX: { 2893 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2894 Depth + 1); 2895 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2896 2897 // UMAX - we know that the result will have the maximum of the 2898 // known one leading bits of the inputs. 2899 unsigned LeadOne = Known.countMinLeadingOnes(); 2900 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 2901 2902 Known.Zero &= Known2.Zero; 2903 Known.One &= Known2.One; 2904 Known.One.setHighBits(LeadOne); 2905 break; 2906 } 2907 case ISD::SMIN: 2908 case ISD::SMAX: { 2909 computeKnownBits(Op.getOperand(0), Known, DemandedElts, 2910 Depth + 1); 2911 // If we don't know any bits, early out. 2912 if (Known.isUnknown()) 2913 break; 2914 computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); 2915 Known.Zero &= Known2.Zero; 2916 Known.One &= Known2.One; 2917 break; 2918 } 2919 case ISD::FrameIndex: 2920 case ISD::TargetFrameIndex: 2921 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 2922 break; 2923 2924 default: 2925 if (Opcode < ISD::BUILTIN_OP_END) 2926 break; 2927 LLVM_FALLTHROUGH; 2928 case ISD::INTRINSIC_WO_CHAIN: 2929 case ISD::INTRINSIC_W_CHAIN: 2930 case ISD::INTRINSIC_VOID: 2931 // Allow the target to implement this method for its nodes. 2932 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 2933 break; 2934 } 2935 2936 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2937 } 2938 2939 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 2940 SDValue N1) const { 2941 // X + 0 never overflow 2942 if (isNullConstant(N1)) 2943 return OFK_Never; 2944 2945 KnownBits N1Known; 2946 computeKnownBits(N1, N1Known); 2947 if (N1Known.Zero.getBoolValue()) { 2948 KnownBits N0Known; 2949 computeKnownBits(N0, N0Known); 2950 2951 bool overflow; 2952 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 2953 if (!overflow) 2954 return OFK_Never; 2955 } 2956 2957 // mulhi + 1 never overflow 2958 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 2959 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 2960 return OFK_Never; 2961 2962 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 2963 KnownBits N0Known; 2964 computeKnownBits(N0, N0Known); 2965 2966 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 2967 return OFK_Never; 2968 } 2969 2970 return OFK_Sometime; 2971 } 2972 2973 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2974 EVT OpVT = Val.getValueType(); 2975 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2976 2977 // Is the constant a known power of 2? 2978 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2979 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2980 2981 // A left-shift of a constant one will have exactly one bit set because 2982 // shifting the bit off the end is undefined. 2983 if (Val.getOpcode() == ISD::SHL) { 2984 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2985 if (C && C->getAPIntValue() == 1) 2986 return true; 2987 } 2988 2989 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2990 // one bit set. 2991 if (Val.getOpcode() == ISD::SRL) { 2992 auto *C = isConstOrConstSplat(Val.getOperand(0)); 2993 if (C && C->getAPIntValue().isSignMask()) 2994 return true; 2995 } 2996 2997 // Are all operands of a build vector constant powers of two? 2998 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2999 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3000 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3001 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3002 return false; 3003 })) 3004 return true; 3005 3006 // More could be done here, though the above checks are enough 3007 // to handle some common cases. 3008 3009 // Fall back to computeKnownBits to catch other known cases. 3010 KnownBits Known; 3011 computeKnownBits(Val, Known); 3012 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3013 } 3014 3015 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3016 EVT VT = Op.getValueType(); 3017 APInt DemandedElts = VT.isVector() 3018 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3019 : APInt(1, 1); 3020 return ComputeNumSignBits(Op, DemandedElts, Depth); 3021 } 3022 3023 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3024 unsigned Depth) const { 3025 EVT VT = Op.getValueType(); 3026 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3027 unsigned VTBits = VT.getScalarSizeInBits(); 3028 unsigned NumElts = DemandedElts.getBitWidth(); 3029 unsigned Tmp, Tmp2; 3030 unsigned FirstAnswer = 1; 3031 3032 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3033 const APInt &Val = C->getAPIntValue(); 3034 return Val.getNumSignBits(); 3035 } 3036 3037 if (Depth == 6) 3038 return 1; // Limit search depth. 3039 3040 if (!DemandedElts) 3041 return 1; // No demanded elts, better to assume we don't know anything. 3042 3043 switch (Op.getOpcode()) { 3044 default: break; 3045 case ISD::AssertSext: 3046 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3047 return VTBits-Tmp+1; 3048 case ISD::AssertZext: 3049 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3050 return VTBits-Tmp; 3051 3052 case ISD::BUILD_VECTOR: 3053 Tmp = VTBits; 3054 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3055 if (!DemandedElts[i]) 3056 continue; 3057 3058 SDValue SrcOp = Op.getOperand(i); 3059 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3060 3061 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3062 if (SrcOp.getValueSizeInBits() != VTBits) { 3063 assert(SrcOp.getValueSizeInBits() > VTBits && 3064 "Expected BUILD_VECTOR implicit truncation"); 3065 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3066 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3067 } 3068 Tmp = std::min(Tmp, Tmp2); 3069 } 3070 return Tmp; 3071 3072 case ISD::VECTOR_SHUFFLE: { 3073 // Collect the minimum number of sign bits that are shared by every vector 3074 // element referenced by the shuffle. 3075 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3076 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3077 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3078 for (unsigned i = 0; i != NumElts; ++i) { 3079 int M = SVN->getMaskElt(i); 3080 if (!DemandedElts[i]) 3081 continue; 3082 // For UNDEF elements, we don't know anything about the common state of 3083 // the shuffle result. 3084 if (M < 0) 3085 return 1; 3086 if ((unsigned)M < NumElts) 3087 DemandedLHS.setBit((unsigned)M % NumElts); 3088 else 3089 DemandedRHS.setBit((unsigned)M % NumElts); 3090 } 3091 Tmp = std::numeric_limits<unsigned>::max(); 3092 if (!!DemandedLHS) 3093 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3094 if (!!DemandedRHS) { 3095 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3096 Tmp = std::min(Tmp, Tmp2); 3097 } 3098 // If we don't know anything, early out and try computeKnownBits fall-back. 3099 if (Tmp == 1) 3100 break; 3101 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3102 return Tmp; 3103 } 3104 3105 case ISD::BITCAST: { 3106 SDValue N0 = Op.getOperand(0); 3107 EVT SrcVT = N0.getValueType(); 3108 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3109 3110 // Ignore bitcasts from unsupported types.. 3111 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3112 break; 3113 3114 // Fast handling of 'identity' bitcasts. 3115 if (VTBits == SrcBits) 3116 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3117 3118 // Bitcast 'large element' scalar/vector to 'small element' vector. 3119 // TODO: Handle cases other than 'sign splat' when we have a use case. 3120 // Requires handling of DemandedElts and Endianness. 3121 if ((SrcBits % VTBits) == 0) { 3122 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3123 Tmp = ComputeNumSignBits(N0, Depth + 1); 3124 if (Tmp == SrcBits) 3125 return VTBits; 3126 } 3127 break; 3128 } 3129 3130 case ISD::SIGN_EXTEND: 3131 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3132 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3133 case ISD::SIGN_EXTEND_INREG: 3134 // Max of the input and what this extends. 3135 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3136 Tmp = VTBits-Tmp+1; 3137 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3138 return std::max(Tmp, Tmp2); 3139 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3140 SDValue Src = Op.getOperand(0); 3141 EVT SrcVT = Src.getValueType(); 3142 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 3143 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3144 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3145 } 3146 3147 case ISD::SRA: 3148 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3149 // SRA X, C -> adds C sign bits. 3150 if (ConstantSDNode *C = 3151 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3152 APInt ShiftVal = C->getAPIntValue(); 3153 ShiftVal += Tmp; 3154 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3155 } 3156 return Tmp; 3157 case ISD::SHL: 3158 if (ConstantSDNode *C = 3159 isConstOrDemandedConstSplat(Op.getOperand(1), DemandedElts)) { 3160 // shl destroys sign bits. 3161 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3162 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3163 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3164 return Tmp - C->getZExtValue(); 3165 } 3166 break; 3167 case ISD::AND: 3168 case ISD::OR: 3169 case ISD::XOR: // NOT is handled here. 3170 // Logical binary ops preserve the number of sign bits at the worst. 3171 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3172 if (Tmp != 1) { 3173 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3174 FirstAnswer = std::min(Tmp, Tmp2); 3175 // We computed what we know about the sign bits as our first 3176 // answer. Now proceed to the generic code that uses 3177 // computeKnownBits, and pick whichever answer is better. 3178 } 3179 break; 3180 3181 case ISD::SELECT: 3182 case ISD::VSELECT: 3183 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3184 if (Tmp == 1) return 1; // Early out. 3185 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3186 return std::min(Tmp, Tmp2); 3187 case ISD::SELECT_CC: 3188 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3189 if (Tmp == 1) return 1; // Early out. 3190 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3191 return std::min(Tmp, Tmp2); 3192 3193 case ISD::SMIN: 3194 case ISD::SMAX: 3195 case ISD::UMIN: 3196 case ISD::UMAX: 3197 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3198 if (Tmp == 1) 3199 return 1; // Early out. 3200 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3201 return std::min(Tmp, Tmp2); 3202 case ISD::SADDO: 3203 case ISD::UADDO: 3204 case ISD::SSUBO: 3205 case ISD::USUBO: 3206 case ISD::SMULO: 3207 case ISD::UMULO: 3208 if (Op.getResNo() != 1) 3209 break; 3210 // The boolean result conforms to getBooleanContents. Fall through. 3211 // If setcc returns 0/-1, all bits are sign bits. 3212 // We know that we have an integer-based boolean since these operations 3213 // are only available for integer. 3214 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3215 TargetLowering::ZeroOrNegativeOneBooleanContent) 3216 return VTBits; 3217 break; 3218 case ISD::SETCC: 3219 // If setcc returns 0/-1, all bits are sign bits. 3220 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3221 TargetLowering::ZeroOrNegativeOneBooleanContent) 3222 return VTBits; 3223 break; 3224 case ISD::ROTL: 3225 case ISD::ROTR: 3226 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3227 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3228 3229 // Handle rotate right by N like a rotate left by 32-N. 3230 if (Op.getOpcode() == ISD::ROTR) 3231 RotAmt = (VTBits - RotAmt) % VTBits; 3232 3233 // If we aren't rotating out all of the known-in sign bits, return the 3234 // number that are left. This handles rotl(sext(x), 1) for example. 3235 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3236 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3237 } 3238 break; 3239 case ISD::ADD: 3240 case ISD::ADDC: 3241 // Add can have at most one carry bit. Thus we know that the output 3242 // is, at worst, one more bit than the inputs. 3243 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3244 if (Tmp == 1) return 1; // Early out. 3245 3246 // Special case decrementing a value (ADD X, -1): 3247 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3248 if (CRHS->isAllOnesValue()) { 3249 KnownBits Known; 3250 computeKnownBits(Op.getOperand(0), Known, Depth+1); 3251 3252 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3253 // sign bits set. 3254 if ((Known.Zero | 1).isAllOnesValue()) 3255 return VTBits; 3256 3257 // If we are subtracting one from a positive number, there is no carry 3258 // out of the result. 3259 if (Known.isNonNegative()) 3260 return Tmp; 3261 } 3262 3263 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3264 if (Tmp2 == 1) return 1; 3265 return std::min(Tmp, Tmp2)-1; 3266 3267 case ISD::SUB: 3268 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3269 if (Tmp2 == 1) return 1; 3270 3271 // Handle NEG. 3272 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3273 if (CLHS->isNullValue()) { 3274 KnownBits Known; 3275 computeKnownBits(Op.getOperand(1), Known, Depth+1); 3276 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3277 // sign bits set. 3278 if ((Known.Zero | 1).isAllOnesValue()) 3279 return VTBits; 3280 3281 // If the input is known to be positive (the sign bit is known clear), 3282 // the output of the NEG has the same number of sign bits as the input. 3283 if (Known.isNonNegative()) 3284 return Tmp2; 3285 3286 // Otherwise, we treat this like a SUB. 3287 } 3288 3289 // Sub can have at most one carry bit. Thus we know that the output 3290 // is, at worst, one more bit than the inputs. 3291 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3292 if (Tmp == 1) return 1; // Early out. 3293 return std::min(Tmp, Tmp2)-1; 3294 case ISD::TRUNCATE: { 3295 // Check if the sign bits of source go down as far as the truncated value. 3296 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3297 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3298 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3299 return NumSrcSignBits - (NumSrcBits - VTBits); 3300 break; 3301 } 3302 case ISD::EXTRACT_ELEMENT: { 3303 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3304 const int BitWidth = Op.getValueSizeInBits(); 3305 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3306 3307 // Get reverse index (starting from 1), Op1 value indexes elements from 3308 // little end. Sign starts at big end. 3309 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3310 3311 // If the sign portion ends in our element the subtraction gives correct 3312 // result. Otherwise it gives either negative or > bitwidth result 3313 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3314 } 3315 case ISD::INSERT_VECTOR_ELT: { 3316 SDValue InVec = Op.getOperand(0); 3317 SDValue InVal = Op.getOperand(1); 3318 SDValue EltNo = Op.getOperand(2); 3319 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 3320 3321 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3322 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3323 // If we know the element index, split the demand between the 3324 // source vector and the inserted element. 3325 unsigned EltIdx = CEltNo->getZExtValue(); 3326 3327 // If we demand the inserted element then get its sign bits. 3328 Tmp = std::numeric_limits<unsigned>::max(); 3329 if (DemandedElts[EltIdx]) { 3330 // TODO - handle implicit truncation of inserted elements. 3331 if (InVal.getScalarValueSizeInBits() != VTBits) 3332 break; 3333 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3334 } 3335 3336 // If we demand the source vector then get its sign bits, and determine 3337 // the minimum. 3338 APInt VectorElts = DemandedElts; 3339 VectorElts.clearBit(EltIdx); 3340 if (!!VectorElts) { 3341 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3342 Tmp = std::min(Tmp, Tmp2); 3343 } 3344 } else { 3345 // Unknown element index, so ignore DemandedElts and demand them all. 3346 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3347 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3348 Tmp = std::min(Tmp, Tmp2); 3349 } 3350 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3351 return Tmp; 3352 } 3353 case ISD::EXTRACT_VECTOR_ELT: { 3354 SDValue InVec = Op.getOperand(0); 3355 SDValue EltNo = Op.getOperand(1); 3356 EVT VecVT = InVec.getValueType(); 3357 const unsigned BitWidth = Op.getValueSizeInBits(); 3358 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3359 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3360 3361 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3362 // anything about sign bits. But if the sizes match we can derive knowledge 3363 // about sign bits from the vector operand. 3364 if (BitWidth != EltBitWidth) 3365 break; 3366 3367 // If we know the element index, just demand that vector element, else for 3368 // an unknown element index, ignore DemandedElts and demand them all. 3369 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3370 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3371 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3372 DemandedSrcElts = 3373 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3374 3375 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3376 } 3377 case ISD::EXTRACT_SUBVECTOR: { 3378 // If we know the element index, just demand that subvector elements, 3379 // otherwise demand them all. 3380 SDValue Src = Op.getOperand(0); 3381 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3382 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3383 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3384 // Offset the demanded elts by the subvector index. 3385 uint64_t Idx = SubIdx->getZExtValue(); 3386 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 3387 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3388 } 3389 return ComputeNumSignBits(Src, Depth + 1); 3390 } 3391 case ISD::CONCAT_VECTORS: 3392 // Determine the minimum number of sign bits across all demanded 3393 // elts of the input vectors. Early out if the result is already 1. 3394 Tmp = std::numeric_limits<unsigned>::max(); 3395 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3396 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3397 unsigned NumSubVectors = Op.getNumOperands(); 3398 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3399 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3400 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3401 if (!DemandedSub) 3402 continue; 3403 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3404 Tmp = std::min(Tmp, Tmp2); 3405 } 3406 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3407 return Tmp; 3408 } 3409 3410 // If we are looking at the loaded value of the SDNode. 3411 if (Op.getResNo() == 0) { 3412 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3413 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3414 unsigned ExtType = LD->getExtensionType(); 3415 switch (ExtType) { 3416 default: break; 3417 case ISD::SEXTLOAD: // '17' bits known 3418 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3419 return VTBits-Tmp+1; 3420 case ISD::ZEXTLOAD: // '16' bits known 3421 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3422 return VTBits-Tmp; 3423 } 3424 } 3425 } 3426 3427 // Allow the target to implement this method for its nodes. 3428 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3429 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3430 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3431 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3432 unsigned NumBits = 3433 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3434 if (NumBits > 1) 3435 FirstAnswer = std::max(FirstAnswer, NumBits); 3436 } 3437 3438 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3439 // use this information. 3440 KnownBits Known; 3441 computeKnownBits(Op, Known, DemandedElts, Depth); 3442 3443 APInt Mask; 3444 if (Known.isNonNegative()) { // sign bit is 0 3445 Mask = Known.Zero; 3446 } else if (Known.isNegative()) { // sign bit is 1; 3447 Mask = Known.One; 3448 } else { 3449 // Nothing known. 3450 return FirstAnswer; 3451 } 3452 3453 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3454 // the number of identical bits in the top of the input value. 3455 Mask = ~Mask; 3456 Mask <<= Mask.getBitWidth()-VTBits; 3457 // Return # leading zeros. We use 'min' here in case Val was zero before 3458 // shifting. We don't want to return '64' as for an i32 "0". 3459 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3460 } 3461 3462 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3463 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3464 !isa<ConstantSDNode>(Op.getOperand(1))) 3465 return false; 3466 3467 if (Op.getOpcode() == ISD::OR && 3468 !MaskedValueIsZero(Op.getOperand(0), 3469 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3470 return false; 3471 3472 return true; 3473 } 3474 3475 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3476 // If we're told that NaNs won't happen, assume they won't. 3477 if (getTarget().Options.NoNaNsFPMath) 3478 return true; 3479 3480 if (Op->getFlags().hasNoNaNs()) 3481 return true; 3482 3483 // If the value is a constant, we can obviously see if it is a NaN or not. 3484 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3485 return !C->getValueAPF().isNaN(); 3486 3487 // TODO: Recognize more cases here. 3488 3489 return false; 3490 } 3491 3492 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3493 // If the value is a constant, we can obviously see if it is a zero or not. 3494 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3495 return !C->isZero(); 3496 3497 // TODO: Recognize more cases here. 3498 switch (Op.getOpcode()) { 3499 default: break; 3500 case ISD::OR: 3501 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3502 return !C->isNullValue(); 3503 break; 3504 } 3505 3506 return false; 3507 } 3508 3509 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3510 // Check the obvious case. 3511 if (A == B) return true; 3512 3513 // For for negative and positive zero. 3514 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3515 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3516 if (CA->isZero() && CB->isZero()) return true; 3517 3518 // Otherwise they may not be equal. 3519 return false; 3520 } 3521 3522 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3523 assert(A.getValueType() == B.getValueType() && 3524 "Values must have the same type"); 3525 KnownBits AKnown, BKnown; 3526 computeKnownBits(A, AKnown); 3527 computeKnownBits(B, BKnown); 3528 return (AKnown.Zero | BKnown.Zero).isAllOnesValue(); 3529 } 3530 3531 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3532 ArrayRef<SDValue> Ops, 3533 SelectionDAG &DAG) { 3534 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3535 assert(llvm::all_of(Ops, 3536 [Ops](SDValue Op) { 3537 return Ops[0].getValueType() == Op.getValueType(); 3538 }) && 3539 "Concatenation of vectors with inconsistent value types!"); 3540 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3541 VT.getVectorNumElements() && 3542 "Incorrect element count in vector concatenation!"); 3543 3544 if (Ops.size() == 1) 3545 return Ops[0]; 3546 3547 // Concat of UNDEFs is UNDEF. 3548 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3549 return DAG.getUNDEF(VT); 3550 3551 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3552 // simplified to one big BUILD_VECTOR. 3553 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3554 EVT SVT = VT.getScalarType(); 3555 SmallVector<SDValue, 16> Elts; 3556 for (SDValue Op : Ops) { 3557 EVT OpVT = Op.getValueType(); 3558 if (Op.isUndef()) 3559 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3560 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3561 Elts.append(Op->op_begin(), Op->op_end()); 3562 else 3563 return SDValue(); 3564 } 3565 3566 // BUILD_VECTOR requires all inputs to be of the same type, find the 3567 // maximum type and extend them all. 3568 for (SDValue Op : Elts) 3569 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3570 3571 if (SVT.bitsGT(VT.getScalarType())) 3572 for (SDValue &Op : Elts) 3573 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3574 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3575 : DAG.getSExtOrTrunc(Op, DL, SVT); 3576 3577 SDValue V = DAG.getBuildVector(VT, DL, Elts); 3578 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 3579 return V; 3580 } 3581 3582 /// Gets or creates the specified node. 3583 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3584 FoldingSetNodeID ID; 3585 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3586 void *IP = nullptr; 3587 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3588 return SDValue(E, 0); 3589 3590 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3591 getVTList(VT)); 3592 CSEMap.InsertNode(N, IP); 3593 3594 InsertNode(N); 3595 SDValue V = SDValue(N, 0); 3596 NewSDValueDbgMsg(V, "Creating new node: ", this); 3597 return V; 3598 } 3599 3600 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3601 SDValue Operand, const SDNodeFlags Flags) { 3602 // Constant fold unary operations with an integer constant operand. Even 3603 // opaque constant will be folded, because the folding of unary operations 3604 // doesn't create new constants with different values. Nevertheless, the 3605 // opaque flag is preserved during folding to prevent future folding with 3606 // other constants. 3607 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3608 const APInt &Val = C->getAPIntValue(); 3609 switch (Opcode) { 3610 default: break; 3611 case ISD::SIGN_EXTEND: 3612 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3613 C->isTargetOpcode(), C->isOpaque()); 3614 case ISD::ANY_EXTEND: 3615 case ISD::ZERO_EXTEND: 3616 case ISD::TRUNCATE: 3617 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3618 C->isTargetOpcode(), C->isOpaque()); 3619 case ISD::UINT_TO_FP: 3620 case ISD::SINT_TO_FP: { 3621 APFloat apf(EVTToAPFloatSemantics(VT), 3622 APInt::getNullValue(VT.getSizeInBits())); 3623 (void)apf.convertFromAPInt(Val, 3624 Opcode==ISD::SINT_TO_FP, 3625 APFloat::rmNearestTiesToEven); 3626 return getConstantFP(apf, DL, VT); 3627 } 3628 case ISD::BITCAST: 3629 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3630 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3631 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3632 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3633 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3634 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3635 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3636 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3637 break; 3638 case ISD::ABS: 3639 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3640 C->isOpaque()); 3641 case ISD::BITREVERSE: 3642 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3643 C->isOpaque()); 3644 case ISD::BSWAP: 3645 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3646 C->isOpaque()); 3647 case ISD::CTPOP: 3648 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3649 C->isOpaque()); 3650 case ISD::CTLZ: 3651 case ISD::CTLZ_ZERO_UNDEF: 3652 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3653 C->isOpaque()); 3654 case ISD::CTTZ: 3655 case ISD::CTTZ_ZERO_UNDEF: 3656 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3657 C->isOpaque()); 3658 case ISD::FP16_TO_FP: { 3659 bool Ignored; 3660 APFloat FPV(APFloat::IEEEhalf(), 3661 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3662 3663 // This can return overflow, underflow, or inexact; we don't care. 3664 // FIXME need to be more flexible about rounding mode. 3665 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3666 APFloat::rmNearestTiesToEven, &Ignored); 3667 return getConstantFP(FPV, DL, VT); 3668 } 3669 } 3670 } 3671 3672 // Constant fold unary operations with a floating point constant operand. 3673 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3674 APFloat V = C->getValueAPF(); // make copy 3675 switch (Opcode) { 3676 case ISD::FNEG: 3677 V.changeSign(); 3678 return getConstantFP(V, DL, VT); 3679 case ISD::FABS: 3680 V.clearSign(); 3681 return getConstantFP(V, DL, VT); 3682 case ISD::FCEIL: { 3683 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3684 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3685 return getConstantFP(V, DL, VT); 3686 break; 3687 } 3688 case ISD::FTRUNC: { 3689 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3690 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3691 return getConstantFP(V, DL, VT); 3692 break; 3693 } 3694 case ISD::FFLOOR: { 3695 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3696 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3697 return getConstantFP(V, DL, VT); 3698 break; 3699 } 3700 case ISD::FP_EXTEND: { 3701 bool ignored; 3702 // This can return overflow, underflow, or inexact; we don't care. 3703 // FIXME need to be more flexible about rounding mode. 3704 (void)V.convert(EVTToAPFloatSemantics(VT), 3705 APFloat::rmNearestTiesToEven, &ignored); 3706 return getConstantFP(V, DL, VT); 3707 } 3708 case ISD::FP_TO_SINT: 3709 case ISD::FP_TO_UINT: { 3710 bool ignored; 3711 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 3712 // FIXME need to be more flexible about rounding mode. 3713 APFloat::opStatus s = 3714 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 3715 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 3716 break; 3717 return getConstant(IntVal, DL, VT); 3718 } 3719 case ISD::BITCAST: 3720 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3721 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3722 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3723 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3724 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3725 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3726 break; 3727 case ISD::FP_TO_FP16: { 3728 bool Ignored; 3729 // This can return overflow, underflow, or inexact; we don't care. 3730 // FIXME need to be more flexible about rounding mode. 3731 (void)V.convert(APFloat::IEEEhalf(), 3732 APFloat::rmNearestTiesToEven, &Ignored); 3733 return getConstant(V.bitcastToAPInt(), DL, VT); 3734 } 3735 } 3736 } 3737 3738 // Constant fold unary operations with a vector integer or float operand. 3739 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3740 if (BV->isConstant()) { 3741 switch (Opcode) { 3742 default: 3743 // FIXME: Entirely reasonable to perform folding of other unary 3744 // operations here as the need arises. 3745 break; 3746 case ISD::FNEG: 3747 case ISD::FABS: 3748 case ISD::FCEIL: 3749 case ISD::FTRUNC: 3750 case ISD::FFLOOR: 3751 case ISD::FP_EXTEND: 3752 case ISD::FP_TO_SINT: 3753 case ISD::FP_TO_UINT: 3754 case ISD::TRUNCATE: 3755 case ISD::ANY_EXTEND: 3756 case ISD::ZERO_EXTEND: 3757 case ISD::SIGN_EXTEND: 3758 case ISD::UINT_TO_FP: 3759 case ISD::SINT_TO_FP: 3760 case ISD::ABS: 3761 case ISD::BITREVERSE: 3762 case ISD::BSWAP: 3763 case ISD::CTLZ: 3764 case ISD::CTLZ_ZERO_UNDEF: 3765 case ISD::CTTZ: 3766 case ISD::CTTZ_ZERO_UNDEF: 3767 case ISD::CTPOP: { 3768 SDValue Ops = { Operand }; 3769 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3770 return Fold; 3771 } 3772 } 3773 } 3774 } 3775 3776 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3777 switch (Opcode) { 3778 case ISD::TokenFactor: 3779 case ISD::MERGE_VALUES: 3780 case ISD::CONCAT_VECTORS: 3781 return Operand; // Factor, merge or concat of one node? No need. 3782 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3783 case ISD::FP_EXTEND: 3784 assert(VT.isFloatingPoint() && 3785 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3786 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3787 assert((!VT.isVector() || 3788 VT.getVectorNumElements() == 3789 Operand.getValueType().getVectorNumElements()) && 3790 "Vector element count mismatch!"); 3791 assert(Operand.getValueType().bitsLT(VT) && 3792 "Invalid fpext node, dst < src!"); 3793 if (Operand.isUndef()) 3794 return getUNDEF(VT); 3795 break; 3796 case ISD::SIGN_EXTEND: 3797 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3798 "Invalid SIGN_EXTEND!"); 3799 if (Operand.getValueType() == VT) return Operand; // noop extension 3800 assert((!VT.isVector() || 3801 VT.getVectorNumElements() == 3802 Operand.getValueType().getVectorNumElements()) && 3803 "Vector element count mismatch!"); 3804 assert(Operand.getValueType().bitsLT(VT) && 3805 "Invalid sext node, dst < src!"); 3806 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3807 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3808 else if (OpOpcode == ISD::UNDEF) 3809 // sext(undef) = 0, because the top bits will all be the same. 3810 return getConstant(0, DL, VT); 3811 break; 3812 case ISD::ZERO_EXTEND: 3813 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3814 "Invalid ZERO_EXTEND!"); 3815 if (Operand.getValueType() == VT) return Operand; // noop extension 3816 assert((!VT.isVector() || 3817 VT.getVectorNumElements() == 3818 Operand.getValueType().getVectorNumElements()) && 3819 "Vector element count mismatch!"); 3820 assert(Operand.getValueType().bitsLT(VT) && 3821 "Invalid zext node, dst < src!"); 3822 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3823 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 3824 else if (OpOpcode == ISD::UNDEF) 3825 // zext(undef) = 0, because the top bits will be zero. 3826 return getConstant(0, DL, VT); 3827 break; 3828 case ISD::ANY_EXTEND: 3829 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3830 "Invalid ANY_EXTEND!"); 3831 if (Operand.getValueType() == VT) return Operand; // noop extension 3832 assert((!VT.isVector() || 3833 VT.getVectorNumElements() == 3834 Operand.getValueType().getVectorNumElements()) && 3835 "Vector element count mismatch!"); 3836 assert(Operand.getValueType().bitsLT(VT) && 3837 "Invalid anyext node, dst < src!"); 3838 3839 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3840 OpOpcode == ISD::ANY_EXTEND) 3841 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3842 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3843 else if (OpOpcode == ISD::UNDEF) 3844 return getUNDEF(VT); 3845 3846 // (ext (trunx x)) -> x 3847 if (OpOpcode == ISD::TRUNCATE) { 3848 SDValue OpOp = Operand.getOperand(0); 3849 if (OpOp.getValueType() == VT) 3850 return OpOp; 3851 } 3852 break; 3853 case ISD::TRUNCATE: 3854 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3855 "Invalid TRUNCATE!"); 3856 if (Operand.getValueType() == VT) return Operand; // noop truncate 3857 assert((!VT.isVector() || 3858 VT.getVectorNumElements() == 3859 Operand.getValueType().getVectorNumElements()) && 3860 "Vector element count mismatch!"); 3861 assert(Operand.getValueType().bitsGT(VT) && 3862 "Invalid truncate node, src < dst!"); 3863 if (OpOpcode == ISD::TRUNCATE) 3864 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3865 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3866 OpOpcode == ISD::ANY_EXTEND) { 3867 // If the source is smaller than the dest, we still need an extend. 3868 if (Operand.getOperand(0).getValueType().getScalarType() 3869 .bitsLT(VT.getScalarType())) 3870 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 3871 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 3872 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 3873 return Operand.getOperand(0); 3874 } 3875 if (OpOpcode == ISD::UNDEF) 3876 return getUNDEF(VT); 3877 break; 3878 case ISD::ABS: 3879 assert(VT.isInteger() && VT == Operand.getValueType() && 3880 "Invalid ABS!"); 3881 if (OpOpcode == ISD::UNDEF) 3882 return getUNDEF(VT); 3883 break; 3884 case ISD::BSWAP: 3885 assert(VT.isInteger() && VT == Operand.getValueType() && 3886 "Invalid BSWAP!"); 3887 assert((VT.getScalarSizeInBits() % 16 == 0) && 3888 "BSWAP types must be a multiple of 16 bits!"); 3889 if (OpOpcode == ISD::UNDEF) 3890 return getUNDEF(VT); 3891 break; 3892 case ISD::BITREVERSE: 3893 assert(VT.isInteger() && VT == Operand.getValueType() && 3894 "Invalid BITREVERSE!"); 3895 if (OpOpcode == ISD::UNDEF) 3896 return getUNDEF(VT); 3897 break; 3898 case ISD::BITCAST: 3899 // Basic sanity checking. 3900 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3901 "Cannot BITCAST between types of different sizes!"); 3902 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3903 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3904 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3905 if (OpOpcode == ISD::UNDEF) 3906 return getUNDEF(VT); 3907 break; 3908 case ISD::SCALAR_TO_VECTOR: 3909 assert(VT.isVector() && !Operand.getValueType().isVector() && 3910 (VT.getVectorElementType() == Operand.getValueType() || 3911 (VT.getVectorElementType().isInteger() && 3912 Operand.getValueType().isInteger() && 3913 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3914 "Illegal SCALAR_TO_VECTOR node!"); 3915 if (OpOpcode == ISD::UNDEF) 3916 return getUNDEF(VT); 3917 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3918 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3919 isa<ConstantSDNode>(Operand.getOperand(1)) && 3920 Operand.getConstantOperandVal(1) == 0 && 3921 Operand.getOperand(0).getValueType() == VT) 3922 return Operand.getOperand(0); 3923 break; 3924 case ISD::FNEG: 3925 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3926 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3927 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3928 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 3929 Operand.getOperand(0), Operand.getNode()->getFlags()); 3930 if (OpOpcode == ISD::FNEG) // --X -> X 3931 return Operand.getOperand(0); 3932 break; 3933 case ISD::FABS: 3934 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3935 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 3936 break; 3937 } 3938 3939 SDNode *N; 3940 SDVTList VTs = getVTList(VT); 3941 SDValue Ops[] = {Operand}; 3942 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3943 FoldingSetNodeID ID; 3944 AddNodeIDNode(ID, Opcode, VTs, Ops); 3945 void *IP = nullptr; 3946 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3947 E->intersectFlagsWith(Flags); 3948 return SDValue(E, 0); 3949 } 3950 3951 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3952 N->setFlags(Flags); 3953 createOperands(N, Ops); 3954 CSEMap.InsertNode(N, IP); 3955 } else { 3956 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3957 createOperands(N, Ops); 3958 } 3959 3960 InsertNode(N); 3961 SDValue V = SDValue(N, 0); 3962 NewSDValueDbgMsg(V, "Creating new node: ", this); 3963 return V; 3964 } 3965 3966 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3967 const APInt &C2) { 3968 switch (Opcode) { 3969 case ISD::ADD: return std::make_pair(C1 + C2, true); 3970 case ISD::SUB: return std::make_pair(C1 - C2, true); 3971 case ISD::MUL: return std::make_pair(C1 * C2, true); 3972 case ISD::AND: return std::make_pair(C1 & C2, true); 3973 case ISD::OR: return std::make_pair(C1 | C2, true); 3974 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3975 case ISD::SHL: return std::make_pair(C1 << C2, true); 3976 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3977 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3978 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3979 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3980 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3981 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3982 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3983 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3984 case ISD::UDIV: 3985 if (!C2.getBoolValue()) 3986 break; 3987 return std::make_pair(C1.udiv(C2), true); 3988 case ISD::UREM: 3989 if (!C2.getBoolValue()) 3990 break; 3991 return std::make_pair(C1.urem(C2), true); 3992 case ISD::SDIV: 3993 if (!C2.getBoolValue()) 3994 break; 3995 return std::make_pair(C1.sdiv(C2), true); 3996 case ISD::SREM: 3997 if (!C2.getBoolValue()) 3998 break; 3999 return std::make_pair(C1.srem(C2), true); 4000 } 4001 return std::make_pair(APInt(1, 0), false); 4002 } 4003 4004 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4005 EVT VT, const ConstantSDNode *Cst1, 4006 const ConstantSDNode *Cst2) { 4007 if (Cst1->isOpaque() || Cst2->isOpaque()) 4008 return SDValue(); 4009 4010 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 4011 Cst2->getAPIntValue()); 4012 if (!Folded.second) 4013 return SDValue(); 4014 return getConstant(Folded.first, DL, VT); 4015 } 4016 4017 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4018 const GlobalAddressSDNode *GA, 4019 const SDNode *N2) { 4020 if (GA->getOpcode() != ISD::GlobalAddress) 4021 return SDValue(); 4022 if (!TLI->isOffsetFoldingLegal(GA)) 4023 return SDValue(); 4024 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 4025 if (!Cst2) 4026 return SDValue(); 4027 int64_t Offset = Cst2->getSExtValue(); 4028 switch (Opcode) { 4029 case ISD::ADD: break; 4030 case ISD::SUB: Offset = -uint64_t(Offset); break; 4031 default: return SDValue(); 4032 } 4033 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 4034 GA->getOffset() + uint64_t(Offset)); 4035 } 4036 4037 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4038 switch (Opcode) { 4039 case ISD::SDIV: 4040 case ISD::UDIV: 4041 case ISD::SREM: 4042 case ISD::UREM: { 4043 // If a divisor is zero/undef or any element of a divisor vector is 4044 // zero/undef, the whole op is undef. 4045 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4046 SDValue Divisor = Ops[1]; 4047 if (Divisor.isUndef() || isNullConstant(Divisor)) 4048 return true; 4049 4050 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4051 llvm::any_of(Divisor->op_values(), 4052 [](SDValue V) { return V.isUndef() || 4053 isNullConstant(V); }); 4054 // TODO: Handle signed overflow. 4055 } 4056 // TODO: Handle oversized shifts. 4057 default: 4058 return false; 4059 } 4060 } 4061 4062 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4063 EVT VT, SDNode *Cst1, 4064 SDNode *Cst2) { 4065 // If the opcode is a target-specific ISD node, there's nothing we can 4066 // do here and the operand rules may not line up with the below, so 4067 // bail early. 4068 if (Opcode >= ISD::BUILTIN_OP_END) 4069 return SDValue(); 4070 4071 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 4072 return getUNDEF(VT); 4073 4074 // Handle the case of two scalars. 4075 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 4076 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 4077 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 4078 assert((!Folded || !VT.isVector()) && 4079 "Can't fold vectors ops with scalar operands"); 4080 return Folded; 4081 } 4082 } 4083 4084 // fold (add Sym, c) -> Sym+c 4085 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 4086 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 4087 if (TLI->isCommutativeBinOp(Opcode)) 4088 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 4089 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 4090 4091 // For vectors extract each constant element into Inputs so we can constant 4092 // fold them individually. 4093 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 4094 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 4095 if (!BV1 || !BV2) 4096 return SDValue(); 4097 4098 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 4099 4100 EVT SVT = VT.getScalarType(); 4101 EVT LegalSVT = SVT; 4102 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4103 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4104 if (LegalSVT.bitsLT(SVT)) 4105 return SDValue(); 4106 } 4107 SmallVector<SDValue, 4> Outputs; 4108 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 4109 SDValue V1 = BV1->getOperand(I); 4110 SDValue V2 = BV2->getOperand(I); 4111 4112 if (SVT.isInteger()) { 4113 if (V1->getValueType(0).bitsGT(SVT)) 4114 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4115 if (V2->getValueType(0).bitsGT(SVT)) 4116 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4117 } 4118 4119 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4120 return SDValue(); 4121 4122 // Fold one vector element. 4123 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4124 if (LegalSVT != SVT) 4125 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4126 4127 // Scalar folding only succeeded if the result is a constant or UNDEF. 4128 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4129 ScalarResult.getOpcode() != ISD::ConstantFP) 4130 return SDValue(); 4131 Outputs.push_back(ScalarResult); 4132 } 4133 4134 assert(VT.getVectorNumElements() == Outputs.size() && 4135 "Vector size mismatch!"); 4136 4137 // We may have a vector type but a scalar result. Create a splat. 4138 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4139 4140 // Build a big vector out of the scalar elements we generated. 4141 return getBuildVector(VT, SDLoc(), Outputs); 4142 } 4143 4144 // TODO: Merge with FoldConstantArithmetic 4145 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4146 const SDLoc &DL, EVT VT, 4147 ArrayRef<SDValue> Ops, 4148 const SDNodeFlags Flags) { 4149 // If the opcode is a target-specific ISD node, there's nothing we can 4150 // do here and the operand rules may not line up with the below, so 4151 // bail early. 4152 if (Opcode >= ISD::BUILTIN_OP_END) 4153 return SDValue(); 4154 4155 if (isUndef(Opcode, Ops)) 4156 return getUNDEF(VT); 4157 4158 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4159 if (!VT.isVector()) 4160 return SDValue(); 4161 4162 unsigned NumElts = VT.getVectorNumElements(); 4163 4164 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4165 return !Op.getValueType().isVector() || 4166 Op.getValueType().getVectorNumElements() == NumElts; 4167 }; 4168 4169 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4170 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4171 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4172 (BV && BV->isConstant()); 4173 }; 4174 4175 // All operands must be vector types with the same number of elements as 4176 // the result type and must be either UNDEF or a build vector of constant 4177 // or UNDEF scalars. 4178 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4179 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4180 return SDValue(); 4181 4182 // If we are comparing vectors, then the result needs to be a i1 boolean 4183 // that is then sign-extended back to the legal result type. 4184 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4185 4186 // Find legal integer scalar type for constant promotion and 4187 // ensure that its scalar size is at least as large as source. 4188 EVT LegalSVT = VT.getScalarType(); 4189 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4190 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4191 if (LegalSVT.bitsLT(VT.getScalarType())) 4192 return SDValue(); 4193 } 4194 4195 // Constant fold each scalar lane separately. 4196 SmallVector<SDValue, 4> ScalarResults; 4197 for (unsigned i = 0; i != NumElts; i++) { 4198 SmallVector<SDValue, 4> ScalarOps; 4199 for (SDValue Op : Ops) { 4200 EVT InSVT = Op.getValueType().getScalarType(); 4201 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4202 if (!InBV) { 4203 // We've checked that this is UNDEF or a constant of some kind. 4204 if (Op.isUndef()) 4205 ScalarOps.push_back(getUNDEF(InSVT)); 4206 else 4207 ScalarOps.push_back(Op); 4208 continue; 4209 } 4210 4211 SDValue ScalarOp = InBV->getOperand(i); 4212 EVT ScalarVT = ScalarOp.getValueType(); 4213 4214 // Build vector (integer) scalar operands may need implicit 4215 // truncation - do this before constant folding. 4216 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4217 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4218 4219 ScalarOps.push_back(ScalarOp); 4220 } 4221 4222 // Constant fold the scalar operands. 4223 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4224 4225 // Legalize the (integer) scalar constant if necessary. 4226 if (LegalSVT != SVT) 4227 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4228 4229 // Scalar folding only succeeded if the result is a constant or UNDEF. 4230 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4231 ScalarResult.getOpcode() != ISD::ConstantFP) 4232 return SDValue(); 4233 ScalarResults.push_back(ScalarResult); 4234 } 4235 4236 SDValue V = getBuildVector(VT, DL, ScalarResults); 4237 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4238 return V; 4239 } 4240 4241 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4242 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 4243 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4244 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 4245 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4246 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4247 4248 // Canonicalize constant to RHS if commutative. 4249 if (TLI->isCommutativeBinOp(Opcode)) { 4250 if (N1C && !N2C) { 4251 std::swap(N1C, N2C); 4252 std::swap(N1, N2); 4253 } else if (N1CFP && !N2CFP) { 4254 std::swap(N1CFP, N2CFP); 4255 std::swap(N1, N2); 4256 } 4257 } 4258 4259 switch (Opcode) { 4260 default: break; 4261 case ISD::TokenFactor: 4262 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 4263 N2.getValueType() == MVT::Other && "Invalid token factor!"); 4264 // Fold trivial token factors. 4265 if (N1.getOpcode() == ISD::EntryToken) return N2; 4266 if (N2.getOpcode() == ISD::EntryToken) return N1; 4267 if (N1 == N2) return N1; 4268 break; 4269 case ISD::CONCAT_VECTORS: { 4270 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4271 SDValue Ops[] = {N1, N2}; 4272 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4273 return V; 4274 break; 4275 } 4276 case ISD::AND: 4277 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4278 assert(N1.getValueType() == N2.getValueType() && 4279 N1.getValueType() == VT && "Binary operator types must match!"); 4280 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 4281 // worth handling here. 4282 if (N2C && N2C->isNullValue()) 4283 return N2; 4284 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 4285 return N1; 4286 break; 4287 case ISD::OR: 4288 case ISD::XOR: 4289 case ISD::ADD: 4290 case ISD::SUB: 4291 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4292 assert(N1.getValueType() == N2.getValueType() && 4293 N1.getValueType() == VT && "Binary operator types must match!"); 4294 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 4295 // it's worth handling here. 4296 if (N2C && N2C->isNullValue()) 4297 return N1; 4298 break; 4299 case ISD::UDIV: 4300 case ISD::UREM: 4301 case ISD::MULHU: 4302 case ISD::MULHS: 4303 case ISD::MUL: 4304 case ISD::SDIV: 4305 case ISD::SREM: 4306 case ISD::SMIN: 4307 case ISD::SMAX: 4308 case ISD::UMIN: 4309 case ISD::UMAX: 4310 assert(VT.isInteger() && "This operator does not apply to FP types!"); 4311 assert(N1.getValueType() == N2.getValueType() && 4312 N1.getValueType() == VT && "Binary operator types must match!"); 4313 break; 4314 case ISD::FADD: 4315 case ISD::FSUB: 4316 case ISD::FMUL: 4317 case ISD::FDIV: 4318 case ISD::FREM: 4319 if (getTarget().Options.UnsafeFPMath) { 4320 if (Opcode == ISD::FADD) { 4321 // x+0 --> x 4322 if (N2CFP && N2CFP->getValueAPF().isZero()) 4323 return N1; 4324 } else if (Opcode == ISD::FSUB) { 4325 // x-0 --> x 4326 if (N2CFP && N2CFP->getValueAPF().isZero()) 4327 return N1; 4328 } else if (Opcode == ISD::FMUL) { 4329 // x*0 --> 0 4330 if (N2CFP && N2CFP->isZero()) 4331 return N2; 4332 // x*1 --> x 4333 if (N2CFP && N2CFP->isExactlyValue(1.0)) 4334 return N1; 4335 } 4336 } 4337 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4338 assert(N1.getValueType() == N2.getValueType() && 4339 N1.getValueType() == VT && "Binary operator types must match!"); 4340 break; 4341 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4342 assert(N1.getValueType() == VT && 4343 N1.getValueType().isFloatingPoint() && 4344 N2.getValueType().isFloatingPoint() && 4345 "Invalid FCOPYSIGN!"); 4346 break; 4347 case ISD::SHL: 4348 case ISD::SRA: 4349 case ISD::SRL: 4350 case ISD::ROTL: 4351 case ISD::ROTR: 4352 assert(VT == N1.getValueType() && 4353 "Shift operators return type must be the same as their first arg"); 4354 assert(VT.isInteger() && N2.getValueType().isInteger() && 4355 "Shifts only work on integers"); 4356 assert((!VT.isVector() || VT == N2.getValueType()) && 4357 "Vector shift amounts must be in the same as their first arg"); 4358 // Verify that the shift amount VT is bit enough to hold valid shift 4359 // amounts. This catches things like trying to shift an i1024 value by an 4360 // i8, which is easy to fall into in generic code that uses 4361 // TLI.getShiftAmount(). 4362 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4363 "Invalid use of small shift amount with oversized value!"); 4364 4365 // Always fold shifts of i1 values so the code generator doesn't need to 4366 // handle them. Since we know the size of the shift has to be less than the 4367 // size of the value, the shift/rotate count is guaranteed to be zero. 4368 if (VT == MVT::i1) 4369 return N1; 4370 if (N2C && N2C->isNullValue()) 4371 return N1; 4372 break; 4373 case ISD::FP_ROUND_INREG: { 4374 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4375 assert(VT == N1.getValueType() && "Not an inreg round!"); 4376 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4377 "Cannot FP_ROUND_INREG integer types"); 4378 assert(EVT.isVector() == VT.isVector() && 4379 "FP_ROUND_INREG type should be vector iff the operand " 4380 "type is vector!"); 4381 assert((!EVT.isVector() || 4382 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4383 "Vector element counts must match in FP_ROUND_INREG"); 4384 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4385 (void)EVT; 4386 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4387 break; 4388 } 4389 case ISD::FP_ROUND: 4390 assert(VT.isFloatingPoint() && 4391 N1.getValueType().isFloatingPoint() && 4392 VT.bitsLE(N1.getValueType()) && 4393 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4394 "Invalid FP_ROUND!"); 4395 if (N1.getValueType() == VT) return N1; // noop conversion. 4396 break; 4397 case ISD::AssertSext: 4398 case ISD::AssertZext: { 4399 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4400 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4401 assert(VT.isInteger() && EVT.isInteger() && 4402 "Cannot *_EXTEND_INREG FP types"); 4403 assert(!EVT.isVector() && 4404 "AssertSExt/AssertZExt type should be the vector element type " 4405 "rather than the vector type!"); 4406 assert(EVT.bitsLE(VT) && "Not extending!"); 4407 if (VT == EVT) return N1; // noop assertion. 4408 break; 4409 } 4410 case ISD::SIGN_EXTEND_INREG: { 4411 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4412 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4413 assert(VT.isInteger() && EVT.isInteger() && 4414 "Cannot *_EXTEND_INREG FP types"); 4415 assert(EVT.isVector() == VT.isVector() && 4416 "SIGN_EXTEND_INREG type should be vector iff the operand " 4417 "type is vector!"); 4418 assert((!EVT.isVector() || 4419 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4420 "Vector element counts must match in SIGN_EXTEND_INREG"); 4421 assert(EVT.bitsLE(VT) && "Not extending!"); 4422 if (EVT == VT) return N1; // Not actually extending 4423 4424 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 4425 unsigned FromBits = EVT.getScalarSizeInBits(); 4426 Val <<= Val.getBitWidth() - FromBits; 4427 Val.ashrInPlace(Val.getBitWidth() - FromBits); 4428 return getConstant(Val, DL, ConstantVT); 4429 }; 4430 4431 if (N1C) { 4432 const APInt &Val = N1C->getAPIntValue(); 4433 return SignExtendInReg(Val, VT); 4434 } 4435 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4436 SmallVector<SDValue, 8> Ops; 4437 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 4438 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4439 SDValue Op = N1.getOperand(i); 4440 if (Op.isUndef()) { 4441 Ops.push_back(getUNDEF(OpVT)); 4442 continue; 4443 } 4444 ConstantSDNode *C = cast<ConstantSDNode>(Op); 4445 APInt Val = C->getAPIntValue(); 4446 Ops.push_back(SignExtendInReg(Val, OpVT)); 4447 } 4448 return getBuildVector(VT, DL, Ops); 4449 } 4450 break; 4451 } 4452 case ISD::EXTRACT_VECTOR_ELT: 4453 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 4454 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 4455 element type of the vector."); 4456 4457 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4458 if (N1.isUndef()) 4459 return getUNDEF(VT); 4460 4461 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4462 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 4463 return getUNDEF(VT); 4464 4465 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4466 // expanding copies of large vectors from registers. 4467 if (N2C && 4468 N1.getOpcode() == ISD::CONCAT_VECTORS && 4469 N1.getNumOperands() > 0) { 4470 unsigned Factor = 4471 N1.getOperand(0).getValueType().getVectorNumElements(); 4472 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4473 N1.getOperand(N2C->getZExtValue() / Factor), 4474 getConstant(N2C->getZExtValue() % Factor, DL, 4475 N2.getValueType())); 4476 } 4477 4478 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4479 // expanding large vector constants. 4480 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4481 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4482 4483 if (VT != Elt.getValueType()) 4484 // If the vector element type is not legal, the BUILD_VECTOR operands 4485 // are promoted and implicitly truncated, and the result implicitly 4486 // extended. Make that explicit here. 4487 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4488 4489 return Elt; 4490 } 4491 4492 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4493 // operations are lowered to scalars. 4494 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4495 // If the indices are the same, return the inserted element else 4496 // if the indices are known different, extract the element from 4497 // the original vector. 4498 SDValue N1Op2 = N1.getOperand(2); 4499 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4500 4501 if (N1Op2C && N2C) { 4502 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4503 if (VT == N1.getOperand(1).getValueType()) 4504 return N1.getOperand(1); 4505 else 4506 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4507 } 4508 4509 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4510 } 4511 } 4512 4513 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 4514 // when vector types are scalarized and v1iX is legal. 4515 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 4516 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 4517 N1.getValueType().getVectorNumElements() == 1) { 4518 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 4519 N1.getOperand(1)); 4520 } 4521 break; 4522 case ISD::EXTRACT_ELEMENT: 4523 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4524 assert(!N1.getValueType().isVector() && !VT.isVector() && 4525 (N1.getValueType().isInteger() == VT.isInteger()) && 4526 N1.getValueType() != VT && 4527 "Wrong types for EXTRACT_ELEMENT!"); 4528 4529 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4530 // 64-bit integers into 32-bit parts. Instead of building the extract of 4531 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4532 if (N1.getOpcode() == ISD::BUILD_PAIR) 4533 return N1.getOperand(N2C->getZExtValue()); 4534 4535 // EXTRACT_ELEMENT of a constant int is also very common. 4536 if (N1C) { 4537 unsigned ElementSize = VT.getSizeInBits(); 4538 unsigned Shift = ElementSize * N2C->getZExtValue(); 4539 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4540 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4541 } 4542 break; 4543 case ISD::EXTRACT_SUBVECTOR: 4544 if (VT.isSimple() && N1.getValueType().isSimple()) { 4545 assert(VT.isVector() && N1.getValueType().isVector() && 4546 "Extract subvector VTs must be a vectors!"); 4547 assert(VT.getVectorElementType() == 4548 N1.getValueType().getVectorElementType() && 4549 "Extract subvector VTs must have the same element type!"); 4550 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4551 "Extract subvector must be from larger vector to smaller vector!"); 4552 4553 if (N2C) { 4554 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4555 <= N1.getValueType().getVectorNumElements()) 4556 && "Extract subvector overflow!"); 4557 } 4558 4559 // Trivial extraction. 4560 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4561 return N1; 4562 4563 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4564 if (N1.isUndef()) 4565 return getUNDEF(VT); 4566 4567 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4568 // the concat have the same type as the extract. 4569 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4570 N1.getNumOperands() > 0 && 4571 VT == N1.getOperand(0).getValueType()) { 4572 unsigned Factor = VT.getVectorNumElements(); 4573 return N1.getOperand(N2C->getZExtValue() / Factor); 4574 } 4575 4576 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4577 // during shuffle legalization. 4578 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4579 VT == N1.getOperand(1).getValueType()) 4580 return N1.getOperand(1); 4581 } 4582 break; 4583 } 4584 4585 // Perform trivial constant folding. 4586 if (SDValue SV = 4587 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4588 return SV; 4589 4590 // Constant fold FP operations. 4591 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4592 if (N1CFP) { 4593 if (N2CFP) { 4594 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4595 APFloat::opStatus s; 4596 switch (Opcode) { 4597 case ISD::FADD: 4598 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4599 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4600 return getConstantFP(V1, DL, VT); 4601 break; 4602 case ISD::FSUB: 4603 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4604 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4605 return getConstantFP(V1, DL, VT); 4606 break; 4607 case ISD::FMUL: 4608 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4609 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4610 return getConstantFP(V1, DL, VT); 4611 break; 4612 case ISD::FDIV: 4613 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4614 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4615 s!=APFloat::opDivByZero)) { 4616 return getConstantFP(V1, DL, VT); 4617 } 4618 break; 4619 case ISD::FREM : 4620 s = V1.mod(V2); 4621 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4622 s!=APFloat::opDivByZero)) { 4623 return getConstantFP(V1, DL, VT); 4624 } 4625 break; 4626 case ISD::FCOPYSIGN: 4627 V1.copySign(V2); 4628 return getConstantFP(V1, DL, VT); 4629 default: break; 4630 } 4631 } 4632 4633 if (Opcode == ISD::FP_ROUND) { 4634 APFloat V = N1CFP->getValueAPF(); // make copy 4635 bool ignored; 4636 // This can return overflow, underflow, or inexact; we don't care. 4637 // FIXME need to be more flexible about rounding mode. 4638 (void)V.convert(EVTToAPFloatSemantics(VT), 4639 APFloat::rmNearestTiesToEven, &ignored); 4640 return getConstantFP(V, DL, VT); 4641 } 4642 } 4643 4644 // Canonicalize an UNDEF to the RHS, even over a constant. 4645 if (N1.isUndef()) { 4646 if (TLI->isCommutativeBinOp(Opcode)) { 4647 std::swap(N1, N2); 4648 } else { 4649 switch (Opcode) { 4650 case ISD::FP_ROUND_INREG: 4651 case ISD::SIGN_EXTEND_INREG: 4652 case ISD::SUB: 4653 case ISD::FSUB: 4654 case ISD::FDIV: 4655 case ISD::FREM: 4656 case ISD::SRA: 4657 return N1; // fold op(undef, arg2) -> undef 4658 case ISD::UDIV: 4659 case ISD::SDIV: 4660 case ISD::UREM: 4661 case ISD::SREM: 4662 case ISD::SRL: 4663 case ISD::SHL: 4664 if (!VT.isVector()) 4665 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4666 // For vectors, we can't easily build an all zero vector, just return 4667 // the LHS. 4668 return N2; 4669 } 4670 } 4671 } 4672 4673 // Fold a bunch of operators when the RHS is undef. 4674 if (N2.isUndef()) { 4675 switch (Opcode) { 4676 case ISD::XOR: 4677 if (N1.isUndef()) 4678 // Handle undef ^ undef -> 0 special case. This is a common 4679 // idiom (misuse). 4680 return getConstant(0, DL, VT); 4681 LLVM_FALLTHROUGH; 4682 case ISD::ADD: 4683 case ISD::ADDC: 4684 case ISD::ADDE: 4685 case ISD::SUB: 4686 case ISD::UDIV: 4687 case ISD::SDIV: 4688 case ISD::UREM: 4689 case ISD::SREM: 4690 return N2; // fold op(arg1, undef) -> undef 4691 case ISD::FADD: 4692 case ISD::FSUB: 4693 case ISD::FMUL: 4694 case ISD::FDIV: 4695 case ISD::FREM: 4696 if (getTarget().Options.UnsafeFPMath) 4697 return N2; 4698 break; 4699 case ISD::MUL: 4700 case ISD::AND: 4701 case ISD::SRL: 4702 case ISD::SHL: 4703 if (!VT.isVector()) 4704 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4705 // For vectors, we can't easily build an all zero vector, just return 4706 // the LHS. 4707 return N1; 4708 case ISD::OR: 4709 if (!VT.isVector()) 4710 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4711 // For vectors, we can't easily build an all one vector, just return 4712 // the LHS. 4713 return N1; 4714 case ISD::SRA: 4715 return N1; 4716 } 4717 } 4718 4719 // Memoize this node if possible. 4720 SDNode *N; 4721 SDVTList VTs = getVTList(VT); 4722 SDValue Ops[] = {N1, N2}; 4723 if (VT != MVT::Glue) { 4724 FoldingSetNodeID ID; 4725 AddNodeIDNode(ID, Opcode, VTs, Ops); 4726 void *IP = nullptr; 4727 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4728 E->intersectFlagsWith(Flags); 4729 return SDValue(E, 0); 4730 } 4731 4732 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4733 N->setFlags(Flags); 4734 createOperands(N, Ops); 4735 CSEMap.InsertNode(N, IP); 4736 } else { 4737 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4738 createOperands(N, Ops); 4739 } 4740 4741 InsertNode(N); 4742 SDValue V = SDValue(N, 0); 4743 NewSDValueDbgMsg(V, "Creating new node: ", this); 4744 return V; 4745 } 4746 4747 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4748 SDValue N1, SDValue N2, SDValue N3) { 4749 // Perform various simplifications. 4750 switch (Opcode) { 4751 case ISD::FMA: { 4752 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4753 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4754 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4755 if (N1CFP && N2CFP && N3CFP) { 4756 APFloat V1 = N1CFP->getValueAPF(); 4757 const APFloat &V2 = N2CFP->getValueAPF(); 4758 const APFloat &V3 = N3CFP->getValueAPF(); 4759 APFloat::opStatus s = 4760 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4761 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4762 return getConstantFP(V1, DL, VT); 4763 } 4764 break; 4765 } 4766 case ISD::CONCAT_VECTORS: { 4767 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4768 SDValue Ops[] = {N1, N2, N3}; 4769 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4770 return V; 4771 break; 4772 } 4773 case ISD::SETCC: { 4774 // Use FoldSetCC to simplify SETCC's. 4775 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4776 return V; 4777 // Vector constant folding. 4778 SDValue Ops[] = {N1, N2, N3}; 4779 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 4780 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 4781 return V; 4782 } 4783 break; 4784 } 4785 case ISD::SELECT: 4786 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4787 if (N1C->getZExtValue()) 4788 return N2; // select true, X, Y -> X 4789 return N3; // select false, X, Y -> Y 4790 } 4791 4792 if (N2 == N3) return N2; // select C, X, X -> X 4793 break; 4794 case ISD::VECTOR_SHUFFLE: 4795 llvm_unreachable("should use getVectorShuffle constructor!"); 4796 case ISD::INSERT_VECTOR_ELT: { 4797 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4798 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4799 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4800 return getUNDEF(VT); 4801 break; 4802 } 4803 case ISD::INSERT_SUBVECTOR: { 4804 SDValue Index = N3; 4805 if (VT.isSimple() && N1.getValueType().isSimple() 4806 && N2.getValueType().isSimple()) { 4807 assert(VT.isVector() && N1.getValueType().isVector() && 4808 N2.getValueType().isVector() && 4809 "Insert subvector VTs must be a vectors"); 4810 assert(VT == N1.getValueType() && 4811 "Dest and insert subvector source types must match!"); 4812 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4813 "Insert subvector must be from smaller vector to larger vector!"); 4814 if (isa<ConstantSDNode>(Index)) { 4815 assert((N2.getValueType().getVectorNumElements() + 4816 cast<ConstantSDNode>(Index)->getZExtValue() 4817 <= VT.getVectorNumElements()) 4818 && "Insert subvector overflow!"); 4819 } 4820 4821 // Trivial insertion. 4822 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4823 return N2; 4824 } 4825 break; 4826 } 4827 case ISD::BITCAST: 4828 // Fold bit_convert nodes from a type to themselves. 4829 if (N1.getValueType() == VT) 4830 return N1; 4831 break; 4832 } 4833 4834 // Memoize node if it doesn't produce a flag. 4835 SDNode *N; 4836 SDVTList VTs = getVTList(VT); 4837 SDValue Ops[] = {N1, N2, N3}; 4838 if (VT != MVT::Glue) { 4839 FoldingSetNodeID ID; 4840 AddNodeIDNode(ID, Opcode, VTs, Ops); 4841 void *IP = nullptr; 4842 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4843 return SDValue(E, 0); 4844 4845 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4846 createOperands(N, Ops); 4847 CSEMap.InsertNode(N, IP); 4848 } else { 4849 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4850 createOperands(N, Ops); 4851 } 4852 4853 InsertNode(N); 4854 SDValue V = SDValue(N, 0); 4855 NewSDValueDbgMsg(V, "Creating new node: ", this); 4856 return V; 4857 } 4858 4859 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4860 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4861 SDValue Ops[] = { N1, N2, N3, N4 }; 4862 return getNode(Opcode, DL, VT, Ops); 4863 } 4864 4865 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4866 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4867 SDValue N5) { 4868 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4869 return getNode(Opcode, DL, VT, Ops); 4870 } 4871 4872 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4873 /// the incoming stack arguments to be loaded from the stack. 4874 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4875 SmallVector<SDValue, 8> ArgChains; 4876 4877 // Include the original chain at the beginning of the list. When this is 4878 // used by target LowerCall hooks, this helps legalize find the 4879 // CALLSEQ_BEGIN node. 4880 ArgChains.push_back(Chain); 4881 4882 // Add a chain value for each stack argument. 4883 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4884 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4885 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4886 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4887 if (FI->getIndex() < 0) 4888 ArgChains.push_back(SDValue(L, 1)); 4889 4890 // Build a tokenfactor for all the chains. 4891 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4892 } 4893 4894 /// getMemsetValue - Vectorized representation of the memset value 4895 /// operand. 4896 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4897 const SDLoc &dl) { 4898 assert(!Value.isUndef()); 4899 4900 unsigned NumBits = VT.getScalarSizeInBits(); 4901 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4902 assert(C->getAPIntValue().getBitWidth() == 8); 4903 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4904 if (VT.isInteger()) 4905 return DAG.getConstant(Val, dl, VT); 4906 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4907 VT); 4908 } 4909 4910 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4911 EVT IntVT = VT.getScalarType(); 4912 if (!IntVT.isInteger()) 4913 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4914 4915 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4916 if (NumBits > 8) { 4917 // Use a multiplication with 0x010101... to extend the input to the 4918 // required length. 4919 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4920 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4921 DAG.getConstant(Magic, dl, IntVT)); 4922 } 4923 4924 if (VT != Value.getValueType() && !VT.isInteger()) 4925 Value = DAG.getBitcast(VT.getScalarType(), Value); 4926 if (VT != Value.getValueType()) 4927 Value = DAG.getSplatBuildVector(VT, dl, Value); 4928 4929 return Value; 4930 } 4931 4932 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4933 /// used when a memcpy is turned into a memset when the source is a constant 4934 /// string ptr. 4935 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4936 const TargetLowering &TLI, 4937 const ConstantDataArraySlice &Slice) { 4938 // Handle vector with all elements zero. 4939 if (Slice.Array == nullptr) { 4940 if (VT.isInteger()) 4941 return DAG.getConstant(0, dl, VT); 4942 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4943 return DAG.getConstantFP(0.0, dl, VT); 4944 else if (VT.isVector()) { 4945 unsigned NumElts = VT.getVectorNumElements(); 4946 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4947 return DAG.getNode(ISD::BITCAST, dl, VT, 4948 DAG.getConstant(0, dl, 4949 EVT::getVectorVT(*DAG.getContext(), 4950 EltVT, NumElts))); 4951 } else 4952 llvm_unreachable("Expected type!"); 4953 } 4954 4955 assert(!VT.isVector() && "Can't handle vector type here!"); 4956 unsigned NumVTBits = VT.getSizeInBits(); 4957 unsigned NumVTBytes = NumVTBits / 8; 4958 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 4959 4960 APInt Val(NumVTBits, 0); 4961 if (DAG.getDataLayout().isLittleEndian()) { 4962 for (unsigned i = 0; i != NumBytes; ++i) 4963 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 4964 } else { 4965 for (unsigned i = 0; i != NumBytes; ++i) 4966 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 4967 } 4968 4969 // If the "cost" of materializing the integer immediate is less than the cost 4970 // of a load, then it is cost effective to turn the load into the immediate. 4971 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4972 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4973 return DAG.getConstant(Val, dl, VT); 4974 return SDValue(nullptr, 0); 4975 } 4976 4977 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4978 const SDLoc &DL) { 4979 EVT VT = Base.getValueType(); 4980 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4981 } 4982 4983 /// Returns true if memcpy source is constant data. 4984 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 4985 uint64_t SrcDelta = 0; 4986 GlobalAddressSDNode *G = nullptr; 4987 if (Src.getOpcode() == ISD::GlobalAddress) 4988 G = cast<GlobalAddressSDNode>(Src); 4989 else if (Src.getOpcode() == ISD::ADD && 4990 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4991 Src.getOperand(1).getOpcode() == ISD::Constant) { 4992 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4993 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4994 } 4995 if (!G) 4996 return false; 4997 4998 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 4999 SrcDelta + G->getOffset()); 5000 } 5001 5002 /// Determines the optimal series of memory ops to replace the memset / memcpy. 5003 /// Return true if the number of memory ops is below the threshold (Limit). 5004 /// It returns the types of the sequence of memory ops to perform 5005 /// memset / memcpy by reference. 5006 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 5007 unsigned Limit, uint64_t Size, 5008 unsigned DstAlign, unsigned SrcAlign, 5009 bool IsMemset, 5010 bool ZeroMemset, 5011 bool MemcpyStrSrc, 5012 bool AllowOverlap, 5013 unsigned DstAS, unsigned SrcAS, 5014 SelectionDAG &DAG, 5015 const TargetLowering &TLI) { 5016 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 5017 "Expecting memcpy / memset source to meet alignment requirement!"); 5018 // If 'SrcAlign' is zero, that means the memory operation does not need to 5019 // load the value, i.e. memset or memcpy from constant string. Otherwise, 5020 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 5021 // is the specified alignment of the memory operation. If it is zero, that 5022 // means it's possible to change the alignment of the destination. 5023 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 5024 // not need to be loaded. 5025 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 5026 IsMemset, ZeroMemset, MemcpyStrSrc, 5027 DAG.getMachineFunction()); 5028 5029 if (VT == MVT::Other) { 5030 // Use the largest integer type whose alignment constraints are satisfied. 5031 // We only need to check DstAlign here as SrcAlign is always greater or 5032 // equal to DstAlign (or zero). 5033 VT = MVT::i64; 5034 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 5035 !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 5036 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 5037 assert(VT.isInteger()); 5038 5039 // Find the largest legal integer type. 5040 MVT LVT = MVT::i64; 5041 while (!TLI.isTypeLegal(LVT)) 5042 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 5043 assert(LVT.isInteger()); 5044 5045 // If the type we've chosen is larger than the largest legal integer type 5046 // then use that instead. 5047 if (VT.bitsGT(LVT)) 5048 VT = LVT; 5049 } 5050 5051 unsigned NumMemOps = 0; 5052 while (Size != 0) { 5053 unsigned VTSize = VT.getSizeInBits() / 8; 5054 while (VTSize > Size) { 5055 // For now, only use non-vector load / store's for the left-over pieces. 5056 EVT NewVT = VT; 5057 unsigned NewVTSize; 5058 5059 bool Found = false; 5060 if (VT.isVector() || VT.isFloatingPoint()) { 5061 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 5062 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 5063 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 5064 Found = true; 5065 else if (NewVT == MVT::i64 && 5066 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 5067 TLI.isSafeMemOpType(MVT::f64)) { 5068 // i64 is usually not legal on 32-bit targets, but f64 may be. 5069 NewVT = MVT::f64; 5070 Found = true; 5071 } 5072 } 5073 5074 if (!Found) { 5075 do { 5076 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 5077 if (NewVT == MVT::i8) 5078 break; 5079 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 5080 } 5081 NewVTSize = NewVT.getSizeInBits() / 8; 5082 5083 // If the new VT cannot cover all of the remaining bits, then consider 5084 // issuing a (or a pair of) unaligned and overlapping load / store. 5085 // FIXME: Only does this for 64-bit or more since we don't have proper 5086 // cost model for unaligned load / store. 5087 bool Fast; 5088 if (NumMemOps && AllowOverlap && 5089 VTSize >= 8 && NewVTSize < Size && 5090 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 5091 VTSize = Size; 5092 else { 5093 VT = NewVT; 5094 VTSize = NewVTSize; 5095 } 5096 } 5097 5098 if (++NumMemOps > Limit) 5099 return false; 5100 5101 MemOps.push_back(VT); 5102 Size -= VTSize; 5103 } 5104 5105 return true; 5106 } 5107 5108 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5109 // On Darwin, -Os means optimize for size without hurting performance, so 5110 // only really optimize for size when -Oz (MinSize) is used. 5111 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5112 return MF.getFunction().optForMinSize(); 5113 return MF.getFunction().optForSize(); 5114 } 5115 5116 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5117 SDValue Chain, SDValue Dst, SDValue Src, 5118 uint64_t Size, unsigned Align, 5119 bool isVol, bool AlwaysInline, 5120 MachinePointerInfo DstPtrInfo, 5121 MachinePointerInfo SrcPtrInfo) { 5122 // Turn a memcpy of undef to nop. 5123 if (Src.isUndef()) 5124 return Chain; 5125 5126 // Expand memcpy to a series of load and store ops if the size operand falls 5127 // below a certain threshold. 5128 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5129 // rather than maybe a humongous number of loads and stores. 5130 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5131 const DataLayout &DL = DAG.getDataLayout(); 5132 LLVMContext &C = *DAG.getContext(); 5133 std::vector<EVT> MemOps; 5134 bool DstAlignCanChange = false; 5135 MachineFunction &MF = DAG.getMachineFunction(); 5136 MachineFrameInfo &MFI = MF.getFrameInfo(); 5137 bool OptSize = shouldLowerMemFuncForSize(MF); 5138 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5139 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5140 DstAlignCanChange = true; 5141 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5142 if (Align > SrcAlign) 5143 SrcAlign = Align; 5144 ConstantDataArraySlice Slice; 5145 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5146 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5147 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5148 5149 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5150 (DstAlignCanChange ? 0 : Align), 5151 (isZeroConstant ? 0 : SrcAlign), 5152 false, false, CopyFromConstant, true, 5153 DstPtrInfo.getAddrSpace(), 5154 SrcPtrInfo.getAddrSpace(), 5155 DAG, TLI)) 5156 return SDValue(); 5157 5158 if (DstAlignCanChange) { 5159 Type *Ty = MemOps[0].getTypeForEVT(C); 5160 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5161 5162 // Don't promote to an alignment that would require dynamic stack 5163 // realignment. 5164 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5165 if (!TRI->needsStackRealignment(MF)) 5166 while (NewAlign > Align && 5167 DL.exceedsNaturalStackAlignment(NewAlign)) 5168 NewAlign /= 2; 5169 5170 if (NewAlign > Align) { 5171 // Give the stack frame object a larger alignment if needed. 5172 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5173 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5174 Align = NewAlign; 5175 } 5176 } 5177 5178 MachineMemOperand::Flags MMOFlags = 5179 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5180 SmallVector<SDValue, 8> OutChains; 5181 unsigned NumMemOps = MemOps.size(); 5182 uint64_t SrcOff = 0, DstOff = 0; 5183 for (unsigned i = 0; i != NumMemOps; ++i) { 5184 EVT VT = MemOps[i]; 5185 unsigned VTSize = VT.getSizeInBits() / 8; 5186 SDValue Value, Store; 5187 5188 if (VTSize > Size) { 5189 // Issuing an unaligned load / store pair that overlaps with the previous 5190 // pair. Adjust the offset accordingly. 5191 assert(i == NumMemOps-1 && i != 0); 5192 SrcOff -= VTSize - Size; 5193 DstOff -= VTSize - Size; 5194 } 5195 5196 if (CopyFromConstant && 5197 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5198 // It's unlikely a store of a vector immediate can be done in a single 5199 // instruction. It would require a load from a constantpool first. 5200 // We only handle zero vectors here. 5201 // FIXME: Handle other cases where store of vector immediate is done in 5202 // a single instruction. 5203 ConstantDataArraySlice SubSlice; 5204 if (SrcOff < Slice.Length) { 5205 SubSlice = Slice; 5206 SubSlice.move(SrcOff); 5207 } else { 5208 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5209 SubSlice.Array = nullptr; 5210 SubSlice.Offset = 0; 5211 SubSlice.Length = VTSize; 5212 } 5213 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5214 if (Value.getNode()) 5215 Store = DAG.getStore(Chain, dl, Value, 5216 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5217 DstPtrInfo.getWithOffset(DstOff), Align, 5218 MMOFlags); 5219 } 5220 5221 if (!Store.getNode()) { 5222 // The type might not be legal for the target. This should only happen 5223 // if the type is smaller than a legal type, as on PPC, so the right 5224 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5225 // to Load/Store if NVT==VT. 5226 // FIXME does the case above also need this? 5227 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5228 assert(NVT.bitsGE(VT)); 5229 5230 bool isDereferenceable = 5231 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5232 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5233 if (isDereferenceable) 5234 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5235 5236 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5237 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5238 SrcPtrInfo.getWithOffset(SrcOff), VT, 5239 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5240 OutChains.push_back(Value.getValue(1)); 5241 Store = DAG.getTruncStore( 5242 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5243 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5244 } 5245 OutChains.push_back(Store); 5246 SrcOff += VTSize; 5247 DstOff += VTSize; 5248 Size -= VTSize; 5249 } 5250 5251 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5252 } 5253 5254 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5255 SDValue Chain, SDValue Dst, SDValue Src, 5256 uint64_t Size, unsigned Align, 5257 bool isVol, bool AlwaysInline, 5258 MachinePointerInfo DstPtrInfo, 5259 MachinePointerInfo SrcPtrInfo) { 5260 // Turn a memmove of undef to nop. 5261 if (Src.isUndef()) 5262 return Chain; 5263 5264 // Expand memmove to a series of load and store ops if the size operand falls 5265 // below a certain threshold. 5266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5267 const DataLayout &DL = DAG.getDataLayout(); 5268 LLVMContext &C = *DAG.getContext(); 5269 std::vector<EVT> MemOps; 5270 bool DstAlignCanChange = false; 5271 MachineFunction &MF = DAG.getMachineFunction(); 5272 MachineFrameInfo &MFI = MF.getFrameInfo(); 5273 bool OptSize = shouldLowerMemFuncForSize(MF); 5274 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5275 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5276 DstAlignCanChange = true; 5277 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5278 if (Align > SrcAlign) 5279 SrcAlign = Align; 5280 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5281 5282 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 5283 (DstAlignCanChange ? 0 : Align), SrcAlign, 5284 false, false, false, false, 5285 DstPtrInfo.getAddrSpace(), 5286 SrcPtrInfo.getAddrSpace(), 5287 DAG, TLI)) 5288 return SDValue(); 5289 5290 if (DstAlignCanChange) { 5291 Type *Ty = MemOps[0].getTypeForEVT(C); 5292 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5293 if (NewAlign > Align) { 5294 // Give the stack frame object a larger alignment if needed. 5295 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5296 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5297 Align = NewAlign; 5298 } 5299 } 5300 5301 MachineMemOperand::Flags MMOFlags = 5302 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5303 uint64_t SrcOff = 0, DstOff = 0; 5304 SmallVector<SDValue, 8> LoadValues; 5305 SmallVector<SDValue, 8> LoadChains; 5306 SmallVector<SDValue, 8> OutChains; 5307 unsigned NumMemOps = MemOps.size(); 5308 for (unsigned i = 0; i < NumMemOps; i++) { 5309 EVT VT = MemOps[i]; 5310 unsigned VTSize = VT.getSizeInBits() / 8; 5311 SDValue Value; 5312 5313 bool isDereferenceable = 5314 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5315 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5316 if (isDereferenceable) 5317 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5318 5319 Value = 5320 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5321 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 5322 LoadValues.push_back(Value); 5323 LoadChains.push_back(Value.getValue(1)); 5324 SrcOff += VTSize; 5325 } 5326 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 5327 OutChains.clear(); 5328 for (unsigned i = 0; i < NumMemOps; i++) { 5329 EVT VT = MemOps[i]; 5330 unsigned VTSize = VT.getSizeInBits() / 8; 5331 SDValue Store; 5332 5333 Store = DAG.getStore(Chain, dl, LoadValues[i], 5334 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5335 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 5336 OutChains.push_back(Store); 5337 DstOff += VTSize; 5338 } 5339 5340 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5341 } 5342 5343 /// \brief Lower the call to 'memset' intrinsic function into a series of store 5344 /// operations. 5345 /// 5346 /// \param DAG Selection DAG where lowered code is placed. 5347 /// \param dl Link to corresponding IR location. 5348 /// \param Chain Control flow dependency. 5349 /// \param Dst Pointer to destination memory location. 5350 /// \param Src Value of byte to write into the memory. 5351 /// \param Size Number of bytes to write. 5352 /// \param Align Alignment of the destination in bytes. 5353 /// \param isVol True if destination is volatile. 5354 /// \param DstPtrInfo IR information on the memory pointer. 5355 /// \returns New head in the control flow, if lowering was successful, empty 5356 /// SDValue otherwise. 5357 /// 5358 /// The function tries to replace 'llvm.memset' intrinsic with several store 5359 /// operations and value calculation code. This is usually profitable for small 5360 /// memory size. 5361 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 5362 SDValue Chain, SDValue Dst, SDValue Src, 5363 uint64_t Size, unsigned Align, bool isVol, 5364 MachinePointerInfo DstPtrInfo) { 5365 // Turn a memset of undef to nop. 5366 if (Src.isUndef()) 5367 return Chain; 5368 5369 // Expand memset to a series of load/store ops if the size operand 5370 // falls below a certain threshold. 5371 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5372 std::vector<EVT> MemOps; 5373 bool DstAlignCanChange = false; 5374 MachineFunction &MF = DAG.getMachineFunction(); 5375 MachineFrameInfo &MFI = MF.getFrameInfo(); 5376 bool OptSize = shouldLowerMemFuncForSize(MF); 5377 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5378 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5379 DstAlignCanChange = true; 5380 bool IsZeroVal = 5381 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5382 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5383 Size, (DstAlignCanChange ? 0 : Align), 0, 5384 true, IsZeroVal, false, true, 5385 DstPtrInfo.getAddrSpace(), ~0u, 5386 DAG, TLI)) 5387 return SDValue(); 5388 5389 if (DstAlignCanChange) { 5390 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5391 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5392 if (NewAlign > Align) { 5393 // Give the stack frame object a larger alignment if needed. 5394 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5395 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5396 Align = NewAlign; 5397 } 5398 } 5399 5400 SmallVector<SDValue, 8> OutChains; 5401 uint64_t DstOff = 0; 5402 unsigned NumMemOps = MemOps.size(); 5403 5404 // Find the largest store and generate the bit pattern for it. 5405 EVT LargestVT = MemOps[0]; 5406 for (unsigned i = 1; i < NumMemOps; i++) 5407 if (MemOps[i].bitsGT(LargestVT)) 5408 LargestVT = MemOps[i]; 5409 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5410 5411 for (unsigned i = 0; i < NumMemOps; i++) { 5412 EVT VT = MemOps[i]; 5413 unsigned VTSize = VT.getSizeInBits() / 8; 5414 if (VTSize > Size) { 5415 // Issuing an unaligned load / store pair that overlaps with the previous 5416 // pair. Adjust the offset accordingly. 5417 assert(i == NumMemOps-1 && i != 0); 5418 DstOff -= VTSize - Size; 5419 } 5420 5421 // If this store is smaller than the largest store see whether we can get 5422 // the smaller value for free with a truncate. 5423 SDValue Value = MemSetValue; 5424 if (VT.bitsLT(LargestVT)) { 5425 if (!LargestVT.isVector() && !VT.isVector() && 5426 TLI.isTruncateFree(LargestVT, VT)) 5427 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5428 else 5429 Value = getMemsetValue(Src, VT, DAG, dl); 5430 } 5431 assert(Value.getValueType() == VT && "Value with wrong type."); 5432 SDValue Store = DAG.getStore( 5433 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5434 DstPtrInfo.getWithOffset(DstOff), Align, 5435 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5436 OutChains.push_back(Store); 5437 DstOff += VT.getSizeInBits() / 8; 5438 Size -= VTSize; 5439 } 5440 5441 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5442 } 5443 5444 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5445 unsigned AS) { 5446 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5447 // pointer operands can be losslessly bitcasted to pointers of address space 0 5448 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5449 report_fatal_error("cannot lower memory intrinsic in address space " + 5450 Twine(AS)); 5451 } 5452 } 5453 5454 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5455 SDValue Src, SDValue Size, unsigned Align, 5456 bool isVol, bool AlwaysInline, bool isTailCall, 5457 MachinePointerInfo DstPtrInfo, 5458 MachinePointerInfo SrcPtrInfo) { 5459 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5460 5461 // Check to see if we should lower the memcpy to loads and stores first. 5462 // For cases within the target-specified limits, this is the best choice. 5463 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5464 if (ConstantSize) { 5465 // Memcpy with size zero? Just return the original chain. 5466 if (ConstantSize->isNullValue()) 5467 return Chain; 5468 5469 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5470 ConstantSize->getZExtValue(),Align, 5471 isVol, false, DstPtrInfo, SrcPtrInfo); 5472 if (Result.getNode()) 5473 return Result; 5474 } 5475 5476 // Then check to see if we should lower the memcpy with target-specific 5477 // code. If the target chooses to do this, this is the next best. 5478 if (TSI) { 5479 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5480 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5481 DstPtrInfo, SrcPtrInfo); 5482 if (Result.getNode()) 5483 return Result; 5484 } 5485 5486 // If we really need inline code and the target declined to provide it, 5487 // use a (potentially long) sequence of loads and stores. 5488 if (AlwaysInline) { 5489 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5490 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5491 ConstantSize->getZExtValue(), Align, isVol, 5492 true, DstPtrInfo, SrcPtrInfo); 5493 } 5494 5495 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5496 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5497 5498 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5499 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5500 // respect volatile, so they may do things like read or write memory 5501 // beyond the given memory regions. But fixing this isn't easy, and most 5502 // people don't care. 5503 5504 // Emit a library call. 5505 TargetLowering::ArgListTy Args; 5506 TargetLowering::ArgListEntry Entry; 5507 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5508 Entry.Node = Dst; Args.push_back(Entry); 5509 Entry.Node = Src; Args.push_back(Entry); 5510 Entry.Node = Size; Args.push_back(Entry); 5511 // FIXME: pass in SDLoc 5512 TargetLowering::CallLoweringInfo CLI(*this); 5513 CLI.setDebugLoc(dl) 5514 .setChain(Chain) 5515 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5516 Dst.getValueType().getTypeForEVT(*getContext()), 5517 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5518 TLI->getPointerTy(getDataLayout())), 5519 std::move(Args)) 5520 .setDiscardResult() 5521 .setTailCall(isTailCall); 5522 5523 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5524 return CallResult.second; 5525 } 5526 5527 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5528 SDValue Src, SDValue Size, unsigned Align, 5529 bool isVol, bool isTailCall, 5530 MachinePointerInfo DstPtrInfo, 5531 MachinePointerInfo SrcPtrInfo) { 5532 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5533 5534 // Check to see if we should lower the memmove to loads and stores first. 5535 // For cases within the target-specified limits, this is the best choice. 5536 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5537 if (ConstantSize) { 5538 // Memmove with size zero? Just return the original chain. 5539 if (ConstantSize->isNullValue()) 5540 return Chain; 5541 5542 SDValue Result = 5543 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5544 ConstantSize->getZExtValue(), Align, isVol, 5545 false, DstPtrInfo, SrcPtrInfo); 5546 if (Result.getNode()) 5547 return Result; 5548 } 5549 5550 // Then check to see if we should lower the memmove with target-specific 5551 // code. If the target chooses to do this, this is the next best. 5552 if (TSI) { 5553 SDValue Result = TSI->EmitTargetCodeForMemmove( 5554 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5555 if (Result.getNode()) 5556 return Result; 5557 } 5558 5559 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5560 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5561 5562 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5563 // not be safe. See memcpy above for more details. 5564 5565 // Emit a library call. 5566 TargetLowering::ArgListTy Args; 5567 TargetLowering::ArgListEntry Entry; 5568 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5569 Entry.Node = Dst; Args.push_back(Entry); 5570 Entry.Node = Src; Args.push_back(Entry); 5571 Entry.Node = Size; Args.push_back(Entry); 5572 // FIXME: pass in SDLoc 5573 TargetLowering::CallLoweringInfo CLI(*this); 5574 CLI.setDebugLoc(dl) 5575 .setChain(Chain) 5576 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5577 Dst.getValueType().getTypeForEVT(*getContext()), 5578 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5579 TLI->getPointerTy(getDataLayout())), 5580 std::move(Args)) 5581 .setDiscardResult() 5582 .setTailCall(isTailCall); 5583 5584 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5585 return CallResult.second; 5586 } 5587 5588 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5589 SDValue Src, SDValue Size, unsigned Align, 5590 bool isVol, bool isTailCall, 5591 MachinePointerInfo DstPtrInfo) { 5592 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5593 5594 // Check to see if we should lower the memset to stores first. 5595 // For cases within the target-specified limits, this is the best choice. 5596 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5597 if (ConstantSize) { 5598 // Memset with size zero? Just return the original chain. 5599 if (ConstantSize->isNullValue()) 5600 return Chain; 5601 5602 SDValue Result = 5603 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5604 Align, isVol, DstPtrInfo); 5605 5606 if (Result.getNode()) 5607 return Result; 5608 } 5609 5610 // Then check to see if we should lower the memset with target-specific 5611 // code. If the target chooses to do this, this is the next best. 5612 if (TSI) { 5613 SDValue Result = TSI->EmitTargetCodeForMemset( 5614 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5615 if (Result.getNode()) 5616 return Result; 5617 } 5618 5619 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5620 5621 // Emit a library call. 5622 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5623 TargetLowering::ArgListTy Args; 5624 TargetLowering::ArgListEntry Entry; 5625 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5626 Args.push_back(Entry); 5627 Entry.Node = Src; 5628 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5629 Args.push_back(Entry); 5630 Entry.Node = Size; 5631 Entry.Ty = IntPtrTy; 5632 Args.push_back(Entry); 5633 5634 // FIXME: pass in SDLoc 5635 TargetLowering::CallLoweringInfo CLI(*this); 5636 CLI.setDebugLoc(dl) 5637 .setChain(Chain) 5638 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5639 Dst.getValueType().getTypeForEVT(*getContext()), 5640 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5641 TLI->getPointerTy(getDataLayout())), 5642 std::move(Args)) 5643 .setDiscardResult() 5644 .setTailCall(isTailCall); 5645 5646 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5647 return CallResult.second; 5648 } 5649 5650 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5651 SDVTList VTList, ArrayRef<SDValue> Ops, 5652 MachineMemOperand *MMO) { 5653 FoldingSetNodeID ID; 5654 ID.AddInteger(MemVT.getRawBits()); 5655 AddNodeIDNode(ID, Opcode, VTList, Ops); 5656 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5657 void* IP = nullptr; 5658 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5659 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5660 return SDValue(E, 0); 5661 } 5662 5663 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5664 VTList, MemVT, MMO); 5665 createOperands(N, Ops); 5666 5667 CSEMap.InsertNode(N, IP); 5668 InsertNode(N); 5669 return SDValue(N, 0); 5670 } 5671 5672 SDValue SelectionDAG::getAtomicCmpSwap( 5673 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5674 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5675 unsigned Alignment, AtomicOrdering SuccessOrdering, 5676 AtomicOrdering FailureOrdering, SyncScope::ID SSID) { 5677 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5678 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5679 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5680 5681 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5682 Alignment = getEVTAlignment(MemVT); 5683 5684 MachineFunction &MF = getMachineFunction(); 5685 5686 // FIXME: Volatile isn't really correct; we should keep track of atomic 5687 // orderings in the memoperand. 5688 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5689 MachineMemOperand::MOStore; 5690 MachineMemOperand *MMO = 5691 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5692 AAMDNodes(), nullptr, SSID, SuccessOrdering, 5693 FailureOrdering); 5694 5695 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5696 } 5697 5698 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5699 EVT MemVT, SDVTList VTs, SDValue Chain, 5700 SDValue Ptr, SDValue Cmp, SDValue Swp, 5701 MachineMemOperand *MMO) { 5702 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5703 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5704 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5705 5706 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5707 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5708 } 5709 5710 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5711 SDValue Chain, SDValue Ptr, SDValue Val, 5712 const Value *PtrVal, unsigned Alignment, 5713 AtomicOrdering Ordering, 5714 SyncScope::ID SSID) { 5715 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5716 Alignment = getEVTAlignment(MemVT); 5717 5718 MachineFunction &MF = getMachineFunction(); 5719 // An atomic store does not load. An atomic load does not store. 5720 // (An atomicrmw obviously both loads and stores.) 5721 // For now, atomics are considered to be volatile always, and they are 5722 // chained as such. 5723 // FIXME: Volatile isn't really correct; we should keep track of atomic 5724 // orderings in the memoperand. 5725 auto Flags = MachineMemOperand::MOVolatile; 5726 if (Opcode != ISD::ATOMIC_STORE) 5727 Flags |= MachineMemOperand::MOLoad; 5728 if (Opcode != ISD::ATOMIC_LOAD) 5729 Flags |= MachineMemOperand::MOStore; 5730 5731 MachineMemOperand *MMO = 5732 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5733 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5734 nullptr, SSID, Ordering); 5735 5736 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5737 } 5738 5739 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5740 SDValue Chain, SDValue Ptr, SDValue Val, 5741 MachineMemOperand *MMO) { 5742 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5743 Opcode == ISD::ATOMIC_LOAD_SUB || 5744 Opcode == ISD::ATOMIC_LOAD_AND || 5745 Opcode == ISD::ATOMIC_LOAD_OR || 5746 Opcode == ISD::ATOMIC_LOAD_XOR || 5747 Opcode == ISD::ATOMIC_LOAD_NAND || 5748 Opcode == ISD::ATOMIC_LOAD_MIN || 5749 Opcode == ISD::ATOMIC_LOAD_MAX || 5750 Opcode == ISD::ATOMIC_LOAD_UMIN || 5751 Opcode == ISD::ATOMIC_LOAD_UMAX || 5752 Opcode == ISD::ATOMIC_SWAP || 5753 Opcode == ISD::ATOMIC_STORE) && 5754 "Invalid Atomic Op"); 5755 5756 EVT VT = Val.getValueType(); 5757 5758 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5759 getVTList(VT, MVT::Other); 5760 SDValue Ops[] = {Chain, Ptr, Val}; 5761 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5762 } 5763 5764 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5765 EVT VT, SDValue Chain, SDValue Ptr, 5766 MachineMemOperand *MMO) { 5767 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5768 5769 SDVTList VTs = getVTList(VT, MVT::Other); 5770 SDValue Ops[] = {Chain, Ptr}; 5771 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5772 } 5773 5774 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5775 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5776 if (Ops.size() == 1) 5777 return Ops[0]; 5778 5779 SmallVector<EVT, 4> VTs; 5780 VTs.reserve(Ops.size()); 5781 for (unsigned i = 0; i < Ops.size(); ++i) 5782 VTs.push_back(Ops[i].getValueType()); 5783 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5784 } 5785 5786 SDValue SelectionDAG::getMemIntrinsicNode( 5787 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5788 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 5789 MachineMemOperand::Flags Flags, unsigned Size) { 5790 if (Align == 0) // Ensure that codegen never sees alignment 0 5791 Align = getEVTAlignment(MemVT); 5792 5793 if (!Size) 5794 Size = MemVT.getStoreSize(); 5795 5796 MachineFunction &MF = getMachineFunction(); 5797 MachineMemOperand *MMO = 5798 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5799 5800 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5801 } 5802 5803 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5804 SDVTList VTList, 5805 ArrayRef<SDValue> Ops, EVT MemVT, 5806 MachineMemOperand *MMO) { 5807 assert((Opcode == ISD::INTRINSIC_VOID || 5808 Opcode == ISD::INTRINSIC_W_CHAIN || 5809 Opcode == ISD::PREFETCH || 5810 Opcode == ISD::LIFETIME_START || 5811 Opcode == ISD::LIFETIME_END || 5812 ((int)Opcode <= std::numeric_limits<int>::max() && 5813 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5814 "Opcode is not a memory-accessing opcode!"); 5815 5816 // Memoize the node unless it returns a flag. 5817 MemIntrinsicSDNode *N; 5818 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5819 FoldingSetNodeID ID; 5820 AddNodeIDNode(ID, Opcode, VTList, Ops); 5821 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 5822 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 5823 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5824 void *IP = nullptr; 5825 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5826 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5827 return SDValue(E, 0); 5828 } 5829 5830 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5831 VTList, MemVT, MMO); 5832 createOperands(N, Ops); 5833 5834 CSEMap.InsertNode(N, IP); 5835 } else { 5836 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5837 VTList, MemVT, MMO); 5838 createOperands(N, Ops); 5839 } 5840 InsertNode(N); 5841 return SDValue(N, 0); 5842 } 5843 5844 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5845 /// MachinePointerInfo record from it. This is particularly useful because the 5846 /// code generator has many cases where it doesn't bother passing in a 5847 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5848 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 5849 SelectionDAG &DAG, SDValue Ptr, 5850 int64_t Offset = 0) { 5851 // If this is FI+Offset, we can model it. 5852 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5853 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5854 FI->getIndex(), Offset); 5855 5856 // If this is (FI+Offset1)+Offset2, we can model it. 5857 if (Ptr.getOpcode() != ISD::ADD || 5858 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5859 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5860 return Info; 5861 5862 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5863 return MachinePointerInfo::getFixedStack( 5864 DAG.getMachineFunction(), FI, 5865 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5866 } 5867 5868 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5869 /// MachinePointerInfo record from it. This is particularly useful because the 5870 /// code generator has many cases where it doesn't bother passing in a 5871 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5872 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 5873 SelectionDAG &DAG, SDValue Ptr, 5874 SDValue OffsetOp) { 5875 // If the 'Offset' value isn't a constant, we can't handle this. 5876 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5877 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 5878 if (OffsetOp.isUndef()) 5879 return InferPointerInfo(Info, DAG, Ptr); 5880 return Info; 5881 } 5882 5883 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5884 EVT VT, const SDLoc &dl, SDValue Chain, 5885 SDValue Ptr, SDValue Offset, 5886 MachinePointerInfo PtrInfo, EVT MemVT, 5887 unsigned Alignment, 5888 MachineMemOperand::Flags MMOFlags, 5889 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5890 assert(Chain.getValueType() == MVT::Other && 5891 "Invalid chain type"); 5892 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5893 Alignment = getEVTAlignment(MemVT); 5894 5895 MMOFlags |= MachineMemOperand::MOLoad; 5896 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5897 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5898 // clients. 5899 if (PtrInfo.V.isNull()) 5900 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 5901 5902 MachineFunction &MF = getMachineFunction(); 5903 MachineMemOperand *MMO = MF.getMachineMemOperand( 5904 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5905 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5906 } 5907 5908 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5909 EVT VT, const SDLoc &dl, SDValue Chain, 5910 SDValue Ptr, SDValue Offset, EVT MemVT, 5911 MachineMemOperand *MMO) { 5912 if (VT == MemVT) { 5913 ExtType = ISD::NON_EXTLOAD; 5914 } else if (ExtType == ISD::NON_EXTLOAD) { 5915 assert(VT == MemVT && "Non-extending load from different memory type!"); 5916 } else { 5917 // Extending load. 5918 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5919 "Should only be an extending load, not truncating!"); 5920 assert(VT.isInteger() == MemVT.isInteger() && 5921 "Cannot convert from FP to Int or Int -> FP!"); 5922 assert(VT.isVector() == MemVT.isVector() && 5923 "Cannot use an ext load to convert to or from a vector!"); 5924 assert((!VT.isVector() || 5925 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5926 "Cannot use an ext load to change the number of vector elements!"); 5927 } 5928 5929 bool Indexed = AM != ISD::UNINDEXED; 5930 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5931 5932 SDVTList VTs = Indexed ? 5933 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5934 SDValue Ops[] = { Chain, Ptr, Offset }; 5935 FoldingSetNodeID ID; 5936 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5937 ID.AddInteger(MemVT.getRawBits()); 5938 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5939 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5940 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5941 void *IP = nullptr; 5942 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5943 cast<LoadSDNode>(E)->refineAlignment(MMO); 5944 return SDValue(E, 0); 5945 } 5946 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5947 ExtType, MemVT, MMO); 5948 createOperands(N, Ops); 5949 5950 CSEMap.InsertNode(N, IP); 5951 InsertNode(N); 5952 SDValue V(N, 0); 5953 NewSDValueDbgMsg(V, "Creating new node: ", this); 5954 return V; 5955 } 5956 5957 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5958 SDValue Ptr, MachinePointerInfo PtrInfo, 5959 unsigned Alignment, 5960 MachineMemOperand::Flags MMOFlags, 5961 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5962 SDValue Undef = getUNDEF(Ptr.getValueType()); 5963 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5964 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5965 } 5966 5967 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5968 SDValue Ptr, MachineMemOperand *MMO) { 5969 SDValue Undef = getUNDEF(Ptr.getValueType()); 5970 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5971 VT, MMO); 5972 } 5973 5974 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5975 EVT VT, SDValue Chain, SDValue Ptr, 5976 MachinePointerInfo PtrInfo, EVT MemVT, 5977 unsigned Alignment, 5978 MachineMemOperand::Flags MMOFlags, 5979 const AAMDNodes &AAInfo) { 5980 SDValue Undef = getUNDEF(Ptr.getValueType()); 5981 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5982 MemVT, Alignment, MMOFlags, AAInfo); 5983 } 5984 5985 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5986 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5987 MachineMemOperand *MMO) { 5988 SDValue Undef = getUNDEF(Ptr.getValueType()); 5989 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5990 MemVT, MMO); 5991 } 5992 5993 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5994 SDValue Base, SDValue Offset, 5995 ISD::MemIndexedMode AM) { 5996 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5997 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5998 // Don't propagate the invariant or dereferenceable flags. 5999 auto MMOFlags = 6000 LD->getMemOperand()->getFlags() & 6001 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6002 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6003 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6004 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6005 LD->getAAInfo()); 6006 } 6007 6008 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6009 SDValue Ptr, MachinePointerInfo PtrInfo, 6010 unsigned Alignment, 6011 MachineMemOperand::Flags MMOFlags, 6012 const AAMDNodes &AAInfo) { 6013 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6014 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6015 Alignment = getEVTAlignment(Val.getValueType()); 6016 6017 MMOFlags |= MachineMemOperand::MOStore; 6018 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6019 6020 if (PtrInfo.V.isNull()) 6021 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6022 6023 MachineFunction &MF = getMachineFunction(); 6024 MachineMemOperand *MMO = MF.getMachineMemOperand( 6025 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6026 return getStore(Chain, dl, Val, Ptr, MMO); 6027 } 6028 6029 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6030 SDValue Ptr, MachineMemOperand *MMO) { 6031 assert(Chain.getValueType() == MVT::Other && 6032 "Invalid chain type"); 6033 EVT VT = Val.getValueType(); 6034 SDVTList VTs = getVTList(MVT::Other); 6035 SDValue Undef = getUNDEF(Ptr.getValueType()); 6036 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6037 FoldingSetNodeID ID; 6038 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6039 ID.AddInteger(VT.getRawBits()); 6040 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6041 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6042 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6043 void *IP = nullptr; 6044 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6045 cast<StoreSDNode>(E)->refineAlignment(MMO); 6046 return SDValue(E, 0); 6047 } 6048 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6049 ISD::UNINDEXED, false, VT, MMO); 6050 createOperands(N, Ops); 6051 6052 CSEMap.InsertNode(N, IP); 6053 InsertNode(N); 6054 SDValue V(N, 0); 6055 NewSDValueDbgMsg(V, "Creating new node: ", this); 6056 return V; 6057 } 6058 6059 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6060 SDValue Ptr, MachinePointerInfo PtrInfo, 6061 EVT SVT, unsigned Alignment, 6062 MachineMemOperand::Flags MMOFlags, 6063 const AAMDNodes &AAInfo) { 6064 assert(Chain.getValueType() == MVT::Other && 6065 "Invalid chain type"); 6066 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6067 Alignment = getEVTAlignment(SVT); 6068 6069 MMOFlags |= MachineMemOperand::MOStore; 6070 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6071 6072 if (PtrInfo.V.isNull()) 6073 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6074 6075 MachineFunction &MF = getMachineFunction(); 6076 MachineMemOperand *MMO = MF.getMachineMemOperand( 6077 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6078 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6079 } 6080 6081 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6082 SDValue Ptr, EVT SVT, 6083 MachineMemOperand *MMO) { 6084 EVT VT = Val.getValueType(); 6085 6086 assert(Chain.getValueType() == MVT::Other && 6087 "Invalid chain type"); 6088 if (VT == SVT) 6089 return getStore(Chain, dl, Val, Ptr, MMO); 6090 6091 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6092 "Should only be a truncating store, not extending!"); 6093 assert(VT.isInteger() == SVT.isInteger() && 6094 "Can't do FP-INT conversion!"); 6095 assert(VT.isVector() == SVT.isVector() && 6096 "Cannot use trunc store to convert to or from a vector!"); 6097 assert((!VT.isVector() || 6098 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6099 "Cannot use trunc store to change the number of vector elements!"); 6100 6101 SDVTList VTs = getVTList(MVT::Other); 6102 SDValue Undef = getUNDEF(Ptr.getValueType()); 6103 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6104 FoldingSetNodeID ID; 6105 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6106 ID.AddInteger(SVT.getRawBits()); 6107 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6108 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6109 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6110 void *IP = nullptr; 6111 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6112 cast<StoreSDNode>(E)->refineAlignment(MMO); 6113 return SDValue(E, 0); 6114 } 6115 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6116 ISD::UNINDEXED, true, SVT, MMO); 6117 createOperands(N, Ops); 6118 6119 CSEMap.InsertNode(N, IP); 6120 InsertNode(N); 6121 SDValue V(N, 0); 6122 NewSDValueDbgMsg(V, "Creating new node: ", this); 6123 return V; 6124 } 6125 6126 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6127 SDValue Base, SDValue Offset, 6128 ISD::MemIndexedMode AM) { 6129 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6130 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6131 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6132 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6133 FoldingSetNodeID ID; 6134 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6135 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6136 ID.AddInteger(ST->getRawSubclassData()); 6137 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6138 void *IP = nullptr; 6139 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6140 return SDValue(E, 0); 6141 6142 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6143 ST->isTruncatingStore(), ST->getMemoryVT(), 6144 ST->getMemOperand()); 6145 createOperands(N, Ops); 6146 6147 CSEMap.InsertNode(N, IP); 6148 InsertNode(N); 6149 SDValue V(N, 0); 6150 NewSDValueDbgMsg(V, "Creating new node: ", this); 6151 return V; 6152 } 6153 6154 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6155 SDValue Ptr, SDValue Mask, SDValue Src0, 6156 EVT MemVT, MachineMemOperand *MMO, 6157 ISD::LoadExtType ExtTy, bool isExpanding) { 6158 SDVTList VTs = getVTList(VT, MVT::Other); 6159 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 6160 FoldingSetNodeID ID; 6161 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6162 ID.AddInteger(VT.getRawBits()); 6163 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6164 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6165 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6166 void *IP = nullptr; 6167 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6168 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6169 return SDValue(E, 0); 6170 } 6171 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6172 ExtTy, isExpanding, MemVT, MMO); 6173 createOperands(N, Ops); 6174 6175 CSEMap.InsertNode(N, IP); 6176 InsertNode(N); 6177 SDValue V(N, 0); 6178 NewSDValueDbgMsg(V, "Creating new node: ", this); 6179 return V; 6180 } 6181 6182 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6183 SDValue Val, SDValue Ptr, SDValue Mask, 6184 EVT MemVT, MachineMemOperand *MMO, 6185 bool IsTruncating, bool IsCompressing) { 6186 assert(Chain.getValueType() == MVT::Other && 6187 "Invalid chain type"); 6188 EVT VT = Val.getValueType(); 6189 SDVTList VTs = getVTList(MVT::Other); 6190 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 6191 FoldingSetNodeID ID; 6192 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6193 ID.AddInteger(VT.getRawBits()); 6194 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6195 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6196 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6197 void *IP = nullptr; 6198 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6199 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6200 return SDValue(E, 0); 6201 } 6202 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6203 IsTruncating, IsCompressing, MemVT, MMO); 6204 createOperands(N, Ops); 6205 6206 CSEMap.InsertNode(N, IP); 6207 InsertNode(N); 6208 SDValue V(N, 0); 6209 NewSDValueDbgMsg(V, "Creating new node: ", this); 6210 return V; 6211 } 6212 6213 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 6214 ArrayRef<SDValue> Ops, 6215 MachineMemOperand *MMO) { 6216 assert(Ops.size() == 6 && "Incompatible number of operands"); 6217 6218 FoldingSetNodeID ID; 6219 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 6220 ID.AddInteger(VT.getRawBits()); 6221 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 6222 dl.getIROrder(), VTs, VT, MMO)); 6223 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6224 void *IP = nullptr; 6225 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6226 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 6227 return SDValue(E, 0); 6228 } 6229 6230 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6231 VTs, VT, MMO); 6232 createOperands(N, Ops); 6233 6234 assert(N->getValue().getValueType() == N->getValueType(0) && 6235 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 6236 assert(N->getMask().getValueType().getVectorNumElements() == 6237 N->getValueType(0).getVectorNumElements() && 6238 "Vector width mismatch between mask and data"); 6239 assert(N->getIndex().getValueType().getVectorNumElements() == 6240 N->getValueType(0).getVectorNumElements() && 6241 "Vector width mismatch between index and data"); 6242 assert(isa<ConstantSDNode>(N->getScale()) && 6243 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6244 "Scale should be a constant power of 2"); 6245 6246 CSEMap.InsertNode(N, IP); 6247 InsertNode(N); 6248 SDValue V(N, 0); 6249 NewSDValueDbgMsg(V, "Creating new node: ", this); 6250 return V; 6251 } 6252 6253 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 6254 ArrayRef<SDValue> Ops, 6255 MachineMemOperand *MMO) { 6256 assert(Ops.size() == 6 && "Incompatible number of operands"); 6257 6258 FoldingSetNodeID ID; 6259 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 6260 ID.AddInteger(VT.getRawBits()); 6261 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 6262 dl.getIROrder(), VTs, VT, MMO)); 6263 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6264 void *IP = nullptr; 6265 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6266 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 6267 return SDValue(E, 0); 6268 } 6269 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 6270 VTs, VT, MMO); 6271 createOperands(N, Ops); 6272 6273 assert(N->getMask().getValueType().getVectorNumElements() == 6274 N->getValue().getValueType().getVectorNumElements() && 6275 "Vector width mismatch between mask and data"); 6276 assert(N->getIndex().getValueType().getVectorNumElements() == 6277 N->getValue().getValueType().getVectorNumElements() && 6278 "Vector width mismatch between index and data"); 6279 assert(isa<ConstantSDNode>(N->getScale()) && 6280 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 6281 "Scale should be a constant power of 2"); 6282 6283 CSEMap.InsertNode(N, IP); 6284 InsertNode(N); 6285 SDValue V(N, 0); 6286 NewSDValueDbgMsg(V, "Creating new node: ", this); 6287 return V; 6288 } 6289 6290 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 6291 SDValue Ptr, SDValue SV, unsigned Align) { 6292 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 6293 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 6294 } 6295 6296 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6297 ArrayRef<SDUse> Ops) { 6298 switch (Ops.size()) { 6299 case 0: return getNode(Opcode, DL, VT); 6300 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 6301 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 6302 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6303 default: break; 6304 } 6305 6306 // Copy from an SDUse array into an SDValue array for use with 6307 // the regular getNode logic. 6308 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 6309 return getNode(Opcode, DL, VT, NewOps); 6310 } 6311 6312 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6313 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 6314 unsigned NumOps = Ops.size(); 6315 switch (NumOps) { 6316 case 0: return getNode(Opcode, DL, VT); 6317 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 6318 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 6319 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 6320 default: break; 6321 } 6322 6323 switch (Opcode) { 6324 default: break; 6325 case ISD::CONCAT_VECTORS: 6326 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 6327 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 6328 return V; 6329 break; 6330 case ISD::SELECT_CC: 6331 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 6332 assert(Ops[0].getValueType() == Ops[1].getValueType() && 6333 "LHS and RHS of condition must have same type!"); 6334 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6335 "True and False arms of SelectCC must have same type!"); 6336 assert(Ops[2].getValueType() == VT && 6337 "select_cc node must be of same type as true and false value!"); 6338 break; 6339 case ISD::BR_CC: 6340 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 6341 assert(Ops[2].getValueType() == Ops[3].getValueType() && 6342 "LHS/RHS of comparison should match types!"); 6343 break; 6344 } 6345 6346 // Memoize nodes. 6347 SDNode *N; 6348 SDVTList VTs = getVTList(VT); 6349 6350 if (VT != MVT::Glue) { 6351 FoldingSetNodeID ID; 6352 AddNodeIDNode(ID, Opcode, VTs, Ops); 6353 void *IP = nullptr; 6354 6355 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6356 return SDValue(E, 0); 6357 6358 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6359 createOperands(N, Ops); 6360 6361 CSEMap.InsertNode(N, IP); 6362 } else { 6363 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6364 createOperands(N, Ops); 6365 } 6366 6367 InsertNode(N); 6368 SDValue V(N, 0); 6369 NewSDValueDbgMsg(V, "Creating new node: ", this); 6370 return V; 6371 } 6372 6373 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6374 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 6375 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 6376 } 6377 6378 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6379 ArrayRef<SDValue> Ops) { 6380 if (VTList.NumVTs == 1) 6381 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6382 6383 #if 0 6384 switch (Opcode) { 6385 // FIXME: figure out how to safely handle things like 6386 // int foo(int x) { return 1 << (x & 255); } 6387 // int bar() { return foo(256); } 6388 case ISD::SRA_PARTS: 6389 case ISD::SRL_PARTS: 6390 case ISD::SHL_PARTS: 6391 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6392 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6393 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6394 else if (N3.getOpcode() == ISD::AND) 6395 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6396 // If the and is only masking out bits that cannot effect the shift, 6397 // eliminate the and. 6398 unsigned NumBits = VT.getScalarSizeInBits()*2; 6399 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6400 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6401 } 6402 break; 6403 } 6404 #endif 6405 6406 // Memoize the node unless it returns a flag. 6407 SDNode *N; 6408 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6409 FoldingSetNodeID ID; 6410 AddNodeIDNode(ID, Opcode, VTList, Ops); 6411 void *IP = nullptr; 6412 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6413 return SDValue(E, 0); 6414 6415 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6416 createOperands(N, Ops); 6417 CSEMap.InsertNode(N, IP); 6418 } else { 6419 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6420 createOperands(N, Ops); 6421 } 6422 InsertNode(N); 6423 SDValue V(N, 0); 6424 NewSDValueDbgMsg(V, "Creating new node: ", this); 6425 return V; 6426 } 6427 6428 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6429 SDVTList VTList) { 6430 return getNode(Opcode, DL, VTList, None); 6431 } 6432 6433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6434 SDValue N1) { 6435 SDValue Ops[] = { N1 }; 6436 return getNode(Opcode, DL, VTList, Ops); 6437 } 6438 6439 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6440 SDValue N1, SDValue N2) { 6441 SDValue Ops[] = { N1, N2 }; 6442 return getNode(Opcode, DL, VTList, Ops); 6443 } 6444 6445 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6446 SDValue N1, SDValue N2, SDValue N3) { 6447 SDValue Ops[] = { N1, N2, N3 }; 6448 return getNode(Opcode, DL, VTList, Ops); 6449 } 6450 6451 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6452 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6453 SDValue Ops[] = { N1, N2, N3, N4 }; 6454 return getNode(Opcode, DL, VTList, Ops); 6455 } 6456 6457 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6458 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6459 SDValue N5) { 6460 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6461 return getNode(Opcode, DL, VTList, Ops); 6462 } 6463 6464 SDVTList SelectionDAG::getVTList(EVT VT) { 6465 return makeVTList(SDNode::getValueTypeList(VT), 1); 6466 } 6467 6468 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6469 FoldingSetNodeID ID; 6470 ID.AddInteger(2U); 6471 ID.AddInteger(VT1.getRawBits()); 6472 ID.AddInteger(VT2.getRawBits()); 6473 6474 void *IP = nullptr; 6475 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6476 if (!Result) { 6477 EVT *Array = Allocator.Allocate<EVT>(2); 6478 Array[0] = VT1; 6479 Array[1] = VT2; 6480 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6481 VTListMap.InsertNode(Result, IP); 6482 } 6483 return Result->getSDVTList(); 6484 } 6485 6486 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6487 FoldingSetNodeID ID; 6488 ID.AddInteger(3U); 6489 ID.AddInteger(VT1.getRawBits()); 6490 ID.AddInteger(VT2.getRawBits()); 6491 ID.AddInteger(VT3.getRawBits()); 6492 6493 void *IP = nullptr; 6494 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6495 if (!Result) { 6496 EVT *Array = Allocator.Allocate<EVT>(3); 6497 Array[0] = VT1; 6498 Array[1] = VT2; 6499 Array[2] = VT3; 6500 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6501 VTListMap.InsertNode(Result, IP); 6502 } 6503 return Result->getSDVTList(); 6504 } 6505 6506 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6507 FoldingSetNodeID ID; 6508 ID.AddInteger(4U); 6509 ID.AddInteger(VT1.getRawBits()); 6510 ID.AddInteger(VT2.getRawBits()); 6511 ID.AddInteger(VT3.getRawBits()); 6512 ID.AddInteger(VT4.getRawBits()); 6513 6514 void *IP = nullptr; 6515 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6516 if (!Result) { 6517 EVT *Array = Allocator.Allocate<EVT>(4); 6518 Array[0] = VT1; 6519 Array[1] = VT2; 6520 Array[2] = VT3; 6521 Array[3] = VT4; 6522 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6523 VTListMap.InsertNode(Result, IP); 6524 } 6525 return Result->getSDVTList(); 6526 } 6527 6528 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6529 unsigned NumVTs = VTs.size(); 6530 FoldingSetNodeID ID; 6531 ID.AddInteger(NumVTs); 6532 for (unsigned index = 0; index < NumVTs; index++) { 6533 ID.AddInteger(VTs[index].getRawBits()); 6534 } 6535 6536 void *IP = nullptr; 6537 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6538 if (!Result) { 6539 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6540 std::copy(VTs.begin(), VTs.end(), Array); 6541 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6542 VTListMap.InsertNode(Result, IP); 6543 } 6544 return Result->getSDVTList(); 6545 } 6546 6547 6548 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6549 /// specified operands. If the resultant node already exists in the DAG, 6550 /// this does not modify the specified node, instead it returns the node that 6551 /// already exists. If the resultant node does not exist in the DAG, the 6552 /// input node is returned. As a degenerate case, if you specify the same 6553 /// input operands as the node already has, the input node is returned. 6554 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6555 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6556 6557 // Check to see if there is no change. 6558 if (Op == N->getOperand(0)) return N; 6559 6560 // See if the modified node already exists. 6561 void *InsertPos = nullptr; 6562 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6563 return Existing; 6564 6565 // Nope it doesn't. Remove the node from its current place in the maps. 6566 if (InsertPos) 6567 if (!RemoveNodeFromCSEMaps(N)) 6568 InsertPos = nullptr; 6569 6570 // Now we update the operands. 6571 N->OperandList[0].set(Op); 6572 6573 // If this gets put into a CSE map, add it. 6574 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6575 return N; 6576 } 6577 6578 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6579 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6580 6581 // Check to see if there is no change. 6582 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6583 return N; // No operands changed, just return the input node. 6584 6585 // See if the modified node already exists. 6586 void *InsertPos = nullptr; 6587 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6588 return Existing; 6589 6590 // Nope it doesn't. Remove the node from its current place in the maps. 6591 if (InsertPos) 6592 if (!RemoveNodeFromCSEMaps(N)) 6593 InsertPos = nullptr; 6594 6595 // Now we update the operands. 6596 if (N->OperandList[0] != Op1) 6597 N->OperandList[0].set(Op1); 6598 if (N->OperandList[1] != Op2) 6599 N->OperandList[1].set(Op2); 6600 6601 // If this gets put into a CSE map, add it. 6602 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6603 return N; 6604 } 6605 6606 SDNode *SelectionDAG:: 6607 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6608 SDValue Ops[] = { Op1, Op2, Op3 }; 6609 return UpdateNodeOperands(N, Ops); 6610 } 6611 6612 SDNode *SelectionDAG:: 6613 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6614 SDValue Op3, SDValue Op4) { 6615 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6616 return UpdateNodeOperands(N, Ops); 6617 } 6618 6619 SDNode *SelectionDAG:: 6620 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6621 SDValue Op3, SDValue Op4, SDValue Op5) { 6622 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6623 return UpdateNodeOperands(N, Ops); 6624 } 6625 6626 SDNode *SelectionDAG:: 6627 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6628 unsigned NumOps = Ops.size(); 6629 assert(N->getNumOperands() == NumOps && 6630 "Update with wrong number of operands"); 6631 6632 // If no operands changed just return the input node. 6633 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6634 return N; 6635 6636 // See if the modified node already exists. 6637 void *InsertPos = nullptr; 6638 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6639 return Existing; 6640 6641 // Nope it doesn't. Remove the node from its current place in the maps. 6642 if (InsertPos) 6643 if (!RemoveNodeFromCSEMaps(N)) 6644 InsertPos = nullptr; 6645 6646 // Now we update the operands. 6647 for (unsigned i = 0; i != NumOps; ++i) 6648 if (N->OperandList[i] != Ops[i]) 6649 N->OperandList[i].set(Ops[i]); 6650 6651 // If this gets put into a CSE map, add it. 6652 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6653 return N; 6654 } 6655 6656 /// DropOperands - Release the operands and set this node to have 6657 /// zero operands. 6658 void SDNode::DropOperands() { 6659 // Unlike the code in MorphNodeTo that does this, we don't need to 6660 // watch for dead nodes here. 6661 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6662 SDUse &Use = *I++; 6663 Use.set(SDValue()); 6664 } 6665 } 6666 6667 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6668 /// machine opcode. 6669 /// 6670 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6671 EVT VT) { 6672 SDVTList VTs = getVTList(VT); 6673 return SelectNodeTo(N, MachineOpc, VTs, None); 6674 } 6675 6676 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6677 EVT VT, SDValue Op1) { 6678 SDVTList VTs = getVTList(VT); 6679 SDValue Ops[] = { Op1 }; 6680 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6681 } 6682 6683 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6684 EVT VT, SDValue Op1, 6685 SDValue Op2) { 6686 SDVTList VTs = getVTList(VT); 6687 SDValue Ops[] = { Op1, Op2 }; 6688 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6689 } 6690 6691 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6692 EVT VT, SDValue Op1, 6693 SDValue Op2, SDValue Op3) { 6694 SDVTList VTs = getVTList(VT); 6695 SDValue Ops[] = { Op1, Op2, Op3 }; 6696 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6697 } 6698 6699 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6700 EVT VT, ArrayRef<SDValue> Ops) { 6701 SDVTList VTs = getVTList(VT); 6702 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6703 } 6704 6705 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6706 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6707 SDVTList VTs = getVTList(VT1, VT2); 6708 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6709 } 6710 6711 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6712 EVT VT1, EVT VT2) { 6713 SDVTList VTs = getVTList(VT1, VT2); 6714 return SelectNodeTo(N, MachineOpc, VTs, None); 6715 } 6716 6717 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6718 EVT VT1, EVT VT2, EVT VT3, 6719 ArrayRef<SDValue> Ops) { 6720 SDVTList VTs = getVTList(VT1, VT2, VT3); 6721 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6722 } 6723 6724 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6725 EVT VT1, EVT VT2, 6726 SDValue Op1, SDValue Op2) { 6727 SDVTList VTs = getVTList(VT1, VT2); 6728 SDValue Ops[] = { Op1, Op2 }; 6729 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6730 } 6731 6732 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6733 SDVTList VTs,ArrayRef<SDValue> Ops) { 6734 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6735 // Reset the NodeID to -1. 6736 New->setNodeId(-1); 6737 if (New != N) { 6738 ReplaceAllUsesWith(N, New); 6739 RemoveDeadNode(N); 6740 } 6741 return New; 6742 } 6743 6744 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6745 /// the line number information on the merged node since it is not possible to 6746 /// preserve the information that operation is associated with multiple lines. 6747 /// This will make the debugger working better at -O0, were there is a higher 6748 /// probability having other instructions associated with that line. 6749 /// 6750 /// For IROrder, we keep the smaller of the two 6751 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6752 DebugLoc NLoc = N->getDebugLoc(); 6753 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6754 N->setDebugLoc(DebugLoc()); 6755 } 6756 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6757 N->setIROrder(Order); 6758 return N; 6759 } 6760 6761 /// MorphNodeTo - This *mutates* the specified node to have the specified 6762 /// return type, opcode, and operands. 6763 /// 6764 /// Note that MorphNodeTo returns the resultant node. If there is already a 6765 /// node of the specified opcode and operands, it returns that node instead of 6766 /// the current one. Note that the SDLoc need not be the same. 6767 /// 6768 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6769 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6770 /// node, and because it doesn't require CSE recalculation for any of 6771 /// the node's users. 6772 /// 6773 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6774 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6775 /// the legalizer which maintain worklists that would need to be updated when 6776 /// deleting things. 6777 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6778 SDVTList VTs, ArrayRef<SDValue> Ops) { 6779 // If an identical node already exists, use it. 6780 void *IP = nullptr; 6781 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6782 FoldingSetNodeID ID; 6783 AddNodeIDNode(ID, Opc, VTs, Ops); 6784 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6785 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6786 } 6787 6788 if (!RemoveNodeFromCSEMaps(N)) 6789 IP = nullptr; 6790 6791 // Start the morphing. 6792 N->NodeType = Opc; 6793 N->ValueList = VTs.VTs; 6794 N->NumValues = VTs.NumVTs; 6795 6796 // Clear the operands list, updating used nodes to remove this from their 6797 // use list. Keep track of any operands that become dead as a result. 6798 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6799 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6800 SDUse &Use = *I++; 6801 SDNode *Used = Use.getNode(); 6802 Use.set(SDValue()); 6803 if (Used->use_empty()) 6804 DeadNodeSet.insert(Used); 6805 } 6806 6807 // For MachineNode, initialize the memory references information. 6808 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6809 MN->setMemRefs(nullptr, nullptr); 6810 6811 // Swap for an appropriately sized array from the recycler. 6812 removeOperands(N); 6813 createOperands(N, Ops); 6814 6815 // Delete any nodes that are still dead after adding the uses for the 6816 // new operands. 6817 if (!DeadNodeSet.empty()) { 6818 SmallVector<SDNode *, 16> DeadNodes; 6819 for (SDNode *N : DeadNodeSet) 6820 if (N->use_empty()) 6821 DeadNodes.push_back(N); 6822 RemoveDeadNodes(DeadNodes); 6823 } 6824 6825 if (IP) 6826 CSEMap.InsertNode(N, IP); // Memoize the new node. 6827 return N; 6828 } 6829 6830 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 6831 unsigned OrigOpc = Node->getOpcode(); 6832 unsigned NewOpc; 6833 bool IsUnary = false; 6834 bool IsTernary = false; 6835 switch (OrigOpc) { 6836 default: 6837 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 6838 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 6839 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 6840 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 6841 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 6842 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 6843 case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break; 6844 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break; 6845 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 6846 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 6847 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break; 6848 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break; 6849 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break; 6850 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break; 6851 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break; 6852 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break; 6853 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break; 6854 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break; 6855 case ISD::STRICT_FNEARBYINT: 6856 NewOpc = ISD::FNEARBYINT; 6857 IsUnary = true; 6858 break; 6859 } 6860 6861 // We're taking this node out of the chain, so we need to re-link things. 6862 SDValue InputChain = Node->getOperand(0); 6863 SDValue OutputChain = SDValue(Node, 1); 6864 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 6865 6866 SDVTList VTs = getVTList(Node->getOperand(1).getValueType()); 6867 SDNode *Res = nullptr; 6868 if (IsUnary) 6869 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) }); 6870 else if (IsTernary) 6871 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6872 Node->getOperand(2), 6873 Node->getOperand(3)}); 6874 else 6875 Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1), 6876 Node->getOperand(2) }); 6877 6878 // MorphNodeTo can operate in two ways: if an existing node with the 6879 // specified operands exists, it can just return it. Otherwise, it 6880 // updates the node in place to have the requested operands. 6881 if (Res == Node) { 6882 // If we updated the node in place, reset the node ID. To the isel, 6883 // this should be just like a newly allocated machine node. 6884 Res->setNodeId(-1); 6885 } else { 6886 ReplaceAllUsesWith(Node, Res); 6887 RemoveDeadNode(Node); 6888 } 6889 6890 return Res; 6891 } 6892 6893 /// getMachineNode - These are used for target selectors to create a new node 6894 /// with specified return type(s), MachineInstr opcode, and operands. 6895 /// 6896 /// Note that getMachineNode returns the resultant node. If there is already a 6897 /// node of the specified opcode and operands, it returns that node instead of 6898 /// the current one. 6899 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6900 EVT VT) { 6901 SDVTList VTs = getVTList(VT); 6902 return getMachineNode(Opcode, dl, VTs, None); 6903 } 6904 6905 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6906 EVT VT, SDValue Op1) { 6907 SDVTList VTs = getVTList(VT); 6908 SDValue Ops[] = { Op1 }; 6909 return getMachineNode(Opcode, dl, VTs, Ops); 6910 } 6911 6912 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6913 EVT VT, SDValue Op1, SDValue Op2) { 6914 SDVTList VTs = getVTList(VT); 6915 SDValue Ops[] = { Op1, Op2 }; 6916 return getMachineNode(Opcode, dl, VTs, Ops); 6917 } 6918 6919 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6920 EVT VT, SDValue Op1, SDValue Op2, 6921 SDValue Op3) { 6922 SDVTList VTs = getVTList(VT); 6923 SDValue Ops[] = { Op1, Op2, Op3 }; 6924 return getMachineNode(Opcode, dl, VTs, Ops); 6925 } 6926 6927 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6928 EVT VT, ArrayRef<SDValue> Ops) { 6929 SDVTList VTs = getVTList(VT); 6930 return getMachineNode(Opcode, dl, VTs, Ops); 6931 } 6932 6933 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6934 EVT VT1, EVT VT2, SDValue Op1, 6935 SDValue Op2) { 6936 SDVTList VTs = getVTList(VT1, VT2); 6937 SDValue Ops[] = { Op1, Op2 }; 6938 return getMachineNode(Opcode, dl, VTs, Ops); 6939 } 6940 6941 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6942 EVT VT1, EVT VT2, SDValue Op1, 6943 SDValue Op2, SDValue Op3) { 6944 SDVTList VTs = getVTList(VT1, VT2); 6945 SDValue Ops[] = { Op1, Op2, Op3 }; 6946 return getMachineNode(Opcode, dl, VTs, Ops); 6947 } 6948 6949 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6950 EVT VT1, EVT VT2, 6951 ArrayRef<SDValue> Ops) { 6952 SDVTList VTs = getVTList(VT1, VT2); 6953 return getMachineNode(Opcode, dl, VTs, Ops); 6954 } 6955 6956 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6957 EVT VT1, EVT VT2, EVT VT3, 6958 SDValue Op1, SDValue Op2) { 6959 SDVTList VTs = getVTList(VT1, VT2, VT3); 6960 SDValue Ops[] = { Op1, Op2 }; 6961 return getMachineNode(Opcode, dl, VTs, Ops); 6962 } 6963 6964 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6965 EVT VT1, EVT VT2, EVT VT3, 6966 SDValue Op1, SDValue Op2, 6967 SDValue Op3) { 6968 SDVTList VTs = getVTList(VT1, VT2, VT3); 6969 SDValue Ops[] = { Op1, Op2, Op3 }; 6970 return getMachineNode(Opcode, dl, VTs, Ops); 6971 } 6972 6973 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6974 EVT VT1, EVT VT2, EVT VT3, 6975 ArrayRef<SDValue> Ops) { 6976 SDVTList VTs = getVTList(VT1, VT2, VT3); 6977 return getMachineNode(Opcode, dl, VTs, Ops); 6978 } 6979 6980 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6981 ArrayRef<EVT> ResultTys, 6982 ArrayRef<SDValue> Ops) { 6983 SDVTList VTs = getVTList(ResultTys); 6984 return getMachineNode(Opcode, dl, VTs, Ops); 6985 } 6986 6987 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6988 SDVTList VTs, 6989 ArrayRef<SDValue> Ops) { 6990 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6991 MachineSDNode *N; 6992 void *IP = nullptr; 6993 6994 if (DoCSE) { 6995 FoldingSetNodeID ID; 6996 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6997 IP = nullptr; 6998 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6999 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7000 } 7001 } 7002 7003 // Allocate a new MachineSDNode. 7004 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7005 createOperands(N, Ops); 7006 7007 if (DoCSE) 7008 CSEMap.InsertNode(N, IP); 7009 7010 InsertNode(N); 7011 return N; 7012 } 7013 7014 /// getTargetExtractSubreg - A convenience function for creating 7015 /// TargetOpcode::EXTRACT_SUBREG nodes. 7016 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7017 SDValue Operand) { 7018 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7019 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7020 VT, Operand, SRIdxVal); 7021 return SDValue(Subreg, 0); 7022 } 7023 7024 /// getTargetInsertSubreg - A convenience function for creating 7025 /// TargetOpcode::INSERT_SUBREG nodes. 7026 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7027 SDValue Operand, SDValue Subreg) { 7028 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7029 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7030 VT, Operand, Subreg, SRIdxVal); 7031 return SDValue(Result, 0); 7032 } 7033 7034 /// getNodeIfExists - Get the specified node if it's already available, or 7035 /// else return NULL. 7036 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7037 ArrayRef<SDValue> Ops, 7038 const SDNodeFlags Flags) { 7039 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7040 FoldingSetNodeID ID; 7041 AddNodeIDNode(ID, Opcode, VTList, Ops); 7042 void *IP = nullptr; 7043 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7044 E->intersectFlagsWith(Flags); 7045 return E; 7046 } 7047 } 7048 return nullptr; 7049 } 7050 7051 /// getDbgValue - Creates a SDDbgValue node. 7052 /// 7053 /// SDNode 7054 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7055 SDNode *N, unsigned R, bool IsIndirect, 7056 const DebugLoc &DL, unsigned O) { 7057 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7058 "Expected inlined-at fields to agree"); 7059 return new (DbgInfo->getAlloc()) 7060 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7061 } 7062 7063 /// Constant 7064 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7065 DIExpression *Expr, 7066 const Value *C, 7067 const DebugLoc &DL, unsigned O) { 7068 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7069 "Expected inlined-at fields to agree"); 7070 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7071 } 7072 7073 /// FrameIndex 7074 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7075 DIExpression *Expr, unsigned FI, 7076 const DebugLoc &DL, 7077 unsigned O) { 7078 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7079 "Expected inlined-at fields to agree"); 7080 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O); 7081 } 7082 7083 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 7084 unsigned OffsetInBits, unsigned SizeInBits, 7085 bool InvalidateDbg) { 7086 SDNode *FromNode = From.getNode(); 7087 SDNode *ToNode = To.getNode(); 7088 assert(FromNode && ToNode && "Can't modify dbg values"); 7089 7090 // PR35338 7091 // TODO: assert(From != To && "Redundant dbg value transfer"); 7092 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 7093 if (From == To || FromNode == ToNode) 7094 return; 7095 7096 if (!FromNode->getHasDebugValue()) 7097 return; 7098 7099 SmallVector<SDDbgValue *, 2> ClonedDVs; 7100 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 7101 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 7102 continue; 7103 7104 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 7105 7106 // Just transfer the dbg value attached to From. 7107 if (Dbg->getResNo() != From.getResNo()) 7108 continue; 7109 7110 DIVariable *Var = Dbg->getVariable(); 7111 auto *Expr = Dbg->getExpression(); 7112 // If a fragment is requested, update the expression. 7113 if (SizeInBits) { 7114 // When splitting a larger (e.g., sign-extended) value whose 7115 // lower bits are described with an SDDbgValue, do not attempt 7116 // to transfer the SDDbgValue to the upper bits. 7117 if (auto FI = Expr->getFragmentInfo()) 7118 if (OffsetInBits + SizeInBits > FI->SizeInBits) 7119 continue; 7120 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 7121 SizeInBits); 7122 if (!Fragment) 7123 continue; 7124 Expr = *Fragment; 7125 } 7126 // Clone the SDDbgValue and move it to To. 7127 SDDbgValue *Clone = 7128 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 7129 Dbg->getDebugLoc(), Dbg->getOrder()); 7130 ClonedDVs.push_back(Clone); 7131 7132 if (InvalidateDbg) 7133 Dbg->setIsInvalidated(); 7134 } 7135 7136 for (SDDbgValue *Dbg : ClonedDVs) 7137 AddDbgValue(Dbg, ToNode, false); 7138 } 7139 7140 void SelectionDAG::salvageDebugInfo(SDNode &N) { 7141 if (!N.getHasDebugValue()) 7142 return; 7143 7144 SmallVector<SDDbgValue *, 2> ClonedDVs; 7145 for (auto DV : GetDbgValues(&N)) { 7146 if (DV->isInvalidated()) 7147 continue; 7148 switch (N.getOpcode()) { 7149 default: 7150 break; 7151 case ISD::ADD: 7152 SDValue N0 = N.getOperand(0); 7153 SDValue N1 = N.getOperand(1); 7154 if (!isConstantIntBuildVectorOrConstantInt(N0) && 7155 isConstantIntBuildVectorOrConstantInt(N1)) { 7156 uint64_t Offset = N.getConstantOperandVal(1); 7157 // Rewrite an ADD constant node into a DIExpression. Since we are 7158 // performing arithmetic to compute the variable's *value* in the 7159 // DIExpression, we need to mark the expression with a 7160 // DW_OP_stack_value. 7161 auto *DIExpr = DV->getExpression(); 7162 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 7163 DIExpression::NoDeref, 7164 DIExpression::WithStackValue); 7165 SDDbgValue *Clone = 7166 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 7167 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 7168 ClonedDVs.push_back(Clone); 7169 DV->setIsInvalidated(); 7170 DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this); 7171 dbgs() << " into " << *DIExpr << '\n'); 7172 } 7173 } 7174 } 7175 7176 for (SDDbgValue *Dbg : ClonedDVs) 7177 AddDbgValue(Dbg, Dbg->getSDNode(), false); 7178 } 7179 7180 namespace { 7181 7182 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 7183 /// pointed to by a use iterator is deleted, increment the use iterator 7184 /// so that it doesn't dangle. 7185 /// 7186 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 7187 SDNode::use_iterator &UI; 7188 SDNode::use_iterator &UE; 7189 7190 void NodeDeleted(SDNode *N, SDNode *E) override { 7191 // Increment the iterator as needed. 7192 while (UI != UE && N == *UI) 7193 ++UI; 7194 } 7195 7196 public: 7197 RAUWUpdateListener(SelectionDAG &d, 7198 SDNode::use_iterator &ui, 7199 SDNode::use_iterator &ue) 7200 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 7201 }; 7202 7203 } // end anonymous namespace 7204 7205 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7206 /// This can cause recursive merging of nodes in the DAG. 7207 /// 7208 /// This version assumes From has a single result value. 7209 /// 7210 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 7211 SDNode *From = FromN.getNode(); 7212 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 7213 "Cannot replace with this method!"); 7214 assert(From != To.getNode() && "Cannot replace uses of with self"); 7215 7216 // Preserve Debug Values 7217 transferDbgValues(FromN, To); 7218 7219 // Iterate over all the existing uses of From. New uses will be added 7220 // to the beginning of the use list, which we avoid visiting. 7221 // This specifically avoids visiting uses of From that arise while the 7222 // replacement is happening, because any such uses would be the result 7223 // of CSE: If an existing node looks like From after one of its operands 7224 // is replaced by To, we don't want to replace of all its users with To 7225 // too. See PR3018 for more info. 7226 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7227 RAUWUpdateListener Listener(*this, UI, UE); 7228 while (UI != UE) { 7229 SDNode *User = *UI; 7230 7231 // This node is about to morph, remove its old self from the CSE maps. 7232 RemoveNodeFromCSEMaps(User); 7233 7234 // A user can appear in a use list multiple times, and when this 7235 // happens the uses are usually next to each other in the list. 7236 // To help reduce the number of CSE recomputations, process all 7237 // the uses of this user that we can find this way. 7238 do { 7239 SDUse &Use = UI.getUse(); 7240 ++UI; 7241 Use.set(To); 7242 } while (UI != UE && *UI == User); 7243 7244 // Now that we have modified User, add it back to the CSE maps. If it 7245 // already exists there, recursively merge the results together. 7246 AddModifiedNodeToCSEMaps(User); 7247 } 7248 7249 // If we just RAUW'd the root, take note. 7250 if (FromN == getRoot()) 7251 setRoot(To); 7252 } 7253 7254 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7255 /// This can cause recursive merging of nodes in the DAG. 7256 /// 7257 /// This version assumes that for each value of From, there is a 7258 /// corresponding value in To in the same position with the same type. 7259 /// 7260 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 7261 #ifndef NDEBUG 7262 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7263 assert((!From->hasAnyUseOfValue(i) || 7264 From->getValueType(i) == To->getValueType(i)) && 7265 "Cannot use this version of ReplaceAllUsesWith!"); 7266 #endif 7267 7268 // Handle the trivial case. 7269 if (From == To) 7270 return; 7271 7272 // Preserve Debug Info. Only do this if there's a use. 7273 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7274 if (From->hasAnyUseOfValue(i)) { 7275 assert((i < To->getNumValues()) && "Invalid To location"); 7276 transferDbgValues(SDValue(From, i), SDValue(To, i)); 7277 } 7278 7279 // Iterate over just the existing users of From. See the comments in 7280 // the ReplaceAllUsesWith above. 7281 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7282 RAUWUpdateListener Listener(*this, UI, UE); 7283 while (UI != UE) { 7284 SDNode *User = *UI; 7285 7286 // This node is about to morph, remove its old self from the CSE maps. 7287 RemoveNodeFromCSEMaps(User); 7288 7289 // A user can appear in a use list multiple times, and when this 7290 // happens the uses are usually next to each other in the list. 7291 // To help reduce the number of CSE recomputations, process all 7292 // the uses of this user that we can find this way. 7293 do { 7294 SDUse &Use = UI.getUse(); 7295 ++UI; 7296 Use.setNode(To); 7297 } while (UI != UE && *UI == User); 7298 7299 // Now that we have modified User, add it back to the CSE maps. If it 7300 // already exists there, recursively merge the results together. 7301 AddModifiedNodeToCSEMaps(User); 7302 } 7303 7304 // If we just RAUW'd the root, take note. 7305 if (From == getRoot().getNode()) 7306 setRoot(SDValue(To, getRoot().getResNo())); 7307 } 7308 7309 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 7310 /// This can cause recursive merging of nodes in the DAG. 7311 /// 7312 /// This version can replace From with any result values. To must match the 7313 /// number and types of values returned by From. 7314 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 7315 if (From->getNumValues() == 1) // Handle the simple case efficiently. 7316 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 7317 7318 // Preserve Debug Info. 7319 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 7320 transferDbgValues(SDValue(From, i), *To); 7321 7322 // Iterate over just the existing users of From. See the comments in 7323 // the ReplaceAllUsesWith above. 7324 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 7325 RAUWUpdateListener Listener(*this, UI, UE); 7326 while (UI != UE) { 7327 SDNode *User = *UI; 7328 7329 // This node is about to morph, remove its old self from the CSE maps. 7330 RemoveNodeFromCSEMaps(User); 7331 7332 // A user can appear in a use list multiple times, and when this 7333 // happens the uses are usually next to each other in the list. 7334 // To help reduce the number of CSE recomputations, process all 7335 // the uses of this user that we can find this way. 7336 do { 7337 SDUse &Use = UI.getUse(); 7338 const SDValue &ToOp = To[Use.getResNo()]; 7339 ++UI; 7340 Use.set(ToOp); 7341 } while (UI != UE && *UI == User); 7342 7343 // Now that we have modified User, add it back to the CSE maps. If it 7344 // already exists there, recursively merge the results together. 7345 AddModifiedNodeToCSEMaps(User); 7346 } 7347 7348 // If we just RAUW'd the root, take note. 7349 if (From == getRoot().getNode()) 7350 setRoot(SDValue(To[getRoot().getResNo()])); 7351 } 7352 7353 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 7354 /// uses of other values produced by From.getNode() alone. The Deleted 7355 /// vector is handled the same way as for ReplaceAllUsesWith. 7356 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 7357 // Handle the really simple, really trivial case efficiently. 7358 if (From == To) return; 7359 7360 // Handle the simple, trivial, case efficiently. 7361 if (From.getNode()->getNumValues() == 1) { 7362 ReplaceAllUsesWith(From, To); 7363 return; 7364 } 7365 7366 // Preserve Debug Info. 7367 transferDbgValues(From, To); 7368 7369 // Iterate over just the existing users of From. See the comments in 7370 // the ReplaceAllUsesWith above. 7371 SDNode::use_iterator UI = From.getNode()->use_begin(), 7372 UE = From.getNode()->use_end(); 7373 RAUWUpdateListener Listener(*this, UI, UE); 7374 while (UI != UE) { 7375 SDNode *User = *UI; 7376 bool UserRemovedFromCSEMaps = false; 7377 7378 // A user can appear in a use list multiple times, and when this 7379 // happens the uses are usually next to each other in the list. 7380 // To help reduce the number of CSE recomputations, process all 7381 // the uses of this user that we can find this way. 7382 do { 7383 SDUse &Use = UI.getUse(); 7384 7385 // Skip uses of different values from the same node. 7386 if (Use.getResNo() != From.getResNo()) { 7387 ++UI; 7388 continue; 7389 } 7390 7391 // If this node hasn't been modified yet, it's still in the CSE maps, 7392 // so remove its old self from the CSE maps. 7393 if (!UserRemovedFromCSEMaps) { 7394 RemoveNodeFromCSEMaps(User); 7395 UserRemovedFromCSEMaps = true; 7396 } 7397 7398 ++UI; 7399 Use.set(To); 7400 } while (UI != UE && *UI == User); 7401 7402 // We are iterating over all uses of the From node, so if a use 7403 // doesn't use the specific value, no changes are made. 7404 if (!UserRemovedFromCSEMaps) 7405 continue; 7406 7407 // Now that we have modified User, add it back to the CSE maps. If it 7408 // already exists there, recursively merge the results together. 7409 AddModifiedNodeToCSEMaps(User); 7410 } 7411 7412 // If we just RAUW'd the root, take note. 7413 if (From == getRoot()) 7414 setRoot(To); 7415 } 7416 7417 namespace { 7418 7419 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 7420 /// to record information about a use. 7421 struct UseMemo { 7422 SDNode *User; 7423 unsigned Index; 7424 SDUse *Use; 7425 }; 7426 7427 /// operator< - Sort Memos by User. 7428 bool operator<(const UseMemo &L, const UseMemo &R) { 7429 return (intptr_t)L.User < (intptr_t)R.User; 7430 } 7431 7432 } // end anonymous namespace 7433 7434 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 7435 /// uses of other values produced by From.getNode() alone. The same value 7436 /// may appear in both the From and To list. The Deleted vector is 7437 /// handled the same way as for ReplaceAllUsesWith. 7438 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 7439 const SDValue *To, 7440 unsigned Num){ 7441 // Handle the simple, trivial case efficiently. 7442 if (Num == 1) 7443 return ReplaceAllUsesOfValueWith(*From, *To); 7444 7445 transferDbgValues(*From, *To); 7446 7447 // Read up all the uses and make records of them. This helps 7448 // processing new uses that are introduced during the 7449 // replacement process. 7450 SmallVector<UseMemo, 4> Uses; 7451 for (unsigned i = 0; i != Num; ++i) { 7452 unsigned FromResNo = From[i].getResNo(); 7453 SDNode *FromNode = From[i].getNode(); 7454 for (SDNode::use_iterator UI = FromNode->use_begin(), 7455 E = FromNode->use_end(); UI != E; ++UI) { 7456 SDUse &Use = UI.getUse(); 7457 if (Use.getResNo() == FromResNo) { 7458 UseMemo Memo = { *UI, i, &Use }; 7459 Uses.push_back(Memo); 7460 } 7461 } 7462 } 7463 7464 // Sort the uses, so that all the uses from a given User are together. 7465 std::sort(Uses.begin(), Uses.end()); 7466 7467 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 7468 UseIndex != UseIndexEnd; ) { 7469 // We know that this user uses some value of From. If it is the right 7470 // value, update it. 7471 SDNode *User = Uses[UseIndex].User; 7472 7473 // This node is about to morph, remove its old self from the CSE maps. 7474 RemoveNodeFromCSEMaps(User); 7475 7476 // The Uses array is sorted, so all the uses for a given User 7477 // are next to each other in the list. 7478 // To help reduce the number of CSE recomputations, process all 7479 // the uses of this user that we can find this way. 7480 do { 7481 unsigned i = Uses[UseIndex].Index; 7482 SDUse &Use = *Uses[UseIndex].Use; 7483 ++UseIndex; 7484 7485 Use.set(To[i]); 7486 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 7487 7488 // Now that we have modified User, add it back to the CSE maps. If it 7489 // already exists there, recursively merge the results together. 7490 AddModifiedNodeToCSEMaps(User); 7491 } 7492 } 7493 7494 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 7495 /// based on their topological order. It returns the maximum id and a vector 7496 /// of the SDNodes* in assigned order by reference. 7497 unsigned SelectionDAG::AssignTopologicalOrder() { 7498 unsigned DAGSize = 0; 7499 7500 // SortedPos tracks the progress of the algorithm. Nodes before it are 7501 // sorted, nodes after it are unsorted. When the algorithm completes 7502 // it is at the end of the list. 7503 allnodes_iterator SortedPos = allnodes_begin(); 7504 7505 // Visit all the nodes. Move nodes with no operands to the front of 7506 // the list immediately. Annotate nodes that do have operands with their 7507 // operand count. Before we do this, the Node Id fields of the nodes 7508 // may contain arbitrary values. After, the Node Id fields for nodes 7509 // before SortedPos will contain the topological sort index, and the 7510 // Node Id fields for nodes At SortedPos and after will contain the 7511 // count of outstanding operands. 7512 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 7513 SDNode *N = &*I++; 7514 checkForCycles(N, this); 7515 unsigned Degree = N->getNumOperands(); 7516 if (Degree == 0) { 7517 // A node with no uses, add it to the result array immediately. 7518 N->setNodeId(DAGSize++); 7519 allnodes_iterator Q(N); 7520 if (Q != SortedPos) 7521 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 7522 assert(SortedPos != AllNodes.end() && "Overran node list"); 7523 ++SortedPos; 7524 } else { 7525 // Temporarily use the Node Id as scratch space for the degree count. 7526 N->setNodeId(Degree); 7527 } 7528 } 7529 7530 // Visit all the nodes. As we iterate, move nodes into sorted order, 7531 // such that by the time the end is reached all nodes will be sorted. 7532 for (SDNode &Node : allnodes()) { 7533 SDNode *N = &Node; 7534 checkForCycles(N, this); 7535 // N is in sorted position, so all its uses have one less operand 7536 // that needs to be sorted. 7537 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 7538 UI != UE; ++UI) { 7539 SDNode *P = *UI; 7540 unsigned Degree = P->getNodeId(); 7541 assert(Degree != 0 && "Invalid node degree"); 7542 --Degree; 7543 if (Degree == 0) { 7544 // All of P's operands are sorted, so P may sorted now. 7545 P->setNodeId(DAGSize++); 7546 if (P->getIterator() != SortedPos) 7547 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 7548 assert(SortedPos != AllNodes.end() && "Overran node list"); 7549 ++SortedPos; 7550 } else { 7551 // Update P's outstanding operand count. 7552 P->setNodeId(Degree); 7553 } 7554 } 7555 if (Node.getIterator() == SortedPos) { 7556 #ifndef NDEBUG 7557 allnodes_iterator I(N); 7558 SDNode *S = &*++I; 7559 dbgs() << "Overran sorted position:\n"; 7560 S->dumprFull(this); dbgs() << "\n"; 7561 dbgs() << "Checking if this is due to cycles\n"; 7562 checkForCycles(this, true); 7563 #endif 7564 llvm_unreachable(nullptr); 7565 } 7566 } 7567 7568 assert(SortedPos == AllNodes.end() && 7569 "Topological sort incomplete!"); 7570 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 7571 "First node in topological sort is not the entry token!"); 7572 assert(AllNodes.front().getNodeId() == 0 && 7573 "First node in topological sort has non-zero id!"); 7574 assert(AllNodes.front().getNumOperands() == 0 && 7575 "First node in topological sort has operands!"); 7576 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 7577 "Last node in topologic sort has unexpected id!"); 7578 assert(AllNodes.back().use_empty() && 7579 "Last node in topologic sort has users!"); 7580 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 7581 return DAGSize; 7582 } 7583 7584 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 7585 /// value is produced by SD. 7586 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 7587 if (SD) { 7588 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 7589 SD->setHasDebugValue(true); 7590 } 7591 DbgInfo->add(DB, SD, isParameter); 7592 } 7593 7594 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 7595 SDValue NewMemOp) { 7596 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 7597 // The new memory operation must have the same position as the old load in 7598 // terms of memory dependency. Create a TokenFactor for the old load and new 7599 // memory operation and update uses of the old load's output chain to use that 7600 // TokenFactor. 7601 SDValue OldChain = SDValue(OldLoad, 1); 7602 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 7603 if (!OldLoad->hasAnyUseOfValue(1)) 7604 return NewChain; 7605 7606 SDValue TokenFactor = 7607 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 7608 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 7609 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 7610 return TokenFactor; 7611 } 7612 7613 //===----------------------------------------------------------------------===// 7614 // SDNode Class 7615 //===----------------------------------------------------------------------===// 7616 7617 bool llvm::isNullConstant(SDValue V) { 7618 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7619 return Const != nullptr && Const->isNullValue(); 7620 } 7621 7622 bool llvm::isNullFPConstant(SDValue V) { 7623 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 7624 return Const != nullptr && Const->isZero() && !Const->isNegative(); 7625 } 7626 7627 bool llvm::isAllOnesConstant(SDValue V) { 7628 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7629 return Const != nullptr && Const->isAllOnesValue(); 7630 } 7631 7632 bool llvm::isOneConstant(SDValue V) { 7633 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7634 return Const != nullptr && Const->isOne(); 7635 } 7636 7637 bool llvm::isBitwiseNot(SDValue V) { 7638 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 7639 } 7640 7641 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 7642 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 7643 return CN; 7644 7645 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7646 BitVector UndefElements; 7647 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 7648 7649 // BuildVectors can truncate their operands. Ignore that case here. 7650 // FIXME: We blindly ignore splats which include undef which is overly 7651 // pessimistic. 7652 if (CN && UndefElements.none() && 7653 CN->getValueType(0) == N.getValueType().getScalarType()) 7654 return CN; 7655 } 7656 7657 return nullptr; 7658 } 7659 7660 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 7661 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7662 return CN; 7663 7664 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7665 BitVector UndefElements; 7666 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7667 7668 if (CN && UndefElements.none()) 7669 return CN; 7670 } 7671 7672 return nullptr; 7673 } 7674 7675 HandleSDNode::~HandleSDNode() { 7676 DropOperands(); 7677 } 7678 7679 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7680 const DebugLoc &DL, 7681 const GlobalValue *GA, EVT VT, 7682 int64_t o, unsigned char TF) 7683 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7684 TheGlobal = GA; 7685 } 7686 7687 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7688 EVT VT, unsigned SrcAS, 7689 unsigned DestAS) 7690 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7691 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7692 7693 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7694 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7695 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7696 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7697 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7698 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7699 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7700 7701 // We check here that the size of the memory operand fits within the size of 7702 // the MMO. This is because the MMO might indicate only a possible address 7703 // range instead of specifying the affected memory addresses precisely. 7704 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7705 } 7706 7707 /// Profile - Gather unique data for the node. 7708 /// 7709 void SDNode::Profile(FoldingSetNodeID &ID) const { 7710 AddNodeIDNode(ID, this); 7711 } 7712 7713 namespace { 7714 7715 struct EVTArray { 7716 std::vector<EVT> VTs; 7717 7718 EVTArray() { 7719 VTs.reserve(MVT::LAST_VALUETYPE); 7720 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7721 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7722 } 7723 }; 7724 7725 } // end anonymous namespace 7726 7727 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 7728 static ManagedStatic<EVTArray> SimpleVTArray; 7729 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 7730 7731 /// getValueTypeList - Return a pointer to the specified value type. 7732 /// 7733 const EVT *SDNode::getValueTypeList(EVT VT) { 7734 if (VT.isExtended()) { 7735 sys::SmartScopedLock<true> Lock(*VTMutex); 7736 return &(*EVTs->insert(VT).first); 7737 } else { 7738 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7739 "Value type out of range!"); 7740 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7741 } 7742 } 7743 7744 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7745 /// indicated value. This method ignores uses of other values defined by this 7746 /// operation. 7747 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7748 assert(Value < getNumValues() && "Bad value!"); 7749 7750 // TODO: Only iterate over uses of a given value of the node 7751 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7752 if (UI.getUse().getResNo() == Value) { 7753 if (NUses == 0) 7754 return false; 7755 --NUses; 7756 } 7757 } 7758 7759 // Found exactly the right number of uses? 7760 return NUses == 0; 7761 } 7762 7763 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7764 /// value. This method ignores uses of other values defined by this operation. 7765 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7766 assert(Value < getNumValues() && "Bad value!"); 7767 7768 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7769 if (UI.getUse().getResNo() == Value) 7770 return true; 7771 7772 return false; 7773 } 7774 7775 /// isOnlyUserOf - Return true if this node is the only use of N. 7776 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7777 bool Seen = false; 7778 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7779 SDNode *User = *I; 7780 if (User == this) 7781 Seen = true; 7782 else 7783 return false; 7784 } 7785 7786 return Seen; 7787 } 7788 7789 /// Return true if the only users of N are contained in Nodes. 7790 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 7791 bool Seen = false; 7792 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7793 SDNode *User = *I; 7794 if (llvm::any_of(Nodes, 7795 [&User](const SDNode *Node) { return User == Node; })) 7796 Seen = true; 7797 else 7798 return false; 7799 } 7800 7801 return Seen; 7802 } 7803 7804 /// isOperand - Return true if this node is an operand of N. 7805 bool SDValue::isOperandOf(const SDNode *N) const { 7806 for (const SDValue &Op : N->op_values()) 7807 if (*this == Op) 7808 return true; 7809 return false; 7810 } 7811 7812 bool SDNode::isOperandOf(const SDNode *N) const { 7813 for (const SDValue &Op : N->op_values()) 7814 if (this == Op.getNode()) 7815 return true; 7816 return false; 7817 } 7818 7819 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7820 /// be a chain) reaches the specified operand without crossing any 7821 /// side-effecting instructions on any chain path. In practice, this looks 7822 /// through token factors and non-volatile loads. In order to remain efficient, 7823 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7824 /// 7825 /// Note that we only need to examine chains when we're searching for 7826 /// side-effects; SelectionDAG requires that all side-effects are represented 7827 /// by chains, even if another operand would force a specific ordering. This 7828 /// constraint is necessary to allow transformations like splitting loads. 7829 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7830 unsigned Depth) const { 7831 if (*this == Dest) return true; 7832 7833 // Don't search too deeply, we just want to be able to see through 7834 // TokenFactor's etc. 7835 if (Depth == 0) return false; 7836 7837 // If this is a token factor, all inputs to the TF happen in parallel. 7838 if (getOpcode() == ISD::TokenFactor) { 7839 // First, try a shallow search. 7840 if (is_contained((*this)->ops(), Dest)) { 7841 // We found the chain we want as an operand of this TokenFactor. 7842 // Essentially, we reach the chain without side-effects if we could 7843 // serialize the TokenFactor into a simple chain of operations with 7844 // Dest as the last operation. This is automatically true if the 7845 // chain has one use: there are no other ordering constraints. 7846 // If the chain has more than one use, we give up: some other 7847 // use of Dest might force a side-effect between Dest and the current 7848 // node. 7849 if (Dest.hasOneUse()) 7850 return true; 7851 } 7852 // Next, try a deep search: check whether every operand of the TokenFactor 7853 // reaches Dest. 7854 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 7855 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 7856 }); 7857 } 7858 7859 // Loads don't have side effects, look through them. 7860 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7861 if (!Ld->isVolatile()) 7862 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7863 } 7864 return false; 7865 } 7866 7867 bool SDNode::hasPredecessor(const SDNode *N) const { 7868 SmallPtrSet<const SDNode *, 32> Visited; 7869 SmallVector<const SDNode *, 16> Worklist; 7870 Worklist.push_back(this); 7871 return hasPredecessorHelper(N, Visited, Worklist); 7872 } 7873 7874 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 7875 this->Flags.intersectWith(Flags); 7876 } 7877 7878 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7879 assert(N->getNumValues() == 1 && 7880 "Can't unroll a vector with multiple results!"); 7881 7882 EVT VT = N->getValueType(0); 7883 unsigned NE = VT.getVectorNumElements(); 7884 EVT EltVT = VT.getVectorElementType(); 7885 SDLoc dl(N); 7886 7887 SmallVector<SDValue, 8> Scalars; 7888 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7889 7890 // If ResNE is 0, fully unroll the vector op. 7891 if (ResNE == 0) 7892 ResNE = NE; 7893 else if (NE > ResNE) 7894 NE = ResNE; 7895 7896 unsigned i; 7897 for (i= 0; i != NE; ++i) { 7898 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7899 SDValue Operand = N->getOperand(j); 7900 EVT OperandVT = Operand.getValueType(); 7901 if (OperandVT.isVector()) { 7902 // A vector operand; extract a single element. 7903 EVT OperandEltVT = OperandVT.getVectorElementType(); 7904 Operands[j] = 7905 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7906 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7907 } else { 7908 // A scalar operand; just use it as is. 7909 Operands[j] = Operand; 7910 } 7911 } 7912 7913 switch (N->getOpcode()) { 7914 default: { 7915 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7916 N->getFlags())); 7917 break; 7918 } 7919 case ISD::VSELECT: 7920 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7921 break; 7922 case ISD::SHL: 7923 case ISD::SRA: 7924 case ISD::SRL: 7925 case ISD::ROTL: 7926 case ISD::ROTR: 7927 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7928 getShiftAmountOperand(Operands[0].getValueType(), 7929 Operands[1]))); 7930 break; 7931 case ISD::SIGN_EXTEND_INREG: 7932 case ISD::FP_ROUND_INREG: { 7933 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7934 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7935 Operands[0], 7936 getValueType(ExtVT))); 7937 } 7938 } 7939 } 7940 7941 for (; i < ResNE; ++i) 7942 Scalars.push_back(getUNDEF(EltVT)); 7943 7944 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7945 return getBuildVector(VecVT, dl, Scalars); 7946 } 7947 7948 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7949 LoadSDNode *Base, 7950 unsigned Bytes, 7951 int Dist) const { 7952 if (LD->isVolatile() || Base->isVolatile()) 7953 return false; 7954 if (LD->isIndexed() || Base->isIndexed()) 7955 return false; 7956 if (LD->getChain() != Base->getChain()) 7957 return false; 7958 EVT VT = LD->getValueType(0); 7959 if (VT.getSizeInBits() / 8 != Bytes) 7960 return false; 7961 7962 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 7963 auto LocDecomp = BaseIndexOffset::match(LD, *this); 7964 7965 int64_t Offset = 0; 7966 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 7967 return (Dist * Bytes == Offset); 7968 return false; 7969 } 7970 7971 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7972 /// it cannot be inferred. 7973 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7974 // If this is a GlobalAddress + cst, return the alignment. 7975 const GlobalValue *GV; 7976 int64_t GVOffset = 0; 7977 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7978 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7979 KnownBits Known(PtrWidth); 7980 llvm::computeKnownBits(GV, Known, getDataLayout()); 7981 unsigned AlignBits = Known.countMinTrailingZeros(); 7982 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7983 if (Align) 7984 return MinAlign(Align, GVOffset); 7985 } 7986 7987 // If this is a direct reference to a stack slot, use information about the 7988 // stack slot's alignment. 7989 int FrameIdx = 1 << 31; 7990 int64_t FrameOffset = 0; 7991 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7992 FrameIdx = FI->getIndex(); 7993 } else if (isBaseWithConstantOffset(Ptr) && 7994 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7995 // Handle FI+Cst 7996 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7997 FrameOffset = Ptr.getConstantOperandVal(1); 7998 } 7999 8000 if (FrameIdx != (1 << 31)) { 8001 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 8002 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 8003 FrameOffset); 8004 return FIInfoAlign; 8005 } 8006 8007 return 0; 8008 } 8009 8010 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 8011 /// which is split (or expanded) into two not necessarily identical pieces. 8012 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 8013 // Currently all types are split in half. 8014 EVT LoVT, HiVT; 8015 if (!VT.isVector()) 8016 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 8017 else 8018 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 8019 8020 return std::make_pair(LoVT, HiVT); 8021 } 8022 8023 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 8024 /// low/high part. 8025 std::pair<SDValue, SDValue> 8026 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 8027 const EVT &HiVT) { 8028 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 8029 N.getValueType().getVectorNumElements() && 8030 "More vector elements requested than available!"); 8031 SDValue Lo, Hi; 8032 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 8033 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 8034 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 8035 getConstant(LoVT.getVectorNumElements(), DL, 8036 TLI->getVectorIdxTy(getDataLayout()))); 8037 return std::make_pair(Lo, Hi); 8038 } 8039 8040 void SelectionDAG::ExtractVectorElements(SDValue Op, 8041 SmallVectorImpl<SDValue> &Args, 8042 unsigned Start, unsigned Count) { 8043 EVT VT = Op.getValueType(); 8044 if (Count == 0) 8045 Count = VT.getVectorNumElements(); 8046 8047 EVT EltVT = VT.getVectorElementType(); 8048 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 8049 SDLoc SL(Op); 8050 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 8051 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 8052 Op, getConstant(i, SL, IdxTy))); 8053 } 8054 } 8055 8056 // getAddressSpace - Return the address space this GlobalAddress belongs to. 8057 unsigned GlobalAddressSDNode::getAddressSpace() const { 8058 return getGlobal()->getType()->getAddressSpace(); 8059 } 8060 8061 Type *ConstantPoolSDNode::getType() const { 8062 if (isMachineConstantPoolEntry()) 8063 return Val.MachineCPVal->getType(); 8064 return Val.ConstVal->getType(); 8065 } 8066 8067 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 8068 unsigned &SplatBitSize, 8069 bool &HasAnyUndefs, 8070 unsigned MinSplatBits, 8071 bool IsBigEndian) const { 8072 EVT VT = getValueType(0); 8073 assert(VT.isVector() && "Expected a vector type"); 8074 unsigned VecWidth = VT.getSizeInBits(); 8075 if (MinSplatBits > VecWidth) 8076 return false; 8077 8078 // FIXME: The widths are based on this node's type, but build vectors can 8079 // truncate their operands. 8080 SplatValue = APInt(VecWidth, 0); 8081 SplatUndef = APInt(VecWidth, 0); 8082 8083 // Get the bits. Bits with undefined values (when the corresponding element 8084 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 8085 // in SplatValue. If any of the values are not constant, give up and return 8086 // false. 8087 unsigned int NumOps = getNumOperands(); 8088 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 8089 unsigned EltWidth = VT.getScalarSizeInBits(); 8090 8091 for (unsigned j = 0; j < NumOps; ++j) { 8092 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 8093 SDValue OpVal = getOperand(i); 8094 unsigned BitPos = j * EltWidth; 8095 8096 if (OpVal.isUndef()) 8097 SplatUndef.setBits(BitPos, BitPos + EltWidth); 8098 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 8099 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 8100 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 8101 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 8102 else 8103 return false; 8104 } 8105 8106 // The build_vector is all constants or undefs. Find the smallest element 8107 // size that splats the vector. 8108 HasAnyUndefs = (SplatUndef != 0); 8109 8110 // FIXME: This does not work for vectors with elements less than 8 bits. 8111 while (VecWidth > 8) { 8112 unsigned HalfSize = VecWidth / 2; 8113 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 8114 APInt LowValue = SplatValue.trunc(HalfSize); 8115 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 8116 APInt LowUndef = SplatUndef.trunc(HalfSize); 8117 8118 // If the two halves do not match (ignoring undef bits), stop here. 8119 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 8120 MinSplatBits > HalfSize) 8121 break; 8122 8123 SplatValue = HighValue | LowValue; 8124 SplatUndef = HighUndef & LowUndef; 8125 8126 VecWidth = HalfSize; 8127 } 8128 8129 SplatBitSize = VecWidth; 8130 return true; 8131 } 8132 8133 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 8134 if (UndefElements) { 8135 UndefElements->clear(); 8136 UndefElements->resize(getNumOperands()); 8137 } 8138 SDValue Splatted; 8139 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 8140 SDValue Op = getOperand(i); 8141 if (Op.isUndef()) { 8142 if (UndefElements) 8143 (*UndefElements)[i] = true; 8144 } else if (!Splatted) { 8145 Splatted = Op; 8146 } else if (Splatted != Op) { 8147 return SDValue(); 8148 } 8149 } 8150 8151 if (!Splatted) { 8152 assert(getOperand(0).isUndef() && 8153 "Can only have a splat without a constant for all undefs."); 8154 return getOperand(0); 8155 } 8156 8157 return Splatted; 8158 } 8159 8160 ConstantSDNode * 8161 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 8162 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 8163 } 8164 8165 ConstantFPSDNode * 8166 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 8167 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 8168 } 8169 8170 int32_t 8171 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 8172 uint32_t BitWidth) const { 8173 if (ConstantFPSDNode *CN = 8174 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 8175 bool IsExact; 8176 APSInt IntVal(BitWidth); 8177 const APFloat &APF = CN->getValueAPF(); 8178 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 8179 APFloat::opOK || 8180 !IsExact) 8181 return -1; 8182 8183 return IntVal.exactLogBase2(); 8184 } 8185 return -1; 8186 } 8187 8188 bool BuildVectorSDNode::isConstant() const { 8189 for (const SDValue &Op : op_values()) { 8190 unsigned Opc = Op.getOpcode(); 8191 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 8192 return false; 8193 } 8194 return true; 8195 } 8196 8197 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 8198 // Find the first non-undef value in the shuffle mask. 8199 unsigned i, e; 8200 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 8201 /* search */; 8202 8203 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 8204 8205 // Make sure all remaining elements are either undef or the same as the first 8206 // non-undef value. 8207 for (int Idx = Mask[i]; i != e; ++i) 8208 if (Mask[i] >= 0 && Mask[i] != Idx) 8209 return false; 8210 return true; 8211 } 8212 8213 // \brief Returns the SDNode if it is a constant integer BuildVector 8214 // or constant integer. 8215 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 8216 if (isa<ConstantSDNode>(N)) 8217 return N.getNode(); 8218 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 8219 return N.getNode(); 8220 // Treat a GlobalAddress supporting constant offset folding as a 8221 // constant integer. 8222 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 8223 if (GA->getOpcode() == ISD::GlobalAddress && 8224 TLI->isOffsetFoldingLegal(GA)) 8225 return GA; 8226 return nullptr; 8227 } 8228 8229 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 8230 if (isa<ConstantFPSDNode>(N)) 8231 return N.getNode(); 8232 8233 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 8234 return N.getNode(); 8235 8236 return nullptr; 8237 } 8238 8239 #ifndef NDEBUG 8240 static void checkForCyclesHelper(const SDNode *N, 8241 SmallPtrSetImpl<const SDNode*> &Visited, 8242 SmallPtrSetImpl<const SDNode*> &Checked, 8243 const llvm::SelectionDAG *DAG) { 8244 // If this node has already been checked, don't check it again. 8245 if (Checked.count(N)) 8246 return; 8247 8248 // If a node has already been visited on this depth-first walk, reject it as 8249 // a cycle. 8250 if (!Visited.insert(N).second) { 8251 errs() << "Detected cycle in SelectionDAG\n"; 8252 dbgs() << "Offending node:\n"; 8253 N->dumprFull(DAG); dbgs() << "\n"; 8254 abort(); 8255 } 8256 8257 for (const SDValue &Op : N->op_values()) 8258 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 8259 8260 Checked.insert(N); 8261 Visited.erase(N); 8262 } 8263 #endif 8264 8265 void llvm::checkForCycles(const llvm::SDNode *N, 8266 const llvm::SelectionDAG *DAG, 8267 bool force) { 8268 #ifndef NDEBUG 8269 bool check = force; 8270 #ifdef EXPENSIVE_CHECKS 8271 check = true; 8272 #endif // EXPENSIVE_CHECKS 8273 if (check) { 8274 assert(N && "Checking nonexistent SDNode"); 8275 SmallPtrSet<const SDNode*, 32> visited; 8276 SmallPtrSet<const SDNode*, 32> checked; 8277 checkForCyclesHelper(N, visited, checked, DAG); 8278 } 8279 #endif // !NDEBUG 8280 } 8281 8282 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 8283 checkForCycles(DAG->getRoot().getNode(), DAG, force); 8284 } 8285