1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MachineValueType.h"
66 #include "llvm/Support/ManagedStatic.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88   SDVTList Res = {VTs, NumVTs};
89   return Res;
90 }
91 
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96 
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98 
99 #define DEBUG_TYPE "selectiondag"
100 
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102        cl::Hidden, cl::init(true),
103        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104 
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106        cl::desc("Number limit for gluing ld/st of memcpy."),
107        cl::Hidden, cl::init(0));
108 
109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                              ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116 
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122   return getValueAPF().bitwiseIsEqual(V);
123 }
124 
125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126                                            const APFloat& Val) {
127   assert(VT.isFloatingPoint() && "Can only convert between FP types");
128 
129   // convert modifies in place, so make a copy.
130   APFloat Val2 = APFloat(Val);
131   bool losesInfo;
132   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133                       APFloat::rmNearestTiesToEven,
134                       &losesInfo);
135   return !losesInfo;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 //                              ISD Namespace
140 //===----------------------------------------------------------------------===//
141 
142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
144     unsigned EltSize =
145         N->getValueType(0).getVectorElementType().getSizeInBits();
146     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
147       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
148       return true;
149     }
150     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
151       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
152       return true;
153     }
154   }
155 
156   auto *BV = dyn_cast<BuildVectorSDNode>(N);
157   if (!BV)
158     return false;
159 
160   APInt SplatUndef;
161   unsigned SplatBitSize;
162   bool HasUndefs;
163   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
164   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
165                              EltSize) &&
166          EltSize == SplatBitSize;
167 }
168 
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
171 
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
173   // Look through a bit convert.
174   while (N->getOpcode() == ISD::BITCAST)
175     N = N->getOperand(0).getNode();
176 
177   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
178     APInt SplatVal;
179     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
180   }
181 
182   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
183 
184   unsigned i = 0, e = N->getNumOperands();
185 
186   // Skip over all of the undef values.
187   while (i != e && N->getOperand(i).isUndef())
188     ++i;
189 
190   // Do not accept an all-undef vector.
191   if (i == e) return false;
192 
193   // Do not accept build_vectors that aren't all constants or which have non-~0
194   // elements. We have to be a bit careful here, as the type of the constant
195   // may not be the same as the type of the vector elements due to type
196   // legalization (the elements are promoted to a legal type for the target and
197   // a vector of a type may be legal when the base element type is not).
198   // We only want to check enough bits to cover the vector elements, because
199   // we care if the resultant vector is all ones, not whether the individual
200   // constants are.
201   SDValue NotZero = N->getOperand(i);
202   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
204     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
205       return false;
206   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
207     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
208       return false;
209   } else
210     return false;
211 
212   // Okay, we have at least one ~0 value, check to see if the rest match or are
213   // undefs. Even with the above element type twiddling, this should be OK, as
214   // the same type legalization should have applied to all the elements.
215   for (++i; i != e; ++i)
216     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
217       return false;
218   return true;
219 }
220 
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
222   // Look through a bit convert.
223   while (N->getOpcode() == ISD::BITCAST)
224     N = N->getOperand(0).getNode();
225 
226   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
227     APInt SplatVal;
228     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
229   }
230 
231   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
232 
233   bool IsAllUndef = true;
234   for (const SDValue &Op : N->op_values()) {
235     if (Op.isUndef())
236       continue;
237     IsAllUndef = false;
238     // Do not accept build_vectors that aren't all constants or which have non-0
239     // elements. We have to be a bit careful here, as the type of the constant
240     // may not be the same as the type of the vector elements due to type
241     // legalization (the elements are promoted to a legal type for the target
242     // and a vector of a type may be legal when the base element type is not).
243     // We only want to check enough bits to cover the vector elements, because
244     // we care if the resultant vector is all zeros, not whether the individual
245     // constants are.
246     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
247     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
248       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
249         return false;
250     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
251       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
252         return false;
253     } else
254       return false;
255   }
256 
257   // Do not accept an all-undef vector.
258   if (IsAllUndef)
259     return false;
260   return true;
261 }
262 
263 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
264   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
265 }
266 
267 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
268   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
269 }
270 
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
272   if (N->getOpcode() != ISD::BUILD_VECTOR)
273     return false;
274 
275   for (const SDValue &Op : N->op_values()) {
276     if (Op.isUndef())
277       continue;
278     if (!isa<ConstantSDNode>(Op))
279       return false;
280   }
281   return true;
282 }
283 
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
285   if (N->getOpcode() != ISD::BUILD_VECTOR)
286     return false;
287 
288   for (const SDValue &Op : N->op_values()) {
289     if (Op.isUndef())
290       continue;
291     if (!isa<ConstantFPSDNode>(Op))
292       return false;
293   }
294   return true;
295 }
296 
297 bool ISD::allOperandsUndef(const SDNode *N) {
298   // Return false if the node has no operands.
299   // This is "logically inconsistent" with the definition of "all" but
300   // is probably the desired behavior.
301   if (N->getNumOperands() == 0)
302     return false;
303   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
304 }
305 
306 bool ISD::matchUnaryPredicate(SDValue Op,
307                               std::function<bool(ConstantSDNode *)> Match,
308                               bool AllowUndefs) {
309   // FIXME: Add support for scalar UNDEF cases?
310   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
311     return Match(Cst);
312 
313   // FIXME: Add support for vector UNDEF cases?
314   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
315       ISD::SPLAT_VECTOR != Op.getOpcode())
316     return false;
317 
318   EVT SVT = Op.getValueType().getScalarType();
319   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
320     if (AllowUndefs && Op.getOperand(i).isUndef()) {
321       if (!Match(nullptr))
322         return false;
323       continue;
324     }
325 
326     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
327     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
328       return false;
329   }
330   return true;
331 }
332 
333 bool ISD::matchBinaryPredicate(
334     SDValue LHS, SDValue RHS,
335     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
336     bool AllowUndefs, bool AllowTypeMismatch) {
337   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
338     return false;
339 
340   // TODO: Add support for scalar UNDEF cases?
341   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
342     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
343       return Match(LHSCst, RHSCst);
344 
345   // TODO: Add support for vector UNDEF cases?
346   if (LHS.getOpcode() != RHS.getOpcode() ||
347       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
348        LHS.getOpcode() != ISD::SPLAT_VECTOR))
349     return false;
350 
351   EVT SVT = LHS.getValueType().getScalarType();
352   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
353     SDValue LHSOp = LHS.getOperand(i);
354     SDValue RHSOp = RHS.getOperand(i);
355     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
356     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
357     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
358     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
359     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
360       return false;
361     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
362                                LHSOp.getValueType() != RHSOp.getValueType()))
363       return false;
364     if (!Match(LHSCst, RHSCst))
365       return false;
366   }
367   return true;
368 }
369 
370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
371   switch (VecReduceOpcode) {
372   default:
373     llvm_unreachable("Expected VECREDUCE opcode");
374   case ISD::VECREDUCE_FADD:
375   case ISD::VECREDUCE_SEQ_FADD:
376   case ISD::VP_REDUCE_FADD:
377   case ISD::VP_REDUCE_SEQ_FADD:
378     return ISD::FADD;
379   case ISD::VECREDUCE_FMUL:
380   case ISD::VECREDUCE_SEQ_FMUL:
381   case ISD::VP_REDUCE_FMUL:
382   case ISD::VP_REDUCE_SEQ_FMUL:
383     return ISD::FMUL;
384   case ISD::VECREDUCE_ADD:
385   case ISD::VP_REDUCE_ADD:
386     return ISD::ADD;
387   case ISD::VECREDUCE_MUL:
388   case ISD::VP_REDUCE_MUL:
389     return ISD::MUL;
390   case ISD::VECREDUCE_AND:
391   case ISD::VP_REDUCE_AND:
392     return ISD::AND;
393   case ISD::VECREDUCE_OR:
394   case ISD::VP_REDUCE_OR:
395     return ISD::OR;
396   case ISD::VECREDUCE_XOR:
397   case ISD::VP_REDUCE_XOR:
398     return ISD::XOR;
399   case ISD::VECREDUCE_SMAX:
400   case ISD::VP_REDUCE_SMAX:
401     return ISD::SMAX;
402   case ISD::VECREDUCE_SMIN:
403   case ISD::VP_REDUCE_SMIN:
404     return ISD::SMIN;
405   case ISD::VECREDUCE_UMAX:
406   case ISD::VP_REDUCE_UMAX:
407     return ISD::UMAX;
408   case ISD::VECREDUCE_UMIN:
409   case ISD::VP_REDUCE_UMIN:
410     return ISD::UMIN;
411   case ISD::VECREDUCE_FMAX:
412   case ISD::VP_REDUCE_FMAX:
413     return ISD::FMAXNUM;
414   case ISD::VECREDUCE_FMIN:
415   case ISD::VP_REDUCE_FMIN:
416     return ISD::FMINNUM;
417   }
418 }
419 
420 bool ISD::isVPOpcode(unsigned Opcode) {
421   switch (Opcode) {
422   default:
423     return false;
424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
425   case ISD::VPSD:                                                              \
426     return true;
427 #include "llvm/IR/VPIntrinsics.def"
428   }
429 }
430 
431 bool ISD::isVPBinaryOp(unsigned Opcode) {
432   switch (Opcode) {
433   default:
434     break;
435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
436 #define VP_PROPERTY_BINARYOP return true;
437 #define END_REGISTER_VP_SDNODE(VPSD) break;
438 #include "llvm/IR/VPIntrinsics.def"
439   }
440   return false;
441 }
442 
443 bool ISD::isVPReduction(unsigned Opcode) {
444   switch (Opcode) {
445   default:
446     break;
447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
449 #define END_REGISTER_VP_SDNODE(VPSD) break;
450 #include "llvm/IR/VPIntrinsics.def"
451   }
452   return false;
453 }
454 
455 /// The operand position of the vector mask.
456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
457   switch (Opcode) {
458   default:
459     return None;
460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
461   case ISD::VPSD:                                                              \
462     return MASKPOS;
463 #include "llvm/IR/VPIntrinsics.def"
464   }
465 }
466 
467 /// The operand position of the explicit vector length parameter.
468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
469   switch (Opcode) {
470   default:
471     return None;
472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
473   case ISD::VPSD:                                                              \
474     return EVLPOS;
475 #include "llvm/IR/VPIntrinsics.def"
476   }
477 }
478 
479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
480   switch (ExtType) {
481   case ISD::EXTLOAD:
482     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
483   case ISD::SEXTLOAD:
484     return ISD::SIGN_EXTEND;
485   case ISD::ZEXTLOAD:
486     return ISD::ZERO_EXTEND;
487   default:
488     break;
489   }
490 
491   llvm_unreachable("Invalid LoadExtType");
492 }
493 
494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
495   // To perform this operation, we just need to swap the L and G bits of the
496   // operation.
497   unsigned OldL = (Operation >> 2) & 1;
498   unsigned OldG = (Operation >> 1) & 1;
499   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
500                        (OldL << 1) |       // New G bit
501                        (OldG << 2));       // New L bit.
502 }
503 
504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
505   unsigned Operation = Op;
506   if (isIntegerLike)
507     Operation ^= 7;   // Flip L, G, E bits, but not U.
508   else
509     Operation ^= 15;  // Flip all of the condition bits.
510 
511   if (Operation > ISD::SETTRUE2)
512     Operation &= ~8;  // Don't let N and U bits get set.
513 
514   return ISD::CondCode(Operation);
515 }
516 
517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
518   return getSetCCInverseImpl(Op, Type.isInteger());
519 }
520 
521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
522                                                bool isIntegerLike) {
523   return getSetCCInverseImpl(Op, isIntegerLike);
524 }
525 
526 /// For an integer comparison, return 1 if the comparison is a signed operation
527 /// and 2 if the result is an unsigned comparison. Return zero if the operation
528 /// does not depend on the sign of the input (setne and seteq).
529 static int isSignedOp(ISD::CondCode Opcode) {
530   switch (Opcode) {
531   default: llvm_unreachable("Illegal integer setcc operation!");
532   case ISD::SETEQ:
533   case ISD::SETNE: return 0;
534   case ISD::SETLT:
535   case ISD::SETLE:
536   case ISD::SETGT:
537   case ISD::SETGE: return 1;
538   case ISD::SETULT:
539   case ISD::SETULE:
540   case ISD::SETUGT:
541   case ISD::SETUGE: return 2;
542   }
543 }
544 
545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
546                                        EVT Type) {
547   bool IsInteger = Type.isInteger();
548   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
549     // Cannot fold a signed integer setcc with an unsigned integer setcc.
550     return ISD::SETCC_INVALID;
551 
552   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
553 
554   // If the N and U bits get set, then the resultant comparison DOES suddenly
555   // care about orderedness, and it is true when ordered.
556   if (Op > ISD::SETTRUE2)
557     Op &= ~16;     // Clear the U bit if the N bit is set.
558 
559   // Canonicalize illegal integer setcc's.
560   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
561     Op = ISD::SETNE;
562 
563   return ISD::CondCode(Op);
564 }
565 
566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
567                                         EVT Type) {
568   bool IsInteger = Type.isInteger();
569   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
570     // Cannot fold a signed setcc with an unsigned setcc.
571     return ISD::SETCC_INVALID;
572 
573   // Combine all of the condition bits.
574   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
575 
576   // Canonicalize illegal integer setcc's.
577   if (IsInteger) {
578     switch (Result) {
579     default: break;
580     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
581     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
582     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
583     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
584     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
585     }
586   }
587 
588   return Result;
589 }
590 
591 //===----------------------------------------------------------------------===//
592 //                           SDNode Profile Support
593 //===----------------------------------------------------------------------===//
594 
595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
597   ID.AddInteger(OpC);
598 }
599 
600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
601 /// solely with their pointer.
602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
603   ID.AddPointer(VTList.VTs);
604 }
605 
606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
607 static void AddNodeIDOperands(FoldingSetNodeID &ID,
608                               ArrayRef<SDValue> Ops) {
609   for (auto& Op : Ops) {
610     ID.AddPointer(Op.getNode());
611     ID.AddInteger(Op.getResNo());
612   }
613 }
614 
615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
616 static void AddNodeIDOperands(FoldingSetNodeID &ID,
617                               ArrayRef<SDUse> Ops) {
618   for (auto& Op : Ops) {
619     ID.AddPointer(Op.getNode());
620     ID.AddInteger(Op.getResNo());
621   }
622 }
623 
624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
625                           SDVTList VTList, ArrayRef<SDValue> OpList) {
626   AddNodeIDOpcode(ID, OpC);
627   AddNodeIDValueTypes(ID, VTList);
628   AddNodeIDOperands(ID, OpList);
629 }
630 
631 /// If this is an SDNode with special info, add this info to the NodeID data.
632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
633   switch (N->getOpcode()) {
634   case ISD::TargetExternalSymbol:
635   case ISD::ExternalSymbol:
636   case ISD::MCSymbol:
637     llvm_unreachable("Should only be used on nodes with operands");
638   default: break;  // Normal nodes don't need extra info.
639   case ISD::TargetConstant:
640   case ISD::Constant: {
641     const ConstantSDNode *C = cast<ConstantSDNode>(N);
642     ID.AddPointer(C->getConstantIntValue());
643     ID.AddBoolean(C->isOpaque());
644     break;
645   }
646   case ISD::TargetConstantFP:
647   case ISD::ConstantFP:
648     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
649     break;
650   case ISD::TargetGlobalAddress:
651   case ISD::GlobalAddress:
652   case ISD::TargetGlobalTLSAddress:
653   case ISD::GlobalTLSAddress: {
654     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
655     ID.AddPointer(GA->getGlobal());
656     ID.AddInteger(GA->getOffset());
657     ID.AddInteger(GA->getTargetFlags());
658     break;
659   }
660   case ISD::BasicBlock:
661     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
662     break;
663   case ISD::Register:
664     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
665     break;
666   case ISD::RegisterMask:
667     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
668     break;
669   case ISD::SRCVALUE:
670     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
671     break;
672   case ISD::FrameIndex:
673   case ISD::TargetFrameIndex:
674     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
675     break;
676   case ISD::LIFETIME_START:
677   case ISD::LIFETIME_END:
678     if (cast<LifetimeSDNode>(N)->hasOffset()) {
679       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
680       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
681     }
682     break;
683   case ISD::PSEUDO_PROBE:
684     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
685     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
686     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
687     break;
688   case ISD::JumpTable:
689   case ISD::TargetJumpTable:
690     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
691     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
692     break;
693   case ISD::ConstantPool:
694   case ISD::TargetConstantPool: {
695     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
696     ID.AddInteger(CP->getAlign().value());
697     ID.AddInteger(CP->getOffset());
698     if (CP->isMachineConstantPoolEntry())
699       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
700     else
701       ID.AddPointer(CP->getConstVal());
702     ID.AddInteger(CP->getTargetFlags());
703     break;
704   }
705   case ISD::TargetIndex: {
706     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
707     ID.AddInteger(TI->getIndex());
708     ID.AddInteger(TI->getOffset());
709     ID.AddInteger(TI->getTargetFlags());
710     break;
711   }
712   case ISD::LOAD: {
713     const LoadSDNode *LD = cast<LoadSDNode>(N);
714     ID.AddInteger(LD->getMemoryVT().getRawBits());
715     ID.AddInteger(LD->getRawSubclassData());
716     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
717     break;
718   }
719   case ISD::STORE: {
720     const StoreSDNode *ST = cast<StoreSDNode>(N);
721     ID.AddInteger(ST->getMemoryVT().getRawBits());
722     ID.AddInteger(ST->getRawSubclassData());
723     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
724     break;
725   }
726   case ISD::VP_LOAD: {
727     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
728     ID.AddInteger(ELD->getMemoryVT().getRawBits());
729     ID.AddInteger(ELD->getRawSubclassData());
730     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VP_GATHER: {
741     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
742     ID.AddInteger(EG->getMemoryVT().getRawBits());
743     ID.AddInteger(EG->getRawSubclassData());
744     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
745     break;
746   }
747   case ISD::VP_SCATTER: {
748     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
749     ID.AddInteger(ES->getMemoryVT().getRawBits());
750     ID.AddInteger(ES->getRawSubclassData());
751     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
752     break;
753   }
754   case ISD::MLOAD: {
755     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
756     ID.AddInteger(MLD->getMemoryVT().getRawBits());
757     ID.AddInteger(MLD->getRawSubclassData());
758     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
759     break;
760   }
761   case ISD::MSTORE: {
762     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
763     ID.AddInteger(MST->getMemoryVT().getRawBits());
764     ID.AddInteger(MST->getRawSubclassData());
765     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
766     break;
767   }
768   case ISD::MGATHER: {
769     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
770     ID.AddInteger(MG->getMemoryVT().getRawBits());
771     ID.AddInteger(MG->getRawSubclassData());
772     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
773     break;
774   }
775   case ISD::MSCATTER: {
776     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
777     ID.AddInteger(MS->getMemoryVT().getRawBits());
778     ID.AddInteger(MS->getRawSubclassData());
779     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
780     break;
781   }
782   case ISD::ATOMIC_CMP_SWAP:
783   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
784   case ISD::ATOMIC_SWAP:
785   case ISD::ATOMIC_LOAD_ADD:
786   case ISD::ATOMIC_LOAD_SUB:
787   case ISD::ATOMIC_LOAD_AND:
788   case ISD::ATOMIC_LOAD_CLR:
789   case ISD::ATOMIC_LOAD_OR:
790   case ISD::ATOMIC_LOAD_XOR:
791   case ISD::ATOMIC_LOAD_NAND:
792   case ISD::ATOMIC_LOAD_MIN:
793   case ISD::ATOMIC_LOAD_MAX:
794   case ISD::ATOMIC_LOAD_UMIN:
795   case ISD::ATOMIC_LOAD_UMAX:
796   case ISD::ATOMIC_LOAD:
797   case ISD::ATOMIC_STORE: {
798     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
799     ID.AddInteger(AT->getMemoryVT().getRawBits());
800     ID.AddInteger(AT->getRawSubclassData());
801     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
802     break;
803   }
804   case ISD::PREFETCH: {
805     const MemSDNode *PF = cast<MemSDNode>(N);
806     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
807     break;
808   }
809   case ISD::VECTOR_SHUFFLE: {
810     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
811     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
812          i != e; ++i)
813       ID.AddInteger(SVN->getMaskElt(i));
814     break;
815   }
816   case ISD::TargetBlockAddress:
817   case ISD::BlockAddress: {
818     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
819     ID.AddPointer(BA->getBlockAddress());
820     ID.AddInteger(BA->getOffset());
821     ID.AddInteger(BA->getTargetFlags());
822     break;
823   }
824   } // end switch (N->getOpcode())
825 
826   // Target specific memory nodes could also have address spaces to check.
827   if (N->isTargetMemoryOpcode())
828     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
829 }
830 
831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
832 /// data.
833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
834   AddNodeIDOpcode(ID, N->getOpcode());
835   // Add the return value info.
836   AddNodeIDValueTypes(ID, N->getVTList());
837   // Add the operand info.
838   AddNodeIDOperands(ID, N->ops());
839 
840   // Handle SDNode leafs with special info.
841   AddNodeIDCustom(ID, N);
842 }
843 
844 //===----------------------------------------------------------------------===//
845 //                              SelectionDAG Class
846 //===----------------------------------------------------------------------===//
847 
848 /// doNotCSE - Return true if CSE should not be performed for this node.
849 static bool doNotCSE(SDNode *N) {
850   if (N->getValueType(0) == MVT::Glue)
851     return true; // Never CSE anything that produces a flag.
852 
853   switch (N->getOpcode()) {
854   default: break;
855   case ISD::HANDLENODE:
856   case ISD::EH_LABEL:
857     return true;   // Never CSE these nodes.
858   }
859 
860   // Check that remaining values produced are not flags.
861   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
862     if (N->getValueType(i) == MVT::Glue)
863       return true; // Never CSE anything that produces a flag.
864 
865   return false;
866 }
867 
868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
869 /// SelectionDAG.
870 void SelectionDAG::RemoveDeadNodes() {
871   // Create a dummy node (which is not added to allnodes), that adds a reference
872   // to the root node, preventing it from being deleted.
873   HandleSDNode Dummy(getRoot());
874 
875   SmallVector<SDNode*, 128> DeadNodes;
876 
877   // Add all obviously-dead nodes to the DeadNodes worklist.
878   for (SDNode &Node : allnodes())
879     if (Node.use_empty())
880       DeadNodes.push_back(&Node);
881 
882   RemoveDeadNodes(DeadNodes);
883 
884   // If the root changed (e.g. it was a dead load, update the root).
885   setRoot(Dummy.getValue());
886 }
887 
888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
889 /// given list, and any nodes that become unreachable as a result.
890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
891 
892   // Process the worklist, deleting the nodes and adding their uses to the
893   // worklist.
894   while (!DeadNodes.empty()) {
895     SDNode *N = DeadNodes.pop_back_val();
896     // Skip to next node if we've already managed to delete the node. This could
897     // happen if replacing a node causes a node previously added to the node to
898     // be deleted.
899     if (N->getOpcode() == ISD::DELETED_NODE)
900       continue;
901 
902     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
903       DUL->NodeDeleted(N, nullptr);
904 
905     // Take the node out of the appropriate CSE map.
906     RemoveNodeFromCSEMaps(N);
907 
908     // Next, brutally remove the operand list.  This is safe to do, as there are
909     // no cycles in the graph.
910     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
911       SDUse &Use = *I++;
912       SDNode *Operand = Use.getNode();
913       Use.set(SDValue());
914 
915       // Now that we removed this operand, see if there are no uses of it left.
916       if (Operand->use_empty())
917         DeadNodes.push_back(Operand);
918     }
919 
920     DeallocateNode(N);
921   }
922 }
923 
924 void SelectionDAG::RemoveDeadNode(SDNode *N){
925   SmallVector<SDNode*, 16> DeadNodes(1, N);
926 
927   // Create a dummy node that adds a reference to the root node, preventing
928   // it from being deleted.  (This matters if the root is an operand of the
929   // dead node.)
930   HandleSDNode Dummy(getRoot());
931 
932   RemoveDeadNodes(DeadNodes);
933 }
934 
935 void SelectionDAG::DeleteNode(SDNode *N) {
936   // First take this out of the appropriate CSE map.
937   RemoveNodeFromCSEMaps(N);
938 
939   // Finally, remove uses due to operands of this node, remove from the
940   // AllNodes list, and delete the node.
941   DeleteNodeNotInCSEMaps(N);
942 }
943 
944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
945   assert(N->getIterator() != AllNodes.begin() &&
946          "Cannot delete the entry node!");
947   assert(N->use_empty() && "Cannot delete a node that is not dead!");
948 
949   // Drop all of the operands and decrement used node's use counts.
950   N->DropOperands();
951 
952   DeallocateNode(N);
953 }
954 
955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
956   assert(!(V->isVariadic() && isParameter));
957   if (isParameter)
958     ByvalParmDbgValues.push_back(V);
959   else
960     DbgValues.push_back(V);
961   for (const SDNode *Node : V->getSDNodes())
962     if (Node)
963       DbgValMap[Node].push_back(V);
964 }
965 
966 void SDDbgInfo::erase(const SDNode *Node) {
967   DbgValMapType::iterator I = DbgValMap.find(Node);
968   if (I == DbgValMap.end())
969     return;
970   for (auto &Val: I->second)
971     Val->setIsInvalidated();
972   DbgValMap.erase(I);
973 }
974 
975 void SelectionDAG::DeallocateNode(SDNode *N) {
976   // If we have operands, deallocate them.
977   removeOperands(N);
978 
979   NodeAllocator.Deallocate(AllNodes.remove(N));
980 
981   // Set the opcode to DELETED_NODE to help catch bugs when node
982   // memory is reallocated.
983   // FIXME: There are places in SDag that have grown a dependency on the opcode
984   // value in the released node.
985   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
986   N->NodeType = ISD::DELETED_NODE;
987 
988   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
989   // them and forget about that node.
990   DbgInfo->erase(N);
991 }
992 
993 #ifndef NDEBUG
994 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
995 static void VerifySDNode(SDNode *N) {
996   switch (N->getOpcode()) {
997   default:
998     break;
999   case ISD::BUILD_PAIR: {
1000     EVT VT = N->getValueType(0);
1001     assert(N->getNumValues() == 1 && "Too many results!");
1002     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1003            "Wrong return type!");
1004     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1005     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1006            "Mismatched operand types!");
1007     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1008            "Wrong operand type!");
1009     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1010            "Wrong return type size");
1011     break;
1012   }
1013   case ISD::BUILD_VECTOR: {
1014     assert(N->getNumValues() == 1 && "Too many results!");
1015     assert(N->getValueType(0).isVector() && "Wrong return type!");
1016     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1017            "Wrong number of operands!");
1018     EVT EltVT = N->getValueType(0).getVectorElementType();
1019     for (const SDUse &Op : N->ops()) {
1020       assert((Op.getValueType() == EltVT ||
1021               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1022                EltVT.bitsLE(Op.getValueType()))) &&
1023              "Wrong operand type!");
1024       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1025              "Operands must all have the same type");
1026     }
1027     break;
1028   }
1029   }
1030 }
1031 #endif // NDEBUG
1032 
1033 /// Insert a newly allocated node into the DAG.
1034 ///
1035 /// Handles insertion into the all nodes list and CSE map, as well as
1036 /// verification and other common operations when a new node is allocated.
1037 void SelectionDAG::InsertNode(SDNode *N) {
1038   AllNodes.push_back(N);
1039 #ifndef NDEBUG
1040   N->PersistentId = NextPersistentId++;
1041   VerifySDNode(N);
1042 #endif
1043   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1044     DUL->NodeInserted(N);
1045 }
1046 
1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1048 /// correspond to it.  This is useful when we're about to delete or repurpose
1049 /// the node.  We don't want future request for structurally identical nodes
1050 /// to return N anymore.
1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1052   bool Erased = false;
1053   switch (N->getOpcode()) {
1054   case ISD::HANDLENODE: return false;  // noop.
1055   case ISD::CONDCODE:
1056     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1057            "Cond code doesn't exist!");
1058     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1059     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1060     break;
1061   case ISD::ExternalSymbol:
1062     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1063     break;
1064   case ISD::TargetExternalSymbol: {
1065     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1066     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1067         ESN->getSymbol(), ESN->getTargetFlags()));
1068     break;
1069   }
1070   case ISD::MCSymbol: {
1071     auto *MCSN = cast<MCSymbolSDNode>(N);
1072     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1073     break;
1074   }
1075   case ISD::VALUETYPE: {
1076     EVT VT = cast<VTSDNode>(N)->getVT();
1077     if (VT.isExtended()) {
1078       Erased = ExtendedValueTypeNodes.erase(VT);
1079     } else {
1080       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1081       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1082     }
1083     break;
1084   }
1085   default:
1086     // Remove it from the CSE Map.
1087     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1088     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1089     Erased = CSEMap.RemoveNode(N);
1090     break;
1091   }
1092 #ifndef NDEBUG
1093   // Verify that the node was actually in one of the CSE maps, unless it has a
1094   // flag result (which cannot be CSE'd) or is one of the special cases that are
1095   // not subject to CSE.
1096   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1097       !N->isMachineOpcode() && !doNotCSE(N)) {
1098     N->dump(this);
1099     dbgs() << "\n";
1100     llvm_unreachable("Node is not in map!");
1101   }
1102 #endif
1103   return Erased;
1104 }
1105 
1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1108 /// node already exists, in which case transfer all its users to the existing
1109 /// node. This transfer can potentially trigger recursive merging.
1110 void
1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1112   // For node types that aren't CSE'd, just act as if no identical node
1113   // already exists.
1114   if (!doNotCSE(N)) {
1115     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1116     if (Existing != N) {
1117       // If there was already an existing matching node, use ReplaceAllUsesWith
1118       // to replace the dead one with the existing one.  This can cause
1119       // recursive merging of other unrelated nodes down the line.
1120       ReplaceAllUsesWith(N, Existing);
1121 
1122       // N is now dead. Inform the listeners and delete it.
1123       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1124         DUL->NodeDeleted(N, Existing);
1125       DeleteNodeNotInCSEMaps(N);
1126       return;
1127     }
1128   }
1129 
1130   // If the node doesn't already exist, we updated it.  Inform listeners.
1131   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1132     DUL->NodeUpdated(N);
1133 }
1134 
1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1136 /// were replaced with those specified.  If this node is never memoized,
1137 /// return null, otherwise return a pointer to the slot it would take.  If a
1138 /// node already exists with these operands, the slot will be non-null.
1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1140                                            void *&InsertPos) {
1141   if (doNotCSE(N))
1142     return nullptr;
1143 
1144   SDValue Ops[] = { Op };
1145   FoldingSetNodeID ID;
1146   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1147   AddNodeIDCustom(ID, N);
1148   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1149   if (Node)
1150     Node->intersectFlagsWith(N->getFlags());
1151   return Node;
1152 }
1153 
1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1155 /// were replaced with those specified.  If this node is never memoized,
1156 /// return null, otherwise return a pointer to the slot it would take.  If a
1157 /// node already exists with these operands, the slot will be non-null.
1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1159                                            SDValue Op1, SDValue Op2,
1160                                            void *&InsertPos) {
1161   if (doNotCSE(N))
1162     return nullptr;
1163 
1164   SDValue Ops[] = { Op1, Op2 };
1165   FoldingSetNodeID ID;
1166   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1167   AddNodeIDCustom(ID, N);
1168   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1169   if (Node)
1170     Node->intersectFlagsWith(N->getFlags());
1171   return Node;
1172 }
1173 
1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1175 /// were replaced with those specified.  If this node is never memoized,
1176 /// return null, otherwise return a pointer to the slot it would take.  If a
1177 /// node already exists with these operands, the slot will be non-null.
1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1179                                            void *&InsertPos) {
1180   if (doNotCSE(N))
1181     return nullptr;
1182 
1183   FoldingSetNodeID ID;
1184   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1185   AddNodeIDCustom(ID, N);
1186   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1187   if (Node)
1188     Node->intersectFlagsWith(N->getFlags());
1189   return Node;
1190 }
1191 
1192 Align SelectionDAG::getEVTAlign(EVT VT) const {
1193   Type *Ty = VT == MVT::iPTR ?
1194                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1195                    VT.getTypeForEVT(*getContext());
1196 
1197   return getDataLayout().getABITypeAlign(Ty);
1198 }
1199 
1200 // EntryNode could meaningfully have debug info if we can find it...
1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1202     : TM(tm), OptLevel(OL),
1203       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1204       Root(getEntryNode()) {
1205   InsertNode(&EntryNode);
1206   DbgInfo = new SDDbgInfo();
1207 }
1208 
1209 void SelectionDAG::init(MachineFunction &NewMF,
1210                         OptimizationRemarkEmitter &NewORE,
1211                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1212                         LegacyDivergenceAnalysis * Divergence,
1213                         ProfileSummaryInfo *PSIin,
1214                         BlockFrequencyInfo *BFIin) {
1215   MF = &NewMF;
1216   SDAGISelPass = PassPtr;
1217   ORE = &NewORE;
1218   TLI = getSubtarget().getTargetLowering();
1219   TSI = getSubtarget().getSelectionDAGInfo();
1220   LibInfo = LibraryInfo;
1221   Context = &MF->getFunction().getContext();
1222   DA = Divergence;
1223   PSI = PSIin;
1224   BFI = BFIin;
1225 }
1226 
1227 SelectionDAG::~SelectionDAG() {
1228   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1229   allnodes_clear();
1230   OperandRecycler.clear(OperandAllocator);
1231   delete DbgInfo;
1232 }
1233 
1234 bool SelectionDAG::shouldOptForSize() const {
1235   return MF->getFunction().hasOptSize() ||
1236       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1237 }
1238 
1239 void SelectionDAG::allnodes_clear() {
1240   assert(&*AllNodes.begin() == &EntryNode);
1241   AllNodes.remove(AllNodes.begin());
1242   while (!AllNodes.empty())
1243     DeallocateNode(&AllNodes.front());
1244 #ifndef NDEBUG
1245   NextPersistentId = 0;
1246 #endif
1247 }
1248 
1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1250                                           void *&InsertPos) {
1251   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1252   if (N) {
1253     switch (N->getOpcode()) {
1254     default: break;
1255     case ISD::Constant:
1256     case ISD::ConstantFP:
1257       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1258                        "debug location.  Use another overload.");
1259     }
1260   }
1261   return N;
1262 }
1263 
1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1265                                           const SDLoc &DL, void *&InsertPos) {
1266   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1267   if (N) {
1268     switch (N->getOpcode()) {
1269     case ISD::Constant:
1270     case ISD::ConstantFP:
1271       // Erase debug location from the node if the node is used at several
1272       // different places. Do not propagate one location to all uses as it
1273       // will cause a worse single stepping debugging experience.
1274       if (N->getDebugLoc() != DL.getDebugLoc())
1275         N->setDebugLoc(DebugLoc());
1276       break;
1277     default:
1278       // When the node's point of use is located earlier in the instruction
1279       // sequence than its prior point of use, update its debug info to the
1280       // earlier location.
1281       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1282         N->setDebugLoc(DL.getDebugLoc());
1283       break;
1284     }
1285   }
1286   return N;
1287 }
1288 
1289 void SelectionDAG::clear() {
1290   allnodes_clear();
1291   OperandRecycler.clear(OperandAllocator);
1292   OperandAllocator.Reset();
1293   CSEMap.clear();
1294 
1295   ExtendedValueTypeNodes.clear();
1296   ExternalSymbols.clear();
1297   TargetExternalSymbols.clear();
1298   MCSymbols.clear();
1299   SDCallSiteDbgInfo.clear();
1300   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1301             static_cast<CondCodeSDNode*>(nullptr));
1302   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1303             static_cast<SDNode*>(nullptr));
1304 
1305   EntryNode.UseList = nullptr;
1306   InsertNode(&EntryNode);
1307   Root = getEntryNode();
1308   DbgInfo->clear();
1309 }
1310 
1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1312   return VT.bitsGT(Op.getValueType())
1313              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1314              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1315 }
1316 
1317 std::pair<SDValue, SDValue>
1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1319                                        const SDLoc &DL, EVT VT) {
1320   assert(!VT.bitsEq(Op.getValueType()) &&
1321          "Strict no-op FP extend/round not allowed.");
1322   SDValue Res =
1323       VT.bitsGT(Op.getValueType())
1324           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1325           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1326                     {Chain, Op, getIntPtrConstant(0, DL)});
1327 
1328   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1329 }
1330 
1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1332   return VT.bitsGT(Op.getValueType()) ?
1333     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1334     getNode(ISD::TRUNCATE, DL, VT, Op);
1335 }
1336 
1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1338   return VT.bitsGT(Op.getValueType()) ?
1339     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1340     getNode(ISD::TRUNCATE, DL, VT, Op);
1341 }
1342 
1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1344   return VT.bitsGT(Op.getValueType()) ?
1345     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1346     getNode(ISD::TRUNCATE, DL, VT, Op);
1347 }
1348 
1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1350                                         EVT OpVT) {
1351   if (VT.bitsLE(Op.getValueType()))
1352     return getNode(ISD::TRUNCATE, SL, VT, Op);
1353 
1354   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1355   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1356 }
1357 
1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1359   EVT OpVT = Op.getValueType();
1360   assert(VT.isInteger() && OpVT.isInteger() &&
1361          "Cannot getZeroExtendInReg FP types");
1362   assert(VT.isVector() == OpVT.isVector() &&
1363          "getZeroExtendInReg type should be vector iff the operand "
1364          "type is vector!");
1365   assert((!VT.isVector() ||
1366           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1367          "Vector element counts must match in getZeroExtendInReg");
1368   assert(VT.bitsLE(OpVT) && "Not extending!");
1369   if (OpVT == VT)
1370     return Op;
1371   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1372                                    VT.getScalarSizeInBits());
1373   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1374 }
1375 
1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1377   // Only unsigned pointer semantics are supported right now. In the future this
1378   // might delegate to TLI to check pointer signedness.
1379   return getZExtOrTrunc(Op, DL, VT);
1380 }
1381 
1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1383   // Only unsigned pointer semantics are supported right now. In the future this
1384   // might delegate to TLI to check pointer signedness.
1385   return getZeroExtendInReg(Op, DL, VT);
1386 }
1387 
1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1390   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1391 }
1392 
1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1394   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1395   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1396 }
1397 
1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1399                                       EVT OpVT) {
1400   if (!V)
1401     return getConstant(0, DL, VT);
1402 
1403   switch (TLI->getBooleanContents(OpVT)) {
1404   case TargetLowering::ZeroOrOneBooleanContent:
1405   case TargetLowering::UndefinedBooleanContent:
1406     return getConstant(1, DL, VT);
1407   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1408     return getAllOnesConstant(DL, VT);
1409   }
1410   llvm_unreachable("Unexpected boolean content enum!");
1411 }
1412 
1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1414                                   bool isT, bool isO) {
1415   EVT EltVT = VT.getScalarType();
1416   assert((EltVT.getSizeInBits() >= 64 ||
1417           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1418          "getConstant with a uint64_t value that doesn't fit in the type!");
1419   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1420 }
1421 
1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1423                                   bool isT, bool isO) {
1424   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1425 }
1426 
1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1428                                   EVT VT, bool isT, bool isO) {
1429   assert(VT.isInteger() && "Cannot create FP integer constant!");
1430 
1431   EVT EltVT = VT.getScalarType();
1432   const ConstantInt *Elt = &Val;
1433 
1434   // In some cases the vector type is legal but the element type is illegal and
1435   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1436   // inserted value (the type does not need to match the vector element type).
1437   // Any extra bits introduced will be truncated away.
1438   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1439                            TargetLowering::TypePromoteInteger) {
1440     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1441     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1442     Elt = ConstantInt::get(*getContext(), NewVal);
1443   }
1444   // In other cases the element type is illegal and needs to be expanded, for
1445   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1446   // the value into n parts and use a vector type with n-times the elements.
1447   // Then bitcast to the type requested.
1448   // Legalizing constants too early makes the DAGCombiner's job harder so we
1449   // only legalize if the DAG tells us we must produce legal types.
1450   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1451            TLI->getTypeAction(*getContext(), EltVT) ==
1452                TargetLowering::TypeExpandInteger) {
1453     const APInt &NewVal = Elt->getValue();
1454     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1455     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1456 
1457     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1458     if (VT.isScalableVector()) {
1459       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1460              "Can only handle an even split!");
1461       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1462 
1463       SmallVector<SDValue, 2> ScalarParts;
1464       for (unsigned i = 0; i != Parts; ++i)
1465         ScalarParts.push_back(getConstant(
1466             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1467             ViaEltVT, isT, isO));
1468 
1469       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1470     }
1471 
1472     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1473     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1474 
1475     // Check the temporary vector is the correct size. If this fails then
1476     // getTypeToTransformTo() probably returned a type whose size (in bits)
1477     // isn't a power-of-2 factor of the requested type size.
1478     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1479 
1480     SmallVector<SDValue, 2> EltParts;
1481     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1482       EltParts.push_back(getConstant(
1483           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1484           ViaEltVT, isT, isO));
1485 
1486     // EltParts is currently in little endian order. If we actually want
1487     // big-endian order then reverse it now.
1488     if (getDataLayout().isBigEndian())
1489       std::reverse(EltParts.begin(), EltParts.end());
1490 
1491     // The elements must be reversed when the element order is different
1492     // to the endianness of the elements (because the BITCAST is itself a
1493     // vector shuffle in this situation). However, we do not need any code to
1494     // perform this reversal because getConstant() is producing a vector
1495     // splat.
1496     // This situation occurs in MIPS MSA.
1497 
1498     SmallVector<SDValue, 8> Ops;
1499     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1500       llvm::append_range(Ops, EltParts);
1501 
1502     SDValue V =
1503         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1504     return V;
1505   }
1506 
1507   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1508          "APInt size does not match type size!");
1509   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1510   FoldingSetNodeID ID;
1511   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1512   ID.AddPointer(Elt);
1513   ID.AddBoolean(isO);
1514   void *IP = nullptr;
1515   SDNode *N = nullptr;
1516   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1517     if (!VT.isVector())
1518       return SDValue(N, 0);
1519 
1520   if (!N) {
1521     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1522     CSEMap.InsertNode(N, IP);
1523     InsertNode(N);
1524     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1525   }
1526 
1527   SDValue Result(N, 0);
1528   if (VT.isScalableVector())
1529     Result = getSplatVector(VT, DL, Result);
1530   else if (VT.isVector())
1531     Result = getSplatBuildVector(VT, DL, Result);
1532 
1533   return Result;
1534 }
1535 
1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1537                                         bool isTarget) {
1538   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1539 }
1540 
1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1542                                              const SDLoc &DL, bool LegalTypes) {
1543   assert(VT.isInteger() && "Shift amount is not an integer type!");
1544   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1545   return getConstant(Val, DL, ShiftVT);
1546 }
1547 
1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1549                                            bool isTarget) {
1550   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1551 }
1552 
1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1554                                     bool isTarget) {
1555   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1556 }
1557 
1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1559                                     EVT VT, bool isTarget) {
1560   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1561 
1562   EVT EltVT = VT.getScalarType();
1563 
1564   // Do the map lookup using the actual bit pattern for the floating point
1565   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1566   // we don't have issues with SNANs.
1567   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1568   FoldingSetNodeID ID;
1569   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1570   ID.AddPointer(&V);
1571   void *IP = nullptr;
1572   SDNode *N = nullptr;
1573   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1574     if (!VT.isVector())
1575       return SDValue(N, 0);
1576 
1577   if (!N) {
1578     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1579     CSEMap.InsertNode(N, IP);
1580     InsertNode(N);
1581   }
1582 
1583   SDValue Result(N, 0);
1584   if (VT.isScalableVector())
1585     Result = getSplatVector(VT, DL, Result);
1586   else if (VT.isVector())
1587     Result = getSplatBuildVector(VT, DL, Result);
1588   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1589   return Result;
1590 }
1591 
1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1593                                     bool isTarget) {
1594   EVT EltVT = VT.getScalarType();
1595   if (EltVT == MVT::f32)
1596     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1597   if (EltVT == MVT::f64)
1598     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1599   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1600       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1601     bool Ignored;
1602     APFloat APF = APFloat(Val);
1603     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1604                 &Ignored);
1605     return getConstantFP(APF, DL, VT, isTarget);
1606   }
1607   llvm_unreachable("Unsupported type in getConstantFP");
1608 }
1609 
1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1611                                        EVT VT, int64_t Offset, bool isTargetGA,
1612                                        unsigned TargetFlags) {
1613   assert((TargetFlags == 0 || isTargetGA) &&
1614          "Cannot set target flags on target-independent globals");
1615 
1616   // Truncate (with sign-extension) the offset value to the pointer size.
1617   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1618   if (BitWidth < 64)
1619     Offset = SignExtend64(Offset, BitWidth);
1620 
1621   unsigned Opc;
1622   if (GV->isThreadLocal())
1623     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1624   else
1625     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1626 
1627   FoldingSetNodeID ID;
1628   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1629   ID.AddPointer(GV);
1630   ID.AddInteger(Offset);
1631   ID.AddInteger(TargetFlags);
1632   void *IP = nullptr;
1633   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1634     return SDValue(E, 0);
1635 
1636   auto *N = newSDNode<GlobalAddressSDNode>(
1637       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1638   CSEMap.InsertNode(N, IP);
1639     InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1644   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1645   FoldingSetNodeID ID;
1646   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1647   ID.AddInteger(FI);
1648   void *IP = nullptr;
1649   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1650     return SDValue(E, 0);
1651 
1652   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1653   CSEMap.InsertNode(N, IP);
1654   InsertNode(N);
1655   return SDValue(N, 0);
1656 }
1657 
1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1659                                    unsigned TargetFlags) {
1660   assert((TargetFlags == 0 || isTarget) &&
1661          "Cannot set target flags on target-independent jump tables");
1662   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddInteger(JTI);
1666   ID.AddInteger(TargetFlags);
1667   void *IP = nullptr;
1668   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1669     return SDValue(E, 0);
1670 
1671   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1672   CSEMap.InsertNode(N, IP);
1673   InsertNode(N);
1674   return SDValue(N, 0);
1675 }
1676 
1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1678                                       MaybeAlign Alignment, int Offset,
1679                                       bool isTarget, unsigned TargetFlags) {
1680   assert((TargetFlags == 0 || isTarget) &&
1681          "Cannot set target flags on target-independent globals");
1682   if (!Alignment)
1683     Alignment = shouldOptForSize()
1684                     ? getDataLayout().getABITypeAlign(C->getType())
1685                     : getDataLayout().getPrefTypeAlign(C->getType());
1686   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1687   FoldingSetNodeID ID;
1688   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1689   ID.AddInteger(Alignment->value());
1690   ID.AddInteger(Offset);
1691   ID.AddPointer(C);
1692   ID.AddInteger(TargetFlags);
1693   void *IP = nullptr;
1694   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1695     return SDValue(E, 0);
1696 
1697   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1698                                           TargetFlags);
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   SDValue V = SDValue(N, 0);
1702   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1703   return V;
1704 }
1705 
1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1707                                       MaybeAlign Alignment, int Offset,
1708                                       bool isTarget, unsigned TargetFlags) {
1709   assert((TargetFlags == 0 || isTarget) &&
1710          "Cannot set target flags on target-independent globals");
1711   if (!Alignment)
1712     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1713   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1714   FoldingSetNodeID ID;
1715   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1716   ID.AddInteger(Alignment->value());
1717   ID.AddInteger(Offset);
1718   C->addSelectionDAGCSEId(ID);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1725                                           TargetFlags);
1726   CSEMap.InsertNode(N, IP);
1727   InsertNode(N);
1728   return SDValue(N, 0);
1729 }
1730 
1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1732                                      unsigned TargetFlags) {
1733   FoldingSetNodeID ID;
1734   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1735   ID.AddInteger(Index);
1736   ID.AddInteger(Offset);
1737   ID.AddInteger(TargetFlags);
1738   void *IP = nullptr;
1739   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1740     return SDValue(E, 0);
1741 
1742   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1743   CSEMap.InsertNode(N, IP);
1744   InsertNode(N);
1745   return SDValue(N, 0);
1746 }
1747 
1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1749   FoldingSetNodeID ID;
1750   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1751   ID.AddPointer(MBB);
1752   void *IP = nullptr;
1753   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1754     return SDValue(E, 0);
1755 
1756   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1757   CSEMap.InsertNode(N, IP);
1758   InsertNode(N);
1759   return SDValue(N, 0);
1760 }
1761 
1762 SDValue SelectionDAG::getValueType(EVT VT) {
1763   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1764       ValueTypeNodes.size())
1765     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1766 
1767   SDNode *&N = VT.isExtended() ?
1768     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1769 
1770   if (N) return SDValue(N, 0);
1771   N = newSDNode<VTSDNode>(VT);
1772   InsertNode(N);
1773   return SDValue(N, 0);
1774 }
1775 
1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1777   SDNode *&N = ExternalSymbols[Sym];
1778   if (N) return SDValue(N, 0);
1779   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1785   SDNode *&N = MCSymbols[Sym];
1786   if (N)
1787     return SDValue(N, 0);
1788   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1789   InsertNode(N);
1790   return SDValue(N, 0);
1791 }
1792 
1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1794                                               unsigned TargetFlags) {
1795   SDNode *&N =
1796       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1797   if (N) return SDValue(N, 0);
1798   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1804   if ((unsigned)Cond >= CondCodeNodes.size())
1805     CondCodeNodes.resize(Cond+1);
1806 
1807   if (!CondCodeNodes[Cond]) {
1808     auto *N = newSDNode<CondCodeSDNode>(Cond);
1809     CondCodeNodes[Cond] = N;
1810     InsertNode(N);
1811   }
1812 
1813   return SDValue(CondCodeNodes[Cond], 0);
1814 }
1815 
1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1817   APInt One(ResVT.getScalarSizeInBits(), 1);
1818   return getStepVector(DL, ResVT, One);
1819 }
1820 
1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1822   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1823   if (ResVT.isScalableVector())
1824     return getNode(
1825         ISD::STEP_VECTOR, DL, ResVT,
1826         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1827 
1828   SmallVector<SDValue, 16> OpsStepConstants;
1829   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1830     OpsStepConstants.push_back(
1831         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1832   return getBuildVector(ResVT, DL, OpsStepConstants);
1833 }
1834 
1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1838   std::swap(N1, N2);
1839   ShuffleVectorSDNode::commuteMask(M);
1840 }
1841 
1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1843                                        SDValue N2, ArrayRef<int> Mask) {
1844   assert(VT.getVectorNumElements() == Mask.size() &&
1845          "Must have the same number of vector elements as mask elements!");
1846   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1847          "Invalid VECTOR_SHUFFLE");
1848 
1849   // Canonicalize shuffle undef, undef -> undef
1850   if (N1.isUndef() && N2.isUndef())
1851     return getUNDEF(VT);
1852 
1853   // Validate that all indices in Mask are within the range of the elements
1854   // input to the shuffle.
1855   int NElts = Mask.size();
1856   assert(llvm::all_of(Mask,
1857                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1858          "Index out of range");
1859 
1860   // Copy the mask so we can do any needed cleanup.
1861   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1862 
1863   // Canonicalize shuffle v, v -> v, undef
1864   if (N1 == N2) {
1865     N2 = getUNDEF(VT);
1866     for (int i = 0; i != NElts; ++i)
1867       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1868   }
1869 
1870   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1871   if (N1.isUndef())
1872     commuteShuffle(N1, N2, MaskVec);
1873 
1874   if (TLI->hasVectorBlend()) {
1875     // If shuffling a splat, try to blend the splat instead. We do this here so
1876     // that even when this arises during lowering we don't have to re-handle it.
1877     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1878       BitVector UndefElements;
1879       SDValue Splat = BV->getSplatValue(&UndefElements);
1880       if (!Splat)
1881         return;
1882 
1883       for (int i = 0; i < NElts; ++i) {
1884         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1885           continue;
1886 
1887         // If this input comes from undef, mark it as such.
1888         if (UndefElements[MaskVec[i] - Offset]) {
1889           MaskVec[i] = -1;
1890           continue;
1891         }
1892 
1893         // If we can blend a non-undef lane, use that instead.
1894         if (!UndefElements[i])
1895           MaskVec[i] = i + Offset;
1896       }
1897     };
1898     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1899       BlendSplat(N1BV, 0);
1900     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1901       BlendSplat(N2BV, NElts);
1902   }
1903 
1904   // Canonicalize all index into lhs, -> shuffle lhs, undef
1905   // Canonicalize all index into rhs, -> shuffle rhs, undef
1906   bool AllLHS = true, AllRHS = true;
1907   bool N2Undef = N2.isUndef();
1908   for (int i = 0; i != NElts; ++i) {
1909     if (MaskVec[i] >= NElts) {
1910       if (N2Undef)
1911         MaskVec[i] = -1;
1912       else
1913         AllLHS = false;
1914     } else if (MaskVec[i] >= 0) {
1915       AllRHS = false;
1916     }
1917   }
1918   if (AllLHS && AllRHS)
1919     return getUNDEF(VT);
1920   if (AllLHS && !N2Undef)
1921     N2 = getUNDEF(VT);
1922   if (AllRHS) {
1923     N1 = getUNDEF(VT);
1924     commuteShuffle(N1, N2, MaskVec);
1925   }
1926   // Reset our undef status after accounting for the mask.
1927   N2Undef = N2.isUndef();
1928   // Re-check whether both sides ended up undef.
1929   if (N1.isUndef() && N2Undef)
1930     return getUNDEF(VT);
1931 
1932   // If Identity shuffle return that node.
1933   bool Identity = true, AllSame = true;
1934   for (int i = 0; i != NElts; ++i) {
1935     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1936     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1937   }
1938   if (Identity && NElts)
1939     return N1;
1940 
1941   // Shuffling a constant splat doesn't change the result.
1942   if (N2Undef) {
1943     SDValue V = N1;
1944 
1945     // Look through any bitcasts. We check that these don't change the number
1946     // (and size) of elements and just changes their types.
1947     while (V.getOpcode() == ISD::BITCAST)
1948       V = V->getOperand(0);
1949 
1950     // A splat should always show up as a build vector node.
1951     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1952       BitVector UndefElements;
1953       SDValue Splat = BV->getSplatValue(&UndefElements);
1954       // If this is a splat of an undef, shuffling it is also undef.
1955       if (Splat && Splat.isUndef())
1956         return getUNDEF(VT);
1957 
1958       bool SameNumElts =
1959           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1960 
1961       // We only have a splat which can skip shuffles if there is a splatted
1962       // value and no undef lanes rearranged by the shuffle.
1963       if (Splat && UndefElements.none()) {
1964         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1965         // number of elements match or the value splatted is a zero constant.
1966         if (SameNumElts)
1967           return N1;
1968         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1969           if (C->isZero())
1970             return N1;
1971       }
1972 
1973       // If the shuffle itself creates a splat, build the vector directly.
1974       if (AllSame && SameNumElts) {
1975         EVT BuildVT = BV->getValueType(0);
1976         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1977         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1978 
1979         // We may have jumped through bitcasts, so the type of the
1980         // BUILD_VECTOR may not match the type of the shuffle.
1981         if (BuildVT != VT)
1982           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1983         return NewBV;
1984       }
1985     }
1986   }
1987 
1988   FoldingSetNodeID ID;
1989   SDValue Ops[2] = { N1, N2 };
1990   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1991   for (int i = 0; i != NElts; ++i)
1992     ID.AddInteger(MaskVec[i]);
1993 
1994   void* IP = nullptr;
1995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1996     return SDValue(E, 0);
1997 
1998   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1999   // SDNode doesn't have access to it.  This memory will be "leaked" when
2000   // the node is deallocated, but recovered when the NodeAllocator is released.
2001   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2002   llvm::copy(MaskVec, MaskAlloc);
2003 
2004   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2005                                            dl.getDebugLoc(), MaskAlloc);
2006   createOperands(N, Ops);
2007 
2008   CSEMap.InsertNode(N, IP);
2009   InsertNode(N);
2010   SDValue V = SDValue(N, 0);
2011   NewSDValueDbgMsg(V, "Creating new node: ", this);
2012   return V;
2013 }
2014 
2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2016   EVT VT = SV.getValueType(0);
2017   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2018   ShuffleVectorSDNode::commuteMask(MaskVec);
2019 
2020   SDValue Op0 = SV.getOperand(0);
2021   SDValue Op1 = SV.getOperand(1);
2022   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2023 }
2024 
2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2028   ID.AddInteger(RegNo);
2029   void *IP = nullptr;
2030   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2031     return SDValue(E, 0);
2032 
2033   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2034   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   return SDValue(N, 0);
2038 }
2039 
2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2041   FoldingSetNodeID ID;
2042   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2043   ID.AddPointer(RegMask);
2044   void *IP = nullptr;
2045   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2046     return SDValue(E, 0);
2047 
2048   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2049   CSEMap.InsertNode(N, IP);
2050   InsertNode(N);
2051   return SDValue(N, 0);
2052 }
2053 
2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2055                                  MCSymbol *Label) {
2056   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2057 }
2058 
2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2060                                    SDValue Root, MCSymbol *Label) {
2061   FoldingSetNodeID ID;
2062   SDValue Ops[] = { Root };
2063   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2064   ID.AddPointer(Label);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N =
2070       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2071   createOperands(N, Ops);
2072 
2073   CSEMap.InsertNode(N, IP);
2074   InsertNode(N);
2075   return SDValue(N, 0);
2076 }
2077 
2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2079                                       int64_t Offset, bool isTarget,
2080                                       unsigned TargetFlags) {
2081   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2082 
2083   FoldingSetNodeID ID;
2084   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2085   ID.AddPointer(BA);
2086   ID.AddInteger(Offset);
2087   ID.AddInteger(TargetFlags);
2088   void *IP = nullptr;
2089   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2090     return SDValue(E, 0);
2091 
2092   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2093   CSEMap.InsertNode(N, IP);
2094   InsertNode(N);
2095   return SDValue(N, 0);
2096 }
2097 
2098 SDValue SelectionDAG::getSrcValue(const Value *V) {
2099   FoldingSetNodeID ID;
2100   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2101   ID.AddPointer(V);
2102 
2103   void *IP = nullptr;
2104   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2105     return SDValue(E, 0);
2106 
2107   auto *N = newSDNode<SrcValueSDNode>(V);
2108   CSEMap.InsertNode(N, IP);
2109   InsertNode(N);
2110   return SDValue(N, 0);
2111 }
2112 
2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2114   FoldingSetNodeID ID;
2115   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2116   ID.AddPointer(MD);
2117 
2118   void *IP = nullptr;
2119   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2120     return SDValue(E, 0);
2121 
2122   auto *N = newSDNode<MDNodeSDNode>(MD);
2123   CSEMap.InsertNode(N, IP);
2124   InsertNode(N);
2125   return SDValue(N, 0);
2126 }
2127 
2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2129   if (VT == V.getValueType())
2130     return V;
2131 
2132   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2133 }
2134 
2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2136                                        unsigned SrcAS, unsigned DestAS) {
2137   SDValue Ops[] = {Ptr};
2138   FoldingSetNodeID ID;
2139   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2140   ID.AddInteger(SrcAS);
2141   ID.AddInteger(DestAS);
2142 
2143   void *IP = nullptr;
2144   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2145     return SDValue(E, 0);
2146 
2147   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2148                                            VT, SrcAS, DestAS);
2149   createOperands(N, Ops);
2150 
2151   CSEMap.InsertNode(N, IP);
2152   InsertNode(N);
2153   return SDValue(N, 0);
2154 }
2155 
2156 SDValue SelectionDAG::getFreeze(SDValue V) {
2157   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2158 }
2159 
2160 /// getShiftAmountOperand - Return the specified value casted to
2161 /// the target's desired shift amount type.
2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2163   EVT OpTy = Op.getValueType();
2164   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2165   if (OpTy == ShTy || OpTy.isVector()) return Op;
2166 
2167   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2168 }
2169 
2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2171   SDLoc dl(Node);
2172   const TargetLowering &TLI = getTargetLoweringInfo();
2173   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2174   EVT VT = Node->getValueType(0);
2175   SDValue Tmp1 = Node->getOperand(0);
2176   SDValue Tmp2 = Node->getOperand(1);
2177   const MaybeAlign MA(Node->getConstantOperandVal(3));
2178 
2179   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2180                                Tmp2, MachinePointerInfo(V));
2181   SDValue VAList = VAListLoad;
2182 
2183   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2184     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2185                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2186 
2187     VAList =
2188         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2189                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2190   }
2191 
2192   // Increment the pointer, VAList, to the next vaarg
2193   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2194                  getConstant(getDataLayout().getTypeAllocSize(
2195                                                VT.getTypeForEVT(*getContext())),
2196                              dl, VAList.getValueType()));
2197   // Store the incremented VAList to the legalized pointer
2198   Tmp1 =
2199       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2200   // Load the actual argument out of the pointer VAList
2201   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2202 }
2203 
2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2205   SDLoc dl(Node);
2206   const TargetLowering &TLI = getTargetLoweringInfo();
2207   // This defaults to loading a pointer from the input and storing it to the
2208   // output, returning the chain.
2209   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2210   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2211   SDValue Tmp1 =
2212       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2213               Node->getOperand(2), MachinePointerInfo(VS));
2214   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2215                   MachinePointerInfo(VD));
2216 }
2217 
2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2219   const DataLayout &DL = getDataLayout();
2220   Type *Ty = VT.getTypeForEVT(*getContext());
2221   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2222 
2223   if (TLI->isTypeLegal(VT) || !VT.isVector())
2224     return RedAlign;
2225 
2226   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2227   const Align StackAlign = TFI->getStackAlign();
2228 
2229   // See if we can choose a smaller ABI alignment in cases where it's an
2230   // illegal vector type that will get broken down.
2231   if (RedAlign > StackAlign) {
2232     EVT IntermediateVT;
2233     MVT RegisterVT;
2234     unsigned NumIntermediates;
2235     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2236                                 NumIntermediates, RegisterVT);
2237     Ty = IntermediateVT.getTypeForEVT(*getContext());
2238     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2239     if (RedAlign2 < RedAlign)
2240       RedAlign = RedAlign2;
2241   }
2242 
2243   return RedAlign;
2244 }
2245 
2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2247   MachineFrameInfo &MFI = MF->getFrameInfo();
2248   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2249   int StackID = 0;
2250   if (Bytes.isScalable())
2251     StackID = TFI->getStackIDForScalableVectors();
2252   // The stack id gives an indication of whether the object is scalable or
2253   // not, so it's safe to pass in the minimum size here.
2254   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2255                                        false, nullptr, StackID);
2256   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2257 }
2258 
2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2260   Type *Ty = VT.getTypeForEVT(*getContext());
2261   Align StackAlign =
2262       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2263   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2264 }
2265 
2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2267   TypeSize VT1Size = VT1.getStoreSize();
2268   TypeSize VT2Size = VT2.getStoreSize();
2269   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2270          "Don't know how to choose the maximum size when creating a stack "
2271          "temporary");
2272   TypeSize Bytes =
2273       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2274 
2275   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2276   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2277   const DataLayout &DL = getDataLayout();
2278   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2279   return CreateStackTemporary(Bytes, Align);
2280 }
2281 
2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2283                                 ISD::CondCode Cond, const SDLoc &dl) {
2284   EVT OpVT = N1.getValueType();
2285 
2286   // These setcc operations always fold.
2287   switch (Cond) {
2288   default: break;
2289   case ISD::SETFALSE:
2290   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2291   case ISD::SETTRUE:
2292   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2293 
2294   case ISD::SETOEQ:
2295   case ISD::SETOGT:
2296   case ISD::SETOGE:
2297   case ISD::SETOLT:
2298   case ISD::SETOLE:
2299   case ISD::SETONE:
2300   case ISD::SETO:
2301   case ISD::SETUO:
2302   case ISD::SETUEQ:
2303   case ISD::SETUNE:
2304     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2305     break;
2306   }
2307 
2308   if (OpVT.isInteger()) {
2309     // For EQ and NE, we can always pick a value for the undef to make the
2310     // predicate pass or fail, so we can return undef.
2311     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2312     // icmp eq/ne X, undef -> undef.
2313     if ((N1.isUndef() || N2.isUndef()) &&
2314         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2315       return getUNDEF(VT);
2316 
2317     // If both operands are undef, we can return undef for int comparison.
2318     // icmp undef, undef -> undef.
2319     if (N1.isUndef() && N2.isUndef())
2320       return getUNDEF(VT);
2321 
2322     // icmp X, X -> true/false
2323     // icmp X, undef -> true/false because undef could be X.
2324     if (N1 == N2)
2325       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2326   }
2327 
2328   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2329     const APInt &C2 = N2C->getAPIntValue();
2330     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2331       const APInt &C1 = N1C->getAPIntValue();
2332 
2333       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2334                              dl, VT, OpVT);
2335     }
2336   }
2337 
2338   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2339   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2340 
2341   if (N1CFP && N2CFP) {
2342     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2343     switch (Cond) {
2344     default: break;
2345     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2346                         return getUNDEF(VT);
2347                       LLVM_FALLTHROUGH;
2348     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2349                                              OpVT);
2350     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2351                         return getUNDEF(VT);
2352                       LLVM_FALLTHROUGH;
2353     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2354                                              R==APFloat::cmpLessThan, dl, VT,
2355                                              OpVT);
2356     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2357                         return getUNDEF(VT);
2358                       LLVM_FALLTHROUGH;
2359     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2360                                              OpVT);
2361     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2362                         return getUNDEF(VT);
2363                       LLVM_FALLTHROUGH;
2364     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2365                                              VT, OpVT);
2366     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2367                         return getUNDEF(VT);
2368                       LLVM_FALLTHROUGH;
2369     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2370                                              R==APFloat::cmpEqual, dl, VT,
2371                                              OpVT);
2372     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2373                         return getUNDEF(VT);
2374                       LLVM_FALLTHROUGH;
2375     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2376                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2377     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2378                                              OpVT);
2379     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2380                                              OpVT);
2381     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2382                                              R==APFloat::cmpEqual, dl, VT,
2383                                              OpVT);
2384     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2387                                              R==APFloat::cmpLessThan, dl, VT,
2388                                              OpVT);
2389     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpUnordered, dl, VT,
2391                                              OpVT);
2392     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2393                                              VT, OpVT);
2394     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2395                                              OpVT);
2396     }
2397   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2398     // Ensure that the constant occurs on the RHS.
2399     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2400     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2401       return SDValue();
2402     return getSetCC(dl, VT, N2, N1, SwappedCond);
2403   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2404              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2405     // If an operand is known to be a nan (or undef that could be a nan), we can
2406     // fold it.
2407     // Choosing NaN for the undef will always make unordered comparison succeed
2408     // and ordered comparison fails.
2409     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2410     switch (ISD::getUnorderedFlavor(Cond)) {
2411     default:
2412       llvm_unreachable("Unknown flavor!");
2413     case 0: // Known false.
2414       return getBoolConstant(false, dl, VT, OpVT);
2415     case 1: // Known true.
2416       return getBoolConstant(true, dl, VT, OpVT);
2417     case 2: // Undefined.
2418       return getUNDEF(VT);
2419     }
2420   }
2421 
2422   // Could not fold it.
2423   return SDValue();
2424 }
2425 
2426 /// See if the specified operand can be simplified with the knowledge that only
2427 /// the bits specified by DemandedBits are used.
2428 /// TODO: really we should be making this into the DAG equivalent of
2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2431   EVT VT = V.getValueType();
2432 
2433   if (VT.isScalableVector())
2434     return SDValue();
2435 
2436   APInt DemandedElts = VT.isVector()
2437                            ? APInt::getAllOnes(VT.getVectorNumElements())
2438                            : APInt(1, 1);
2439   return GetDemandedBits(V, DemandedBits, DemandedElts);
2440 }
2441 
2442 /// See if the specified operand can be simplified with the knowledge that only
2443 /// the bits specified by DemandedBits are used in the elements specified by
2444 /// DemandedElts.
2445 /// TODO: really we should be making this into the DAG equivalent of
2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2448                                       const APInt &DemandedElts) {
2449   switch (V.getOpcode()) {
2450   default:
2451     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2452                                                 *this);
2453   case ISD::Constant: {
2454     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2455     APInt NewVal = CVal & DemandedBits;
2456     if (NewVal != CVal)
2457       return getConstant(NewVal, SDLoc(V), V.getValueType());
2458     break;
2459   }
2460   case ISD::SRL:
2461     // Only look at single-use SRLs.
2462     if (!V.getNode()->hasOneUse())
2463       break;
2464     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2465       // See if we can recursively simplify the LHS.
2466       unsigned Amt = RHSC->getZExtValue();
2467 
2468       // Watch out for shift count overflow though.
2469       if (Amt >= DemandedBits.getBitWidth())
2470         break;
2471       APInt SrcDemandedBits = DemandedBits << Amt;
2472       if (SDValue SimplifyLHS =
2473               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2474         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2475                        V.getOperand(1));
2476     }
2477     break;
2478   }
2479   return SDValue();
2480 }
2481 
2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2483 /// use this predicate to simplify operations downstream.
2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2485   unsigned BitWidth = Op.getScalarValueSizeInBits();
2486   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2487 }
2488 
2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2490 /// this predicate to simplify operations downstream.  Mask is known to be zero
2491 /// for bits that V cannot have.
2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2493                                      unsigned Depth) const {
2494   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2495 }
2496 
2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2498 /// DemandedElts.  We use this predicate to simplify operations downstream.
2499 /// Mask is known to be zero for bits that V cannot have.
2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2501                                      const APInt &DemandedElts,
2502                                      unsigned Depth) const {
2503   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2504 }
2505 
2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2508                                         unsigned Depth) const {
2509   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2510 }
2511 
2512 /// isSplatValue - Return true if the vector V has the same value
2513 /// across all DemandedElts. For scalable vectors it does not make
2514 /// sense to specify which elements are demanded or undefined, therefore
2515 /// they are simply ignored.
2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2517                                 APInt &UndefElts, unsigned Depth) const {
2518   unsigned Opcode = V.getOpcode();
2519   EVT VT = V.getValueType();
2520   assert(VT.isVector() && "Vector type expected");
2521 
2522   if (!VT.isScalableVector() && !DemandedElts)
2523     return false; // No demanded elts, better to assume we don't know anything.
2524 
2525   if (Depth >= MaxRecursionDepth)
2526     return false; // Limit search depth.
2527 
2528   // Deal with some common cases here that work for both fixed and scalable
2529   // vector types.
2530   switch (Opcode) {
2531   case ISD::SPLAT_VECTOR:
2532     UndefElts = V.getOperand(0).isUndef()
2533                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2534                     : APInt(DemandedElts.getBitWidth(), 0);
2535     return true;
2536   case ISD::ADD:
2537   case ISD::SUB:
2538   case ISD::AND:
2539   case ISD::XOR:
2540   case ISD::OR: {
2541     APInt UndefLHS, UndefRHS;
2542     SDValue LHS = V.getOperand(0);
2543     SDValue RHS = V.getOperand(1);
2544     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2545         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2546       UndefElts = UndefLHS | UndefRHS;
2547       return true;
2548     }
2549     return false;
2550   }
2551   case ISD::ABS:
2552   case ISD::TRUNCATE:
2553   case ISD::SIGN_EXTEND:
2554   case ISD::ZERO_EXTEND:
2555     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2556   default:
2557     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2558         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2559       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2560     break;
2561 }
2562 
2563   // We don't support other cases than those above for scalable vectors at
2564   // the moment.
2565   if (VT.isScalableVector())
2566     return false;
2567 
2568   unsigned NumElts = VT.getVectorNumElements();
2569   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2570   UndefElts = APInt::getZero(NumElts);
2571 
2572   switch (Opcode) {
2573   case ISD::BUILD_VECTOR: {
2574     SDValue Scl;
2575     for (unsigned i = 0; i != NumElts; ++i) {
2576       SDValue Op = V.getOperand(i);
2577       if (Op.isUndef()) {
2578         UndefElts.setBit(i);
2579         continue;
2580       }
2581       if (!DemandedElts[i])
2582         continue;
2583       if (Scl && Scl != Op)
2584         return false;
2585       Scl = Op;
2586     }
2587     return true;
2588   }
2589   case ISD::VECTOR_SHUFFLE: {
2590     // Check if this is a shuffle node doing a splat.
2591     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2592     int SplatIndex = -1;
2593     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2594     for (int i = 0; i != (int)NumElts; ++i) {
2595       int M = Mask[i];
2596       if (M < 0) {
2597         UndefElts.setBit(i);
2598         continue;
2599       }
2600       if (!DemandedElts[i])
2601         continue;
2602       if (0 <= SplatIndex && SplatIndex != M)
2603         return false;
2604       SplatIndex = M;
2605     }
2606     return true;
2607   }
2608   case ISD::EXTRACT_SUBVECTOR: {
2609     // Offset the demanded elts by the subvector index.
2610     SDValue Src = V.getOperand(0);
2611     // We don't support scalable vectors at the moment.
2612     if (Src.getValueType().isScalableVector())
2613       return false;
2614     uint64_t Idx = V.getConstantOperandVal(1);
2615     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2616     APInt UndefSrcElts;
2617     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2618     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2619       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2620       return true;
2621     }
2622     break;
2623   }
2624   case ISD::ANY_EXTEND_VECTOR_INREG:
2625   case ISD::SIGN_EXTEND_VECTOR_INREG:
2626   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2627     // Widen the demanded elts by the src element count.
2628     SDValue Src = V.getOperand(0);
2629     // We don't support scalable vectors at the moment.
2630     if (Src.getValueType().isScalableVector())
2631       return false;
2632     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2633     APInt UndefSrcElts;
2634     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2635     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2636       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2637       return true;
2638     }
2639     break;
2640   }
2641   }
2642 
2643   return false;
2644 }
2645 
2646 /// Helper wrapper to main isSplatValue function.
2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2648   EVT VT = V.getValueType();
2649   assert(VT.isVector() && "Vector type expected");
2650 
2651   APInt UndefElts;
2652   APInt DemandedElts;
2653 
2654   // For now we don't support this with scalable vectors.
2655   if (!VT.isScalableVector())
2656     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2657   return isSplatValue(V, DemandedElts, UndefElts) &&
2658          (AllowUndefs || !UndefElts);
2659 }
2660 
2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2662   V = peekThroughExtractSubvectors(V);
2663 
2664   EVT VT = V.getValueType();
2665   unsigned Opcode = V.getOpcode();
2666   switch (Opcode) {
2667   default: {
2668     APInt UndefElts;
2669     APInt DemandedElts;
2670 
2671     if (!VT.isScalableVector())
2672       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2673 
2674     if (isSplatValue(V, DemandedElts, UndefElts)) {
2675       if (VT.isScalableVector()) {
2676         // DemandedElts and UndefElts are ignored for scalable vectors, since
2677         // the only supported cases are SPLAT_VECTOR nodes.
2678         SplatIdx = 0;
2679       } else {
2680         // Handle case where all demanded elements are UNDEF.
2681         if (DemandedElts.isSubsetOf(UndefElts)) {
2682           SplatIdx = 0;
2683           return getUNDEF(VT);
2684         }
2685         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2686       }
2687       return V;
2688     }
2689     break;
2690   }
2691   case ISD::SPLAT_VECTOR:
2692     SplatIdx = 0;
2693     return V;
2694   case ISD::VECTOR_SHUFFLE: {
2695     if (VT.isScalableVector())
2696       return SDValue();
2697 
2698     // Check if this is a shuffle node doing a splat.
2699     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2700     // getTargetVShiftNode currently struggles without the splat source.
2701     auto *SVN = cast<ShuffleVectorSDNode>(V);
2702     if (!SVN->isSplat())
2703       break;
2704     int Idx = SVN->getSplatIndex();
2705     int NumElts = V.getValueType().getVectorNumElements();
2706     SplatIdx = Idx % NumElts;
2707     return V.getOperand(Idx / NumElts);
2708   }
2709   }
2710 
2711   return SDValue();
2712 }
2713 
2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2715   int SplatIdx;
2716   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2717     EVT SVT = SrcVector.getValueType().getScalarType();
2718     EVT LegalSVT = SVT;
2719     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2720       if (!SVT.isInteger())
2721         return SDValue();
2722       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2723       if (LegalSVT.bitsLT(SVT))
2724         return SDValue();
2725     }
2726     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2727                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2728   }
2729   return SDValue();
2730 }
2731 
2732 const APInt *
2733 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2734                                           const APInt &DemandedElts) const {
2735   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2736           V.getOpcode() == ISD::SRA) &&
2737          "Unknown shift node");
2738   unsigned BitWidth = V.getScalarValueSizeInBits();
2739   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2740     // Shifting more than the bitwidth is not valid.
2741     const APInt &ShAmt = SA->getAPIntValue();
2742     if (ShAmt.ult(BitWidth))
2743       return &ShAmt;
2744   }
2745   return nullptr;
2746 }
2747 
2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2749     SDValue V, const APInt &DemandedElts) const {
2750   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2751           V.getOpcode() == ISD::SRA) &&
2752          "Unknown shift node");
2753   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2754     return ValidAmt;
2755   unsigned BitWidth = V.getScalarValueSizeInBits();
2756   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2757   if (!BV)
2758     return nullptr;
2759   const APInt *MinShAmt = nullptr;
2760   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2761     if (!DemandedElts[i])
2762       continue;
2763     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2764     if (!SA)
2765       return nullptr;
2766     // Shifting more than the bitwidth is not valid.
2767     const APInt &ShAmt = SA->getAPIntValue();
2768     if (ShAmt.uge(BitWidth))
2769       return nullptr;
2770     if (MinShAmt && MinShAmt->ule(ShAmt))
2771       continue;
2772     MinShAmt = &ShAmt;
2773   }
2774   return MinShAmt;
2775 }
2776 
2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2778     SDValue V, const APInt &DemandedElts) const {
2779   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2780           V.getOpcode() == ISD::SRA) &&
2781          "Unknown shift node");
2782   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2783     return ValidAmt;
2784   unsigned BitWidth = V.getScalarValueSizeInBits();
2785   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2786   if (!BV)
2787     return nullptr;
2788   const APInt *MaxShAmt = nullptr;
2789   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2790     if (!DemandedElts[i])
2791       continue;
2792     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2793     if (!SA)
2794       return nullptr;
2795     // Shifting more than the bitwidth is not valid.
2796     const APInt &ShAmt = SA->getAPIntValue();
2797     if (ShAmt.uge(BitWidth))
2798       return nullptr;
2799     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2800       continue;
2801     MaxShAmt = &ShAmt;
2802   }
2803   return MaxShAmt;
2804 }
2805 
2806 /// Determine which bits of Op are known to be either zero or one and return
2807 /// them in Known. For vectors, the known bits are those that are shared by
2808 /// every vector element.
2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2810   EVT VT = Op.getValueType();
2811 
2812   // TOOD: Until we have a plan for how to represent demanded elements for
2813   // scalable vectors, we can just bail out for now.
2814   if (Op.getValueType().isScalableVector()) {
2815     unsigned BitWidth = Op.getScalarValueSizeInBits();
2816     return KnownBits(BitWidth);
2817   }
2818 
2819   APInt DemandedElts = VT.isVector()
2820                            ? APInt::getAllOnes(VT.getVectorNumElements())
2821                            : APInt(1, 1);
2822   return computeKnownBits(Op, DemandedElts, Depth);
2823 }
2824 
2825 /// Determine which bits of Op are known to be either zero or one and return
2826 /// them in Known. The DemandedElts argument allows us to only collect the known
2827 /// bits that are shared by the requested vector elements.
2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2829                                          unsigned Depth) const {
2830   unsigned BitWidth = Op.getScalarValueSizeInBits();
2831 
2832   KnownBits Known(BitWidth);   // Don't know anything.
2833 
2834   // TOOD: Until we have a plan for how to represent demanded elements for
2835   // scalable vectors, we can just bail out for now.
2836   if (Op.getValueType().isScalableVector())
2837     return Known;
2838 
2839   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2840     // We know all of the bits for a constant!
2841     return KnownBits::makeConstant(C->getAPIntValue());
2842   }
2843   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2844     // We know all of the bits for a constant fp!
2845     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2846   }
2847 
2848   if (Depth >= MaxRecursionDepth)
2849     return Known;  // Limit search depth.
2850 
2851   KnownBits Known2;
2852   unsigned NumElts = DemandedElts.getBitWidth();
2853   assert((!Op.getValueType().isVector() ||
2854           NumElts == Op.getValueType().getVectorNumElements()) &&
2855          "Unexpected vector size");
2856 
2857   if (!DemandedElts)
2858     return Known;  // No demanded elts, better to assume we don't know anything.
2859 
2860   unsigned Opcode = Op.getOpcode();
2861   switch (Opcode) {
2862   case ISD::BUILD_VECTOR:
2863     // Collect the known bits that are shared by every demanded vector element.
2864     Known.Zero.setAllBits(); Known.One.setAllBits();
2865     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2866       if (!DemandedElts[i])
2867         continue;
2868 
2869       SDValue SrcOp = Op.getOperand(i);
2870       Known2 = computeKnownBits(SrcOp, Depth + 1);
2871 
2872       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2873       if (SrcOp.getValueSizeInBits() != BitWidth) {
2874         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2875                "Expected BUILD_VECTOR implicit truncation");
2876         Known2 = Known2.trunc(BitWidth);
2877       }
2878 
2879       // Known bits are the values that are shared by every demanded element.
2880       Known = KnownBits::commonBits(Known, Known2);
2881 
2882       // If we don't know any bits, early out.
2883       if (Known.isUnknown())
2884         break;
2885     }
2886     break;
2887   case ISD::VECTOR_SHUFFLE: {
2888     // Collect the known bits that are shared by every vector element referenced
2889     // by the shuffle.
2890     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2891     Known.Zero.setAllBits(); Known.One.setAllBits();
2892     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2893     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2894     for (unsigned i = 0; i != NumElts; ++i) {
2895       if (!DemandedElts[i])
2896         continue;
2897 
2898       int M = SVN->getMaskElt(i);
2899       if (M < 0) {
2900         // For UNDEF elements, we don't know anything about the common state of
2901         // the shuffle result.
2902         Known.resetAll();
2903         DemandedLHS.clearAllBits();
2904         DemandedRHS.clearAllBits();
2905         break;
2906       }
2907 
2908       if ((unsigned)M < NumElts)
2909         DemandedLHS.setBit((unsigned)M % NumElts);
2910       else
2911         DemandedRHS.setBit((unsigned)M % NumElts);
2912     }
2913     // Known bits are the values that are shared by every demanded element.
2914     if (!!DemandedLHS) {
2915       SDValue LHS = Op.getOperand(0);
2916       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2917       Known = KnownBits::commonBits(Known, Known2);
2918     }
2919     // If we don't know any bits, early out.
2920     if (Known.isUnknown())
2921       break;
2922     if (!!DemandedRHS) {
2923       SDValue RHS = Op.getOperand(1);
2924       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2925       Known = KnownBits::commonBits(Known, Known2);
2926     }
2927     break;
2928   }
2929   case ISD::CONCAT_VECTORS: {
2930     // Split DemandedElts and test each of the demanded subvectors.
2931     Known.Zero.setAllBits(); Known.One.setAllBits();
2932     EVT SubVectorVT = Op.getOperand(0).getValueType();
2933     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2934     unsigned NumSubVectors = Op.getNumOperands();
2935     for (unsigned i = 0; i != NumSubVectors; ++i) {
2936       APInt DemandedSub =
2937           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2938       if (!!DemandedSub) {
2939         SDValue Sub = Op.getOperand(i);
2940         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2941         Known = KnownBits::commonBits(Known, Known2);
2942       }
2943       // If we don't know any bits, early out.
2944       if (Known.isUnknown())
2945         break;
2946     }
2947     break;
2948   }
2949   case ISD::INSERT_SUBVECTOR: {
2950     // Demand any elements from the subvector and the remainder from the src its
2951     // inserted into.
2952     SDValue Src = Op.getOperand(0);
2953     SDValue Sub = Op.getOperand(1);
2954     uint64_t Idx = Op.getConstantOperandVal(2);
2955     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2956     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2957     APInt DemandedSrcElts = DemandedElts;
2958     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2959 
2960     Known.One.setAllBits();
2961     Known.Zero.setAllBits();
2962     if (!!DemandedSubElts) {
2963       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2964       if (Known.isUnknown())
2965         break; // early-out.
2966     }
2967     if (!!DemandedSrcElts) {
2968       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2969       Known = KnownBits::commonBits(Known, Known2);
2970     }
2971     break;
2972   }
2973   case ISD::EXTRACT_SUBVECTOR: {
2974     // Offset the demanded elts by the subvector index.
2975     SDValue Src = Op.getOperand(0);
2976     // Bail until we can represent demanded elements for scalable vectors.
2977     if (Src.getValueType().isScalableVector())
2978       break;
2979     uint64_t Idx = Op.getConstantOperandVal(1);
2980     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2981     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2982     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2983     break;
2984   }
2985   case ISD::SCALAR_TO_VECTOR: {
2986     // We know about scalar_to_vector as much as we know about it source,
2987     // which becomes the first element of otherwise unknown vector.
2988     if (DemandedElts != 1)
2989       break;
2990 
2991     SDValue N0 = Op.getOperand(0);
2992     Known = computeKnownBits(N0, Depth + 1);
2993     if (N0.getValueSizeInBits() != BitWidth)
2994       Known = Known.trunc(BitWidth);
2995 
2996     break;
2997   }
2998   case ISD::BITCAST: {
2999     SDValue N0 = Op.getOperand(0);
3000     EVT SubVT = N0.getValueType();
3001     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3002 
3003     // Ignore bitcasts from unsupported types.
3004     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3005       break;
3006 
3007     // Fast handling of 'identity' bitcasts.
3008     if (BitWidth == SubBitWidth) {
3009       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3010       break;
3011     }
3012 
3013     bool IsLE = getDataLayout().isLittleEndian();
3014 
3015     // Bitcast 'small element' vector to 'large element' scalar/vector.
3016     if ((BitWidth % SubBitWidth) == 0) {
3017       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3018 
3019       // Collect known bits for the (larger) output by collecting the known
3020       // bits from each set of sub elements and shift these into place.
3021       // We need to separately call computeKnownBits for each set of
3022       // sub elements as the knownbits for each is likely to be different.
3023       unsigned SubScale = BitWidth / SubBitWidth;
3024       APInt SubDemandedElts(NumElts * SubScale, 0);
3025       for (unsigned i = 0; i != NumElts; ++i)
3026         if (DemandedElts[i])
3027           SubDemandedElts.setBit(i * SubScale);
3028 
3029       for (unsigned i = 0; i != SubScale; ++i) {
3030         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3031                          Depth + 1);
3032         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3033         Known.insertBits(Known2, SubBitWidth * Shifts);
3034       }
3035     }
3036 
3037     // Bitcast 'large element' scalar/vector to 'small element' vector.
3038     if ((SubBitWidth % BitWidth) == 0) {
3039       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3040 
3041       // Collect known bits for the (smaller) output by collecting the known
3042       // bits from the overlapping larger input elements and extracting the
3043       // sub sections we actually care about.
3044       unsigned SubScale = SubBitWidth / BitWidth;
3045       APInt SubDemandedElts =
3046           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3047       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3048 
3049       Known.Zero.setAllBits(); Known.One.setAllBits();
3050       for (unsigned i = 0; i != NumElts; ++i)
3051         if (DemandedElts[i]) {
3052           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3053           unsigned Offset = (Shifts % SubScale) * BitWidth;
3054           Known = KnownBits::commonBits(Known,
3055                                         Known2.extractBits(BitWidth, Offset));
3056           // If we don't know any bits, early out.
3057           if (Known.isUnknown())
3058             break;
3059         }
3060     }
3061     break;
3062   }
3063   case ISD::AND:
3064     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3065     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3066 
3067     Known &= Known2;
3068     break;
3069   case ISD::OR:
3070     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3071     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3072 
3073     Known |= Known2;
3074     break;
3075   case ISD::XOR:
3076     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3077     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3078 
3079     Known ^= Known2;
3080     break;
3081   case ISD::MUL: {
3082     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3083     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3084     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3085     // TODO: SelfMultiply can be poison, but not undef.
3086     if (SelfMultiply)
3087       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3088           Op.getOperand(0), DemandedElts, false, Depth + 1);
3089     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3090     break;
3091   }
3092   case ISD::MULHU: {
3093     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3094     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3095     Known = KnownBits::mulhu(Known, Known2);
3096     break;
3097   }
3098   case ISD::MULHS: {
3099     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3100     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3101     Known = KnownBits::mulhs(Known, Known2);
3102     break;
3103   }
3104   case ISD::UMUL_LOHI: {
3105     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3106     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3107     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3108     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3109     if (Op.getResNo() == 0)
3110       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3111     else
3112       Known = KnownBits::mulhu(Known, Known2);
3113     break;
3114   }
3115   case ISD::SMUL_LOHI: {
3116     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3117     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3118     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3119     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3120     if (Op.getResNo() == 0)
3121       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3122     else
3123       Known = KnownBits::mulhs(Known, Known2);
3124     break;
3125   }
3126   case ISD::UDIV: {
3127     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3128     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3129     Known = KnownBits::udiv(Known, Known2);
3130     break;
3131   }
3132   case ISD::AVGCEILU: {
3133     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3134     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3135     Known = Known.zext(BitWidth + 1);
3136     Known2 = Known2.zext(BitWidth + 1);
3137     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3138     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3139     Known = Known.extractBits(BitWidth, 1);
3140     break;
3141   }
3142   case ISD::SELECT:
3143   case ISD::VSELECT:
3144     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3145     // If we don't know any bits, early out.
3146     if (Known.isUnknown())
3147       break;
3148     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3149 
3150     // Only known if known in both the LHS and RHS.
3151     Known = KnownBits::commonBits(Known, Known2);
3152     break;
3153   case ISD::SELECT_CC:
3154     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3155     // If we don't know any bits, early out.
3156     if (Known.isUnknown())
3157       break;
3158     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3159 
3160     // Only known if known in both the LHS and RHS.
3161     Known = KnownBits::commonBits(Known, Known2);
3162     break;
3163   case ISD::SMULO:
3164   case ISD::UMULO:
3165     if (Op.getResNo() != 1)
3166       break;
3167     // The boolean result conforms to getBooleanContents.
3168     // If we know the result of a setcc has the top bits zero, use this info.
3169     // We know that we have an integer-based boolean since these operations
3170     // are only available for integer.
3171     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3172             TargetLowering::ZeroOrOneBooleanContent &&
3173         BitWidth > 1)
3174       Known.Zero.setBitsFrom(1);
3175     break;
3176   case ISD::SETCC:
3177   case ISD::STRICT_FSETCC:
3178   case ISD::STRICT_FSETCCS: {
3179     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3180     // If we know the result of a setcc has the top bits zero, use this info.
3181     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3182             TargetLowering::ZeroOrOneBooleanContent &&
3183         BitWidth > 1)
3184       Known.Zero.setBitsFrom(1);
3185     break;
3186   }
3187   case ISD::SHL:
3188     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3189     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3190     Known = KnownBits::shl(Known, Known2);
3191 
3192     // Minimum shift low bits are known zero.
3193     if (const APInt *ShMinAmt =
3194             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3195       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3196     break;
3197   case ISD::SRL:
3198     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3199     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3200     Known = KnownBits::lshr(Known, Known2);
3201 
3202     // Minimum shift high bits are known zero.
3203     if (const APInt *ShMinAmt =
3204             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3205       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3206     break;
3207   case ISD::SRA:
3208     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3209     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3210     Known = KnownBits::ashr(Known, Known2);
3211     // TODO: Add minimum shift high known sign bits.
3212     break;
3213   case ISD::FSHL:
3214   case ISD::FSHR:
3215     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3216       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3217 
3218       // For fshl, 0-shift returns the 1st arg.
3219       // For fshr, 0-shift returns the 2nd arg.
3220       if (Amt == 0) {
3221         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3222                                  DemandedElts, Depth + 1);
3223         break;
3224       }
3225 
3226       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3227       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3228       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3229       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3230       if (Opcode == ISD::FSHL) {
3231         Known.One <<= Amt;
3232         Known.Zero <<= Amt;
3233         Known2.One.lshrInPlace(BitWidth - Amt);
3234         Known2.Zero.lshrInPlace(BitWidth - Amt);
3235       } else {
3236         Known.One <<= BitWidth - Amt;
3237         Known.Zero <<= BitWidth - Amt;
3238         Known2.One.lshrInPlace(Amt);
3239         Known2.Zero.lshrInPlace(Amt);
3240       }
3241       Known.One |= Known2.One;
3242       Known.Zero |= Known2.Zero;
3243     }
3244     break;
3245   case ISD::SIGN_EXTEND_INREG: {
3246     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3247     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3248     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3249     break;
3250   }
3251   case ISD::CTTZ:
3252   case ISD::CTTZ_ZERO_UNDEF: {
3253     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3254     // If we have a known 1, its position is our upper bound.
3255     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3256     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3257     Known.Zero.setBitsFrom(LowBits);
3258     break;
3259   }
3260   case ISD::CTLZ:
3261   case ISD::CTLZ_ZERO_UNDEF: {
3262     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3263     // If we have a known 1, its position is our upper bound.
3264     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3265     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3266     Known.Zero.setBitsFrom(LowBits);
3267     break;
3268   }
3269   case ISD::CTPOP: {
3270     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3271     // If we know some of the bits are zero, they can't be one.
3272     unsigned PossibleOnes = Known2.countMaxPopulation();
3273     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3274     break;
3275   }
3276   case ISD::PARITY: {
3277     // Parity returns 0 everywhere but the LSB.
3278     Known.Zero.setBitsFrom(1);
3279     break;
3280   }
3281   case ISD::LOAD: {
3282     LoadSDNode *LD = cast<LoadSDNode>(Op);
3283     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3284     if (ISD::isNON_EXTLoad(LD) && Cst) {
3285       // Determine any common known bits from the loaded constant pool value.
3286       Type *CstTy = Cst->getType();
3287       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3288         // If its a vector splat, then we can (quickly) reuse the scalar path.
3289         // NOTE: We assume all elements match and none are UNDEF.
3290         if (CstTy->isVectorTy()) {
3291           if (const Constant *Splat = Cst->getSplatValue()) {
3292             Cst = Splat;
3293             CstTy = Cst->getType();
3294           }
3295         }
3296         // TODO - do we need to handle different bitwidths?
3297         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3298           // Iterate across all vector elements finding common known bits.
3299           Known.One.setAllBits();
3300           Known.Zero.setAllBits();
3301           for (unsigned i = 0; i != NumElts; ++i) {
3302             if (!DemandedElts[i])
3303               continue;
3304             if (Constant *Elt = Cst->getAggregateElement(i)) {
3305               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3306                 const APInt &Value = CInt->getValue();
3307                 Known.One &= Value;
3308                 Known.Zero &= ~Value;
3309                 continue;
3310               }
3311               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3312                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3313                 Known.One &= Value;
3314                 Known.Zero &= ~Value;
3315                 continue;
3316               }
3317             }
3318             Known.One.clearAllBits();
3319             Known.Zero.clearAllBits();
3320             break;
3321           }
3322         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3323           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3324             Known = KnownBits::makeConstant(CInt->getValue());
3325           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3326             Known =
3327                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3328           }
3329         }
3330       }
3331     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3332       // If this is a ZEXTLoad and we are looking at the loaded value.
3333       EVT VT = LD->getMemoryVT();
3334       unsigned MemBits = VT.getScalarSizeInBits();
3335       Known.Zero.setBitsFrom(MemBits);
3336     } else if (const MDNode *Ranges = LD->getRanges()) {
3337       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3338         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3339     }
3340     break;
3341   }
3342   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3343     EVT InVT = Op.getOperand(0).getValueType();
3344     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3345     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3346     Known = Known.zext(BitWidth);
3347     break;
3348   }
3349   case ISD::ZERO_EXTEND: {
3350     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3351     Known = Known.zext(BitWidth);
3352     break;
3353   }
3354   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3355     EVT InVT = Op.getOperand(0).getValueType();
3356     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3357     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3358     // If the sign bit is known to be zero or one, then sext will extend
3359     // it to the top bits, else it will just zext.
3360     Known = Known.sext(BitWidth);
3361     break;
3362   }
3363   case ISD::SIGN_EXTEND: {
3364     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3365     // If the sign bit is known to be zero or one, then sext will extend
3366     // it to the top bits, else it will just zext.
3367     Known = Known.sext(BitWidth);
3368     break;
3369   }
3370   case ISD::ANY_EXTEND_VECTOR_INREG: {
3371     EVT InVT = Op.getOperand(0).getValueType();
3372     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3373     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3374     Known = Known.anyext(BitWidth);
3375     break;
3376   }
3377   case ISD::ANY_EXTEND: {
3378     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3379     Known = Known.anyext(BitWidth);
3380     break;
3381   }
3382   case ISD::TRUNCATE: {
3383     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3384     Known = Known.trunc(BitWidth);
3385     break;
3386   }
3387   case ISD::AssertZext: {
3388     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3389     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3390     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3391     Known.Zero |= (~InMask);
3392     Known.One  &= (~Known.Zero);
3393     break;
3394   }
3395   case ISD::AssertAlign: {
3396     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3397     assert(LogOfAlign != 0);
3398 
3399     // TODO: Should use maximum with source
3400     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3401     // well as clearing one bits.
3402     Known.Zero.setLowBits(LogOfAlign);
3403     Known.One.clearLowBits(LogOfAlign);
3404     break;
3405   }
3406   case ISD::FGETSIGN:
3407     // All bits are zero except the low bit.
3408     Known.Zero.setBitsFrom(1);
3409     break;
3410   case ISD::USUBO:
3411   case ISD::SSUBO:
3412     if (Op.getResNo() == 1) {
3413       // If we know the result of a setcc has the top bits zero, use this info.
3414       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3415               TargetLowering::ZeroOrOneBooleanContent &&
3416           BitWidth > 1)
3417         Known.Zero.setBitsFrom(1);
3418       break;
3419     }
3420     LLVM_FALLTHROUGH;
3421   case ISD::SUB:
3422   case ISD::SUBC: {
3423     assert(Op.getResNo() == 0 &&
3424            "We only compute knownbits for the difference here.");
3425 
3426     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3427     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3428     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3429                                         Known, Known2);
3430     break;
3431   }
3432   case ISD::UADDO:
3433   case ISD::SADDO:
3434   case ISD::ADDCARRY:
3435     if (Op.getResNo() == 1) {
3436       // If we know the result of a setcc has the top bits zero, use this info.
3437       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3438               TargetLowering::ZeroOrOneBooleanContent &&
3439           BitWidth > 1)
3440         Known.Zero.setBitsFrom(1);
3441       break;
3442     }
3443     LLVM_FALLTHROUGH;
3444   case ISD::ADD:
3445   case ISD::ADDC:
3446   case ISD::ADDE: {
3447     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3448 
3449     // With ADDE and ADDCARRY, a carry bit may be added in.
3450     KnownBits Carry(1);
3451     if (Opcode == ISD::ADDE)
3452       // Can't track carry from glue, set carry to unknown.
3453       Carry.resetAll();
3454     else if (Opcode == ISD::ADDCARRY)
3455       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3456       // the trouble (how often will we find a known carry bit). And I haven't
3457       // tested this very much yet, but something like this might work:
3458       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3459       //   Carry = Carry.zextOrTrunc(1, false);
3460       Carry.resetAll();
3461     else
3462       Carry.setAllZero();
3463 
3464     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3465     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3466     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3467     break;
3468   }
3469   case ISD::SREM: {
3470     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3471     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3472     Known = KnownBits::srem(Known, Known2);
3473     break;
3474   }
3475   case ISD::UREM: {
3476     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3477     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3478     Known = KnownBits::urem(Known, Known2);
3479     break;
3480   }
3481   case ISD::EXTRACT_ELEMENT: {
3482     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3483     const unsigned Index = Op.getConstantOperandVal(1);
3484     const unsigned EltBitWidth = Op.getValueSizeInBits();
3485 
3486     // Remove low part of known bits mask
3487     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3488     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3489 
3490     // Remove high part of known bit mask
3491     Known = Known.trunc(EltBitWidth);
3492     break;
3493   }
3494   case ISD::EXTRACT_VECTOR_ELT: {
3495     SDValue InVec = Op.getOperand(0);
3496     SDValue EltNo = Op.getOperand(1);
3497     EVT VecVT = InVec.getValueType();
3498     // computeKnownBits not yet implemented for scalable vectors.
3499     if (VecVT.isScalableVector())
3500       break;
3501     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3502     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3503 
3504     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3505     // anything about the extended bits.
3506     if (BitWidth > EltBitWidth)
3507       Known = Known.trunc(EltBitWidth);
3508 
3509     // If we know the element index, just demand that vector element, else for
3510     // an unknown element index, ignore DemandedElts and demand them all.
3511     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3512     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3513     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3514       DemandedSrcElts =
3515           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3516 
3517     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3518     if (BitWidth > EltBitWidth)
3519       Known = Known.anyext(BitWidth);
3520     break;
3521   }
3522   case ISD::INSERT_VECTOR_ELT: {
3523     // If we know the element index, split the demand between the
3524     // source vector and the inserted element, otherwise assume we need
3525     // the original demanded vector elements and the value.
3526     SDValue InVec = Op.getOperand(0);
3527     SDValue InVal = Op.getOperand(1);
3528     SDValue EltNo = Op.getOperand(2);
3529     bool DemandedVal = true;
3530     APInt DemandedVecElts = DemandedElts;
3531     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3532     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3533       unsigned EltIdx = CEltNo->getZExtValue();
3534       DemandedVal = !!DemandedElts[EltIdx];
3535       DemandedVecElts.clearBit(EltIdx);
3536     }
3537     Known.One.setAllBits();
3538     Known.Zero.setAllBits();
3539     if (DemandedVal) {
3540       Known2 = computeKnownBits(InVal, Depth + 1);
3541       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3542     }
3543     if (!!DemandedVecElts) {
3544       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3545       Known = KnownBits::commonBits(Known, Known2);
3546     }
3547     break;
3548   }
3549   case ISD::BITREVERSE: {
3550     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3551     Known = Known2.reverseBits();
3552     break;
3553   }
3554   case ISD::BSWAP: {
3555     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3556     Known = Known2.byteSwap();
3557     break;
3558   }
3559   case ISD::ABS: {
3560     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3561     Known = Known2.abs();
3562     break;
3563   }
3564   case ISD::USUBSAT: {
3565     // The result of usubsat will never be larger than the LHS.
3566     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3567     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3568     break;
3569   }
3570   case ISD::UMIN: {
3571     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3572     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3573     Known = KnownBits::umin(Known, Known2);
3574     break;
3575   }
3576   case ISD::UMAX: {
3577     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3578     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3579     Known = KnownBits::umax(Known, Known2);
3580     break;
3581   }
3582   case ISD::SMIN:
3583   case ISD::SMAX: {
3584     // If we have a clamp pattern, we know that the number of sign bits will be
3585     // the minimum of the clamp min/max range.
3586     bool IsMax = (Opcode == ISD::SMAX);
3587     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3588     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3589       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3590         CstHigh =
3591             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3592     if (CstLow && CstHigh) {
3593       if (!IsMax)
3594         std::swap(CstLow, CstHigh);
3595 
3596       const APInt &ValueLow = CstLow->getAPIntValue();
3597       const APInt &ValueHigh = CstHigh->getAPIntValue();
3598       if (ValueLow.sle(ValueHigh)) {
3599         unsigned LowSignBits = ValueLow.getNumSignBits();
3600         unsigned HighSignBits = ValueHigh.getNumSignBits();
3601         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3602         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3603           Known.One.setHighBits(MinSignBits);
3604           break;
3605         }
3606         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3607           Known.Zero.setHighBits(MinSignBits);
3608           break;
3609         }
3610       }
3611     }
3612 
3613     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3614     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3615     if (IsMax)
3616       Known = KnownBits::smax(Known, Known2);
3617     else
3618       Known = KnownBits::smin(Known, Known2);
3619     break;
3620   }
3621   case ISD::FP_TO_UINT_SAT: {
3622     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3623     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3624     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3625     break;
3626   }
3627   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3628     if (Op.getResNo() == 1) {
3629       // The boolean result conforms to getBooleanContents.
3630       // If we know the result of a setcc has the top bits zero, use this info.
3631       // We know that we have an integer-based boolean since these operations
3632       // are only available for integer.
3633       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3634               TargetLowering::ZeroOrOneBooleanContent &&
3635           BitWidth > 1)
3636         Known.Zero.setBitsFrom(1);
3637       break;
3638     }
3639     LLVM_FALLTHROUGH;
3640   case ISD::ATOMIC_CMP_SWAP:
3641   case ISD::ATOMIC_SWAP:
3642   case ISD::ATOMIC_LOAD_ADD:
3643   case ISD::ATOMIC_LOAD_SUB:
3644   case ISD::ATOMIC_LOAD_AND:
3645   case ISD::ATOMIC_LOAD_CLR:
3646   case ISD::ATOMIC_LOAD_OR:
3647   case ISD::ATOMIC_LOAD_XOR:
3648   case ISD::ATOMIC_LOAD_NAND:
3649   case ISD::ATOMIC_LOAD_MIN:
3650   case ISD::ATOMIC_LOAD_MAX:
3651   case ISD::ATOMIC_LOAD_UMIN:
3652   case ISD::ATOMIC_LOAD_UMAX:
3653   case ISD::ATOMIC_LOAD: {
3654     unsigned MemBits =
3655         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3656     // If we are looking at the loaded value.
3657     if (Op.getResNo() == 0) {
3658       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3659         Known.Zero.setBitsFrom(MemBits);
3660     }
3661     break;
3662   }
3663   case ISD::FrameIndex:
3664   case ISD::TargetFrameIndex:
3665     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3666                                        Known, getMachineFunction());
3667     break;
3668 
3669   default:
3670     if (Opcode < ISD::BUILTIN_OP_END)
3671       break;
3672     LLVM_FALLTHROUGH;
3673   case ISD::INTRINSIC_WO_CHAIN:
3674   case ISD::INTRINSIC_W_CHAIN:
3675   case ISD::INTRINSIC_VOID:
3676     // Allow the target to implement this method for its nodes.
3677     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3678     break;
3679   }
3680 
3681   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3682   return Known;
3683 }
3684 
3685 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3686                                                              SDValue N1) const {
3687   // X + 0 never overflow
3688   if (isNullConstant(N1))
3689     return OFK_Never;
3690 
3691   KnownBits N1Known = computeKnownBits(N1);
3692   if (N1Known.Zero.getBoolValue()) {
3693     KnownBits N0Known = computeKnownBits(N0);
3694 
3695     bool overflow;
3696     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3697     if (!overflow)
3698       return OFK_Never;
3699   }
3700 
3701   // mulhi + 1 never overflow
3702   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3703       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3704     return OFK_Never;
3705 
3706   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3707     KnownBits N0Known = computeKnownBits(N0);
3708 
3709     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3710       return OFK_Never;
3711   }
3712 
3713   return OFK_Sometime;
3714 }
3715 
3716 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3717   EVT OpVT = Val.getValueType();
3718   unsigned BitWidth = OpVT.getScalarSizeInBits();
3719 
3720   // Is the constant a known power of 2?
3721   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3722     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3723 
3724   // A left-shift of a constant one will have exactly one bit set because
3725   // shifting the bit off the end is undefined.
3726   if (Val.getOpcode() == ISD::SHL) {
3727     auto *C = isConstOrConstSplat(Val.getOperand(0));
3728     if (C && C->getAPIntValue() == 1)
3729       return true;
3730   }
3731 
3732   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3733   // one bit set.
3734   if (Val.getOpcode() == ISD::SRL) {
3735     auto *C = isConstOrConstSplat(Val.getOperand(0));
3736     if (C && C->getAPIntValue().isSignMask())
3737       return true;
3738   }
3739 
3740   // Are all operands of a build vector constant powers of two?
3741   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3742     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3743           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3744             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3745           return false;
3746         }))
3747       return true;
3748 
3749   // Is the operand of a splat vector a constant power of two?
3750   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3751     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3752       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3753         return true;
3754 
3755   // More could be done here, though the above checks are enough
3756   // to handle some common cases.
3757 
3758   // Fall back to computeKnownBits to catch other known cases.
3759   KnownBits Known = computeKnownBits(Val);
3760   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3761 }
3762 
3763 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3764   EVT VT = Op.getValueType();
3765 
3766   // TODO: Assume we don't know anything for now.
3767   if (VT.isScalableVector())
3768     return 1;
3769 
3770   APInt DemandedElts = VT.isVector()
3771                            ? APInt::getAllOnes(VT.getVectorNumElements())
3772                            : APInt(1, 1);
3773   return ComputeNumSignBits(Op, DemandedElts, Depth);
3774 }
3775 
3776 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3777                                           unsigned Depth) const {
3778   EVT VT = Op.getValueType();
3779   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3780   unsigned VTBits = VT.getScalarSizeInBits();
3781   unsigned NumElts = DemandedElts.getBitWidth();
3782   unsigned Tmp, Tmp2;
3783   unsigned FirstAnswer = 1;
3784 
3785   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3786     const APInt &Val = C->getAPIntValue();
3787     return Val.getNumSignBits();
3788   }
3789 
3790   if (Depth >= MaxRecursionDepth)
3791     return 1;  // Limit search depth.
3792 
3793   if (!DemandedElts || VT.isScalableVector())
3794     return 1;  // No demanded elts, better to assume we don't know anything.
3795 
3796   unsigned Opcode = Op.getOpcode();
3797   switch (Opcode) {
3798   default: break;
3799   case ISD::AssertSext:
3800     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3801     return VTBits-Tmp+1;
3802   case ISD::AssertZext:
3803     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3804     return VTBits-Tmp;
3805 
3806   case ISD::BUILD_VECTOR:
3807     Tmp = VTBits;
3808     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3809       if (!DemandedElts[i])
3810         continue;
3811 
3812       SDValue SrcOp = Op.getOperand(i);
3813       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3814 
3815       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3816       if (SrcOp.getValueSizeInBits() != VTBits) {
3817         assert(SrcOp.getValueSizeInBits() > VTBits &&
3818                "Expected BUILD_VECTOR implicit truncation");
3819         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3820         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3821       }
3822       Tmp = std::min(Tmp, Tmp2);
3823     }
3824     return Tmp;
3825 
3826   case ISD::VECTOR_SHUFFLE: {
3827     // Collect the minimum number of sign bits that are shared by every vector
3828     // element referenced by the shuffle.
3829     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3830     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3831     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3832     for (unsigned i = 0; i != NumElts; ++i) {
3833       int M = SVN->getMaskElt(i);
3834       if (!DemandedElts[i])
3835         continue;
3836       // For UNDEF elements, we don't know anything about the common state of
3837       // the shuffle result.
3838       if (M < 0)
3839         return 1;
3840       if ((unsigned)M < NumElts)
3841         DemandedLHS.setBit((unsigned)M % NumElts);
3842       else
3843         DemandedRHS.setBit((unsigned)M % NumElts);
3844     }
3845     Tmp = std::numeric_limits<unsigned>::max();
3846     if (!!DemandedLHS)
3847       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3848     if (!!DemandedRHS) {
3849       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3850       Tmp = std::min(Tmp, Tmp2);
3851     }
3852     // If we don't know anything, early out and try computeKnownBits fall-back.
3853     if (Tmp == 1)
3854       break;
3855     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3856     return Tmp;
3857   }
3858 
3859   case ISD::BITCAST: {
3860     SDValue N0 = Op.getOperand(0);
3861     EVT SrcVT = N0.getValueType();
3862     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3863 
3864     // Ignore bitcasts from unsupported types..
3865     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3866       break;
3867 
3868     // Fast handling of 'identity' bitcasts.
3869     if (VTBits == SrcBits)
3870       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3871 
3872     bool IsLE = getDataLayout().isLittleEndian();
3873 
3874     // Bitcast 'large element' scalar/vector to 'small element' vector.
3875     if ((SrcBits % VTBits) == 0) {
3876       assert(VT.isVector() && "Expected bitcast to vector");
3877 
3878       unsigned Scale = SrcBits / VTBits;
3879       APInt SrcDemandedElts =
3880           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3881 
3882       // Fast case - sign splat can be simply split across the small elements.
3883       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3884       if (Tmp == SrcBits)
3885         return VTBits;
3886 
3887       // Slow case - determine how far the sign extends into each sub-element.
3888       Tmp2 = VTBits;
3889       for (unsigned i = 0; i != NumElts; ++i)
3890         if (DemandedElts[i]) {
3891           unsigned SubOffset = i % Scale;
3892           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3893           SubOffset = SubOffset * VTBits;
3894           if (Tmp <= SubOffset)
3895             return 1;
3896           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3897         }
3898       return Tmp2;
3899     }
3900     break;
3901   }
3902 
3903   case ISD::FP_TO_SINT_SAT:
3904     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3905     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3906     return VTBits - Tmp + 1;
3907   case ISD::SIGN_EXTEND:
3908     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3909     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3910   case ISD::SIGN_EXTEND_INREG:
3911     // Max of the input and what this extends.
3912     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3913     Tmp = VTBits-Tmp+1;
3914     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3915     return std::max(Tmp, Tmp2);
3916   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3917     SDValue Src = Op.getOperand(0);
3918     EVT SrcVT = Src.getValueType();
3919     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3920     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3921     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3922   }
3923   case ISD::SRA:
3924     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3925     // SRA X, C -> adds C sign bits.
3926     if (const APInt *ShAmt =
3927             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3928       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3929     return Tmp;
3930   case ISD::SHL:
3931     if (const APInt *ShAmt =
3932             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3933       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3934       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3935       if (ShAmt->ult(Tmp))
3936         return Tmp - ShAmt->getZExtValue();
3937     }
3938     break;
3939   case ISD::AND:
3940   case ISD::OR:
3941   case ISD::XOR:    // NOT is handled here.
3942     // Logical binary ops preserve the number of sign bits at the worst.
3943     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3944     if (Tmp != 1) {
3945       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3946       FirstAnswer = std::min(Tmp, Tmp2);
3947       // We computed what we know about the sign bits as our first
3948       // answer. Now proceed to the generic code that uses
3949       // computeKnownBits, and pick whichever answer is better.
3950     }
3951     break;
3952 
3953   case ISD::SELECT:
3954   case ISD::VSELECT:
3955     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3956     if (Tmp == 1) return 1;  // Early out.
3957     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3958     return std::min(Tmp, Tmp2);
3959   case ISD::SELECT_CC:
3960     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3961     if (Tmp == 1) return 1;  // Early out.
3962     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3963     return std::min(Tmp, Tmp2);
3964 
3965   case ISD::SMIN:
3966   case ISD::SMAX: {
3967     // If we have a clamp pattern, we know that the number of sign bits will be
3968     // the minimum of the clamp min/max range.
3969     bool IsMax = (Opcode == ISD::SMAX);
3970     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3971     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3972       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3973         CstHigh =
3974             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3975     if (CstLow && CstHigh) {
3976       if (!IsMax)
3977         std::swap(CstLow, CstHigh);
3978       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3979         Tmp = CstLow->getAPIntValue().getNumSignBits();
3980         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3981         return std::min(Tmp, Tmp2);
3982       }
3983     }
3984 
3985     // Fallback - just get the minimum number of sign bits of the operands.
3986     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3987     if (Tmp == 1)
3988       return 1;  // Early out.
3989     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3990     return std::min(Tmp, Tmp2);
3991   }
3992   case ISD::UMIN:
3993   case ISD::UMAX:
3994     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3995     if (Tmp == 1)
3996       return 1;  // Early out.
3997     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3998     return std::min(Tmp, Tmp2);
3999   case ISD::SADDO:
4000   case ISD::UADDO:
4001   case ISD::SSUBO:
4002   case ISD::USUBO:
4003   case ISD::SMULO:
4004   case ISD::UMULO:
4005     if (Op.getResNo() != 1)
4006       break;
4007     // The boolean result conforms to getBooleanContents.  Fall through.
4008     // If setcc returns 0/-1, all bits are sign bits.
4009     // We know that we have an integer-based boolean since these operations
4010     // are only available for integer.
4011     if (TLI->getBooleanContents(VT.isVector(), false) ==
4012         TargetLowering::ZeroOrNegativeOneBooleanContent)
4013       return VTBits;
4014     break;
4015   case ISD::SETCC:
4016   case ISD::STRICT_FSETCC:
4017   case ISD::STRICT_FSETCCS: {
4018     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4019     // If setcc returns 0/-1, all bits are sign bits.
4020     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4021         TargetLowering::ZeroOrNegativeOneBooleanContent)
4022       return VTBits;
4023     break;
4024   }
4025   case ISD::ROTL:
4026   case ISD::ROTR:
4027     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4028 
4029     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4030     if (Tmp == VTBits)
4031       return VTBits;
4032 
4033     if (ConstantSDNode *C =
4034             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4035       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4036 
4037       // Handle rotate right by N like a rotate left by 32-N.
4038       if (Opcode == ISD::ROTR)
4039         RotAmt = (VTBits - RotAmt) % VTBits;
4040 
4041       // If we aren't rotating out all of the known-in sign bits, return the
4042       // number that are left.  This handles rotl(sext(x), 1) for example.
4043       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4044     }
4045     break;
4046   case ISD::ADD:
4047   case ISD::ADDC:
4048     // Add can have at most one carry bit.  Thus we know that the output
4049     // is, at worst, one more bit than the inputs.
4050     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4051     if (Tmp == 1) return 1; // Early out.
4052 
4053     // Special case decrementing a value (ADD X, -1):
4054     if (ConstantSDNode *CRHS =
4055             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4056       if (CRHS->isAllOnes()) {
4057         KnownBits Known =
4058             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4059 
4060         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4061         // sign bits set.
4062         if ((Known.Zero | 1).isAllOnes())
4063           return VTBits;
4064 
4065         // If we are subtracting one from a positive number, there is no carry
4066         // out of the result.
4067         if (Known.isNonNegative())
4068           return Tmp;
4069       }
4070 
4071     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4072     if (Tmp2 == 1) return 1; // Early out.
4073     return std::min(Tmp, Tmp2) - 1;
4074   case ISD::SUB:
4075     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4076     if (Tmp2 == 1) return 1; // Early out.
4077 
4078     // Handle NEG.
4079     if (ConstantSDNode *CLHS =
4080             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4081       if (CLHS->isZero()) {
4082         KnownBits Known =
4083             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4084         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4085         // sign bits set.
4086         if ((Known.Zero | 1).isAllOnes())
4087           return VTBits;
4088 
4089         // If the input is known to be positive (the sign bit is known clear),
4090         // the output of the NEG has the same number of sign bits as the input.
4091         if (Known.isNonNegative())
4092           return Tmp2;
4093 
4094         // Otherwise, we treat this like a SUB.
4095       }
4096 
4097     // Sub can have at most one carry bit.  Thus we know that the output
4098     // is, at worst, one more bit than the inputs.
4099     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4100     if (Tmp == 1) return 1; // Early out.
4101     return std::min(Tmp, Tmp2) - 1;
4102   case ISD::MUL: {
4103     // The output of the Mul can be at most twice the valid bits in the inputs.
4104     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4105     if (SignBitsOp0 == 1)
4106       break;
4107     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4108     if (SignBitsOp1 == 1)
4109       break;
4110     unsigned OutValidBits =
4111         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4112     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4113   }
4114   case ISD::SREM:
4115     // The sign bit is the LHS's sign bit, except when the result of the
4116     // remainder is zero. The magnitude of the result should be less than or
4117     // equal to the magnitude of the LHS. Therefore, the result should have
4118     // at least as many sign bits as the left hand side.
4119     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4120   case ISD::TRUNCATE: {
4121     // Check if the sign bits of source go down as far as the truncated value.
4122     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4123     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4124     if (NumSrcSignBits > (NumSrcBits - VTBits))
4125       return NumSrcSignBits - (NumSrcBits - VTBits);
4126     break;
4127   }
4128   case ISD::EXTRACT_ELEMENT: {
4129     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4130     const int BitWidth = Op.getValueSizeInBits();
4131     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4132 
4133     // Get reverse index (starting from 1), Op1 value indexes elements from
4134     // little end. Sign starts at big end.
4135     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4136 
4137     // If the sign portion ends in our element the subtraction gives correct
4138     // result. Otherwise it gives either negative or > bitwidth result
4139     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4140   }
4141   case ISD::INSERT_VECTOR_ELT: {
4142     // If we know the element index, split the demand between the
4143     // source vector and the inserted element, otherwise assume we need
4144     // the original demanded vector elements and the value.
4145     SDValue InVec = Op.getOperand(0);
4146     SDValue InVal = Op.getOperand(1);
4147     SDValue EltNo = Op.getOperand(2);
4148     bool DemandedVal = true;
4149     APInt DemandedVecElts = DemandedElts;
4150     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4151     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4152       unsigned EltIdx = CEltNo->getZExtValue();
4153       DemandedVal = !!DemandedElts[EltIdx];
4154       DemandedVecElts.clearBit(EltIdx);
4155     }
4156     Tmp = std::numeric_limits<unsigned>::max();
4157     if (DemandedVal) {
4158       // TODO - handle implicit truncation of inserted elements.
4159       if (InVal.getScalarValueSizeInBits() != VTBits)
4160         break;
4161       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4162       Tmp = std::min(Tmp, Tmp2);
4163     }
4164     if (!!DemandedVecElts) {
4165       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4166       Tmp = std::min(Tmp, Tmp2);
4167     }
4168     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4169     return Tmp;
4170   }
4171   case ISD::EXTRACT_VECTOR_ELT: {
4172     SDValue InVec = Op.getOperand(0);
4173     SDValue EltNo = Op.getOperand(1);
4174     EVT VecVT = InVec.getValueType();
4175     // ComputeNumSignBits not yet implemented for scalable vectors.
4176     if (VecVT.isScalableVector())
4177       break;
4178     const unsigned BitWidth = Op.getValueSizeInBits();
4179     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4180     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4181 
4182     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4183     // anything about sign bits. But if the sizes match we can derive knowledge
4184     // about sign bits from the vector operand.
4185     if (BitWidth != EltBitWidth)
4186       break;
4187 
4188     // If we know the element index, just demand that vector element, else for
4189     // an unknown element index, ignore DemandedElts and demand them all.
4190     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4191     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4192     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4193       DemandedSrcElts =
4194           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4195 
4196     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4197   }
4198   case ISD::EXTRACT_SUBVECTOR: {
4199     // Offset the demanded elts by the subvector index.
4200     SDValue Src = Op.getOperand(0);
4201     // Bail until we can represent demanded elements for scalable vectors.
4202     if (Src.getValueType().isScalableVector())
4203       break;
4204     uint64_t Idx = Op.getConstantOperandVal(1);
4205     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4206     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4207     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4208   }
4209   case ISD::CONCAT_VECTORS: {
4210     // Determine the minimum number of sign bits across all demanded
4211     // elts of the input vectors. Early out if the result is already 1.
4212     Tmp = std::numeric_limits<unsigned>::max();
4213     EVT SubVectorVT = Op.getOperand(0).getValueType();
4214     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4215     unsigned NumSubVectors = Op.getNumOperands();
4216     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4217       APInt DemandedSub =
4218           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4219       if (!DemandedSub)
4220         continue;
4221       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4222       Tmp = std::min(Tmp, Tmp2);
4223     }
4224     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4225     return Tmp;
4226   }
4227   case ISD::INSERT_SUBVECTOR: {
4228     // Demand any elements from the subvector and the remainder from the src its
4229     // inserted into.
4230     SDValue Src = Op.getOperand(0);
4231     SDValue Sub = Op.getOperand(1);
4232     uint64_t Idx = Op.getConstantOperandVal(2);
4233     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4234     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4235     APInt DemandedSrcElts = DemandedElts;
4236     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4237 
4238     Tmp = std::numeric_limits<unsigned>::max();
4239     if (!!DemandedSubElts) {
4240       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4241       if (Tmp == 1)
4242         return 1; // early-out
4243     }
4244     if (!!DemandedSrcElts) {
4245       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4246       Tmp = std::min(Tmp, Tmp2);
4247     }
4248     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4249     return Tmp;
4250   }
4251   case ISD::ATOMIC_CMP_SWAP:
4252   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4253   case ISD::ATOMIC_SWAP:
4254   case ISD::ATOMIC_LOAD_ADD:
4255   case ISD::ATOMIC_LOAD_SUB:
4256   case ISD::ATOMIC_LOAD_AND:
4257   case ISD::ATOMIC_LOAD_CLR:
4258   case ISD::ATOMIC_LOAD_OR:
4259   case ISD::ATOMIC_LOAD_XOR:
4260   case ISD::ATOMIC_LOAD_NAND:
4261   case ISD::ATOMIC_LOAD_MIN:
4262   case ISD::ATOMIC_LOAD_MAX:
4263   case ISD::ATOMIC_LOAD_UMIN:
4264   case ISD::ATOMIC_LOAD_UMAX:
4265   case ISD::ATOMIC_LOAD: {
4266     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4267     // If we are looking at the loaded value.
4268     if (Op.getResNo() == 0) {
4269       if (Tmp == VTBits)
4270         return 1; // early-out
4271       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4272         return VTBits - Tmp + 1;
4273       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4274         return VTBits - Tmp;
4275     }
4276     break;
4277   }
4278   }
4279 
4280   // If we are looking at the loaded value of the SDNode.
4281   if (Op.getResNo() == 0) {
4282     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4283     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4284       unsigned ExtType = LD->getExtensionType();
4285       switch (ExtType) {
4286       default: break;
4287       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4288         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4289         return VTBits - Tmp + 1;
4290       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4291         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4292         return VTBits - Tmp;
4293       case ISD::NON_EXTLOAD:
4294         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4295           // We only need to handle vectors - computeKnownBits should handle
4296           // scalar cases.
4297           Type *CstTy = Cst->getType();
4298           if (CstTy->isVectorTy() &&
4299               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4300               VTBits == CstTy->getScalarSizeInBits()) {
4301             Tmp = VTBits;
4302             for (unsigned i = 0; i != NumElts; ++i) {
4303               if (!DemandedElts[i])
4304                 continue;
4305               if (Constant *Elt = Cst->getAggregateElement(i)) {
4306                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4307                   const APInt &Value = CInt->getValue();
4308                   Tmp = std::min(Tmp, Value.getNumSignBits());
4309                   continue;
4310                 }
4311                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4312                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4313                   Tmp = std::min(Tmp, Value.getNumSignBits());
4314                   continue;
4315                 }
4316               }
4317               // Unknown type. Conservatively assume no bits match sign bit.
4318               return 1;
4319             }
4320             return Tmp;
4321           }
4322         }
4323         break;
4324       }
4325     }
4326   }
4327 
4328   // Allow the target to implement this method for its nodes.
4329   if (Opcode >= ISD::BUILTIN_OP_END ||
4330       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4331       Opcode == ISD::INTRINSIC_W_CHAIN ||
4332       Opcode == ISD::INTRINSIC_VOID) {
4333     unsigned NumBits =
4334         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4335     if (NumBits > 1)
4336       FirstAnswer = std::max(FirstAnswer, NumBits);
4337   }
4338 
4339   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4340   // use this information.
4341   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4342   return std::max(FirstAnswer, Known.countMinSignBits());
4343 }
4344 
4345 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4346                                                  unsigned Depth) const {
4347   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4348   return Op.getScalarValueSizeInBits() - SignBits + 1;
4349 }
4350 
4351 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4352                                                  const APInt &DemandedElts,
4353                                                  unsigned Depth) const {
4354   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4355   return Op.getScalarValueSizeInBits() - SignBits + 1;
4356 }
4357 
4358 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4359                                                     unsigned Depth) const {
4360   // Early out for FREEZE.
4361   if (Op.getOpcode() == ISD::FREEZE)
4362     return true;
4363 
4364   // TODO: Assume we don't know anything for now.
4365   EVT VT = Op.getValueType();
4366   if (VT.isScalableVector())
4367     return false;
4368 
4369   APInt DemandedElts = VT.isVector()
4370                            ? APInt::getAllOnes(VT.getVectorNumElements())
4371                            : APInt(1, 1);
4372   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4373 }
4374 
4375 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4376                                                     const APInt &DemandedElts,
4377                                                     bool PoisonOnly,
4378                                                     unsigned Depth) const {
4379   unsigned Opcode = Op.getOpcode();
4380 
4381   // Early out for FREEZE.
4382   if (Opcode == ISD::FREEZE)
4383     return true;
4384 
4385   if (Depth >= MaxRecursionDepth)
4386     return false; // Limit search depth.
4387 
4388   if (isIntOrFPConstant(Op))
4389     return true;
4390 
4391   switch (Opcode) {
4392   case ISD::UNDEF:
4393     return PoisonOnly;
4394 
4395   case ISD::BUILD_VECTOR:
4396     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4397     // this shouldn't affect the result.
4398     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4399       if (!DemandedElts[i])
4400         continue;
4401       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4402                                             Depth + 1))
4403         return false;
4404     }
4405     return true;
4406 
4407   // TODO: Search for noundef attributes from library functions.
4408 
4409   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4410 
4411   default:
4412     // Allow the target to implement this method for its nodes.
4413     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4414         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4415       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4416           Op, DemandedElts, *this, PoisonOnly, Depth);
4417     break;
4418   }
4419 
4420   return false;
4421 }
4422 
4423 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4424   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4425       !isa<ConstantSDNode>(Op.getOperand(1)))
4426     return false;
4427 
4428   if (Op.getOpcode() == ISD::OR &&
4429       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4430     return false;
4431 
4432   return true;
4433 }
4434 
4435 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4436   // If we're told that NaNs won't happen, assume they won't.
4437   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4438     return true;
4439 
4440   if (Depth >= MaxRecursionDepth)
4441     return false; // Limit search depth.
4442 
4443   // TODO: Handle vectors.
4444   // If the value is a constant, we can obviously see if it is a NaN or not.
4445   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4446     return !C->getValueAPF().isNaN() ||
4447            (SNaN && !C->getValueAPF().isSignaling());
4448   }
4449 
4450   unsigned Opcode = Op.getOpcode();
4451   switch (Opcode) {
4452   case ISD::FADD:
4453   case ISD::FSUB:
4454   case ISD::FMUL:
4455   case ISD::FDIV:
4456   case ISD::FREM:
4457   case ISD::FSIN:
4458   case ISD::FCOS: {
4459     if (SNaN)
4460       return true;
4461     // TODO: Need isKnownNeverInfinity
4462     return false;
4463   }
4464   case ISD::FCANONICALIZE:
4465   case ISD::FEXP:
4466   case ISD::FEXP2:
4467   case ISD::FTRUNC:
4468   case ISD::FFLOOR:
4469   case ISD::FCEIL:
4470   case ISD::FROUND:
4471   case ISD::FROUNDEVEN:
4472   case ISD::FRINT:
4473   case ISD::FNEARBYINT: {
4474     if (SNaN)
4475       return true;
4476     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4477   }
4478   case ISD::FABS:
4479   case ISD::FNEG:
4480   case ISD::FCOPYSIGN: {
4481     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4482   }
4483   case ISD::SELECT:
4484     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4485            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4486   case ISD::FP_EXTEND:
4487   case ISD::FP_ROUND: {
4488     if (SNaN)
4489       return true;
4490     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4491   }
4492   case ISD::SINT_TO_FP:
4493   case ISD::UINT_TO_FP:
4494     return true;
4495   case ISD::FMA:
4496   case ISD::FMAD: {
4497     if (SNaN)
4498       return true;
4499     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4500            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4501            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4502   }
4503   case ISD::FSQRT: // Need is known positive
4504   case ISD::FLOG:
4505   case ISD::FLOG2:
4506   case ISD::FLOG10:
4507   case ISD::FPOWI:
4508   case ISD::FPOW: {
4509     if (SNaN)
4510       return true;
4511     // TODO: Refine on operand
4512     return false;
4513   }
4514   case ISD::FMINNUM:
4515   case ISD::FMAXNUM: {
4516     // Only one needs to be known not-nan, since it will be returned if the
4517     // other ends up being one.
4518     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4519            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4520   }
4521   case ISD::FMINNUM_IEEE:
4522   case ISD::FMAXNUM_IEEE: {
4523     if (SNaN)
4524       return true;
4525     // This can return a NaN if either operand is an sNaN, or if both operands
4526     // are NaN.
4527     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4528             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4529            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4530             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4531   }
4532   case ISD::FMINIMUM:
4533   case ISD::FMAXIMUM: {
4534     // TODO: Does this quiet or return the origina NaN as-is?
4535     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4536            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4537   }
4538   case ISD::EXTRACT_VECTOR_ELT: {
4539     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4540   }
4541   default:
4542     if (Opcode >= ISD::BUILTIN_OP_END ||
4543         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4544         Opcode == ISD::INTRINSIC_W_CHAIN ||
4545         Opcode == ISD::INTRINSIC_VOID) {
4546       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4547     }
4548 
4549     return false;
4550   }
4551 }
4552 
4553 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4554   assert(Op.getValueType().isFloatingPoint() &&
4555          "Floating point type expected");
4556 
4557   // If the value is a constant, we can obviously see if it is a zero or not.
4558   // TODO: Add BuildVector support.
4559   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4560     return !C->isZero();
4561   return false;
4562 }
4563 
4564 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4565   assert(!Op.getValueType().isFloatingPoint() &&
4566          "Floating point types unsupported - use isKnownNeverZeroFloat");
4567 
4568   // If the value is a constant, we can obviously see if it is a zero or not.
4569   if (ISD::matchUnaryPredicate(Op,
4570                                [](ConstantSDNode *C) { return !C->isZero(); }))
4571     return true;
4572 
4573   // TODO: Recognize more cases here.
4574   switch (Op.getOpcode()) {
4575   default: break;
4576   case ISD::OR:
4577     if (isKnownNeverZero(Op.getOperand(1)) ||
4578         isKnownNeverZero(Op.getOperand(0)))
4579       return true;
4580     break;
4581   }
4582 
4583   return false;
4584 }
4585 
4586 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4587   // Check the obvious case.
4588   if (A == B) return true;
4589 
4590   // For for negative and positive zero.
4591   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4592     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4593       if (CA->isZero() && CB->isZero()) return true;
4594 
4595   // Otherwise they may not be equal.
4596   return false;
4597 }
4598 
4599 // FIXME: unify with llvm::haveNoCommonBitsSet.
4600 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4601   assert(A.getValueType() == B.getValueType() &&
4602          "Values must have the same type");
4603   // Match masked merge pattern (X & ~M) op (Y & M)
4604   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4605     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4606       if (isBitwiseNot(NotM, true)) {
4607         SDValue NotOperand = NotM->getOperand(0);
4608         return NotOperand == And->getOperand(0) ||
4609                NotOperand == And->getOperand(1);
4610       }
4611       return false;
4612     };
4613     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4614         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4615         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4616         MatchNoCommonBitsPattern(B->getOperand(1), A))
4617       return true;
4618   }
4619   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4620                                         computeKnownBits(B));
4621 }
4622 
4623 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4624                                SelectionDAG &DAG) {
4625   if (cast<ConstantSDNode>(Step)->isZero())
4626     return DAG.getConstant(0, DL, VT);
4627 
4628   return SDValue();
4629 }
4630 
4631 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4632                                 ArrayRef<SDValue> Ops,
4633                                 SelectionDAG &DAG) {
4634   int NumOps = Ops.size();
4635   assert(NumOps != 0 && "Can't build an empty vector!");
4636   assert(!VT.isScalableVector() &&
4637          "BUILD_VECTOR cannot be used with scalable types");
4638   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4639          "Incorrect element count in BUILD_VECTOR!");
4640 
4641   // BUILD_VECTOR of UNDEFs is UNDEF.
4642   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4643     return DAG.getUNDEF(VT);
4644 
4645   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4646   SDValue IdentitySrc;
4647   bool IsIdentity = true;
4648   for (int i = 0; i != NumOps; ++i) {
4649     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4650         Ops[i].getOperand(0).getValueType() != VT ||
4651         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4652         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4653         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4654       IsIdentity = false;
4655       break;
4656     }
4657     IdentitySrc = Ops[i].getOperand(0);
4658   }
4659   if (IsIdentity)
4660     return IdentitySrc;
4661 
4662   return SDValue();
4663 }
4664 
4665 /// Try to simplify vector concatenation to an input value, undef, or build
4666 /// vector.
4667 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4668                                   ArrayRef<SDValue> Ops,
4669                                   SelectionDAG &DAG) {
4670   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4671   assert(llvm::all_of(Ops,
4672                       [Ops](SDValue Op) {
4673                         return Ops[0].getValueType() == Op.getValueType();
4674                       }) &&
4675          "Concatenation of vectors with inconsistent value types!");
4676   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4677              VT.getVectorElementCount() &&
4678          "Incorrect element count in vector concatenation!");
4679 
4680   if (Ops.size() == 1)
4681     return Ops[0];
4682 
4683   // Concat of UNDEFs is UNDEF.
4684   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4685     return DAG.getUNDEF(VT);
4686 
4687   // Scan the operands and look for extract operations from a single source
4688   // that correspond to insertion at the same location via this concatenation:
4689   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4690   SDValue IdentitySrc;
4691   bool IsIdentity = true;
4692   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4693     SDValue Op = Ops[i];
4694     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4695     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4696         Op.getOperand(0).getValueType() != VT ||
4697         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4698         Op.getConstantOperandVal(1) != IdentityIndex) {
4699       IsIdentity = false;
4700       break;
4701     }
4702     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4703            "Unexpected identity source vector for concat of extracts");
4704     IdentitySrc = Op.getOperand(0);
4705   }
4706   if (IsIdentity) {
4707     assert(IdentitySrc && "Failed to set source vector of extracts");
4708     return IdentitySrc;
4709   }
4710 
4711   // The code below this point is only designed to work for fixed width
4712   // vectors, so we bail out for now.
4713   if (VT.isScalableVector())
4714     return SDValue();
4715 
4716   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4717   // simplified to one big BUILD_VECTOR.
4718   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4719   EVT SVT = VT.getScalarType();
4720   SmallVector<SDValue, 16> Elts;
4721   for (SDValue Op : Ops) {
4722     EVT OpVT = Op.getValueType();
4723     if (Op.isUndef())
4724       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4725     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4726       Elts.append(Op->op_begin(), Op->op_end());
4727     else
4728       return SDValue();
4729   }
4730 
4731   // BUILD_VECTOR requires all inputs to be of the same type, find the
4732   // maximum type and extend them all.
4733   for (SDValue Op : Elts)
4734     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4735 
4736   if (SVT.bitsGT(VT.getScalarType())) {
4737     for (SDValue &Op : Elts) {
4738       if (Op.isUndef())
4739         Op = DAG.getUNDEF(SVT);
4740       else
4741         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4742                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4743                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4744     }
4745   }
4746 
4747   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4748   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4749   return V;
4750 }
4751 
4752 /// Gets or creates the specified node.
4753 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4754   FoldingSetNodeID ID;
4755   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4756   void *IP = nullptr;
4757   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4758     return SDValue(E, 0);
4759 
4760   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4761                               getVTList(VT));
4762   CSEMap.InsertNode(N, IP);
4763 
4764   InsertNode(N);
4765   SDValue V = SDValue(N, 0);
4766   NewSDValueDbgMsg(V, "Creating new node: ", this);
4767   return V;
4768 }
4769 
4770 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4771                               SDValue Operand) {
4772   SDNodeFlags Flags;
4773   if (Inserter)
4774     Flags = Inserter->getFlags();
4775   return getNode(Opcode, DL, VT, Operand, Flags);
4776 }
4777 
4778 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4779                               SDValue Operand, const SDNodeFlags Flags) {
4780   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4781          "Operand is DELETED_NODE!");
4782   // Constant fold unary operations with an integer constant operand. Even
4783   // opaque constant will be folded, because the folding of unary operations
4784   // doesn't create new constants with different values. Nevertheless, the
4785   // opaque flag is preserved during folding to prevent future folding with
4786   // other constants.
4787   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4788     const APInt &Val = C->getAPIntValue();
4789     switch (Opcode) {
4790     default: break;
4791     case ISD::SIGN_EXTEND:
4792       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4793                          C->isTargetOpcode(), C->isOpaque());
4794     case ISD::TRUNCATE:
4795       if (C->isOpaque())
4796         break;
4797       LLVM_FALLTHROUGH;
4798     case ISD::ZERO_EXTEND:
4799       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4800                          C->isTargetOpcode(), C->isOpaque());
4801     case ISD::ANY_EXTEND:
4802       // Some targets like RISCV prefer to sign extend some types.
4803       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4804         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4805                            C->isTargetOpcode(), C->isOpaque());
4806       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4807                          C->isTargetOpcode(), C->isOpaque());
4808     case ISD::UINT_TO_FP:
4809     case ISD::SINT_TO_FP: {
4810       APFloat apf(EVTToAPFloatSemantics(VT),
4811                   APInt::getZero(VT.getSizeInBits()));
4812       (void)apf.convertFromAPInt(Val,
4813                                  Opcode==ISD::SINT_TO_FP,
4814                                  APFloat::rmNearestTiesToEven);
4815       return getConstantFP(apf, DL, VT);
4816     }
4817     case ISD::BITCAST:
4818       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4819         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4820       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4821         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4822       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4823         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4824       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4825         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4826       break;
4827     case ISD::ABS:
4828       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4829                          C->isOpaque());
4830     case ISD::BITREVERSE:
4831       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4832                          C->isOpaque());
4833     case ISD::BSWAP:
4834       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4835                          C->isOpaque());
4836     case ISD::CTPOP:
4837       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4838                          C->isOpaque());
4839     case ISD::CTLZ:
4840     case ISD::CTLZ_ZERO_UNDEF:
4841       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4842                          C->isOpaque());
4843     case ISD::CTTZ:
4844     case ISD::CTTZ_ZERO_UNDEF:
4845       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4846                          C->isOpaque());
4847     case ISD::FP16_TO_FP: {
4848       bool Ignored;
4849       APFloat FPV(APFloat::IEEEhalf(),
4850                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4851 
4852       // This can return overflow, underflow, or inexact; we don't care.
4853       // FIXME need to be more flexible about rounding mode.
4854       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4855                         APFloat::rmNearestTiesToEven, &Ignored);
4856       return getConstantFP(FPV, DL, VT);
4857     }
4858     case ISD::STEP_VECTOR: {
4859       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4860         return V;
4861       break;
4862     }
4863     }
4864   }
4865 
4866   // Constant fold unary operations with a floating point constant operand.
4867   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4868     APFloat V = C->getValueAPF();    // make copy
4869     switch (Opcode) {
4870     case ISD::FNEG:
4871       V.changeSign();
4872       return getConstantFP(V, DL, VT);
4873     case ISD::FABS:
4874       V.clearSign();
4875       return getConstantFP(V, DL, VT);
4876     case ISD::FCEIL: {
4877       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4878       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4879         return getConstantFP(V, DL, VT);
4880       break;
4881     }
4882     case ISD::FTRUNC: {
4883       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4884       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4885         return getConstantFP(V, DL, VT);
4886       break;
4887     }
4888     case ISD::FFLOOR: {
4889       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4890       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4891         return getConstantFP(V, DL, VT);
4892       break;
4893     }
4894     case ISD::FP_EXTEND: {
4895       bool ignored;
4896       // This can return overflow, underflow, or inexact; we don't care.
4897       // FIXME need to be more flexible about rounding mode.
4898       (void)V.convert(EVTToAPFloatSemantics(VT),
4899                       APFloat::rmNearestTiesToEven, &ignored);
4900       return getConstantFP(V, DL, VT);
4901     }
4902     case ISD::FP_TO_SINT:
4903     case ISD::FP_TO_UINT: {
4904       bool ignored;
4905       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4906       // FIXME need to be more flexible about rounding mode.
4907       APFloat::opStatus s =
4908           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4909       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4910         break;
4911       return getConstant(IntVal, DL, VT);
4912     }
4913     case ISD::BITCAST:
4914       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4915         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4916       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4917         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4918       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4919         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4920       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4921         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4922       break;
4923     case ISD::FP_TO_FP16: {
4924       bool Ignored;
4925       // This can return overflow, underflow, or inexact; we don't care.
4926       // FIXME need to be more flexible about rounding mode.
4927       (void)V.convert(APFloat::IEEEhalf(),
4928                       APFloat::rmNearestTiesToEven, &Ignored);
4929       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4930     }
4931     }
4932   }
4933 
4934   // Constant fold unary operations with a vector integer or float operand.
4935   switch (Opcode) {
4936   default:
4937     // FIXME: Entirely reasonable to perform folding of other unary
4938     // operations here as the need arises.
4939     break;
4940   case ISD::FNEG:
4941   case ISD::FABS:
4942   case ISD::FCEIL:
4943   case ISD::FTRUNC:
4944   case ISD::FFLOOR:
4945   case ISD::FP_EXTEND:
4946   case ISD::FP_TO_SINT:
4947   case ISD::FP_TO_UINT:
4948   case ISD::TRUNCATE:
4949   case ISD::ANY_EXTEND:
4950   case ISD::ZERO_EXTEND:
4951   case ISD::SIGN_EXTEND:
4952   case ISD::UINT_TO_FP:
4953   case ISD::SINT_TO_FP:
4954   case ISD::ABS:
4955   case ISD::BITREVERSE:
4956   case ISD::BSWAP:
4957   case ISD::CTLZ:
4958   case ISD::CTLZ_ZERO_UNDEF:
4959   case ISD::CTTZ:
4960   case ISD::CTTZ_ZERO_UNDEF:
4961   case ISD::CTPOP: {
4962     SDValue Ops = {Operand};
4963     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
4964       return Fold;
4965   }
4966   }
4967 
4968   unsigned OpOpcode = Operand.getNode()->getOpcode();
4969   switch (Opcode) {
4970   case ISD::STEP_VECTOR:
4971     assert(VT.isScalableVector() &&
4972            "STEP_VECTOR can only be used with scalable types");
4973     assert(OpOpcode == ISD::TargetConstant &&
4974            VT.getVectorElementType() == Operand.getValueType() &&
4975            "Unexpected step operand");
4976     break;
4977   case ISD::FREEZE:
4978     assert(VT == Operand.getValueType() && "Unexpected VT!");
4979     break;
4980   case ISD::TokenFactor:
4981   case ISD::MERGE_VALUES:
4982   case ISD::CONCAT_VECTORS:
4983     return Operand;         // Factor, merge or concat of one node?  No need.
4984   case ISD::BUILD_VECTOR: {
4985     // Attempt to simplify BUILD_VECTOR.
4986     SDValue Ops[] = {Operand};
4987     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4988       return V;
4989     break;
4990   }
4991   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4992   case ISD::FP_EXTEND:
4993     assert(VT.isFloatingPoint() &&
4994            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4995     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4996     assert((!VT.isVector() ||
4997             VT.getVectorElementCount() ==
4998             Operand.getValueType().getVectorElementCount()) &&
4999            "Vector element count mismatch!");
5000     assert(Operand.getValueType().bitsLT(VT) &&
5001            "Invalid fpext node, dst < src!");
5002     if (Operand.isUndef())
5003       return getUNDEF(VT);
5004     break;
5005   case ISD::FP_TO_SINT:
5006   case ISD::FP_TO_UINT:
5007     if (Operand.isUndef())
5008       return getUNDEF(VT);
5009     break;
5010   case ISD::SINT_TO_FP:
5011   case ISD::UINT_TO_FP:
5012     // [us]itofp(undef) = 0, because the result value is bounded.
5013     if (Operand.isUndef())
5014       return getConstantFP(0.0, DL, VT);
5015     break;
5016   case ISD::SIGN_EXTEND:
5017     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5018            "Invalid SIGN_EXTEND!");
5019     assert(VT.isVector() == Operand.getValueType().isVector() &&
5020            "SIGN_EXTEND result type type should be vector iff the operand "
5021            "type is vector!");
5022     if (Operand.getValueType() == VT) return Operand;   // noop extension
5023     assert((!VT.isVector() ||
5024             VT.getVectorElementCount() ==
5025                 Operand.getValueType().getVectorElementCount()) &&
5026            "Vector element count mismatch!");
5027     assert(Operand.getValueType().bitsLT(VT) &&
5028            "Invalid sext node, dst < src!");
5029     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5030       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5031     if (OpOpcode == ISD::UNDEF)
5032       // sext(undef) = 0, because the top bits will all be the same.
5033       return getConstant(0, DL, VT);
5034     break;
5035   case ISD::ZERO_EXTEND:
5036     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5037            "Invalid ZERO_EXTEND!");
5038     assert(VT.isVector() == Operand.getValueType().isVector() &&
5039            "ZERO_EXTEND result type type should be vector iff the operand "
5040            "type is vector!");
5041     if (Operand.getValueType() == VT) return Operand;   // noop extension
5042     assert((!VT.isVector() ||
5043             VT.getVectorElementCount() ==
5044                 Operand.getValueType().getVectorElementCount()) &&
5045            "Vector element count mismatch!");
5046     assert(Operand.getValueType().bitsLT(VT) &&
5047            "Invalid zext node, dst < src!");
5048     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5049       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5050     if (OpOpcode == ISD::UNDEF)
5051       // zext(undef) = 0, because the top bits will be zero.
5052       return getConstant(0, DL, VT);
5053     break;
5054   case ISD::ANY_EXTEND:
5055     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5056            "Invalid ANY_EXTEND!");
5057     assert(VT.isVector() == Operand.getValueType().isVector() &&
5058            "ANY_EXTEND result type type should be vector iff the operand "
5059            "type is vector!");
5060     if (Operand.getValueType() == VT) return Operand;   // noop extension
5061     assert((!VT.isVector() ||
5062             VT.getVectorElementCount() ==
5063                 Operand.getValueType().getVectorElementCount()) &&
5064            "Vector element count mismatch!");
5065     assert(Operand.getValueType().bitsLT(VT) &&
5066            "Invalid anyext node, dst < src!");
5067 
5068     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5069         OpOpcode == ISD::ANY_EXTEND)
5070       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5071       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5072     if (OpOpcode == ISD::UNDEF)
5073       return getUNDEF(VT);
5074 
5075     // (ext (trunc x)) -> x
5076     if (OpOpcode == ISD::TRUNCATE) {
5077       SDValue OpOp = Operand.getOperand(0);
5078       if (OpOp.getValueType() == VT) {
5079         transferDbgValues(Operand, OpOp);
5080         return OpOp;
5081       }
5082     }
5083     break;
5084   case ISD::TRUNCATE:
5085     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5086            "Invalid TRUNCATE!");
5087     assert(VT.isVector() == Operand.getValueType().isVector() &&
5088            "TRUNCATE result type type should be vector iff the operand "
5089            "type is vector!");
5090     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5091     assert((!VT.isVector() ||
5092             VT.getVectorElementCount() ==
5093                 Operand.getValueType().getVectorElementCount()) &&
5094            "Vector element count mismatch!");
5095     assert(Operand.getValueType().bitsGT(VT) &&
5096            "Invalid truncate node, src < dst!");
5097     if (OpOpcode == ISD::TRUNCATE)
5098       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5099     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5100         OpOpcode == ISD::ANY_EXTEND) {
5101       // If the source is smaller than the dest, we still need an extend.
5102       if (Operand.getOperand(0).getValueType().getScalarType()
5103             .bitsLT(VT.getScalarType()))
5104         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5105       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5106         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5107       return Operand.getOperand(0);
5108     }
5109     if (OpOpcode == ISD::UNDEF)
5110       return getUNDEF(VT);
5111     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5112       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5113     break;
5114   case ISD::ANY_EXTEND_VECTOR_INREG:
5115   case ISD::ZERO_EXTEND_VECTOR_INREG:
5116   case ISD::SIGN_EXTEND_VECTOR_INREG:
5117     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5118     assert(Operand.getValueType().bitsLE(VT) &&
5119            "The input must be the same size or smaller than the result.");
5120     assert(VT.getVectorMinNumElements() <
5121                Operand.getValueType().getVectorMinNumElements() &&
5122            "The destination vector type must have fewer lanes than the input.");
5123     break;
5124   case ISD::ABS:
5125     assert(VT.isInteger() && VT == Operand.getValueType() &&
5126            "Invalid ABS!");
5127     if (OpOpcode == ISD::UNDEF)
5128       return getUNDEF(VT);
5129     break;
5130   case ISD::BSWAP:
5131     assert(VT.isInteger() && VT == Operand.getValueType() &&
5132            "Invalid BSWAP!");
5133     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5134            "BSWAP types must be a multiple of 16 bits!");
5135     if (OpOpcode == ISD::UNDEF)
5136       return getUNDEF(VT);
5137     // bswap(bswap(X)) -> X.
5138     if (OpOpcode == ISD::BSWAP)
5139       return Operand.getOperand(0);
5140     break;
5141   case ISD::BITREVERSE:
5142     assert(VT.isInteger() && VT == Operand.getValueType() &&
5143            "Invalid BITREVERSE!");
5144     if (OpOpcode == ISD::UNDEF)
5145       return getUNDEF(VT);
5146     break;
5147   case ISD::BITCAST:
5148     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5149            "Cannot BITCAST between types of different sizes!");
5150     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5151     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5152       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5153     if (OpOpcode == ISD::UNDEF)
5154       return getUNDEF(VT);
5155     break;
5156   case ISD::SCALAR_TO_VECTOR:
5157     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5158            (VT.getVectorElementType() == Operand.getValueType() ||
5159             (VT.getVectorElementType().isInteger() &&
5160              Operand.getValueType().isInteger() &&
5161              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5162            "Illegal SCALAR_TO_VECTOR node!");
5163     if (OpOpcode == ISD::UNDEF)
5164       return getUNDEF(VT);
5165     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5166     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5167         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5168         Operand.getConstantOperandVal(1) == 0 &&
5169         Operand.getOperand(0).getValueType() == VT)
5170       return Operand.getOperand(0);
5171     break;
5172   case ISD::FNEG:
5173     // Negation of an unknown bag of bits is still completely undefined.
5174     if (OpOpcode == ISD::UNDEF)
5175       return getUNDEF(VT);
5176 
5177     if (OpOpcode == ISD::FNEG)  // --X -> X
5178       return Operand.getOperand(0);
5179     break;
5180   case ISD::FABS:
5181     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5182       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5183     break;
5184   case ISD::VSCALE:
5185     assert(VT == Operand.getValueType() && "Unexpected VT!");
5186     break;
5187   case ISD::CTPOP:
5188     if (Operand.getValueType().getScalarType() == MVT::i1)
5189       return Operand;
5190     break;
5191   case ISD::CTLZ:
5192   case ISD::CTTZ:
5193     if (Operand.getValueType().getScalarType() == MVT::i1)
5194       return getNOT(DL, Operand, Operand.getValueType());
5195     break;
5196   case ISD::VECREDUCE_SMIN:
5197   case ISD::VECREDUCE_UMAX:
5198     if (Operand.getValueType().getScalarType() == MVT::i1)
5199       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5200     break;
5201   case ISD::VECREDUCE_SMAX:
5202   case ISD::VECREDUCE_UMIN:
5203     if (Operand.getValueType().getScalarType() == MVT::i1)
5204       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5205     break;
5206   }
5207 
5208   SDNode *N;
5209   SDVTList VTs = getVTList(VT);
5210   SDValue Ops[] = {Operand};
5211   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5212     FoldingSetNodeID ID;
5213     AddNodeIDNode(ID, Opcode, VTs, Ops);
5214     void *IP = nullptr;
5215     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5216       E->intersectFlagsWith(Flags);
5217       return SDValue(E, 0);
5218     }
5219 
5220     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5221     N->setFlags(Flags);
5222     createOperands(N, Ops);
5223     CSEMap.InsertNode(N, IP);
5224   } else {
5225     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5226     createOperands(N, Ops);
5227   }
5228 
5229   InsertNode(N);
5230   SDValue V = SDValue(N, 0);
5231   NewSDValueDbgMsg(V, "Creating new node: ", this);
5232   return V;
5233 }
5234 
5235 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5236                                        const APInt &C2) {
5237   switch (Opcode) {
5238   case ISD::ADD:  return C1 + C2;
5239   case ISD::SUB:  return C1 - C2;
5240   case ISD::MUL:  return C1 * C2;
5241   case ISD::AND:  return C1 & C2;
5242   case ISD::OR:   return C1 | C2;
5243   case ISD::XOR:  return C1 ^ C2;
5244   case ISD::SHL:  return C1 << C2;
5245   case ISD::SRL:  return C1.lshr(C2);
5246   case ISD::SRA:  return C1.ashr(C2);
5247   case ISD::ROTL: return C1.rotl(C2);
5248   case ISD::ROTR: return C1.rotr(C2);
5249   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5250   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5251   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5252   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5253   case ISD::SADDSAT: return C1.sadd_sat(C2);
5254   case ISD::UADDSAT: return C1.uadd_sat(C2);
5255   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5256   case ISD::USUBSAT: return C1.usub_sat(C2);
5257   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5258   case ISD::USHLSAT: return C1.ushl_sat(C2);
5259   case ISD::UDIV:
5260     if (!C2.getBoolValue())
5261       break;
5262     return C1.udiv(C2);
5263   case ISD::UREM:
5264     if (!C2.getBoolValue())
5265       break;
5266     return C1.urem(C2);
5267   case ISD::SDIV:
5268     if (!C2.getBoolValue())
5269       break;
5270     return C1.sdiv(C2);
5271   case ISD::SREM:
5272     if (!C2.getBoolValue())
5273       break;
5274     return C1.srem(C2);
5275   case ISD::MULHS: {
5276     unsigned FullWidth = C1.getBitWidth() * 2;
5277     APInt C1Ext = C1.sext(FullWidth);
5278     APInt C2Ext = C2.sext(FullWidth);
5279     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5280   }
5281   case ISD::MULHU: {
5282     unsigned FullWidth = C1.getBitWidth() * 2;
5283     APInt C1Ext = C1.zext(FullWidth);
5284     APInt C2Ext = C2.zext(FullWidth);
5285     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5286   }
5287   case ISD::AVGFLOORS: {
5288     unsigned FullWidth = C1.getBitWidth() + 1;
5289     APInt C1Ext = C1.sext(FullWidth);
5290     APInt C2Ext = C2.sext(FullWidth);
5291     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5292   }
5293   case ISD::AVGFLOORU: {
5294     unsigned FullWidth = C1.getBitWidth() + 1;
5295     APInt C1Ext = C1.zext(FullWidth);
5296     APInt C2Ext = C2.zext(FullWidth);
5297     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5298   }
5299   case ISD::AVGCEILS: {
5300     unsigned FullWidth = C1.getBitWidth() + 1;
5301     APInt C1Ext = C1.sext(FullWidth);
5302     APInt C2Ext = C2.sext(FullWidth);
5303     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5304   }
5305   case ISD::AVGCEILU: {
5306     unsigned FullWidth = C1.getBitWidth() + 1;
5307     APInt C1Ext = C1.zext(FullWidth);
5308     APInt C2Ext = C2.zext(FullWidth);
5309     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5310   }
5311   }
5312   return llvm::None;
5313 }
5314 
5315 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5316                                        const GlobalAddressSDNode *GA,
5317                                        const SDNode *N2) {
5318   if (GA->getOpcode() != ISD::GlobalAddress)
5319     return SDValue();
5320   if (!TLI->isOffsetFoldingLegal(GA))
5321     return SDValue();
5322   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5323   if (!C2)
5324     return SDValue();
5325   int64_t Offset = C2->getSExtValue();
5326   switch (Opcode) {
5327   case ISD::ADD: break;
5328   case ISD::SUB: Offset = -uint64_t(Offset); break;
5329   default: return SDValue();
5330   }
5331   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5332                           GA->getOffset() + uint64_t(Offset));
5333 }
5334 
5335 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5336   switch (Opcode) {
5337   case ISD::SDIV:
5338   case ISD::UDIV:
5339   case ISD::SREM:
5340   case ISD::UREM: {
5341     // If a divisor is zero/undef or any element of a divisor vector is
5342     // zero/undef, the whole op is undef.
5343     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5344     SDValue Divisor = Ops[1];
5345     if (Divisor.isUndef() || isNullConstant(Divisor))
5346       return true;
5347 
5348     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5349            llvm::any_of(Divisor->op_values(),
5350                         [](SDValue V) { return V.isUndef() ||
5351                                         isNullConstant(V); });
5352     // TODO: Handle signed overflow.
5353   }
5354   // TODO: Handle oversized shifts.
5355   default:
5356     return false;
5357   }
5358 }
5359 
5360 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5361                                              EVT VT, ArrayRef<SDValue> Ops) {
5362   // If the opcode is a target-specific ISD node, there's nothing we can
5363   // do here and the operand rules may not line up with the below, so
5364   // bail early.
5365   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5366   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5367   // foldCONCAT_VECTORS in getNode before this is called.
5368   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5369     return SDValue();
5370 
5371   unsigned NumOps = Ops.size();
5372   if (NumOps == 0)
5373     return SDValue();
5374 
5375   if (isUndef(Opcode, Ops))
5376     return getUNDEF(VT);
5377 
5378   // Handle binops special cases.
5379   if (NumOps == 2) {
5380     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5381       return CFP;
5382 
5383     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5384       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5385         if (C1->isOpaque() || C2->isOpaque())
5386           return SDValue();
5387 
5388         Optional<APInt> FoldAttempt =
5389             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5390         if (!FoldAttempt)
5391           return SDValue();
5392 
5393         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5394         assert((!Folded || !VT.isVector()) &&
5395                "Can't fold vectors ops with scalar operands");
5396         return Folded;
5397       }
5398     }
5399 
5400     // fold (add Sym, c) -> Sym+c
5401     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5402       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5403     if (TLI->isCommutativeBinOp(Opcode))
5404       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5405         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5406   }
5407 
5408   // This is for vector folding only from here on.
5409   if (!VT.isVector())
5410     return SDValue();
5411 
5412   ElementCount NumElts = VT.getVectorElementCount();
5413 
5414   // See if we can fold through bitcasted integer ops.
5415   // TODO: Can we handle undef elements?
5416   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5417       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5418       Ops[0].getOpcode() == ISD::BITCAST &&
5419       Ops[1].getOpcode() == ISD::BITCAST) {
5420     SDValue N1 = peekThroughBitcasts(Ops[0]);
5421     SDValue N2 = peekThroughBitcasts(Ops[1]);
5422     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5423     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5424     EVT BVVT = N1.getValueType();
5425     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5426       bool IsLE = getDataLayout().isLittleEndian();
5427       unsigned EltBits = VT.getScalarSizeInBits();
5428       SmallVector<APInt> RawBits1, RawBits2;
5429       BitVector UndefElts1, UndefElts2;
5430       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5431           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5432           UndefElts1.none() && UndefElts2.none()) {
5433         SmallVector<APInt> RawBits;
5434         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5435           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5436           if (!Fold)
5437             break;
5438           RawBits.push_back(Fold.getValue());
5439         }
5440         if (RawBits.size() == NumElts.getFixedValue()) {
5441           // We have constant folded, but we need to cast this again back to
5442           // the original (possibly legalized) type.
5443           SmallVector<APInt> DstBits;
5444           BitVector DstUndefs;
5445           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5446                                            DstBits, RawBits, DstUndefs,
5447                                            BitVector(RawBits.size(), false));
5448           EVT BVEltVT = BV1->getOperand(0).getValueType();
5449           unsigned BVEltBits = BVEltVT.getSizeInBits();
5450           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5451           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5452             if (DstUndefs[I])
5453               continue;
5454             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5455           }
5456           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5457         }
5458       }
5459     }
5460   }
5461 
5462   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5463   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5464   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5465       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5466     APInt RHSVal;
5467     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5468       APInt NewStep = Opcode == ISD::MUL
5469                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5470                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5471       return getStepVector(DL, VT, NewStep);
5472     }
5473   }
5474 
5475   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5476     return !Op.getValueType().isVector() ||
5477            Op.getValueType().getVectorElementCount() == NumElts;
5478   };
5479 
5480   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5481     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5482            Op.getOpcode() == ISD::BUILD_VECTOR ||
5483            Op.getOpcode() == ISD::SPLAT_VECTOR;
5484   };
5485 
5486   // All operands must be vector types with the same number of elements as
5487   // the result type and must be either UNDEF or a build/splat vector
5488   // or UNDEF scalars.
5489   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5490       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5491     return SDValue();
5492 
5493   // If we are comparing vectors, then the result needs to be a i1 boolean
5494   // that is then sign-extended back to the legal result type.
5495   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5496 
5497   // Find legal integer scalar type for constant promotion and
5498   // ensure that its scalar size is at least as large as source.
5499   EVT LegalSVT = VT.getScalarType();
5500   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5501     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5502     if (LegalSVT.bitsLT(VT.getScalarType()))
5503       return SDValue();
5504   }
5505 
5506   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5507   // only have one operand to check. For fixed-length vector types we may have
5508   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5509   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5510 
5511   // Constant fold each scalar lane separately.
5512   SmallVector<SDValue, 4> ScalarResults;
5513   for (unsigned I = 0; I != NumVectorElts; I++) {
5514     SmallVector<SDValue, 4> ScalarOps;
5515     for (SDValue Op : Ops) {
5516       EVT InSVT = Op.getValueType().getScalarType();
5517       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5518           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5519         if (Op.isUndef())
5520           ScalarOps.push_back(getUNDEF(InSVT));
5521         else
5522           ScalarOps.push_back(Op);
5523         continue;
5524       }
5525 
5526       SDValue ScalarOp =
5527           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5528       EVT ScalarVT = ScalarOp.getValueType();
5529 
5530       // Build vector (integer) scalar operands may need implicit
5531       // truncation - do this before constant folding.
5532       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5533         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5534 
5535       ScalarOps.push_back(ScalarOp);
5536     }
5537 
5538     // Constant fold the scalar operands.
5539     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5540 
5541     // Legalize the (integer) scalar constant if necessary.
5542     if (LegalSVT != SVT)
5543       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5544 
5545     // Scalar folding only succeeded if the result is a constant or UNDEF.
5546     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5547         ScalarResult.getOpcode() != ISD::ConstantFP)
5548       return SDValue();
5549     ScalarResults.push_back(ScalarResult);
5550   }
5551 
5552   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5553                                    : getBuildVector(VT, DL, ScalarResults);
5554   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5555   return V;
5556 }
5557 
5558 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5559                                          EVT VT, SDValue N1, SDValue N2) {
5560   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5561   //       should. That will require dealing with a potentially non-default
5562   //       rounding mode, checking the "opStatus" return value from the APFloat
5563   //       math calculations, and possibly other variations.
5564   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5565   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5566   if (N1CFP && N2CFP) {
5567     APFloat C1 = N1CFP->getValueAPF(); // make copy
5568     const APFloat &C2 = N2CFP->getValueAPF();
5569     switch (Opcode) {
5570     case ISD::FADD:
5571       C1.add(C2, APFloat::rmNearestTiesToEven);
5572       return getConstantFP(C1, DL, VT);
5573     case ISD::FSUB:
5574       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5575       return getConstantFP(C1, DL, VT);
5576     case ISD::FMUL:
5577       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5578       return getConstantFP(C1, DL, VT);
5579     case ISD::FDIV:
5580       C1.divide(C2, APFloat::rmNearestTiesToEven);
5581       return getConstantFP(C1, DL, VT);
5582     case ISD::FREM:
5583       C1.mod(C2);
5584       return getConstantFP(C1, DL, VT);
5585     case ISD::FCOPYSIGN:
5586       C1.copySign(C2);
5587       return getConstantFP(C1, DL, VT);
5588     case ISD::FMINNUM:
5589       return getConstantFP(minnum(C1, C2), DL, VT);
5590     case ISD::FMAXNUM:
5591       return getConstantFP(maxnum(C1, C2), DL, VT);
5592     case ISD::FMINIMUM:
5593       return getConstantFP(minimum(C1, C2), DL, VT);
5594     case ISD::FMAXIMUM:
5595       return getConstantFP(maximum(C1, C2), DL, VT);
5596     default: break;
5597     }
5598   }
5599   if (N1CFP && Opcode == ISD::FP_ROUND) {
5600     APFloat C1 = N1CFP->getValueAPF();    // make copy
5601     bool Unused;
5602     // This can return overflow, underflow, or inexact; we don't care.
5603     // FIXME need to be more flexible about rounding mode.
5604     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5605                       &Unused);
5606     return getConstantFP(C1, DL, VT);
5607   }
5608 
5609   switch (Opcode) {
5610   case ISD::FSUB:
5611     // -0.0 - undef --> undef (consistent with "fneg undef")
5612     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5613       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5614         return getUNDEF(VT);
5615     LLVM_FALLTHROUGH;
5616 
5617   case ISD::FADD:
5618   case ISD::FMUL:
5619   case ISD::FDIV:
5620   case ISD::FREM:
5621     // If both operands are undef, the result is undef. If 1 operand is undef,
5622     // the result is NaN. This should match the behavior of the IR optimizer.
5623     if (N1.isUndef() && N2.isUndef())
5624       return getUNDEF(VT);
5625     if (N1.isUndef() || N2.isUndef())
5626       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5627   }
5628   return SDValue();
5629 }
5630 
5631 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5632   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5633 
5634   // There's no need to assert on a byte-aligned pointer. All pointers are at
5635   // least byte aligned.
5636   if (A == Align(1))
5637     return Val;
5638 
5639   FoldingSetNodeID ID;
5640   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5641   ID.AddInteger(A.value());
5642 
5643   void *IP = nullptr;
5644   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5645     return SDValue(E, 0);
5646 
5647   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5648                                          Val.getValueType(), A);
5649   createOperands(N, {Val});
5650 
5651   CSEMap.InsertNode(N, IP);
5652   InsertNode(N);
5653 
5654   SDValue V(N, 0);
5655   NewSDValueDbgMsg(V, "Creating new node: ", this);
5656   return V;
5657 }
5658 
5659 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5660                               SDValue N1, SDValue N2) {
5661   SDNodeFlags Flags;
5662   if (Inserter)
5663     Flags = Inserter->getFlags();
5664   return getNode(Opcode, DL, VT, N1, N2, Flags);
5665 }
5666 
5667 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5668                                                 SDValue &N2) const {
5669   if (!TLI->isCommutativeBinOp(Opcode))
5670     return;
5671 
5672   // Canonicalize:
5673   //   binop(const, nonconst) -> binop(nonconst, const)
5674   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5675   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5676   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5677   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5678   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5679     std::swap(N1, N2);
5680 
5681   // Canonicalize:
5682   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5683   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5684            N2.getOpcode() == ISD::STEP_VECTOR)
5685     std::swap(N1, N2);
5686 }
5687 
5688 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5689                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5690   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5691          N2.getOpcode() != ISD::DELETED_NODE &&
5692          "Operand is DELETED_NODE!");
5693 
5694   canonicalizeCommutativeBinop(Opcode, N1, N2);
5695 
5696   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5697   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5698 
5699   // Don't allow undefs in vector splats - we might be returning N2 when folding
5700   // to zero etc.
5701   ConstantSDNode *N2CV =
5702       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5703 
5704   switch (Opcode) {
5705   default: break;
5706   case ISD::TokenFactor:
5707     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5708            N2.getValueType() == MVT::Other && "Invalid token factor!");
5709     // Fold trivial token factors.
5710     if (N1.getOpcode() == ISD::EntryToken) return N2;
5711     if (N2.getOpcode() == ISD::EntryToken) return N1;
5712     if (N1 == N2) return N1;
5713     break;
5714   case ISD::BUILD_VECTOR: {
5715     // Attempt to simplify BUILD_VECTOR.
5716     SDValue Ops[] = {N1, N2};
5717     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5718       return V;
5719     break;
5720   }
5721   case ISD::CONCAT_VECTORS: {
5722     SDValue Ops[] = {N1, N2};
5723     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5724       return V;
5725     break;
5726   }
5727   case ISD::AND:
5728     assert(VT.isInteger() && "This operator does not apply to FP types!");
5729     assert(N1.getValueType() == N2.getValueType() &&
5730            N1.getValueType() == VT && "Binary operator types must match!");
5731     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5732     // worth handling here.
5733     if (N2CV && N2CV->isZero())
5734       return N2;
5735     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5736       return N1;
5737     break;
5738   case ISD::OR:
5739   case ISD::XOR:
5740   case ISD::ADD:
5741   case ISD::SUB:
5742     assert(VT.isInteger() && "This operator does not apply to FP types!");
5743     assert(N1.getValueType() == N2.getValueType() &&
5744            N1.getValueType() == VT && "Binary operator types must match!");
5745     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5746     // it's worth handling here.
5747     if (N2CV && N2CV->isZero())
5748       return N1;
5749     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5750         VT.getVectorElementType() == MVT::i1)
5751       return getNode(ISD::XOR, DL, VT, N1, N2);
5752     break;
5753   case ISD::MUL:
5754     assert(VT.isInteger() && "This operator does not apply to FP types!");
5755     assert(N1.getValueType() == N2.getValueType() &&
5756            N1.getValueType() == VT && "Binary operator types must match!");
5757     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5758       return getNode(ISD::AND, DL, VT, N1, N2);
5759     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5760       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5761       const APInt &N2CImm = N2C->getAPIntValue();
5762       return getVScale(DL, VT, MulImm * N2CImm);
5763     }
5764     break;
5765   case ISD::UDIV:
5766   case ISD::UREM:
5767   case ISD::MULHU:
5768   case ISD::MULHS:
5769   case ISD::SDIV:
5770   case ISD::SREM:
5771   case ISD::SADDSAT:
5772   case ISD::SSUBSAT:
5773   case ISD::UADDSAT:
5774   case ISD::USUBSAT:
5775     assert(VT.isInteger() && "This operator does not apply to FP types!");
5776     assert(N1.getValueType() == N2.getValueType() &&
5777            N1.getValueType() == VT && "Binary operator types must match!");
5778     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5779       // fold (add_sat x, y) -> (or x, y) for bool types.
5780       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5781         return getNode(ISD::OR, DL, VT, N1, N2);
5782       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5783       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5784         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5785     }
5786     break;
5787   case ISD::SMIN:
5788   case ISD::UMAX:
5789     assert(VT.isInteger() && "This operator does not apply to FP types!");
5790     assert(N1.getValueType() == N2.getValueType() &&
5791            N1.getValueType() == VT && "Binary operator types must match!");
5792     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5793       return getNode(ISD::OR, DL, VT, N1, N2);
5794     break;
5795   case ISD::SMAX:
5796   case ISD::UMIN:
5797     assert(VT.isInteger() && "This operator does not apply to FP types!");
5798     assert(N1.getValueType() == N2.getValueType() &&
5799            N1.getValueType() == VT && "Binary operator types must match!");
5800     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5801       return getNode(ISD::AND, DL, VT, N1, N2);
5802     break;
5803   case ISD::FADD:
5804   case ISD::FSUB:
5805   case ISD::FMUL:
5806   case ISD::FDIV:
5807   case ISD::FREM:
5808     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5809     assert(N1.getValueType() == N2.getValueType() &&
5810            N1.getValueType() == VT && "Binary operator types must match!");
5811     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5812       return V;
5813     break;
5814   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5815     assert(N1.getValueType() == VT &&
5816            N1.getValueType().isFloatingPoint() &&
5817            N2.getValueType().isFloatingPoint() &&
5818            "Invalid FCOPYSIGN!");
5819     break;
5820   case ISD::SHL:
5821     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5822       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5823       const APInt &ShiftImm = N2C->getAPIntValue();
5824       return getVScale(DL, VT, MulImm << ShiftImm);
5825     }
5826     LLVM_FALLTHROUGH;
5827   case ISD::SRA:
5828   case ISD::SRL:
5829     if (SDValue V = simplifyShift(N1, N2))
5830       return V;
5831     LLVM_FALLTHROUGH;
5832   case ISD::ROTL:
5833   case ISD::ROTR:
5834     assert(VT == N1.getValueType() &&
5835            "Shift operators return type must be the same as their first arg");
5836     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5837            "Shifts only work on integers");
5838     assert((!VT.isVector() || VT == N2.getValueType()) &&
5839            "Vector shift amounts must be in the same as their first arg");
5840     // Verify that the shift amount VT is big enough to hold valid shift
5841     // amounts.  This catches things like trying to shift an i1024 value by an
5842     // i8, which is easy to fall into in generic code that uses
5843     // TLI.getShiftAmount().
5844     assert(N2.getValueType().getScalarSizeInBits() >=
5845                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5846            "Invalid use of small shift amount with oversized value!");
5847 
5848     // Always fold shifts of i1 values so the code generator doesn't need to
5849     // handle them.  Since we know the size of the shift has to be less than the
5850     // size of the value, the shift/rotate count is guaranteed to be zero.
5851     if (VT == MVT::i1)
5852       return N1;
5853     if (N2CV && N2CV->isZero())
5854       return N1;
5855     break;
5856   case ISD::FP_ROUND:
5857     assert(VT.isFloatingPoint() &&
5858            N1.getValueType().isFloatingPoint() &&
5859            VT.bitsLE(N1.getValueType()) &&
5860            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5861            "Invalid FP_ROUND!");
5862     if (N1.getValueType() == VT) return N1;  // noop conversion.
5863     break;
5864   case ISD::AssertSext:
5865   case ISD::AssertZext: {
5866     EVT EVT = cast<VTSDNode>(N2)->getVT();
5867     assert(VT == N1.getValueType() && "Not an inreg extend!");
5868     assert(VT.isInteger() && EVT.isInteger() &&
5869            "Cannot *_EXTEND_INREG FP types");
5870     assert(!EVT.isVector() &&
5871            "AssertSExt/AssertZExt type should be the vector element type "
5872            "rather than the vector type!");
5873     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5874     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5875     break;
5876   }
5877   case ISD::SIGN_EXTEND_INREG: {
5878     EVT EVT = cast<VTSDNode>(N2)->getVT();
5879     assert(VT == N1.getValueType() && "Not an inreg extend!");
5880     assert(VT.isInteger() && EVT.isInteger() &&
5881            "Cannot *_EXTEND_INREG FP types");
5882     assert(EVT.isVector() == VT.isVector() &&
5883            "SIGN_EXTEND_INREG type should be vector iff the operand "
5884            "type is vector!");
5885     assert((!EVT.isVector() ||
5886             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5887            "Vector element counts must match in SIGN_EXTEND_INREG");
5888     assert(EVT.bitsLE(VT) && "Not extending!");
5889     if (EVT == VT) return N1;  // Not actually extending
5890 
5891     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5892       unsigned FromBits = EVT.getScalarSizeInBits();
5893       Val <<= Val.getBitWidth() - FromBits;
5894       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5895       return getConstant(Val, DL, ConstantVT);
5896     };
5897 
5898     if (N1C) {
5899       const APInt &Val = N1C->getAPIntValue();
5900       return SignExtendInReg(Val, VT);
5901     }
5902 
5903     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5904       SmallVector<SDValue, 8> Ops;
5905       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5906       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5907         SDValue Op = N1.getOperand(i);
5908         if (Op.isUndef()) {
5909           Ops.push_back(getUNDEF(OpVT));
5910           continue;
5911         }
5912         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5913         APInt Val = C->getAPIntValue();
5914         Ops.push_back(SignExtendInReg(Val, OpVT));
5915       }
5916       return getBuildVector(VT, DL, Ops);
5917     }
5918     break;
5919   }
5920   case ISD::FP_TO_SINT_SAT:
5921   case ISD::FP_TO_UINT_SAT: {
5922     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5923            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5924     assert(N1.getValueType().isVector() == VT.isVector() &&
5925            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5926            "vector!");
5927     assert((!VT.isVector() || VT.getVectorNumElements() ==
5928                                   N1.getValueType().getVectorNumElements()) &&
5929            "Vector element counts must match in FP_TO_*INT_SAT");
5930     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5931            "Type to saturate to must be a scalar.");
5932     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5933            "Not extending!");
5934     break;
5935   }
5936   case ISD::EXTRACT_VECTOR_ELT:
5937     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5938            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5939              element type of the vector.");
5940 
5941     // Extract from an undefined value or using an undefined index is undefined.
5942     if (N1.isUndef() || N2.isUndef())
5943       return getUNDEF(VT);
5944 
5945     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5946     // vectors. For scalable vectors we will provide appropriate support for
5947     // dealing with arbitrary indices.
5948     if (N2C && N1.getValueType().isFixedLengthVector() &&
5949         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5950       return getUNDEF(VT);
5951 
5952     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5953     // expanding copies of large vectors from registers. This only works for
5954     // fixed length vectors, since we need to know the exact number of
5955     // elements.
5956     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5957         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5958       unsigned Factor =
5959         N1.getOperand(0).getValueType().getVectorNumElements();
5960       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5961                      N1.getOperand(N2C->getZExtValue() / Factor),
5962                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5963     }
5964 
5965     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5966     // lowering is expanding large vector constants.
5967     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5968                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5969       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5970               N1.getValueType().isFixedLengthVector()) &&
5971              "BUILD_VECTOR used for scalable vectors");
5972       unsigned Index =
5973           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5974       SDValue Elt = N1.getOperand(Index);
5975 
5976       if (VT != Elt.getValueType())
5977         // If the vector element type is not legal, the BUILD_VECTOR operands
5978         // are promoted and implicitly truncated, and the result implicitly
5979         // extended. Make that explicit here.
5980         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5981 
5982       return Elt;
5983     }
5984 
5985     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5986     // operations are lowered to scalars.
5987     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5988       // If the indices are the same, return the inserted element else
5989       // if the indices are known different, extract the element from
5990       // the original vector.
5991       SDValue N1Op2 = N1.getOperand(2);
5992       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5993 
5994       if (N1Op2C && N2C) {
5995         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5996           if (VT == N1.getOperand(1).getValueType())
5997             return N1.getOperand(1);
5998           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5999         }
6000         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6001       }
6002     }
6003 
6004     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6005     // when vector types are scalarized and v1iX is legal.
6006     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6007     // Here we are completely ignoring the extract element index (N2),
6008     // which is fine for fixed width vectors, since any index other than 0
6009     // is undefined anyway. However, this cannot be ignored for scalable
6010     // vectors - in theory we could support this, but we don't want to do this
6011     // without a profitability check.
6012     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6013         N1.getValueType().isFixedLengthVector() &&
6014         N1.getValueType().getVectorNumElements() == 1) {
6015       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6016                      N1.getOperand(1));
6017     }
6018     break;
6019   case ISD::EXTRACT_ELEMENT:
6020     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6021     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6022            (N1.getValueType().isInteger() == VT.isInteger()) &&
6023            N1.getValueType() != VT &&
6024            "Wrong types for EXTRACT_ELEMENT!");
6025 
6026     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6027     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6028     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6029     if (N1.getOpcode() == ISD::BUILD_PAIR)
6030       return N1.getOperand(N2C->getZExtValue());
6031 
6032     // EXTRACT_ELEMENT of a constant int is also very common.
6033     if (N1C) {
6034       unsigned ElementSize = VT.getSizeInBits();
6035       unsigned Shift = ElementSize * N2C->getZExtValue();
6036       const APInt &Val = N1C->getAPIntValue();
6037       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6038     }
6039     break;
6040   case ISD::EXTRACT_SUBVECTOR: {
6041     EVT N1VT = N1.getValueType();
6042     assert(VT.isVector() && N1VT.isVector() &&
6043            "Extract subvector VTs must be vectors!");
6044     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6045            "Extract subvector VTs must have the same element type!");
6046     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6047            "Cannot extract a scalable vector from a fixed length vector!");
6048     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6049             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6050            "Extract subvector must be from larger vector to smaller vector!");
6051     assert(N2C && "Extract subvector index must be a constant");
6052     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6053             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6054                 N1VT.getVectorMinNumElements()) &&
6055            "Extract subvector overflow!");
6056     assert(N2C->getAPIntValue().getBitWidth() ==
6057                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6058            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6059 
6060     // Trivial extraction.
6061     if (VT == N1VT)
6062       return N1;
6063 
6064     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6065     if (N1.isUndef())
6066       return getUNDEF(VT);
6067 
6068     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6069     // the concat have the same type as the extract.
6070     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6071         VT == N1.getOperand(0).getValueType()) {
6072       unsigned Factor = VT.getVectorMinNumElements();
6073       return N1.getOperand(N2C->getZExtValue() / Factor);
6074     }
6075 
6076     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6077     // during shuffle legalization.
6078     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6079         VT == N1.getOperand(1).getValueType())
6080       return N1.getOperand(1);
6081     break;
6082   }
6083   }
6084 
6085   // Perform trivial constant folding.
6086   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6087     return SV;
6088 
6089   // Canonicalize an UNDEF to the RHS, even over a constant.
6090   if (N1.isUndef()) {
6091     if (TLI->isCommutativeBinOp(Opcode)) {
6092       std::swap(N1, N2);
6093     } else {
6094       switch (Opcode) {
6095       case ISD::SIGN_EXTEND_INREG:
6096       case ISD::SUB:
6097         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6098       case ISD::UDIV:
6099       case ISD::SDIV:
6100       case ISD::UREM:
6101       case ISD::SREM:
6102       case ISD::SSUBSAT:
6103       case ISD::USUBSAT:
6104         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6105       }
6106     }
6107   }
6108 
6109   // Fold a bunch of operators when the RHS is undef.
6110   if (N2.isUndef()) {
6111     switch (Opcode) {
6112     case ISD::XOR:
6113       if (N1.isUndef())
6114         // Handle undef ^ undef -> 0 special case. This is a common
6115         // idiom (misuse).
6116         return getConstant(0, DL, VT);
6117       LLVM_FALLTHROUGH;
6118     case ISD::ADD:
6119     case ISD::SUB:
6120     case ISD::UDIV:
6121     case ISD::SDIV:
6122     case ISD::UREM:
6123     case ISD::SREM:
6124       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6125     case ISD::MUL:
6126     case ISD::AND:
6127     case ISD::SSUBSAT:
6128     case ISD::USUBSAT:
6129       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6130     case ISD::OR:
6131     case ISD::SADDSAT:
6132     case ISD::UADDSAT:
6133       return getAllOnesConstant(DL, VT);
6134     }
6135   }
6136 
6137   // Memoize this node if possible.
6138   SDNode *N;
6139   SDVTList VTs = getVTList(VT);
6140   SDValue Ops[] = {N1, N2};
6141   if (VT != MVT::Glue) {
6142     FoldingSetNodeID ID;
6143     AddNodeIDNode(ID, Opcode, VTs, Ops);
6144     void *IP = nullptr;
6145     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6146       E->intersectFlagsWith(Flags);
6147       return SDValue(E, 0);
6148     }
6149 
6150     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6151     N->setFlags(Flags);
6152     createOperands(N, Ops);
6153     CSEMap.InsertNode(N, IP);
6154   } else {
6155     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6156     createOperands(N, Ops);
6157   }
6158 
6159   InsertNode(N);
6160   SDValue V = SDValue(N, 0);
6161   NewSDValueDbgMsg(V, "Creating new node: ", this);
6162   return V;
6163 }
6164 
6165 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6166                               SDValue N1, SDValue N2, SDValue N3) {
6167   SDNodeFlags Flags;
6168   if (Inserter)
6169     Flags = Inserter->getFlags();
6170   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6171 }
6172 
6173 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6174                               SDValue N1, SDValue N2, SDValue N3,
6175                               const SDNodeFlags Flags) {
6176   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6177          N2.getOpcode() != ISD::DELETED_NODE &&
6178          N3.getOpcode() != ISD::DELETED_NODE &&
6179          "Operand is DELETED_NODE!");
6180   // Perform various simplifications.
6181   switch (Opcode) {
6182   case ISD::FMA: {
6183     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6184     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6185            N3.getValueType() == VT && "FMA types must match!");
6186     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6187     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6188     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6189     if (N1CFP && N2CFP && N3CFP) {
6190       APFloat  V1 = N1CFP->getValueAPF();
6191       const APFloat &V2 = N2CFP->getValueAPF();
6192       const APFloat &V3 = N3CFP->getValueAPF();
6193       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6194       return getConstantFP(V1, DL, VT);
6195     }
6196     break;
6197   }
6198   case ISD::BUILD_VECTOR: {
6199     // Attempt to simplify BUILD_VECTOR.
6200     SDValue Ops[] = {N1, N2, N3};
6201     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6202       return V;
6203     break;
6204   }
6205   case ISD::CONCAT_VECTORS: {
6206     SDValue Ops[] = {N1, N2, N3};
6207     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6208       return V;
6209     break;
6210   }
6211   case ISD::SETCC: {
6212     assert(VT.isInteger() && "SETCC result type must be an integer!");
6213     assert(N1.getValueType() == N2.getValueType() &&
6214            "SETCC operands must have the same type!");
6215     assert(VT.isVector() == N1.getValueType().isVector() &&
6216            "SETCC type should be vector iff the operand type is vector!");
6217     assert((!VT.isVector() || VT.getVectorElementCount() ==
6218                                   N1.getValueType().getVectorElementCount()) &&
6219            "SETCC vector element counts must match!");
6220     // Use FoldSetCC to simplify SETCC's.
6221     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6222       return V;
6223     // Vector constant folding.
6224     SDValue Ops[] = {N1, N2, N3};
6225     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6226       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6227       return V;
6228     }
6229     break;
6230   }
6231   case ISD::SELECT:
6232   case ISD::VSELECT:
6233     if (SDValue V = simplifySelect(N1, N2, N3))
6234       return V;
6235     break;
6236   case ISD::VECTOR_SHUFFLE:
6237     llvm_unreachable("should use getVectorShuffle constructor!");
6238   case ISD::VECTOR_SPLICE: {
6239     if (cast<ConstantSDNode>(N3)->isNullValue())
6240       return N1;
6241     break;
6242   }
6243   case ISD::INSERT_VECTOR_ELT: {
6244     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6245     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6246     // for scalable vectors where we will generate appropriate code to
6247     // deal with out-of-bounds cases correctly.
6248     if (N3C && N1.getValueType().isFixedLengthVector() &&
6249         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6250       return getUNDEF(VT);
6251 
6252     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6253     if (N3.isUndef())
6254       return getUNDEF(VT);
6255 
6256     // If the inserted element is an UNDEF, just use the input vector.
6257     if (N2.isUndef())
6258       return N1;
6259 
6260     break;
6261   }
6262   case ISD::INSERT_SUBVECTOR: {
6263     // Inserting undef into undef is still undef.
6264     if (N1.isUndef() && N2.isUndef())
6265       return getUNDEF(VT);
6266 
6267     EVT N2VT = N2.getValueType();
6268     assert(VT == N1.getValueType() &&
6269            "Dest and insert subvector source types must match!");
6270     assert(VT.isVector() && N2VT.isVector() &&
6271            "Insert subvector VTs must be vectors!");
6272     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6273            "Cannot insert a scalable vector into a fixed length vector!");
6274     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6275             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6276            "Insert subvector must be from smaller vector to larger vector!");
6277     assert(isa<ConstantSDNode>(N3) &&
6278            "Insert subvector index must be constant");
6279     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6280             (N2VT.getVectorMinNumElements() +
6281              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6282                 VT.getVectorMinNumElements()) &&
6283            "Insert subvector overflow!");
6284     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6285                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6286            "Constant index for INSERT_SUBVECTOR has an invalid size");
6287 
6288     // Trivial insertion.
6289     if (VT == N2VT)
6290       return N2;
6291 
6292     // If this is an insert of an extracted vector into an undef vector, we
6293     // can just use the input to the extract.
6294     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6295         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6296       return N2.getOperand(0);
6297     break;
6298   }
6299   case ISD::BITCAST:
6300     // Fold bit_convert nodes from a type to themselves.
6301     if (N1.getValueType() == VT)
6302       return N1;
6303     break;
6304   }
6305 
6306   // Memoize node if it doesn't produce a flag.
6307   SDNode *N;
6308   SDVTList VTs = getVTList(VT);
6309   SDValue Ops[] = {N1, N2, N3};
6310   if (VT != MVT::Glue) {
6311     FoldingSetNodeID ID;
6312     AddNodeIDNode(ID, Opcode, VTs, Ops);
6313     void *IP = nullptr;
6314     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6315       E->intersectFlagsWith(Flags);
6316       return SDValue(E, 0);
6317     }
6318 
6319     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6320     N->setFlags(Flags);
6321     createOperands(N, Ops);
6322     CSEMap.InsertNode(N, IP);
6323   } else {
6324     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6325     createOperands(N, Ops);
6326   }
6327 
6328   InsertNode(N);
6329   SDValue V = SDValue(N, 0);
6330   NewSDValueDbgMsg(V, "Creating new node: ", this);
6331   return V;
6332 }
6333 
6334 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6335                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6336   SDValue Ops[] = { N1, N2, N3, N4 };
6337   return getNode(Opcode, DL, VT, Ops);
6338 }
6339 
6340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6341                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6342                               SDValue N5) {
6343   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6344   return getNode(Opcode, DL, VT, Ops);
6345 }
6346 
6347 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6348 /// the incoming stack arguments to be loaded from the stack.
6349 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6350   SmallVector<SDValue, 8> ArgChains;
6351 
6352   // Include the original chain at the beginning of the list. When this is
6353   // used by target LowerCall hooks, this helps legalize find the
6354   // CALLSEQ_BEGIN node.
6355   ArgChains.push_back(Chain);
6356 
6357   // Add a chain value for each stack argument.
6358   for (SDNode *U : getEntryNode().getNode()->uses())
6359     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6360       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6361         if (FI->getIndex() < 0)
6362           ArgChains.push_back(SDValue(L, 1));
6363 
6364   // Build a tokenfactor for all the chains.
6365   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6366 }
6367 
6368 /// getMemsetValue - Vectorized representation of the memset value
6369 /// operand.
6370 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6371                               const SDLoc &dl) {
6372   assert(!Value.isUndef());
6373 
6374   unsigned NumBits = VT.getScalarSizeInBits();
6375   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6376     assert(C->getAPIntValue().getBitWidth() == 8);
6377     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6378     if (VT.isInteger()) {
6379       bool IsOpaque = VT.getSizeInBits() > 64 ||
6380           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6381       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6382     }
6383     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6384                              VT);
6385   }
6386 
6387   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6388   EVT IntVT = VT.getScalarType();
6389   if (!IntVT.isInteger())
6390     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6391 
6392   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6393   if (NumBits > 8) {
6394     // Use a multiplication with 0x010101... to extend the input to the
6395     // required length.
6396     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6397     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6398                         DAG.getConstant(Magic, dl, IntVT));
6399   }
6400 
6401   if (VT != Value.getValueType() && !VT.isInteger())
6402     Value = DAG.getBitcast(VT.getScalarType(), Value);
6403   if (VT != Value.getValueType())
6404     Value = DAG.getSplatBuildVector(VT, dl, Value);
6405 
6406   return Value;
6407 }
6408 
6409 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6410 /// used when a memcpy is turned into a memset when the source is a constant
6411 /// string ptr.
6412 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6413                                   const TargetLowering &TLI,
6414                                   const ConstantDataArraySlice &Slice) {
6415   // Handle vector with all elements zero.
6416   if (Slice.Array == nullptr) {
6417     if (VT.isInteger())
6418       return DAG.getConstant(0, dl, VT);
6419     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6420       return DAG.getConstantFP(0.0, dl, VT);
6421     if (VT.isVector()) {
6422       unsigned NumElts = VT.getVectorNumElements();
6423       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6424       return DAG.getNode(ISD::BITCAST, dl, VT,
6425                          DAG.getConstant(0, dl,
6426                                          EVT::getVectorVT(*DAG.getContext(),
6427                                                           EltVT, NumElts)));
6428     }
6429     llvm_unreachable("Expected type!");
6430   }
6431 
6432   assert(!VT.isVector() && "Can't handle vector type here!");
6433   unsigned NumVTBits = VT.getSizeInBits();
6434   unsigned NumVTBytes = NumVTBits / 8;
6435   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6436 
6437   APInt Val(NumVTBits, 0);
6438   if (DAG.getDataLayout().isLittleEndian()) {
6439     for (unsigned i = 0; i != NumBytes; ++i)
6440       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6441   } else {
6442     for (unsigned i = 0; i != NumBytes; ++i)
6443       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6444   }
6445 
6446   // If the "cost" of materializing the integer immediate is less than the cost
6447   // of a load, then it is cost effective to turn the load into the immediate.
6448   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6449   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6450     return DAG.getConstant(Val, dl, VT);
6451   return SDValue();
6452 }
6453 
6454 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6455                                            const SDLoc &DL,
6456                                            const SDNodeFlags Flags) {
6457   EVT VT = Base.getValueType();
6458   SDValue Index;
6459 
6460   if (Offset.isScalable())
6461     Index = getVScale(DL, Base.getValueType(),
6462                       APInt(Base.getValueSizeInBits().getFixedSize(),
6463                             Offset.getKnownMinSize()));
6464   else
6465     Index = getConstant(Offset.getFixedSize(), DL, VT);
6466 
6467   return getMemBasePlusOffset(Base, Index, DL, Flags);
6468 }
6469 
6470 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6471                                            const SDLoc &DL,
6472                                            const SDNodeFlags Flags) {
6473   assert(Offset.getValueType().isInteger());
6474   EVT BasePtrVT = Ptr.getValueType();
6475   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6476 }
6477 
6478 /// Returns true if memcpy source is constant data.
6479 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6480   uint64_t SrcDelta = 0;
6481   GlobalAddressSDNode *G = nullptr;
6482   if (Src.getOpcode() == ISD::GlobalAddress)
6483     G = cast<GlobalAddressSDNode>(Src);
6484   else if (Src.getOpcode() == ISD::ADD &&
6485            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6486            Src.getOperand(1).getOpcode() == ISD::Constant) {
6487     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6488     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6489   }
6490   if (!G)
6491     return false;
6492 
6493   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6494                                   SrcDelta + G->getOffset());
6495 }
6496 
6497 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6498                                       SelectionDAG &DAG) {
6499   // On Darwin, -Os means optimize for size without hurting performance, so
6500   // only really optimize for size when -Oz (MinSize) is used.
6501   if (MF.getTarget().getTargetTriple().isOSDarwin())
6502     return MF.getFunction().hasMinSize();
6503   return DAG.shouldOptForSize();
6504 }
6505 
6506 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6507                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6508                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6509                           SmallVector<SDValue, 16> &OutStoreChains) {
6510   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6511   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6512   SmallVector<SDValue, 16> GluedLoadChains;
6513   for (unsigned i = From; i < To; ++i) {
6514     OutChains.push_back(OutLoadChains[i]);
6515     GluedLoadChains.push_back(OutLoadChains[i]);
6516   }
6517 
6518   // Chain for all loads.
6519   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6520                                   GluedLoadChains);
6521 
6522   for (unsigned i = From; i < To; ++i) {
6523     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6524     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6525                                   ST->getBasePtr(), ST->getMemoryVT(),
6526                                   ST->getMemOperand());
6527     OutChains.push_back(NewStore);
6528   }
6529 }
6530 
6531 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6532                                        SDValue Chain, SDValue Dst, SDValue Src,
6533                                        uint64_t Size, Align Alignment,
6534                                        bool isVol, bool AlwaysInline,
6535                                        MachinePointerInfo DstPtrInfo,
6536                                        MachinePointerInfo SrcPtrInfo,
6537                                        const AAMDNodes &AAInfo) {
6538   // Turn a memcpy of undef to nop.
6539   // FIXME: We need to honor volatile even is Src is undef.
6540   if (Src.isUndef())
6541     return Chain;
6542 
6543   // Expand memcpy to a series of load and store ops if the size operand falls
6544   // below a certain threshold.
6545   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6546   // rather than maybe a humongous number of loads and stores.
6547   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6548   const DataLayout &DL = DAG.getDataLayout();
6549   LLVMContext &C = *DAG.getContext();
6550   std::vector<EVT> MemOps;
6551   bool DstAlignCanChange = false;
6552   MachineFunction &MF = DAG.getMachineFunction();
6553   MachineFrameInfo &MFI = MF.getFrameInfo();
6554   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6555   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6556   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6557     DstAlignCanChange = true;
6558   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6559   if (!SrcAlign || Alignment > *SrcAlign)
6560     SrcAlign = Alignment;
6561   assert(SrcAlign && "SrcAlign must be set");
6562   ConstantDataArraySlice Slice;
6563   // If marked as volatile, perform a copy even when marked as constant.
6564   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6565   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6566   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6567   const MemOp Op = isZeroConstant
6568                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6569                                     /*IsZeroMemset*/ true, isVol)
6570                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6571                                      *SrcAlign, isVol, CopyFromConstant);
6572   if (!TLI.findOptimalMemOpLowering(
6573           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6574           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6575     return SDValue();
6576 
6577   if (DstAlignCanChange) {
6578     Type *Ty = MemOps[0].getTypeForEVT(C);
6579     Align NewAlign = DL.getABITypeAlign(Ty);
6580 
6581     // Don't promote to an alignment that would require dynamic stack
6582     // realignment.
6583     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6584     if (!TRI->hasStackRealignment(MF))
6585       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6586         NewAlign = NewAlign / 2;
6587 
6588     if (NewAlign > Alignment) {
6589       // Give the stack frame object a larger alignment if needed.
6590       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6591         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6592       Alignment = NewAlign;
6593     }
6594   }
6595 
6596   // Prepare AAInfo for loads/stores after lowering this memcpy.
6597   AAMDNodes NewAAInfo = AAInfo;
6598   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6599 
6600   MachineMemOperand::Flags MMOFlags =
6601       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6602   SmallVector<SDValue, 16> OutLoadChains;
6603   SmallVector<SDValue, 16> OutStoreChains;
6604   SmallVector<SDValue, 32> OutChains;
6605   unsigned NumMemOps = MemOps.size();
6606   uint64_t SrcOff = 0, DstOff = 0;
6607   for (unsigned i = 0; i != NumMemOps; ++i) {
6608     EVT VT = MemOps[i];
6609     unsigned VTSize = VT.getSizeInBits() / 8;
6610     SDValue Value, Store;
6611 
6612     if (VTSize > Size) {
6613       // Issuing an unaligned load / store pair  that overlaps with the previous
6614       // pair. Adjust the offset accordingly.
6615       assert(i == NumMemOps-1 && i != 0);
6616       SrcOff -= VTSize - Size;
6617       DstOff -= VTSize - Size;
6618     }
6619 
6620     if (CopyFromConstant &&
6621         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6622       // It's unlikely a store of a vector immediate can be done in a single
6623       // instruction. It would require a load from a constantpool first.
6624       // We only handle zero vectors here.
6625       // FIXME: Handle other cases where store of vector immediate is done in
6626       // a single instruction.
6627       ConstantDataArraySlice SubSlice;
6628       if (SrcOff < Slice.Length) {
6629         SubSlice = Slice;
6630         SubSlice.move(SrcOff);
6631       } else {
6632         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6633         SubSlice.Array = nullptr;
6634         SubSlice.Offset = 0;
6635         SubSlice.Length = VTSize;
6636       }
6637       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6638       if (Value.getNode()) {
6639         Store = DAG.getStore(
6640             Chain, dl, Value,
6641             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6642             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6643         OutChains.push_back(Store);
6644       }
6645     }
6646 
6647     if (!Store.getNode()) {
6648       // The type might not be legal for the target.  This should only happen
6649       // if the type is smaller than a legal type, as on PPC, so the right
6650       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6651       // to Load/Store if NVT==VT.
6652       // FIXME does the case above also need this?
6653       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6654       assert(NVT.bitsGE(VT));
6655 
6656       bool isDereferenceable =
6657         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6658       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6659       if (isDereferenceable)
6660         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6661 
6662       Value = DAG.getExtLoad(
6663           ISD::EXTLOAD, dl, NVT, Chain,
6664           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6665           SrcPtrInfo.getWithOffset(SrcOff), VT,
6666           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6667       OutLoadChains.push_back(Value.getValue(1));
6668 
6669       Store = DAG.getTruncStore(
6670           Chain, dl, Value,
6671           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6672           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6673       OutStoreChains.push_back(Store);
6674     }
6675     SrcOff += VTSize;
6676     DstOff += VTSize;
6677     Size -= VTSize;
6678   }
6679 
6680   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6681                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6682   unsigned NumLdStInMemcpy = OutStoreChains.size();
6683 
6684   if (NumLdStInMemcpy) {
6685     // It may be that memcpy might be converted to memset if it's memcpy
6686     // of constants. In such a case, we won't have loads and stores, but
6687     // just stores. In the absence of loads, there is nothing to gang up.
6688     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6689       // If target does not care, just leave as it.
6690       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6691         OutChains.push_back(OutLoadChains[i]);
6692         OutChains.push_back(OutStoreChains[i]);
6693       }
6694     } else {
6695       // Ld/St less than/equal limit set by target.
6696       if (NumLdStInMemcpy <= GluedLdStLimit) {
6697           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6698                                         NumLdStInMemcpy, OutLoadChains,
6699                                         OutStoreChains);
6700       } else {
6701         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6702         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6703         unsigned GlueIter = 0;
6704 
6705         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6706           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6707           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6708 
6709           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6710                                        OutLoadChains, OutStoreChains);
6711           GlueIter += GluedLdStLimit;
6712         }
6713 
6714         // Residual ld/st.
6715         if (RemainingLdStInMemcpy) {
6716           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6717                                         RemainingLdStInMemcpy, OutLoadChains,
6718                                         OutStoreChains);
6719         }
6720       }
6721     }
6722   }
6723   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6724 }
6725 
6726 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6727                                         SDValue Chain, SDValue Dst, SDValue Src,
6728                                         uint64_t Size, Align Alignment,
6729                                         bool isVol, bool AlwaysInline,
6730                                         MachinePointerInfo DstPtrInfo,
6731                                         MachinePointerInfo SrcPtrInfo,
6732                                         const AAMDNodes &AAInfo) {
6733   // Turn a memmove of undef to nop.
6734   // FIXME: We need to honor volatile even is Src is undef.
6735   if (Src.isUndef())
6736     return Chain;
6737 
6738   // Expand memmove to a series of load and store ops if the size operand falls
6739   // below a certain threshold.
6740   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6741   const DataLayout &DL = DAG.getDataLayout();
6742   LLVMContext &C = *DAG.getContext();
6743   std::vector<EVT> MemOps;
6744   bool DstAlignCanChange = false;
6745   MachineFunction &MF = DAG.getMachineFunction();
6746   MachineFrameInfo &MFI = MF.getFrameInfo();
6747   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6748   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6749   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6750     DstAlignCanChange = true;
6751   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6752   if (!SrcAlign || Alignment > *SrcAlign)
6753     SrcAlign = Alignment;
6754   assert(SrcAlign && "SrcAlign must be set");
6755   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6756   if (!TLI.findOptimalMemOpLowering(
6757           MemOps, Limit,
6758           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6759                       /*IsVolatile*/ true),
6760           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6761           MF.getFunction().getAttributes()))
6762     return SDValue();
6763 
6764   if (DstAlignCanChange) {
6765     Type *Ty = MemOps[0].getTypeForEVT(C);
6766     Align NewAlign = DL.getABITypeAlign(Ty);
6767     if (NewAlign > Alignment) {
6768       // Give the stack frame object a larger alignment if needed.
6769       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6770         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6771       Alignment = NewAlign;
6772     }
6773   }
6774 
6775   // Prepare AAInfo for loads/stores after lowering this memmove.
6776   AAMDNodes NewAAInfo = AAInfo;
6777   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6778 
6779   MachineMemOperand::Flags MMOFlags =
6780       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6781   uint64_t SrcOff = 0, DstOff = 0;
6782   SmallVector<SDValue, 8> LoadValues;
6783   SmallVector<SDValue, 8> LoadChains;
6784   SmallVector<SDValue, 8> OutChains;
6785   unsigned NumMemOps = MemOps.size();
6786   for (unsigned i = 0; i < NumMemOps; i++) {
6787     EVT VT = MemOps[i];
6788     unsigned VTSize = VT.getSizeInBits() / 8;
6789     SDValue Value;
6790 
6791     bool isDereferenceable =
6792       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6793     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6794     if (isDereferenceable)
6795       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6796 
6797     Value = DAG.getLoad(
6798         VT, dl, Chain,
6799         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6800         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6801     LoadValues.push_back(Value);
6802     LoadChains.push_back(Value.getValue(1));
6803     SrcOff += VTSize;
6804   }
6805   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6806   OutChains.clear();
6807   for (unsigned i = 0; i < NumMemOps; i++) {
6808     EVT VT = MemOps[i];
6809     unsigned VTSize = VT.getSizeInBits() / 8;
6810     SDValue Store;
6811 
6812     Store = DAG.getStore(
6813         Chain, dl, LoadValues[i],
6814         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6815         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6816     OutChains.push_back(Store);
6817     DstOff += VTSize;
6818   }
6819 
6820   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6821 }
6822 
6823 /// Lower the call to 'memset' intrinsic function into a series of store
6824 /// operations.
6825 ///
6826 /// \param DAG Selection DAG where lowered code is placed.
6827 /// \param dl Link to corresponding IR location.
6828 /// \param Chain Control flow dependency.
6829 /// \param Dst Pointer to destination memory location.
6830 /// \param Src Value of byte to write into the memory.
6831 /// \param Size Number of bytes to write.
6832 /// \param Alignment Alignment of the destination in bytes.
6833 /// \param isVol True if destination is volatile.
6834 /// \param DstPtrInfo IR information on the memory pointer.
6835 /// \returns New head in the control flow, if lowering was successful, empty
6836 /// SDValue otherwise.
6837 ///
6838 /// The function tries to replace 'llvm.memset' intrinsic with several store
6839 /// operations and value calculation code. This is usually profitable for small
6840 /// memory size.
6841 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6842                                SDValue Chain, SDValue Dst, SDValue Src,
6843                                uint64_t Size, Align Alignment, bool isVol,
6844                                MachinePointerInfo DstPtrInfo,
6845                                const AAMDNodes &AAInfo) {
6846   // Turn a memset of undef to nop.
6847   // FIXME: We need to honor volatile even is Src is undef.
6848   if (Src.isUndef())
6849     return Chain;
6850 
6851   // Expand memset to a series of load/store ops if the size operand
6852   // falls below a certain threshold.
6853   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6854   std::vector<EVT> MemOps;
6855   bool DstAlignCanChange = false;
6856   MachineFunction &MF = DAG.getMachineFunction();
6857   MachineFrameInfo &MFI = MF.getFrameInfo();
6858   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6859   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6860   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6861     DstAlignCanChange = true;
6862   bool IsZeroVal =
6863       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6864   if (!TLI.findOptimalMemOpLowering(
6865           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6866           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6867           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6868     return SDValue();
6869 
6870   if (DstAlignCanChange) {
6871     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6872     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6873     if (NewAlign > Alignment) {
6874       // Give the stack frame object a larger alignment if needed.
6875       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6876         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6877       Alignment = NewAlign;
6878     }
6879   }
6880 
6881   SmallVector<SDValue, 8> OutChains;
6882   uint64_t DstOff = 0;
6883   unsigned NumMemOps = MemOps.size();
6884 
6885   // Find the largest store and generate the bit pattern for it.
6886   EVT LargestVT = MemOps[0];
6887   for (unsigned i = 1; i < NumMemOps; i++)
6888     if (MemOps[i].bitsGT(LargestVT))
6889       LargestVT = MemOps[i];
6890   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6891 
6892   // Prepare AAInfo for loads/stores after lowering this memset.
6893   AAMDNodes NewAAInfo = AAInfo;
6894   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6895 
6896   for (unsigned i = 0; i < NumMemOps; i++) {
6897     EVT VT = MemOps[i];
6898     unsigned VTSize = VT.getSizeInBits() / 8;
6899     if (VTSize > Size) {
6900       // Issuing an unaligned load / store pair  that overlaps with the previous
6901       // pair. Adjust the offset accordingly.
6902       assert(i == NumMemOps-1 && i != 0);
6903       DstOff -= VTSize - Size;
6904     }
6905 
6906     // If this store is smaller than the largest store see whether we can get
6907     // the smaller value for free with a truncate.
6908     SDValue Value = MemSetValue;
6909     if (VT.bitsLT(LargestVT)) {
6910       if (!LargestVT.isVector() && !VT.isVector() &&
6911           TLI.isTruncateFree(LargestVT, VT))
6912         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6913       else
6914         Value = getMemsetValue(Src, VT, DAG, dl);
6915     }
6916     assert(Value.getValueType() == VT && "Value with wrong type.");
6917     SDValue Store = DAG.getStore(
6918         Chain, dl, Value,
6919         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6920         DstPtrInfo.getWithOffset(DstOff), Alignment,
6921         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6922         NewAAInfo);
6923     OutChains.push_back(Store);
6924     DstOff += VT.getSizeInBits() / 8;
6925     Size -= VTSize;
6926   }
6927 
6928   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6929 }
6930 
6931 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6932                                             unsigned AS) {
6933   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6934   // pointer operands can be losslessly bitcasted to pointers of address space 0
6935   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6936     report_fatal_error("cannot lower memory intrinsic in address space " +
6937                        Twine(AS));
6938   }
6939 }
6940 
6941 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6942                                 SDValue Src, SDValue Size, Align Alignment,
6943                                 bool isVol, bool AlwaysInline, bool isTailCall,
6944                                 MachinePointerInfo DstPtrInfo,
6945                                 MachinePointerInfo SrcPtrInfo,
6946                                 const AAMDNodes &AAInfo) {
6947   // Check to see if we should lower the memcpy to loads and stores first.
6948   // For cases within the target-specified limits, this is the best choice.
6949   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6950   if (ConstantSize) {
6951     // Memcpy with size zero? Just return the original chain.
6952     if (ConstantSize->isZero())
6953       return Chain;
6954 
6955     SDValue Result = getMemcpyLoadsAndStores(
6956         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6957         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6958     if (Result.getNode())
6959       return Result;
6960   }
6961 
6962   // Then check to see if we should lower the memcpy with target-specific
6963   // code. If the target chooses to do this, this is the next best.
6964   if (TSI) {
6965     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6966         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6967         DstPtrInfo, SrcPtrInfo);
6968     if (Result.getNode())
6969       return Result;
6970   }
6971 
6972   // If we really need inline code and the target declined to provide it,
6973   // use a (potentially long) sequence of loads and stores.
6974   if (AlwaysInline) {
6975     assert(ConstantSize && "AlwaysInline requires a constant size!");
6976     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6977                                    ConstantSize->getZExtValue(), Alignment,
6978                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6979   }
6980 
6981   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6982   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6983 
6984   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6985   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6986   // respect volatile, so they may do things like read or write memory
6987   // beyond the given memory regions. But fixing this isn't easy, and most
6988   // people don't care.
6989 
6990   // Emit a library call.
6991   TargetLowering::ArgListTy Args;
6992   TargetLowering::ArgListEntry Entry;
6993   Entry.Ty = Type::getInt8PtrTy(*getContext());
6994   Entry.Node = Dst; Args.push_back(Entry);
6995   Entry.Node = Src; Args.push_back(Entry);
6996 
6997   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6998   Entry.Node = Size; Args.push_back(Entry);
6999   // FIXME: pass in SDLoc
7000   TargetLowering::CallLoweringInfo CLI(*this);
7001   CLI.setDebugLoc(dl)
7002       .setChain(Chain)
7003       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7004                     Dst.getValueType().getTypeForEVT(*getContext()),
7005                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7006                                       TLI->getPointerTy(getDataLayout())),
7007                     std::move(Args))
7008       .setDiscardResult()
7009       .setTailCall(isTailCall);
7010 
7011   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7012   return CallResult.second;
7013 }
7014 
7015 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7016                                       SDValue Dst, unsigned DstAlign,
7017                                       SDValue Src, unsigned SrcAlign,
7018                                       SDValue Size, Type *SizeTy,
7019                                       unsigned ElemSz, bool isTailCall,
7020                                       MachinePointerInfo DstPtrInfo,
7021                                       MachinePointerInfo SrcPtrInfo) {
7022   // Emit a library call.
7023   TargetLowering::ArgListTy Args;
7024   TargetLowering::ArgListEntry Entry;
7025   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7026   Entry.Node = Dst;
7027   Args.push_back(Entry);
7028 
7029   Entry.Node = Src;
7030   Args.push_back(Entry);
7031 
7032   Entry.Ty = SizeTy;
7033   Entry.Node = Size;
7034   Args.push_back(Entry);
7035 
7036   RTLIB::Libcall LibraryCall =
7037       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7038   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7039     report_fatal_error("Unsupported element size");
7040 
7041   TargetLowering::CallLoweringInfo CLI(*this);
7042   CLI.setDebugLoc(dl)
7043       .setChain(Chain)
7044       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7045                     Type::getVoidTy(*getContext()),
7046                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7047                                       TLI->getPointerTy(getDataLayout())),
7048                     std::move(Args))
7049       .setDiscardResult()
7050       .setTailCall(isTailCall);
7051 
7052   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7053   return CallResult.second;
7054 }
7055 
7056 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7057                                  SDValue Src, SDValue Size, Align Alignment,
7058                                  bool isVol, bool isTailCall,
7059                                  MachinePointerInfo DstPtrInfo,
7060                                  MachinePointerInfo SrcPtrInfo,
7061                                  const AAMDNodes &AAInfo) {
7062   // Check to see if we should lower the memmove to loads and stores first.
7063   // For cases within the target-specified limits, this is the best choice.
7064   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7065   if (ConstantSize) {
7066     // Memmove with size zero? Just return the original chain.
7067     if (ConstantSize->isZero())
7068       return Chain;
7069 
7070     SDValue Result = getMemmoveLoadsAndStores(
7071         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7072         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7073     if (Result.getNode())
7074       return Result;
7075   }
7076 
7077   // Then check to see if we should lower the memmove with target-specific
7078   // code. If the target chooses to do this, this is the next best.
7079   if (TSI) {
7080     SDValue Result =
7081         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7082                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7083     if (Result.getNode())
7084       return Result;
7085   }
7086 
7087   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7088   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7089 
7090   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7091   // not be safe.  See memcpy above for more details.
7092 
7093   // Emit a library call.
7094   TargetLowering::ArgListTy Args;
7095   TargetLowering::ArgListEntry Entry;
7096   Entry.Ty = Type::getInt8PtrTy(*getContext());
7097   Entry.Node = Dst; Args.push_back(Entry);
7098   Entry.Node = Src; Args.push_back(Entry);
7099 
7100   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7101   Entry.Node = Size; Args.push_back(Entry);
7102   // FIXME:  pass in SDLoc
7103   TargetLowering::CallLoweringInfo CLI(*this);
7104   CLI.setDebugLoc(dl)
7105       .setChain(Chain)
7106       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7107                     Dst.getValueType().getTypeForEVT(*getContext()),
7108                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7109                                       TLI->getPointerTy(getDataLayout())),
7110                     std::move(Args))
7111       .setDiscardResult()
7112       .setTailCall(isTailCall);
7113 
7114   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7115   return CallResult.second;
7116 }
7117 
7118 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7119                                        SDValue Dst, unsigned DstAlign,
7120                                        SDValue Src, unsigned SrcAlign,
7121                                        SDValue Size, Type *SizeTy,
7122                                        unsigned ElemSz, bool isTailCall,
7123                                        MachinePointerInfo DstPtrInfo,
7124                                        MachinePointerInfo SrcPtrInfo) {
7125   // Emit a library call.
7126   TargetLowering::ArgListTy Args;
7127   TargetLowering::ArgListEntry Entry;
7128   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7129   Entry.Node = Dst;
7130   Args.push_back(Entry);
7131 
7132   Entry.Node = Src;
7133   Args.push_back(Entry);
7134 
7135   Entry.Ty = SizeTy;
7136   Entry.Node = Size;
7137   Args.push_back(Entry);
7138 
7139   RTLIB::Libcall LibraryCall =
7140       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7141   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7142     report_fatal_error("Unsupported element size");
7143 
7144   TargetLowering::CallLoweringInfo CLI(*this);
7145   CLI.setDebugLoc(dl)
7146       .setChain(Chain)
7147       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7148                     Type::getVoidTy(*getContext()),
7149                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7150                                       TLI->getPointerTy(getDataLayout())),
7151                     std::move(Args))
7152       .setDiscardResult()
7153       .setTailCall(isTailCall);
7154 
7155   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7156   return CallResult.second;
7157 }
7158 
7159 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7160                                 SDValue Src, SDValue Size, Align Alignment,
7161                                 bool isVol, bool isTailCall,
7162                                 MachinePointerInfo DstPtrInfo,
7163                                 const AAMDNodes &AAInfo) {
7164   // Check to see if we should lower the memset to stores first.
7165   // For cases within the target-specified limits, this is the best choice.
7166   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7167   if (ConstantSize) {
7168     // Memset with size zero? Just return the original chain.
7169     if (ConstantSize->isZero())
7170       return Chain;
7171 
7172     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7173                                      ConstantSize->getZExtValue(), Alignment,
7174                                      isVol, DstPtrInfo, AAInfo);
7175 
7176     if (Result.getNode())
7177       return Result;
7178   }
7179 
7180   // Then check to see if we should lower the memset with target-specific
7181   // code. If the target chooses to do this, this is the next best.
7182   if (TSI) {
7183     SDValue Result = TSI->EmitTargetCodeForMemset(
7184         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7185     if (Result.getNode())
7186       return Result;
7187   }
7188 
7189   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7190 
7191   // Emit a library call.
7192   TargetLowering::ArgListTy Args;
7193   TargetLowering::ArgListEntry Entry;
7194   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7195   Args.push_back(Entry);
7196   Entry.Node = Src;
7197   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7198   Args.push_back(Entry);
7199   Entry.Node = Size;
7200   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7201   Args.push_back(Entry);
7202 
7203   // FIXME: pass in SDLoc
7204   TargetLowering::CallLoweringInfo CLI(*this);
7205   CLI.setDebugLoc(dl)
7206       .setChain(Chain)
7207       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7208                     Dst.getValueType().getTypeForEVT(*getContext()),
7209                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7210                                       TLI->getPointerTy(getDataLayout())),
7211                     std::move(Args))
7212       .setDiscardResult()
7213       .setTailCall(isTailCall);
7214 
7215   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7216   return CallResult.second;
7217 }
7218 
7219 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7220                                       SDValue Dst, unsigned DstAlign,
7221                                       SDValue Value, SDValue Size, Type *SizeTy,
7222                                       unsigned ElemSz, bool isTailCall,
7223                                       MachinePointerInfo DstPtrInfo) {
7224   // Emit a library call.
7225   TargetLowering::ArgListTy Args;
7226   TargetLowering::ArgListEntry Entry;
7227   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7228   Entry.Node = Dst;
7229   Args.push_back(Entry);
7230 
7231   Entry.Ty = Type::getInt8Ty(*getContext());
7232   Entry.Node = Value;
7233   Args.push_back(Entry);
7234 
7235   Entry.Ty = SizeTy;
7236   Entry.Node = Size;
7237   Args.push_back(Entry);
7238 
7239   RTLIB::Libcall LibraryCall =
7240       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7241   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7242     report_fatal_error("Unsupported element size");
7243 
7244   TargetLowering::CallLoweringInfo CLI(*this);
7245   CLI.setDebugLoc(dl)
7246       .setChain(Chain)
7247       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7248                     Type::getVoidTy(*getContext()),
7249                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7250                                       TLI->getPointerTy(getDataLayout())),
7251                     std::move(Args))
7252       .setDiscardResult()
7253       .setTailCall(isTailCall);
7254 
7255   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7256   return CallResult.second;
7257 }
7258 
7259 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7260                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7261                                 MachineMemOperand *MMO) {
7262   FoldingSetNodeID ID;
7263   ID.AddInteger(MemVT.getRawBits());
7264   AddNodeIDNode(ID, Opcode, VTList, Ops);
7265   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7266   void* IP = nullptr;
7267   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7268     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7269     return SDValue(E, 0);
7270   }
7271 
7272   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7273                                     VTList, MemVT, MMO);
7274   createOperands(N, Ops);
7275 
7276   CSEMap.InsertNode(N, IP);
7277   InsertNode(N);
7278   return SDValue(N, 0);
7279 }
7280 
7281 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7282                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7283                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7284                                        MachineMemOperand *MMO) {
7285   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7286          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7287   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7288 
7289   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7290   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7291 }
7292 
7293 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7294                                 SDValue Chain, SDValue Ptr, SDValue Val,
7295                                 MachineMemOperand *MMO) {
7296   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7297           Opcode == ISD::ATOMIC_LOAD_SUB ||
7298           Opcode == ISD::ATOMIC_LOAD_AND ||
7299           Opcode == ISD::ATOMIC_LOAD_CLR ||
7300           Opcode == ISD::ATOMIC_LOAD_OR ||
7301           Opcode == ISD::ATOMIC_LOAD_XOR ||
7302           Opcode == ISD::ATOMIC_LOAD_NAND ||
7303           Opcode == ISD::ATOMIC_LOAD_MIN ||
7304           Opcode == ISD::ATOMIC_LOAD_MAX ||
7305           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7306           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7307           Opcode == ISD::ATOMIC_LOAD_FADD ||
7308           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7309           Opcode == ISD::ATOMIC_SWAP ||
7310           Opcode == ISD::ATOMIC_STORE) &&
7311          "Invalid Atomic Op");
7312 
7313   EVT VT = Val.getValueType();
7314 
7315   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7316                                                getVTList(VT, MVT::Other);
7317   SDValue Ops[] = {Chain, Ptr, Val};
7318   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7319 }
7320 
7321 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7322                                 EVT VT, SDValue Chain, SDValue Ptr,
7323                                 MachineMemOperand *MMO) {
7324   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7325 
7326   SDVTList VTs = getVTList(VT, MVT::Other);
7327   SDValue Ops[] = {Chain, Ptr};
7328   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7329 }
7330 
7331 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7332 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7333   if (Ops.size() == 1)
7334     return Ops[0];
7335 
7336   SmallVector<EVT, 4> VTs;
7337   VTs.reserve(Ops.size());
7338   for (const SDValue &Op : Ops)
7339     VTs.push_back(Op.getValueType());
7340   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7341 }
7342 
7343 SDValue SelectionDAG::getMemIntrinsicNode(
7344     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7345     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7346     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7347   if (!Size && MemVT.isScalableVector())
7348     Size = MemoryLocation::UnknownSize;
7349   else if (!Size)
7350     Size = MemVT.getStoreSize();
7351 
7352   MachineFunction &MF = getMachineFunction();
7353   MachineMemOperand *MMO =
7354       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7355 
7356   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7357 }
7358 
7359 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7360                                           SDVTList VTList,
7361                                           ArrayRef<SDValue> Ops, EVT MemVT,
7362                                           MachineMemOperand *MMO) {
7363   assert((Opcode == ISD::INTRINSIC_VOID ||
7364           Opcode == ISD::INTRINSIC_W_CHAIN ||
7365           Opcode == ISD::PREFETCH ||
7366           ((int)Opcode <= std::numeric_limits<int>::max() &&
7367            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7368          "Opcode is not a memory-accessing opcode!");
7369 
7370   // Memoize the node unless it returns a flag.
7371   MemIntrinsicSDNode *N;
7372   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7373     FoldingSetNodeID ID;
7374     AddNodeIDNode(ID, Opcode, VTList, Ops);
7375     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7376         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7377     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7378     void *IP = nullptr;
7379     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7380       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7381       return SDValue(E, 0);
7382     }
7383 
7384     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7385                                       VTList, MemVT, MMO);
7386     createOperands(N, Ops);
7387 
7388   CSEMap.InsertNode(N, IP);
7389   } else {
7390     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7391                                       VTList, MemVT, MMO);
7392     createOperands(N, Ops);
7393   }
7394   InsertNode(N);
7395   SDValue V(N, 0);
7396   NewSDValueDbgMsg(V, "Creating new node: ", this);
7397   return V;
7398 }
7399 
7400 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7401                                       SDValue Chain, int FrameIndex,
7402                                       int64_t Size, int64_t Offset) {
7403   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7404   const auto VTs = getVTList(MVT::Other);
7405   SDValue Ops[2] = {
7406       Chain,
7407       getFrameIndex(FrameIndex,
7408                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7409                     true)};
7410 
7411   FoldingSetNodeID ID;
7412   AddNodeIDNode(ID, Opcode, VTs, Ops);
7413   ID.AddInteger(FrameIndex);
7414   ID.AddInteger(Size);
7415   ID.AddInteger(Offset);
7416   void *IP = nullptr;
7417   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7418     return SDValue(E, 0);
7419 
7420   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7421       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7422   createOperands(N, Ops);
7423   CSEMap.InsertNode(N, IP);
7424   InsertNode(N);
7425   SDValue V(N, 0);
7426   NewSDValueDbgMsg(V, "Creating new node: ", this);
7427   return V;
7428 }
7429 
7430 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7431                                          uint64_t Guid, uint64_t Index,
7432                                          uint32_t Attr) {
7433   const unsigned Opcode = ISD::PSEUDO_PROBE;
7434   const auto VTs = getVTList(MVT::Other);
7435   SDValue Ops[] = {Chain};
7436   FoldingSetNodeID ID;
7437   AddNodeIDNode(ID, Opcode, VTs, Ops);
7438   ID.AddInteger(Guid);
7439   ID.AddInteger(Index);
7440   void *IP = nullptr;
7441   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7442     return SDValue(E, 0);
7443 
7444   auto *N = newSDNode<PseudoProbeSDNode>(
7445       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7446   createOperands(N, Ops);
7447   CSEMap.InsertNode(N, IP);
7448   InsertNode(N);
7449   SDValue V(N, 0);
7450   NewSDValueDbgMsg(V, "Creating new node: ", this);
7451   return V;
7452 }
7453 
7454 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7455 /// MachinePointerInfo record from it.  This is particularly useful because the
7456 /// code generator has many cases where it doesn't bother passing in a
7457 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7458 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7459                                            SelectionDAG &DAG, SDValue Ptr,
7460                                            int64_t Offset = 0) {
7461   // If this is FI+Offset, we can model it.
7462   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7463     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7464                                              FI->getIndex(), Offset);
7465 
7466   // If this is (FI+Offset1)+Offset2, we can model it.
7467   if (Ptr.getOpcode() != ISD::ADD ||
7468       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7469       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7470     return Info;
7471 
7472   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7473   return MachinePointerInfo::getFixedStack(
7474       DAG.getMachineFunction(), FI,
7475       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7476 }
7477 
7478 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7479 /// MachinePointerInfo record from it.  This is particularly useful because the
7480 /// code generator has many cases where it doesn't bother passing in a
7481 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7482 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7483                                            SelectionDAG &DAG, SDValue Ptr,
7484                                            SDValue OffsetOp) {
7485   // If the 'Offset' value isn't a constant, we can't handle this.
7486   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7487     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7488   if (OffsetOp.isUndef())
7489     return InferPointerInfo(Info, DAG, Ptr);
7490   return Info;
7491 }
7492 
7493 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7494                               EVT VT, const SDLoc &dl, SDValue Chain,
7495                               SDValue Ptr, SDValue Offset,
7496                               MachinePointerInfo PtrInfo, EVT MemVT,
7497                               Align Alignment,
7498                               MachineMemOperand::Flags MMOFlags,
7499                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7500   assert(Chain.getValueType() == MVT::Other &&
7501         "Invalid chain type");
7502 
7503   MMOFlags |= MachineMemOperand::MOLoad;
7504   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7505   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7506   // clients.
7507   if (PtrInfo.V.isNull())
7508     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7509 
7510   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7511   MachineFunction &MF = getMachineFunction();
7512   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7513                                                    Alignment, AAInfo, Ranges);
7514   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7515 }
7516 
7517 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7518                               EVT VT, const SDLoc &dl, SDValue Chain,
7519                               SDValue Ptr, SDValue Offset, EVT MemVT,
7520                               MachineMemOperand *MMO) {
7521   if (VT == MemVT) {
7522     ExtType = ISD::NON_EXTLOAD;
7523   } else if (ExtType == ISD::NON_EXTLOAD) {
7524     assert(VT == MemVT && "Non-extending load from different memory type!");
7525   } else {
7526     // Extending load.
7527     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7528            "Should only be an extending load, not truncating!");
7529     assert(VT.isInteger() == MemVT.isInteger() &&
7530            "Cannot convert from FP to Int or Int -> FP!");
7531     assert(VT.isVector() == MemVT.isVector() &&
7532            "Cannot use an ext load to convert to or from a vector!");
7533     assert((!VT.isVector() ||
7534             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7535            "Cannot use an ext load to change the number of vector elements!");
7536   }
7537 
7538   bool Indexed = AM != ISD::UNINDEXED;
7539   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7540 
7541   SDVTList VTs = Indexed ?
7542     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7543   SDValue Ops[] = { Chain, Ptr, Offset };
7544   FoldingSetNodeID ID;
7545   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7546   ID.AddInteger(MemVT.getRawBits());
7547   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7548       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7549   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7550   void *IP = nullptr;
7551   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7552     cast<LoadSDNode>(E)->refineAlignment(MMO);
7553     return SDValue(E, 0);
7554   }
7555   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7556                                   ExtType, MemVT, MMO);
7557   createOperands(N, Ops);
7558 
7559   CSEMap.InsertNode(N, IP);
7560   InsertNode(N);
7561   SDValue V(N, 0);
7562   NewSDValueDbgMsg(V, "Creating new node: ", this);
7563   return V;
7564 }
7565 
7566 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7567                               SDValue Ptr, MachinePointerInfo PtrInfo,
7568                               MaybeAlign Alignment,
7569                               MachineMemOperand::Flags MMOFlags,
7570                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7571   SDValue Undef = getUNDEF(Ptr.getValueType());
7572   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7573                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7574 }
7575 
7576 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7577                               SDValue Ptr, MachineMemOperand *MMO) {
7578   SDValue Undef = getUNDEF(Ptr.getValueType());
7579   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7580                  VT, MMO);
7581 }
7582 
7583 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7584                                  EVT VT, SDValue Chain, SDValue Ptr,
7585                                  MachinePointerInfo PtrInfo, EVT MemVT,
7586                                  MaybeAlign Alignment,
7587                                  MachineMemOperand::Flags MMOFlags,
7588                                  const AAMDNodes &AAInfo) {
7589   SDValue Undef = getUNDEF(Ptr.getValueType());
7590   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7591                  MemVT, Alignment, MMOFlags, AAInfo);
7592 }
7593 
7594 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7595                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7596                                  MachineMemOperand *MMO) {
7597   SDValue Undef = getUNDEF(Ptr.getValueType());
7598   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7599                  MemVT, MMO);
7600 }
7601 
7602 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7603                                      SDValue Base, SDValue Offset,
7604                                      ISD::MemIndexedMode AM) {
7605   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7606   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7607   // Don't propagate the invariant or dereferenceable flags.
7608   auto MMOFlags =
7609       LD->getMemOperand()->getFlags() &
7610       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7611   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7612                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7613                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7614 }
7615 
7616 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7617                                SDValue Ptr, MachinePointerInfo PtrInfo,
7618                                Align Alignment,
7619                                MachineMemOperand::Flags MMOFlags,
7620                                const AAMDNodes &AAInfo) {
7621   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7622 
7623   MMOFlags |= MachineMemOperand::MOStore;
7624   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7625 
7626   if (PtrInfo.V.isNull())
7627     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7628 
7629   MachineFunction &MF = getMachineFunction();
7630   uint64_t Size =
7631       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7632   MachineMemOperand *MMO =
7633       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7634   return getStore(Chain, dl, Val, Ptr, MMO);
7635 }
7636 
7637 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7638                                SDValue Ptr, MachineMemOperand *MMO) {
7639   assert(Chain.getValueType() == MVT::Other &&
7640         "Invalid chain type");
7641   EVT VT = Val.getValueType();
7642   SDVTList VTs = getVTList(MVT::Other);
7643   SDValue Undef = getUNDEF(Ptr.getValueType());
7644   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7645   FoldingSetNodeID ID;
7646   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7647   ID.AddInteger(VT.getRawBits());
7648   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7649       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7650   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7651   void *IP = nullptr;
7652   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7653     cast<StoreSDNode>(E)->refineAlignment(MMO);
7654     return SDValue(E, 0);
7655   }
7656   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7657                                    ISD::UNINDEXED, false, VT, MMO);
7658   createOperands(N, Ops);
7659 
7660   CSEMap.InsertNode(N, IP);
7661   InsertNode(N);
7662   SDValue V(N, 0);
7663   NewSDValueDbgMsg(V, "Creating new node: ", this);
7664   return V;
7665 }
7666 
7667 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7668                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7669                                     EVT SVT, Align Alignment,
7670                                     MachineMemOperand::Flags MMOFlags,
7671                                     const AAMDNodes &AAInfo) {
7672   assert(Chain.getValueType() == MVT::Other &&
7673         "Invalid chain type");
7674 
7675   MMOFlags |= MachineMemOperand::MOStore;
7676   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7677 
7678   if (PtrInfo.V.isNull())
7679     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7680 
7681   MachineFunction &MF = getMachineFunction();
7682   MachineMemOperand *MMO = MF.getMachineMemOperand(
7683       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7684       Alignment, AAInfo);
7685   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7686 }
7687 
7688 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7689                                     SDValue Ptr, EVT SVT,
7690                                     MachineMemOperand *MMO) {
7691   EVT VT = Val.getValueType();
7692 
7693   assert(Chain.getValueType() == MVT::Other &&
7694         "Invalid chain type");
7695   if (VT == SVT)
7696     return getStore(Chain, dl, Val, Ptr, MMO);
7697 
7698   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7699          "Should only be a truncating store, not extending!");
7700   assert(VT.isInteger() == SVT.isInteger() &&
7701          "Can't do FP-INT conversion!");
7702   assert(VT.isVector() == SVT.isVector() &&
7703          "Cannot use trunc store to convert to or from a vector!");
7704   assert((!VT.isVector() ||
7705           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7706          "Cannot use trunc store to change the number of vector elements!");
7707 
7708   SDVTList VTs = getVTList(MVT::Other);
7709   SDValue Undef = getUNDEF(Ptr.getValueType());
7710   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7711   FoldingSetNodeID ID;
7712   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7713   ID.AddInteger(SVT.getRawBits());
7714   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7715       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7716   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7717   void *IP = nullptr;
7718   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7719     cast<StoreSDNode>(E)->refineAlignment(MMO);
7720     return SDValue(E, 0);
7721   }
7722   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7723                                    ISD::UNINDEXED, true, SVT, MMO);
7724   createOperands(N, Ops);
7725 
7726   CSEMap.InsertNode(N, IP);
7727   InsertNode(N);
7728   SDValue V(N, 0);
7729   NewSDValueDbgMsg(V, "Creating new node: ", this);
7730   return V;
7731 }
7732 
7733 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7734                                       SDValue Base, SDValue Offset,
7735                                       ISD::MemIndexedMode AM) {
7736   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7737   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7738   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7739   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7740   FoldingSetNodeID ID;
7741   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7742   ID.AddInteger(ST->getMemoryVT().getRawBits());
7743   ID.AddInteger(ST->getRawSubclassData());
7744   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7745   void *IP = nullptr;
7746   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7747     return SDValue(E, 0);
7748 
7749   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7750                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7751                                    ST->getMemOperand());
7752   createOperands(N, Ops);
7753 
7754   CSEMap.InsertNode(N, IP);
7755   InsertNode(N);
7756   SDValue V(N, 0);
7757   NewSDValueDbgMsg(V, "Creating new node: ", this);
7758   return V;
7759 }
7760 
7761 SDValue SelectionDAG::getLoadVP(
7762     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7763     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7764     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7765     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7766     const MDNode *Ranges, bool IsExpanding) {
7767   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7768 
7769   MMOFlags |= MachineMemOperand::MOLoad;
7770   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7771   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7772   // clients.
7773   if (PtrInfo.V.isNull())
7774     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7775 
7776   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7777   MachineFunction &MF = getMachineFunction();
7778   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7779                                                    Alignment, AAInfo, Ranges);
7780   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7781                    MMO, IsExpanding);
7782 }
7783 
7784 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7785                                 ISD::LoadExtType ExtType, EVT VT,
7786                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7787                                 SDValue Offset, SDValue Mask, SDValue EVL,
7788                                 EVT MemVT, MachineMemOperand *MMO,
7789                                 bool IsExpanding) {
7790   bool Indexed = AM != ISD::UNINDEXED;
7791   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7792 
7793   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7794                          : getVTList(VT, MVT::Other);
7795   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7796   FoldingSetNodeID ID;
7797   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7798   ID.AddInteger(VT.getRawBits());
7799   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7800       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7801   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7802   void *IP = nullptr;
7803   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7804     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7805     return SDValue(E, 0);
7806   }
7807   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7808                                     ExtType, IsExpanding, MemVT, MMO);
7809   createOperands(N, Ops);
7810 
7811   CSEMap.InsertNode(N, IP);
7812   InsertNode(N);
7813   SDValue V(N, 0);
7814   NewSDValueDbgMsg(V, "Creating new node: ", this);
7815   return V;
7816 }
7817 
7818 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7819                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7820                                 MachinePointerInfo PtrInfo,
7821                                 MaybeAlign Alignment,
7822                                 MachineMemOperand::Flags MMOFlags,
7823                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7824                                 bool IsExpanding) {
7825   SDValue Undef = getUNDEF(Ptr.getValueType());
7826   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7827                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7828                    IsExpanding);
7829 }
7830 
7831 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7832                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7833                                 MachineMemOperand *MMO, bool IsExpanding) {
7834   SDValue Undef = getUNDEF(Ptr.getValueType());
7835   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7836                    Mask, EVL, VT, MMO, IsExpanding);
7837 }
7838 
7839 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7840                                    EVT VT, SDValue Chain, SDValue Ptr,
7841                                    SDValue Mask, SDValue EVL,
7842                                    MachinePointerInfo PtrInfo, EVT MemVT,
7843                                    MaybeAlign Alignment,
7844                                    MachineMemOperand::Flags MMOFlags,
7845                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7846   SDValue Undef = getUNDEF(Ptr.getValueType());
7847   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7848                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7849                    IsExpanding);
7850 }
7851 
7852 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7853                                    EVT VT, SDValue Chain, SDValue Ptr,
7854                                    SDValue Mask, SDValue EVL, EVT MemVT,
7855                                    MachineMemOperand *MMO, bool IsExpanding) {
7856   SDValue Undef = getUNDEF(Ptr.getValueType());
7857   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7858                    EVL, MemVT, MMO, IsExpanding);
7859 }
7860 
7861 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7862                                        SDValue Base, SDValue Offset,
7863                                        ISD::MemIndexedMode AM) {
7864   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7865   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7866   // Don't propagate the invariant or dereferenceable flags.
7867   auto MMOFlags =
7868       LD->getMemOperand()->getFlags() &
7869       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7870   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7871                    LD->getChain(), Base, Offset, LD->getMask(),
7872                    LD->getVectorLength(), LD->getPointerInfo(),
7873                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7874                    nullptr, LD->isExpandingLoad());
7875 }
7876 
7877 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7878                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7879                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7880                                  ISD::MemIndexedMode AM, bool IsTruncating,
7881                                  bool IsCompressing) {
7882   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7883   bool Indexed = AM != ISD::UNINDEXED;
7884   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7885   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7886                          : getVTList(MVT::Other);
7887   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7888   FoldingSetNodeID ID;
7889   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7890   ID.AddInteger(MemVT.getRawBits());
7891   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7892       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7893   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7894   void *IP = nullptr;
7895   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7896     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7897     return SDValue(E, 0);
7898   }
7899   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7900                                      IsTruncating, IsCompressing, MemVT, MMO);
7901   createOperands(N, Ops);
7902 
7903   CSEMap.InsertNode(N, IP);
7904   InsertNode(N);
7905   SDValue V(N, 0);
7906   NewSDValueDbgMsg(V, "Creating new node: ", this);
7907   return V;
7908 }
7909 
7910 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7911                                       SDValue Val, SDValue Ptr, SDValue Mask,
7912                                       SDValue EVL, MachinePointerInfo PtrInfo,
7913                                       EVT SVT, Align Alignment,
7914                                       MachineMemOperand::Flags MMOFlags,
7915                                       const AAMDNodes &AAInfo,
7916                                       bool IsCompressing) {
7917   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7918 
7919   MMOFlags |= MachineMemOperand::MOStore;
7920   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7921 
7922   if (PtrInfo.V.isNull())
7923     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7924 
7925   MachineFunction &MF = getMachineFunction();
7926   MachineMemOperand *MMO = MF.getMachineMemOperand(
7927       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7928       Alignment, AAInfo);
7929   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7930                          IsCompressing);
7931 }
7932 
7933 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7934                                       SDValue Val, SDValue Ptr, SDValue Mask,
7935                                       SDValue EVL, EVT SVT,
7936                                       MachineMemOperand *MMO,
7937                                       bool IsCompressing) {
7938   EVT VT = Val.getValueType();
7939 
7940   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7941   if (VT == SVT)
7942     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
7943                       EVL, VT, MMO, ISD::UNINDEXED,
7944                       /*IsTruncating*/ false, IsCompressing);
7945 
7946   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7947          "Should only be a truncating store, not extending!");
7948   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7949   assert(VT.isVector() == SVT.isVector() &&
7950          "Cannot use trunc store to convert to or from a vector!");
7951   assert((!VT.isVector() ||
7952           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7953          "Cannot use trunc store to change the number of vector elements!");
7954 
7955   SDVTList VTs = getVTList(MVT::Other);
7956   SDValue Undef = getUNDEF(Ptr.getValueType());
7957   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7958   FoldingSetNodeID ID;
7959   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7960   ID.AddInteger(SVT.getRawBits());
7961   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7962       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7963   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7964   void *IP = nullptr;
7965   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7966     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7967     return SDValue(E, 0);
7968   }
7969   auto *N =
7970       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7971                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7972   createOperands(N, Ops);
7973 
7974   CSEMap.InsertNode(N, IP);
7975   InsertNode(N);
7976   SDValue V(N, 0);
7977   NewSDValueDbgMsg(V, "Creating new node: ", this);
7978   return V;
7979 }
7980 
7981 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7982                                         SDValue Base, SDValue Offset,
7983                                         ISD::MemIndexedMode AM) {
7984   auto *ST = cast<VPStoreSDNode>(OrigStore);
7985   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7986   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7987   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7988                    Offset,         ST->getMask(),  ST->getVectorLength()};
7989   FoldingSetNodeID ID;
7990   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7991   ID.AddInteger(ST->getMemoryVT().getRawBits());
7992   ID.AddInteger(ST->getRawSubclassData());
7993   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7994   void *IP = nullptr;
7995   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7996     return SDValue(E, 0);
7997 
7998   auto *N = newSDNode<VPStoreSDNode>(
7999       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8000       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8001   createOperands(N, Ops);
8002 
8003   CSEMap.InsertNode(N, IP);
8004   InsertNode(N);
8005   SDValue V(N, 0);
8006   NewSDValueDbgMsg(V, "Creating new node: ", this);
8007   return V;
8008 }
8009 
8010 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8011                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
8012                                   ISD::MemIndexType IndexType) {
8013   assert(Ops.size() == 6 && "Incompatible number of operands");
8014 
8015   FoldingSetNodeID ID;
8016   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
8017   ID.AddInteger(VT.getRawBits());
8018   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
8019       dl.getIROrder(), VTs, VT, MMO, IndexType));
8020   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8021   void *IP = nullptr;
8022   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8023     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
8024     return SDValue(E, 0);
8025   }
8026 
8027   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8028                                       VT, MMO, IndexType);
8029   createOperands(N, Ops);
8030 
8031   assert(N->getMask().getValueType().getVectorElementCount() ==
8032              N->getValueType(0).getVectorElementCount() &&
8033          "Vector width mismatch between mask and data");
8034   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8035              N->getValueType(0).getVectorElementCount().isScalable() &&
8036          "Scalable flags of index and data do not match");
8037   assert(ElementCount::isKnownGE(
8038              N->getIndex().getValueType().getVectorElementCount(),
8039              N->getValueType(0).getVectorElementCount()) &&
8040          "Vector width mismatch between index and data");
8041   assert(isa<ConstantSDNode>(N->getScale()) &&
8042          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8043          "Scale should be a constant power of 2");
8044 
8045   CSEMap.InsertNode(N, IP);
8046   InsertNode(N);
8047   SDValue V(N, 0);
8048   NewSDValueDbgMsg(V, "Creating new node: ", this);
8049   return V;
8050 }
8051 
8052 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8053                                    ArrayRef<SDValue> Ops,
8054                                    MachineMemOperand *MMO,
8055                                    ISD::MemIndexType IndexType) {
8056   assert(Ops.size() == 7 && "Incompatible number of operands");
8057 
8058   FoldingSetNodeID ID;
8059   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8060   ID.AddInteger(VT.getRawBits());
8061   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8062       dl.getIROrder(), VTs, VT, MMO, IndexType));
8063   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8064   void *IP = nullptr;
8065   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8066     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8067     return SDValue(E, 0);
8068   }
8069   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8070                                        VT, MMO, IndexType);
8071   createOperands(N, Ops);
8072 
8073   assert(N->getMask().getValueType().getVectorElementCount() ==
8074              N->getValue().getValueType().getVectorElementCount() &&
8075          "Vector width mismatch between mask and data");
8076   assert(
8077       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8078           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8079       "Scalable flags of index and data do not match");
8080   assert(ElementCount::isKnownGE(
8081              N->getIndex().getValueType().getVectorElementCount(),
8082              N->getValue().getValueType().getVectorElementCount()) &&
8083          "Vector width mismatch between index and data");
8084   assert(isa<ConstantSDNode>(N->getScale()) &&
8085          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8086          "Scale should be a constant power of 2");
8087 
8088   CSEMap.InsertNode(N, IP);
8089   InsertNode(N);
8090   SDValue V(N, 0);
8091   NewSDValueDbgMsg(V, "Creating new node: ", this);
8092   return V;
8093 }
8094 
8095 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8096                                     SDValue Base, SDValue Offset, SDValue Mask,
8097                                     SDValue PassThru, EVT MemVT,
8098                                     MachineMemOperand *MMO,
8099                                     ISD::MemIndexedMode AM,
8100                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8101   bool Indexed = AM != ISD::UNINDEXED;
8102   assert((Indexed || Offset.isUndef()) &&
8103          "Unindexed masked load with an offset!");
8104   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8105                          : getVTList(VT, MVT::Other);
8106   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8107   FoldingSetNodeID ID;
8108   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8109   ID.AddInteger(MemVT.getRawBits());
8110   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8111       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8112   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8113   void *IP = nullptr;
8114   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8115     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8116     return SDValue(E, 0);
8117   }
8118   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8119                                         AM, ExtTy, isExpanding, MemVT, MMO);
8120   createOperands(N, Ops);
8121 
8122   CSEMap.InsertNode(N, IP);
8123   InsertNode(N);
8124   SDValue V(N, 0);
8125   NewSDValueDbgMsg(V, "Creating new node: ", this);
8126   return V;
8127 }
8128 
8129 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8130                                            SDValue Base, SDValue Offset,
8131                                            ISD::MemIndexedMode AM) {
8132   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8133   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8134   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8135                        Offset, LD->getMask(), LD->getPassThru(),
8136                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8137                        LD->getExtensionType(), LD->isExpandingLoad());
8138 }
8139 
8140 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8141                                      SDValue Val, SDValue Base, SDValue Offset,
8142                                      SDValue Mask, EVT MemVT,
8143                                      MachineMemOperand *MMO,
8144                                      ISD::MemIndexedMode AM, bool IsTruncating,
8145                                      bool IsCompressing) {
8146   assert(Chain.getValueType() == MVT::Other &&
8147         "Invalid chain type");
8148   bool Indexed = AM != ISD::UNINDEXED;
8149   assert((Indexed || Offset.isUndef()) &&
8150          "Unindexed masked store with an offset!");
8151   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8152                          : getVTList(MVT::Other);
8153   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8154   FoldingSetNodeID ID;
8155   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8156   ID.AddInteger(MemVT.getRawBits());
8157   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8158       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8159   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8160   void *IP = nullptr;
8161   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8162     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8163     return SDValue(E, 0);
8164   }
8165   auto *N =
8166       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8167                                    IsTruncating, IsCompressing, MemVT, MMO);
8168   createOperands(N, Ops);
8169 
8170   CSEMap.InsertNode(N, IP);
8171   InsertNode(N);
8172   SDValue V(N, 0);
8173   NewSDValueDbgMsg(V, "Creating new node: ", this);
8174   return V;
8175 }
8176 
8177 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8178                                             SDValue Base, SDValue Offset,
8179                                             ISD::MemIndexedMode AM) {
8180   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8181   assert(ST->getOffset().isUndef() &&
8182          "Masked store is already a indexed store!");
8183   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8184                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8185                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8186 }
8187 
8188 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8189                                       ArrayRef<SDValue> Ops,
8190                                       MachineMemOperand *MMO,
8191                                       ISD::MemIndexType IndexType,
8192                                       ISD::LoadExtType ExtTy) {
8193   assert(Ops.size() == 6 && "Incompatible number of operands");
8194 
8195   FoldingSetNodeID ID;
8196   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8197   ID.AddInteger(MemVT.getRawBits());
8198   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8199       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8200   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8201   void *IP = nullptr;
8202   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8203     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8204     return SDValue(E, 0);
8205   }
8206 
8207   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8208   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8209                                           VTs, MemVT, MMO, IndexType, ExtTy);
8210   createOperands(N, Ops);
8211 
8212   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8213          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8214   assert(N->getMask().getValueType().getVectorElementCount() ==
8215              N->getValueType(0).getVectorElementCount() &&
8216          "Vector width mismatch between mask and data");
8217   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8218              N->getValueType(0).getVectorElementCount().isScalable() &&
8219          "Scalable flags of index and data do not match");
8220   assert(ElementCount::isKnownGE(
8221              N->getIndex().getValueType().getVectorElementCount(),
8222              N->getValueType(0).getVectorElementCount()) &&
8223          "Vector width mismatch between index and data");
8224   assert(isa<ConstantSDNode>(N->getScale()) &&
8225          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8226          "Scale should be a constant power of 2");
8227 
8228   CSEMap.InsertNode(N, IP);
8229   InsertNode(N);
8230   SDValue V(N, 0);
8231   NewSDValueDbgMsg(V, "Creating new node: ", this);
8232   return V;
8233 }
8234 
8235 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8236                                        ArrayRef<SDValue> Ops,
8237                                        MachineMemOperand *MMO,
8238                                        ISD::MemIndexType IndexType,
8239                                        bool IsTrunc) {
8240   assert(Ops.size() == 6 && "Incompatible number of operands");
8241 
8242   FoldingSetNodeID ID;
8243   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8244   ID.AddInteger(MemVT.getRawBits());
8245   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8246       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8247   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8248   void *IP = nullptr;
8249   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8250     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8251     return SDValue(E, 0);
8252   }
8253 
8254   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8255   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8256                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8257   createOperands(N, Ops);
8258 
8259   assert(N->getMask().getValueType().getVectorElementCount() ==
8260              N->getValue().getValueType().getVectorElementCount() &&
8261          "Vector width mismatch between mask and data");
8262   assert(
8263       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8264           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8265       "Scalable flags of index and data do not match");
8266   assert(ElementCount::isKnownGE(
8267              N->getIndex().getValueType().getVectorElementCount(),
8268              N->getValue().getValueType().getVectorElementCount()) &&
8269          "Vector width mismatch between index and data");
8270   assert(isa<ConstantSDNode>(N->getScale()) &&
8271          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8272          "Scale should be a constant power of 2");
8273 
8274   CSEMap.InsertNode(N, IP);
8275   InsertNode(N);
8276   SDValue V(N, 0);
8277   NewSDValueDbgMsg(V, "Creating new node: ", this);
8278   return V;
8279 }
8280 
8281 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8282   // select undef, T, F --> T (if T is a constant), otherwise F
8283   // select, ?, undef, F --> F
8284   // select, ?, T, undef --> T
8285   if (Cond.isUndef())
8286     return isConstantValueOfAnyType(T) ? T : F;
8287   if (T.isUndef())
8288     return F;
8289   if (F.isUndef())
8290     return T;
8291 
8292   // select true, T, F --> T
8293   // select false, T, F --> F
8294   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8295     return CondC->isZero() ? F : T;
8296 
8297   // TODO: This should simplify VSELECT with constant condition using something
8298   // like this (but check boolean contents to be complete?):
8299   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8300   //    return T;
8301   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8302   //    return F;
8303 
8304   // select ?, T, T --> T
8305   if (T == F)
8306     return T;
8307 
8308   return SDValue();
8309 }
8310 
8311 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8312   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8313   if (X.isUndef())
8314     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8315   // shift X, undef --> undef (because it may shift by the bitwidth)
8316   if (Y.isUndef())
8317     return getUNDEF(X.getValueType());
8318 
8319   // shift 0, Y --> 0
8320   // shift X, 0 --> X
8321   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8322     return X;
8323 
8324   // shift X, C >= bitwidth(X) --> undef
8325   // All vector elements must be too big (or undef) to avoid partial undefs.
8326   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8327     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8328   };
8329   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8330     return getUNDEF(X.getValueType());
8331 
8332   return SDValue();
8333 }
8334 
8335 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8336                                       SDNodeFlags Flags) {
8337   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8338   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8339   // operation is poison. That result can be relaxed to undef.
8340   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8341   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8342   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8343                 (YC && YC->getValueAPF().isNaN());
8344   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8345                 (YC && YC->getValueAPF().isInfinity());
8346 
8347   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8348     return getUNDEF(X.getValueType());
8349 
8350   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8351     return getUNDEF(X.getValueType());
8352 
8353   if (!YC)
8354     return SDValue();
8355 
8356   // X + -0.0 --> X
8357   if (Opcode == ISD::FADD)
8358     if (YC->getValueAPF().isNegZero())
8359       return X;
8360 
8361   // X - +0.0 --> X
8362   if (Opcode == ISD::FSUB)
8363     if (YC->getValueAPF().isPosZero())
8364       return X;
8365 
8366   // X * 1.0 --> X
8367   // X / 1.0 --> X
8368   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8369     if (YC->getValueAPF().isExactlyValue(1.0))
8370       return X;
8371 
8372   // X * 0.0 --> 0.0
8373   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8374     if (YC->getValueAPF().isZero())
8375       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8376 
8377   return SDValue();
8378 }
8379 
8380 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8381                                SDValue Ptr, SDValue SV, unsigned Align) {
8382   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8383   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8384 }
8385 
8386 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8387                               ArrayRef<SDUse> Ops) {
8388   switch (Ops.size()) {
8389   case 0: return getNode(Opcode, DL, VT);
8390   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8391   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8392   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8393   default: break;
8394   }
8395 
8396   // Copy from an SDUse array into an SDValue array for use with
8397   // the regular getNode logic.
8398   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8399   return getNode(Opcode, DL, VT, NewOps);
8400 }
8401 
8402 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8403                               ArrayRef<SDValue> Ops) {
8404   SDNodeFlags Flags;
8405   if (Inserter)
8406     Flags = Inserter->getFlags();
8407   return getNode(Opcode, DL, VT, Ops, Flags);
8408 }
8409 
8410 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8411                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8412   unsigned NumOps = Ops.size();
8413   switch (NumOps) {
8414   case 0: return getNode(Opcode, DL, VT);
8415   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8416   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8417   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8418   default: break;
8419   }
8420 
8421 #ifndef NDEBUG
8422   for (auto &Op : Ops)
8423     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8424            "Operand is DELETED_NODE!");
8425 #endif
8426 
8427   switch (Opcode) {
8428   default: break;
8429   case ISD::BUILD_VECTOR:
8430     // Attempt to simplify BUILD_VECTOR.
8431     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8432       return V;
8433     break;
8434   case ISD::CONCAT_VECTORS:
8435     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8436       return V;
8437     break;
8438   case ISD::SELECT_CC:
8439     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8440     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8441            "LHS and RHS of condition must have same type!");
8442     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8443            "True and False arms of SelectCC must have same type!");
8444     assert(Ops[2].getValueType() == VT &&
8445            "select_cc node must be of same type as true and false value!");
8446     break;
8447   case ISD::BR_CC:
8448     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8449     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8450            "LHS/RHS of comparison should match types!");
8451     break;
8452   }
8453 
8454   // Memoize nodes.
8455   SDNode *N;
8456   SDVTList VTs = getVTList(VT);
8457 
8458   if (VT != MVT::Glue) {
8459     FoldingSetNodeID ID;
8460     AddNodeIDNode(ID, Opcode, VTs, Ops);
8461     void *IP = nullptr;
8462 
8463     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8464       return SDValue(E, 0);
8465 
8466     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8467     createOperands(N, Ops);
8468 
8469     CSEMap.InsertNode(N, IP);
8470   } else {
8471     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8472     createOperands(N, Ops);
8473   }
8474 
8475   N->setFlags(Flags);
8476   InsertNode(N);
8477   SDValue V(N, 0);
8478   NewSDValueDbgMsg(V, "Creating new node: ", this);
8479   return V;
8480 }
8481 
8482 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8483                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8484   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8485 }
8486 
8487 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8488                               ArrayRef<SDValue> Ops) {
8489   SDNodeFlags Flags;
8490   if (Inserter)
8491     Flags = Inserter->getFlags();
8492   return getNode(Opcode, DL, VTList, Ops, Flags);
8493 }
8494 
8495 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8496                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8497   if (VTList.NumVTs == 1)
8498     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8499 
8500 #ifndef NDEBUG
8501   for (auto &Op : Ops)
8502     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8503            "Operand is DELETED_NODE!");
8504 #endif
8505 
8506   switch (Opcode) {
8507   case ISD::STRICT_FP_EXTEND:
8508     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8509            "Invalid STRICT_FP_EXTEND!");
8510     assert(VTList.VTs[0].isFloatingPoint() &&
8511            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8512     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8513            "STRICT_FP_EXTEND result type should be vector iff the operand "
8514            "type is vector!");
8515     assert((!VTList.VTs[0].isVector() ||
8516             VTList.VTs[0].getVectorNumElements() ==
8517             Ops[1].getValueType().getVectorNumElements()) &&
8518            "Vector element count mismatch!");
8519     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8520            "Invalid fpext node, dst <= src!");
8521     break;
8522   case ISD::STRICT_FP_ROUND:
8523     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8524     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8525            "STRICT_FP_ROUND result type should be vector iff the operand "
8526            "type is vector!");
8527     assert((!VTList.VTs[0].isVector() ||
8528             VTList.VTs[0].getVectorNumElements() ==
8529             Ops[1].getValueType().getVectorNumElements()) &&
8530            "Vector element count mismatch!");
8531     assert(VTList.VTs[0].isFloatingPoint() &&
8532            Ops[1].getValueType().isFloatingPoint() &&
8533            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8534            isa<ConstantSDNode>(Ops[2]) &&
8535            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8536             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8537            "Invalid STRICT_FP_ROUND!");
8538     break;
8539 #if 0
8540   // FIXME: figure out how to safely handle things like
8541   // int foo(int x) { return 1 << (x & 255); }
8542   // int bar() { return foo(256); }
8543   case ISD::SRA_PARTS:
8544   case ISD::SRL_PARTS:
8545   case ISD::SHL_PARTS:
8546     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8547         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8548       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8549     else if (N3.getOpcode() == ISD::AND)
8550       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8551         // If the and is only masking out bits that cannot effect the shift,
8552         // eliminate the and.
8553         unsigned NumBits = VT.getScalarSizeInBits()*2;
8554         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8555           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8556       }
8557     break;
8558 #endif
8559   }
8560 
8561   // Memoize the node unless it returns a flag.
8562   SDNode *N;
8563   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8564     FoldingSetNodeID ID;
8565     AddNodeIDNode(ID, Opcode, VTList, Ops);
8566     void *IP = nullptr;
8567     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8568       return SDValue(E, 0);
8569 
8570     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8571     createOperands(N, Ops);
8572     CSEMap.InsertNode(N, IP);
8573   } else {
8574     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8575     createOperands(N, Ops);
8576   }
8577 
8578   N->setFlags(Flags);
8579   InsertNode(N);
8580   SDValue V(N, 0);
8581   NewSDValueDbgMsg(V, "Creating new node: ", this);
8582   return V;
8583 }
8584 
8585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8586                               SDVTList VTList) {
8587   return getNode(Opcode, DL, VTList, None);
8588 }
8589 
8590 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8591                               SDValue N1) {
8592   SDValue Ops[] = { N1 };
8593   return getNode(Opcode, DL, VTList, Ops);
8594 }
8595 
8596 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8597                               SDValue N1, SDValue N2) {
8598   SDValue Ops[] = { N1, N2 };
8599   return getNode(Opcode, DL, VTList, Ops);
8600 }
8601 
8602 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8603                               SDValue N1, SDValue N2, SDValue N3) {
8604   SDValue Ops[] = { N1, N2, N3 };
8605   return getNode(Opcode, DL, VTList, Ops);
8606 }
8607 
8608 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8609                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8610   SDValue Ops[] = { N1, N2, N3, N4 };
8611   return getNode(Opcode, DL, VTList, Ops);
8612 }
8613 
8614 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8615                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8616                               SDValue N5) {
8617   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8618   return getNode(Opcode, DL, VTList, Ops);
8619 }
8620 
8621 SDVTList SelectionDAG::getVTList(EVT VT) {
8622   return makeVTList(SDNode::getValueTypeList(VT), 1);
8623 }
8624 
8625 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8626   FoldingSetNodeID ID;
8627   ID.AddInteger(2U);
8628   ID.AddInteger(VT1.getRawBits());
8629   ID.AddInteger(VT2.getRawBits());
8630 
8631   void *IP = nullptr;
8632   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8633   if (!Result) {
8634     EVT *Array = Allocator.Allocate<EVT>(2);
8635     Array[0] = VT1;
8636     Array[1] = VT2;
8637     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8638     VTListMap.InsertNode(Result, IP);
8639   }
8640   return Result->getSDVTList();
8641 }
8642 
8643 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8644   FoldingSetNodeID ID;
8645   ID.AddInteger(3U);
8646   ID.AddInteger(VT1.getRawBits());
8647   ID.AddInteger(VT2.getRawBits());
8648   ID.AddInteger(VT3.getRawBits());
8649 
8650   void *IP = nullptr;
8651   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8652   if (!Result) {
8653     EVT *Array = Allocator.Allocate<EVT>(3);
8654     Array[0] = VT1;
8655     Array[1] = VT2;
8656     Array[2] = VT3;
8657     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8658     VTListMap.InsertNode(Result, IP);
8659   }
8660   return Result->getSDVTList();
8661 }
8662 
8663 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8664   FoldingSetNodeID ID;
8665   ID.AddInteger(4U);
8666   ID.AddInteger(VT1.getRawBits());
8667   ID.AddInteger(VT2.getRawBits());
8668   ID.AddInteger(VT3.getRawBits());
8669   ID.AddInteger(VT4.getRawBits());
8670 
8671   void *IP = nullptr;
8672   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8673   if (!Result) {
8674     EVT *Array = Allocator.Allocate<EVT>(4);
8675     Array[0] = VT1;
8676     Array[1] = VT2;
8677     Array[2] = VT3;
8678     Array[3] = VT4;
8679     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8680     VTListMap.InsertNode(Result, IP);
8681   }
8682   return Result->getSDVTList();
8683 }
8684 
8685 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8686   unsigned NumVTs = VTs.size();
8687   FoldingSetNodeID ID;
8688   ID.AddInteger(NumVTs);
8689   for (unsigned index = 0; index < NumVTs; index++) {
8690     ID.AddInteger(VTs[index].getRawBits());
8691   }
8692 
8693   void *IP = nullptr;
8694   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8695   if (!Result) {
8696     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8697     llvm::copy(VTs, Array);
8698     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8699     VTListMap.InsertNode(Result, IP);
8700   }
8701   return Result->getSDVTList();
8702 }
8703 
8704 
8705 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8706 /// specified operands.  If the resultant node already exists in the DAG,
8707 /// this does not modify the specified node, instead it returns the node that
8708 /// already exists.  If the resultant node does not exist in the DAG, the
8709 /// input node is returned.  As a degenerate case, if you specify the same
8710 /// input operands as the node already has, the input node is returned.
8711 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8712   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8713 
8714   // Check to see if there is no change.
8715   if (Op == N->getOperand(0)) return N;
8716 
8717   // See if the modified node already exists.
8718   void *InsertPos = nullptr;
8719   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8720     return Existing;
8721 
8722   // Nope it doesn't.  Remove the node from its current place in the maps.
8723   if (InsertPos)
8724     if (!RemoveNodeFromCSEMaps(N))
8725       InsertPos = nullptr;
8726 
8727   // Now we update the operands.
8728   N->OperandList[0].set(Op);
8729 
8730   updateDivergence(N);
8731   // If this gets put into a CSE map, add it.
8732   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8733   return N;
8734 }
8735 
8736 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8737   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8738 
8739   // Check to see if there is no change.
8740   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8741     return N;   // No operands changed, just return the input node.
8742 
8743   // See if the modified node already exists.
8744   void *InsertPos = nullptr;
8745   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8746     return Existing;
8747 
8748   // Nope it doesn't.  Remove the node from its current place in the maps.
8749   if (InsertPos)
8750     if (!RemoveNodeFromCSEMaps(N))
8751       InsertPos = nullptr;
8752 
8753   // Now we update the operands.
8754   if (N->OperandList[0] != Op1)
8755     N->OperandList[0].set(Op1);
8756   if (N->OperandList[1] != Op2)
8757     N->OperandList[1].set(Op2);
8758 
8759   updateDivergence(N);
8760   // If this gets put into a CSE map, add it.
8761   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8762   return N;
8763 }
8764 
8765 SDNode *SelectionDAG::
8766 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8767   SDValue Ops[] = { Op1, Op2, Op3 };
8768   return UpdateNodeOperands(N, Ops);
8769 }
8770 
8771 SDNode *SelectionDAG::
8772 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8773                    SDValue Op3, SDValue Op4) {
8774   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8775   return UpdateNodeOperands(N, Ops);
8776 }
8777 
8778 SDNode *SelectionDAG::
8779 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8780                    SDValue Op3, SDValue Op4, SDValue Op5) {
8781   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8782   return UpdateNodeOperands(N, Ops);
8783 }
8784 
8785 SDNode *SelectionDAG::
8786 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8787   unsigned NumOps = Ops.size();
8788   assert(N->getNumOperands() == NumOps &&
8789          "Update with wrong number of operands");
8790 
8791   // If no operands changed just return the input node.
8792   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8793     return N;
8794 
8795   // See if the modified node already exists.
8796   void *InsertPos = nullptr;
8797   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8798     return Existing;
8799 
8800   // Nope it doesn't.  Remove the node from its current place in the maps.
8801   if (InsertPos)
8802     if (!RemoveNodeFromCSEMaps(N))
8803       InsertPos = nullptr;
8804 
8805   // Now we update the operands.
8806   for (unsigned i = 0; i != NumOps; ++i)
8807     if (N->OperandList[i] != Ops[i])
8808       N->OperandList[i].set(Ops[i]);
8809 
8810   updateDivergence(N);
8811   // If this gets put into a CSE map, add it.
8812   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8813   return N;
8814 }
8815 
8816 /// DropOperands - Release the operands and set this node to have
8817 /// zero operands.
8818 void SDNode::DropOperands() {
8819   // Unlike the code in MorphNodeTo that does this, we don't need to
8820   // watch for dead nodes here.
8821   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8822     SDUse &Use = *I++;
8823     Use.set(SDValue());
8824   }
8825 }
8826 
8827 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8828                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8829   if (NewMemRefs.empty()) {
8830     N->clearMemRefs();
8831     return;
8832   }
8833 
8834   // Check if we can avoid allocating by storing a single reference directly.
8835   if (NewMemRefs.size() == 1) {
8836     N->MemRefs = NewMemRefs[0];
8837     N->NumMemRefs = 1;
8838     return;
8839   }
8840 
8841   MachineMemOperand **MemRefsBuffer =
8842       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8843   llvm::copy(NewMemRefs, MemRefsBuffer);
8844   N->MemRefs = MemRefsBuffer;
8845   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8846 }
8847 
8848 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8849 /// machine opcode.
8850 ///
8851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8852                                    EVT VT) {
8853   SDVTList VTs = getVTList(VT);
8854   return SelectNodeTo(N, MachineOpc, VTs, None);
8855 }
8856 
8857 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8858                                    EVT VT, SDValue Op1) {
8859   SDVTList VTs = getVTList(VT);
8860   SDValue Ops[] = { Op1 };
8861   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8862 }
8863 
8864 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8865                                    EVT VT, SDValue Op1,
8866                                    SDValue Op2) {
8867   SDVTList VTs = getVTList(VT);
8868   SDValue Ops[] = { Op1, Op2 };
8869   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8870 }
8871 
8872 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8873                                    EVT VT, SDValue Op1,
8874                                    SDValue Op2, SDValue Op3) {
8875   SDVTList VTs = getVTList(VT);
8876   SDValue Ops[] = { Op1, Op2, Op3 };
8877   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8878 }
8879 
8880 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8881                                    EVT VT, ArrayRef<SDValue> Ops) {
8882   SDVTList VTs = getVTList(VT);
8883   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8884 }
8885 
8886 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8887                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8888   SDVTList VTs = getVTList(VT1, VT2);
8889   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8890 }
8891 
8892 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8893                                    EVT VT1, EVT VT2) {
8894   SDVTList VTs = getVTList(VT1, VT2);
8895   return SelectNodeTo(N, MachineOpc, VTs, None);
8896 }
8897 
8898 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8899                                    EVT VT1, EVT VT2, EVT VT3,
8900                                    ArrayRef<SDValue> Ops) {
8901   SDVTList VTs = getVTList(VT1, VT2, VT3);
8902   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8903 }
8904 
8905 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8906                                    EVT VT1, EVT VT2,
8907                                    SDValue Op1, SDValue Op2) {
8908   SDVTList VTs = getVTList(VT1, VT2);
8909   SDValue Ops[] = { Op1, Op2 };
8910   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8911 }
8912 
8913 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8914                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8915   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8916   // Reset the NodeID to -1.
8917   New->setNodeId(-1);
8918   if (New != N) {
8919     ReplaceAllUsesWith(N, New);
8920     RemoveDeadNode(N);
8921   }
8922   return New;
8923 }
8924 
8925 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8926 /// the line number information on the merged node since it is not possible to
8927 /// preserve the information that operation is associated with multiple lines.
8928 /// This will make the debugger working better at -O0, were there is a higher
8929 /// probability having other instructions associated with that line.
8930 ///
8931 /// For IROrder, we keep the smaller of the two
8932 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8933   DebugLoc NLoc = N->getDebugLoc();
8934   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8935     N->setDebugLoc(DebugLoc());
8936   }
8937   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8938   N->setIROrder(Order);
8939   return N;
8940 }
8941 
8942 /// MorphNodeTo - This *mutates* the specified node to have the specified
8943 /// return type, opcode, and operands.
8944 ///
8945 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8946 /// node of the specified opcode and operands, it returns that node instead of
8947 /// the current one.  Note that the SDLoc need not be the same.
8948 ///
8949 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8950 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8951 /// node, and because it doesn't require CSE recalculation for any of
8952 /// the node's users.
8953 ///
8954 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8955 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8956 /// the legalizer which maintain worklists that would need to be updated when
8957 /// deleting things.
8958 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8959                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8960   // If an identical node already exists, use it.
8961   void *IP = nullptr;
8962   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8963     FoldingSetNodeID ID;
8964     AddNodeIDNode(ID, Opc, VTs, Ops);
8965     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8966       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8967   }
8968 
8969   if (!RemoveNodeFromCSEMaps(N))
8970     IP = nullptr;
8971 
8972   // Start the morphing.
8973   N->NodeType = Opc;
8974   N->ValueList = VTs.VTs;
8975   N->NumValues = VTs.NumVTs;
8976 
8977   // Clear the operands list, updating used nodes to remove this from their
8978   // use list.  Keep track of any operands that become dead as a result.
8979   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8980   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8981     SDUse &Use = *I++;
8982     SDNode *Used = Use.getNode();
8983     Use.set(SDValue());
8984     if (Used->use_empty())
8985       DeadNodeSet.insert(Used);
8986   }
8987 
8988   // For MachineNode, initialize the memory references information.
8989   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8990     MN->clearMemRefs();
8991 
8992   // Swap for an appropriately sized array from the recycler.
8993   removeOperands(N);
8994   createOperands(N, Ops);
8995 
8996   // Delete any nodes that are still dead after adding the uses for the
8997   // new operands.
8998   if (!DeadNodeSet.empty()) {
8999     SmallVector<SDNode *, 16> DeadNodes;
9000     for (SDNode *N : DeadNodeSet)
9001       if (N->use_empty())
9002         DeadNodes.push_back(N);
9003     RemoveDeadNodes(DeadNodes);
9004   }
9005 
9006   if (IP)
9007     CSEMap.InsertNode(N, IP);   // Memoize the new node.
9008   return N;
9009 }
9010 
9011 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
9012   unsigned OrigOpc = Node->getOpcode();
9013   unsigned NewOpc;
9014   switch (OrigOpc) {
9015   default:
9016     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
9017 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9018   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
9019 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9020   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
9021 #include "llvm/IR/ConstrainedOps.def"
9022   }
9023 
9024   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
9025 
9026   // We're taking this node out of the chain, so we need to re-link things.
9027   SDValue InputChain = Node->getOperand(0);
9028   SDValue OutputChain = SDValue(Node, 1);
9029   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
9030 
9031   SmallVector<SDValue, 3> Ops;
9032   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
9033     Ops.push_back(Node->getOperand(i));
9034 
9035   SDVTList VTs = getVTList(Node->getValueType(0));
9036   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9037 
9038   // MorphNodeTo can operate in two ways: if an existing node with the
9039   // specified operands exists, it can just return it.  Otherwise, it
9040   // updates the node in place to have the requested operands.
9041   if (Res == Node) {
9042     // If we updated the node in place, reset the node ID.  To the isel,
9043     // this should be just like a newly allocated machine node.
9044     Res->setNodeId(-1);
9045   } else {
9046     ReplaceAllUsesWith(Node, Res);
9047     RemoveDeadNode(Node);
9048   }
9049 
9050   return Res;
9051 }
9052 
9053 /// getMachineNode - These are used for target selectors to create a new node
9054 /// with specified return type(s), MachineInstr opcode, and operands.
9055 ///
9056 /// Note that getMachineNode returns the resultant node.  If there is already a
9057 /// node of the specified opcode and operands, it returns that node instead of
9058 /// the current one.
9059 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9060                                             EVT VT) {
9061   SDVTList VTs = getVTList(VT);
9062   return getMachineNode(Opcode, dl, VTs, None);
9063 }
9064 
9065 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9066                                             EVT VT, SDValue Op1) {
9067   SDVTList VTs = getVTList(VT);
9068   SDValue Ops[] = { Op1 };
9069   return getMachineNode(Opcode, dl, VTs, Ops);
9070 }
9071 
9072 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9073                                             EVT VT, SDValue Op1, SDValue Op2) {
9074   SDVTList VTs = getVTList(VT);
9075   SDValue Ops[] = { Op1, Op2 };
9076   return getMachineNode(Opcode, dl, VTs, Ops);
9077 }
9078 
9079 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9080                                             EVT VT, SDValue Op1, SDValue Op2,
9081                                             SDValue Op3) {
9082   SDVTList VTs = getVTList(VT);
9083   SDValue Ops[] = { Op1, Op2, Op3 };
9084   return getMachineNode(Opcode, dl, VTs, Ops);
9085 }
9086 
9087 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9088                                             EVT VT, ArrayRef<SDValue> Ops) {
9089   SDVTList VTs = getVTList(VT);
9090   return getMachineNode(Opcode, dl, VTs, Ops);
9091 }
9092 
9093 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9094                                             EVT VT1, EVT VT2, SDValue Op1,
9095                                             SDValue Op2) {
9096   SDVTList VTs = getVTList(VT1, VT2);
9097   SDValue Ops[] = { Op1, Op2 };
9098   return getMachineNode(Opcode, dl, VTs, Ops);
9099 }
9100 
9101 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9102                                             EVT VT1, EVT VT2, SDValue Op1,
9103                                             SDValue Op2, SDValue Op3) {
9104   SDVTList VTs = getVTList(VT1, VT2);
9105   SDValue Ops[] = { Op1, Op2, Op3 };
9106   return getMachineNode(Opcode, dl, VTs, Ops);
9107 }
9108 
9109 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9110                                             EVT VT1, EVT VT2,
9111                                             ArrayRef<SDValue> Ops) {
9112   SDVTList VTs = getVTList(VT1, VT2);
9113   return getMachineNode(Opcode, dl, VTs, Ops);
9114 }
9115 
9116 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9117                                             EVT VT1, EVT VT2, EVT VT3,
9118                                             SDValue Op1, SDValue Op2) {
9119   SDVTList VTs = getVTList(VT1, VT2, VT3);
9120   SDValue Ops[] = { Op1, Op2 };
9121   return getMachineNode(Opcode, dl, VTs, Ops);
9122 }
9123 
9124 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9125                                             EVT VT1, EVT VT2, EVT VT3,
9126                                             SDValue Op1, SDValue Op2,
9127                                             SDValue Op3) {
9128   SDVTList VTs = getVTList(VT1, VT2, VT3);
9129   SDValue Ops[] = { Op1, Op2, Op3 };
9130   return getMachineNode(Opcode, dl, VTs, Ops);
9131 }
9132 
9133 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9134                                             EVT VT1, EVT VT2, EVT VT3,
9135                                             ArrayRef<SDValue> Ops) {
9136   SDVTList VTs = getVTList(VT1, VT2, VT3);
9137   return getMachineNode(Opcode, dl, VTs, Ops);
9138 }
9139 
9140 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9141                                             ArrayRef<EVT> ResultTys,
9142                                             ArrayRef<SDValue> Ops) {
9143   SDVTList VTs = getVTList(ResultTys);
9144   return getMachineNode(Opcode, dl, VTs, Ops);
9145 }
9146 
9147 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9148                                             SDVTList VTs,
9149                                             ArrayRef<SDValue> Ops) {
9150   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9151   MachineSDNode *N;
9152   void *IP = nullptr;
9153 
9154   if (DoCSE) {
9155     FoldingSetNodeID ID;
9156     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9157     IP = nullptr;
9158     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9159       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9160     }
9161   }
9162 
9163   // Allocate a new MachineSDNode.
9164   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9165   createOperands(N, Ops);
9166 
9167   if (DoCSE)
9168     CSEMap.InsertNode(N, IP);
9169 
9170   InsertNode(N);
9171   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9172   return N;
9173 }
9174 
9175 /// getTargetExtractSubreg - A convenience function for creating
9176 /// TargetOpcode::EXTRACT_SUBREG nodes.
9177 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9178                                              SDValue Operand) {
9179   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9180   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9181                                   VT, Operand, SRIdxVal);
9182   return SDValue(Subreg, 0);
9183 }
9184 
9185 /// getTargetInsertSubreg - A convenience function for creating
9186 /// TargetOpcode::INSERT_SUBREG nodes.
9187 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9188                                             SDValue Operand, SDValue Subreg) {
9189   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9190   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9191                                   VT, Operand, Subreg, SRIdxVal);
9192   return SDValue(Result, 0);
9193 }
9194 
9195 /// getNodeIfExists - Get the specified node if it's already available, or
9196 /// else return NULL.
9197 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9198                                       ArrayRef<SDValue> Ops) {
9199   SDNodeFlags Flags;
9200   if (Inserter)
9201     Flags = Inserter->getFlags();
9202   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9203 }
9204 
9205 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9206                                       ArrayRef<SDValue> Ops,
9207                                       const SDNodeFlags Flags) {
9208   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9209     FoldingSetNodeID ID;
9210     AddNodeIDNode(ID, Opcode, VTList, Ops);
9211     void *IP = nullptr;
9212     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9213       E->intersectFlagsWith(Flags);
9214       return E;
9215     }
9216   }
9217   return nullptr;
9218 }
9219 
9220 /// doesNodeExist - Check if a node exists without modifying its flags.
9221 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9222                                  ArrayRef<SDValue> Ops) {
9223   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9224     FoldingSetNodeID ID;
9225     AddNodeIDNode(ID, Opcode, VTList, Ops);
9226     void *IP = nullptr;
9227     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9228       return true;
9229   }
9230   return false;
9231 }
9232 
9233 /// getDbgValue - Creates a SDDbgValue node.
9234 ///
9235 /// SDNode
9236 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9237                                       SDNode *N, unsigned R, bool IsIndirect,
9238                                       const DebugLoc &DL, unsigned O) {
9239   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9240          "Expected inlined-at fields to agree");
9241   return new (DbgInfo->getAlloc())
9242       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9243                  {}, IsIndirect, DL, O,
9244                  /*IsVariadic=*/false);
9245 }
9246 
9247 /// Constant
9248 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9249                                               DIExpression *Expr,
9250                                               const Value *C,
9251                                               const DebugLoc &DL, unsigned O) {
9252   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9253          "Expected inlined-at fields to agree");
9254   return new (DbgInfo->getAlloc())
9255       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9256                  /*IsIndirect=*/false, DL, O,
9257                  /*IsVariadic=*/false);
9258 }
9259 
9260 /// FrameIndex
9261 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9262                                                 DIExpression *Expr, unsigned FI,
9263                                                 bool IsIndirect,
9264                                                 const DebugLoc &DL,
9265                                                 unsigned O) {
9266   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9267          "Expected inlined-at fields to agree");
9268   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9269 }
9270 
9271 /// FrameIndex with dependencies
9272 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9273                                                 DIExpression *Expr, unsigned FI,
9274                                                 ArrayRef<SDNode *> Dependencies,
9275                                                 bool IsIndirect,
9276                                                 const DebugLoc &DL,
9277                                                 unsigned O) {
9278   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9279          "Expected inlined-at fields to agree");
9280   return new (DbgInfo->getAlloc())
9281       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9282                  Dependencies, IsIndirect, DL, O,
9283                  /*IsVariadic=*/false);
9284 }
9285 
9286 /// VReg
9287 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9288                                           unsigned VReg, bool IsIndirect,
9289                                           const DebugLoc &DL, unsigned O) {
9290   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9291          "Expected inlined-at fields to agree");
9292   return new (DbgInfo->getAlloc())
9293       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9294                  {}, IsIndirect, DL, O,
9295                  /*IsVariadic=*/false);
9296 }
9297 
9298 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9299                                           ArrayRef<SDDbgOperand> Locs,
9300                                           ArrayRef<SDNode *> Dependencies,
9301                                           bool IsIndirect, const DebugLoc &DL,
9302                                           unsigned O, bool IsVariadic) {
9303   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9304          "Expected inlined-at fields to agree");
9305   return new (DbgInfo->getAlloc())
9306       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9307                  DL, O, IsVariadic);
9308 }
9309 
9310 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9311                                      unsigned OffsetInBits, unsigned SizeInBits,
9312                                      bool InvalidateDbg) {
9313   SDNode *FromNode = From.getNode();
9314   SDNode *ToNode = To.getNode();
9315   assert(FromNode && ToNode && "Can't modify dbg values");
9316 
9317   // PR35338
9318   // TODO: assert(From != To && "Redundant dbg value transfer");
9319   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9320   if (From == To || FromNode == ToNode)
9321     return;
9322 
9323   if (!FromNode->getHasDebugValue())
9324     return;
9325 
9326   SDDbgOperand FromLocOp =
9327       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9328   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9329 
9330   SmallVector<SDDbgValue *, 2> ClonedDVs;
9331   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9332     if (Dbg->isInvalidated())
9333       continue;
9334 
9335     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9336 
9337     // Create a new location ops vector that is equal to the old vector, but
9338     // with each instance of FromLocOp replaced with ToLocOp.
9339     bool Changed = false;
9340     auto NewLocOps = Dbg->copyLocationOps();
9341     std::replace_if(
9342         NewLocOps.begin(), NewLocOps.end(),
9343         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9344           bool Match = Op == FromLocOp;
9345           Changed |= Match;
9346           return Match;
9347         },
9348         ToLocOp);
9349     // Ignore this SDDbgValue if we didn't find a matching location.
9350     if (!Changed)
9351       continue;
9352 
9353     DIVariable *Var = Dbg->getVariable();
9354     auto *Expr = Dbg->getExpression();
9355     // If a fragment is requested, update the expression.
9356     if (SizeInBits) {
9357       // When splitting a larger (e.g., sign-extended) value whose
9358       // lower bits are described with an SDDbgValue, do not attempt
9359       // to transfer the SDDbgValue to the upper bits.
9360       if (auto FI = Expr->getFragmentInfo())
9361         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9362           continue;
9363       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9364                                                              SizeInBits);
9365       if (!Fragment)
9366         continue;
9367       Expr = *Fragment;
9368     }
9369 
9370     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9371     // Clone the SDDbgValue and move it to To.
9372     SDDbgValue *Clone = getDbgValueList(
9373         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9374         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9375         Dbg->isVariadic());
9376     ClonedDVs.push_back(Clone);
9377 
9378     if (InvalidateDbg) {
9379       // Invalidate value and indicate the SDDbgValue should not be emitted.
9380       Dbg->setIsInvalidated();
9381       Dbg->setIsEmitted();
9382     }
9383   }
9384 
9385   for (SDDbgValue *Dbg : ClonedDVs) {
9386     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9387            "Transferred DbgValues should depend on the new SDNode");
9388     AddDbgValue(Dbg, false);
9389   }
9390 }
9391 
9392 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9393   if (!N.getHasDebugValue())
9394     return;
9395 
9396   SmallVector<SDDbgValue *, 2> ClonedDVs;
9397   for (auto DV : GetDbgValues(&N)) {
9398     if (DV->isInvalidated())
9399       continue;
9400     switch (N.getOpcode()) {
9401     default:
9402       break;
9403     case ISD::ADD:
9404       SDValue N0 = N.getOperand(0);
9405       SDValue N1 = N.getOperand(1);
9406       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9407           isConstantIntBuildVectorOrConstantInt(N1)) {
9408         uint64_t Offset = N.getConstantOperandVal(1);
9409 
9410         // Rewrite an ADD constant node into a DIExpression. Since we are
9411         // performing arithmetic to compute the variable's *value* in the
9412         // DIExpression, we need to mark the expression with a
9413         // DW_OP_stack_value.
9414         auto *DIExpr = DV->getExpression();
9415         auto NewLocOps = DV->copyLocationOps();
9416         bool Changed = false;
9417         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9418           // We're not given a ResNo to compare against because the whole
9419           // node is going away. We know that any ISD::ADD only has one
9420           // result, so we can assume any node match is using the result.
9421           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9422               NewLocOps[i].getSDNode() != &N)
9423             continue;
9424           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9425           SmallVector<uint64_t, 3> ExprOps;
9426           DIExpression::appendOffset(ExprOps, Offset);
9427           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9428           Changed = true;
9429         }
9430         (void)Changed;
9431         assert(Changed && "Salvage target doesn't use N");
9432 
9433         auto AdditionalDependencies = DV->getAdditionalDependencies();
9434         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9435                                             NewLocOps, AdditionalDependencies,
9436                                             DV->isIndirect(), DV->getDebugLoc(),
9437                                             DV->getOrder(), DV->isVariadic());
9438         ClonedDVs.push_back(Clone);
9439         DV->setIsInvalidated();
9440         DV->setIsEmitted();
9441         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9442                    N0.getNode()->dumprFull(this);
9443                    dbgs() << " into " << *DIExpr << '\n');
9444       }
9445     }
9446   }
9447 
9448   for (SDDbgValue *Dbg : ClonedDVs) {
9449     assert(!Dbg->getSDNodes().empty() &&
9450            "Salvaged DbgValue should depend on a new SDNode");
9451     AddDbgValue(Dbg, false);
9452   }
9453 }
9454 
9455 /// Creates a SDDbgLabel node.
9456 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9457                                       const DebugLoc &DL, unsigned O) {
9458   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9459          "Expected inlined-at fields to agree");
9460   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9461 }
9462 
9463 namespace {
9464 
9465 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9466 /// pointed to by a use iterator is deleted, increment the use iterator
9467 /// so that it doesn't dangle.
9468 ///
9469 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9470   SDNode::use_iterator &UI;
9471   SDNode::use_iterator &UE;
9472 
9473   void NodeDeleted(SDNode *N, SDNode *E) override {
9474     // Increment the iterator as needed.
9475     while (UI != UE && N == *UI)
9476       ++UI;
9477   }
9478 
9479 public:
9480   RAUWUpdateListener(SelectionDAG &d,
9481                      SDNode::use_iterator &ui,
9482                      SDNode::use_iterator &ue)
9483     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9484 };
9485 
9486 } // end anonymous namespace
9487 
9488 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9489 /// This can cause recursive merging of nodes in the DAG.
9490 ///
9491 /// This version assumes From has a single result value.
9492 ///
9493 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9494   SDNode *From = FromN.getNode();
9495   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9496          "Cannot replace with this method!");
9497   assert(From != To.getNode() && "Cannot replace uses of with self");
9498 
9499   // Preserve Debug Values
9500   transferDbgValues(FromN, To);
9501 
9502   // Iterate over all the existing uses of From. New uses will be added
9503   // to the beginning of the use list, which we avoid visiting.
9504   // This specifically avoids visiting uses of From that arise while the
9505   // replacement is happening, because any such uses would be the result
9506   // of CSE: If an existing node looks like From after one of its operands
9507   // is replaced by To, we don't want to replace of all its users with To
9508   // too. See PR3018 for more info.
9509   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9510   RAUWUpdateListener Listener(*this, UI, UE);
9511   while (UI != UE) {
9512     SDNode *User = *UI;
9513 
9514     // This node is about to morph, remove its old self from the CSE maps.
9515     RemoveNodeFromCSEMaps(User);
9516 
9517     // A user can appear in a use list multiple times, and when this
9518     // happens the uses are usually next to each other in the list.
9519     // To help reduce the number of CSE recomputations, process all
9520     // the uses of this user that we can find this way.
9521     do {
9522       SDUse &Use = UI.getUse();
9523       ++UI;
9524       Use.set(To);
9525       if (To->isDivergent() != From->isDivergent())
9526         updateDivergence(User);
9527     } while (UI != UE && *UI == User);
9528     // Now that we have modified User, add it back to the CSE maps.  If it
9529     // already exists there, recursively merge the results together.
9530     AddModifiedNodeToCSEMaps(User);
9531   }
9532 
9533   // If we just RAUW'd the root, take note.
9534   if (FromN == getRoot())
9535     setRoot(To);
9536 }
9537 
9538 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9539 /// This can cause recursive merging of nodes in the DAG.
9540 ///
9541 /// This version assumes that for each value of From, there is a
9542 /// corresponding value in To in the same position with the same type.
9543 ///
9544 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9545 #ifndef NDEBUG
9546   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9547     assert((!From->hasAnyUseOfValue(i) ||
9548             From->getValueType(i) == To->getValueType(i)) &&
9549            "Cannot use this version of ReplaceAllUsesWith!");
9550 #endif
9551 
9552   // Handle the trivial case.
9553   if (From == To)
9554     return;
9555 
9556   // Preserve Debug Info. Only do this if there's a use.
9557   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9558     if (From->hasAnyUseOfValue(i)) {
9559       assert((i < To->getNumValues()) && "Invalid To location");
9560       transferDbgValues(SDValue(From, i), SDValue(To, i));
9561     }
9562 
9563   // Iterate over just the existing users of From. See the comments in
9564   // the ReplaceAllUsesWith above.
9565   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9566   RAUWUpdateListener Listener(*this, UI, UE);
9567   while (UI != UE) {
9568     SDNode *User = *UI;
9569 
9570     // This node is about to morph, remove its old self from the CSE maps.
9571     RemoveNodeFromCSEMaps(User);
9572 
9573     // A user can appear in a use list multiple times, and when this
9574     // happens the uses are usually next to each other in the list.
9575     // To help reduce the number of CSE recomputations, process all
9576     // the uses of this user that we can find this way.
9577     do {
9578       SDUse &Use = UI.getUse();
9579       ++UI;
9580       Use.setNode(To);
9581       if (To->isDivergent() != From->isDivergent())
9582         updateDivergence(User);
9583     } while (UI != UE && *UI == User);
9584 
9585     // Now that we have modified User, add it back to the CSE maps.  If it
9586     // already exists there, recursively merge the results together.
9587     AddModifiedNodeToCSEMaps(User);
9588   }
9589 
9590   // If we just RAUW'd the root, take note.
9591   if (From == getRoot().getNode())
9592     setRoot(SDValue(To, getRoot().getResNo()));
9593 }
9594 
9595 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9596 /// This can cause recursive merging of nodes in the DAG.
9597 ///
9598 /// This version can replace From with any result values.  To must match the
9599 /// number and types of values returned by From.
9600 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9601   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9602     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9603 
9604   // Preserve Debug Info.
9605   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9606     transferDbgValues(SDValue(From, i), To[i]);
9607 
9608   // Iterate over just the existing users of From. See the comments in
9609   // the ReplaceAllUsesWith above.
9610   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9611   RAUWUpdateListener Listener(*this, UI, UE);
9612   while (UI != UE) {
9613     SDNode *User = *UI;
9614 
9615     // This node is about to morph, remove its old self from the CSE maps.
9616     RemoveNodeFromCSEMaps(User);
9617 
9618     // A user can appear in a use list multiple times, and when this happens the
9619     // uses are usually next to each other in the list.  To help reduce the
9620     // number of CSE and divergence recomputations, process all the uses of this
9621     // user that we can find this way.
9622     bool To_IsDivergent = false;
9623     do {
9624       SDUse &Use = UI.getUse();
9625       const SDValue &ToOp = To[Use.getResNo()];
9626       ++UI;
9627       Use.set(ToOp);
9628       To_IsDivergent |= ToOp->isDivergent();
9629     } while (UI != UE && *UI == User);
9630 
9631     if (To_IsDivergent != From->isDivergent())
9632       updateDivergence(User);
9633 
9634     // Now that we have modified User, add it back to the CSE maps.  If it
9635     // already exists there, recursively merge the results together.
9636     AddModifiedNodeToCSEMaps(User);
9637   }
9638 
9639   // If we just RAUW'd the root, take note.
9640   if (From == getRoot().getNode())
9641     setRoot(SDValue(To[getRoot().getResNo()]));
9642 }
9643 
9644 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9645 /// uses of other values produced by From.getNode() alone.  The Deleted
9646 /// vector is handled the same way as for ReplaceAllUsesWith.
9647 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9648   // Handle the really simple, really trivial case efficiently.
9649   if (From == To) return;
9650 
9651   // Handle the simple, trivial, case efficiently.
9652   if (From.getNode()->getNumValues() == 1) {
9653     ReplaceAllUsesWith(From, To);
9654     return;
9655   }
9656 
9657   // Preserve Debug Info.
9658   transferDbgValues(From, To);
9659 
9660   // Iterate over just the existing users of From. See the comments in
9661   // the ReplaceAllUsesWith above.
9662   SDNode::use_iterator UI = From.getNode()->use_begin(),
9663                        UE = From.getNode()->use_end();
9664   RAUWUpdateListener Listener(*this, UI, UE);
9665   while (UI != UE) {
9666     SDNode *User = *UI;
9667     bool UserRemovedFromCSEMaps = false;
9668 
9669     // A user can appear in a use list multiple times, and when this
9670     // happens the uses are usually next to each other in the list.
9671     // To help reduce the number of CSE recomputations, process all
9672     // the uses of this user that we can find this way.
9673     do {
9674       SDUse &Use = UI.getUse();
9675 
9676       // Skip uses of different values from the same node.
9677       if (Use.getResNo() != From.getResNo()) {
9678         ++UI;
9679         continue;
9680       }
9681 
9682       // If this node hasn't been modified yet, it's still in the CSE maps,
9683       // so remove its old self from the CSE maps.
9684       if (!UserRemovedFromCSEMaps) {
9685         RemoveNodeFromCSEMaps(User);
9686         UserRemovedFromCSEMaps = true;
9687       }
9688 
9689       ++UI;
9690       Use.set(To);
9691       if (To->isDivergent() != From->isDivergent())
9692         updateDivergence(User);
9693     } while (UI != UE && *UI == User);
9694     // We are iterating over all uses of the From node, so if a use
9695     // doesn't use the specific value, no changes are made.
9696     if (!UserRemovedFromCSEMaps)
9697       continue;
9698 
9699     // Now that we have modified User, add it back to the CSE maps.  If it
9700     // already exists there, recursively merge the results together.
9701     AddModifiedNodeToCSEMaps(User);
9702   }
9703 
9704   // If we just RAUW'd the root, take note.
9705   if (From == getRoot())
9706     setRoot(To);
9707 }
9708 
9709 namespace {
9710 
9711   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9712   /// to record information about a use.
9713   struct UseMemo {
9714     SDNode *User;
9715     unsigned Index;
9716     SDUse *Use;
9717   };
9718 
9719   /// operator< - Sort Memos by User.
9720   bool operator<(const UseMemo &L, const UseMemo &R) {
9721     return (intptr_t)L.User < (intptr_t)R.User;
9722   }
9723 
9724 } // end anonymous namespace
9725 
9726 bool SelectionDAG::calculateDivergence(SDNode *N) {
9727   if (TLI->isSDNodeAlwaysUniform(N)) {
9728     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9729            "Conflicting divergence information!");
9730     return false;
9731   }
9732   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9733     return true;
9734   for (auto &Op : N->ops()) {
9735     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9736       return true;
9737   }
9738   return false;
9739 }
9740 
9741 void SelectionDAG::updateDivergence(SDNode *N) {
9742   SmallVector<SDNode *, 16> Worklist(1, N);
9743   do {
9744     N = Worklist.pop_back_val();
9745     bool IsDivergent = calculateDivergence(N);
9746     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9747       N->SDNodeBits.IsDivergent = IsDivergent;
9748       llvm::append_range(Worklist, N->uses());
9749     }
9750   } while (!Worklist.empty());
9751 }
9752 
9753 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9754   DenseMap<SDNode *, unsigned> Degree;
9755   Order.reserve(AllNodes.size());
9756   for (auto &N : allnodes()) {
9757     unsigned NOps = N.getNumOperands();
9758     Degree[&N] = NOps;
9759     if (0 == NOps)
9760       Order.push_back(&N);
9761   }
9762   for (size_t I = 0; I != Order.size(); ++I) {
9763     SDNode *N = Order[I];
9764     for (auto U : N->uses()) {
9765       unsigned &UnsortedOps = Degree[U];
9766       if (0 == --UnsortedOps)
9767         Order.push_back(U);
9768     }
9769   }
9770 }
9771 
9772 #ifndef NDEBUG
9773 void SelectionDAG::VerifyDAGDivergence() {
9774   std::vector<SDNode *> TopoOrder;
9775   CreateTopologicalOrder(TopoOrder);
9776   for (auto *N : TopoOrder) {
9777     assert(calculateDivergence(N) == N->isDivergent() &&
9778            "Divergence bit inconsistency detected");
9779   }
9780 }
9781 #endif
9782 
9783 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9784 /// uses of other values produced by From.getNode() alone.  The same value
9785 /// may appear in both the From and To list.  The Deleted vector is
9786 /// handled the same way as for ReplaceAllUsesWith.
9787 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9788                                               const SDValue *To,
9789                                               unsigned Num){
9790   // Handle the simple, trivial case efficiently.
9791   if (Num == 1)
9792     return ReplaceAllUsesOfValueWith(*From, *To);
9793 
9794   transferDbgValues(*From, *To);
9795 
9796   // Read up all the uses and make records of them. This helps
9797   // processing new uses that are introduced during the
9798   // replacement process.
9799   SmallVector<UseMemo, 4> Uses;
9800   for (unsigned i = 0; i != Num; ++i) {
9801     unsigned FromResNo = From[i].getResNo();
9802     SDNode *FromNode = From[i].getNode();
9803     for (SDNode::use_iterator UI = FromNode->use_begin(),
9804          E = FromNode->use_end(); UI != E; ++UI) {
9805       SDUse &Use = UI.getUse();
9806       if (Use.getResNo() == FromResNo) {
9807         UseMemo Memo = { *UI, i, &Use };
9808         Uses.push_back(Memo);
9809       }
9810     }
9811   }
9812 
9813   // Sort the uses, so that all the uses from a given User are together.
9814   llvm::sort(Uses);
9815 
9816   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9817        UseIndex != UseIndexEnd; ) {
9818     // We know that this user uses some value of From.  If it is the right
9819     // value, update it.
9820     SDNode *User = Uses[UseIndex].User;
9821 
9822     // This node is about to morph, remove its old self from the CSE maps.
9823     RemoveNodeFromCSEMaps(User);
9824 
9825     // The Uses array is sorted, so all the uses for a given User
9826     // are next to each other in the list.
9827     // To help reduce the number of CSE recomputations, process all
9828     // the uses of this user that we can find this way.
9829     do {
9830       unsigned i = Uses[UseIndex].Index;
9831       SDUse &Use = *Uses[UseIndex].Use;
9832       ++UseIndex;
9833 
9834       Use.set(To[i]);
9835     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9836 
9837     // Now that we have modified User, add it back to the CSE maps.  If it
9838     // already exists there, recursively merge the results together.
9839     AddModifiedNodeToCSEMaps(User);
9840   }
9841 }
9842 
9843 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9844 /// based on their topological order. It returns the maximum id and a vector
9845 /// of the SDNodes* in assigned order by reference.
9846 unsigned SelectionDAG::AssignTopologicalOrder() {
9847   unsigned DAGSize = 0;
9848 
9849   // SortedPos tracks the progress of the algorithm. Nodes before it are
9850   // sorted, nodes after it are unsorted. When the algorithm completes
9851   // it is at the end of the list.
9852   allnodes_iterator SortedPos = allnodes_begin();
9853 
9854   // Visit all the nodes. Move nodes with no operands to the front of
9855   // the list immediately. Annotate nodes that do have operands with their
9856   // operand count. Before we do this, the Node Id fields of the nodes
9857   // may contain arbitrary values. After, the Node Id fields for nodes
9858   // before SortedPos will contain the topological sort index, and the
9859   // Node Id fields for nodes At SortedPos and after will contain the
9860   // count of outstanding operands.
9861   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
9862     checkForCycles(&N, this);
9863     unsigned Degree = N.getNumOperands();
9864     if (Degree == 0) {
9865       // A node with no uses, add it to the result array immediately.
9866       N.setNodeId(DAGSize++);
9867       allnodes_iterator Q(&N);
9868       if (Q != SortedPos)
9869         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9870       assert(SortedPos != AllNodes.end() && "Overran node list");
9871       ++SortedPos;
9872     } else {
9873       // Temporarily use the Node Id as scratch space for the degree count.
9874       N.setNodeId(Degree);
9875     }
9876   }
9877 
9878   // Visit all the nodes. As we iterate, move nodes into sorted order,
9879   // such that by the time the end is reached all nodes will be sorted.
9880   for (SDNode &Node : allnodes()) {
9881     SDNode *N = &Node;
9882     checkForCycles(N, this);
9883     // N is in sorted position, so all its uses have one less operand
9884     // that needs to be sorted.
9885     for (SDNode *P : N->uses()) {
9886       unsigned Degree = P->getNodeId();
9887       assert(Degree != 0 && "Invalid node degree");
9888       --Degree;
9889       if (Degree == 0) {
9890         // All of P's operands are sorted, so P may sorted now.
9891         P->setNodeId(DAGSize++);
9892         if (P->getIterator() != SortedPos)
9893           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9894         assert(SortedPos != AllNodes.end() && "Overran node list");
9895         ++SortedPos;
9896       } else {
9897         // Update P's outstanding operand count.
9898         P->setNodeId(Degree);
9899       }
9900     }
9901     if (Node.getIterator() == SortedPos) {
9902 #ifndef NDEBUG
9903       allnodes_iterator I(N);
9904       SDNode *S = &*++I;
9905       dbgs() << "Overran sorted position:\n";
9906       S->dumprFull(this); dbgs() << "\n";
9907       dbgs() << "Checking if this is due to cycles\n";
9908       checkForCycles(this, true);
9909 #endif
9910       llvm_unreachable(nullptr);
9911     }
9912   }
9913 
9914   assert(SortedPos == AllNodes.end() &&
9915          "Topological sort incomplete!");
9916   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9917          "First node in topological sort is not the entry token!");
9918   assert(AllNodes.front().getNodeId() == 0 &&
9919          "First node in topological sort has non-zero id!");
9920   assert(AllNodes.front().getNumOperands() == 0 &&
9921          "First node in topological sort has operands!");
9922   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9923          "Last node in topologic sort has unexpected id!");
9924   assert(AllNodes.back().use_empty() &&
9925          "Last node in topologic sort has users!");
9926   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9927   return DAGSize;
9928 }
9929 
9930 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9931 /// value is produced by SD.
9932 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9933   for (SDNode *SD : DB->getSDNodes()) {
9934     if (!SD)
9935       continue;
9936     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9937     SD->setHasDebugValue(true);
9938   }
9939   DbgInfo->add(DB, isParameter);
9940 }
9941 
9942 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9943 
9944 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9945                                                    SDValue NewMemOpChain) {
9946   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9947   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9948   // The new memory operation must have the same position as the old load in
9949   // terms of memory dependency. Create a TokenFactor for the old load and new
9950   // memory operation and update uses of the old load's output chain to use that
9951   // TokenFactor.
9952   if (OldChain == NewMemOpChain || OldChain.use_empty())
9953     return NewMemOpChain;
9954 
9955   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9956                                 OldChain, NewMemOpChain);
9957   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9958   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9959   return TokenFactor;
9960 }
9961 
9962 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9963                                                    SDValue NewMemOp) {
9964   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9965   SDValue OldChain = SDValue(OldLoad, 1);
9966   SDValue NewMemOpChain = NewMemOp.getValue(1);
9967   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9968 }
9969 
9970 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9971                                                      Function **OutFunction) {
9972   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9973 
9974   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9975   auto *Module = MF->getFunction().getParent();
9976   auto *Function = Module->getFunction(Symbol);
9977 
9978   if (OutFunction != nullptr)
9979       *OutFunction = Function;
9980 
9981   if (Function != nullptr) {
9982     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9983     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9984   }
9985 
9986   std::string ErrorStr;
9987   raw_string_ostream ErrorFormatter(ErrorStr);
9988   ErrorFormatter << "Undefined external symbol ";
9989   ErrorFormatter << '"' << Symbol << '"';
9990   report_fatal_error(Twine(ErrorFormatter.str()));
9991 }
9992 
9993 //===----------------------------------------------------------------------===//
9994 //                              SDNode Class
9995 //===----------------------------------------------------------------------===//
9996 
9997 bool llvm::isNullConstant(SDValue V) {
9998   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9999   return Const != nullptr && Const->isZero();
10000 }
10001 
10002 bool llvm::isNullFPConstant(SDValue V) {
10003   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
10004   return Const != nullptr && Const->isZero() && !Const->isNegative();
10005 }
10006 
10007 bool llvm::isAllOnesConstant(SDValue V) {
10008   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10009   return Const != nullptr && Const->isAllOnes();
10010 }
10011 
10012 bool llvm::isOneConstant(SDValue V) {
10013   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10014   return Const != nullptr && Const->isOne();
10015 }
10016 
10017 SDValue llvm::peekThroughBitcasts(SDValue V) {
10018   while (V.getOpcode() == ISD::BITCAST)
10019     V = V.getOperand(0);
10020   return V;
10021 }
10022 
10023 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
10024   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
10025     V = V.getOperand(0);
10026   return V;
10027 }
10028 
10029 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
10030   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
10031     V = V.getOperand(0);
10032   return V;
10033 }
10034 
10035 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10036   if (V.getOpcode() != ISD::XOR)
10037     return false;
10038   V = peekThroughBitcasts(V.getOperand(1));
10039   unsigned NumBits = V.getScalarValueSizeInBits();
10040   ConstantSDNode *C =
10041       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10042   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10043 }
10044 
10045 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10046                                           bool AllowTruncation) {
10047   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10048     return CN;
10049 
10050   // SplatVectors can truncate their operands. Ignore that case here unless
10051   // AllowTruncation is set.
10052   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10053     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10054     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10055       EVT CVT = CN->getValueType(0);
10056       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10057       if (AllowTruncation || CVT == VecEltVT)
10058         return CN;
10059     }
10060   }
10061 
10062   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10063     BitVector UndefElements;
10064     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10065 
10066     // BuildVectors can truncate their operands. Ignore that case here unless
10067     // AllowTruncation is set.
10068     if (CN && (UndefElements.none() || AllowUndefs)) {
10069       EVT CVT = CN->getValueType(0);
10070       EVT NSVT = N.getValueType().getScalarType();
10071       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10072       if (AllowTruncation || (CVT == NSVT))
10073         return CN;
10074     }
10075   }
10076 
10077   return nullptr;
10078 }
10079 
10080 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10081                                           bool AllowUndefs,
10082                                           bool AllowTruncation) {
10083   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10084     return CN;
10085 
10086   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10087     BitVector UndefElements;
10088     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10089 
10090     // BuildVectors can truncate their operands. Ignore that case here unless
10091     // AllowTruncation is set.
10092     if (CN && (UndefElements.none() || AllowUndefs)) {
10093       EVT CVT = CN->getValueType(0);
10094       EVT NSVT = N.getValueType().getScalarType();
10095       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10096       if (AllowTruncation || (CVT == NSVT))
10097         return CN;
10098     }
10099   }
10100 
10101   return nullptr;
10102 }
10103 
10104 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10105   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10106     return CN;
10107 
10108   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10109     BitVector UndefElements;
10110     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10111     if (CN && (UndefElements.none() || AllowUndefs))
10112       return CN;
10113   }
10114 
10115   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10116     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10117       return CN;
10118 
10119   return nullptr;
10120 }
10121 
10122 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10123                                               const APInt &DemandedElts,
10124                                               bool AllowUndefs) {
10125   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10126     return CN;
10127 
10128   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10129     BitVector UndefElements;
10130     ConstantFPSDNode *CN =
10131         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10132     if (CN && (UndefElements.none() || AllowUndefs))
10133       return CN;
10134   }
10135 
10136   return nullptr;
10137 }
10138 
10139 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10140   // TODO: may want to use peekThroughBitcast() here.
10141   ConstantSDNode *C =
10142       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10143   return C && C->isZero();
10144 }
10145 
10146 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10147   // TODO: may want to use peekThroughBitcast() here.
10148   unsigned BitWidth = N.getScalarValueSizeInBits();
10149   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10150   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10151 }
10152 
10153 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10154   N = peekThroughBitcasts(N);
10155   unsigned BitWidth = N.getScalarValueSizeInBits();
10156   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10157   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10158 }
10159 
10160 HandleSDNode::~HandleSDNode() {
10161   DropOperands();
10162 }
10163 
10164 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10165                                          const DebugLoc &DL,
10166                                          const GlobalValue *GA, EVT VT,
10167                                          int64_t o, unsigned TF)
10168     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10169   TheGlobal = GA;
10170 }
10171 
10172 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10173                                          EVT VT, unsigned SrcAS,
10174                                          unsigned DestAS)
10175     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10176       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10177 
10178 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10179                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10180     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10181   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10182   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10183   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10184   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10185 
10186   // We check here that the size of the memory operand fits within the size of
10187   // the MMO. This is because the MMO might indicate only a possible address
10188   // range instead of specifying the affected memory addresses precisely.
10189   // TODO: Make MachineMemOperands aware of scalable vectors.
10190   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10191          "Size mismatch!");
10192 }
10193 
10194 /// Profile - Gather unique data for the node.
10195 ///
10196 void SDNode::Profile(FoldingSetNodeID &ID) const {
10197   AddNodeIDNode(ID, this);
10198 }
10199 
10200 namespace {
10201 
10202   struct EVTArray {
10203     std::vector<EVT> VTs;
10204 
10205     EVTArray() {
10206       VTs.reserve(MVT::VALUETYPE_SIZE);
10207       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10208         VTs.push_back(MVT((MVT::SimpleValueType)i));
10209     }
10210   };
10211 
10212 } // end anonymous namespace
10213 
10214 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10215 static ManagedStatic<EVTArray> SimpleVTArray;
10216 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10217 
10218 /// getValueTypeList - Return a pointer to the specified value type.
10219 ///
10220 const EVT *SDNode::getValueTypeList(EVT VT) {
10221   if (VT.isExtended()) {
10222     sys::SmartScopedLock<true> Lock(*VTMutex);
10223     return &(*EVTs->insert(VT).first);
10224   }
10225   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10226   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10227 }
10228 
10229 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10230 /// indicated value.  This method ignores uses of other values defined by this
10231 /// operation.
10232 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10233   assert(Value < getNumValues() && "Bad value!");
10234 
10235   // TODO: Only iterate over uses of a given value of the node
10236   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10237     if (UI.getUse().getResNo() == Value) {
10238       if (NUses == 0)
10239         return false;
10240       --NUses;
10241     }
10242   }
10243 
10244   // Found exactly the right number of uses?
10245   return NUses == 0;
10246 }
10247 
10248 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10249 /// value. This method ignores uses of other values defined by this operation.
10250 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10251   assert(Value < getNumValues() && "Bad value!");
10252 
10253   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10254     if (UI.getUse().getResNo() == Value)
10255       return true;
10256 
10257   return false;
10258 }
10259 
10260 /// isOnlyUserOf - Return true if this node is the only use of N.
10261 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10262   bool Seen = false;
10263   for (const SDNode *User : N->uses()) {
10264     if (User == this)
10265       Seen = true;
10266     else
10267       return false;
10268   }
10269 
10270   return Seen;
10271 }
10272 
10273 /// Return true if the only users of N are contained in Nodes.
10274 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10275   bool Seen = false;
10276   for (const SDNode *User : N->uses()) {
10277     if (llvm::is_contained(Nodes, User))
10278       Seen = true;
10279     else
10280       return false;
10281   }
10282 
10283   return Seen;
10284 }
10285 
10286 /// isOperand - Return true if this node is an operand of N.
10287 bool SDValue::isOperandOf(const SDNode *N) const {
10288   return is_contained(N->op_values(), *this);
10289 }
10290 
10291 bool SDNode::isOperandOf(const SDNode *N) const {
10292   return any_of(N->op_values(),
10293                 [this](SDValue Op) { return this == Op.getNode(); });
10294 }
10295 
10296 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10297 /// be a chain) reaches the specified operand without crossing any
10298 /// side-effecting instructions on any chain path.  In practice, this looks
10299 /// through token factors and non-volatile loads.  In order to remain efficient,
10300 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10301 ///
10302 /// Note that we only need to examine chains when we're searching for
10303 /// side-effects; SelectionDAG requires that all side-effects are represented
10304 /// by chains, even if another operand would force a specific ordering. This
10305 /// constraint is necessary to allow transformations like splitting loads.
10306 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10307                                              unsigned Depth) const {
10308   if (*this == Dest) return true;
10309 
10310   // Don't search too deeply, we just want to be able to see through
10311   // TokenFactor's etc.
10312   if (Depth == 0) return false;
10313 
10314   // If this is a token factor, all inputs to the TF happen in parallel.
10315   if (getOpcode() == ISD::TokenFactor) {
10316     // First, try a shallow search.
10317     if (is_contained((*this)->ops(), Dest)) {
10318       // We found the chain we want as an operand of this TokenFactor.
10319       // Essentially, we reach the chain without side-effects if we could
10320       // serialize the TokenFactor into a simple chain of operations with
10321       // Dest as the last operation. This is automatically true if the
10322       // chain has one use: there are no other ordering constraints.
10323       // If the chain has more than one use, we give up: some other
10324       // use of Dest might force a side-effect between Dest and the current
10325       // node.
10326       if (Dest.hasOneUse())
10327         return true;
10328     }
10329     // Next, try a deep search: check whether every operand of the TokenFactor
10330     // reaches Dest.
10331     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10332       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10333     });
10334   }
10335 
10336   // Loads don't have side effects, look through them.
10337   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10338     if (Ld->isUnordered())
10339       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10340   }
10341   return false;
10342 }
10343 
10344 bool SDNode::hasPredecessor(const SDNode *N) const {
10345   SmallPtrSet<const SDNode *, 32> Visited;
10346   SmallVector<const SDNode *, 16> Worklist;
10347   Worklist.push_back(this);
10348   return hasPredecessorHelper(N, Visited, Worklist);
10349 }
10350 
10351 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10352   this->Flags.intersectWith(Flags);
10353 }
10354 
10355 SDValue
10356 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10357                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10358                                   bool AllowPartials) {
10359   // The pattern must end in an extract from index 0.
10360   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10361       !isNullConstant(Extract->getOperand(1)))
10362     return SDValue();
10363 
10364   // Match against one of the candidate binary ops.
10365   SDValue Op = Extract->getOperand(0);
10366   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10367         return Op.getOpcode() == unsigned(BinOp);
10368       }))
10369     return SDValue();
10370 
10371   // Floating-point reductions may require relaxed constraints on the final step
10372   // of the reduction because they may reorder intermediate operations.
10373   unsigned CandidateBinOp = Op.getOpcode();
10374   if (Op.getValueType().isFloatingPoint()) {
10375     SDNodeFlags Flags = Op->getFlags();
10376     switch (CandidateBinOp) {
10377     case ISD::FADD:
10378       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10379         return SDValue();
10380       break;
10381     default:
10382       llvm_unreachable("Unhandled FP opcode for binop reduction");
10383     }
10384   }
10385 
10386   // Matching failed - attempt to see if we did enough stages that a partial
10387   // reduction from a subvector is possible.
10388   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10389     if (!AllowPartials || !Op)
10390       return SDValue();
10391     EVT OpVT = Op.getValueType();
10392     EVT OpSVT = OpVT.getScalarType();
10393     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10394     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10395       return SDValue();
10396     BinOp = (ISD::NodeType)CandidateBinOp;
10397     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10398                    getVectorIdxConstant(0, SDLoc(Op)));
10399   };
10400 
10401   // At each stage, we're looking for something that looks like:
10402   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10403   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10404   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10405   // %a = binop <8 x i32> %op, %s
10406   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10407   // we expect something like:
10408   // <4,5,6,7,u,u,u,u>
10409   // <2,3,u,u,u,u,u,u>
10410   // <1,u,u,u,u,u,u,u>
10411   // While a partial reduction match would be:
10412   // <2,3,u,u,u,u,u,u>
10413   // <1,u,u,u,u,u,u,u>
10414   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10415   SDValue PrevOp;
10416   for (unsigned i = 0; i < Stages; ++i) {
10417     unsigned MaskEnd = (1 << i);
10418 
10419     if (Op.getOpcode() != CandidateBinOp)
10420       return PartialReduction(PrevOp, MaskEnd);
10421 
10422     SDValue Op0 = Op.getOperand(0);
10423     SDValue Op1 = Op.getOperand(1);
10424 
10425     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10426     if (Shuffle) {
10427       Op = Op1;
10428     } else {
10429       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10430       Op = Op0;
10431     }
10432 
10433     // The first operand of the shuffle should be the same as the other operand
10434     // of the binop.
10435     if (!Shuffle || Shuffle->getOperand(0) != Op)
10436       return PartialReduction(PrevOp, MaskEnd);
10437 
10438     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10439     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10440       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10441         return PartialReduction(PrevOp, MaskEnd);
10442 
10443     PrevOp = Op;
10444   }
10445 
10446   // Handle subvector reductions, which tend to appear after the shuffle
10447   // reduction stages.
10448   while (Op.getOpcode() == CandidateBinOp) {
10449     unsigned NumElts = Op.getValueType().getVectorNumElements();
10450     SDValue Op0 = Op.getOperand(0);
10451     SDValue Op1 = Op.getOperand(1);
10452     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10453         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10454         Op0.getOperand(0) != Op1.getOperand(0))
10455       break;
10456     SDValue Src = Op0.getOperand(0);
10457     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10458     if (NumSrcElts != (2 * NumElts))
10459       break;
10460     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10461           Op1.getConstantOperandAPInt(1) == NumElts) &&
10462         !(Op1.getConstantOperandAPInt(1) == 0 &&
10463           Op0.getConstantOperandAPInt(1) == NumElts))
10464       break;
10465     Op = Src;
10466   }
10467 
10468   BinOp = (ISD::NodeType)CandidateBinOp;
10469   return Op;
10470 }
10471 
10472 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10473   assert(N->getNumValues() == 1 &&
10474          "Can't unroll a vector with multiple results!");
10475 
10476   EVT VT = N->getValueType(0);
10477   unsigned NE = VT.getVectorNumElements();
10478   EVT EltVT = VT.getVectorElementType();
10479   SDLoc dl(N);
10480 
10481   SmallVector<SDValue, 8> Scalars;
10482   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10483 
10484   // If ResNE is 0, fully unroll the vector op.
10485   if (ResNE == 0)
10486     ResNE = NE;
10487   else if (NE > ResNE)
10488     NE = ResNE;
10489 
10490   unsigned i;
10491   for (i= 0; i != NE; ++i) {
10492     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10493       SDValue Operand = N->getOperand(j);
10494       EVT OperandVT = Operand.getValueType();
10495       if (OperandVT.isVector()) {
10496         // A vector operand; extract a single element.
10497         EVT OperandEltVT = OperandVT.getVectorElementType();
10498         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10499                               Operand, getVectorIdxConstant(i, dl));
10500       } else {
10501         // A scalar operand; just use it as is.
10502         Operands[j] = Operand;
10503       }
10504     }
10505 
10506     switch (N->getOpcode()) {
10507     default: {
10508       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10509                                 N->getFlags()));
10510       break;
10511     }
10512     case ISD::VSELECT:
10513       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10514       break;
10515     case ISD::SHL:
10516     case ISD::SRA:
10517     case ISD::SRL:
10518     case ISD::ROTL:
10519     case ISD::ROTR:
10520       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10521                                getShiftAmountOperand(Operands[0].getValueType(),
10522                                                      Operands[1])));
10523       break;
10524     case ISD::SIGN_EXTEND_INREG: {
10525       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10526       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10527                                 Operands[0],
10528                                 getValueType(ExtVT)));
10529     }
10530     }
10531   }
10532 
10533   for (; i < ResNE; ++i)
10534     Scalars.push_back(getUNDEF(EltVT));
10535 
10536   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10537   return getBuildVector(VecVT, dl, Scalars);
10538 }
10539 
10540 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10541     SDNode *N, unsigned ResNE) {
10542   unsigned Opcode = N->getOpcode();
10543   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10544           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10545           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10546          "Expected an overflow opcode");
10547 
10548   EVT ResVT = N->getValueType(0);
10549   EVT OvVT = N->getValueType(1);
10550   EVT ResEltVT = ResVT.getVectorElementType();
10551   EVT OvEltVT = OvVT.getVectorElementType();
10552   SDLoc dl(N);
10553 
10554   // If ResNE is 0, fully unroll the vector op.
10555   unsigned NE = ResVT.getVectorNumElements();
10556   if (ResNE == 0)
10557     ResNE = NE;
10558   else if (NE > ResNE)
10559     NE = ResNE;
10560 
10561   SmallVector<SDValue, 8> LHSScalars;
10562   SmallVector<SDValue, 8> RHSScalars;
10563   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10564   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10565 
10566   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10567   SDVTList VTs = getVTList(ResEltVT, SVT);
10568   SmallVector<SDValue, 8> ResScalars;
10569   SmallVector<SDValue, 8> OvScalars;
10570   for (unsigned i = 0; i < NE; ++i) {
10571     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10572     SDValue Ov =
10573         getSelect(dl, OvEltVT, Res.getValue(1),
10574                   getBoolConstant(true, dl, OvEltVT, ResVT),
10575                   getConstant(0, dl, OvEltVT));
10576 
10577     ResScalars.push_back(Res);
10578     OvScalars.push_back(Ov);
10579   }
10580 
10581   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10582   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10583 
10584   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10585   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10586   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10587                         getBuildVector(NewOvVT, dl, OvScalars));
10588 }
10589 
10590 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10591                                                   LoadSDNode *Base,
10592                                                   unsigned Bytes,
10593                                                   int Dist) const {
10594   if (LD->isVolatile() || Base->isVolatile())
10595     return false;
10596   // TODO: probably too restrictive for atomics, revisit
10597   if (!LD->isSimple())
10598     return false;
10599   if (LD->isIndexed() || Base->isIndexed())
10600     return false;
10601   if (LD->getChain() != Base->getChain())
10602     return false;
10603   EVT VT = LD->getValueType(0);
10604   if (VT.getSizeInBits() / 8 != Bytes)
10605     return false;
10606 
10607   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10608   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10609 
10610   int64_t Offset = 0;
10611   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10612     return (Dist * Bytes == Offset);
10613   return false;
10614 }
10615 
10616 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10617 /// if it cannot be inferred.
10618 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10619   // If this is a GlobalAddress + cst, return the alignment.
10620   const GlobalValue *GV = nullptr;
10621   int64_t GVOffset = 0;
10622   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10623     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10624     KnownBits Known(PtrWidth);
10625     llvm::computeKnownBits(GV, Known, getDataLayout());
10626     unsigned AlignBits = Known.countMinTrailingZeros();
10627     if (AlignBits)
10628       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10629   }
10630 
10631   // If this is a direct reference to a stack slot, use information about the
10632   // stack slot's alignment.
10633   int FrameIdx = INT_MIN;
10634   int64_t FrameOffset = 0;
10635   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10636     FrameIdx = FI->getIndex();
10637   } else if (isBaseWithConstantOffset(Ptr) &&
10638              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10639     // Handle FI+Cst
10640     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10641     FrameOffset = Ptr.getConstantOperandVal(1);
10642   }
10643 
10644   if (FrameIdx != INT_MIN) {
10645     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10646     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10647   }
10648 
10649   return None;
10650 }
10651 
10652 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10653 /// which is split (or expanded) into two not necessarily identical pieces.
10654 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10655   // Currently all types are split in half.
10656   EVT LoVT, HiVT;
10657   if (!VT.isVector())
10658     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10659   else
10660     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10661 
10662   return std::make_pair(LoVT, HiVT);
10663 }
10664 
10665 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10666 /// type, dependent on an enveloping VT that has been split into two identical
10667 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10668 std::pair<EVT, EVT>
10669 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10670                                        bool *HiIsEmpty) const {
10671   EVT EltTp = VT.getVectorElementType();
10672   // Examples:
10673   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10674   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10675   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10676   //   etc.
10677   ElementCount VTNumElts = VT.getVectorElementCount();
10678   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10679   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10680          "Mixing fixed width and scalable vectors when enveloping a type");
10681   EVT LoVT, HiVT;
10682   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10683     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10684     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10685     *HiIsEmpty = false;
10686   } else {
10687     // Flag that hi type has zero storage size, but return split envelop type
10688     // (this would be easier if vector types with zero elements were allowed).
10689     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10690     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10691     *HiIsEmpty = true;
10692   }
10693   return std::make_pair(LoVT, HiVT);
10694 }
10695 
10696 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10697 /// low/high part.
10698 std::pair<SDValue, SDValue>
10699 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10700                           const EVT &HiVT) {
10701   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10702          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10703          "Splitting vector with an invalid mixture of fixed and scalable "
10704          "vector types");
10705   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10706              N.getValueType().getVectorMinNumElements() &&
10707          "More vector elements requested than available!");
10708   SDValue Lo, Hi;
10709   Lo =
10710       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10711   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10712   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10713   // IDX with the runtime scaling factor of the result vector type. For
10714   // fixed-width result vectors, that runtime scaling factor is 1.
10715   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10716                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10717   return std::make_pair(Lo, Hi);
10718 }
10719 
10720 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
10721                                                    const SDLoc &DL) {
10722   // Split the vector length parameter.
10723   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
10724   EVT VT = N.getValueType();
10725   assert(VecVT.getVectorElementCount().isKnownEven() &&
10726          "Expecting the mask to be an evenly-sized vector");
10727   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
10728   SDValue HalfNumElts =
10729       VecVT.isFixedLengthVector()
10730           ? getConstant(HalfMinNumElts, DL, VT)
10731           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
10732   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
10733   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
10734   return std::make_pair(Lo, Hi);
10735 }
10736 
10737 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10738 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10739   EVT VT = N.getValueType();
10740   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10741                                 NextPowerOf2(VT.getVectorNumElements()));
10742   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10743                  getVectorIdxConstant(0, DL));
10744 }
10745 
10746 void SelectionDAG::ExtractVectorElements(SDValue Op,
10747                                          SmallVectorImpl<SDValue> &Args,
10748                                          unsigned Start, unsigned Count,
10749                                          EVT EltVT) {
10750   EVT VT = Op.getValueType();
10751   if (Count == 0)
10752     Count = VT.getVectorNumElements();
10753   if (EltVT == EVT())
10754     EltVT = VT.getVectorElementType();
10755   SDLoc SL(Op);
10756   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10757     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10758                            getVectorIdxConstant(i, SL)));
10759   }
10760 }
10761 
10762 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10763 unsigned GlobalAddressSDNode::getAddressSpace() const {
10764   return getGlobal()->getType()->getAddressSpace();
10765 }
10766 
10767 Type *ConstantPoolSDNode::getType() const {
10768   if (isMachineConstantPoolEntry())
10769     return Val.MachineCPVal->getType();
10770   return Val.ConstVal->getType();
10771 }
10772 
10773 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10774                                         unsigned &SplatBitSize,
10775                                         bool &HasAnyUndefs,
10776                                         unsigned MinSplatBits,
10777                                         bool IsBigEndian) const {
10778   EVT VT = getValueType(0);
10779   assert(VT.isVector() && "Expected a vector type");
10780   unsigned VecWidth = VT.getSizeInBits();
10781   if (MinSplatBits > VecWidth)
10782     return false;
10783 
10784   // FIXME: The widths are based on this node's type, but build vectors can
10785   // truncate their operands.
10786   SplatValue = APInt(VecWidth, 0);
10787   SplatUndef = APInt(VecWidth, 0);
10788 
10789   // Get the bits. Bits with undefined values (when the corresponding element
10790   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10791   // in SplatValue. If any of the values are not constant, give up and return
10792   // false.
10793   unsigned int NumOps = getNumOperands();
10794   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10795   unsigned EltWidth = VT.getScalarSizeInBits();
10796 
10797   for (unsigned j = 0; j < NumOps; ++j) {
10798     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10799     SDValue OpVal = getOperand(i);
10800     unsigned BitPos = j * EltWidth;
10801 
10802     if (OpVal.isUndef())
10803       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10804     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10805       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10806     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10807       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10808     else
10809       return false;
10810   }
10811 
10812   // The build_vector is all constants or undefs. Find the smallest element
10813   // size that splats the vector.
10814   HasAnyUndefs = (SplatUndef != 0);
10815 
10816   // FIXME: This does not work for vectors with elements less than 8 bits.
10817   while (VecWidth > 8) {
10818     unsigned HalfSize = VecWidth / 2;
10819     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10820     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10821     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10822     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10823 
10824     // If the two halves do not match (ignoring undef bits), stop here.
10825     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10826         MinSplatBits > HalfSize)
10827       break;
10828 
10829     SplatValue = HighValue | LowValue;
10830     SplatUndef = HighUndef & LowUndef;
10831 
10832     VecWidth = HalfSize;
10833   }
10834 
10835   SplatBitSize = VecWidth;
10836   return true;
10837 }
10838 
10839 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10840                                          BitVector *UndefElements) const {
10841   unsigned NumOps = getNumOperands();
10842   if (UndefElements) {
10843     UndefElements->clear();
10844     UndefElements->resize(NumOps);
10845   }
10846   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10847   if (!DemandedElts)
10848     return SDValue();
10849   SDValue Splatted;
10850   for (unsigned i = 0; i != NumOps; ++i) {
10851     if (!DemandedElts[i])
10852       continue;
10853     SDValue Op = getOperand(i);
10854     if (Op.isUndef()) {
10855       if (UndefElements)
10856         (*UndefElements)[i] = true;
10857     } else if (!Splatted) {
10858       Splatted = Op;
10859     } else if (Splatted != Op) {
10860       return SDValue();
10861     }
10862   }
10863 
10864   if (!Splatted) {
10865     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10866     assert(getOperand(FirstDemandedIdx).isUndef() &&
10867            "Can only have a splat without a constant for all undefs.");
10868     return getOperand(FirstDemandedIdx);
10869   }
10870 
10871   return Splatted;
10872 }
10873 
10874 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10875   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10876   return getSplatValue(DemandedElts, UndefElements);
10877 }
10878 
10879 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10880                                             SmallVectorImpl<SDValue> &Sequence,
10881                                             BitVector *UndefElements) const {
10882   unsigned NumOps = getNumOperands();
10883   Sequence.clear();
10884   if (UndefElements) {
10885     UndefElements->clear();
10886     UndefElements->resize(NumOps);
10887   }
10888   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10889   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10890     return false;
10891 
10892   // Set the undefs even if we don't find a sequence (like getSplatValue).
10893   if (UndefElements)
10894     for (unsigned I = 0; I != NumOps; ++I)
10895       if (DemandedElts[I] && getOperand(I).isUndef())
10896         (*UndefElements)[I] = true;
10897 
10898   // Iteratively widen the sequence length looking for repetitions.
10899   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10900     Sequence.append(SeqLen, SDValue());
10901     for (unsigned I = 0; I != NumOps; ++I) {
10902       if (!DemandedElts[I])
10903         continue;
10904       SDValue &SeqOp = Sequence[I % SeqLen];
10905       SDValue Op = getOperand(I);
10906       if (Op.isUndef()) {
10907         if (!SeqOp)
10908           SeqOp = Op;
10909         continue;
10910       }
10911       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10912         Sequence.clear();
10913         break;
10914       }
10915       SeqOp = Op;
10916     }
10917     if (!Sequence.empty())
10918       return true;
10919   }
10920 
10921   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10922   return false;
10923 }
10924 
10925 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10926                                             BitVector *UndefElements) const {
10927   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10928   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10929 }
10930 
10931 ConstantSDNode *
10932 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10933                                         BitVector *UndefElements) const {
10934   return dyn_cast_or_null<ConstantSDNode>(
10935       getSplatValue(DemandedElts, UndefElements));
10936 }
10937 
10938 ConstantSDNode *
10939 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10940   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10941 }
10942 
10943 ConstantFPSDNode *
10944 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10945                                           BitVector *UndefElements) const {
10946   return dyn_cast_or_null<ConstantFPSDNode>(
10947       getSplatValue(DemandedElts, UndefElements));
10948 }
10949 
10950 ConstantFPSDNode *
10951 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10952   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10953 }
10954 
10955 int32_t
10956 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10957                                                    uint32_t BitWidth) const {
10958   if (ConstantFPSDNode *CN =
10959           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10960     bool IsExact;
10961     APSInt IntVal(BitWidth);
10962     const APFloat &APF = CN->getValueAPF();
10963     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10964             APFloat::opOK ||
10965         !IsExact)
10966       return -1;
10967 
10968     return IntVal.exactLogBase2();
10969   }
10970   return -1;
10971 }
10972 
10973 bool BuildVectorSDNode::getConstantRawBits(
10974     bool IsLittleEndian, unsigned DstEltSizeInBits,
10975     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
10976   // Early-out if this contains anything but Undef/Constant/ConstantFP.
10977   if (!isConstant())
10978     return false;
10979 
10980   unsigned NumSrcOps = getNumOperands();
10981   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
10982   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10983          "Invalid bitcast scale");
10984 
10985   // Extract raw src bits.
10986   SmallVector<APInt> SrcBitElements(NumSrcOps,
10987                                     APInt::getNullValue(SrcEltSizeInBits));
10988   BitVector SrcUndeElements(NumSrcOps, false);
10989 
10990   for (unsigned I = 0; I != NumSrcOps; ++I) {
10991     SDValue Op = getOperand(I);
10992     if (Op.isUndef()) {
10993       SrcUndeElements.set(I);
10994       continue;
10995     }
10996     auto *CInt = dyn_cast<ConstantSDNode>(Op);
10997     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
10998     assert((CInt || CFP) && "Unknown constant");
10999     SrcBitElements[I] =
11000         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
11001              : CFP->getValueAPF().bitcastToAPInt();
11002   }
11003 
11004   // Recast to dst width.
11005   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
11006                 SrcBitElements, UndefElements, SrcUndeElements);
11007   return true;
11008 }
11009 
11010 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
11011                                       unsigned DstEltSizeInBits,
11012                                       SmallVectorImpl<APInt> &DstBitElements,
11013                                       ArrayRef<APInt> SrcBitElements,
11014                                       BitVector &DstUndefElements,
11015                                       const BitVector &SrcUndefElements) {
11016   unsigned NumSrcOps = SrcBitElements.size();
11017   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
11018   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11019          "Invalid bitcast scale");
11020   assert(NumSrcOps == SrcUndefElements.size() &&
11021          "Vector size mismatch");
11022 
11023   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
11024   DstUndefElements.clear();
11025   DstUndefElements.resize(NumDstOps, false);
11026   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
11027 
11028   // Concatenate src elements constant bits together into dst element.
11029   if (SrcEltSizeInBits <= DstEltSizeInBits) {
11030     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
11031     for (unsigned I = 0; I != NumDstOps; ++I) {
11032       DstUndefElements.set(I);
11033       APInt &DstBits = DstBitElements[I];
11034       for (unsigned J = 0; J != Scale; ++J) {
11035         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11036         if (SrcUndefElements[Idx])
11037           continue;
11038         DstUndefElements.reset(I);
11039         const APInt &SrcBits = SrcBitElements[Idx];
11040         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11041                "Illegal constant bitwidths");
11042         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11043       }
11044     }
11045     return;
11046   }
11047 
11048   // Split src element constant bits into dst elements.
11049   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11050   for (unsigned I = 0; I != NumSrcOps; ++I) {
11051     if (SrcUndefElements[I]) {
11052       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11053       continue;
11054     }
11055     const APInt &SrcBits = SrcBitElements[I];
11056     for (unsigned J = 0; J != Scale; ++J) {
11057       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11058       APInt &DstBits = DstBitElements[Idx];
11059       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11060     }
11061   }
11062 }
11063 
11064 bool BuildVectorSDNode::isConstant() const {
11065   for (const SDValue &Op : op_values()) {
11066     unsigned Opc = Op.getOpcode();
11067     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11068       return false;
11069   }
11070   return true;
11071 }
11072 
11073 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11074   // Find the first non-undef value in the shuffle mask.
11075   unsigned i, e;
11076   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11077     /* search */;
11078 
11079   // If all elements are undefined, this shuffle can be considered a splat
11080   // (although it should eventually get simplified away completely).
11081   if (i == e)
11082     return true;
11083 
11084   // Make sure all remaining elements are either undef or the same as the first
11085   // non-undef value.
11086   for (int Idx = Mask[i]; i != e; ++i)
11087     if (Mask[i] >= 0 && Mask[i] != Idx)
11088       return false;
11089   return true;
11090 }
11091 
11092 // Returns the SDNode if it is a constant integer BuildVector
11093 // or constant integer.
11094 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11095   if (isa<ConstantSDNode>(N))
11096     return N.getNode();
11097   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11098     return N.getNode();
11099   // Treat a GlobalAddress supporting constant offset folding as a
11100   // constant integer.
11101   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11102     if (GA->getOpcode() == ISD::GlobalAddress &&
11103         TLI->isOffsetFoldingLegal(GA))
11104       return GA;
11105   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11106       isa<ConstantSDNode>(N.getOperand(0)))
11107     return N.getNode();
11108   return nullptr;
11109 }
11110 
11111 // Returns the SDNode if it is a constant float BuildVector
11112 // or constant float.
11113 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11114   if (isa<ConstantFPSDNode>(N))
11115     return N.getNode();
11116 
11117   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11118     return N.getNode();
11119 
11120   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11121       isa<ConstantFPSDNode>(N.getOperand(0)))
11122     return N.getNode();
11123 
11124   return nullptr;
11125 }
11126 
11127 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11128   assert(!Node->OperandList && "Node already has operands");
11129   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11130          "too many operands to fit into SDNode");
11131   SDUse *Ops = OperandRecycler.allocate(
11132       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11133 
11134   bool IsDivergent = false;
11135   for (unsigned I = 0; I != Vals.size(); ++I) {
11136     Ops[I].setUser(Node);
11137     Ops[I].setInitial(Vals[I]);
11138     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11139       IsDivergent |= Ops[I].getNode()->isDivergent();
11140   }
11141   Node->NumOperands = Vals.size();
11142   Node->OperandList = Ops;
11143   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11144     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11145     Node->SDNodeBits.IsDivergent = IsDivergent;
11146   }
11147   checkForCycles(Node);
11148 }
11149 
11150 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11151                                      SmallVectorImpl<SDValue> &Vals) {
11152   size_t Limit = SDNode::getMaxNumOperands();
11153   while (Vals.size() > Limit) {
11154     unsigned SliceIdx = Vals.size() - Limit;
11155     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11156     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11157     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11158     Vals.emplace_back(NewTF);
11159   }
11160   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11161 }
11162 
11163 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11164                                         EVT VT, SDNodeFlags Flags) {
11165   switch (Opcode) {
11166   default:
11167     return SDValue();
11168   case ISD::ADD:
11169   case ISD::OR:
11170   case ISD::XOR:
11171   case ISD::UMAX:
11172     return getConstant(0, DL, VT);
11173   case ISD::MUL:
11174     return getConstant(1, DL, VT);
11175   case ISD::AND:
11176   case ISD::UMIN:
11177     return getAllOnesConstant(DL, VT);
11178   case ISD::SMAX:
11179     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11180   case ISD::SMIN:
11181     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11182   case ISD::FADD:
11183     return getConstantFP(-0.0, DL, VT);
11184   case ISD::FMUL:
11185     return getConstantFP(1.0, DL, VT);
11186   case ISD::FMINNUM:
11187   case ISD::FMAXNUM: {
11188     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11189     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11190     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11191                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11192                         APFloat::getLargest(Semantics);
11193     if (Opcode == ISD::FMAXNUM)
11194       NeutralAF.changeSign();
11195 
11196     return getConstantFP(NeutralAF, DL, VT);
11197   }
11198   }
11199 }
11200 
11201 #ifndef NDEBUG
11202 static void checkForCyclesHelper(const SDNode *N,
11203                                  SmallPtrSetImpl<const SDNode*> &Visited,
11204                                  SmallPtrSetImpl<const SDNode*> &Checked,
11205                                  const llvm::SelectionDAG *DAG) {
11206   // If this node has already been checked, don't check it again.
11207   if (Checked.count(N))
11208     return;
11209 
11210   // If a node has already been visited on this depth-first walk, reject it as
11211   // a cycle.
11212   if (!Visited.insert(N).second) {
11213     errs() << "Detected cycle in SelectionDAG\n";
11214     dbgs() << "Offending node:\n";
11215     N->dumprFull(DAG); dbgs() << "\n";
11216     abort();
11217   }
11218 
11219   for (const SDValue &Op : N->op_values())
11220     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11221 
11222   Checked.insert(N);
11223   Visited.erase(N);
11224 }
11225 #endif
11226 
11227 void llvm::checkForCycles(const llvm::SDNode *N,
11228                           const llvm::SelectionDAG *DAG,
11229                           bool force) {
11230 #ifndef NDEBUG
11231   bool check = force;
11232 #ifdef EXPENSIVE_CHECKS
11233   check = true;
11234 #endif  // EXPENSIVE_CHECKS
11235   if (check) {
11236     assert(N && "Checking nonexistent SDNode");
11237     SmallPtrSet<const SDNode*, 32> visited;
11238     SmallPtrSet<const SDNode*, 32> checked;
11239     checkForCyclesHelper(N, visited, checked, DAG);
11240   }
11241 #endif  // !NDEBUG
11242 }
11243 
11244 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11245   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11246 }
11247