1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Mutex.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cmath> 52 #include <utility> 53 54 using namespace llvm; 55 56 /// makeVTList - Return an instance of the SDVTList struct initialized with the 57 /// specified members. 58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 59 SDVTList Res = {VTs, NumVTs}; 60 return Res; 61 } 62 63 // Default null implementations of the callbacks. 64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 66 67 //===----------------------------------------------------------------------===// 68 // ConstantFPSDNode Class 69 //===----------------------------------------------------------------------===// 70 71 /// isExactlyValue - We don't rely on operator== working on double values, as 72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 73 /// As such, this method can be used to do an exact bit-for-bit comparison of 74 /// two floating point values. 75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 76 return getValueAPF().bitwiseIsEqual(V); 77 } 78 79 bool ConstantFPSDNode::isValueValidForType(EVT VT, 80 const APFloat& Val) { 81 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 82 83 // convert modifies in place, so make a copy. 84 APFloat Val2 = APFloat(Val); 85 bool losesInfo; 86 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 87 APFloat::rmNearestTiesToEven, 88 &losesInfo); 89 return !losesInfo; 90 } 91 92 //===----------------------------------------------------------------------===// 93 // ISD Namespace 94 //===----------------------------------------------------------------------===// 95 96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 97 auto *BV = dyn_cast<BuildVectorSDNode>(N); 98 if (!BV) 99 return false; 100 101 APInt SplatUndef; 102 unsigned SplatBitSize; 103 bool HasUndefs; 104 EVT EltVT = N->getValueType(0).getVectorElementType(); 105 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) && 106 EltVT.getSizeInBits() >= SplatBitSize; 107 } 108 109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 110 // specializations of the more general isConstantSplatVector()? 111 112 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 113 // Look through a bit convert. 114 while (N->getOpcode() == ISD::BITCAST) 115 N = N->getOperand(0).getNode(); 116 117 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 118 119 unsigned i = 0, e = N->getNumOperands(); 120 121 // Skip over all of the undef values. 122 while (i != e && N->getOperand(i).isUndef()) 123 ++i; 124 125 // Do not accept an all-undef vector. 126 if (i == e) return false; 127 128 // Do not accept build_vectors that aren't all constants or which have non-~0 129 // elements. We have to be a bit careful here, as the type of the constant 130 // may not be the same as the type of the vector elements due to type 131 // legalization (the elements are promoted to a legal type for the target and 132 // a vector of a type may be legal when the base element type is not). 133 // We only want to check enough bits to cover the vector elements, because 134 // we care if the resultant vector is all ones, not whether the individual 135 // constants are. 136 SDValue NotZero = N->getOperand(i); 137 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 138 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 139 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 140 return false; 141 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 142 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 143 return false; 144 } else 145 return false; 146 147 // Okay, we have at least one ~0 value, check to see if the rest match or are 148 // undefs. Even with the above element type twiddling, this should be OK, as 149 // the same type legalization should have applied to all the elements. 150 for (++i; i != e; ++i) 151 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 152 return false; 153 return true; 154 } 155 156 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 bool IsAllUndef = true; 164 for (const SDValue &Op : N->op_values()) { 165 if (Op.isUndef()) 166 continue; 167 IsAllUndef = false; 168 // Do not accept build_vectors that aren't all constants or which have non-0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target 172 // and a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all zeros, not whether the individual 175 // constants are. 176 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 177 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 178 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 179 return false; 180 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 181 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 182 return false; 183 } else 184 return false; 185 } 186 187 // Do not accept an all-undef vector. 188 if (IsAllUndef) 189 return false; 190 return true; 191 } 192 193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 194 if (N->getOpcode() != ISD::BUILD_VECTOR) 195 return false; 196 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 if (!isa<ConstantSDNode>(Op)) 201 return false; 202 } 203 return true; 204 } 205 206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 207 if (N->getOpcode() != ISD::BUILD_VECTOR) 208 return false; 209 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 if (!isa<ConstantFPSDNode>(Op)) 214 return false; 215 } 216 return true; 217 } 218 219 bool ISD::allOperandsUndef(const SDNode *N) { 220 // Return false if the node has no operands. 221 // This is "logically inconsistent" with the definition of "all" but 222 // is probably the desired behavior. 223 if (N->getNumOperands() == 0) 224 return false; 225 226 for (const SDValue &Op : N->op_values()) 227 if (!Op.isUndef()) 228 return false; 229 230 return true; 231 } 232 233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 234 switch (ExtType) { 235 case ISD::EXTLOAD: 236 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 237 case ISD::SEXTLOAD: 238 return ISD::SIGN_EXTEND; 239 case ISD::ZEXTLOAD: 240 return ISD::ZERO_EXTEND; 241 default: 242 break; 243 } 244 245 llvm_unreachable("Invalid LoadExtType"); 246 } 247 248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 249 // To perform this operation, we just need to swap the L and G bits of the 250 // operation. 251 unsigned OldL = (Operation >> 2) & 1; 252 unsigned OldG = (Operation >> 1) & 1; 253 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 254 (OldL << 1) | // New G bit 255 (OldG << 2)); // New L bit. 256 } 257 258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 259 unsigned Operation = Op; 260 if (isInteger) 261 Operation ^= 7; // Flip L, G, E bits, but not U. 262 else 263 Operation ^= 15; // Flip all of the condition bits. 264 265 if (Operation > ISD::SETTRUE2) 266 Operation &= ~8; // Don't let N and U bits get set. 267 268 return ISD::CondCode(Operation); 269 } 270 271 272 /// For an integer comparison, return 1 if the comparison is a signed operation 273 /// and 2 if the result is an unsigned comparison. Return zero if the operation 274 /// does not depend on the sign of the input (setne and seteq). 275 static int isSignedOp(ISD::CondCode Opcode) { 276 switch (Opcode) { 277 default: llvm_unreachable("Illegal integer setcc operation!"); 278 case ISD::SETEQ: 279 case ISD::SETNE: return 0; 280 case ISD::SETLT: 281 case ISD::SETLE: 282 case ISD::SETGT: 283 case ISD::SETGE: return 1; 284 case ISD::SETULT: 285 case ISD::SETULE: 286 case ISD::SETUGT: 287 case ISD::SETUGE: return 2; 288 } 289 } 290 291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 292 bool isInteger) { 293 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 294 // Cannot fold a signed integer setcc with an unsigned integer setcc. 295 return ISD::SETCC_INVALID; 296 297 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 298 299 // If the N and U bits get set then the resultant comparison DOES suddenly 300 // care about orderedness, and is true when ordered. 301 if (Op > ISD::SETTRUE2) 302 Op &= ~16; // Clear the U bit if the N bit is set. 303 304 // Canonicalize illegal integer setcc's. 305 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 306 Op = ISD::SETNE; 307 308 return ISD::CondCode(Op); 309 } 310 311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 312 bool isInteger) { 313 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 314 // Cannot fold a signed setcc with an unsigned setcc. 315 return ISD::SETCC_INVALID; 316 317 // Combine all of the condition bits. 318 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 319 320 // Canonicalize illegal integer setcc's. 321 if (isInteger) { 322 switch (Result) { 323 default: break; 324 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 325 case ISD::SETOEQ: // SETEQ & SETU[LG]E 326 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 327 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 328 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 329 } 330 } 331 332 return Result; 333 } 334 335 //===----------------------------------------------------------------------===// 336 // SDNode Profile Support 337 //===----------------------------------------------------------------------===// 338 339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 340 /// 341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 342 ID.AddInteger(OpC); 343 } 344 345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 346 /// solely with their pointer. 347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 348 ID.AddPointer(VTList.VTs); 349 } 350 351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 352 /// 353 static void AddNodeIDOperands(FoldingSetNodeID &ID, 354 ArrayRef<SDValue> Ops) { 355 for (auto& Op : Ops) { 356 ID.AddPointer(Op.getNode()); 357 ID.AddInteger(Op.getResNo()); 358 } 359 } 360 361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 362 /// 363 static void AddNodeIDOperands(FoldingSetNodeID &ID, 364 ArrayRef<SDUse> Ops) { 365 for (auto& Op : Ops) { 366 ID.AddPointer(Op.getNode()); 367 ID.AddInteger(Op.getResNo()); 368 } 369 } 370 371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 372 SDVTList VTList, ArrayRef<SDValue> OpList) { 373 AddNodeIDOpcode(ID, OpC); 374 AddNodeIDValueTypes(ID, VTList); 375 AddNodeIDOperands(ID, OpList); 376 } 377 378 /// If this is an SDNode with special info, add this info to the NodeID data. 379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 380 switch (N->getOpcode()) { 381 case ISD::TargetExternalSymbol: 382 case ISD::ExternalSymbol: 383 case ISD::MCSymbol: 384 llvm_unreachable("Should only be used on nodes with operands"); 385 default: break; // Normal nodes don't need extra info. 386 case ISD::TargetConstant: 387 case ISD::Constant: { 388 const ConstantSDNode *C = cast<ConstantSDNode>(N); 389 ID.AddPointer(C->getConstantIntValue()); 390 ID.AddBoolean(C->isOpaque()); 391 break; 392 } 393 case ISD::TargetConstantFP: 394 case ISD::ConstantFP: { 395 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 396 break; 397 } 398 case ISD::TargetGlobalAddress: 399 case ISD::GlobalAddress: 400 case ISD::TargetGlobalTLSAddress: 401 case ISD::GlobalTLSAddress: { 402 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 403 ID.AddPointer(GA->getGlobal()); 404 ID.AddInteger(GA->getOffset()); 405 ID.AddInteger(GA->getTargetFlags()); 406 break; 407 } 408 case ISD::BasicBlock: 409 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 410 break; 411 case ISD::Register: 412 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 413 break; 414 case ISD::RegisterMask: 415 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 416 break; 417 case ISD::SRCVALUE: 418 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 419 break; 420 case ISD::FrameIndex: 421 case ISD::TargetFrameIndex: 422 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 423 break; 424 case ISD::JumpTable: 425 case ISD::TargetJumpTable: 426 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 427 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 428 break; 429 case ISD::ConstantPool: 430 case ISD::TargetConstantPool: { 431 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 432 ID.AddInteger(CP->getAlignment()); 433 ID.AddInteger(CP->getOffset()); 434 if (CP->isMachineConstantPoolEntry()) 435 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 436 else 437 ID.AddPointer(CP->getConstVal()); 438 ID.AddInteger(CP->getTargetFlags()); 439 break; 440 } 441 case ISD::TargetIndex: { 442 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 443 ID.AddInteger(TI->getIndex()); 444 ID.AddInteger(TI->getOffset()); 445 ID.AddInteger(TI->getTargetFlags()); 446 break; 447 } 448 case ISD::LOAD: { 449 const LoadSDNode *LD = cast<LoadSDNode>(N); 450 ID.AddInteger(LD->getMemoryVT().getRawBits()); 451 ID.AddInteger(LD->getRawSubclassData()); 452 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 453 break; 454 } 455 case ISD::STORE: { 456 const StoreSDNode *ST = cast<StoreSDNode>(N); 457 ID.AddInteger(ST->getMemoryVT().getRawBits()); 458 ID.AddInteger(ST->getRawSubclassData()); 459 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 460 break; 461 } 462 case ISD::ATOMIC_CMP_SWAP: 463 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 464 case ISD::ATOMIC_SWAP: 465 case ISD::ATOMIC_LOAD_ADD: 466 case ISD::ATOMIC_LOAD_SUB: 467 case ISD::ATOMIC_LOAD_AND: 468 case ISD::ATOMIC_LOAD_OR: 469 case ISD::ATOMIC_LOAD_XOR: 470 case ISD::ATOMIC_LOAD_NAND: 471 case ISD::ATOMIC_LOAD_MIN: 472 case ISD::ATOMIC_LOAD_MAX: 473 case ISD::ATOMIC_LOAD_UMIN: 474 case ISD::ATOMIC_LOAD_UMAX: 475 case ISD::ATOMIC_LOAD: 476 case ISD::ATOMIC_STORE: { 477 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 478 ID.AddInteger(AT->getMemoryVT().getRawBits()); 479 ID.AddInteger(AT->getRawSubclassData()); 480 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::PREFETCH: { 484 const MemSDNode *PF = cast<MemSDNode>(N); 485 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 486 break; 487 } 488 case ISD::VECTOR_SHUFFLE: { 489 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 490 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 491 i != e; ++i) 492 ID.AddInteger(SVN->getMaskElt(i)); 493 break; 494 } 495 case ISD::TargetBlockAddress: 496 case ISD::BlockAddress: { 497 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 498 ID.AddPointer(BA->getBlockAddress()); 499 ID.AddInteger(BA->getOffset()); 500 ID.AddInteger(BA->getTargetFlags()); 501 break; 502 } 503 } // end switch (N->getOpcode()) 504 505 // Target specific memory nodes could also have address spaces to check. 506 if (N->isTargetMemoryOpcode()) 507 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 508 } 509 510 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 511 /// data. 512 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 513 AddNodeIDOpcode(ID, N->getOpcode()); 514 // Add the return value info. 515 AddNodeIDValueTypes(ID, N->getVTList()); 516 // Add the operand info. 517 AddNodeIDOperands(ID, N->ops()); 518 519 // Handle SDNode leafs with special info. 520 AddNodeIDCustom(ID, N); 521 } 522 523 //===----------------------------------------------------------------------===// 524 // SelectionDAG Class 525 //===----------------------------------------------------------------------===// 526 527 /// doNotCSE - Return true if CSE should not be performed for this node. 528 static bool doNotCSE(SDNode *N) { 529 if (N->getValueType(0) == MVT::Glue) 530 return true; // Never CSE anything that produces a flag. 531 532 switch (N->getOpcode()) { 533 default: break; 534 case ISD::HANDLENODE: 535 case ISD::EH_LABEL: 536 return true; // Never CSE these nodes. 537 } 538 539 // Check that remaining values produced are not flags. 540 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 541 if (N->getValueType(i) == MVT::Glue) 542 return true; // Never CSE anything that produces a flag. 543 544 return false; 545 } 546 547 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 548 /// SelectionDAG. 549 void SelectionDAG::RemoveDeadNodes() { 550 // Create a dummy node (which is not added to allnodes), that adds a reference 551 // to the root node, preventing it from being deleted. 552 HandleSDNode Dummy(getRoot()); 553 554 SmallVector<SDNode*, 128> DeadNodes; 555 556 // Add all obviously-dead nodes to the DeadNodes worklist. 557 for (SDNode &Node : allnodes()) 558 if (Node.use_empty()) 559 DeadNodes.push_back(&Node); 560 561 RemoveDeadNodes(DeadNodes); 562 563 // If the root changed (e.g. it was a dead load, update the root). 564 setRoot(Dummy.getValue()); 565 } 566 567 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 568 /// given list, and any nodes that become unreachable as a result. 569 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 570 571 // Process the worklist, deleting the nodes and adding their uses to the 572 // worklist. 573 while (!DeadNodes.empty()) { 574 SDNode *N = DeadNodes.pop_back_val(); 575 576 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 577 DUL->NodeDeleted(N, nullptr); 578 579 // Take the node out of the appropriate CSE map. 580 RemoveNodeFromCSEMaps(N); 581 582 // Next, brutally remove the operand list. This is safe to do, as there are 583 // no cycles in the graph. 584 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 585 SDUse &Use = *I++; 586 SDNode *Operand = Use.getNode(); 587 Use.set(SDValue()); 588 589 // Now that we removed this operand, see if there are no uses of it left. 590 if (Operand->use_empty()) 591 DeadNodes.push_back(Operand); 592 } 593 594 DeallocateNode(N); 595 } 596 } 597 598 void SelectionDAG::RemoveDeadNode(SDNode *N){ 599 SmallVector<SDNode*, 16> DeadNodes(1, N); 600 601 // Create a dummy node that adds a reference to the root node, preventing 602 // it from being deleted. (This matters if the root is an operand of the 603 // dead node.) 604 HandleSDNode Dummy(getRoot()); 605 606 RemoveDeadNodes(DeadNodes); 607 } 608 609 void SelectionDAG::DeleteNode(SDNode *N) { 610 // First take this out of the appropriate CSE map. 611 RemoveNodeFromCSEMaps(N); 612 613 // Finally, remove uses due to operands of this node, remove from the 614 // AllNodes list, and delete the node. 615 DeleteNodeNotInCSEMaps(N); 616 } 617 618 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 619 assert(N->getIterator() != AllNodes.begin() && 620 "Cannot delete the entry node!"); 621 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 622 623 // Drop all of the operands and decrement used node's use counts. 624 N->DropOperands(); 625 626 DeallocateNode(N); 627 } 628 629 void SDDbgInfo::erase(const SDNode *Node) { 630 DbgValMapType::iterator I = DbgValMap.find(Node); 631 if (I == DbgValMap.end()) 632 return; 633 for (auto &Val: I->second) 634 Val->setIsInvalidated(); 635 DbgValMap.erase(I); 636 } 637 638 void SelectionDAG::DeallocateNode(SDNode *N) { 639 // If we have operands, deallocate them. 640 removeOperands(N); 641 642 // Set the opcode to DELETED_NODE to help catch bugs when node 643 // memory is reallocated. 644 N->NodeType = ISD::DELETED_NODE; 645 646 NodeAllocator.Deallocate(AllNodes.remove(N)); 647 648 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 649 // them and forget about that node. 650 DbgInfo->erase(N); 651 } 652 653 #ifndef NDEBUG 654 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 655 static void VerifySDNode(SDNode *N) { 656 switch (N->getOpcode()) { 657 default: 658 break; 659 case ISD::BUILD_PAIR: { 660 EVT VT = N->getValueType(0); 661 assert(N->getNumValues() == 1 && "Too many results!"); 662 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 663 "Wrong return type!"); 664 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 665 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 666 "Mismatched operand types!"); 667 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 668 "Wrong operand type!"); 669 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 670 "Wrong return type size"); 671 break; 672 } 673 case ISD::BUILD_VECTOR: { 674 assert(N->getNumValues() == 1 && "Too many results!"); 675 assert(N->getValueType(0).isVector() && "Wrong return type!"); 676 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 677 "Wrong number of operands!"); 678 EVT EltVT = N->getValueType(0).getVectorElementType(); 679 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 680 assert((I->getValueType() == EltVT || 681 (EltVT.isInteger() && I->getValueType().isInteger() && 682 EltVT.bitsLE(I->getValueType()))) && 683 "Wrong operand type!"); 684 assert(I->getValueType() == N->getOperand(0).getValueType() && 685 "Operands must all have the same type"); 686 } 687 break; 688 } 689 } 690 } 691 #endif // NDEBUG 692 693 /// \brief Insert a newly allocated node into the DAG. 694 /// 695 /// Handles insertion into the all nodes list and CSE map, as well as 696 /// verification and other common operations when a new node is allocated. 697 void SelectionDAG::InsertNode(SDNode *N) { 698 AllNodes.push_back(N); 699 #ifndef NDEBUG 700 N->PersistentId = NextPersistentId++; 701 VerifySDNode(N); 702 #endif 703 } 704 705 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 706 /// correspond to it. This is useful when we're about to delete or repurpose 707 /// the node. We don't want future request for structurally identical nodes 708 /// to return N anymore. 709 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 710 bool Erased = false; 711 switch (N->getOpcode()) { 712 case ISD::HANDLENODE: return false; // noop. 713 case ISD::CONDCODE: 714 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 715 "Cond code doesn't exist!"); 716 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 717 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 718 break; 719 case ISD::ExternalSymbol: 720 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 721 break; 722 case ISD::TargetExternalSymbol: { 723 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 724 Erased = TargetExternalSymbols.erase( 725 std::pair<std::string,unsigned char>(ESN->getSymbol(), 726 ESN->getTargetFlags())); 727 break; 728 } 729 case ISD::MCSymbol: { 730 auto *MCSN = cast<MCSymbolSDNode>(N); 731 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 732 break; 733 } 734 case ISD::VALUETYPE: { 735 EVT VT = cast<VTSDNode>(N)->getVT(); 736 if (VT.isExtended()) { 737 Erased = ExtendedValueTypeNodes.erase(VT); 738 } else { 739 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 740 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 741 } 742 break; 743 } 744 default: 745 // Remove it from the CSE Map. 746 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 747 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 748 Erased = CSEMap.RemoveNode(N); 749 break; 750 } 751 #ifndef NDEBUG 752 // Verify that the node was actually in one of the CSE maps, unless it has a 753 // flag result (which cannot be CSE'd) or is one of the special cases that are 754 // not subject to CSE. 755 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 756 !N->isMachineOpcode() && !doNotCSE(N)) { 757 N->dump(this); 758 dbgs() << "\n"; 759 llvm_unreachable("Node is not in map!"); 760 } 761 #endif 762 return Erased; 763 } 764 765 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 766 /// maps and modified in place. Add it back to the CSE maps, unless an identical 767 /// node already exists, in which case transfer all its users to the existing 768 /// node. This transfer can potentially trigger recursive merging. 769 /// 770 void 771 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 772 // For node types that aren't CSE'd, just act as if no identical node 773 // already exists. 774 if (!doNotCSE(N)) { 775 SDNode *Existing = CSEMap.GetOrInsertNode(N); 776 if (Existing != N) { 777 // If there was already an existing matching node, use ReplaceAllUsesWith 778 // to replace the dead one with the existing one. This can cause 779 // recursive merging of other unrelated nodes down the line. 780 ReplaceAllUsesWith(N, Existing); 781 782 // N is now dead. Inform the listeners and delete it. 783 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 784 DUL->NodeDeleted(N, Existing); 785 DeleteNodeNotInCSEMaps(N); 786 return; 787 } 788 } 789 790 // If the node doesn't already exist, we updated it. Inform listeners. 791 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 792 DUL->NodeUpdated(N); 793 } 794 795 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 796 /// were replaced with those specified. If this node is never memoized, 797 /// return null, otherwise return a pointer to the slot it would take. If a 798 /// node already exists with these operands, the slot will be non-null. 799 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 800 void *&InsertPos) { 801 if (doNotCSE(N)) 802 return nullptr; 803 804 SDValue Ops[] = { Op }; 805 FoldingSetNodeID ID; 806 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 807 AddNodeIDCustom(ID, N); 808 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 809 if (Node) 810 if (const SDNodeFlags *Flags = N->getFlags()) 811 Node->intersectFlagsWith(Flags); 812 return Node; 813 } 814 815 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 816 /// were replaced with those specified. If this node is never memoized, 817 /// return null, otherwise return a pointer to the slot it would take. If a 818 /// node already exists with these operands, the slot will be non-null. 819 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 820 SDValue Op1, SDValue Op2, 821 void *&InsertPos) { 822 if (doNotCSE(N)) 823 return nullptr; 824 825 SDValue Ops[] = { Op1, Op2 }; 826 FoldingSetNodeID ID; 827 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 828 AddNodeIDCustom(ID, N); 829 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 830 if (Node) 831 if (const SDNodeFlags *Flags = N->getFlags()) 832 Node->intersectFlagsWith(Flags); 833 return Node; 834 } 835 836 837 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 838 /// were replaced with those specified. If this node is never memoized, 839 /// return null, otherwise return a pointer to the slot it would take. If a 840 /// node already exists with these operands, the slot will be non-null. 841 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 842 void *&InsertPos) { 843 if (doNotCSE(N)) 844 return nullptr; 845 846 FoldingSetNodeID ID; 847 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 848 AddNodeIDCustom(ID, N); 849 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 850 if (Node) 851 if (const SDNodeFlags *Flags = N->getFlags()) 852 Node->intersectFlagsWith(Flags); 853 return Node; 854 } 855 856 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 857 Type *Ty = VT == MVT::iPTR ? 858 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 859 VT.getTypeForEVT(*getContext()); 860 861 return getDataLayout().getABITypeAlignment(Ty); 862 } 863 864 // EntryNode could meaningfully have debug info if we can find it... 865 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 866 : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), 867 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 868 Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), 869 UpdateListeners(nullptr) { 870 InsertNode(&EntryNode); 871 DbgInfo = new SDDbgInfo(); 872 } 873 874 void SelectionDAG::init(MachineFunction &mf) { 875 MF = &mf; 876 TLI = getSubtarget().getTargetLowering(); 877 TSI = getSubtarget().getSelectionDAGInfo(); 878 Context = &mf.getFunction()->getContext(); 879 } 880 881 SelectionDAG::~SelectionDAG() { 882 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 883 allnodes_clear(); 884 OperandRecycler.clear(OperandAllocator); 885 delete DbgInfo; 886 } 887 888 void SelectionDAG::allnodes_clear() { 889 assert(&*AllNodes.begin() == &EntryNode); 890 AllNodes.remove(AllNodes.begin()); 891 while (!AllNodes.empty()) 892 DeallocateNode(&AllNodes.front()); 893 #ifndef NDEBUG 894 NextPersistentId = 0; 895 #endif 896 } 897 898 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL, 899 SDVTList VTs, SDValue N1, SDValue N2, 900 const SDNodeFlags *Flags) { 901 SDValue Ops[] = {N1, N2}; 902 903 if (isBinOpWithFlags(Opcode)) { 904 // If no flags were passed in, use a default flags object. 905 SDNodeFlags F; 906 if (Flags == nullptr) 907 Flags = &F; 908 909 auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(), 910 DL.getDebugLoc(), VTs, *Flags); 911 createOperands(FN, Ops); 912 913 return FN; 914 } 915 916 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 917 createOperands(N, Ops); 918 return N; 919 } 920 921 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 922 void *&InsertPos) { 923 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 924 if (N) { 925 switch (N->getOpcode()) { 926 default: break; 927 case ISD::Constant: 928 case ISD::ConstantFP: 929 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 930 "debug location. Use another overload."); 931 } 932 } 933 return N; 934 } 935 936 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 937 const SDLoc &DL, void *&InsertPos) { 938 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 939 if (N) { 940 switch (N->getOpcode()) { 941 case ISD::Constant: 942 case ISD::ConstantFP: 943 // Erase debug location from the node if the node is used at several 944 // different places. Do not propagate one location to all uses as it 945 // will cause a worse single stepping debugging experience. 946 if (N->getDebugLoc() != DL.getDebugLoc()) 947 N->setDebugLoc(DebugLoc()); 948 break; 949 default: 950 // When the node's point of use is located earlier in the instruction 951 // sequence than its prior point of use, update its debug info to the 952 // earlier location. 953 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 954 N->setDebugLoc(DL.getDebugLoc()); 955 break; 956 } 957 } 958 return N; 959 } 960 961 void SelectionDAG::clear() { 962 allnodes_clear(); 963 OperandRecycler.clear(OperandAllocator); 964 OperandAllocator.Reset(); 965 CSEMap.clear(); 966 967 ExtendedValueTypeNodes.clear(); 968 ExternalSymbols.clear(); 969 TargetExternalSymbols.clear(); 970 MCSymbols.clear(); 971 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 972 static_cast<CondCodeSDNode*>(nullptr)); 973 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 974 static_cast<SDNode*>(nullptr)); 975 976 EntryNode.UseList = nullptr; 977 InsertNode(&EntryNode); 978 Root = getEntryNode(); 979 DbgInfo->clear(); 980 } 981 982 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 983 return VT.bitsGT(Op.getValueType()) ? 984 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 985 getNode(ISD::TRUNCATE, DL, VT, Op); 986 } 987 988 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 989 return VT.bitsGT(Op.getValueType()) ? 990 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 991 getNode(ISD::TRUNCATE, DL, VT, Op); 992 } 993 994 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 995 return VT.bitsGT(Op.getValueType()) ? 996 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 997 getNode(ISD::TRUNCATE, DL, VT, Op); 998 } 999 1000 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1001 EVT OpVT) { 1002 if (VT.bitsLE(Op.getValueType())) 1003 return getNode(ISD::TRUNCATE, SL, VT, Op); 1004 1005 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1006 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1007 } 1008 1009 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1010 assert(!VT.isVector() && 1011 "getZeroExtendInReg should use the vector element type instead of " 1012 "the vector type!"); 1013 if (Op.getValueType() == VT) return Op; 1014 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1015 APInt Imm = APInt::getLowBitsSet(BitWidth, 1016 VT.getSizeInBits()); 1017 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1018 getConstant(Imm, DL, Op.getValueType())); 1019 } 1020 1021 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1022 EVT VT) { 1023 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1024 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1025 "The sizes of the input and result must match in order to perform the " 1026 "extend in-register."); 1027 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1028 "The destination vector type must have fewer lanes than the input."); 1029 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1030 } 1031 1032 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1033 EVT VT) { 1034 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1035 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1036 "The sizes of the input and result must match in order to perform the " 1037 "extend in-register."); 1038 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1039 "The destination vector type must have fewer lanes than the input."); 1040 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1041 } 1042 1043 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1044 EVT VT) { 1045 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1046 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1047 "The sizes of the input and result must match in order to perform the " 1048 "extend in-register."); 1049 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1050 "The destination vector type must have fewer lanes than the input."); 1051 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1052 } 1053 1054 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1055 /// 1056 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1057 EVT EltVT = VT.getScalarType(); 1058 SDValue NegOne = 1059 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1060 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1061 } 1062 1063 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1064 EVT EltVT = VT.getScalarType(); 1065 SDValue TrueValue; 1066 switch (TLI->getBooleanContents(VT)) { 1067 case TargetLowering::ZeroOrOneBooleanContent: 1068 case TargetLowering::UndefinedBooleanContent: 1069 TrueValue = getConstant(1, DL, VT); 1070 break; 1071 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1072 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1073 VT); 1074 break; 1075 } 1076 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1077 } 1078 1079 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1080 bool isT, bool isO) { 1081 EVT EltVT = VT.getScalarType(); 1082 assert((EltVT.getSizeInBits() >= 64 || 1083 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1084 "getConstant with a uint64_t value that doesn't fit in the type!"); 1085 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1086 } 1087 1088 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1089 bool isT, bool isO) { 1090 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1091 } 1092 1093 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1094 EVT VT, bool isT, bool isO) { 1095 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1096 1097 EVT EltVT = VT.getScalarType(); 1098 const ConstantInt *Elt = &Val; 1099 1100 // In some cases the vector type is legal but the element type is illegal and 1101 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1102 // inserted value (the type does not need to match the vector element type). 1103 // Any extra bits introduced will be truncated away. 1104 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1105 TargetLowering::TypePromoteInteger) { 1106 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1107 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1108 Elt = ConstantInt::get(*getContext(), NewVal); 1109 } 1110 // In other cases the element type is illegal and needs to be expanded, for 1111 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1112 // the value into n parts and use a vector type with n-times the elements. 1113 // Then bitcast to the type requested. 1114 // Legalizing constants too early makes the DAGCombiner's job harder so we 1115 // only legalize if the DAG tells us we must produce legal types. 1116 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1117 TLI->getTypeAction(*getContext(), EltVT) == 1118 TargetLowering::TypeExpandInteger) { 1119 const APInt &NewVal = Elt->getValue(); 1120 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1121 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1122 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1123 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1124 1125 // Check the temporary vector is the correct size. If this fails then 1126 // getTypeToTransformTo() probably returned a type whose size (in bits) 1127 // isn't a power-of-2 factor of the requested type size. 1128 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1129 1130 SmallVector<SDValue, 2> EltParts; 1131 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1132 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1133 .zextOrTrunc(ViaEltSizeInBits), DL, 1134 ViaEltVT, isT, isO)); 1135 } 1136 1137 // EltParts is currently in little endian order. If we actually want 1138 // big-endian order then reverse it now. 1139 if (getDataLayout().isBigEndian()) 1140 std::reverse(EltParts.begin(), EltParts.end()); 1141 1142 // The elements must be reversed when the element order is different 1143 // to the endianness of the elements (because the BITCAST is itself a 1144 // vector shuffle in this situation). However, we do not need any code to 1145 // perform this reversal because getConstant() is producing a vector 1146 // splat. 1147 // This situation occurs in MIPS MSA. 1148 1149 SmallVector<SDValue, 8> Ops; 1150 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1151 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1152 return getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1153 } 1154 1155 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1156 "APInt size does not match type size!"); 1157 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1158 FoldingSetNodeID ID; 1159 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1160 ID.AddPointer(Elt); 1161 ID.AddBoolean(isO); 1162 void *IP = nullptr; 1163 SDNode *N = nullptr; 1164 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1165 if (!VT.isVector()) 1166 return SDValue(N, 0); 1167 1168 if (!N) { 1169 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1170 CSEMap.InsertNode(N, IP); 1171 InsertNode(N); 1172 } 1173 1174 SDValue Result(N, 0); 1175 if (VT.isVector()) 1176 Result = getSplatBuildVector(VT, DL, Result); 1177 return Result; 1178 } 1179 1180 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1181 bool isTarget) { 1182 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1183 } 1184 1185 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1186 bool isTarget) { 1187 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1188 } 1189 1190 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1191 EVT VT, bool isTarget) { 1192 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1193 1194 EVT EltVT = VT.getScalarType(); 1195 1196 // Do the map lookup using the actual bit pattern for the floating point 1197 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1198 // we don't have issues with SNANs. 1199 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1200 FoldingSetNodeID ID; 1201 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1202 ID.AddPointer(&V); 1203 void *IP = nullptr; 1204 SDNode *N = nullptr; 1205 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1206 if (!VT.isVector()) 1207 return SDValue(N, 0); 1208 1209 if (!N) { 1210 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1211 CSEMap.InsertNode(N, IP); 1212 InsertNode(N); 1213 } 1214 1215 SDValue Result(N, 0); 1216 if (VT.isVector()) 1217 Result = getSplatBuildVector(VT, DL, Result); 1218 return Result; 1219 } 1220 1221 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1222 bool isTarget) { 1223 EVT EltVT = VT.getScalarType(); 1224 if (EltVT == MVT::f32) 1225 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1226 else if (EltVT == MVT::f64) 1227 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1228 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1229 EltVT == MVT::f16) { 1230 bool Ignored; 1231 APFloat APF = APFloat(Val); 1232 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1233 &Ignored); 1234 return getConstantFP(APF, DL, VT, isTarget); 1235 } else 1236 llvm_unreachable("Unsupported type in getConstantFP"); 1237 } 1238 1239 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1240 EVT VT, int64_t Offset, bool isTargetGA, 1241 unsigned char TargetFlags) { 1242 assert((TargetFlags == 0 || isTargetGA) && 1243 "Cannot set target flags on target-independent globals"); 1244 1245 // Truncate (with sign-extension) the offset value to the pointer size. 1246 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1247 if (BitWidth < 64) 1248 Offset = SignExtend64(Offset, BitWidth); 1249 1250 unsigned Opc; 1251 if (GV->isThreadLocal()) 1252 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1253 else 1254 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1255 1256 FoldingSetNodeID ID; 1257 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1258 ID.AddPointer(GV); 1259 ID.AddInteger(Offset); 1260 ID.AddInteger(TargetFlags); 1261 void *IP = nullptr; 1262 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1263 return SDValue(E, 0); 1264 1265 auto *N = newSDNode<GlobalAddressSDNode>( 1266 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1267 CSEMap.InsertNode(N, IP); 1268 InsertNode(N); 1269 return SDValue(N, 0); 1270 } 1271 1272 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1273 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1274 FoldingSetNodeID ID; 1275 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1276 ID.AddInteger(FI); 1277 void *IP = nullptr; 1278 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1279 return SDValue(E, 0); 1280 1281 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1282 CSEMap.InsertNode(N, IP); 1283 InsertNode(N); 1284 return SDValue(N, 0); 1285 } 1286 1287 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1288 unsigned char TargetFlags) { 1289 assert((TargetFlags == 0 || isTarget) && 1290 "Cannot set target flags on target-independent jump tables"); 1291 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1292 FoldingSetNodeID ID; 1293 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1294 ID.AddInteger(JTI); 1295 ID.AddInteger(TargetFlags); 1296 void *IP = nullptr; 1297 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1298 return SDValue(E, 0); 1299 1300 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1301 CSEMap.InsertNode(N, IP); 1302 InsertNode(N); 1303 return SDValue(N, 0); 1304 } 1305 1306 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1307 unsigned Alignment, int Offset, 1308 bool isTarget, 1309 unsigned char TargetFlags) { 1310 assert((TargetFlags == 0 || isTarget) && 1311 "Cannot set target flags on target-independent globals"); 1312 if (Alignment == 0) 1313 Alignment = MF->getFunction()->optForSize() 1314 ? getDataLayout().getABITypeAlignment(C->getType()) 1315 : getDataLayout().getPrefTypeAlignment(C->getType()); 1316 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1317 FoldingSetNodeID ID; 1318 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1319 ID.AddInteger(Alignment); 1320 ID.AddInteger(Offset); 1321 ID.AddPointer(C); 1322 ID.AddInteger(TargetFlags); 1323 void *IP = nullptr; 1324 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1325 return SDValue(E, 0); 1326 1327 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1328 TargetFlags); 1329 CSEMap.InsertNode(N, IP); 1330 InsertNode(N); 1331 return SDValue(N, 0); 1332 } 1333 1334 1335 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1336 unsigned Alignment, int Offset, 1337 bool isTarget, 1338 unsigned char TargetFlags) { 1339 assert((TargetFlags == 0 || isTarget) && 1340 "Cannot set target flags on target-independent globals"); 1341 if (Alignment == 0) 1342 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1343 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1344 FoldingSetNodeID ID; 1345 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1346 ID.AddInteger(Alignment); 1347 ID.AddInteger(Offset); 1348 C->addSelectionDAGCSEId(ID); 1349 ID.AddInteger(TargetFlags); 1350 void *IP = nullptr; 1351 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1352 return SDValue(E, 0); 1353 1354 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1355 TargetFlags); 1356 CSEMap.InsertNode(N, IP); 1357 InsertNode(N); 1358 return SDValue(N, 0); 1359 } 1360 1361 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1362 unsigned char TargetFlags) { 1363 FoldingSetNodeID ID; 1364 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1365 ID.AddInteger(Index); 1366 ID.AddInteger(Offset); 1367 ID.AddInteger(TargetFlags); 1368 void *IP = nullptr; 1369 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1370 return SDValue(E, 0); 1371 1372 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1373 CSEMap.InsertNode(N, IP); 1374 InsertNode(N); 1375 return SDValue(N, 0); 1376 } 1377 1378 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1379 FoldingSetNodeID ID; 1380 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1381 ID.AddPointer(MBB); 1382 void *IP = nullptr; 1383 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1384 return SDValue(E, 0); 1385 1386 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1387 CSEMap.InsertNode(N, IP); 1388 InsertNode(N); 1389 return SDValue(N, 0); 1390 } 1391 1392 SDValue SelectionDAG::getValueType(EVT VT) { 1393 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1394 ValueTypeNodes.size()) 1395 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1396 1397 SDNode *&N = VT.isExtended() ? 1398 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1399 1400 if (N) return SDValue(N, 0); 1401 N = newSDNode<VTSDNode>(VT); 1402 InsertNode(N); 1403 return SDValue(N, 0); 1404 } 1405 1406 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1407 SDNode *&N = ExternalSymbols[Sym]; 1408 if (N) return SDValue(N, 0); 1409 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1410 InsertNode(N); 1411 return SDValue(N, 0); 1412 } 1413 1414 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1415 SDNode *&N = MCSymbols[Sym]; 1416 if (N) 1417 return SDValue(N, 0); 1418 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1419 InsertNode(N); 1420 return SDValue(N, 0); 1421 } 1422 1423 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1424 unsigned char TargetFlags) { 1425 SDNode *&N = 1426 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1427 TargetFlags)]; 1428 if (N) return SDValue(N, 0); 1429 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1430 InsertNode(N); 1431 return SDValue(N, 0); 1432 } 1433 1434 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1435 if ((unsigned)Cond >= CondCodeNodes.size()) 1436 CondCodeNodes.resize(Cond+1); 1437 1438 if (!CondCodeNodes[Cond]) { 1439 auto *N = newSDNode<CondCodeSDNode>(Cond); 1440 CondCodeNodes[Cond] = N; 1441 InsertNode(N); 1442 } 1443 1444 return SDValue(CondCodeNodes[Cond], 0); 1445 } 1446 1447 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1448 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1449 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1450 std::swap(N1, N2); 1451 ShuffleVectorSDNode::commuteMask(M); 1452 } 1453 1454 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1455 SDValue N2, ArrayRef<int> Mask) { 1456 assert(VT.getVectorNumElements() == Mask.size() && 1457 "Must have the same number of vector elements as mask elements!"); 1458 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1459 "Invalid VECTOR_SHUFFLE"); 1460 1461 // Canonicalize shuffle undef, undef -> undef 1462 if (N1.isUndef() && N2.isUndef()) 1463 return getUNDEF(VT); 1464 1465 // Validate that all indices in Mask are within the range of the elements 1466 // input to the shuffle. 1467 int NElts = Mask.size(); 1468 assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1469 "Index out of range"); 1470 1471 // Copy the mask so we can do any needed cleanup. 1472 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1473 1474 // Canonicalize shuffle v, v -> v, undef 1475 if (N1 == N2) { 1476 N2 = getUNDEF(VT); 1477 for (int i = 0; i != NElts; ++i) 1478 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1479 } 1480 1481 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1482 if (N1.isUndef()) 1483 commuteShuffle(N1, N2, MaskVec); 1484 1485 // If shuffling a splat, try to blend the splat instead. We do this here so 1486 // that even when this arises during lowering we don't have to re-handle it. 1487 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1488 BitVector UndefElements; 1489 SDValue Splat = BV->getSplatValue(&UndefElements); 1490 if (!Splat) 1491 return; 1492 1493 for (int i = 0; i < NElts; ++i) { 1494 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1495 continue; 1496 1497 // If this input comes from undef, mark it as such. 1498 if (UndefElements[MaskVec[i] - Offset]) { 1499 MaskVec[i] = -1; 1500 continue; 1501 } 1502 1503 // If we can blend a non-undef lane, use that instead. 1504 if (!UndefElements[i]) 1505 MaskVec[i] = i + Offset; 1506 } 1507 }; 1508 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1509 BlendSplat(N1BV, 0); 1510 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1511 BlendSplat(N2BV, NElts); 1512 1513 // Canonicalize all index into lhs, -> shuffle lhs, undef 1514 // Canonicalize all index into rhs, -> shuffle rhs, undef 1515 bool AllLHS = true, AllRHS = true; 1516 bool N2Undef = N2.isUndef(); 1517 for (int i = 0; i != NElts; ++i) { 1518 if (MaskVec[i] >= NElts) { 1519 if (N2Undef) 1520 MaskVec[i] = -1; 1521 else 1522 AllLHS = false; 1523 } else if (MaskVec[i] >= 0) { 1524 AllRHS = false; 1525 } 1526 } 1527 if (AllLHS && AllRHS) 1528 return getUNDEF(VT); 1529 if (AllLHS && !N2Undef) 1530 N2 = getUNDEF(VT); 1531 if (AllRHS) { 1532 N1 = getUNDEF(VT); 1533 commuteShuffle(N1, N2, MaskVec); 1534 } 1535 // Reset our undef status after accounting for the mask. 1536 N2Undef = N2.isUndef(); 1537 // Re-check whether both sides ended up undef. 1538 if (N1.isUndef() && N2Undef) 1539 return getUNDEF(VT); 1540 1541 // If Identity shuffle return that node. 1542 bool Identity = true, AllSame = true; 1543 for (int i = 0; i != NElts; ++i) { 1544 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1545 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1546 } 1547 if (Identity && NElts) 1548 return N1; 1549 1550 // Shuffling a constant splat doesn't change the result. 1551 if (N2Undef) { 1552 SDValue V = N1; 1553 1554 // Look through any bitcasts. We check that these don't change the number 1555 // (and size) of elements and just changes their types. 1556 while (V.getOpcode() == ISD::BITCAST) 1557 V = V->getOperand(0); 1558 1559 // A splat should always show up as a build vector node. 1560 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1561 BitVector UndefElements; 1562 SDValue Splat = BV->getSplatValue(&UndefElements); 1563 // If this is a splat of an undef, shuffling it is also undef. 1564 if (Splat && Splat.isUndef()) 1565 return getUNDEF(VT); 1566 1567 bool SameNumElts = 1568 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1569 1570 // We only have a splat which can skip shuffles if there is a splatted 1571 // value and no undef lanes rearranged by the shuffle. 1572 if (Splat && UndefElements.none()) { 1573 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1574 // number of elements match or the value splatted is a zero constant. 1575 if (SameNumElts) 1576 return N1; 1577 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1578 if (C->isNullValue()) 1579 return N1; 1580 } 1581 1582 // If the shuffle itself creates a splat, build the vector directly. 1583 if (AllSame && SameNumElts) { 1584 EVT BuildVT = BV->getValueType(0); 1585 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1586 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1587 1588 // We may have jumped through bitcasts, so the type of the 1589 // BUILD_VECTOR may not match the type of the shuffle. 1590 if (BuildVT != VT) 1591 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1592 return NewBV; 1593 } 1594 } 1595 } 1596 1597 FoldingSetNodeID ID; 1598 SDValue Ops[2] = { N1, N2 }; 1599 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1600 for (int i = 0; i != NElts; ++i) 1601 ID.AddInteger(MaskVec[i]); 1602 1603 void* IP = nullptr; 1604 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1605 return SDValue(E, 0); 1606 1607 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1608 // SDNode doesn't have access to it. This memory will be "leaked" when 1609 // the node is deallocated, but recovered when the NodeAllocator is released. 1610 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1611 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1612 1613 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1614 dl.getDebugLoc(), MaskAlloc); 1615 createOperands(N, Ops); 1616 1617 CSEMap.InsertNode(N, IP); 1618 InsertNode(N); 1619 return SDValue(N, 0); 1620 } 1621 1622 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1623 MVT VT = SV.getSimpleValueType(0); 1624 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1625 ShuffleVectorSDNode::commuteMask(MaskVec); 1626 1627 SDValue Op0 = SV.getOperand(0); 1628 SDValue Op1 = SV.getOperand(1); 1629 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1630 } 1631 1632 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1633 FoldingSetNodeID ID; 1634 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1635 ID.AddInteger(RegNo); 1636 void *IP = nullptr; 1637 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1638 return SDValue(E, 0); 1639 1640 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1641 CSEMap.InsertNode(N, IP); 1642 InsertNode(N); 1643 return SDValue(N, 0); 1644 } 1645 1646 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1647 FoldingSetNodeID ID; 1648 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1649 ID.AddPointer(RegMask); 1650 void *IP = nullptr; 1651 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1652 return SDValue(E, 0); 1653 1654 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1655 CSEMap.InsertNode(N, IP); 1656 InsertNode(N); 1657 return SDValue(N, 0); 1658 } 1659 1660 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1661 MCSymbol *Label) { 1662 FoldingSetNodeID ID; 1663 SDValue Ops[] = { Root }; 1664 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1665 ID.AddPointer(Label); 1666 void *IP = nullptr; 1667 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1668 return SDValue(E, 0); 1669 1670 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1671 createOperands(N, Ops); 1672 1673 CSEMap.InsertNode(N, IP); 1674 InsertNode(N); 1675 return SDValue(N, 0); 1676 } 1677 1678 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1679 int64_t Offset, 1680 bool isTarget, 1681 unsigned char TargetFlags) { 1682 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1683 1684 FoldingSetNodeID ID; 1685 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1686 ID.AddPointer(BA); 1687 ID.AddInteger(Offset); 1688 ID.AddInteger(TargetFlags); 1689 void *IP = nullptr; 1690 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1691 return SDValue(E, 0); 1692 1693 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1694 CSEMap.InsertNode(N, IP); 1695 InsertNode(N); 1696 return SDValue(N, 0); 1697 } 1698 1699 SDValue SelectionDAG::getSrcValue(const Value *V) { 1700 assert((!V || V->getType()->isPointerTy()) && 1701 "SrcValue is not a pointer?"); 1702 1703 FoldingSetNodeID ID; 1704 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1705 ID.AddPointer(V); 1706 1707 void *IP = nullptr; 1708 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1709 return SDValue(E, 0); 1710 1711 auto *N = newSDNode<SrcValueSDNode>(V); 1712 CSEMap.InsertNode(N, IP); 1713 InsertNode(N); 1714 return SDValue(N, 0); 1715 } 1716 1717 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1720 ID.AddPointer(MD); 1721 1722 void *IP = nullptr; 1723 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1724 return SDValue(E, 0); 1725 1726 auto *N = newSDNode<MDNodeSDNode>(MD); 1727 CSEMap.InsertNode(N, IP); 1728 InsertNode(N); 1729 return SDValue(N, 0); 1730 } 1731 1732 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1733 if (VT == V.getValueType()) 1734 return V; 1735 1736 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1737 } 1738 1739 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1740 unsigned SrcAS, unsigned DestAS) { 1741 SDValue Ops[] = {Ptr}; 1742 FoldingSetNodeID ID; 1743 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1744 ID.AddInteger(SrcAS); 1745 ID.AddInteger(DestAS); 1746 1747 void *IP = nullptr; 1748 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1749 return SDValue(E, 0); 1750 1751 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1752 VT, SrcAS, DestAS); 1753 createOperands(N, Ops); 1754 1755 CSEMap.InsertNode(N, IP); 1756 InsertNode(N); 1757 return SDValue(N, 0); 1758 } 1759 1760 /// getShiftAmountOperand - Return the specified value casted to 1761 /// the target's desired shift amount type. 1762 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1763 EVT OpTy = Op.getValueType(); 1764 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1765 if (OpTy == ShTy || OpTy.isVector()) return Op; 1766 1767 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1768 } 1769 1770 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1771 SDLoc dl(Node); 1772 const TargetLowering &TLI = getTargetLoweringInfo(); 1773 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1774 EVT VT = Node->getValueType(0); 1775 SDValue Tmp1 = Node->getOperand(0); 1776 SDValue Tmp2 = Node->getOperand(1); 1777 unsigned Align = Node->getConstantOperandVal(3); 1778 1779 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1780 Tmp2, MachinePointerInfo(V)); 1781 SDValue VAList = VAListLoad; 1782 1783 if (Align > TLI.getMinStackArgumentAlignment()) { 1784 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1785 1786 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1787 getConstant(Align - 1, dl, VAList.getValueType())); 1788 1789 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1790 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1791 } 1792 1793 // Increment the pointer, VAList, to the next vaarg 1794 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1795 getConstant(getDataLayout().getTypeAllocSize( 1796 VT.getTypeForEVT(*getContext())), 1797 dl, VAList.getValueType())); 1798 // Store the incremented VAList to the legalized pointer 1799 Tmp1 = 1800 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1801 // Load the actual argument out of the pointer VAList 1802 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1803 } 1804 1805 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1806 SDLoc dl(Node); 1807 const TargetLowering &TLI = getTargetLoweringInfo(); 1808 // This defaults to loading a pointer from the input and storing it to the 1809 // output, returning the chain. 1810 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1811 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1812 SDValue Tmp1 = 1813 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1814 Node->getOperand(2), MachinePointerInfo(VS)); 1815 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1816 MachinePointerInfo(VD)); 1817 } 1818 1819 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1820 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1821 unsigned ByteSize = VT.getStoreSize(); 1822 Type *Ty = VT.getTypeForEVT(*getContext()); 1823 unsigned StackAlign = 1824 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1825 1826 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1827 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1828 } 1829 1830 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1831 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1832 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1833 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1834 const DataLayout &DL = getDataLayout(); 1835 unsigned Align = 1836 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1837 1838 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1839 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1840 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1841 } 1842 1843 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1844 ISD::CondCode Cond, const SDLoc &dl) { 1845 // These setcc operations always fold. 1846 switch (Cond) { 1847 default: break; 1848 case ISD::SETFALSE: 1849 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1850 case ISD::SETTRUE: 1851 case ISD::SETTRUE2: { 1852 TargetLowering::BooleanContent Cnt = 1853 TLI->getBooleanContents(N1->getValueType(0)); 1854 return getConstant( 1855 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1856 VT); 1857 } 1858 1859 case ISD::SETOEQ: 1860 case ISD::SETOGT: 1861 case ISD::SETOGE: 1862 case ISD::SETOLT: 1863 case ISD::SETOLE: 1864 case ISD::SETONE: 1865 case ISD::SETO: 1866 case ISD::SETUO: 1867 case ISD::SETUEQ: 1868 case ISD::SETUNE: 1869 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1870 break; 1871 } 1872 1873 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1874 const APInt &C2 = N2C->getAPIntValue(); 1875 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1876 const APInt &C1 = N1C->getAPIntValue(); 1877 1878 switch (Cond) { 1879 default: llvm_unreachable("Unknown integer setcc!"); 1880 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1881 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1882 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1883 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1884 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1885 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1886 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1887 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1888 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1889 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1890 } 1891 } 1892 } 1893 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1894 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1895 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1896 switch (Cond) { 1897 default: break; 1898 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1899 return getUNDEF(VT); 1900 LLVM_FALLTHROUGH; 1901 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1902 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1903 return getUNDEF(VT); 1904 LLVM_FALLTHROUGH; 1905 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1906 R==APFloat::cmpLessThan, dl, VT); 1907 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1908 return getUNDEF(VT); 1909 LLVM_FALLTHROUGH; 1910 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1911 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1912 return getUNDEF(VT); 1913 LLVM_FALLTHROUGH; 1914 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1915 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1916 return getUNDEF(VT); 1917 LLVM_FALLTHROUGH; 1918 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1919 R==APFloat::cmpEqual, dl, VT); 1920 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1921 return getUNDEF(VT); 1922 LLVM_FALLTHROUGH; 1923 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1924 R==APFloat::cmpEqual, dl, VT); 1925 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1926 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1927 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1928 R==APFloat::cmpEqual, dl, VT); 1929 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1930 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1931 R==APFloat::cmpLessThan, dl, VT); 1932 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1933 R==APFloat::cmpUnordered, dl, VT); 1934 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1935 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1936 } 1937 } else { 1938 // Ensure that the constant occurs on the RHS. 1939 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1940 MVT CompVT = N1.getValueType().getSimpleVT(); 1941 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1942 return SDValue(); 1943 1944 return getSetCC(dl, VT, N2, N1, SwappedCond); 1945 } 1946 } 1947 1948 // Could not fold it. 1949 return SDValue(); 1950 } 1951 1952 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 1953 /// use this predicate to simplify operations downstream. 1954 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 1955 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1956 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); 1957 } 1958 1959 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1960 /// this predicate to simplify operations downstream. Mask is known to be zero 1961 /// for bits that V cannot have. 1962 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 1963 unsigned Depth) const { 1964 APInt KnownZero, KnownOne; 1965 computeKnownBits(Op, KnownZero, KnownOne, Depth); 1966 return (KnownZero & Mask) == Mask; 1967 } 1968 1969 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 1970 /// is less than the element bit-width of the shift node, return it. 1971 static const APInt *getValidShiftAmountConstant(SDValue V) { 1972 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 1973 // Shifting more than the bitwidth is not valid. 1974 const APInt &ShAmt = SA->getAPIntValue(); 1975 if (ShAmt.ult(V.getScalarValueSizeInBits())) 1976 return &ShAmt; 1977 } 1978 return nullptr; 1979 } 1980 1981 /// Determine which bits of Op are known to be either zero or one and return 1982 /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are 1983 /// those that are shared by every vector element. 1984 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 1985 APInt &KnownOne, unsigned Depth) const { 1986 EVT VT = Op.getValueType(); 1987 APInt DemandedElts = VT.isVector() 1988 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 1989 : APInt(1, 1); 1990 computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth); 1991 } 1992 1993 /// Determine which bits of Op are known to be either zero or one and return 1994 /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows 1995 /// us to only collect the known bits that are shared by the requested vector 1996 /// elements. 1997 /// TODO: We only support DemandedElts on a few opcodes so far, the remainder 1998 /// should be added when they become necessary. 1999 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2000 APInt &KnownOne, const APInt &DemandedElts, 2001 unsigned Depth) const { 2002 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2003 2004 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 2005 if (Depth == 6) 2006 return; // Limit search depth. 2007 2008 APInt KnownZero2, KnownOne2; 2009 unsigned NumElts = DemandedElts.getBitWidth(); 2010 2011 if (!DemandedElts) 2012 return; // No demanded elts, better to assume we don't know anything. 2013 2014 unsigned Opcode = Op.getOpcode(); 2015 switch (Opcode) { 2016 case ISD::Constant: 2017 // We know all of the bits for a constant! 2018 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 2019 KnownZero = ~KnownOne; 2020 break; 2021 case ISD::BUILD_VECTOR: 2022 // Collect the known bits that are shared by every demanded vector element. 2023 assert(NumElts == Op.getValueType().getVectorNumElements() && 2024 "Unexpected vector size"); 2025 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2026 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2027 if (!DemandedElts[i]) 2028 continue; 2029 2030 SDValue SrcOp = Op.getOperand(i); 2031 computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1); 2032 2033 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2034 if (SrcOp.getValueSizeInBits() != BitWidth) { 2035 assert(SrcOp.getValueSizeInBits() > BitWidth && 2036 "Expected BUILD_VECTOR implicit truncation"); 2037 KnownOne2 = KnownOne2.trunc(BitWidth); 2038 KnownZero2 = KnownZero2.trunc(BitWidth); 2039 } 2040 2041 // Known bits are the values that are shared by every demanded element. 2042 KnownOne &= KnownOne2; 2043 KnownZero &= KnownZero2; 2044 2045 // If we don't know any bits, early out. 2046 if (!KnownOne && !KnownZero) 2047 break; 2048 } 2049 break; 2050 case ISD::VECTOR_SHUFFLE: { 2051 // Collect the known bits that are shared by every vector element referenced 2052 // by the shuffle. 2053 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2054 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2055 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2056 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2057 for (unsigned i = 0; i != NumElts; ++i) { 2058 if (!DemandedElts[i]) 2059 continue; 2060 2061 int M = SVN->getMaskElt(i); 2062 if (M < 0) { 2063 // For UNDEF elements, we don't know anything about the common state of 2064 // the shuffle result. 2065 KnownOne.clearAllBits(); 2066 KnownZero.clearAllBits(); 2067 DemandedLHS.clearAllBits(); 2068 DemandedRHS.clearAllBits(); 2069 break; 2070 } 2071 2072 if ((unsigned)M < NumElts) 2073 DemandedLHS.setBit((unsigned)M % NumElts); 2074 else 2075 DemandedRHS.setBit((unsigned)M % NumElts); 2076 } 2077 // Known bits are the values that are shared by every demanded element. 2078 if (!!DemandedLHS) { 2079 SDValue LHS = Op.getOperand(0); 2080 computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1); 2081 KnownOne &= KnownOne2; 2082 KnownZero &= KnownZero2; 2083 } 2084 // If we don't know any bits, early out. 2085 if (!KnownOne && !KnownZero) 2086 break; 2087 if (!!DemandedRHS) { 2088 SDValue RHS = Op.getOperand(1); 2089 computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1); 2090 KnownOne &= KnownOne2; 2091 KnownZero &= KnownZero2; 2092 } 2093 break; 2094 } 2095 case ISD::CONCAT_VECTORS: { 2096 // Split DemandedElts and test each of the demanded subvectors. 2097 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2098 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2099 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2100 unsigned NumSubVectors = Op.getNumOperands(); 2101 for (unsigned i = 0; i != NumSubVectors; ++i) { 2102 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2103 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2104 if (!!DemandedSub) { 2105 SDValue Sub = Op.getOperand(i); 2106 computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1); 2107 KnownOne &= KnownOne2; 2108 KnownZero &= KnownZero2; 2109 } 2110 // If we don't know any bits, early out. 2111 if (!KnownOne && !KnownZero) 2112 break; 2113 } 2114 break; 2115 } 2116 case ISD::EXTRACT_SUBVECTOR: { 2117 // If we know the element index, just demand that subvector elements, 2118 // otherwise demand them all. 2119 SDValue Src = Op.getOperand(0); 2120 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2121 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2122 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2123 // Offset the demanded elts by the subvector index. 2124 uint64_t Idx = SubIdx->getZExtValue(); 2125 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2126 computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1); 2127 } else { 2128 computeKnownBits(Src, KnownZero, KnownOne, Depth + 1); 2129 } 2130 break; 2131 } 2132 case ISD::BITCAST: { 2133 SDValue N0 = Op.getOperand(0); 2134 unsigned SubBitWidth = N0.getScalarValueSizeInBits(); 2135 2136 // Ignore bitcasts from floating point. 2137 if (!N0.getValueType().isInteger()) 2138 break; 2139 2140 // Fast handling of 'identity' bitcasts. 2141 if (BitWidth == SubBitWidth) { 2142 computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1); 2143 break; 2144 } 2145 2146 // Support big-endian targets when it becomes useful. 2147 bool IsLE = getDataLayout().isLittleEndian(); 2148 if (!IsLE) 2149 break; 2150 2151 // Bitcast 'small element' vector to 'large element' scalar/vector. 2152 if ((BitWidth % SubBitWidth) == 0) { 2153 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2154 2155 // Collect known bits for the (larger) output by collecting the known 2156 // bits from each set of sub elements and shift these into place. 2157 // We need to separately call computeKnownBits for each set of 2158 // sub elements as the knownbits for each is likely to be different. 2159 unsigned SubScale = BitWidth / SubBitWidth; 2160 APInt SubDemandedElts(NumElts * SubScale, 0); 2161 for (unsigned i = 0; i != NumElts; ++i) 2162 if (DemandedElts[i]) 2163 SubDemandedElts.setBit(i * SubScale); 2164 2165 for (unsigned i = 0; i != SubScale; ++i) { 2166 computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i), 2167 Depth + 1); 2168 KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i); 2169 KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i); 2170 } 2171 } 2172 2173 // Bitcast 'large element' scalar/vector to 'small element' vector. 2174 if ((SubBitWidth % BitWidth) == 0) { 2175 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2176 2177 // Collect known bits for the (smaller) output by collecting the known 2178 // bits from the overlapping larger input elements and extracting the 2179 // sub sections we actually care about. 2180 unsigned SubScale = SubBitWidth / BitWidth; 2181 APInt SubDemandedElts(NumElts / SubScale, 0); 2182 for (unsigned i = 0; i != NumElts; ++i) 2183 if (DemandedElts[i]) 2184 SubDemandedElts.setBit(i / SubScale); 2185 2186 computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1); 2187 2188 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2189 for (unsigned i = 0; i != NumElts; ++i) 2190 if (DemandedElts[i]) { 2191 unsigned Offset = (i % SubScale) * BitWidth; 2192 KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth); 2193 KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth); 2194 // If we don't know any bits, early out. 2195 if (!KnownOne && !KnownZero) 2196 break; 2197 } 2198 } 2199 break; 2200 } 2201 case ISD::AND: 2202 // If either the LHS or the RHS are Zero, the result is zero. 2203 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2204 Depth + 1); 2205 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2206 Depth + 1); 2207 2208 // Output known-1 bits are only known if set in both the LHS & RHS. 2209 KnownOne &= KnownOne2; 2210 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2211 KnownZero |= KnownZero2; 2212 break; 2213 case ISD::OR: 2214 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2215 Depth + 1); 2216 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2217 Depth + 1); 2218 2219 // Output known-0 bits are only known if clear in both the LHS & RHS. 2220 KnownZero &= KnownZero2; 2221 // Output known-1 are known to be set if set in either the LHS | RHS. 2222 KnownOne |= KnownOne2; 2223 break; 2224 case ISD::XOR: { 2225 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2226 Depth + 1); 2227 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2228 Depth + 1); 2229 2230 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2231 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 2232 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2233 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 2234 KnownZero = KnownZeroOut; 2235 break; 2236 } 2237 case ISD::MUL: { 2238 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2239 Depth + 1); 2240 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2241 Depth + 1); 2242 2243 // If low bits are zero in either operand, output low known-0 bits. 2244 // Also compute a conservative estimate for high known-0 bits. 2245 // More trickiness is possible, but this is sufficient for the 2246 // interesting case of alignment computation. 2247 KnownOne.clearAllBits(); 2248 unsigned TrailZ = KnownZero.countTrailingOnes() + 2249 KnownZero2.countTrailingOnes(); 2250 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 2251 KnownZero2.countLeadingOnes(), 2252 BitWidth) - BitWidth; 2253 2254 TrailZ = std::min(TrailZ, BitWidth); 2255 LeadZ = std::min(LeadZ, BitWidth); 2256 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 2257 APInt::getHighBitsSet(BitWidth, LeadZ); 2258 break; 2259 } 2260 case ISD::UDIV: { 2261 // For the purposes of computing leading zeros we can conservatively 2262 // treat a udiv as a logical right shift by the power of 2 known to 2263 // be less than the denominator. 2264 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2265 Depth + 1); 2266 unsigned LeadZ = KnownZero2.countLeadingOnes(); 2267 2268 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2269 Depth + 1); 2270 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 2271 if (RHSUnknownLeadingOnes != BitWidth) 2272 LeadZ = std::min(BitWidth, 2273 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 2274 2275 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 2276 break; 2277 } 2278 case ISD::SELECT: 2279 computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); 2280 // If we don't know any bits, early out. 2281 if (!KnownOne && !KnownZero) 2282 break; 2283 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2284 2285 // Only known if known in both the LHS and RHS. 2286 KnownOne &= KnownOne2; 2287 KnownZero &= KnownZero2; 2288 break; 2289 case ISD::SELECT_CC: 2290 computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); 2291 // If we don't know any bits, early out. 2292 if (!KnownOne && !KnownZero) 2293 break; 2294 computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); 2295 2296 // Only known if known in both the LHS and RHS. 2297 KnownOne &= KnownOne2; 2298 KnownZero &= KnownZero2; 2299 break; 2300 case ISD::SMULO: 2301 case ISD::UMULO: 2302 if (Op.getResNo() != 1) 2303 break; 2304 // The boolean result conforms to getBooleanContents. 2305 // If we know the result of a setcc has the top bits zero, use this info. 2306 // We know that we have an integer-based boolean since these operations 2307 // are only available for integer. 2308 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2309 TargetLowering::ZeroOrOneBooleanContent && 2310 BitWidth > 1) 2311 KnownZero.setBitsFrom(1); 2312 break; 2313 case ISD::SETCC: 2314 // If we know the result of a setcc has the top bits zero, use this info. 2315 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2316 TargetLowering::ZeroOrOneBooleanContent && 2317 BitWidth > 1) 2318 KnownZero.setBitsFrom(1); 2319 break; 2320 case ISD::SHL: 2321 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2322 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2323 Depth + 1); 2324 KnownZero = KnownZero << *ShAmt; 2325 KnownOne = KnownOne << *ShAmt; 2326 // Low bits are known zero. 2327 KnownZero.setLowBits(ShAmt->getZExtValue()); 2328 } 2329 break; 2330 case ISD::SRL: 2331 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2332 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2333 Depth + 1); 2334 KnownZero = KnownZero.lshr(*ShAmt); 2335 KnownOne = KnownOne.lshr(*ShAmt); 2336 // High bits are known zero. 2337 KnownZero.setHighBits(ShAmt->getZExtValue()); 2338 } 2339 break; 2340 case ISD::SRA: 2341 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2342 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2343 Depth + 1); 2344 KnownZero = KnownZero.lshr(*ShAmt); 2345 KnownOne = KnownOne.lshr(*ShAmt); 2346 // If we know the value of the sign bit, then we know it is copied across 2347 // the high bits by the shift amount. 2348 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue()); 2349 APInt SignBit = APInt::getSignBit(BitWidth); 2350 SignBit = SignBit.lshr(*ShAmt); // Adjust to where it is now in the mask. 2351 if (KnownZero.intersects(SignBit)) { 2352 KnownZero |= HighBits; // New bits are known zero. 2353 } else if (KnownOne.intersects(SignBit)) { 2354 KnownOne |= HighBits; // New bits are known one. 2355 } 2356 } 2357 break; 2358 case ISD::SIGN_EXTEND_INREG: { 2359 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2360 unsigned EBits = EVT.getScalarSizeInBits(); 2361 2362 // Sign extension. Compute the demanded bits in the result that are not 2363 // present in the input. 2364 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2365 2366 APInt InSignBit = APInt::getSignBit(EBits); 2367 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2368 2369 // If the sign extended bits are demanded, we know that the sign 2370 // bit is demanded. 2371 InSignBit = InSignBit.zext(BitWidth); 2372 if (NewBits.getBoolValue()) 2373 InputDemandedBits |= InSignBit; 2374 2375 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2376 Depth + 1); 2377 KnownOne &= InputDemandedBits; 2378 KnownZero &= InputDemandedBits; 2379 2380 // If the sign bit of the input is known set or clear, then we know the 2381 // top bits of the result. 2382 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear 2383 KnownZero |= NewBits; 2384 KnownOne &= ~NewBits; 2385 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 2386 KnownOne |= NewBits; 2387 KnownZero &= ~NewBits; 2388 } else { // Input sign bit unknown 2389 KnownZero &= ~NewBits; 2390 KnownOne &= ~NewBits; 2391 } 2392 break; 2393 } 2394 case ISD::CTTZ: 2395 case ISD::CTTZ_ZERO_UNDEF: 2396 case ISD::CTLZ: 2397 case ISD::CTLZ_ZERO_UNDEF: 2398 case ISD::CTPOP: { 2399 unsigned LowBits = Log2_32(BitWidth)+1; 2400 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 2401 KnownOne.clearAllBits(); 2402 break; 2403 } 2404 case ISD::LOAD: { 2405 LoadSDNode *LD = cast<LoadSDNode>(Op); 2406 // If this is a ZEXTLoad and we are looking at the loaded value. 2407 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2408 EVT VT = LD->getMemoryVT(); 2409 unsigned MemBits = VT.getScalarSizeInBits(); 2410 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 2411 } else if (const MDNode *Ranges = LD->getRanges()) { 2412 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2413 computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); 2414 } 2415 break; 2416 } 2417 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2418 EVT InVT = Op.getOperand(0).getValueType(); 2419 unsigned InBits = InVT.getScalarSizeInBits(); 2420 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2421 KnownZero = KnownZero.trunc(InBits); 2422 KnownOne = KnownOne.trunc(InBits); 2423 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, 2424 DemandedElts.zext(InVT.getVectorNumElements()), 2425 Depth + 1); 2426 KnownZero = KnownZero.zext(BitWidth); 2427 KnownOne = KnownOne.zext(BitWidth); 2428 KnownZero |= NewBits; 2429 break; 2430 } 2431 case ISD::ZERO_EXTEND: { 2432 EVT InVT = Op.getOperand(0).getValueType(); 2433 unsigned InBits = InVT.getScalarSizeInBits(); 2434 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2435 KnownZero = KnownZero.trunc(InBits); 2436 KnownOne = KnownOne.trunc(InBits); 2437 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2438 Depth + 1); 2439 KnownZero = KnownZero.zext(BitWidth); 2440 KnownOne = KnownOne.zext(BitWidth); 2441 KnownZero |= NewBits; 2442 break; 2443 } 2444 // TODO ISD::SIGN_EXTEND_VECTOR_INREG 2445 case ISD::SIGN_EXTEND: { 2446 EVT InVT = Op.getOperand(0).getValueType(); 2447 unsigned InBits = InVT.getScalarSizeInBits(); 2448 2449 KnownZero = KnownZero.trunc(InBits); 2450 KnownOne = KnownOne.trunc(InBits); 2451 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2452 Depth + 1); 2453 2454 // If the sign bit is known to be zero or one, then sext will extend 2455 // it to the top bits, else it will just zext. 2456 KnownZero = KnownZero.sext(BitWidth); 2457 KnownOne = KnownOne.sext(BitWidth); 2458 break; 2459 } 2460 case ISD::ANY_EXTEND: { 2461 EVT InVT = Op.getOperand(0).getValueType(); 2462 unsigned InBits = InVT.getScalarSizeInBits(); 2463 KnownZero = KnownZero.trunc(InBits); 2464 KnownOne = KnownOne.trunc(InBits); 2465 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2466 KnownZero = KnownZero.zext(BitWidth); 2467 KnownOne = KnownOne.zext(BitWidth); 2468 break; 2469 } 2470 case ISD::TRUNCATE: { 2471 EVT InVT = Op.getOperand(0).getValueType(); 2472 unsigned InBits = InVT.getScalarSizeInBits(); 2473 KnownZero = KnownZero.zext(InBits); 2474 KnownOne = KnownOne.zext(InBits); 2475 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2476 Depth + 1); 2477 KnownZero = KnownZero.trunc(BitWidth); 2478 KnownOne = KnownOne.trunc(BitWidth); 2479 break; 2480 } 2481 case ISD::AssertZext: { 2482 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2483 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2484 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2485 KnownZero |= (~InMask); 2486 KnownOne &= (~KnownZero); 2487 break; 2488 } 2489 case ISD::FGETSIGN: 2490 // All bits are zero except the low bit. 2491 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2492 break; 2493 case ISD::USUBO: 2494 case ISD::SSUBO: 2495 if (Op.getResNo() == 1) { 2496 // If we know the result of a setcc has the top bits zero, use this info. 2497 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2498 TargetLowering::ZeroOrOneBooleanContent && 2499 BitWidth > 1) 2500 KnownZero.setBitsFrom(1); 2501 break; 2502 } 2503 LLVM_FALLTHROUGH; 2504 case ISD::SUB: 2505 case ISD::SUBC: { 2506 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2507 // We know that the top bits of C-X are clear if X contains less bits 2508 // than C (i.e. no wrap-around can happen). For example, 20-X is 2509 // positive if we can prove that X is >= 0 and < 16. 2510 if (CLHS->getAPIntValue().isNonNegative()) { 2511 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2512 // NLZ can't be BitWidth with no sign bit 2513 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2514 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2515 Depth + 1); 2516 2517 // If all of the MaskV bits are known to be zero, then we know the 2518 // output top bits are zero, because we now know that the output is 2519 // from [0-C]. 2520 if ((KnownZero2 & MaskV) == MaskV) { 2521 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2522 // Top bits known zero. 2523 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 2524 } 2525 } 2526 } 2527 2528 // If low bits are know to be zero in both operands, then we know they are 2529 // going to be 0 in the result. Both addition and complement operations 2530 // preserve the low zero bits. 2531 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2532 Depth + 1); 2533 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2534 if (KnownZeroLow == 0) 2535 break; 2536 2537 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2538 Depth + 1); 2539 KnownZeroLow = std::min(KnownZeroLow, 2540 KnownZero2.countTrailingOnes()); 2541 KnownZero.setBits(0, KnownZeroLow); 2542 break; 2543 } 2544 case ISD::UADDO: 2545 case ISD::SADDO: 2546 if (Op.getResNo() == 1) { 2547 // If we know the result of a setcc has the top bits zero, use this info. 2548 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2549 TargetLowering::ZeroOrOneBooleanContent && 2550 BitWidth > 1) 2551 KnownZero.setBitsFrom(1); 2552 break; 2553 } 2554 LLVM_FALLTHROUGH; 2555 case ISD::ADD: 2556 case ISD::ADDC: 2557 case ISD::ADDE: { 2558 // Output known-0 bits are known if clear or set in both the low clear bits 2559 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2560 // low 3 bits clear. 2561 // Output known-0 bits are also known if the top bits of each input are 2562 // known to be clear. For example, if one input has the top 10 bits clear 2563 // and the other has the top 8 bits clear, we know the top 7 bits of the 2564 // output must be clear. 2565 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2566 Depth + 1); 2567 unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); 2568 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2569 2570 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2571 Depth + 1); 2572 KnownZeroHigh = std::min(KnownZeroHigh, 2573 KnownZero2.countLeadingOnes()); 2574 KnownZeroLow = std::min(KnownZeroLow, 2575 KnownZero2.countTrailingOnes()); 2576 2577 if (Opcode == ISD::ADDE) { 2578 // With ADDE, a carry bit may be added in, so we can only use this 2579 // information if we know (at least) that the low two bits are clear. 2580 // We then return to the caller that the low bit is unknown but that 2581 // other bits are known zero. 2582 if (KnownZeroLow >= 2) 2583 KnownZero.setBits(1, KnownZeroLow); 2584 break; 2585 } 2586 2587 KnownZero.setLowBits(KnownZeroLow); 2588 if (KnownZeroHigh > 1) 2589 KnownZero.setHighBits(KnownZeroHigh - 1); 2590 break; 2591 } 2592 case ISD::SREM: 2593 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2594 const APInt &RA = Rem->getAPIntValue().abs(); 2595 if (RA.isPowerOf2()) { 2596 APInt LowBits = RA - 1; 2597 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2598 Depth + 1); 2599 2600 // The low bits of the first operand are unchanged by the srem. 2601 KnownZero = KnownZero2 & LowBits; 2602 KnownOne = KnownOne2 & LowBits; 2603 2604 // If the first operand is non-negative or has all low bits zero, then 2605 // the upper bits are all zero. 2606 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 2607 KnownZero |= ~LowBits; 2608 2609 // If the first operand is negative and not all low bits are zero, then 2610 // the upper bits are all one. 2611 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 2612 KnownOne |= ~LowBits; 2613 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 2614 } 2615 } 2616 break; 2617 case ISD::UREM: { 2618 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2619 const APInt &RA = Rem->getAPIntValue(); 2620 if (RA.isPowerOf2()) { 2621 APInt LowBits = (RA - 1); 2622 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2623 Depth + 1); 2624 2625 // The upper bits are all zero, the lower ones are unchanged. 2626 KnownZero = KnownZero2 | ~LowBits; 2627 KnownOne = KnownOne2 & LowBits; 2628 break; 2629 } 2630 } 2631 2632 // Since the result is less than or equal to either operand, any leading 2633 // zero bits in either operand must also exist in the result. 2634 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2635 Depth + 1); 2636 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2637 Depth + 1); 2638 2639 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), 2640 KnownZero2.countLeadingOnes()); 2641 KnownOne.clearAllBits(); 2642 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 2643 break; 2644 } 2645 case ISD::EXTRACT_ELEMENT: { 2646 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2647 const unsigned Index = Op.getConstantOperandVal(1); 2648 const unsigned BitWidth = Op.getValueSizeInBits(); 2649 2650 // Remove low part of known bits mask 2651 KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); 2652 KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); 2653 2654 // Remove high part of known bit mask 2655 KnownZero = KnownZero.trunc(BitWidth); 2656 KnownOne = KnownOne.trunc(BitWidth); 2657 break; 2658 } 2659 case ISD::EXTRACT_VECTOR_ELT: { 2660 SDValue InVec = Op.getOperand(0); 2661 SDValue EltNo = Op.getOperand(1); 2662 EVT VecVT = InVec.getValueType(); 2663 const unsigned BitWidth = Op.getValueSizeInBits(); 2664 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2665 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2666 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2667 // anything about the extended bits. 2668 if (BitWidth > EltBitWidth) { 2669 KnownZero = KnownZero.trunc(EltBitWidth); 2670 KnownOne = KnownOne.trunc(EltBitWidth); 2671 } 2672 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2673 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2674 // If we know the element index, just demand that vector element. 2675 unsigned Idx = ConstEltNo->getZExtValue(); 2676 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2677 computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1); 2678 } else { 2679 // Unknown element index, so ignore DemandedElts and demand them all. 2680 computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); 2681 } 2682 if (BitWidth > EltBitWidth) { 2683 KnownZero = KnownZero.zext(BitWidth); 2684 KnownOne = KnownOne.zext(BitWidth); 2685 } 2686 break; 2687 } 2688 case ISD::INSERT_VECTOR_ELT: { 2689 SDValue InVec = Op.getOperand(0); 2690 SDValue InVal = Op.getOperand(1); 2691 SDValue EltNo = Op.getOperand(2); 2692 2693 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 2694 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 2695 // If we know the element index, split the demand between the 2696 // source vector and the inserted element. 2697 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2698 unsigned EltIdx = CEltNo->getZExtValue(); 2699 2700 // If we demand the inserted element then add its common known bits. 2701 if (DemandedElts[EltIdx]) { 2702 computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); 2703 KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); 2704 KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; 2705 } 2706 2707 // If we demand the source vector then add its common known bits, ensuring 2708 // that we don't demand the inserted element. 2709 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 2710 if (!!VectorElts) { 2711 computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1); 2712 KnownOne &= KnownOne2; 2713 KnownZero &= KnownZero2; 2714 } 2715 } else { 2716 // Unknown element index, so ignore DemandedElts and demand them all. 2717 computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); 2718 computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); 2719 KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); 2720 KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; 2721 } 2722 break; 2723 } 2724 case ISD::BITREVERSE: { 2725 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2726 Depth + 1); 2727 KnownZero = KnownZero2.reverseBits(); 2728 KnownOne = KnownOne2.reverseBits(); 2729 break; 2730 } 2731 case ISD::BSWAP: { 2732 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2733 Depth + 1); 2734 KnownZero = KnownZero2.byteSwap(); 2735 KnownOne = KnownOne2.byteSwap(); 2736 break; 2737 } 2738 case ISD::UMIN: { 2739 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2740 Depth + 1); 2741 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2742 Depth + 1); 2743 2744 // UMIN - we know that the result will have the maximum of the 2745 // known zero leading bits of the inputs. 2746 unsigned LeadZero = KnownZero.countLeadingOnes(); 2747 LeadZero = std::max(LeadZero, KnownZero2.countLeadingOnes()); 2748 2749 KnownZero &= KnownZero2; 2750 KnownOne &= KnownOne2; 2751 KnownZero.setHighBits(LeadZero); 2752 break; 2753 } 2754 case ISD::UMAX: { 2755 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2756 Depth + 1); 2757 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2758 Depth + 1); 2759 2760 // UMAX - we know that the result will have the maximum of the 2761 // known one leading bits of the inputs. 2762 unsigned LeadOne = KnownOne.countLeadingOnes(); 2763 LeadOne = std::max(LeadOne, KnownOne2.countLeadingOnes()); 2764 2765 KnownZero &= KnownZero2; 2766 KnownOne &= KnownOne2; 2767 KnownOne.setHighBits(LeadOne); 2768 break; 2769 } 2770 case ISD::SMIN: 2771 case ISD::SMAX: { 2772 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2773 Depth + 1); 2774 // If we don't know any bits, early out. 2775 if (!KnownOne && !KnownZero) 2776 break; 2777 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2778 Depth + 1); 2779 KnownZero &= KnownZero2; 2780 KnownOne &= KnownOne2; 2781 break; 2782 } 2783 case ISD::FrameIndex: 2784 case ISD::TargetFrameIndex: 2785 if (unsigned Align = InferPtrAlignment(Op)) { 2786 // The low bits are known zero if the pointer is aligned. 2787 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); 2788 break; 2789 } 2790 break; 2791 2792 default: 2793 if (Opcode < ISD::BUILTIN_OP_END) 2794 break; 2795 LLVM_FALLTHROUGH; 2796 case ISD::INTRINSIC_WO_CHAIN: 2797 case ISD::INTRINSIC_W_CHAIN: 2798 case ISD::INTRINSIC_VOID: 2799 // Allow the target to implement this method for its nodes. 2800 TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); 2801 break; 2802 } 2803 2804 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 2805 } 2806 2807 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 2808 SDValue N1) const { 2809 // X + 0 never overflow 2810 if (isNullConstant(N1)) 2811 return OFK_Never; 2812 2813 APInt N1Zero, N1One; 2814 computeKnownBits(N1, N1Zero, N1One); 2815 if (N1Zero.getBoolValue()) { 2816 APInt N0Zero, N0One; 2817 computeKnownBits(N0, N0Zero, N0One); 2818 2819 bool overflow; 2820 (~N0Zero).uadd_ov(~N1Zero, overflow); 2821 if (!overflow) 2822 return OFK_Never; 2823 } 2824 2825 // mulhi + 1 never overflow 2826 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 2827 (~N1Zero & 0x01) == ~N1Zero) 2828 return OFK_Never; 2829 2830 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 2831 APInt N0Zero, N0One; 2832 computeKnownBits(N0, N0Zero, N0One); 2833 2834 if ((~N0Zero & 0x01) == ~N0Zero) 2835 return OFK_Never; 2836 } 2837 2838 return OFK_Sometime; 2839 } 2840 2841 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2842 EVT OpVT = Val.getValueType(); 2843 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2844 2845 // Is the constant a known power of 2? 2846 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 2847 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2848 2849 // A left-shift of a constant one will have exactly one bit set because 2850 // shifting the bit off the end is undefined. 2851 if (Val.getOpcode() == ISD::SHL) { 2852 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2853 if (C && C->getAPIntValue() == 1) 2854 return true; 2855 } 2856 2857 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2858 // one bit set. 2859 if (Val.getOpcode() == ISD::SRL) { 2860 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2861 if (C && C->getAPIntValue().isSignBit()) 2862 return true; 2863 } 2864 2865 // Are all operands of a build vector constant powers of two? 2866 if (Val.getOpcode() == ISD::BUILD_VECTOR) 2867 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 2868 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 2869 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 2870 return false; 2871 })) 2872 return true; 2873 2874 // More could be done here, though the above checks are enough 2875 // to handle some common cases. 2876 2877 // Fall back to computeKnownBits to catch other known cases. 2878 APInt KnownZero, KnownOne; 2879 computeKnownBits(Val, KnownZero, KnownOne); 2880 return (KnownZero.countPopulation() == BitWidth - 1) && 2881 (KnownOne.countPopulation() == 1); 2882 } 2883 2884 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2885 EVT VT = Op.getValueType(); 2886 assert(VT.isInteger() && "Invalid VT!"); 2887 unsigned VTBits = VT.getScalarSizeInBits(); 2888 unsigned Tmp, Tmp2; 2889 unsigned FirstAnswer = 1; 2890 2891 if (Depth == 6) 2892 return 1; // Limit search depth. 2893 2894 switch (Op.getOpcode()) { 2895 default: break; 2896 case ISD::AssertSext: 2897 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2898 return VTBits-Tmp+1; 2899 case ISD::AssertZext: 2900 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2901 return VTBits-Tmp; 2902 2903 case ISD::Constant: { 2904 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2905 return Val.getNumSignBits(); 2906 } 2907 2908 case ISD::BUILD_VECTOR: 2909 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2910 for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) 2911 Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1)); 2912 return Tmp; 2913 2914 case ISD::SIGN_EXTEND: 2915 case ISD::SIGN_EXTEND_VECTOR_INREG: 2916 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 2917 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 2918 2919 case ISD::SIGN_EXTEND_INREG: 2920 // Max of the input and what this extends. 2921 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 2922 Tmp = VTBits-Tmp+1; 2923 2924 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2925 return std::max(Tmp, Tmp2); 2926 2927 case ISD::SRA: 2928 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2929 // SRA X, C -> adds C sign bits. 2930 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2931 APInt ShiftVal = C->getAPIntValue(); 2932 ShiftVal += Tmp; 2933 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 2934 } 2935 return Tmp; 2936 case ISD::SHL: 2937 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2938 // shl destroys sign bits. 2939 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2940 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 2941 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 2942 return Tmp - C->getZExtValue(); 2943 } 2944 break; 2945 case ISD::AND: 2946 case ISD::OR: 2947 case ISD::XOR: // NOT is handled here. 2948 // Logical binary ops preserve the number of sign bits at the worst. 2949 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2950 if (Tmp != 1) { 2951 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2952 FirstAnswer = std::min(Tmp, Tmp2); 2953 // We computed what we know about the sign bits as our first 2954 // answer. Now proceed to the generic code that uses 2955 // computeKnownBits, and pick whichever answer is better. 2956 } 2957 break; 2958 2959 case ISD::SELECT: 2960 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2961 if (Tmp == 1) return 1; // Early out. 2962 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2963 return std::min(Tmp, Tmp2); 2964 case ISD::SELECT_CC: 2965 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2966 if (Tmp == 1) return 1; // Early out. 2967 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 2968 return std::min(Tmp, Tmp2); 2969 case ISD::SMIN: 2970 case ISD::SMAX: 2971 case ISD::UMIN: 2972 case ISD::UMAX: 2973 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2974 if (Tmp == 1) 2975 return 1; // Early out. 2976 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 2977 return std::min(Tmp, Tmp2); 2978 case ISD::SADDO: 2979 case ISD::UADDO: 2980 case ISD::SSUBO: 2981 case ISD::USUBO: 2982 case ISD::SMULO: 2983 case ISD::UMULO: 2984 if (Op.getResNo() != 1) 2985 break; 2986 // The boolean result conforms to getBooleanContents. Fall through. 2987 // If setcc returns 0/-1, all bits are sign bits. 2988 // We know that we have an integer-based boolean since these operations 2989 // are only available for integer. 2990 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2991 TargetLowering::ZeroOrNegativeOneBooleanContent) 2992 return VTBits; 2993 break; 2994 case ISD::SETCC: 2995 // If setcc returns 0/-1, all bits are sign bits. 2996 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2997 TargetLowering::ZeroOrNegativeOneBooleanContent) 2998 return VTBits; 2999 break; 3000 case ISD::ROTL: 3001 case ISD::ROTR: 3002 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3003 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 3004 3005 // Handle rotate right by N like a rotate left by 32-N. 3006 if (Op.getOpcode() == ISD::ROTR) 3007 RotAmt = (VTBits-RotAmt) & (VTBits-1); 3008 3009 // If we aren't rotating out all of the known-in sign bits, return the 3010 // number that are left. This handles rotl(sext(x), 1) for example. 3011 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3012 if (Tmp > RotAmt+1) return Tmp-RotAmt; 3013 } 3014 break; 3015 case ISD::ADD: 3016 case ISD::ADDC: 3017 // Add can have at most one carry bit. Thus we know that the output 3018 // is, at worst, one more bit than the inputs. 3019 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3020 if (Tmp == 1) return 1; // Early out. 3021 3022 // Special case decrementing a value (ADD X, -1): 3023 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3024 if (CRHS->isAllOnesValue()) { 3025 APInt KnownZero, KnownOne; 3026 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 3027 3028 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3029 // sign bits set. 3030 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 3031 return VTBits; 3032 3033 // If we are subtracting one from a positive number, there is no carry 3034 // out of the result. 3035 if (KnownZero.isNegative()) 3036 return Tmp; 3037 } 3038 3039 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3040 if (Tmp2 == 1) return 1; 3041 return std::min(Tmp, Tmp2)-1; 3042 3043 case ISD::SUB: 3044 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3045 if (Tmp2 == 1) return 1; 3046 3047 // Handle NEG. 3048 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3049 if (CLHS->isNullValue()) { 3050 APInt KnownZero, KnownOne; 3051 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 3052 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3053 // sign bits set. 3054 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 3055 return VTBits; 3056 3057 // If the input is known to be positive (the sign bit is known clear), 3058 // the output of the NEG has the same number of sign bits as the input. 3059 if (KnownZero.isNegative()) 3060 return Tmp2; 3061 3062 // Otherwise, we treat this like a SUB. 3063 } 3064 3065 // Sub can have at most one carry bit. Thus we know that the output 3066 // is, at worst, one more bit than the inputs. 3067 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3068 if (Tmp == 1) return 1; // Early out. 3069 return std::min(Tmp, Tmp2)-1; 3070 case ISD::TRUNCATE: { 3071 // Check if the sign bits of source go down as far as the truncated value. 3072 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3073 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3074 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3075 return NumSrcSignBits - (NumSrcBits - VTBits); 3076 break; 3077 } 3078 case ISD::EXTRACT_ELEMENT: { 3079 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3080 const int BitWidth = Op.getValueSizeInBits(); 3081 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3082 3083 // Get reverse index (starting from 1), Op1 value indexes elements from 3084 // little end. Sign starts at big end. 3085 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3086 3087 // If the sign portion ends in our element the subtraction gives correct 3088 // result. Otherwise it gives either negative or > bitwidth result 3089 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3090 } 3091 case ISD::EXTRACT_VECTOR_ELT: { 3092 // At the moment we keep this simple and skip tracking the specific 3093 // element. This way we get the lowest common denominator for all elements 3094 // of the vector. 3095 // TODO: get information for given vector element 3096 const unsigned BitWidth = Op.getValueSizeInBits(); 3097 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3098 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3099 // anything about sign bits. But if the sizes match we can derive knowledge 3100 // about sign bits from the vector operand. 3101 if (BitWidth == EltBitWidth) 3102 return ComputeNumSignBits(Op.getOperand(0), Depth+1); 3103 break; 3104 } 3105 case ISD::EXTRACT_SUBVECTOR: 3106 return ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3107 case ISD::CONCAT_VECTORS: 3108 // Determine the minimum number of sign bits across all input vectors. 3109 // Early out if the result is already 1. 3110 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3111 for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) 3112 Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1)); 3113 return Tmp; 3114 } 3115 3116 // If we are looking at the loaded value of the SDNode. 3117 if (Op.getResNo() == 0) { 3118 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3119 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3120 unsigned ExtType = LD->getExtensionType(); 3121 switch (ExtType) { 3122 default: break; 3123 case ISD::SEXTLOAD: // '17' bits known 3124 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3125 return VTBits-Tmp+1; 3126 case ISD::ZEXTLOAD: // '16' bits known 3127 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3128 return VTBits-Tmp; 3129 } 3130 } 3131 } 3132 3133 // Allow the target to implement this method for its nodes. 3134 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3135 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3136 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3137 Op.getOpcode() == ISD::INTRINSIC_VOID) { 3138 unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); 3139 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); 3140 } 3141 3142 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3143 // use this information. 3144 APInt KnownZero, KnownOne; 3145 computeKnownBits(Op, KnownZero, KnownOne, Depth); 3146 3147 APInt Mask; 3148 if (KnownZero.isNegative()) { // sign bit is 0 3149 Mask = KnownZero; 3150 } else if (KnownOne.isNegative()) { // sign bit is 1; 3151 Mask = KnownOne; 3152 } else { 3153 // Nothing known. 3154 return FirstAnswer; 3155 } 3156 3157 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3158 // the number of identical bits in the top of the input value. 3159 Mask = ~Mask; 3160 Mask <<= Mask.getBitWidth()-VTBits; 3161 // Return # leading zeros. We use 'min' here in case Val was zero before 3162 // shifting. We don't want to return '64' as for an i32 "0". 3163 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3164 } 3165 3166 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3167 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3168 !isa<ConstantSDNode>(Op.getOperand(1))) 3169 return false; 3170 3171 if (Op.getOpcode() == ISD::OR && 3172 !MaskedValueIsZero(Op.getOperand(0), 3173 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 3174 return false; 3175 3176 return true; 3177 } 3178 3179 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 3180 // If we're told that NaNs won't happen, assume they won't. 3181 if (getTarget().Options.NoNaNsFPMath) 3182 return true; 3183 3184 if (const BinaryWithFlagsSDNode *BF = dyn_cast<BinaryWithFlagsSDNode>(Op)) 3185 return BF->Flags.hasNoNaNs(); 3186 3187 // If the value is a constant, we can obviously see if it is a NaN or not. 3188 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3189 return !C->getValueAPF().isNaN(); 3190 3191 // TODO: Recognize more cases here. 3192 3193 return false; 3194 } 3195 3196 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 3197 // If the value is a constant, we can obviously see if it is a zero or not. 3198 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 3199 return !C->isZero(); 3200 3201 // TODO: Recognize more cases here. 3202 switch (Op.getOpcode()) { 3203 default: break; 3204 case ISD::OR: 3205 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3206 return !C->isNullValue(); 3207 break; 3208 } 3209 3210 return false; 3211 } 3212 3213 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 3214 // Check the obvious case. 3215 if (A == B) return true; 3216 3217 // For for negative and positive zero. 3218 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 3219 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 3220 if (CA->isZero() && CB->isZero()) return true; 3221 3222 // Otherwise they may not be equal. 3223 return false; 3224 } 3225 3226 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 3227 assert(A.getValueType() == B.getValueType() && 3228 "Values must have the same type"); 3229 APInt AZero, AOne; 3230 APInt BZero, BOne; 3231 computeKnownBits(A, AZero, AOne); 3232 computeKnownBits(B, BZero, BOne); 3233 return (AZero | BZero).isAllOnesValue(); 3234 } 3235 3236 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 3237 ArrayRef<SDValue> Ops, 3238 llvm::SelectionDAG &DAG) { 3239 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 3240 assert(llvm::all_of(Ops, 3241 [Ops](SDValue Op) { 3242 return Ops[0].getValueType() == Op.getValueType(); 3243 }) && 3244 "Concatenation of vectors with inconsistent value types!"); 3245 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 3246 VT.getVectorNumElements() && 3247 "Incorrect element count in vector concatenation!"); 3248 3249 if (Ops.size() == 1) 3250 return Ops[0]; 3251 3252 // Concat of UNDEFs is UNDEF. 3253 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 3254 return DAG.getUNDEF(VT); 3255 3256 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 3257 // simplified to one big BUILD_VECTOR. 3258 // FIXME: Add support for SCALAR_TO_VECTOR as well. 3259 EVT SVT = VT.getScalarType(); 3260 SmallVector<SDValue, 16> Elts; 3261 for (SDValue Op : Ops) { 3262 EVT OpVT = Op.getValueType(); 3263 if (Op.isUndef()) 3264 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 3265 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 3266 Elts.append(Op->op_begin(), Op->op_end()); 3267 else 3268 return SDValue(); 3269 } 3270 3271 // BUILD_VECTOR requires all inputs to be of the same type, find the 3272 // maximum type and extend them all. 3273 for (SDValue Op : Elts) 3274 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3275 3276 if (SVT.bitsGT(VT.getScalarType())) 3277 for (SDValue &Op : Elts) 3278 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3279 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3280 : DAG.getSExtOrTrunc(Op, DL, SVT); 3281 3282 return DAG.getBuildVector(VT, DL, Elts); 3283 } 3284 3285 /// Gets or creates the specified node. 3286 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3287 FoldingSetNodeID ID; 3288 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3289 void *IP = nullptr; 3290 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3291 return SDValue(E, 0); 3292 3293 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3294 getVTList(VT)); 3295 CSEMap.InsertNode(N, IP); 3296 3297 InsertNode(N); 3298 return SDValue(N, 0); 3299 } 3300 3301 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3302 SDValue Operand) { 3303 // Constant fold unary operations with an integer constant operand. Even 3304 // opaque constant will be folded, because the folding of unary operations 3305 // doesn't create new constants with different values. Nevertheless, the 3306 // opaque flag is preserved during folding to prevent future folding with 3307 // other constants. 3308 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3309 const APInt &Val = C->getAPIntValue(); 3310 switch (Opcode) { 3311 default: break; 3312 case ISD::SIGN_EXTEND: 3313 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3314 C->isTargetOpcode(), C->isOpaque()); 3315 case ISD::ANY_EXTEND: 3316 case ISD::ZERO_EXTEND: 3317 case ISD::TRUNCATE: 3318 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3319 C->isTargetOpcode(), C->isOpaque()); 3320 case ISD::UINT_TO_FP: 3321 case ISD::SINT_TO_FP: { 3322 APFloat apf(EVTToAPFloatSemantics(VT), 3323 APInt::getNullValue(VT.getSizeInBits())); 3324 (void)apf.convertFromAPInt(Val, 3325 Opcode==ISD::SINT_TO_FP, 3326 APFloat::rmNearestTiesToEven); 3327 return getConstantFP(apf, DL, VT); 3328 } 3329 case ISD::BITCAST: 3330 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3331 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 3332 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3333 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 3334 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3335 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 3336 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3337 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 3338 break; 3339 case ISD::ABS: 3340 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 3341 C->isOpaque()); 3342 case ISD::BITREVERSE: 3343 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 3344 C->isOpaque()); 3345 case ISD::BSWAP: 3346 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3347 C->isOpaque()); 3348 case ISD::CTPOP: 3349 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3350 C->isOpaque()); 3351 case ISD::CTLZ: 3352 case ISD::CTLZ_ZERO_UNDEF: 3353 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3354 C->isOpaque()); 3355 case ISD::CTTZ: 3356 case ISD::CTTZ_ZERO_UNDEF: 3357 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3358 C->isOpaque()); 3359 case ISD::FP16_TO_FP: { 3360 bool Ignored; 3361 APFloat FPV(APFloat::IEEEhalf(), 3362 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 3363 3364 // This can return overflow, underflow, or inexact; we don't care. 3365 // FIXME need to be more flexible about rounding mode. 3366 (void)FPV.convert(EVTToAPFloatSemantics(VT), 3367 APFloat::rmNearestTiesToEven, &Ignored); 3368 return getConstantFP(FPV, DL, VT); 3369 } 3370 } 3371 } 3372 3373 // Constant fold unary operations with a floating point constant operand. 3374 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3375 APFloat V = C->getValueAPF(); // make copy 3376 switch (Opcode) { 3377 case ISD::FNEG: 3378 V.changeSign(); 3379 return getConstantFP(V, DL, VT); 3380 case ISD::FABS: 3381 V.clearSign(); 3382 return getConstantFP(V, DL, VT); 3383 case ISD::FCEIL: { 3384 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3385 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3386 return getConstantFP(V, DL, VT); 3387 break; 3388 } 3389 case ISD::FTRUNC: { 3390 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3391 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3392 return getConstantFP(V, DL, VT); 3393 break; 3394 } 3395 case ISD::FFLOOR: { 3396 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3397 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3398 return getConstantFP(V, DL, VT); 3399 break; 3400 } 3401 case ISD::FP_EXTEND: { 3402 bool ignored; 3403 // This can return overflow, underflow, or inexact; we don't care. 3404 // FIXME need to be more flexible about rounding mode. 3405 (void)V.convert(EVTToAPFloatSemantics(VT), 3406 APFloat::rmNearestTiesToEven, &ignored); 3407 return getConstantFP(V, DL, VT); 3408 } 3409 case ISD::FP_TO_SINT: 3410 case ISD::FP_TO_UINT: { 3411 integerPart x[2]; 3412 bool ignored; 3413 static_assert(integerPartWidth >= 64, "APFloat parts too small!"); 3414 // FIXME need to be more flexible about rounding mode. 3415 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), 3416 Opcode==ISD::FP_TO_SINT, 3417 APFloat::rmTowardZero, &ignored); 3418 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual 3419 break; 3420 APInt api(VT.getSizeInBits(), x); 3421 return getConstant(api, DL, VT); 3422 } 3423 case ISD::BITCAST: 3424 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3425 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3426 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3427 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3428 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3429 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3430 break; 3431 case ISD::FP_TO_FP16: { 3432 bool Ignored; 3433 // This can return overflow, underflow, or inexact; we don't care. 3434 // FIXME need to be more flexible about rounding mode. 3435 (void)V.convert(APFloat::IEEEhalf(), 3436 APFloat::rmNearestTiesToEven, &Ignored); 3437 return getConstant(V.bitcastToAPInt(), DL, VT); 3438 } 3439 } 3440 } 3441 3442 // Constant fold unary operations with a vector integer or float operand. 3443 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3444 if (BV->isConstant()) { 3445 switch (Opcode) { 3446 default: 3447 // FIXME: Entirely reasonable to perform folding of other unary 3448 // operations here as the need arises. 3449 break; 3450 case ISD::FNEG: 3451 case ISD::FABS: 3452 case ISD::FCEIL: 3453 case ISD::FTRUNC: 3454 case ISD::FFLOOR: 3455 case ISD::FP_EXTEND: 3456 case ISD::FP_TO_SINT: 3457 case ISD::FP_TO_UINT: 3458 case ISD::TRUNCATE: 3459 case ISD::UINT_TO_FP: 3460 case ISD::SINT_TO_FP: 3461 case ISD::ABS: 3462 case ISD::BITREVERSE: 3463 case ISD::BSWAP: 3464 case ISD::CTLZ: 3465 case ISD::CTLZ_ZERO_UNDEF: 3466 case ISD::CTTZ: 3467 case ISD::CTTZ_ZERO_UNDEF: 3468 case ISD::CTPOP: { 3469 SDValue Ops = { Operand }; 3470 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3471 return Fold; 3472 } 3473 } 3474 } 3475 } 3476 3477 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3478 switch (Opcode) { 3479 case ISD::TokenFactor: 3480 case ISD::MERGE_VALUES: 3481 case ISD::CONCAT_VECTORS: 3482 return Operand; // Factor, merge or concat of one node? No need. 3483 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3484 case ISD::FP_EXTEND: 3485 assert(VT.isFloatingPoint() && 3486 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3487 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3488 assert((!VT.isVector() || 3489 VT.getVectorNumElements() == 3490 Operand.getValueType().getVectorNumElements()) && 3491 "Vector element count mismatch!"); 3492 assert(Operand.getValueType().bitsLT(VT) && 3493 "Invalid fpext node, dst < src!"); 3494 if (Operand.isUndef()) 3495 return getUNDEF(VT); 3496 break; 3497 case ISD::SIGN_EXTEND: 3498 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3499 "Invalid SIGN_EXTEND!"); 3500 if (Operand.getValueType() == VT) return Operand; // noop extension 3501 assert((!VT.isVector() || 3502 VT.getVectorNumElements() == 3503 Operand.getValueType().getVectorNumElements()) && 3504 "Vector element count mismatch!"); 3505 assert(Operand.getValueType().bitsLT(VT) && 3506 "Invalid sext node, dst < src!"); 3507 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3508 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3509 else if (OpOpcode == ISD::UNDEF) 3510 // sext(undef) = 0, because the top bits will all be the same. 3511 return getConstant(0, DL, VT); 3512 break; 3513 case ISD::ZERO_EXTEND: 3514 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3515 "Invalid ZERO_EXTEND!"); 3516 if (Operand.getValueType() == VT) return Operand; // noop extension 3517 assert((!VT.isVector() || 3518 VT.getVectorNumElements() == 3519 Operand.getValueType().getVectorNumElements()) && 3520 "Vector element count mismatch!"); 3521 assert(Operand.getValueType().bitsLT(VT) && 3522 "Invalid zext node, dst < src!"); 3523 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3524 return getNode(ISD::ZERO_EXTEND, DL, VT, 3525 Operand.getNode()->getOperand(0)); 3526 else if (OpOpcode == ISD::UNDEF) 3527 // zext(undef) = 0, because the top bits will be zero. 3528 return getConstant(0, DL, VT); 3529 break; 3530 case ISD::ANY_EXTEND: 3531 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3532 "Invalid ANY_EXTEND!"); 3533 if (Operand.getValueType() == VT) return Operand; // noop extension 3534 assert((!VT.isVector() || 3535 VT.getVectorNumElements() == 3536 Operand.getValueType().getVectorNumElements()) && 3537 "Vector element count mismatch!"); 3538 assert(Operand.getValueType().bitsLT(VT) && 3539 "Invalid anyext node, dst < src!"); 3540 3541 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3542 OpOpcode == ISD::ANY_EXTEND) 3543 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3544 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3545 else if (OpOpcode == ISD::UNDEF) 3546 return getUNDEF(VT); 3547 3548 // (ext (trunx x)) -> x 3549 if (OpOpcode == ISD::TRUNCATE) { 3550 SDValue OpOp = Operand.getNode()->getOperand(0); 3551 if (OpOp.getValueType() == VT) 3552 return OpOp; 3553 } 3554 break; 3555 case ISD::TRUNCATE: 3556 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3557 "Invalid TRUNCATE!"); 3558 if (Operand.getValueType() == VT) return Operand; // noop truncate 3559 assert((!VT.isVector() || 3560 VT.getVectorNumElements() == 3561 Operand.getValueType().getVectorNumElements()) && 3562 "Vector element count mismatch!"); 3563 assert(Operand.getValueType().bitsGT(VT) && 3564 "Invalid truncate node, src < dst!"); 3565 if (OpOpcode == ISD::TRUNCATE) 3566 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3567 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3568 OpOpcode == ISD::ANY_EXTEND) { 3569 // If the source is smaller than the dest, we still need an extend. 3570 if (Operand.getNode()->getOperand(0).getValueType().getScalarType() 3571 .bitsLT(VT.getScalarType())) 3572 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3573 if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) 3574 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3575 return Operand.getNode()->getOperand(0); 3576 } 3577 if (OpOpcode == ISD::UNDEF) 3578 return getUNDEF(VT); 3579 break; 3580 case ISD::ABS: 3581 assert(VT.isInteger() && VT == Operand.getValueType() && 3582 "Invalid ABS!"); 3583 if (OpOpcode == ISD::UNDEF) 3584 return getUNDEF(VT); 3585 break; 3586 case ISD::BSWAP: 3587 assert(VT.isInteger() && VT == Operand.getValueType() && 3588 "Invalid BSWAP!"); 3589 assert((VT.getScalarSizeInBits() % 16 == 0) && 3590 "BSWAP types must be a multiple of 16 bits!"); 3591 if (OpOpcode == ISD::UNDEF) 3592 return getUNDEF(VT); 3593 break; 3594 case ISD::BITREVERSE: 3595 assert(VT.isInteger() && VT == Operand.getValueType() && 3596 "Invalid BITREVERSE!"); 3597 if (OpOpcode == ISD::UNDEF) 3598 return getUNDEF(VT); 3599 break; 3600 case ISD::BITCAST: 3601 // Basic sanity checking. 3602 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3603 "Cannot BITCAST between types of different sizes!"); 3604 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3605 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3606 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3607 if (OpOpcode == ISD::UNDEF) 3608 return getUNDEF(VT); 3609 break; 3610 case ISD::SCALAR_TO_VECTOR: 3611 assert(VT.isVector() && !Operand.getValueType().isVector() && 3612 (VT.getVectorElementType() == Operand.getValueType() || 3613 (VT.getVectorElementType().isInteger() && 3614 Operand.getValueType().isInteger() && 3615 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3616 "Illegal SCALAR_TO_VECTOR node!"); 3617 if (OpOpcode == ISD::UNDEF) 3618 return getUNDEF(VT); 3619 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3620 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3621 isa<ConstantSDNode>(Operand.getOperand(1)) && 3622 Operand.getConstantOperandVal(1) == 0 && 3623 Operand.getOperand(0).getValueType() == VT) 3624 return Operand.getOperand(0); 3625 break; 3626 case ISD::FNEG: 3627 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3628 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3629 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3630 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), 3631 Operand.getNode()->getOperand(0), 3632 &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags); 3633 if (OpOpcode == ISD::FNEG) // --X -> X 3634 return Operand.getNode()->getOperand(0); 3635 break; 3636 case ISD::FABS: 3637 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3638 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); 3639 break; 3640 } 3641 3642 SDNode *N; 3643 SDVTList VTs = getVTList(VT); 3644 SDValue Ops[] = {Operand}; 3645 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3646 FoldingSetNodeID ID; 3647 AddNodeIDNode(ID, Opcode, VTs, Ops); 3648 void *IP = nullptr; 3649 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3650 return SDValue(E, 0); 3651 3652 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3653 createOperands(N, Ops); 3654 CSEMap.InsertNode(N, IP); 3655 } else { 3656 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3657 createOperands(N, Ops); 3658 } 3659 3660 InsertNode(N); 3661 return SDValue(N, 0); 3662 } 3663 3664 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3665 const APInt &C2) { 3666 switch (Opcode) { 3667 case ISD::ADD: return std::make_pair(C1 + C2, true); 3668 case ISD::SUB: return std::make_pair(C1 - C2, true); 3669 case ISD::MUL: return std::make_pair(C1 * C2, true); 3670 case ISD::AND: return std::make_pair(C1 & C2, true); 3671 case ISD::OR: return std::make_pair(C1 | C2, true); 3672 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3673 case ISD::SHL: return std::make_pair(C1 << C2, true); 3674 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3675 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3676 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3677 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3678 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3679 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3680 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3681 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3682 case ISD::UDIV: 3683 if (!C2.getBoolValue()) 3684 break; 3685 return std::make_pair(C1.udiv(C2), true); 3686 case ISD::UREM: 3687 if (!C2.getBoolValue()) 3688 break; 3689 return std::make_pair(C1.urem(C2), true); 3690 case ISD::SDIV: 3691 if (!C2.getBoolValue()) 3692 break; 3693 return std::make_pair(C1.sdiv(C2), true); 3694 case ISD::SREM: 3695 if (!C2.getBoolValue()) 3696 break; 3697 return std::make_pair(C1.srem(C2), true); 3698 } 3699 return std::make_pair(APInt(1, 0), false); 3700 } 3701 3702 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3703 EVT VT, const ConstantSDNode *Cst1, 3704 const ConstantSDNode *Cst2) { 3705 if (Cst1->isOpaque() || Cst2->isOpaque()) 3706 return SDValue(); 3707 3708 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3709 Cst2->getAPIntValue()); 3710 if (!Folded.second) 3711 return SDValue(); 3712 return getConstant(Folded.first, DL, VT); 3713 } 3714 3715 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3716 const GlobalAddressSDNode *GA, 3717 const SDNode *N2) { 3718 if (GA->getOpcode() != ISD::GlobalAddress) 3719 return SDValue(); 3720 if (!TLI->isOffsetFoldingLegal(GA)) 3721 return SDValue(); 3722 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3723 if (!Cst2) 3724 return SDValue(); 3725 int64_t Offset = Cst2->getSExtValue(); 3726 switch (Opcode) { 3727 case ISD::ADD: break; 3728 case ISD::SUB: Offset = -uint64_t(Offset); break; 3729 default: return SDValue(); 3730 } 3731 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3732 GA->getOffset() + uint64_t(Offset)); 3733 } 3734 3735 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 3736 switch (Opcode) { 3737 case ISD::SDIV: 3738 case ISD::UDIV: 3739 case ISD::SREM: 3740 case ISD::UREM: { 3741 // If a divisor is zero/undef or any element of a divisor vector is 3742 // zero/undef, the whole op is undef. 3743 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 3744 SDValue Divisor = Ops[1]; 3745 if (Divisor.isUndef() || isNullConstant(Divisor)) 3746 return true; 3747 3748 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 3749 any_of(Divisor->op_values(), 3750 [](SDValue V) { return V.isUndef() || isNullConstant(V); }); 3751 // TODO: Handle signed overflow. 3752 } 3753 // TODO: Handle oversized shifts. 3754 default: 3755 return false; 3756 } 3757 } 3758 3759 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3760 EVT VT, SDNode *Cst1, 3761 SDNode *Cst2) { 3762 // If the opcode is a target-specific ISD node, there's nothing we can 3763 // do here and the operand rules may not line up with the below, so 3764 // bail early. 3765 if (Opcode >= ISD::BUILTIN_OP_END) 3766 return SDValue(); 3767 3768 if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)})) 3769 return getUNDEF(VT); 3770 3771 // Handle the case of two scalars. 3772 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3773 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3774 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3775 assert((!Folded || !VT.isVector()) && 3776 "Can't fold vectors ops with scalar operands"); 3777 return Folded; 3778 } 3779 } 3780 3781 // fold (add Sym, c) -> Sym+c 3782 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3783 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3784 if (isCommutativeBinOp(Opcode)) 3785 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3786 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3787 3788 // For vectors extract each constant element into Inputs so we can constant 3789 // fold them individually. 3790 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3791 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3792 if (!BV1 || !BV2) 3793 return SDValue(); 3794 3795 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3796 3797 EVT SVT = VT.getScalarType(); 3798 SmallVector<SDValue, 4> Outputs; 3799 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3800 SDValue V1 = BV1->getOperand(I); 3801 SDValue V2 = BV2->getOperand(I); 3802 3803 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3804 // FIXME: This is valid and could be handled by truncation. 3805 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3806 return SDValue(); 3807 3808 // Fold one vector element. 3809 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 3810 3811 // Scalar folding only succeeded if the result is a constant or UNDEF. 3812 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3813 ScalarResult.getOpcode() != ISD::ConstantFP) 3814 return SDValue(); 3815 Outputs.push_back(ScalarResult); 3816 } 3817 3818 assert(VT.getVectorNumElements() == Outputs.size() && 3819 "Vector size mismatch!"); 3820 3821 // We may have a vector type but a scalar result. Create a splat. 3822 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3823 3824 // Build a big vector out of the scalar elements we generated. 3825 return getBuildVector(VT, SDLoc(), Outputs); 3826 } 3827 3828 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3829 const SDLoc &DL, EVT VT, 3830 ArrayRef<SDValue> Ops, 3831 const SDNodeFlags *Flags) { 3832 // If the opcode is a target-specific ISD node, there's nothing we can 3833 // do here and the operand rules may not line up with the below, so 3834 // bail early. 3835 if (Opcode >= ISD::BUILTIN_OP_END) 3836 return SDValue(); 3837 3838 if (isUndef(Opcode, Ops)) 3839 return getUNDEF(VT); 3840 3841 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 3842 if (!VT.isVector()) 3843 return SDValue(); 3844 3845 unsigned NumElts = VT.getVectorNumElements(); 3846 3847 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 3848 return !Op.getValueType().isVector() || 3849 Op.getValueType().getVectorNumElements() == NumElts; 3850 }; 3851 3852 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 3853 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 3854 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 3855 (BV && BV->isConstant()); 3856 }; 3857 3858 // All operands must be vector types with the same number of elements as 3859 // the result type and must be either UNDEF or a build vector of constant 3860 // or UNDEF scalars. 3861 if (!all_of(Ops, IsConstantBuildVectorOrUndef) || 3862 !all_of(Ops, IsScalarOrSameVectorSize)) 3863 return SDValue(); 3864 3865 // If we are comparing vectors, then the result needs to be a i1 boolean 3866 // that is then sign-extended back to the legal result type. 3867 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 3868 3869 // Find legal integer scalar type for constant promotion and 3870 // ensure that its scalar size is at least as large as source. 3871 EVT LegalSVT = VT.getScalarType(); 3872 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 3873 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 3874 if (LegalSVT.bitsLT(VT.getScalarType())) 3875 return SDValue(); 3876 } 3877 3878 // Constant fold each scalar lane separately. 3879 SmallVector<SDValue, 4> ScalarResults; 3880 for (unsigned i = 0; i != NumElts; i++) { 3881 SmallVector<SDValue, 4> ScalarOps; 3882 for (SDValue Op : Ops) { 3883 EVT InSVT = Op.getValueType().getScalarType(); 3884 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 3885 if (!InBV) { 3886 // We've checked that this is UNDEF or a constant of some kind. 3887 if (Op.isUndef()) 3888 ScalarOps.push_back(getUNDEF(InSVT)); 3889 else 3890 ScalarOps.push_back(Op); 3891 continue; 3892 } 3893 3894 SDValue ScalarOp = InBV->getOperand(i); 3895 EVT ScalarVT = ScalarOp.getValueType(); 3896 3897 // Build vector (integer) scalar operands may need implicit 3898 // truncation - do this before constant folding. 3899 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 3900 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 3901 3902 ScalarOps.push_back(ScalarOp); 3903 } 3904 3905 // Constant fold the scalar operands. 3906 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 3907 3908 // Legalize the (integer) scalar constant if necessary. 3909 if (LegalSVT != SVT) 3910 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 3911 3912 // Scalar folding only succeeded if the result is a constant or UNDEF. 3913 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3914 ScalarResult.getOpcode() != ISD::ConstantFP) 3915 return SDValue(); 3916 ScalarResults.push_back(ScalarResult); 3917 } 3918 3919 return getBuildVector(VT, DL, ScalarResults); 3920 } 3921 3922 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3923 SDValue N1, SDValue N2, 3924 const SDNodeFlags *Flags) { 3925 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3926 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 3927 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3928 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3929 3930 // Canonicalize constant to RHS if commutative. 3931 if (isCommutativeBinOp(Opcode)) { 3932 if (N1C && !N2C) { 3933 std::swap(N1C, N2C); 3934 std::swap(N1, N2); 3935 } else if (N1CFP && !N2CFP) { 3936 std::swap(N1CFP, N2CFP); 3937 std::swap(N1, N2); 3938 } 3939 } 3940 3941 switch (Opcode) { 3942 default: break; 3943 case ISD::TokenFactor: 3944 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 3945 N2.getValueType() == MVT::Other && "Invalid token factor!"); 3946 // Fold trivial token factors. 3947 if (N1.getOpcode() == ISD::EntryToken) return N2; 3948 if (N2.getOpcode() == ISD::EntryToken) return N1; 3949 if (N1 == N2) return N1; 3950 break; 3951 case ISD::CONCAT_VECTORS: { 3952 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3953 SDValue Ops[] = {N1, N2}; 3954 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3955 return V; 3956 break; 3957 } 3958 case ISD::AND: 3959 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3960 assert(N1.getValueType() == N2.getValueType() && 3961 N1.getValueType() == VT && "Binary operator types must match!"); 3962 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 3963 // worth handling here. 3964 if (N2C && N2C->isNullValue()) 3965 return N2; 3966 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 3967 return N1; 3968 break; 3969 case ISD::OR: 3970 case ISD::XOR: 3971 case ISD::ADD: 3972 case ISD::SUB: 3973 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3974 assert(N1.getValueType() == N2.getValueType() && 3975 N1.getValueType() == VT && "Binary operator types must match!"); 3976 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 3977 // it's worth handling here. 3978 if (N2C && N2C->isNullValue()) 3979 return N1; 3980 break; 3981 case ISD::UDIV: 3982 case ISD::UREM: 3983 case ISD::MULHU: 3984 case ISD::MULHS: 3985 case ISD::MUL: 3986 case ISD::SDIV: 3987 case ISD::SREM: 3988 case ISD::SMIN: 3989 case ISD::SMAX: 3990 case ISD::UMIN: 3991 case ISD::UMAX: 3992 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3993 assert(N1.getValueType() == N2.getValueType() && 3994 N1.getValueType() == VT && "Binary operator types must match!"); 3995 break; 3996 case ISD::FADD: 3997 case ISD::FSUB: 3998 case ISD::FMUL: 3999 case ISD::FDIV: 4000 case ISD::FREM: 4001 if (getTarget().Options.UnsafeFPMath) { 4002 if (Opcode == ISD::FADD) { 4003 // x+0 --> x 4004 if (N2CFP && N2CFP->getValueAPF().isZero()) 4005 return N1; 4006 } else if (Opcode == ISD::FSUB) { 4007 // x-0 --> x 4008 if (N2CFP && N2CFP->getValueAPF().isZero()) 4009 return N1; 4010 } else if (Opcode == ISD::FMUL) { 4011 // x*0 --> 0 4012 if (N2CFP && N2CFP->isZero()) 4013 return N2; 4014 // x*1 --> x 4015 if (N2CFP && N2CFP->isExactlyValue(1.0)) 4016 return N1; 4017 } 4018 } 4019 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 4020 assert(N1.getValueType() == N2.getValueType() && 4021 N1.getValueType() == VT && "Binary operator types must match!"); 4022 break; 4023 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 4024 assert(N1.getValueType() == VT && 4025 N1.getValueType().isFloatingPoint() && 4026 N2.getValueType().isFloatingPoint() && 4027 "Invalid FCOPYSIGN!"); 4028 break; 4029 case ISD::SHL: 4030 case ISD::SRA: 4031 case ISD::SRL: 4032 case ISD::ROTL: 4033 case ISD::ROTR: 4034 assert(VT == N1.getValueType() && 4035 "Shift operators return type must be the same as their first arg"); 4036 assert(VT.isInteger() && N2.getValueType().isInteger() && 4037 "Shifts only work on integers"); 4038 assert((!VT.isVector() || VT == N2.getValueType()) && 4039 "Vector shift amounts must be in the same as their first arg"); 4040 // Verify that the shift amount VT is bit enough to hold valid shift 4041 // amounts. This catches things like trying to shift an i1024 value by an 4042 // i8, which is easy to fall into in generic code that uses 4043 // TLI.getShiftAmount(). 4044 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 4045 "Invalid use of small shift amount with oversized value!"); 4046 4047 // Always fold shifts of i1 values so the code generator doesn't need to 4048 // handle them. Since we know the size of the shift has to be less than the 4049 // size of the value, the shift/rotate count is guaranteed to be zero. 4050 if (VT == MVT::i1) 4051 return N1; 4052 if (N2C && N2C->isNullValue()) 4053 return N1; 4054 break; 4055 case ISD::FP_ROUND_INREG: { 4056 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4057 assert(VT == N1.getValueType() && "Not an inreg round!"); 4058 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 4059 "Cannot FP_ROUND_INREG integer types"); 4060 assert(EVT.isVector() == VT.isVector() && 4061 "FP_ROUND_INREG type should be vector iff the operand " 4062 "type is vector!"); 4063 assert((!EVT.isVector() || 4064 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4065 "Vector element counts must match in FP_ROUND_INREG"); 4066 assert(EVT.bitsLE(VT) && "Not rounding down!"); 4067 (void)EVT; 4068 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 4069 break; 4070 } 4071 case ISD::FP_ROUND: 4072 assert(VT.isFloatingPoint() && 4073 N1.getValueType().isFloatingPoint() && 4074 VT.bitsLE(N1.getValueType()) && 4075 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 4076 "Invalid FP_ROUND!"); 4077 if (N1.getValueType() == VT) return N1; // noop conversion. 4078 break; 4079 case ISD::AssertSext: 4080 case ISD::AssertZext: { 4081 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4082 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4083 assert(VT.isInteger() && EVT.isInteger() && 4084 "Cannot *_EXTEND_INREG FP types"); 4085 assert(!EVT.isVector() && 4086 "AssertSExt/AssertZExt type should be the vector element type " 4087 "rather than the vector type!"); 4088 assert(EVT.bitsLE(VT) && "Not extending!"); 4089 if (VT == EVT) return N1; // noop assertion. 4090 break; 4091 } 4092 case ISD::SIGN_EXTEND_INREG: { 4093 EVT EVT = cast<VTSDNode>(N2)->getVT(); 4094 assert(VT == N1.getValueType() && "Not an inreg extend!"); 4095 assert(VT.isInteger() && EVT.isInteger() && 4096 "Cannot *_EXTEND_INREG FP types"); 4097 assert(EVT.isVector() == VT.isVector() && 4098 "SIGN_EXTEND_INREG type should be vector iff the operand " 4099 "type is vector!"); 4100 assert((!EVT.isVector() || 4101 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 4102 "Vector element counts must match in SIGN_EXTEND_INREG"); 4103 assert(EVT.bitsLE(VT) && "Not extending!"); 4104 if (EVT == VT) return N1; // Not actually extending 4105 4106 auto SignExtendInReg = [&](APInt Val) { 4107 unsigned FromBits = EVT.getScalarSizeInBits(); 4108 Val <<= Val.getBitWidth() - FromBits; 4109 Val = Val.ashr(Val.getBitWidth() - FromBits); 4110 return getConstant(Val, DL, VT.getScalarType()); 4111 }; 4112 4113 if (N1C) { 4114 const APInt &Val = N1C->getAPIntValue(); 4115 return SignExtendInReg(Val); 4116 } 4117 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 4118 SmallVector<SDValue, 8> Ops; 4119 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4120 SDValue Op = N1.getOperand(i); 4121 if (Op.isUndef()) { 4122 Ops.push_back(getUNDEF(VT.getScalarType())); 4123 continue; 4124 } 4125 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 4126 APInt Val = C->getAPIntValue(); 4127 Val = Val.zextOrTrunc(VT.getScalarSizeInBits()); 4128 Ops.push_back(SignExtendInReg(Val)); 4129 continue; 4130 } 4131 break; 4132 } 4133 if (Ops.size() == VT.getVectorNumElements()) 4134 return getBuildVector(VT, DL, Ops); 4135 } 4136 break; 4137 } 4138 case ISD::EXTRACT_VECTOR_ELT: 4139 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 4140 if (N1.isUndef()) 4141 return getUNDEF(VT); 4142 4143 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 4144 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4145 return getUNDEF(VT); 4146 4147 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 4148 // expanding copies of large vectors from registers. 4149 if (N2C && 4150 N1.getOpcode() == ISD::CONCAT_VECTORS && 4151 N1.getNumOperands() > 0) { 4152 unsigned Factor = 4153 N1.getOperand(0).getValueType().getVectorNumElements(); 4154 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 4155 N1.getOperand(N2C->getZExtValue() / Factor), 4156 getConstant(N2C->getZExtValue() % Factor, DL, 4157 N2.getValueType())); 4158 } 4159 4160 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 4161 // expanding large vector constants. 4162 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 4163 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 4164 4165 if (VT != Elt.getValueType()) 4166 // If the vector element type is not legal, the BUILD_VECTOR operands 4167 // are promoted and implicitly truncated, and the result implicitly 4168 // extended. Make that explicit here. 4169 Elt = getAnyExtOrTrunc(Elt, DL, VT); 4170 4171 return Elt; 4172 } 4173 4174 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 4175 // operations are lowered to scalars. 4176 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 4177 // If the indices are the same, return the inserted element else 4178 // if the indices are known different, extract the element from 4179 // the original vector. 4180 SDValue N1Op2 = N1.getOperand(2); 4181 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 4182 4183 if (N1Op2C && N2C) { 4184 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 4185 if (VT == N1.getOperand(1).getValueType()) 4186 return N1.getOperand(1); 4187 else 4188 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 4189 } 4190 4191 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 4192 } 4193 } 4194 break; 4195 case ISD::EXTRACT_ELEMENT: 4196 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 4197 assert(!N1.getValueType().isVector() && !VT.isVector() && 4198 (N1.getValueType().isInteger() == VT.isInteger()) && 4199 N1.getValueType() != VT && 4200 "Wrong types for EXTRACT_ELEMENT!"); 4201 4202 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 4203 // 64-bit integers into 32-bit parts. Instead of building the extract of 4204 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 4205 if (N1.getOpcode() == ISD::BUILD_PAIR) 4206 return N1.getOperand(N2C->getZExtValue()); 4207 4208 // EXTRACT_ELEMENT of a constant int is also very common. 4209 if (N1C) { 4210 unsigned ElementSize = VT.getSizeInBits(); 4211 unsigned Shift = ElementSize * N2C->getZExtValue(); 4212 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 4213 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 4214 } 4215 break; 4216 case ISD::EXTRACT_SUBVECTOR: 4217 if (VT.isSimple() && N1.getValueType().isSimple()) { 4218 assert(VT.isVector() && N1.getValueType().isVector() && 4219 "Extract subvector VTs must be a vectors!"); 4220 assert(VT.getVectorElementType() == 4221 N1.getValueType().getVectorElementType() && 4222 "Extract subvector VTs must have the same element type!"); 4223 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 4224 "Extract subvector must be from larger vector to smaller vector!"); 4225 4226 if (N2C) { 4227 assert((VT.getVectorNumElements() + N2C->getZExtValue() 4228 <= N1.getValueType().getVectorNumElements()) 4229 && "Extract subvector overflow!"); 4230 } 4231 4232 // Trivial extraction. 4233 if (VT.getSimpleVT() == N1.getSimpleValueType()) 4234 return N1; 4235 4236 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 4237 if (N1.isUndef()) 4238 return getUNDEF(VT); 4239 4240 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 4241 // the concat have the same type as the extract. 4242 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 4243 N1.getNumOperands() > 0 && 4244 VT == N1.getOperand(0).getValueType()) { 4245 unsigned Factor = VT.getVectorNumElements(); 4246 return N1.getOperand(N2C->getZExtValue() / Factor); 4247 } 4248 4249 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 4250 // during shuffle legalization. 4251 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 4252 VT == N1.getOperand(1).getValueType()) 4253 return N1.getOperand(1); 4254 } 4255 break; 4256 } 4257 4258 // Perform trivial constant folding. 4259 if (SDValue SV = 4260 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 4261 return SV; 4262 4263 // Constant fold FP operations. 4264 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 4265 if (N1CFP) { 4266 if (N2CFP) { 4267 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 4268 APFloat::opStatus s; 4269 switch (Opcode) { 4270 case ISD::FADD: 4271 s = V1.add(V2, APFloat::rmNearestTiesToEven); 4272 if (!HasFPExceptions || s != APFloat::opInvalidOp) 4273 return getConstantFP(V1, DL, VT); 4274 break; 4275 case ISD::FSUB: 4276 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 4277 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4278 return getConstantFP(V1, DL, VT); 4279 break; 4280 case ISD::FMUL: 4281 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 4282 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 4283 return getConstantFP(V1, DL, VT); 4284 break; 4285 case ISD::FDIV: 4286 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 4287 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4288 s!=APFloat::opDivByZero)) { 4289 return getConstantFP(V1, DL, VT); 4290 } 4291 break; 4292 case ISD::FREM : 4293 s = V1.mod(V2); 4294 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 4295 s!=APFloat::opDivByZero)) { 4296 return getConstantFP(V1, DL, VT); 4297 } 4298 break; 4299 case ISD::FCOPYSIGN: 4300 V1.copySign(V2); 4301 return getConstantFP(V1, DL, VT); 4302 default: break; 4303 } 4304 } 4305 4306 if (Opcode == ISD::FP_ROUND) { 4307 APFloat V = N1CFP->getValueAPF(); // make copy 4308 bool ignored; 4309 // This can return overflow, underflow, or inexact; we don't care. 4310 // FIXME need to be more flexible about rounding mode. 4311 (void)V.convert(EVTToAPFloatSemantics(VT), 4312 APFloat::rmNearestTiesToEven, &ignored); 4313 return getConstantFP(V, DL, VT); 4314 } 4315 } 4316 4317 // Canonicalize an UNDEF to the RHS, even over a constant. 4318 if (N1.isUndef()) { 4319 if (isCommutativeBinOp(Opcode)) { 4320 std::swap(N1, N2); 4321 } else { 4322 switch (Opcode) { 4323 case ISD::FP_ROUND_INREG: 4324 case ISD::SIGN_EXTEND_INREG: 4325 case ISD::SUB: 4326 case ISD::FSUB: 4327 case ISD::FDIV: 4328 case ISD::FREM: 4329 case ISD::SRA: 4330 return N1; // fold op(undef, arg2) -> undef 4331 case ISD::UDIV: 4332 case ISD::SDIV: 4333 case ISD::UREM: 4334 case ISD::SREM: 4335 case ISD::SRL: 4336 case ISD::SHL: 4337 if (!VT.isVector()) 4338 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 4339 // For vectors, we can't easily build an all zero vector, just return 4340 // the LHS. 4341 return N2; 4342 } 4343 } 4344 } 4345 4346 // Fold a bunch of operators when the RHS is undef. 4347 if (N2.isUndef()) { 4348 switch (Opcode) { 4349 case ISD::XOR: 4350 if (N1.isUndef()) 4351 // Handle undef ^ undef -> 0 special case. This is a common 4352 // idiom (misuse). 4353 return getConstant(0, DL, VT); 4354 LLVM_FALLTHROUGH; 4355 case ISD::ADD: 4356 case ISD::ADDC: 4357 case ISD::ADDE: 4358 case ISD::SUB: 4359 case ISD::UDIV: 4360 case ISD::SDIV: 4361 case ISD::UREM: 4362 case ISD::SREM: 4363 return N2; // fold op(arg1, undef) -> undef 4364 case ISD::FADD: 4365 case ISD::FSUB: 4366 case ISD::FMUL: 4367 case ISD::FDIV: 4368 case ISD::FREM: 4369 if (getTarget().Options.UnsafeFPMath) 4370 return N2; 4371 break; 4372 case ISD::MUL: 4373 case ISD::AND: 4374 case ISD::SRL: 4375 case ISD::SHL: 4376 if (!VT.isVector()) 4377 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4378 // For vectors, we can't easily build an all zero vector, just return 4379 // the LHS. 4380 return N1; 4381 case ISD::OR: 4382 if (!VT.isVector()) 4383 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4384 // For vectors, we can't easily build an all one vector, just return 4385 // the LHS. 4386 return N1; 4387 case ISD::SRA: 4388 return N1; 4389 } 4390 } 4391 4392 // Memoize this node if possible. 4393 SDNode *N; 4394 SDVTList VTs = getVTList(VT); 4395 if (VT != MVT::Glue) { 4396 SDValue Ops[] = {N1, N2}; 4397 FoldingSetNodeID ID; 4398 AddNodeIDNode(ID, Opcode, VTs, Ops); 4399 void *IP = nullptr; 4400 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4401 if (Flags) 4402 E->intersectFlagsWith(Flags); 4403 return SDValue(E, 0); 4404 } 4405 4406 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4407 CSEMap.InsertNode(N, IP); 4408 } else { 4409 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4410 } 4411 4412 InsertNode(N); 4413 return SDValue(N, 0); 4414 } 4415 4416 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4417 SDValue N1, SDValue N2, SDValue N3) { 4418 // Perform various simplifications. 4419 switch (Opcode) { 4420 case ISD::FMA: { 4421 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4422 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4423 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4424 if (N1CFP && N2CFP && N3CFP) { 4425 APFloat V1 = N1CFP->getValueAPF(); 4426 const APFloat &V2 = N2CFP->getValueAPF(); 4427 const APFloat &V3 = N3CFP->getValueAPF(); 4428 APFloat::opStatus s = 4429 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4430 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4431 return getConstantFP(V1, DL, VT); 4432 } 4433 break; 4434 } 4435 case ISD::CONCAT_VECTORS: { 4436 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4437 SDValue Ops[] = {N1, N2, N3}; 4438 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4439 return V; 4440 break; 4441 } 4442 case ISD::SETCC: { 4443 // Use FoldSetCC to simplify SETCC's. 4444 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4445 return V; 4446 // Vector constant folding. 4447 SDValue Ops[] = {N1, N2, N3}; 4448 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4449 return V; 4450 break; 4451 } 4452 case ISD::SELECT: 4453 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4454 if (N1C->getZExtValue()) 4455 return N2; // select true, X, Y -> X 4456 return N3; // select false, X, Y -> Y 4457 } 4458 4459 if (N2 == N3) return N2; // select C, X, X -> X 4460 break; 4461 case ISD::VECTOR_SHUFFLE: 4462 llvm_unreachable("should use getVectorShuffle constructor!"); 4463 case ISD::INSERT_VECTOR_ELT: { 4464 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 4465 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 4466 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 4467 return getUNDEF(VT); 4468 break; 4469 } 4470 case ISD::INSERT_SUBVECTOR: { 4471 SDValue Index = N3; 4472 if (VT.isSimple() && N1.getValueType().isSimple() 4473 && N2.getValueType().isSimple()) { 4474 assert(VT.isVector() && N1.getValueType().isVector() && 4475 N2.getValueType().isVector() && 4476 "Insert subvector VTs must be a vectors"); 4477 assert(VT == N1.getValueType() && 4478 "Dest and insert subvector source types must match!"); 4479 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4480 "Insert subvector must be from smaller vector to larger vector!"); 4481 if (isa<ConstantSDNode>(Index)) { 4482 assert((N2.getValueType().getVectorNumElements() + 4483 cast<ConstantSDNode>(Index)->getZExtValue() 4484 <= VT.getVectorNumElements()) 4485 && "Insert subvector overflow!"); 4486 } 4487 4488 // Trivial insertion. 4489 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4490 return N2; 4491 } 4492 break; 4493 } 4494 case ISD::BITCAST: 4495 // Fold bit_convert nodes from a type to themselves. 4496 if (N1.getValueType() == VT) 4497 return N1; 4498 break; 4499 } 4500 4501 // Memoize node if it doesn't produce a flag. 4502 SDNode *N; 4503 SDVTList VTs = getVTList(VT); 4504 SDValue Ops[] = {N1, N2, N3}; 4505 if (VT != MVT::Glue) { 4506 FoldingSetNodeID ID; 4507 AddNodeIDNode(ID, Opcode, VTs, Ops); 4508 void *IP = nullptr; 4509 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4510 return SDValue(E, 0); 4511 4512 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4513 createOperands(N, Ops); 4514 CSEMap.InsertNode(N, IP); 4515 } else { 4516 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4517 createOperands(N, Ops); 4518 } 4519 4520 InsertNode(N); 4521 return SDValue(N, 0); 4522 } 4523 4524 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4525 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4526 SDValue Ops[] = { N1, N2, N3, N4 }; 4527 return getNode(Opcode, DL, VT, Ops); 4528 } 4529 4530 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4531 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4532 SDValue N5) { 4533 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4534 return getNode(Opcode, DL, VT, Ops); 4535 } 4536 4537 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4538 /// the incoming stack arguments to be loaded from the stack. 4539 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4540 SmallVector<SDValue, 8> ArgChains; 4541 4542 // Include the original chain at the beginning of the list. When this is 4543 // used by target LowerCall hooks, this helps legalize find the 4544 // CALLSEQ_BEGIN node. 4545 ArgChains.push_back(Chain); 4546 4547 // Add a chain value for each stack argument. 4548 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4549 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4550 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4551 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4552 if (FI->getIndex() < 0) 4553 ArgChains.push_back(SDValue(L, 1)); 4554 4555 // Build a tokenfactor for all the chains. 4556 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4557 } 4558 4559 /// getMemsetValue - Vectorized representation of the memset value 4560 /// operand. 4561 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4562 const SDLoc &dl) { 4563 assert(!Value.isUndef()); 4564 4565 unsigned NumBits = VT.getScalarSizeInBits(); 4566 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4567 assert(C->getAPIntValue().getBitWidth() == 8); 4568 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4569 if (VT.isInteger()) 4570 return DAG.getConstant(Val, dl, VT); 4571 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4572 VT); 4573 } 4574 4575 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4576 EVT IntVT = VT.getScalarType(); 4577 if (!IntVT.isInteger()) 4578 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4579 4580 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4581 if (NumBits > 8) { 4582 // Use a multiplication with 0x010101... to extend the input to the 4583 // required length. 4584 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4585 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4586 DAG.getConstant(Magic, dl, IntVT)); 4587 } 4588 4589 if (VT != Value.getValueType() && !VT.isInteger()) 4590 Value = DAG.getBitcast(VT.getScalarType(), Value); 4591 if (VT != Value.getValueType()) 4592 Value = DAG.getSplatBuildVector(VT, dl, Value); 4593 4594 return Value; 4595 } 4596 4597 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4598 /// used when a memcpy is turned into a memset when the source is a constant 4599 /// string ptr. 4600 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4601 const TargetLowering &TLI, StringRef Str) { 4602 // Handle vector with all elements zero. 4603 if (Str.empty()) { 4604 if (VT.isInteger()) 4605 return DAG.getConstant(0, dl, VT); 4606 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4607 return DAG.getConstantFP(0.0, dl, VT); 4608 else if (VT.isVector()) { 4609 unsigned NumElts = VT.getVectorNumElements(); 4610 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4611 return DAG.getNode(ISD::BITCAST, dl, VT, 4612 DAG.getConstant(0, dl, 4613 EVT::getVectorVT(*DAG.getContext(), 4614 EltVT, NumElts))); 4615 } else 4616 llvm_unreachable("Expected type!"); 4617 } 4618 4619 assert(!VT.isVector() && "Can't handle vector type here!"); 4620 unsigned NumVTBits = VT.getSizeInBits(); 4621 unsigned NumVTBytes = NumVTBits / 8; 4622 unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); 4623 4624 APInt Val(NumVTBits, 0); 4625 if (DAG.getDataLayout().isLittleEndian()) { 4626 for (unsigned i = 0; i != NumBytes; ++i) 4627 Val |= (uint64_t)(unsigned char)Str[i] << i*8; 4628 } else { 4629 for (unsigned i = 0; i != NumBytes; ++i) 4630 Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; 4631 } 4632 4633 // If the "cost" of materializing the integer immediate is less than the cost 4634 // of a load, then it is cost effective to turn the load into the immediate. 4635 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4636 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4637 return DAG.getConstant(Val, dl, VT); 4638 return SDValue(nullptr, 0); 4639 } 4640 4641 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4642 const SDLoc &DL) { 4643 EVT VT = Base.getValueType(); 4644 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4645 } 4646 4647 /// isMemSrcFromString - Returns true if memcpy source is a string constant. 4648 /// 4649 static bool isMemSrcFromString(SDValue Src, StringRef &Str) { 4650 uint64_t SrcDelta = 0; 4651 GlobalAddressSDNode *G = nullptr; 4652 if (Src.getOpcode() == ISD::GlobalAddress) 4653 G = cast<GlobalAddressSDNode>(Src); 4654 else if (Src.getOpcode() == ISD::ADD && 4655 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4656 Src.getOperand(1).getOpcode() == ISD::Constant) { 4657 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4658 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4659 } 4660 if (!G) 4661 return false; 4662 4663 return getConstantStringInfo(G->getGlobal(), Str, 4664 SrcDelta + G->getOffset(), false); 4665 } 4666 4667 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4668 /// Return true if the number of memory ops is below the threshold (Limit). 4669 /// It returns the types of the sequence of memory ops to perform 4670 /// memset / memcpy by reference. 4671 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4672 unsigned Limit, uint64_t Size, 4673 unsigned DstAlign, unsigned SrcAlign, 4674 bool IsMemset, 4675 bool ZeroMemset, 4676 bool MemcpyStrSrc, 4677 bool AllowOverlap, 4678 unsigned DstAS, unsigned SrcAS, 4679 SelectionDAG &DAG, 4680 const TargetLowering &TLI) { 4681 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4682 "Expecting memcpy / memset source to meet alignment requirement!"); 4683 // If 'SrcAlign' is zero, that means the memory operation does not need to 4684 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4685 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4686 // is the specified alignment of the memory operation. If it is zero, that 4687 // means it's possible to change the alignment of the destination. 4688 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4689 // not need to be loaded. 4690 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4691 IsMemset, ZeroMemset, MemcpyStrSrc, 4692 DAG.getMachineFunction()); 4693 4694 if (VT == MVT::Other) { 4695 if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) || 4696 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) { 4697 VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS); 4698 } else { 4699 switch (DstAlign & 7) { 4700 case 0: VT = MVT::i64; break; 4701 case 4: VT = MVT::i32; break; 4702 case 2: VT = MVT::i16; break; 4703 default: VT = MVT::i8; break; 4704 } 4705 } 4706 4707 MVT LVT = MVT::i64; 4708 while (!TLI.isTypeLegal(LVT)) 4709 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4710 assert(LVT.isInteger()); 4711 4712 if (VT.bitsGT(LVT)) 4713 VT = LVT; 4714 } 4715 4716 unsigned NumMemOps = 0; 4717 while (Size != 0) { 4718 unsigned VTSize = VT.getSizeInBits() / 8; 4719 while (VTSize > Size) { 4720 // For now, only use non-vector load / store's for the left-over pieces. 4721 EVT NewVT = VT; 4722 unsigned NewVTSize; 4723 4724 bool Found = false; 4725 if (VT.isVector() || VT.isFloatingPoint()) { 4726 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4727 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4728 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4729 Found = true; 4730 else if (NewVT == MVT::i64 && 4731 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4732 TLI.isSafeMemOpType(MVT::f64)) { 4733 // i64 is usually not legal on 32-bit targets, but f64 may be. 4734 NewVT = MVT::f64; 4735 Found = true; 4736 } 4737 } 4738 4739 if (!Found) { 4740 do { 4741 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4742 if (NewVT == MVT::i8) 4743 break; 4744 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4745 } 4746 NewVTSize = NewVT.getSizeInBits() / 8; 4747 4748 // If the new VT cannot cover all of the remaining bits, then consider 4749 // issuing a (or a pair of) unaligned and overlapping load / store. 4750 // FIXME: Only does this for 64-bit or more since we don't have proper 4751 // cost model for unaligned load / store. 4752 bool Fast; 4753 if (NumMemOps && AllowOverlap && 4754 VTSize >= 8 && NewVTSize < Size && 4755 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4756 VTSize = Size; 4757 else { 4758 VT = NewVT; 4759 VTSize = NewVTSize; 4760 } 4761 } 4762 4763 if (++NumMemOps > Limit) 4764 return false; 4765 4766 MemOps.push_back(VT); 4767 Size -= VTSize; 4768 } 4769 4770 return true; 4771 } 4772 4773 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4774 // On Darwin, -Os means optimize for size without hurting performance, so 4775 // only really optimize for size when -Oz (MinSize) is used. 4776 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4777 return MF.getFunction()->optForMinSize(); 4778 return MF.getFunction()->optForSize(); 4779 } 4780 4781 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4782 SDValue Chain, SDValue Dst, SDValue Src, 4783 uint64_t Size, unsigned Align, 4784 bool isVol, bool AlwaysInline, 4785 MachinePointerInfo DstPtrInfo, 4786 MachinePointerInfo SrcPtrInfo) { 4787 // Turn a memcpy of undef to nop. 4788 if (Src.isUndef()) 4789 return Chain; 4790 4791 // Expand memcpy to a series of load and store ops if the size operand falls 4792 // below a certain threshold. 4793 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4794 // rather than maybe a humongous number of loads and stores. 4795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4796 std::vector<EVT> MemOps; 4797 bool DstAlignCanChange = false; 4798 MachineFunction &MF = DAG.getMachineFunction(); 4799 MachineFrameInfo &MFI = MF.getFrameInfo(); 4800 bool OptSize = shouldLowerMemFuncForSize(MF); 4801 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4802 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4803 DstAlignCanChange = true; 4804 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4805 if (Align > SrcAlign) 4806 SrcAlign = Align; 4807 StringRef Str; 4808 bool CopyFromStr = isMemSrcFromString(Src, Str); 4809 bool isZeroStr = CopyFromStr && Str.empty(); 4810 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4811 4812 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4813 (DstAlignCanChange ? 0 : Align), 4814 (isZeroStr ? 0 : SrcAlign), 4815 false, false, CopyFromStr, true, 4816 DstPtrInfo.getAddrSpace(), 4817 SrcPtrInfo.getAddrSpace(), 4818 DAG, TLI)) 4819 return SDValue(); 4820 4821 if (DstAlignCanChange) { 4822 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4823 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4824 4825 // Don't promote to an alignment that would require dynamic stack 4826 // realignment. 4827 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4828 if (!TRI->needsStackRealignment(MF)) 4829 while (NewAlign > Align && 4830 DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign)) 4831 NewAlign /= 2; 4832 4833 if (NewAlign > Align) { 4834 // Give the stack frame object a larger alignment if needed. 4835 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4836 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4837 Align = NewAlign; 4838 } 4839 } 4840 4841 MachineMemOperand::Flags MMOFlags = 4842 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4843 SmallVector<SDValue, 8> OutChains; 4844 unsigned NumMemOps = MemOps.size(); 4845 uint64_t SrcOff = 0, DstOff = 0; 4846 for (unsigned i = 0; i != NumMemOps; ++i) { 4847 EVT VT = MemOps[i]; 4848 unsigned VTSize = VT.getSizeInBits() / 8; 4849 SDValue Value, Store; 4850 4851 if (VTSize > Size) { 4852 // Issuing an unaligned load / store pair that overlaps with the previous 4853 // pair. Adjust the offset accordingly. 4854 assert(i == NumMemOps-1 && i != 0); 4855 SrcOff -= VTSize - Size; 4856 DstOff -= VTSize - Size; 4857 } 4858 4859 if (CopyFromStr && 4860 (isZeroStr || (VT.isInteger() && !VT.isVector()))) { 4861 // It's unlikely a store of a vector immediate can be done in a single 4862 // instruction. It would require a load from a constantpool first. 4863 // We only handle zero vectors here. 4864 // FIXME: Handle other cases where store of vector immediate is done in 4865 // a single instruction. 4866 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); 4867 if (Value.getNode()) 4868 Store = DAG.getStore(Chain, dl, Value, 4869 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4870 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4871 } 4872 4873 if (!Store.getNode()) { 4874 // The type might not be legal for the target. This should only happen 4875 // if the type is smaller than a legal type, as on PPC, so the right 4876 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 4877 // to Load/Store if NVT==VT. 4878 // FIXME does the case above also need this? 4879 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 4880 assert(NVT.bitsGE(VT)); 4881 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 4882 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4883 SrcPtrInfo.getWithOffset(SrcOff), VT, 4884 MinAlign(SrcAlign, SrcOff), MMOFlags); 4885 OutChains.push_back(Value.getValue(1)); 4886 Store = DAG.getTruncStore( 4887 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4888 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 4889 } 4890 OutChains.push_back(Store); 4891 SrcOff += VTSize; 4892 DstOff += VTSize; 4893 Size -= VTSize; 4894 } 4895 4896 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4897 } 4898 4899 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4900 SDValue Chain, SDValue Dst, SDValue Src, 4901 uint64_t Size, unsigned Align, 4902 bool isVol, bool AlwaysInline, 4903 MachinePointerInfo DstPtrInfo, 4904 MachinePointerInfo SrcPtrInfo) { 4905 // Turn a memmove of undef to nop. 4906 if (Src.isUndef()) 4907 return Chain; 4908 4909 // Expand memmove to a series of load and store ops if the size operand falls 4910 // below a certain threshold. 4911 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4912 std::vector<EVT> MemOps; 4913 bool DstAlignCanChange = false; 4914 MachineFunction &MF = DAG.getMachineFunction(); 4915 MachineFrameInfo &MFI = MF.getFrameInfo(); 4916 bool OptSize = shouldLowerMemFuncForSize(MF); 4917 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4918 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4919 DstAlignCanChange = true; 4920 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4921 if (Align > SrcAlign) 4922 SrcAlign = Align; 4923 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 4924 4925 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4926 (DstAlignCanChange ? 0 : Align), SrcAlign, 4927 false, false, false, false, 4928 DstPtrInfo.getAddrSpace(), 4929 SrcPtrInfo.getAddrSpace(), 4930 DAG, TLI)) 4931 return SDValue(); 4932 4933 if (DstAlignCanChange) { 4934 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4935 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4936 if (NewAlign > Align) { 4937 // Give the stack frame object a larger alignment if needed. 4938 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4939 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4940 Align = NewAlign; 4941 } 4942 } 4943 4944 MachineMemOperand::Flags MMOFlags = 4945 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4946 uint64_t SrcOff = 0, DstOff = 0; 4947 SmallVector<SDValue, 8> LoadValues; 4948 SmallVector<SDValue, 8> LoadChains; 4949 SmallVector<SDValue, 8> OutChains; 4950 unsigned NumMemOps = MemOps.size(); 4951 for (unsigned i = 0; i < NumMemOps; i++) { 4952 EVT VT = MemOps[i]; 4953 unsigned VTSize = VT.getSizeInBits() / 8; 4954 SDValue Value; 4955 4956 Value = 4957 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4958 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags); 4959 LoadValues.push_back(Value); 4960 LoadChains.push_back(Value.getValue(1)); 4961 SrcOff += VTSize; 4962 } 4963 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 4964 OutChains.clear(); 4965 for (unsigned i = 0; i < NumMemOps; i++) { 4966 EVT VT = MemOps[i]; 4967 unsigned VTSize = VT.getSizeInBits() / 8; 4968 SDValue Store; 4969 4970 Store = DAG.getStore(Chain, dl, LoadValues[i], 4971 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4972 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4973 OutChains.push_back(Store); 4974 DstOff += VTSize; 4975 } 4976 4977 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4978 } 4979 4980 /// \brief Lower the call to 'memset' intrinsic function into a series of store 4981 /// operations. 4982 /// 4983 /// \param DAG Selection DAG where lowered code is placed. 4984 /// \param dl Link to corresponding IR location. 4985 /// \param Chain Control flow dependency. 4986 /// \param Dst Pointer to destination memory location. 4987 /// \param Src Value of byte to write into the memory. 4988 /// \param Size Number of bytes to write. 4989 /// \param Align Alignment of the destination in bytes. 4990 /// \param isVol True if destination is volatile. 4991 /// \param DstPtrInfo IR information on the memory pointer. 4992 /// \returns New head in the control flow, if lowering was successful, empty 4993 /// SDValue otherwise. 4994 /// 4995 /// The function tries to replace 'llvm.memset' intrinsic with several store 4996 /// operations and value calculation code. This is usually profitable for small 4997 /// memory size. 4998 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 4999 SDValue Chain, SDValue Dst, SDValue Src, 5000 uint64_t Size, unsigned Align, bool isVol, 5001 MachinePointerInfo DstPtrInfo) { 5002 // Turn a memset of undef to nop. 5003 if (Src.isUndef()) 5004 return Chain; 5005 5006 // Expand memset to a series of load/store ops if the size operand 5007 // falls below a certain threshold. 5008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5009 std::vector<EVT> MemOps; 5010 bool DstAlignCanChange = false; 5011 MachineFunction &MF = DAG.getMachineFunction(); 5012 MachineFrameInfo &MFI = MF.getFrameInfo(); 5013 bool OptSize = shouldLowerMemFuncForSize(MF); 5014 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5015 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5016 DstAlignCanChange = true; 5017 bool IsZeroVal = 5018 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 5019 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 5020 Size, (DstAlignCanChange ? 0 : Align), 0, 5021 true, IsZeroVal, false, true, 5022 DstPtrInfo.getAddrSpace(), ~0u, 5023 DAG, TLI)) 5024 return SDValue(); 5025 5026 if (DstAlignCanChange) { 5027 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 5028 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 5029 if (NewAlign > Align) { 5030 // Give the stack frame object a larger alignment if needed. 5031 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5032 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5033 Align = NewAlign; 5034 } 5035 } 5036 5037 SmallVector<SDValue, 8> OutChains; 5038 uint64_t DstOff = 0; 5039 unsigned NumMemOps = MemOps.size(); 5040 5041 // Find the largest store and generate the bit pattern for it. 5042 EVT LargestVT = MemOps[0]; 5043 for (unsigned i = 1; i < NumMemOps; i++) 5044 if (MemOps[i].bitsGT(LargestVT)) 5045 LargestVT = MemOps[i]; 5046 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 5047 5048 for (unsigned i = 0; i < NumMemOps; i++) { 5049 EVT VT = MemOps[i]; 5050 unsigned VTSize = VT.getSizeInBits() / 8; 5051 if (VTSize > Size) { 5052 // Issuing an unaligned load / store pair that overlaps with the previous 5053 // pair. Adjust the offset accordingly. 5054 assert(i == NumMemOps-1 && i != 0); 5055 DstOff -= VTSize - Size; 5056 } 5057 5058 // If this store is smaller than the largest store see whether we can get 5059 // the smaller value for free with a truncate. 5060 SDValue Value = MemSetValue; 5061 if (VT.bitsLT(LargestVT)) { 5062 if (!LargestVT.isVector() && !VT.isVector() && 5063 TLI.isTruncateFree(LargestVT, VT)) 5064 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 5065 else 5066 Value = getMemsetValue(Src, VT, DAG, dl); 5067 } 5068 assert(Value.getValueType() == VT && "Value with wrong type."); 5069 SDValue Store = DAG.getStore( 5070 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5071 DstPtrInfo.getWithOffset(DstOff), Align, 5072 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 5073 OutChains.push_back(Store); 5074 DstOff += VT.getSizeInBits() / 8; 5075 Size -= VTSize; 5076 } 5077 5078 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5079 } 5080 5081 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 5082 unsigned AS) { 5083 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 5084 // pointer operands can be losslessly bitcasted to pointers of address space 0 5085 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 5086 report_fatal_error("cannot lower memory intrinsic in address space " + 5087 Twine(AS)); 5088 } 5089 } 5090 5091 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 5092 SDValue Src, SDValue Size, unsigned Align, 5093 bool isVol, bool AlwaysInline, bool isTailCall, 5094 MachinePointerInfo DstPtrInfo, 5095 MachinePointerInfo SrcPtrInfo) { 5096 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5097 5098 // Check to see if we should lower the memcpy to loads and stores first. 5099 // For cases within the target-specified limits, this is the best choice. 5100 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5101 if (ConstantSize) { 5102 // Memcpy with size zero? Just return the original chain. 5103 if (ConstantSize->isNullValue()) 5104 return Chain; 5105 5106 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5107 ConstantSize->getZExtValue(),Align, 5108 isVol, false, DstPtrInfo, SrcPtrInfo); 5109 if (Result.getNode()) 5110 return Result; 5111 } 5112 5113 // Then check to see if we should lower the memcpy with target-specific 5114 // code. If the target chooses to do this, this is the next best. 5115 if (TSI) { 5116 SDValue Result = TSI->EmitTargetCodeForMemcpy( 5117 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 5118 DstPtrInfo, SrcPtrInfo); 5119 if (Result.getNode()) 5120 return Result; 5121 } 5122 5123 // If we really need inline code and the target declined to provide it, 5124 // use a (potentially long) sequence of loads and stores. 5125 if (AlwaysInline) { 5126 assert(ConstantSize && "AlwaysInline requires a constant size!"); 5127 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 5128 ConstantSize->getZExtValue(), Align, isVol, 5129 true, DstPtrInfo, SrcPtrInfo); 5130 } 5131 5132 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5133 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5134 5135 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 5136 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 5137 // respect volatile, so they may do things like read or write memory 5138 // beyond the given memory regions. But fixing this isn't easy, and most 5139 // people don't care. 5140 5141 // Emit a library call. 5142 TargetLowering::ArgListTy Args; 5143 TargetLowering::ArgListEntry Entry; 5144 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5145 Entry.Node = Dst; Args.push_back(Entry); 5146 Entry.Node = Src; Args.push_back(Entry); 5147 Entry.Node = Size; Args.push_back(Entry); 5148 // FIXME: pass in SDLoc 5149 TargetLowering::CallLoweringInfo CLI(*this); 5150 CLI.setDebugLoc(dl) 5151 .setChain(Chain) 5152 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 5153 Dst.getValueType().getTypeForEVT(*getContext()), 5154 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 5155 TLI->getPointerTy(getDataLayout())), 5156 std::move(Args)) 5157 .setDiscardResult() 5158 .setTailCall(isTailCall); 5159 5160 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5161 return CallResult.second; 5162 } 5163 5164 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 5165 SDValue Src, SDValue Size, unsigned Align, 5166 bool isVol, bool isTailCall, 5167 MachinePointerInfo DstPtrInfo, 5168 MachinePointerInfo SrcPtrInfo) { 5169 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5170 5171 // Check to see if we should lower the memmove to loads and stores first. 5172 // For cases within the target-specified limits, this is the best choice. 5173 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5174 if (ConstantSize) { 5175 // Memmove with size zero? Just return the original chain. 5176 if (ConstantSize->isNullValue()) 5177 return Chain; 5178 5179 SDValue Result = 5180 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 5181 ConstantSize->getZExtValue(), Align, isVol, 5182 false, DstPtrInfo, SrcPtrInfo); 5183 if (Result.getNode()) 5184 return Result; 5185 } 5186 5187 // Then check to see if we should lower the memmove with target-specific 5188 // code. If the target chooses to do this, this is the next best. 5189 if (TSI) { 5190 SDValue Result = TSI->EmitTargetCodeForMemmove( 5191 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 5192 if (Result.getNode()) 5193 return Result; 5194 } 5195 5196 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5197 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 5198 5199 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 5200 // not be safe. See memcpy above for more details. 5201 5202 // Emit a library call. 5203 TargetLowering::ArgListTy Args; 5204 TargetLowering::ArgListEntry Entry; 5205 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 5206 Entry.Node = Dst; Args.push_back(Entry); 5207 Entry.Node = Src; Args.push_back(Entry); 5208 Entry.Node = Size; Args.push_back(Entry); 5209 // FIXME: pass in SDLoc 5210 TargetLowering::CallLoweringInfo CLI(*this); 5211 CLI.setDebugLoc(dl) 5212 .setChain(Chain) 5213 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 5214 Dst.getValueType().getTypeForEVT(*getContext()), 5215 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 5216 TLI->getPointerTy(getDataLayout())), 5217 std::move(Args)) 5218 .setDiscardResult() 5219 .setTailCall(isTailCall); 5220 5221 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5222 return CallResult.second; 5223 } 5224 5225 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 5226 SDValue Src, SDValue Size, unsigned Align, 5227 bool isVol, bool isTailCall, 5228 MachinePointerInfo DstPtrInfo) { 5229 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 5230 5231 // Check to see if we should lower the memset to stores first. 5232 // For cases within the target-specified limits, this is the best choice. 5233 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 5234 if (ConstantSize) { 5235 // Memset with size zero? Just return the original chain. 5236 if (ConstantSize->isNullValue()) 5237 return Chain; 5238 5239 SDValue Result = 5240 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 5241 Align, isVol, DstPtrInfo); 5242 5243 if (Result.getNode()) 5244 return Result; 5245 } 5246 5247 // Then check to see if we should lower the memset with target-specific 5248 // code. If the target chooses to do this, this is the next best. 5249 if (TSI) { 5250 SDValue Result = TSI->EmitTargetCodeForMemset( 5251 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 5252 if (Result.getNode()) 5253 return Result; 5254 } 5255 5256 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 5257 5258 // Emit a library call. 5259 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 5260 TargetLowering::ArgListTy Args; 5261 TargetLowering::ArgListEntry Entry; 5262 Entry.Node = Dst; Entry.Ty = IntPtrTy; 5263 Args.push_back(Entry); 5264 Entry.Node = Src; 5265 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 5266 Args.push_back(Entry); 5267 Entry.Node = Size; 5268 Entry.Ty = IntPtrTy; 5269 Args.push_back(Entry); 5270 5271 // FIXME: pass in SDLoc 5272 TargetLowering::CallLoweringInfo CLI(*this); 5273 CLI.setDebugLoc(dl) 5274 .setChain(Chain) 5275 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 5276 Dst.getValueType().getTypeForEVT(*getContext()), 5277 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 5278 TLI->getPointerTy(getDataLayout())), 5279 std::move(Args)) 5280 .setDiscardResult() 5281 .setTailCall(isTailCall); 5282 5283 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 5284 return CallResult.second; 5285 } 5286 5287 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5288 SDVTList VTList, ArrayRef<SDValue> Ops, 5289 MachineMemOperand *MMO) { 5290 FoldingSetNodeID ID; 5291 ID.AddInteger(MemVT.getRawBits()); 5292 AddNodeIDNode(ID, Opcode, VTList, Ops); 5293 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5294 void* IP = nullptr; 5295 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5296 cast<AtomicSDNode>(E)->refineAlignment(MMO); 5297 return SDValue(E, 0); 5298 } 5299 5300 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5301 VTList, MemVT, MMO); 5302 createOperands(N, Ops); 5303 5304 CSEMap.InsertNode(N, IP); 5305 InsertNode(N); 5306 return SDValue(N, 0); 5307 } 5308 5309 SDValue SelectionDAG::getAtomicCmpSwap( 5310 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 5311 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 5312 unsigned Alignment, AtomicOrdering SuccessOrdering, 5313 AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { 5314 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5315 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5316 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5317 5318 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5319 Alignment = getEVTAlignment(MemVT); 5320 5321 MachineFunction &MF = getMachineFunction(); 5322 5323 // FIXME: Volatile isn't really correct; we should keep track of atomic 5324 // orderings in the memoperand. 5325 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 5326 MachineMemOperand::MOStore; 5327 MachineMemOperand *MMO = 5328 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 5329 AAMDNodes(), nullptr, SynchScope, SuccessOrdering, 5330 FailureOrdering); 5331 5332 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 5333 } 5334 5335 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 5336 EVT MemVT, SDVTList VTs, SDValue Chain, 5337 SDValue Ptr, SDValue Cmp, SDValue Swp, 5338 MachineMemOperand *MMO) { 5339 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 5340 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 5341 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 5342 5343 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 5344 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5345 } 5346 5347 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5348 SDValue Chain, SDValue Ptr, SDValue Val, 5349 const Value *PtrVal, unsigned Alignment, 5350 AtomicOrdering Ordering, 5351 SynchronizationScope SynchScope) { 5352 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5353 Alignment = getEVTAlignment(MemVT); 5354 5355 MachineFunction &MF = getMachineFunction(); 5356 // An atomic store does not load. An atomic load does not store. 5357 // (An atomicrmw obviously both loads and stores.) 5358 // For now, atomics are considered to be volatile always, and they are 5359 // chained as such. 5360 // FIXME: Volatile isn't really correct; we should keep track of atomic 5361 // orderings in the memoperand. 5362 auto Flags = MachineMemOperand::MOVolatile; 5363 if (Opcode != ISD::ATOMIC_STORE) 5364 Flags |= MachineMemOperand::MOLoad; 5365 if (Opcode != ISD::ATOMIC_LOAD) 5366 Flags |= MachineMemOperand::MOStore; 5367 5368 MachineMemOperand *MMO = 5369 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5370 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5371 nullptr, SynchScope, Ordering); 5372 5373 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5374 } 5375 5376 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5377 SDValue Chain, SDValue Ptr, SDValue Val, 5378 MachineMemOperand *MMO) { 5379 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5380 Opcode == ISD::ATOMIC_LOAD_SUB || 5381 Opcode == ISD::ATOMIC_LOAD_AND || 5382 Opcode == ISD::ATOMIC_LOAD_OR || 5383 Opcode == ISD::ATOMIC_LOAD_XOR || 5384 Opcode == ISD::ATOMIC_LOAD_NAND || 5385 Opcode == ISD::ATOMIC_LOAD_MIN || 5386 Opcode == ISD::ATOMIC_LOAD_MAX || 5387 Opcode == ISD::ATOMIC_LOAD_UMIN || 5388 Opcode == ISD::ATOMIC_LOAD_UMAX || 5389 Opcode == ISD::ATOMIC_SWAP || 5390 Opcode == ISD::ATOMIC_STORE) && 5391 "Invalid Atomic Op"); 5392 5393 EVT VT = Val.getValueType(); 5394 5395 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5396 getVTList(VT, MVT::Other); 5397 SDValue Ops[] = {Chain, Ptr, Val}; 5398 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5399 } 5400 5401 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5402 EVT VT, SDValue Chain, SDValue Ptr, 5403 MachineMemOperand *MMO) { 5404 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5405 5406 SDVTList VTs = getVTList(VT, MVT::Other); 5407 SDValue Ops[] = {Chain, Ptr}; 5408 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5409 } 5410 5411 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5412 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5413 if (Ops.size() == 1) 5414 return Ops[0]; 5415 5416 SmallVector<EVT, 4> VTs; 5417 VTs.reserve(Ops.size()); 5418 for (unsigned i = 0; i < Ops.size(); ++i) 5419 VTs.push_back(Ops[i].getValueType()); 5420 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5421 } 5422 5423 SDValue SelectionDAG::getMemIntrinsicNode( 5424 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5425 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 5426 bool ReadMem, bool WriteMem, unsigned Size) { 5427 if (Align == 0) // Ensure that codegen never sees alignment 0 5428 Align = getEVTAlignment(MemVT); 5429 5430 MachineFunction &MF = getMachineFunction(); 5431 auto Flags = MachineMemOperand::MONone; 5432 if (WriteMem) 5433 Flags |= MachineMemOperand::MOStore; 5434 if (ReadMem) 5435 Flags |= MachineMemOperand::MOLoad; 5436 if (Vol) 5437 Flags |= MachineMemOperand::MOVolatile; 5438 if (!Size) 5439 Size = MemVT.getStoreSize(); 5440 MachineMemOperand *MMO = 5441 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5442 5443 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5444 } 5445 5446 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5447 SDVTList VTList, 5448 ArrayRef<SDValue> Ops, EVT MemVT, 5449 MachineMemOperand *MMO) { 5450 assert((Opcode == ISD::INTRINSIC_VOID || 5451 Opcode == ISD::INTRINSIC_W_CHAIN || 5452 Opcode == ISD::PREFETCH || 5453 Opcode == ISD::LIFETIME_START || 5454 Opcode == ISD::LIFETIME_END || 5455 (Opcode <= INT_MAX && 5456 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5457 "Opcode is not a memory-accessing opcode!"); 5458 5459 // Memoize the node unless it returns a flag. 5460 MemIntrinsicSDNode *N; 5461 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5462 FoldingSetNodeID ID; 5463 AddNodeIDNode(ID, Opcode, VTList, Ops); 5464 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5465 void *IP = nullptr; 5466 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5467 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5468 return SDValue(E, 0); 5469 } 5470 5471 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5472 VTList, MemVT, MMO); 5473 createOperands(N, Ops); 5474 5475 CSEMap.InsertNode(N, IP); 5476 } else { 5477 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5478 VTList, MemVT, MMO); 5479 createOperands(N, Ops); 5480 } 5481 InsertNode(N); 5482 return SDValue(N, 0); 5483 } 5484 5485 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5486 /// MachinePointerInfo record from it. This is particularly useful because the 5487 /// code generator has many cases where it doesn't bother passing in a 5488 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5489 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5490 int64_t Offset = 0) { 5491 // If this is FI+Offset, we can model it. 5492 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5493 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5494 FI->getIndex(), Offset); 5495 5496 // If this is (FI+Offset1)+Offset2, we can model it. 5497 if (Ptr.getOpcode() != ISD::ADD || 5498 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5499 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5500 return MachinePointerInfo(); 5501 5502 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5503 return MachinePointerInfo::getFixedStack( 5504 DAG.getMachineFunction(), FI, 5505 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5506 } 5507 5508 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5509 /// MachinePointerInfo record from it. This is particularly useful because the 5510 /// code generator has many cases where it doesn't bother passing in a 5511 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5512 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5513 SDValue OffsetOp) { 5514 // If the 'Offset' value isn't a constant, we can't handle this. 5515 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5516 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5517 if (OffsetOp.isUndef()) 5518 return InferPointerInfo(DAG, Ptr); 5519 return MachinePointerInfo(); 5520 } 5521 5522 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5523 EVT VT, const SDLoc &dl, SDValue Chain, 5524 SDValue Ptr, SDValue Offset, 5525 MachinePointerInfo PtrInfo, EVT MemVT, 5526 unsigned Alignment, 5527 MachineMemOperand::Flags MMOFlags, 5528 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5529 assert(Chain.getValueType() == MVT::Other && 5530 "Invalid chain type"); 5531 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5532 Alignment = getEVTAlignment(MemVT); 5533 5534 MMOFlags |= MachineMemOperand::MOLoad; 5535 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5536 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5537 // clients. 5538 if (PtrInfo.V.isNull()) 5539 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5540 5541 MachineFunction &MF = getMachineFunction(); 5542 MachineMemOperand *MMO = MF.getMachineMemOperand( 5543 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5544 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5545 } 5546 5547 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5548 EVT VT, const SDLoc &dl, SDValue Chain, 5549 SDValue Ptr, SDValue Offset, EVT MemVT, 5550 MachineMemOperand *MMO) { 5551 if (VT == MemVT) { 5552 ExtType = ISD::NON_EXTLOAD; 5553 } else if (ExtType == ISD::NON_EXTLOAD) { 5554 assert(VT == MemVT && "Non-extending load from different memory type!"); 5555 } else { 5556 // Extending load. 5557 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5558 "Should only be an extending load, not truncating!"); 5559 assert(VT.isInteger() == MemVT.isInteger() && 5560 "Cannot convert from FP to Int or Int -> FP!"); 5561 assert(VT.isVector() == MemVT.isVector() && 5562 "Cannot use an ext load to convert to or from a vector!"); 5563 assert((!VT.isVector() || 5564 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5565 "Cannot use an ext load to change the number of vector elements!"); 5566 } 5567 5568 bool Indexed = AM != ISD::UNINDEXED; 5569 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5570 5571 SDVTList VTs = Indexed ? 5572 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5573 SDValue Ops[] = { Chain, Ptr, Offset }; 5574 FoldingSetNodeID ID; 5575 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5576 ID.AddInteger(MemVT.getRawBits()); 5577 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5578 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5579 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5580 void *IP = nullptr; 5581 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5582 cast<LoadSDNode>(E)->refineAlignment(MMO); 5583 return SDValue(E, 0); 5584 } 5585 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5586 ExtType, MemVT, MMO); 5587 createOperands(N, Ops); 5588 5589 CSEMap.InsertNode(N, IP); 5590 InsertNode(N); 5591 return SDValue(N, 0); 5592 } 5593 5594 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5595 SDValue Ptr, MachinePointerInfo PtrInfo, 5596 unsigned Alignment, 5597 MachineMemOperand::Flags MMOFlags, 5598 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5599 SDValue Undef = getUNDEF(Ptr.getValueType()); 5600 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5601 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5602 } 5603 5604 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5605 SDValue Ptr, MachineMemOperand *MMO) { 5606 SDValue Undef = getUNDEF(Ptr.getValueType()); 5607 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5608 VT, MMO); 5609 } 5610 5611 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5612 EVT VT, SDValue Chain, SDValue Ptr, 5613 MachinePointerInfo PtrInfo, EVT MemVT, 5614 unsigned Alignment, 5615 MachineMemOperand::Flags MMOFlags, 5616 const AAMDNodes &AAInfo) { 5617 SDValue Undef = getUNDEF(Ptr.getValueType()); 5618 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5619 MemVT, Alignment, MMOFlags, AAInfo); 5620 } 5621 5622 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5623 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5624 MachineMemOperand *MMO) { 5625 SDValue Undef = getUNDEF(Ptr.getValueType()); 5626 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5627 MemVT, MMO); 5628 } 5629 5630 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5631 SDValue Base, SDValue Offset, 5632 ISD::MemIndexedMode AM) { 5633 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5634 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5635 // Don't propagate the invariant or dereferenceable flags. 5636 auto MMOFlags = 5637 LD->getMemOperand()->getFlags() & 5638 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5639 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5640 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5641 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5642 LD->getAAInfo()); 5643 } 5644 5645 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5646 SDValue Ptr, MachinePointerInfo PtrInfo, 5647 unsigned Alignment, 5648 MachineMemOperand::Flags MMOFlags, 5649 const AAMDNodes &AAInfo) { 5650 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5651 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5652 Alignment = getEVTAlignment(Val.getValueType()); 5653 5654 MMOFlags |= MachineMemOperand::MOStore; 5655 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5656 5657 if (PtrInfo.V.isNull()) 5658 PtrInfo = InferPointerInfo(*this, Ptr); 5659 5660 MachineFunction &MF = getMachineFunction(); 5661 MachineMemOperand *MMO = MF.getMachineMemOperand( 5662 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5663 return getStore(Chain, dl, Val, Ptr, MMO); 5664 } 5665 5666 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5667 SDValue Ptr, MachineMemOperand *MMO) { 5668 assert(Chain.getValueType() == MVT::Other && 5669 "Invalid chain type"); 5670 EVT VT = Val.getValueType(); 5671 SDVTList VTs = getVTList(MVT::Other); 5672 SDValue Undef = getUNDEF(Ptr.getValueType()); 5673 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5674 FoldingSetNodeID ID; 5675 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5676 ID.AddInteger(VT.getRawBits()); 5677 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5678 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 5679 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5680 void *IP = nullptr; 5681 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5682 cast<StoreSDNode>(E)->refineAlignment(MMO); 5683 return SDValue(E, 0); 5684 } 5685 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5686 ISD::UNINDEXED, false, VT, MMO); 5687 createOperands(N, Ops); 5688 5689 CSEMap.InsertNode(N, IP); 5690 InsertNode(N); 5691 return SDValue(N, 0); 5692 } 5693 5694 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5695 SDValue Ptr, MachinePointerInfo PtrInfo, 5696 EVT SVT, unsigned Alignment, 5697 MachineMemOperand::Flags MMOFlags, 5698 const AAMDNodes &AAInfo) { 5699 assert(Chain.getValueType() == MVT::Other && 5700 "Invalid chain type"); 5701 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5702 Alignment = getEVTAlignment(SVT); 5703 5704 MMOFlags |= MachineMemOperand::MOStore; 5705 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5706 5707 if (PtrInfo.V.isNull()) 5708 PtrInfo = InferPointerInfo(*this, Ptr); 5709 5710 MachineFunction &MF = getMachineFunction(); 5711 MachineMemOperand *MMO = MF.getMachineMemOperand( 5712 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 5713 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5714 } 5715 5716 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5717 SDValue Ptr, EVT SVT, 5718 MachineMemOperand *MMO) { 5719 EVT VT = Val.getValueType(); 5720 5721 assert(Chain.getValueType() == MVT::Other && 5722 "Invalid chain type"); 5723 if (VT == SVT) 5724 return getStore(Chain, dl, Val, Ptr, MMO); 5725 5726 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5727 "Should only be a truncating store, not extending!"); 5728 assert(VT.isInteger() == SVT.isInteger() && 5729 "Can't do FP-INT conversion!"); 5730 assert(VT.isVector() == SVT.isVector() && 5731 "Cannot use trunc store to convert to or from a vector!"); 5732 assert((!VT.isVector() || 5733 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5734 "Cannot use trunc store to change the number of vector elements!"); 5735 5736 SDVTList VTs = getVTList(MVT::Other); 5737 SDValue Undef = getUNDEF(Ptr.getValueType()); 5738 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5739 FoldingSetNodeID ID; 5740 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5741 ID.AddInteger(SVT.getRawBits()); 5742 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5743 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 5744 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5745 void *IP = nullptr; 5746 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5747 cast<StoreSDNode>(E)->refineAlignment(MMO); 5748 return SDValue(E, 0); 5749 } 5750 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5751 ISD::UNINDEXED, true, SVT, MMO); 5752 createOperands(N, Ops); 5753 5754 CSEMap.InsertNode(N, IP); 5755 InsertNode(N); 5756 return SDValue(N, 0); 5757 } 5758 5759 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5760 SDValue Base, SDValue Offset, 5761 ISD::MemIndexedMode AM) { 5762 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5763 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5764 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5765 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5766 FoldingSetNodeID ID; 5767 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5768 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5769 ID.AddInteger(ST->getRawSubclassData()); 5770 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5771 void *IP = nullptr; 5772 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5773 return SDValue(E, 0); 5774 5775 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5776 ST->isTruncatingStore(), ST->getMemoryVT(), 5777 ST->getMemOperand()); 5778 createOperands(N, Ops); 5779 5780 CSEMap.InsertNode(N, IP); 5781 InsertNode(N); 5782 return SDValue(N, 0); 5783 } 5784 5785 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5786 SDValue Ptr, SDValue Mask, SDValue Src0, 5787 EVT MemVT, MachineMemOperand *MMO, 5788 ISD::LoadExtType ExtTy, bool isExpanding) { 5789 5790 SDVTList VTs = getVTList(VT, MVT::Other); 5791 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5792 FoldingSetNodeID ID; 5793 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5794 ID.AddInteger(VT.getRawBits()); 5795 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 5796 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 5797 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5798 void *IP = nullptr; 5799 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5800 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5801 return SDValue(E, 0); 5802 } 5803 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5804 ExtTy, isExpanding, MemVT, MMO); 5805 createOperands(N, Ops); 5806 5807 CSEMap.InsertNode(N, IP); 5808 InsertNode(N); 5809 return SDValue(N, 0); 5810 } 5811 5812 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5813 SDValue Val, SDValue Ptr, SDValue Mask, 5814 EVT MemVT, MachineMemOperand *MMO, 5815 bool IsTruncating, bool IsCompressing) { 5816 assert(Chain.getValueType() == MVT::Other && 5817 "Invalid chain type"); 5818 EVT VT = Val.getValueType(); 5819 SDVTList VTs = getVTList(MVT::Other); 5820 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 5821 FoldingSetNodeID ID; 5822 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 5823 ID.AddInteger(VT.getRawBits()); 5824 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 5825 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 5826 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5827 void *IP = nullptr; 5828 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5829 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 5830 return SDValue(E, 0); 5831 } 5832 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5833 IsTruncating, IsCompressing, MemVT, MMO); 5834 createOperands(N, Ops); 5835 5836 CSEMap.InsertNode(N, IP); 5837 InsertNode(N); 5838 return SDValue(N, 0); 5839 } 5840 5841 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 5842 ArrayRef<SDValue> Ops, 5843 MachineMemOperand *MMO) { 5844 assert(Ops.size() == 5 && "Incompatible number of operands"); 5845 5846 FoldingSetNodeID ID; 5847 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 5848 ID.AddInteger(VT.getRawBits()); 5849 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 5850 dl.getIROrder(), VTs, VT, MMO)); 5851 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5852 void *IP = nullptr; 5853 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5854 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 5855 return SDValue(E, 0); 5856 } 5857 5858 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5859 VTs, VT, MMO); 5860 createOperands(N, Ops); 5861 5862 assert(N->getValue().getValueType() == N->getValueType(0) && 5863 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 5864 assert(N->getMask().getValueType().getVectorNumElements() == 5865 N->getValueType(0).getVectorNumElements() && 5866 "Vector width mismatch between mask and data"); 5867 assert(N->getIndex().getValueType().getVectorNumElements() == 5868 N->getValueType(0).getVectorNumElements() && 5869 "Vector width mismatch between index and data"); 5870 5871 CSEMap.InsertNode(N, IP); 5872 InsertNode(N); 5873 return SDValue(N, 0); 5874 } 5875 5876 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 5877 ArrayRef<SDValue> Ops, 5878 MachineMemOperand *MMO) { 5879 assert(Ops.size() == 5 && "Incompatible number of operands"); 5880 5881 FoldingSetNodeID ID; 5882 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 5883 ID.AddInteger(VT.getRawBits()); 5884 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 5885 dl.getIROrder(), VTs, VT, MMO)); 5886 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5887 void *IP = nullptr; 5888 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5889 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 5890 return SDValue(E, 0); 5891 } 5892 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5893 VTs, VT, MMO); 5894 createOperands(N, Ops); 5895 5896 assert(N->getMask().getValueType().getVectorNumElements() == 5897 N->getValue().getValueType().getVectorNumElements() && 5898 "Vector width mismatch between mask and data"); 5899 assert(N->getIndex().getValueType().getVectorNumElements() == 5900 N->getValue().getValueType().getVectorNumElements() && 5901 "Vector width mismatch between index and data"); 5902 5903 CSEMap.InsertNode(N, IP); 5904 InsertNode(N); 5905 return SDValue(N, 0); 5906 } 5907 5908 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 5909 SDValue Ptr, SDValue SV, unsigned Align) { 5910 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 5911 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 5912 } 5913 5914 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5915 ArrayRef<SDUse> Ops) { 5916 switch (Ops.size()) { 5917 case 0: return getNode(Opcode, DL, VT); 5918 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 5919 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 5920 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5921 default: break; 5922 } 5923 5924 // Copy from an SDUse array into an SDValue array for use with 5925 // the regular getNode logic. 5926 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 5927 return getNode(Opcode, DL, VT, NewOps); 5928 } 5929 5930 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5931 ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) { 5932 unsigned NumOps = Ops.size(); 5933 switch (NumOps) { 5934 case 0: return getNode(Opcode, DL, VT); 5935 case 1: return getNode(Opcode, DL, VT, Ops[0]); 5936 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 5937 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5938 default: break; 5939 } 5940 5941 switch (Opcode) { 5942 default: break; 5943 case ISD::CONCAT_VECTORS: { 5944 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5945 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5946 return V; 5947 break; 5948 } 5949 case ISD::SELECT_CC: { 5950 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 5951 assert(Ops[0].getValueType() == Ops[1].getValueType() && 5952 "LHS and RHS of condition must have same type!"); 5953 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5954 "True and False arms of SelectCC must have same type!"); 5955 assert(Ops[2].getValueType() == VT && 5956 "select_cc node must be of same type as true and false value!"); 5957 break; 5958 } 5959 case ISD::BR_CC: { 5960 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 5961 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5962 "LHS/RHS of comparison should match types!"); 5963 break; 5964 } 5965 } 5966 5967 // Memoize nodes. 5968 SDNode *N; 5969 SDVTList VTs = getVTList(VT); 5970 5971 if (VT != MVT::Glue) { 5972 FoldingSetNodeID ID; 5973 AddNodeIDNode(ID, Opcode, VTs, Ops); 5974 void *IP = nullptr; 5975 5976 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5977 return SDValue(E, 0); 5978 5979 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5980 createOperands(N, Ops); 5981 5982 CSEMap.InsertNode(N, IP); 5983 } else { 5984 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5985 createOperands(N, Ops); 5986 } 5987 5988 InsertNode(N); 5989 return SDValue(N, 0); 5990 } 5991 5992 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5993 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 5994 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 5995 } 5996 5997 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5998 ArrayRef<SDValue> Ops) { 5999 if (VTList.NumVTs == 1) 6000 return getNode(Opcode, DL, VTList.VTs[0], Ops); 6001 6002 #if 0 6003 switch (Opcode) { 6004 // FIXME: figure out how to safely handle things like 6005 // int foo(int x) { return 1 << (x & 255); } 6006 // int bar() { return foo(256); } 6007 case ISD::SRA_PARTS: 6008 case ISD::SRL_PARTS: 6009 case ISD::SHL_PARTS: 6010 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 6011 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 6012 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6013 else if (N3.getOpcode() == ISD::AND) 6014 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 6015 // If the and is only masking out bits that cannot effect the shift, 6016 // eliminate the and. 6017 unsigned NumBits = VT.getScalarSizeInBits()*2; 6018 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 6019 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 6020 } 6021 break; 6022 } 6023 #endif 6024 6025 // Memoize the node unless it returns a flag. 6026 SDNode *N; 6027 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6028 FoldingSetNodeID ID; 6029 AddNodeIDNode(ID, Opcode, VTList, Ops); 6030 void *IP = nullptr; 6031 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6032 return SDValue(E, 0); 6033 6034 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6035 createOperands(N, Ops); 6036 CSEMap.InsertNode(N, IP); 6037 } else { 6038 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 6039 createOperands(N, Ops); 6040 } 6041 InsertNode(N); 6042 return SDValue(N, 0); 6043 } 6044 6045 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 6046 SDVTList VTList) { 6047 return getNode(Opcode, DL, VTList, None); 6048 } 6049 6050 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6051 SDValue N1) { 6052 SDValue Ops[] = { N1 }; 6053 return getNode(Opcode, DL, VTList, Ops); 6054 } 6055 6056 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6057 SDValue N1, SDValue N2) { 6058 SDValue Ops[] = { N1, N2 }; 6059 return getNode(Opcode, DL, VTList, Ops); 6060 } 6061 6062 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6063 SDValue N1, SDValue N2, SDValue N3) { 6064 SDValue Ops[] = { N1, N2, N3 }; 6065 return getNode(Opcode, DL, VTList, Ops); 6066 } 6067 6068 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6069 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6070 SDValue Ops[] = { N1, N2, N3, N4 }; 6071 return getNode(Opcode, DL, VTList, Ops); 6072 } 6073 6074 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 6075 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6076 SDValue N5) { 6077 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6078 return getNode(Opcode, DL, VTList, Ops); 6079 } 6080 6081 SDVTList SelectionDAG::getVTList(EVT VT) { 6082 return makeVTList(SDNode::getValueTypeList(VT), 1); 6083 } 6084 6085 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 6086 FoldingSetNodeID ID; 6087 ID.AddInteger(2U); 6088 ID.AddInteger(VT1.getRawBits()); 6089 ID.AddInteger(VT2.getRawBits()); 6090 6091 void *IP = nullptr; 6092 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6093 if (!Result) { 6094 EVT *Array = Allocator.Allocate<EVT>(2); 6095 Array[0] = VT1; 6096 Array[1] = VT2; 6097 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 6098 VTListMap.InsertNode(Result, IP); 6099 } 6100 return Result->getSDVTList(); 6101 } 6102 6103 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 6104 FoldingSetNodeID ID; 6105 ID.AddInteger(3U); 6106 ID.AddInteger(VT1.getRawBits()); 6107 ID.AddInteger(VT2.getRawBits()); 6108 ID.AddInteger(VT3.getRawBits()); 6109 6110 void *IP = nullptr; 6111 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6112 if (!Result) { 6113 EVT *Array = Allocator.Allocate<EVT>(3); 6114 Array[0] = VT1; 6115 Array[1] = VT2; 6116 Array[2] = VT3; 6117 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 6118 VTListMap.InsertNode(Result, IP); 6119 } 6120 return Result->getSDVTList(); 6121 } 6122 6123 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 6124 FoldingSetNodeID ID; 6125 ID.AddInteger(4U); 6126 ID.AddInteger(VT1.getRawBits()); 6127 ID.AddInteger(VT2.getRawBits()); 6128 ID.AddInteger(VT3.getRawBits()); 6129 ID.AddInteger(VT4.getRawBits()); 6130 6131 void *IP = nullptr; 6132 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6133 if (!Result) { 6134 EVT *Array = Allocator.Allocate<EVT>(4); 6135 Array[0] = VT1; 6136 Array[1] = VT2; 6137 Array[2] = VT3; 6138 Array[3] = VT4; 6139 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 6140 VTListMap.InsertNode(Result, IP); 6141 } 6142 return Result->getSDVTList(); 6143 } 6144 6145 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 6146 unsigned NumVTs = VTs.size(); 6147 FoldingSetNodeID ID; 6148 ID.AddInteger(NumVTs); 6149 for (unsigned index = 0; index < NumVTs; index++) { 6150 ID.AddInteger(VTs[index].getRawBits()); 6151 } 6152 6153 void *IP = nullptr; 6154 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 6155 if (!Result) { 6156 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 6157 std::copy(VTs.begin(), VTs.end(), Array); 6158 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 6159 VTListMap.InsertNode(Result, IP); 6160 } 6161 return Result->getSDVTList(); 6162 } 6163 6164 6165 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 6166 /// specified operands. If the resultant node already exists in the DAG, 6167 /// this does not modify the specified node, instead it returns the node that 6168 /// already exists. If the resultant node does not exist in the DAG, the 6169 /// input node is returned. As a degenerate case, if you specify the same 6170 /// input operands as the node already has, the input node is returned. 6171 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 6172 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 6173 6174 // Check to see if there is no change. 6175 if (Op == N->getOperand(0)) return N; 6176 6177 // See if the modified node already exists. 6178 void *InsertPos = nullptr; 6179 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 6180 return Existing; 6181 6182 // Nope it doesn't. Remove the node from its current place in the maps. 6183 if (InsertPos) 6184 if (!RemoveNodeFromCSEMaps(N)) 6185 InsertPos = nullptr; 6186 6187 // Now we update the operands. 6188 N->OperandList[0].set(Op); 6189 6190 // If this gets put into a CSE map, add it. 6191 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6192 return N; 6193 } 6194 6195 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 6196 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 6197 6198 // Check to see if there is no change. 6199 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 6200 return N; // No operands changed, just return the input node. 6201 6202 // See if the modified node already exists. 6203 void *InsertPos = nullptr; 6204 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 6205 return Existing; 6206 6207 // Nope it doesn't. Remove the node from its current place in the maps. 6208 if (InsertPos) 6209 if (!RemoveNodeFromCSEMaps(N)) 6210 InsertPos = nullptr; 6211 6212 // Now we update the operands. 6213 if (N->OperandList[0] != Op1) 6214 N->OperandList[0].set(Op1); 6215 if (N->OperandList[1] != Op2) 6216 N->OperandList[1].set(Op2); 6217 6218 // If this gets put into a CSE map, add it. 6219 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6220 return N; 6221 } 6222 6223 SDNode *SelectionDAG:: 6224 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 6225 SDValue Ops[] = { Op1, Op2, Op3 }; 6226 return UpdateNodeOperands(N, Ops); 6227 } 6228 6229 SDNode *SelectionDAG:: 6230 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6231 SDValue Op3, SDValue Op4) { 6232 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 6233 return UpdateNodeOperands(N, Ops); 6234 } 6235 6236 SDNode *SelectionDAG:: 6237 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 6238 SDValue Op3, SDValue Op4, SDValue Op5) { 6239 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 6240 return UpdateNodeOperands(N, Ops); 6241 } 6242 6243 SDNode *SelectionDAG:: 6244 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 6245 unsigned NumOps = Ops.size(); 6246 assert(N->getNumOperands() == NumOps && 6247 "Update with wrong number of operands"); 6248 6249 // If no operands changed just return the input node. 6250 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 6251 return N; 6252 6253 // See if the modified node already exists. 6254 void *InsertPos = nullptr; 6255 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 6256 return Existing; 6257 6258 // Nope it doesn't. Remove the node from its current place in the maps. 6259 if (InsertPos) 6260 if (!RemoveNodeFromCSEMaps(N)) 6261 InsertPos = nullptr; 6262 6263 // Now we update the operands. 6264 for (unsigned i = 0; i != NumOps; ++i) 6265 if (N->OperandList[i] != Ops[i]) 6266 N->OperandList[i].set(Ops[i]); 6267 6268 // If this gets put into a CSE map, add it. 6269 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 6270 return N; 6271 } 6272 6273 /// DropOperands - Release the operands and set this node to have 6274 /// zero operands. 6275 void SDNode::DropOperands() { 6276 // Unlike the code in MorphNodeTo that does this, we don't need to 6277 // watch for dead nodes here. 6278 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 6279 SDUse &Use = *I++; 6280 Use.set(SDValue()); 6281 } 6282 } 6283 6284 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 6285 /// machine opcode. 6286 /// 6287 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6288 EVT VT) { 6289 SDVTList VTs = getVTList(VT); 6290 return SelectNodeTo(N, MachineOpc, VTs, None); 6291 } 6292 6293 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6294 EVT VT, SDValue Op1) { 6295 SDVTList VTs = getVTList(VT); 6296 SDValue Ops[] = { Op1 }; 6297 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6298 } 6299 6300 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6301 EVT VT, SDValue Op1, 6302 SDValue Op2) { 6303 SDVTList VTs = getVTList(VT); 6304 SDValue Ops[] = { Op1, Op2 }; 6305 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6306 } 6307 6308 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6309 EVT VT, SDValue Op1, 6310 SDValue Op2, SDValue Op3) { 6311 SDVTList VTs = getVTList(VT); 6312 SDValue Ops[] = { Op1, Op2, Op3 }; 6313 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6314 } 6315 6316 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6317 EVT VT, ArrayRef<SDValue> Ops) { 6318 SDVTList VTs = getVTList(VT); 6319 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6320 } 6321 6322 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6323 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 6324 SDVTList VTs = getVTList(VT1, VT2); 6325 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6326 } 6327 6328 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6329 EVT VT1, EVT VT2) { 6330 SDVTList VTs = getVTList(VT1, VT2); 6331 return SelectNodeTo(N, MachineOpc, VTs, None); 6332 } 6333 6334 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6335 EVT VT1, EVT VT2, EVT VT3, 6336 ArrayRef<SDValue> Ops) { 6337 SDVTList VTs = getVTList(VT1, VT2, VT3); 6338 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6339 } 6340 6341 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6342 EVT VT1, EVT VT2, 6343 SDValue Op1, SDValue Op2) { 6344 SDVTList VTs = getVTList(VT1, VT2); 6345 SDValue Ops[] = { Op1, Op2 }; 6346 return SelectNodeTo(N, MachineOpc, VTs, Ops); 6347 } 6348 6349 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6350 SDVTList VTs,ArrayRef<SDValue> Ops) { 6351 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6352 // Reset the NodeID to -1. 6353 New->setNodeId(-1); 6354 if (New != N) { 6355 ReplaceAllUsesWith(N, New); 6356 RemoveDeadNode(N); 6357 } 6358 return New; 6359 } 6360 6361 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 6362 /// the line number information on the merged node since it is not possible to 6363 /// preserve the information that operation is associated with multiple lines. 6364 /// This will make the debugger working better at -O0, were there is a higher 6365 /// probability having other instructions associated with that line. 6366 /// 6367 /// For IROrder, we keep the smaller of the two 6368 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 6369 DebugLoc NLoc = N->getDebugLoc(); 6370 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6371 N->setDebugLoc(DebugLoc()); 6372 } 6373 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6374 N->setIROrder(Order); 6375 return N; 6376 } 6377 6378 /// MorphNodeTo - This *mutates* the specified node to have the specified 6379 /// return type, opcode, and operands. 6380 /// 6381 /// Note that MorphNodeTo returns the resultant node. If there is already a 6382 /// node of the specified opcode and operands, it returns that node instead of 6383 /// the current one. Note that the SDLoc need not be the same. 6384 /// 6385 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6386 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6387 /// node, and because it doesn't require CSE recalculation for any of 6388 /// the node's users. 6389 /// 6390 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6391 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6392 /// the legalizer which maintain worklists that would need to be updated when 6393 /// deleting things. 6394 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6395 SDVTList VTs, ArrayRef<SDValue> Ops) { 6396 // If an identical node already exists, use it. 6397 void *IP = nullptr; 6398 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6399 FoldingSetNodeID ID; 6400 AddNodeIDNode(ID, Opc, VTs, Ops); 6401 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6402 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 6403 } 6404 6405 if (!RemoveNodeFromCSEMaps(N)) 6406 IP = nullptr; 6407 6408 // Start the morphing. 6409 N->NodeType = Opc; 6410 N->ValueList = VTs.VTs; 6411 N->NumValues = VTs.NumVTs; 6412 6413 // Clear the operands list, updating used nodes to remove this from their 6414 // use list. Keep track of any operands that become dead as a result. 6415 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6416 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6417 SDUse &Use = *I++; 6418 SDNode *Used = Use.getNode(); 6419 Use.set(SDValue()); 6420 if (Used->use_empty()) 6421 DeadNodeSet.insert(Used); 6422 } 6423 6424 // For MachineNode, initialize the memory references information. 6425 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6426 MN->setMemRefs(nullptr, nullptr); 6427 6428 // Swap for an appropriately sized array from the recycler. 6429 removeOperands(N); 6430 createOperands(N, Ops); 6431 6432 // Delete any nodes that are still dead after adding the uses for the 6433 // new operands. 6434 if (!DeadNodeSet.empty()) { 6435 SmallVector<SDNode *, 16> DeadNodes; 6436 for (SDNode *N : DeadNodeSet) 6437 if (N->use_empty()) 6438 DeadNodes.push_back(N); 6439 RemoveDeadNodes(DeadNodes); 6440 } 6441 6442 if (IP) 6443 CSEMap.InsertNode(N, IP); // Memoize the new node. 6444 return N; 6445 } 6446 6447 6448 /// getMachineNode - These are used for target selectors to create a new node 6449 /// with specified return type(s), MachineInstr opcode, and operands. 6450 /// 6451 /// Note that getMachineNode returns the resultant node. If there is already a 6452 /// node of the specified opcode and operands, it returns that node instead of 6453 /// the current one. 6454 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6455 EVT VT) { 6456 SDVTList VTs = getVTList(VT); 6457 return getMachineNode(Opcode, dl, VTs, None); 6458 } 6459 6460 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6461 EVT VT, SDValue Op1) { 6462 SDVTList VTs = getVTList(VT); 6463 SDValue Ops[] = { Op1 }; 6464 return getMachineNode(Opcode, dl, VTs, Ops); 6465 } 6466 6467 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6468 EVT VT, SDValue Op1, SDValue Op2) { 6469 SDVTList VTs = getVTList(VT); 6470 SDValue Ops[] = { Op1, Op2 }; 6471 return getMachineNode(Opcode, dl, VTs, Ops); 6472 } 6473 6474 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6475 EVT VT, SDValue Op1, SDValue Op2, 6476 SDValue Op3) { 6477 SDVTList VTs = getVTList(VT); 6478 SDValue Ops[] = { Op1, Op2, Op3 }; 6479 return getMachineNode(Opcode, dl, VTs, Ops); 6480 } 6481 6482 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6483 EVT VT, ArrayRef<SDValue> Ops) { 6484 SDVTList VTs = getVTList(VT); 6485 return getMachineNode(Opcode, dl, VTs, Ops); 6486 } 6487 6488 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6489 EVT VT1, EVT VT2, SDValue Op1, 6490 SDValue Op2) { 6491 SDVTList VTs = getVTList(VT1, VT2); 6492 SDValue Ops[] = { Op1, Op2 }; 6493 return getMachineNode(Opcode, dl, VTs, Ops); 6494 } 6495 6496 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6497 EVT VT1, EVT VT2, SDValue Op1, 6498 SDValue Op2, SDValue Op3) { 6499 SDVTList VTs = getVTList(VT1, VT2); 6500 SDValue Ops[] = { Op1, Op2, Op3 }; 6501 return getMachineNode(Opcode, dl, VTs, Ops); 6502 } 6503 6504 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6505 EVT VT1, EVT VT2, 6506 ArrayRef<SDValue> Ops) { 6507 SDVTList VTs = getVTList(VT1, VT2); 6508 return getMachineNode(Opcode, dl, VTs, Ops); 6509 } 6510 6511 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6512 EVT VT1, EVT VT2, EVT VT3, 6513 SDValue Op1, SDValue Op2) { 6514 SDVTList VTs = getVTList(VT1, VT2, VT3); 6515 SDValue Ops[] = { Op1, Op2 }; 6516 return getMachineNode(Opcode, dl, VTs, Ops); 6517 } 6518 6519 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6520 EVT VT1, EVT VT2, EVT VT3, 6521 SDValue Op1, SDValue Op2, 6522 SDValue Op3) { 6523 SDVTList VTs = getVTList(VT1, VT2, VT3); 6524 SDValue Ops[] = { Op1, Op2, Op3 }; 6525 return getMachineNode(Opcode, dl, VTs, Ops); 6526 } 6527 6528 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6529 EVT VT1, EVT VT2, EVT VT3, 6530 ArrayRef<SDValue> Ops) { 6531 SDVTList VTs = getVTList(VT1, VT2, VT3); 6532 return getMachineNode(Opcode, dl, VTs, Ops); 6533 } 6534 6535 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6536 ArrayRef<EVT> ResultTys, 6537 ArrayRef<SDValue> Ops) { 6538 SDVTList VTs = getVTList(ResultTys); 6539 return getMachineNode(Opcode, dl, VTs, Ops); 6540 } 6541 6542 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6543 SDVTList VTs, 6544 ArrayRef<SDValue> Ops) { 6545 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6546 MachineSDNode *N; 6547 void *IP = nullptr; 6548 6549 if (DoCSE) { 6550 FoldingSetNodeID ID; 6551 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6552 IP = nullptr; 6553 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6554 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 6555 } 6556 } 6557 6558 // Allocate a new MachineSDNode. 6559 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6560 createOperands(N, Ops); 6561 6562 if (DoCSE) 6563 CSEMap.InsertNode(N, IP); 6564 6565 InsertNode(N); 6566 return N; 6567 } 6568 6569 /// getTargetExtractSubreg - A convenience function for creating 6570 /// TargetOpcode::EXTRACT_SUBREG nodes. 6571 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6572 SDValue Operand) { 6573 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6574 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6575 VT, Operand, SRIdxVal); 6576 return SDValue(Subreg, 0); 6577 } 6578 6579 /// getTargetInsertSubreg - A convenience function for creating 6580 /// TargetOpcode::INSERT_SUBREG nodes. 6581 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6582 SDValue Operand, SDValue Subreg) { 6583 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6584 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6585 VT, Operand, Subreg, SRIdxVal); 6586 return SDValue(Result, 0); 6587 } 6588 6589 /// getNodeIfExists - Get the specified node if it's already available, or 6590 /// else return NULL. 6591 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6592 ArrayRef<SDValue> Ops, 6593 const SDNodeFlags *Flags) { 6594 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6595 FoldingSetNodeID ID; 6596 AddNodeIDNode(ID, Opcode, VTList, Ops); 6597 void *IP = nullptr; 6598 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6599 if (Flags) 6600 E->intersectFlagsWith(Flags); 6601 return E; 6602 } 6603 } 6604 return nullptr; 6605 } 6606 6607 /// getDbgValue - Creates a SDDbgValue node. 6608 /// 6609 /// SDNode 6610 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6611 unsigned R, bool IsIndirect, uint64_t Off, 6612 const DebugLoc &DL, unsigned O) { 6613 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6614 "Expected inlined-at fields to agree"); 6615 return new (DbgInfo->getAlloc()) 6616 SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); 6617 } 6618 6619 /// Constant 6620 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6621 const Value *C, uint64_t Off, 6622 const DebugLoc &DL, unsigned O) { 6623 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6624 "Expected inlined-at fields to agree"); 6625 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); 6626 } 6627 6628 /// FrameIndex 6629 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6630 unsigned FI, uint64_t Off, 6631 const DebugLoc &DL, 6632 unsigned O) { 6633 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6634 "Expected inlined-at fields to agree"); 6635 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); 6636 } 6637 6638 namespace { 6639 6640 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6641 /// pointed to by a use iterator is deleted, increment the use iterator 6642 /// so that it doesn't dangle. 6643 /// 6644 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6645 SDNode::use_iterator &UI; 6646 SDNode::use_iterator &UE; 6647 6648 void NodeDeleted(SDNode *N, SDNode *E) override { 6649 // Increment the iterator as needed. 6650 while (UI != UE && N == *UI) 6651 ++UI; 6652 } 6653 6654 public: 6655 RAUWUpdateListener(SelectionDAG &d, 6656 SDNode::use_iterator &ui, 6657 SDNode::use_iterator &ue) 6658 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6659 }; 6660 6661 } 6662 6663 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6664 /// This can cause recursive merging of nodes in the DAG. 6665 /// 6666 /// This version assumes From has a single result value. 6667 /// 6668 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6669 SDNode *From = FromN.getNode(); 6670 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6671 "Cannot replace with this method!"); 6672 assert(From != To.getNode() && "Cannot replace uses of with self"); 6673 6674 // Preserve Debug Values 6675 TransferDbgValues(FromN, To); 6676 6677 // Iterate over all the existing uses of From. New uses will be added 6678 // to the beginning of the use list, which we avoid visiting. 6679 // This specifically avoids visiting uses of From that arise while the 6680 // replacement is happening, because any such uses would be the result 6681 // of CSE: If an existing node looks like From after one of its operands 6682 // is replaced by To, we don't want to replace of all its users with To 6683 // too. See PR3018 for more info. 6684 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6685 RAUWUpdateListener Listener(*this, UI, UE); 6686 while (UI != UE) { 6687 SDNode *User = *UI; 6688 6689 // This node is about to morph, remove its old self from the CSE maps. 6690 RemoveNodeFromCSEMaps(User); 6691 6692 // A user can appear in a use list multiple times, and when this 6693 // happens the uses are usually next to each other in the list. 6694 // To help reduce the number of CSE recomputations, process all 6695 // the uses of this user that we can find this way. 6696 do { 6697 SDUse &Use = UI.getUse(); 6698 ++UI; 6699 Use.set(To); 6700 } while (UI != UE && *UI == User); 6701 6702 // Now that we have modified User, add it back to the CSE maps. If it 6703 // already exists there, recursively merge the results together. 6704 AddModifiedNodeToCSEMaps(User); 6705 } 6706 6707 6708 // If we just RAUW'd the root, take note. 6709 if (FromN == getRoot()) 6710 setRoot(To); 6711 } 6712 6713 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6714 /// This can cause recursive merging of nodes in the DAG. 6715 /// 6716 /// This version assumes that for each value of From, there is a 6717 /// corresponding value in To in the same position with the same type. 6718 /// 6719 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6720 #ifndef NDEBUG 6721 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6722 assert((!From->hasAnyUseOfValue(i) || 6723 From->getValueType(i) == To->getValueType(i)) && 6724 "Cannot use this version of ReplaceAllUsesWith!"); 6725 #endif 6726 6727 // Handle the trivial case. 6728 if (From == To) 6729 return; 6730 6731 // Preserve Debug Info. Only do this if there's a use. 6732 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6733 if (From->hasAnyUseOfValue(i)) { 6734 assert((i < To->getNumValues()) && "Invalid To location"); 6735 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 6736 } 6737 6738 // Iterate over just the existing users of From. See the comments in 6739 // the ReplaceAllUsesWith above. 6740 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6741 RAUWUpdateListener Listener(*this, UI, UE); 6742 while (UI != UE) { 6743 SDNode *User = *UI; 6744 6745 // This node is about to morph, remove its old self from the CSE maps. 6746 RemoveNodeFromCSEMaps(User); 6747 6748 // A user can appear in a use list multiple times, and when this 6749 // happens the uses are usually next to each other in the list. 6750 // To help reduce the number of CSE recomputations, process all 6751 // the uses of this user that we can find this way. 6752 do { 6753 SDUse &Use = UI.getUse(); 6754 ++UI; 6755 Use.setNode(To); 6756 } while (UI != UE && *UI == User); 6757 6758 // Now that we have modified User, add it back to the CSE maps. If it 6759 // already exists there, recursively merge the results together. 6760 AddModifiedNodeToCSEMaps(User); 6761 } 6762 6763 // If we just RAUW'd the root, take note. 6764 if (From == getRoot().getNode()) 6765 setRoot(SDValue(To, getRoot().getResNo())); 6766 } 6767 6768 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6769 /// This can cause recursive merging of nodes in the DAG. 6770 /// 6771 /// This version can replace From with any result values. To must match the 6772 /// number and types of values returned by From. 6773 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 6774 if (From->getNumValues() == 1) // Handle the simple case efficiently. 6775 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 6776 6777 // Preserve Debug Info. 6778 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6779 TransferDbgValues(SDValue(From, i), *To); 6780 6781 // Iterate over just the existing users of From. See the comments in 6782 // the ReplaceAllUsesWith above. 6783 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6784 RAUWUpdateListener Listener(*this, UI, UE); 6785 while (UI != UE) { 6786 SDNode *User = *UI; 6787 6788 // This node is about to morph, remove its old self from the CSE maps. 6789 RemoveNodeFromCSEMaps(User); 6790 6791 // A user can appear in a use list multiple times, and when this 6792 // happens the uses are usually next to each other in the list. 6793 // To help reduce the number of CSE recomputations, process all 6794 // the uses of this user that we can find this way. 6795 do { 6796 SDUse &Use = UI.getUse(); 6797 const SDValue &ToOp = To[Use.getResNo()]; 6798 ++UI; 6799 Use.set(ToOp); 6800 } while (UI != UE && *UI == User); 6801 6802 // Now that we have modified User, add it back to the CSE maps. If it 6803 // already exists there, recursively merge the results together. 6804 AddModifiedNodeToCSEMaps(User); 6805 } 6806 6807 // If we just RAUW'd the root, take note. 6808 if (From == getRoot().getNode()) 6809 setRoot(SDValue(To[getRoot().getResNo()])); 6810 } 6811 6812 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 6813 /// uses of other values produced by From.getNode() alone. The Deleted 6814 /// vector is handled the same way as for ReplaceAllUsesWith. 6815 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 6816 // Handle the really simple, really trivial case efficiently. 6817 if (From == To) return; 6818 6819 // Handle the simple, trivial, case efficiently. 6820 if (From.getNode()->getNumValues() == 1) { 6821 ReplaceAllUsesWith(From, To); 6822 return; 6823 } 6824 6825 // Preserve Debug Info. 6826 TransferDbgValues(From, To); 6827 6828 // Iterate over just the existing users of From. See the comments in 6829 // the ReplaceAllUsesWith above. 6830 SDNode::use_iterator UI = From.getNode()->use_begin(), 6831 UE = From.getNode()->use_end(); 6832 RAUWUpdateListener Listener(*this, UI, UE); 6833 while (UI != UE) { 6834 SDNode *User = *UI; 6835 bool UserRemovedFromCSEMaps = false; 6836 6837 // A user can appear in a use list multiple times, and when this 6838 // happens the uses are usually next to each other in the list. 6839 // To help reduce the number of CSE recomputations, process all 6840 // the uses of this user that we can find this way. 6841 do { 6842 SDUse &Use = UI.getUse(); 6843 6844 // Skip uses of different values from the same node. 6845 if (Use.getResNo() != From.getResNo()) { 6846 ++UI; 6847 continue; 6848 } 6849 6850 // If this node hasn't been modified yet, it's still in the CSE maps, 6851 // so remove its old self from the CSE maps. 6852 if (!UserRemovedFromCSEMaps) { 6853 RemoveNodeFromCSEMaps(User); 6854 UserRemovedFromCSEMaps = true; 6855 } 6856 6857 ++UI; 6858 Use.set(To); 6859 } while (UI != UE && *UI == User); 6860 6861 // We are iterating over all uses of the From node, so if a use 6862 // doesn't use the specific value, no changes are made. 6863 if (!UserRemovedFromCSEMaps) 6864 continue; 6865 6866 // Now that we have modified User, add it back to the CSE maps. If it 6867 // already exists there, recursively merge the results together. 6868 AddModifiedNodeToCSEMaps(User); 6869 } 6870 6871 // If we just RAUW'd the root, take note. 6872 if (From == getRoot()) 6873 setRoot(To); 6874 } 6875 6876 namespace { 6877 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 6878 /// to record information about a use. 6879 struct UseMemo { 6880 SDNode *User; 6881 unsigned Index; 6882 SDUse *Use; 6883 }; 6884 6885 /// operator< - Sort Memos by User. 6886 bool operator<(const UseMemo &L, const UseMemo &R) { 6887 return (intptr_t)L.User < (intptr_t)R.User; 6888 } 6889 } 6890 6891 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 6892 /// uses of other values produced by From.getNode() alone. The same value 6893 /// may appear in both the From and To list. The Deleted vector is 6894 /// handled the same way as for ReplaceAllUsesWith. 6895 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 6896 const SDValue *To, 6897 unsigned Num){ 6898 // Handle the simple, trivial case efficiently. 6899 if (Num == 1) 6900 return ReplaceAllUsesOfValueWith(*From, *To); 6901 6902 TransferDbgValues(*From, *To); 6903 6904 // Read up all the uses and make records of them. This helps 6905 // processing new uses that are introduced during the 6906 // replacement process. 6907 SmallVector<UseMemo, 4> Uses; 6908 for (unsigned i = 0; i != Num; ++i) { 6909 unsigned FromResNo = From[i].getResNo(); 6910 SDNode *FromNode = From[i].getNode(); 6911 for (SDNode::use_iterator UI = FromNode->use_begin(), 6912 E = FromNode->use_end(); UI != E; ++UI) { 6913 SDUse &Use = UI.getUse(); 6914 if (Use.getResNo() == FromResNo) { 6915 UseMemo Memo = { *UI, i, &Use }; 6916 Uses.push_back(Memo); 6917 } 6918 } 6919 } 6920 6921 // Sort the uses, so that all the uses from a given User are together. 6922 std::sort(Uses.begin(), Uses.end()); 6923 6924 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 6925 UseIndex != UseIndexEnd; ) { 6926 // We know that this user uses some value of From. If it is the right 6927 // value, update it. 6928 SDNode *User = Uses[UseIndex].User; 6929 6930 // This node is about to morph, remove its old self from the CSE maps. 6931 RemoveNodeFromCSEMaps(User); 6932 6933 // The Uses array is sorted, so all the uses for a given User 6934 // are next to each other in the list. 6935 // To help reduce the number of CSE recomputations, process all 6936 // the uses of this user that we can find this way. 6937 do { 6938 unsigned i = Uses[UseIndex].Index; 6939 SDUse &Use = *Uses[UseIndex].Use; 6940 ++UseIndex; 6941 6942 Use.set(To[i]); 6943 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 6944 6945 // Now that we have modified User, add it back to the CSE maps. If it 6946 // already exists there, recursively merge the results together. 6947 AddModifiedNodeToCSEMaps(User); 6948 } 6949 } 6950 6951 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 6952 /// based on their topological order. It returns the maximum id and a vector 6953 /// of the SDNodes* in assigned order by reference. 6954 unsigned SelectionDAG::AssignTopologicalOrder() { 6955 6956 unsigned DAGSize = 0; 6957 6958 // SortedPos tracks the progress of the algorithm. Nodes before it are 6959 // sorted, nodes after it are unsorted. When the algorithm completes 6960 // it is at the end of the list. 6961 allnodes_iterator SortedPos = allnodes_begin(); 6962 6963 // Visit all the nodes. Move nodes with no operands to the front of 6964 // the list immediately. Annotate nodes that do have operands with their 6965 // operand count. Before we do this, the Node Id fields of the nodes 6966 // may contain arbitrary values. After, the Node Id fields for nodes 6967 // before SortedPos will contain the topological sort index, and the 6968 // Node Id fields for nodes At SortedPos and after will contain the 6969 // count of outstanding operands. 6970 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 6971 SDNode *N = &*I++; 6972 checkForCycles(N, this); 6973 unsigned Degree = N->getNumOperands(); 6974 if (Degree == 0) { 6975 // A node with no uses, add it to the result array immediately. 6976 N->setNodeId(DAGSize++); 6977 allnodes_iterator Q(N); 6978 if (Q != SortedPos) 6979 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 6980 assert(SortedPos != AllNodes.end() && "Overran node list"); 6981 ++SortedPos; 6982 } else { 6983 // Temporarily use the Node Id as scratch space for the degree count. 6984 N->setNodeId(Degree); 6985 } 6986 } 6987 6988 // Visit all the nodes. As we iterate, move nodes into sorted order, 6989 // such that by the time the end is reached all nodes will be sorted. 6990 for (SDNode &Node : allnodes()) { 6991 SDNode *N = &Node; 6992 checkForCycles(N, this); 6993 // N is in sorted position, so all its uses have one less operand 6994 // that needs to be sorted. 6995 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6996 UI != UE; ++UI) { 6997 SDNode *P = *UI; 6998 unsigned Degree = P->getNodeId(); 6999 assert(Degree != 0 && "Invalid node degree"); 7000 --Degree; 7001 if (Degree == 0) { 7002 // All of P's operands are sorted, so P may sorted now. 7003 P->setNodeId(DAGSize++); 7004 if (P->getIterator() != SortedPos) 7005 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 7006 assert(SortedPos != AllNodes.end() && "Overran node list"); 7007 ++SortedPos; 7008 } else { 7009 // Update P's outstanding operand count. 7010 P->setNodeId(Degree); 7011 } 7012 } 7013 if (Node.getIterator() == SortedPos) { 7014 #ifndef NDEBUG 7015 allnodes_iterator I(N); 7016 SDNode *S = &*++I; 7017 dbgs() << "Overran sorted position:\n"; 7018 S->dumprFull(this); dbgs() << "\n"; 7019 dbgs() << "Checking if this is due to cycles\n"; 7020 checkForCycles(this, true); 7021 #endif 7022 llvm_unreachable(nullptr); 7023 } 7024 } 7025 7026 assert(SortedPos == AllNodes.end() && 7027 "Topological sort incomplete!"); 7028 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 7029 "First node in topological sort is not the entry token!"); 7030 assert(AllNodes.front().getNodeId() == 0 && 7031 "First node in topological sort has non-zero id!"); 7032 assert(AllNodes.front().getNumOperands() == 0 && 7033 "First node in topological sort has operands!"); 7034 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 7035 "Last node in topologic sort has unexpected id!"); 7036 assert(AllNodes.back().use_empty() && 7037 "Last node in topologic sort has users!"); 7038 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 7039 return DAGSize; 7040 } 7041 7042 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 7043 /// value is produced by SD. 7044 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 7045 if (SD) { 7046 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 7047 SD->setHasDebugValue(true); 7048 } 7049 DbgInfo->add(DB, SD, isParameter); 7050 } 7051 7052 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 7053 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 7054 if (From == To || !From.getNode()->getHasDebugValue()) 7055 return; 7056 SDNode *FromNode = From.getNode(); 7057 SDNode *ToNode = To.getNode(); 7058 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 7059 SmallVector<SDDbgValue *, 2> ClonedDVs; 7060 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 7061 I != E; ++I) { 7062 SDDbgValue *Dbg = *I; 7063 // Only add Dbgvalues attached to same ResNo. 7064 if (Dbg->getKind() == SDDbgValue::SDNODE && 7065 Dbg->getSDNode() == From.getNode() && 7066 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 7067 assert(FromNode != ToNode && 7068 "Should not transfer Debug Values intranode"); 7069 SDDbgValue *Clone = 7070 getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, 7071 To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), 7072 Dbg->getDebugLoc(), Dbg->getOrder()); 7073 ClonedDVs.push_back(Clone); 7074 Dbg->setIsInvalidated(); 7075 } 7076 } 7077 for (SDDbgValue *I : ClonedDVs) 7078 AddDbgValue(I, ToNode, false); 7079 } 7080 7081 //===----------------------------------------------------------------------===// 7082 // SDNode Class 7083 //===----------------------------------------------------------------------===// 7084 7085 bool llvm::isNullConstant(SDValue V) { 7086 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7087 return Const != nullptr && Const->isNullValue(); 7088 } 7089 7090 bool llvm::isNullFPConstant(SDValue V) { 7091 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 7092 return Const != nullptr && Const->isZero() && !Const->isNegative(); 7093 } 7094 7095 bool llvm::isAllOnesConstant(SDValue V) { 7096 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7097 return Const != nullptr && Const->isAllOnesValue(); 7098 } 7099 7100 bool llvm::isOneConstant(SDValue V) { 7101 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 7102 return Const != nullptr && Const->isOne(); 7103 } 7104 7105 bool llvm::isBitwiseNot(SDValue V) { 7106 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 7107 } 7108 7109 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 7110 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 7111 return CN; 7112 7113 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7114 BitVector UndefElements; 7115 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 7116 7117 // BuildVectors can truncate their operands. Ignore that case here. 7118 // FIXME: We blindly ignore splats which include undef which is overly 7119 // pessimistic. 7120 if (CN && UndefElements.none() && 7121 CN->getValueType(0) == N.getValueType().getScalarType()) 7122 return CN; 7123 } 7124 7125 return nullptr; 7126 } 7127 7128 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 7129 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 7130 return CN; 7131 7132 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 7133 BitVector UndefElements; 7134 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 7135 7136 if (CN && UndefElements.none()) 7137 return CN; 7138 } 7139 7140 return nullptr; 7141 } 7142 7143 HandleSDNode::~HandleSDNode() { 7144 DropOperands(); 7145 } 7146 7147 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 7148 const DebugLoc &DL, 7149 const GlobalValue *GA, EVT VT, 7150 int64_t o, unsigned char TF) 7151 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 7152 TheGlobal = GA; 7153 } 7154 7155 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 7156 EVT VT, unsigned SrcAS, 7157 unsigned DestAS) 7158 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 7159 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 7160 7161 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 7162 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 7163 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 7164 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 7165 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 7166 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 7167 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 7168 7169 // We check here that the size of the memory operand fits within the size of 7170 // the MMO. This is because the MMO might indicate only a possible address 7171 // range instead of specifying the affected memory addresses precisely. 7172 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 7173 } 7174 7175 /// Profile - Gather unique data for the node. 7176 /// 7177 void SDNode::Profile(FoldingSetNodeID &ID) const { 7178 AddNodeIDNode(ID, this); 7179 } 7180 7181 namespace { 7182 struct EVTArray { 7183 std::vector<EVT> VTs; 7184 7185 EVTArray() { 7186 VTs.reserve(MVT::LAST_VALUETYPE); 7187 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 7188 VTs.push_back(MVT((MVT::SimpleValueType)i)); 7189 } 7190 }; 7191 } 7192 7193 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; 7194 static ManagedStatic<EVTArray> SimpleVTArray; 7195 static ManagedStatic<sys::SmartMutex<true> > VTMutex; 7196 7197 /// getValueTypeList - Return a pointer to the specified value type. 7198 /// 7199 const EVT *SDNode::getValueTypeList(EVT VT) { 7200 if (VT.isExtended()) { 7201 sys::SmartScopedLock<true> Lock(*VTMutex); 7202 return &(*EVTs->insert(VT).first); 7203 } else { 7204 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 7205 "Value type out of range!"); 7206 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 7207 } 7208 } 7209 7210 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 7211 /// indicated value. This method ignores uses of other values defined by this 7212 /// operation. 7213 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 7214 assert(Value < getNumValues() && "Bad value!"); 7215 7216 // TODO: Only iterate over uses of a given value of the node 7217 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 7218 if (UI.getUse().getResNo() == Value) { 7219 if (NUses == 0) 7220 return false; 7221 --NUses; 7222 } 7223 } 7224 7225 // Found exactly the right number of uses? 7226 return NUses == 0; 7227 } 7228 7229 7230 /// hasAnyUseOfValue - Return true if there are any use of the indicated 7231 /// value. This method ignores uses of other values defined by this operation. 7232 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 7233 assert(Value < getNumValues() && "Bad value!"); 7234 7235 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 7236 if (UI.getUse().getResNo() == Value) 7237 return true; 7238 7239 return false; 7240 } 7241 7242 7243 /// isOnlyUserOf - Return true if this node is the only use of N. 7244 /// 7245 bool SDNode::isOnlyUserOf(const SDNode *N) const { 7246 bool Seen = false; 7247 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7248 SDNode *User = *I; 7249 if (User == this) 7250 Seen = true; 7251 else 7252 return false; 7253 } 7254 7255 return Seen; 7256 } 7257 7258 /// Return true if the only users of N are contained in Nodes. 7259 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 7260 bool Seen = false; 7261 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 7262 SDNode *User = *I; 7263 if (llvm::any_of(Nodes, 7264 [&User](const SDNode *Node) { return User == Node; })) 7265 Seen = true; 7266 else 7267 return false; 7268 } 7269 7270 return Seen; 7271 } 7272 7273 /// isOperand - Return true if this node is an operand of N. 7274 /// 7275 bool SDValue::isOperandOf(const SDNode *N) const { 7276 for (const SDValue &Op : N->op_values()) 7277 if (*this == Op) 7278 return true; 7279 return false; 7280 } 7281 7282 bool SDNode::isOperandOf(const SDNode *N) const { 7283 for (const SDValue &Op : N->op_values()) 7284 if (this == Op.getNode()) 7285 return true; 7286 return false; 7287 } 7288 7289 /// reachesChainWithoutSideEffects - Return true if this operand (which must 7290 /// be a chain) reaches the specified operand without crossing any 7291 /// side-effecting instructions on any chain path. In practice, this looks 7292 /// through token factors and non-volatile loads. In order to remain efficient, 7293 /// this only looks a couple of nodes in, it does not do an exhaustive search. 7294 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 7295 unsigned Depth) const { 7296 if (*this == Dest) return true; 7297 7298 // Don't search too deeply, we just want to be able to see through 7299 // TokenFactor's etc. 7300 if (Depth == 0) return false; 7301 7302 // If this is a token factor, all inputs to the TF happen in parallel. If any 7303 // of the operands of the TF does not reach dest, then we cannot do the xform. 7304 if (getOpcode() == ISD::TokenFactor) { 7305 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7306 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) 7307 return false; 7308 return true; 7309 } 7310 7311 // Loads don't have side effects, look through them. 7312 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 7313 if (!Ld->isVolatile()) 7314 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 7315 } 7316 return false; 7317 } 7318 7319 bool SDNode::hasPredecessor(const SDNode *N) const { 7320 SmallPtrSet<const SDNode *, 32> Visited; 7321 SmallVector<const SDNode *, 16> Worklist; 7322 Worklist.push_back(this); 7323 return hasPredecessorHelper(N, Visited, Worklist); 7324 } 7325 7326 const SDNodeFlags *SDNode::getFlags() const { 7327 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 7328 return &FlagsNode->Flags; 7329 return nullptr; 7330 } 7331 7332 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) { 7333 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 7334 FlagsNode->Flags.intersectWith(Flags); 7335 } 7336 7337 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 7338 assert(N->getNumValues() == 1 && 7339 "Can't unroll a vector with multiple results!"); 7340 7341 EVT VT = N->getValueType(0); 7342 unsigned NE = VT.getVectorNumElements(); 7343 EVT EltVT = VT.getVectorElementType(); 7344 SDLoc dl(N); 7345 7346 SmallVector<SDValue, 8> Scalars; 7347 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 7348 7349 // If ResNE is 0, fully unroll the vector op. 7350 if (ResNE == 0) 7351 ResNE = NE; 7352 else if (NE > ResNE) 7353 NE = ResNE; 7354 7355 unsigned i; 7356 for (i= 0; i != NE; ++i) { 7357 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7358 SDValue Operand = N->getOperand(j); 7359 EVT OperandVT = Operand.getValueType(); 7360 if (OperandVT.isVector()) { 7361 // A vector operand; extract a single element. 7362 EVT OperandEltVT = OperandVT.getVectorElementType(); 7363 Operands[j] = 7364 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7365 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7366 } else { 7367 // A scalar operand; just use it as is. 7368 Operands[j] = Operand; 7369 } 7370 } 7371 7372 switch (N->getOpcode()) { 7373 default: { 7374 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7375 N->getFlags())); 7376 break; 7377 } 7378 case ISD::VSELECT: 7379 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7380 break; 7381 case ISD::SHL: 7382 case ISD::SRA: 7383 case ISD::SRL: 7384 case ISD::ROTL: 7385 case ISD::ROTR: 7386 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7387 getShiftAmountOperand(Operands[0].getValueType(), 7388 Operands[1]))); 7389 break; 7390 case ISD::SIGN_EXTEND_INREG: 7391 case ISD::FP_ROUND_INREG: { 7392 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7393 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7394 Operands[0], 7395 getValueType(ExtVT))); 7396 } 7397 } 7398 } 7399 7400 for (; i < ResNE; ++i) 7401 Scalars.push_back(getUNDEF(EltVT)); 7402 7403 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 7404 return getBuildVector(VecVT, dl, Scalars); 7405 } 7406 7407 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7408 LoadSDNode *Base, 7409 unsigned Bytes, 7410 int Dist) const { 7411 if (LD->isVolatile() || Base->isVolatile()) 7412 return false; 7413 if (LD->isIndexed() || Base->isIndexed()) 7414 return false; 7415 if (LD->getChain() != Base->getChain()) 7416 return false; 7417 EVT VT = LD->getValueType(0); 7418 if (VT.getSizeInBits() / 8 != Bytes) 7419 return false; 7420 7421 SDValue Loc = LD->getOperand(1); 7422 SDValue BaseLoc = Base->getOperand(1); 7423 if (Loc.getOpcode() == ISD::FrameIndex) { 7424 if (BaseLoc.getOpcode() != ISD::FrameIndex) 7425 return false; 7426 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7427 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 7428 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 7429 int FS = MFI.getObjectSize(FI); 7430 int BFS = MFI.getObjectSize(BFI); 7431 if (FS != BFS || FS != (int)Bytes) return false; 7432 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 7433 } 7434 7435 // Handle X + C. 7436 if (isBaseWithConstantOffset(Loc)) { 7437 int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 7438 if (Loc.getOperand(0) == BaseLoc) { 7439 // If the base location is a simple address with no offset itself, then 7440 // the second load's first add operand should be the base address. 7441 if (LocOffset == Dist * (int)Bytes) 7442 return true; 7443 } else if (isBaseWithConstantOffset(BaseLoc)) { 7444 // The base location itself has an offset, so subtract that value from the 7445 // second load's offset before comparing to distance * size. 7446 int64_t BOffset = 7447 cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); 7448 if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { 7449 if ((LocOffset - BOffset) == Dist * (int)Bytes) 7450 return true; 7451 } 7452 } 7453 } 7454 const GlobalValue *GV1 = nullptr; 7455 const GlobalValue *GV2 = nullptr; 7456 int64_t Offset1 = 0; 7457 int64_t Offset2 = 0; 7458 bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); 7459 bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 7460 if (isGA1 && isGA2 && GV1 == GV2) 7461 return Offset1 == (Offset2 + Dist*Bytes); 7462 return false; 7463 } 7464 7465 7466 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7467 /// it cannot be inferred. 7468 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7469 // If this is a GlobalAddress + cst, return the alignment. 7470 const GlobalValue *GV; 7471 int64_t GVOffset = 0; 7472 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7473 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7474 APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); 7475 llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, 7476 getDataLayout()); 7477 unsigned AlignBits = KnownZero.countTrailingOnes(); 7478 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7479 if (Align) 7480 return MinAlign(Align, GVOffset); 7481 } 7482 7483 // If this is a direct reference to a stack slot, use information about the 7484 // stack slot's alignment. 7485 int FrameIdx = 1 << 31; 7486 int64_t FrameOffset = 0; 7487 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7488 FrameIdx = FI->getIndex(); 7489 } else if (isBaseWithConstantOffset(Ptr) && 7490 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7491 // Handle FI+Cst 7492 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7493 FrameOffset = Ptr.getConstantOperandVal(1); 7494 } 7495 7496 if (FrameIdx != (1 << 31)) { 7497 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7498 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7499 FrameOffset); 7500 return FIInfoAlign; 7501 } 7502 7503 return 0; 7504 } 7505 7506 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7507 /// which is split (or expanded) into two not necessarily identical pieces. 7508 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7509 // Currently all types are split in half. 7510 EVT LoVT, HiVT; 7511 if (!VT.isVector()) { 7512 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7513 } else { 7514 unsigned NumElements = VT.getVectorNumElements(); 7515 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 7516 LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 7517 NumElements/2); 7518 } 7519 return std::make_pair(LoVT, HiVT); 7520 } 7521 7522 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7523 /// low/high part. 7524 std::pair<SDValue, SDValue> 7525 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7526 const EVT &HiVT) { 7527 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7528 N.getValueType().getVectorNumElements() && 7529 "More vector elements requested than available!"); 7530 SDValue Lo, Hi; 7531 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7532 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7533 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7534 getConstant(LoVT.getVectorNumElements(), DL, 7535 TLI->getVectorIdxTy(getDataLayout()))); 7536 return std::make_pair(Lo, Hi); 7537 } 7538 7539 void SelectionDAG::ExtractVectorElements(SDValue Op, 7540 SmallVectorImpl<SDValue> &Args, 7541 unsigned Start, unsigned Count) { 7542 EVT VT = Op.getValueType(); 7543 if (Count == 0) 7544 Count = VT.getVectorNumElements(); 7545 7546 EVT EltVT = VT.getVectorElementType(); 7547 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7548 SDLoc SL(Op); 7549 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7550 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7551 Op, getConstant(i, SL, IdxTy))); 7552 } 7553 } 7554 7555 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7556 unsigned GlobalAddressSDNode::getAddressSpace() const { 7557 return getGlobal()->getType()->getAddressSpace(); 7558 } 7559 7560 7561 Type *ConstantPoolSDNode::getType() const { 7562 if (isMachineConstantPoolEntry()) 7563 return Val.MachineCPVal->getType(); 7564 return Val.ConstVal->getType(); 7565 } 7566 7567 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, 7568 APInt &SplatUndef, 7569 unsigned &SplatBitSize, 7570 bool &HasAnyUndefs, 7571 unsigned MinSplatBits, 7572 bool isBigEndian) const { 7573 EVT VT = getValueType(0); 7574 assert(VT.isVector() && "Expected a vector type"); 7575 unsigned sz = VT.getSizeInBits(); 7576 if (MinSplatBits > sz) 7577 return false; 7578 7579 SplatValue = APInt(sz, 0); 7580 SplatUndef = APInt(sz, 0); 7581 7582 // Get the bits. Bits with undefined values (when the corresponding element 7583 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7584 // in SplatValue. If any of the values are not constant, give up and return 7585 // false. 7586 unsigned int nOps = getNumOperands(); 7587 assert(nOps > 0 && "isConstantSplat has 0-size build vector"); 7588 unsigned EltBitSize = VT.getScalarSizeInBits(); 7589 7590 for (unsigned j = 0; j < nOps; ++j) { 7591 unsigned i = isBigEndian ? nOps-1-j : j; 7592 SDValue OpVal = getOperand(i); 7593 unsigned BitPos = j * EltBitSize; 7594 7595 if (OpVal.isUndef()) 7596 SplatUndef.setBits(BitPos, BitPos + EltBitSize); 7597 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) 7598 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltBitSize), 7599 BitPos); 7600 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7601 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 7602 else 7603 return false; 7604 } 7605 7606 // The build_vector is all constants or undefs. Find the smallest element 7607 // size that splats the vector. 7608 7609 HasAnyUndefs = (SplatUndef != 0); 7610 while (sz > 8) { 7611 7612 unsigned HalfSize = sz / 2; 7613 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7614 APInt LowValue = SplatValue.trunc(HalfSize); 7615 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7616 APInt LowUndef = SplatUndef.trunc(HalfSize); 7617 7618 // If the two halves do not match (ignoring undef bits), stop here. 7619 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7620 MinSplatBits > HalfSize) 7621 break; 7622 7623 SplatValue = HighValue | LowValue; 7624 SplatUndef = HighUndef & LowUndef; 7625 7626 sz = HalfSize; 7627 } 7628 7629 SplatBitSize = sz; 7630 return true; 7631 } 7632 7633 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7634 if (UndefElements) { 7635 UndefElements->clear(); 7636 UndefElements->resize(getNumOperands()); 7637 } 7638 SDValue Splatted; 7639 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7640 SDValue Op = getOperand(i); 7641 if (Op.isUndef()) { 7642 if (UndefElements) 7643 (*UndefElements)[i] = true; 7644 } else if (!Splatted) { 7645 Splatted = Op; 7646 } else if (Splatted != Op) { 7647 return SDValue(); 7648 } 7649 } 7650 7651 if (!Splatted) { 7652 assert(getOperand(0).isUndef() && 7653 "Can only have a splat without a constant for all undefs."); 7654 return getOperand(0); 7655 } 7656 7657 return Splatted; 7658 } 7659 7660 ConstantSDNode * 7661 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7662 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7663 } 7664 7665 ConstantFPSDNode * 7666 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7667 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7668 } 7669 7670 int32_t 7671 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7672 uint32_t BitWidth) const { 7673 if (ConstantFPSDNode *CN = 7674 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7675 bool IsExact; 7676 APSInt IntVal(BitWidth); 7677 const APFloat &APF = CN->getValueAPF(); 7678 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7679 APFloat::opOK || 7680 !IsExact) 7681 return -1; 7682 7683 return IntVal.exactLogBase2(); 7684 } 7685 return -1; 7686 } 7687 7688 bool BuildVectorSDNode::isConstant() const { 7689 for (const SDValue &Op : op_values()) { 7690 unsigned Opc = Op.getOpcode(); 7691 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7692 return false; 7693 } 7694 return true; 7695 } 7696 7697 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7698 // Find the first non-undef value in the shuffle mask. 7699 unsigned i, e; 7700 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7701 /* search */; 7702 7703 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7704 7705 // Make sure all remaining elements are either undef or the same as the first 7706 // non-undef value. 7707 for (int Idx = Mask[i]; i != e; ++i) 7708 if (Mask[i] >= 0 && Mask[i] != Idx) 7709 return false; 7710 return true; 7711 } 7712 7713 // \brief Returns the SDNode if it is a constant integer BuildVector 7714 // or constant integer. 7715 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7716 if (isa<ConstantSDNode>(N)) 7717 return N.getNode(); 7718 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7719 return N.getNode(); 7720 // Treat a GlobalAddress supporting constant offset folding as a 7721 // constant integer. 7722 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7723 if (GA->getOpcode() == ISD::GlobalAddress && 7724 TLI->isOffsetFoldingLegal(GA)) 7725 return GA; 7726 return nullptr; 7727 } 7728 7729 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 7730 if (isa<ConstantFPSDNode>(N)) 7731 return N.getNode(); 7732 7733 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 7734 return N.getNode(); 7735 7736 return nullptr; 7737 } 7738 7739 #ifndef NDEBUG 7740 static void checkForCyclesHelper(const SDNode *N, 7741 SmallPtrSetImpl<const SDNode*> &Visited, 7742 SmallPtrSetImpl<const SDNode*> &Checked, 7743 const llvm::SelectionDAG *DAG) { 7744 // If this node has already been checked, don't check it again. 7745 if (Checked.count(N)) 7746 return; 7747 7748 // If a node has already been visited on this depth-first walk, reject it as 7749 // a cycle. 7750 if (!Visited.insert(N).second) { 7751 errs() << "Detected cycle in SelectionDAG\n"; 7752 dbgs() << "Offending node:\n"; 7753 N->dumprFull(DAG); dbgs() << "\n"; 7754 abort(); 7755 } 7756 7757 for (const SDValue &Op : N->op_values()) 7758 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7759 7760 Checked.insert(N); 7761 Visited.erase(N); 7762 } 7763 #endif 7764 7765 void llvm::checkForCycles(const llvm::SDNode *N, 7766 const llvm::SelectionDAG *DAG, 7767 bool force) { 7768 #ifndef NDEBUG 7769 bool check = force; 7770 #ifdef EXPENSIVE_CHECKS 7771 check = true; 7772 #endif // EXPENSIVE_CHECKS 7773 if (check) { 7774 assert(N && "Checking nonexistent SDNode"); 7775 SmallPtrSet<const SDNode*, 32> visited; 7776 SmallPtrSet<const SDNode*, 32> checked; 7777 checkForCyclesHelper(N, visited, checked, DAG); 7778 } 7779 #endif // !NDEBUG 7780 } 7781 7782 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 7783 checkForCycles(DAG->getRoot().getNode(), DAG, force); 7784 } 7785