1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/ManagedStatic.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Mutex.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetIntrinsicInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Target/TargetRegisterInfo.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 #include <cmath>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
57 /// specified members.
58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59   SDVTList Res = {VTs, NumVTs};
60   return Res;
61 }
62 
63 // Default null implementations of the callbacks.
64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
66 
67 //===----------------------------------------------------------------------===//
68 //                              ConstantFPSDNode Class
69 //===----------------------------------------------------------------------===//
70 
71 /// isExactlyValue - We don't rely on operator== working on double values, as
72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73 /// As such, this method can be used to do an exact bit-for-bit comparison of
74 /// two floating point values.
75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76   return getValueAPF().bitwiseIsEqual(V);
77 }
78 
79 bool ConstantFPSDNode::isValueValidForType(EVT VT,
80                                            const APFloat& Val) {
81   assert(VT.isFloatingPoint() && "Can only convert between FP types");
82 
83   // convert modifies in place, so make a copy.
84   APFloat Val2 = APFloat(Val);
85   bool losesInfo;
86   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
87                       APFloat::rmNearestTiesToEven,
88                       &losesInfo);
89   return !losesInfo;
90 }
91 
92 //===----------------------------------------------------------------------===//
93 //                              ISD Namespace
94 //===----------------------------------------------------------------------===//
95 
96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
97   auto *BV = dyn_cast<BuildVectorSDNode>(N);
98   if (!BV)
99     return false;
100 
101   APInt SplatUndef;
102   unsigned SplatBitSize;
103   bool HasUndefs;
104   EVT EltVT = N->getValueType(0).getVectorElementType();
105   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) &&
106          EltVT.getSizeInBits() >= SplatBitSize;
107 }
108 
109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
110 // specializations of the more general isConstantSplatVector()?
111 
112 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113   // Look through a bit convert.
114   while (N->getOpcode() == ISD::BITCAST)
115     N = N->getOperand(0).getNode();
116 
117   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118 
119   unsigned i = 0, e = N->getNumOperands();
120 
121   // Skip over all of the undef values.
122   while (i != e && N->getOperand(i).isUndef())
123     ++i;
124 
125   // Do not accept an all-undef vector.
126   if (i == e) return false;
127 
128   // Do not accept build_vectors that aren't all constants or which have non-~0
129   // elements. We have to be a bit careful here, as the type of the constant
130   // may not be the same as the type of the vector elements due to type
131   // legalization (the elements are promoted to a legal type for the target and
132   // a vector of a type may be legal when the base element type is not).
133   // We only want to check enough bits to cover the vector elements, because
134   // we care if the resultant vector is all ones, not whether the individual
135   // constants are.
136   SDValue NotZero = N->getOperand(i);
137   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
138   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
139     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
140       return false;
141   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
142     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
143       return false;
144   } else
145     return false;
146 
147   // Okay, we have at least one ~0 value, check to see if the rest match or are
148   // undefs. Even with the above element type twiddling, this should be OK, as
149   // the same type legalization should have applied to all the elements.
150   for (++i; i != e; ++i)
151     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
152       return false;
153   return true;
154 }
155 
156 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   bool IsAllUndef = true;
164   for (const SDValue &Op : N->op_values()) {
165     if (Op.isUndef())
166       continue;
167     IsAllUndef = false;
168     // Do not accept build_vectors that aren't all constants or which have non-0
169     // elements. We have to be a bit careful here, as the type of the constant
170     // may not be the same as the type of the vector elements due to type
171     // legalization (the elements are promoted to a legal type for the target
172     // and a vector of a type may be legal when the base element type is not).
173     // We only want to check enough bits to cover the vector elements, because
174     // we care if the resultant vector is all zeros, not whether the individual
175     // constants are.
176     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
177     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
178       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
179         return false;
180     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
181       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
182         return false;
183     } else
184       return false;
185   }
186 
187   // Do not accept an all-undef vector.
188   if (IsAllUndef)
189     return false;
190   return true;
191 }
192 
193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
194   if (N->getOpcode() != ISD::BUILD_VECTOR)
195     return false;
196 
197   for (const SDValue &Op : N->op_values()) {
198     if (Op.isUndef())
199       continue;
200     if (!isa<ConstantSDNode>(Op))
201       return false;
202   }
203   return true;
204 }
205 
206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
207   if (N->getOpcode() != ISD::BUILD_VECTOR)
208     return false;
209 
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     if (!isa<ConstantFPSDNode>(Op))
214       return false;
215   }
216   return true;
217 }
218 
219 bool ISD::allOperandsUndef(const SDNode *N) {
220   // Return false if the node has no operands.
221   // This is "logically inconsistent" with the definition of "all" but
222   // is probably the desired behavior.
223   if (N->getNumOperands() == 0)
224     return false;
225 
226   for (const SDValue &Op : N->op_values())
227     if (!Op.isUndef())
228       return false;
229 
230   return true;
231 }
232 
233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
234   switch (ExtType) {
235   case ISD::EXTLOAD:
236     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
237   case ISD::SEXTLOAD:
238     return ISD::SIGN_EXTEND;
239   case ISD::ZEXTLOAD:
240     return ISD::ZERO_EXTEND;
241   default:
242     break;
243   }
244 
245   llvm_unreachable("Invalid LoadExtType");
246 }
247 
248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
249   // To perform this operation, we just need to swap the L and G bits of the
250   // operation.
251   unsigned OldL = (Operation >> 2) & 1;
252   unsigned OldG = (Operation >> 1) & 1;
253   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
254                        (OldL << 1) |       // New G bit
255                        (OldG << 2));       // New L bit.
256 }
257 
258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
259   unsigned Operation = Op;
260   if (isInteger)
261     Operation ^= 7;   // Flip L, G, E bits, but not U.
262   else
263     Operation ^= 15;  // Flip all of the condition bits.
264 
265   if (Operation > ISD::SETTRUE2)
266     Operation &= ~8;  // Don't let N and U bits get set.
267 
268   return ISD::CondCode(Operation);
269 }
270 
271 
272 /// For an integer comparison, return 1 if the comparison is a signed operation
273 /// and 2 if the result is an unsigned comparison. Return zero if the operation
274 /// does not depend on the sign of the input (setne and seteq).
275 static int isSignedOp(ISD::CondCode Opcode) {
276   switch (Opcode) {
277   default: llvm_unreachable("Illegal integer setcc operation!");
278   case ISD::SETEQ:
279   case ISD::SETNE: return 0;
280   case ISD::SETLT:
281   case ISD::SETLE:
282   case ISD::SETGT:
283   case ISD::SETGE: return 1;
284   case ISD::SETULT:
285   case ISD::SETULE:
286   case ISD::SETUGT:
287   case ISD::SETUGE: return 2;
288   }
289 }
290 
291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
292                                        bool isInteger) {
293   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
294     // Cannot fold a signed integer setcc with an unsigned integer setcc.
295     return ISD::SETCC_INVALID;
296 
297   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
298 
299   // If the N and U bits get set then the resultant comparison DOES suddenly
300   // care about orderedness, and is true when ordered.
301   if (Op > ISD::SETTRUE2)
302     Op &= ~16;     // Clear the U bit if the N bit is set.
303 
304   // Canonicalize illegal integer setcc's.
305   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
306     Op = ISD::SETNE;
307 
308   return ISD::CondCode(Op);
309 }
310 
311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
312                                         bool isInteger) {
313   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
314     // Cannot fold a signed setcc with an unsigned setcc.
315     return ISD::SETCC_INVALID;
316 
317   // Combine all of the condition bits.
318   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
319 
320   // Canonicalize illegal integer setcc's.
321   if (isInteger) {
322     switch (Result) {
323     default: break;
324     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
325     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
326     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
327     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
328     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
329     }
330   }
331 
332   return Result;
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                           SDNode Profile Support
337 //===----------------------------------------------------------------------===//
338 
339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
340 ///
341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
342   ID.AddInteger(OpC);
343 }
344 
345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
346 /// solely with their pointer.
347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
348   ID.AddPointer(VTList.VTs);
349 }
350 
351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
352 ///
353 static void AddNodeIDOperands(FoldingSetNodeID &ID,
354                               ArrayRef<SDValue> Ops) {
355   for (auto& Op : Ops) {
356     ID.AddPointer(Op.getNode());
357     ID.AddInteger(Op.getResNo());
358   }
359 }
360 
361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
362 ///
363 static void AddNodeIDOperands(FoldingSetNodeID &ID,
364                               ArrayRef<SDUse> Ops) {
365   for (auto& Op : Ops) {
366     ID.AddPointer(Op.getNode());
367     ID.AddInteger(Op.getResNo());
368   }
369 }
370 
371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
372                           SDVTList VTList, ArrayRef<SDValue> OpList) {
373   AddNodeIDOpcode(ID, OpC);
374   AddNodeIDValueTypes(ID, VTList);
375   AddNodeIDOperands(ID, OpList);
376 }
377 
378 /// If this is an SDNode with special info, add this info to the NodeID data.
379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
380   switch (N->getOpcode()) {
381   case ISD::TargetExternalSymbol:
382   case ISD::ExternalSymbol:
383   case ISD::MCSymbol:
384     llvm_unreachable("Should only be used on nodes with operands");
385   default: break;  // Normal nodes don't need extra info.
386   case ISD::TargetConstant:
387   case ISD::Constant: {
388     const ConstantSDNode *C = cast<ConstantSDNode>(N);
389     ID.AddPointer(C->getConstantIntValue());
390     ID.AddBoolean(C->isOpaque());
391     break;
392   }
393   case ISD::TargetConstantFP:
394   case ISD::ConstantFP: {
395     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
396     break;
397   }
398   case ISD::TargetGlobalAddress:
399   case ISD::GlobalAddress:
400   case ISD::TargetGlobalTLSAddress:
401   case ISD::GlobalTLSAddress: {
402     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
403     ID.AddPointer(GA->getGlobal());
404     ID.AddInteger(GA->getOffset());
405     ID.AddInteger(GA->getTargetFlags());
406     break;
407   }
408   case ISD::BasicBlock:
409     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
410     break;
411   case ISD::Register:
412     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
413     break;
414   case ISD::RegisterMask:
415     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
416     break;
417   case ISD::SRCVALUE:
418     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
419     break;
420   case ISD::FrameIndex:
421   case ISD::TargetFrameIndex:
422     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
423     break;
424   case ISD::JumpTable:
425   case ISD::TargetJumpTable:
426     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
427     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
428     break;
429   case ISD::ConstantPool:
430   case ISD::TargetConstantPool: {
431     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
432     ID.AddInteger(CP->getAlignment());
433     ID.AddInteger(CP->getOffset());
434     if (CP->isMachineConstantPoolEntry())
435       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
436     else
437       ID.AddPointer(CP->getConstVal());
438     ID.AddInteger(CP->getTargetFlags());
439     break;
440   }
441   case ISD::TargetIndex: {
442     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
443     ID.AddInteger(TI->getIndex());
444     ID.AddInteger(TI->getOffset());
445     ID.AddInteger(TI->getTargetFlags());
446     break;
447   }
448   case ISD::LOAD: {
449     const LoadSDNode *LD = cast<LoadSDNode>(N);
450     ID.AddInteger(LD->getMemoryVT().getRawBits());
451     ID.AddInteger(LD->getRawSubclassData());
452     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
453     break;
454   }
455   case ISD::STORE: {
456     const StoreSDNode *ST = cast<StoreSDNode>(N);
457     ID.AddInteger(ST->getMemoryVT().getRawBits());
458     ID.AddInteger(ST->getRawSubclassData());
459     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
460     break;
461   }
462   case ISD::ATOMIC_CMP_SWAP:
463   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
464   case ISD::ATOMIC_SWAP:
465   case ISD::ATOMIC_LOAD_ADD:
466   case ISD::ATOMIC_LOAD_SUB:
467   case ISD::ATOMIC_LOAD_AND:
468   case ISD::ATOMIC_LOAD_OR:
469   case ISD::ATOMIC_LOAD_XOR:
470   case ISD::ATOMIC_LOAD_NAND:
471   case ISD::ATOMIC_LOAD_MIN:
472   case ISD::ATOMIC_LOAD_MAX:
473   case ISD::ATOMIC_LOAD_UMIN:
474   case ISD::ATOMIC_LOAD_UMAX:
475   case ISD::ATOMIC_LOAD:
476   case ISD::ATOMIC_STORE: {
477     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
478     ID.AddInteger(AT->getMemoryVT().getRawBits());
479     ID.AddInteger(AT->getRawSubclassData());
480     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
481     break;
482   }
483   case ISD::PREFETCH: {
484     const MemSDNode *PF = cast<MemSDNode>(N);
485     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
486     break;
487   }
488   case ISD::VECTOR_SHUFFLE: {
489     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
490     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
491          i != e; ++i)
492       ID.AddInteger(SVN->getMaskElt(i));
493     break;
494   }
495   case ISD::TargetBlockAddress:
496   case ISD::BlockAddress: {
497     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
498     ID.AddPointer(BA->getBlockAddress());
499     ID.AddInteger(BA->getOffset());
500     ID.AddInteger(BA->getTargetFlags());
501     break;
502   }
503   } // end switch (N->getOpcode())
504 
505   // Target specific memory nodes could also have address spaces to check.
506   if (N->isTargetMemoryOpcode())
507     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
508 }
509 
510 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
511 /// data.
512 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
513   AddNodeIDOpcode(ID, N->getOpcode());
514   // Add the return value info.
515   AddNodeIDValueTypes(ID, N->getVTList());
516   // Add the operand info.
517   AddNodeIDOperands(ID, N->ops());
518 
519   // Handle SDNode leafs with special info.
520   AddNodeIDCustom(ID, N);
521 }
522 
523 //===----------------------------------------------------------------------===//
524 //                              SelectionDAG Class
525 //===----------------------------------------------------------------------===//
526 
527 /// doNotCSE - Return true if CSE should not be performed for this node.
528 static bool doNotCSE(SDNode *N) {
529   if (N->getValueType(0) == MVT::Glue)
530     return true; // Never CSE anything that produces a flag.
531 
532   switch (N->getOpcode()) {
533   default: break;
534   case ISD::HANDLENODE:
535   case ISD::EH_LABEL:
536     return true;   // Never CSE these nodes.
537   }
538 
539   // Check that remaining values produced are not flags.
540   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
541     if (N->getValueType(i) == MVT::Glue)
542       return true; // Never CSE anything that produces a flag.
543 
544   return false;
545 }
546 
547 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
548 /// SelectionDAG.
549 void SelectionDAG::RemoveDeadNodes() {
550   // Create a dummy node (which is not added to allnodes), that adds a reference
551   // to the root node, preventing it from being deleted.
552   HandleSDNode Dummy(getRoot());
553 
554   SmallVector<SDNode*, 128> DeadNodes;
555 
556   // Add all obviously-dead nodes to the DeadNodes worklist.
557   for (SDNode &Node : allnodes())
558     if (Node.use_empty())
559       DeadNodes.push_back(&Node);
560 
561   RemoveDeadNodes(DeadNodes);
562 
563   // If the root changed (e.g. it was a dead load, update the root).
564   setRoot(Dummy.getValue());
565 }
566 
567 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
568 /// given list, and any nodes that become unreachable as a result.
569 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
570 
571   // Process the worklist, deleting the nodes and adding their uses to the
572   // worklist.
573   while (!DeadNodes.empty()) {
574     SDNode *N = DeadNodes.pop_back_val();
575 
576     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
577       DUL->NodeDeleted(N, nullptr);
578 
579     // Take the node out of the appropriate CSE map.
580     RemoveNodeFromCSEMaps(N);
581 
582     // Next, brutally remove the operand list.  This is safe to do, as there are
583     // no cycles in the graph.
584     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
585       SDUse &Use = *I++;
586       SDNode *Operand = Use.getNode();
587       Use.set(SDValue());
588 
589       // Now that we removed this operand, see if there are no uses of it left.
590       if (Operand->use_empty())
591         DeadNodes.push_back(Operand);
592     }
593 
594     DeallocateNode(N);
595   }
596 }
597 
598 void SelectionDAG::RemoveDeadNode(SDNode *N){
599   SmallVector<SDNode*, 16> DeadNodes(1, N);
600 
601   // Create a dummy node that adds a reference to the root node, preventing
602   // it from being deleted.  (This matters if the root is an operand of the
603   // dead node.)
604   HandleSDNode Dummy(getRoot());
605 
606   RemoveDeadNodes(DeadNodes);
607 }
608 
609 void SelectionDAG::DeleteNode(SDNode *N) {
610   // First take this out of the appropriate CSE map.
611   RemoveNodeFromCSEMaps(N);
612 
613   // Finally, remove uses due to operands of this node, remove from the
614   // AllNodes list, and delete the node.
615   DeleteNodeNotInCSEMaps(N);
616 }
617 
618 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
619   assert(N->getIterator() != AllNodes.begin() &&
620          "Cannot delete the entry node!");
621   assert(N->use_empty() && "Cannot delete a node that is not dead!");
622 
623   // Drop all of the operands and decrement used node's use counts.
624   N->DropOperands();
625 
626   DeallocateNode(N);
627 }
628 
629 void SDDbgInfo::erase(const SDNode *Node) {
630   DbgValMapType::iterator I = DbgValMap.find(Node);
631   if (I == DbgValMap.end())
632     return;
633   for (auto &Val: I->second)
634     Val->setIsInvalidated();
635   DbgValMap.erase(I);
636 }
637 
638 void SelectionDAG::DeallocateNode(SDNode *N) {
639   // If we have operands, deallocate them.
640   removeOperands(N);
641 
642   // Set the opcode to DELETED_NODE to help catch bugs when node
643   // memory is reallocated.
644   N->NodeType = ISD::DELETED_NODE;
645 
646   NodeAllocator.Deallocate(AllNodes.remove(N));
647 
648   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
649   // them and forget about that node.
650   DbgInfo->erase(N);
651 }
652 
653 #ifndef NDEBUG
654 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
655 static void VerifySDNode(SDNode *N) {
656   switch (N->getOpcode()) {
657   default:
658     break;
659   case ISD::BUILD_PAIR: {
660     EVT VT = N->getValueType(0);
661     assert(N->getNumValues() == 1 && "Too many results!");
662     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
663            "Wrong return type!");
664     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
665     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
666            "Mismatched operand types!");
667     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
668            "Wrong operand type!");
669     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
670            "Wrong return type size");
671     break;
672   }
673   case ISD::BUILD_VECTOR: {
674     assert(N->getNumValues() == 1 && "Too many results!");
675     assert(N->getValueType(0).isVector() && "Wrong return type!");
676     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
677            "Wrong number of operands!");
678     EVT EltVT = N->getValueType(0).getVectorElementType();
679     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
680       assert((I->getValueType() == EltVT ||
681              (EltVT.isInteger() && I->getValueType().isInteger() &&
682               EltVT.bitsLE(I->getValueType()))) &&
683             "Wrong operand type!");
684       assert(I->getValueType() == N->getOperand(0).getValueType() &&
685              "Operands must all have the same type");
686     }
687     break;
688   }
689   }
690 }
691 #endif // NDEBUG
692 
693 /// \brief Insert a newly allocated node into the DAG.
694 ///
695 /// Handles insertion into the all nodes list and CSE map, as well as
696 /// verification and other common operations when a new node is allocated.
697 void SelectionDAG::InsertNode(SDNode *N) {
698   AllNodes.push_back(N);
699 #ifndef NDEBUG
700   N->PersistentId = NextPersistentId++;
701   VerifySDNode(N);
702 #endif
703 }
704 
705 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
706 /// correspond to it.  This is useful when we're about to delete or repurpose
707 /// the node.  We don't want future request for structurally identical nodes
708 /// to return N anymore.
709 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
710   bool Erased = false;
711   switch (N->getOpcode()) {
712   case ISD::HANDLENODE: return false;  // noop.
713   case ISD::CONDCODE:
714     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
715            "Cond code doesn't exist!");
716     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
717     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
718     break;
719   case ISD::ExternalSymbol:
720     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
721     break;
722   case ISD::TargetExternalSymbol: {
723     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
724     Erased = TargetExternalSymbols.erase(
725                std::pair<std::string,unsigned char>(ESN->getSymbol(),
726                                                     ESN->getTargetFlags()));
727     break;
728   }
729   case ISD::MCSymbol: {
730     auto *MCSN = cast<MCSymbolSDNode>(N);
731     Erased = MCSymbols.erase(MCSN->getMCSymbol());
732     break;
733   }
734   case ISD::VALUETYPE: {
735     EVT VT = cast<VTSDNode>(N)->getVT();
736     if (VT.isExtended()) {
737       Erased = ExtendedValueTypeNodes.erase(VT);
738     } else {
739       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
740       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
741     }
742     break;
743   }
744   default:
745     // Remove it from the CSE Map.
746     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
747     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
748     Erased = CSEMap.RemoveNode(N);
749     break;
750   }
751 #ifndef NDEBUG
752   // Verify that the node was actually in one of the CSE maps, unless it has a
753   // flag result (which cannot be CSE'd) or is one of the special cases that are
754   // not subject to CSE.
755   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
756       !N->isMachineOpcode() && !doNotCSE(N)) {
757     N->dump(this);
758     dbgs() << "\n";
759     llvm_unreachable("Node is not in map!");
760   }
761 #endif
762   return Erased;
763 }
764 
765 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
766 /// maps and modified in place. Add it back to the CSE maps, unless an identical
767 /// node already exists, in which case transfer all its users to the existing
768 /// node. This transfer can potentially trigger recursive merging.
769 ///
770 void
771 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
772   // For node types that aren't CSE'd, just act as if no identical node
773   // already exists.
774   if (!doNotCSE(N)) {
775     SDNode *Existing = CSEMap.GetOrInsertNode(N);
776     if (Existing != N) {
777       // If there was already an existing matching node, use ReplaceAllUsesWith
778       // to replace the dead one with the existing one.  This can cause
779       // recursive merging of other unrelated nodes down the line.
780       ReplaceAllUsesWith(N, Existing);
781 
782       // N is now dead. Inform the listeners and delete it.
783       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
784         DUL->NodeDeleted(N, Existing);
785       DeleteNodeNotInCSEMaps(N);
786       return;
787     }
788   }
789 
790   // If the node doesn't already exist, we updated it.  Inform listeners.
791   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
792     DUL->NodeUpdated(N);
793 }
794 
795 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
796 /// were replaced with those specified.  If this node is never memoized,
797 /// return null, otherwise return a pointer to the slot it would take.  If a
798 /// node already exists with these operands, the slot will be non-null.
799 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
800                                            void *&InsertPos) {
801   if (doNotCSE(N))
802     return nullptr;
803 
804   SDValue Ops[] = { Op };
805   FoldingSetNodeID ID;
806   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
807   AddNodeIDCustom(ID, N);
808   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
809   if (Node)
810     if (const SDNodeFlags *Flags = N->getFlags())
811       Node->intersectFlagsWith(Flags);
812   return Node;
813 }
814 
815 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
816 /// were replaced with those specified.  If this node is never memoized,
817 /// return null, otherwise return a pointer to the slot it would take.  If a
818 /// node already exists with these operands, the slot will be non-null.
819 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
820                                            SDValue Op1, SDValue Op2,
821                                            void *&InsertPos) {
822   if (doNotCSE(N))
823     return nullptr;
824 
825   SDValue Ops[] = { Op1, Op2 };
826   FoldingSetNodeID ID;
827   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
828   AddNodeIDCustom(ID, N);
829   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
830   if (Node)
831     if (const SDNodeFlags *Flags = N->getFlags())
832       Node->intersectFlagsWith(Flags);
833   return Node;
834 }
835 
836 
837 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
838 /// were replaced with those specified.  If this node is never memoized,
839 /// return null, otherwise return a pointer to the slot it would take.  If a
840 /// node already exists with these operands, the slot will be non-null.
841 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
842                                            void *&InsertPos) {
843   if (doNotCSE(N))
844     return nullptr;
845 
846   FoldingSetNodeID ID;
847   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
848   AddNodeIDCustom(ID, N);
849   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
850   if (Node)
851     if (const SDNodeFlags *Flags = N->getFlags())
852       Node->intersectFlagsWith(Flags);
853   return Node;
854 }
855 
856 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
857   Type *Ty = VT == MVT::iPTR ?
858                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
859                    VT.getTypeForEVT(*getContext());
860 
861   return getDataLayout().getABITypeAlignment(Ty);
862 }
863 
864 // EntryNode could meaningfully have debug info if we can find it...
865 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
866     : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
867       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
868       Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
869       UpdateListeners(nullptr) {
870   InsertNode(&EntryNode);
871   DbgInfo = new SDDbgInfo();
872 }
873 
874 void SelectionDAG::init(MachineFunction &mf) {
875   MF = &mf;
876   TLI = getSubtarget().getTargetLowering();
877   TSI = getSubtarget().getSelectionDAGInfo();
878   Context = &mf.getFunction()->getContext();
879 }
880 
881 SelectionDAG::~SelectionDAG() {
882   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
883   allnodes_clear();
884   OperandRecycler.clear(OperandAllocator);
885   delete DbgInfo;
886 }
887 
888 void SelectionDAG::allnodes_clear() {
889   assert(&*AllNodes.begin() == &EntryNode);
890   AllNodes.remove(AllNodes.begin());
891   while (!AllNodes.empty())
892     DeallocateNode(&AllNodes.front());
893 #ifndef NDEBUG
894   NextPersistentId = 0;
895 #endif
896 }
897 
898 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL,
899                                       SDVTList VTs, SDValue N1, SDValue N2,
900                                       const SDNodeFlags *Flags) {
901   SDValue Ops[] = {N1, N2};
902 
903   if (isBinOpWithFlags(Opcode)) {
904     // If no flags were passed in, use a default flags object.
905     SDNodeFlags F;
906     if (Flags == nullptr)
907       Flags = &F;
908 
909     auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(),
910                                                 DL.getDebugLoc(), VTs, *Flags);
911     createOperands(FN, Ops);
912 
913     return FN;
914   }
915 
916   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
917   createOperands(N, Ops);
918   return N;
919 }
920 
921 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
922                                           void *&InsertPos) {
923   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
924   if (N) {
925     switch (N->getOpcode()) {
926     default: break;
927     case ISD::Constant:
928     case ISD::ConstantFP:
929       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
930                        "debug location.  Use another overload.");
931     }
932   }
933   return N;
934 }
935 
936 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
937                                           const SDLoc &DL, void *&InsertPos) {
938   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
939   if (N) {
940     switch (N->getOpcode()) {
941     case ISD::Constant:
942     case ISD::ConstantFP:
943       // Erase debug location from the node if the node is used at several
944       // different places. Do not propagate one location to all uses as it
945       // will cause a worse single stepping debugging experience.
946       if (N->getDebugLoc() != DL.getDebugLoc())
947         N->setDebugLoc(DebugLoc());
948       break;
949     default:
950       // When the node's point of use is located earlier in the instruction
951       // sequence than its prior point of use, update its debug info to the
952       // earlier location.
953       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
954         N->setDebugLoc(DL.getDebugLoc());
955       break;
956     }
957   }
958   return N;
959 }
960 
961 void SelectionDAG::clear() {
962   allnodes_clear();
963   OperandRecycler.clear(OperandAllocator);
964   OperandAllocator.Reset();
965   CSEMap.clear();
966 
967   ExtendedValueTypeNodes.clear();
968   ExternalSymbols.clear();
969   TargetExternalSymbols.clear();
970   MCSymbols.clear();
971   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
972             static_cast<CondCodeSDNode*>(nullptr));
973   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
974             static_cast<SDNode*>(nullptr));
975 
976   EntryNode.UseList = nullptr;
977   InsertNode(&EntryNode);
978   Root = getEntryNode();
979   DbgInfo->clear();
980 }
981 
982 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
983   return VT.bitsGT(Op.getValueType()) ?
984     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
985     getNode(ISD::TRUNCATE, DL, VT, Op);
986 }
987 
988 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
989   return VT.bitsGT(Op.getValueType()) ?
990     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
991     getNode(ISD::TRUNCATE, DL, VT, Op);
992 }
993 
994 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
995   return VT.bitsGT(Op.getValueType()) ?
996     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
997     getNode(ISD::TRUNCATE, DL, VT, Op);
998 }
999 
1000 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1001                                         EVT OpVT) {
1002   if (VT.bitsLE(Op.getValueType()))
1003     return getNode(ISD::TRUNCATE, SL, VT, Op);
1004 
1005   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1006   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1007 }
1008 
1009 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1010   assert(!VT.isVector() &&
1011          "getZeroExtendInReg should use the vector element type instead of "
1012          "the vector type!");
1013   if (Op.getValueType() == VT) return Op;
1014   unsigned BitWidth = Op.getScalarValueSizeInBits();
1015   APInt Imm = APInt::getLowBitsSet(BitWidth,
1016                                    VT.getSizeInBits());
1017   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1018                  getConstant(Imm, DL, Op.getValueType()));
1019 }
1020 
1021 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1022                                               EVT VT) {
1023   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1024   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1025          "The sizes of the input and result must match in order to perform the "
1026          "extend in-register.");
1027   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1028          "The destination vector type must have fewer lanes than the input.");
1029   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1030 }
1031 
1032 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1033                                                EVT VT) {
1034   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1035   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1036          "The sizes of the input and result must match in order to perform the "
1037          "extend in-register.");
1038   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1039          "The destination vector type must have fewer lanes than the input.");
1040   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1041 }
1042 
1043 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1044                                                EVT VT) {
1045   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1046   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1047          "The sizes of the input and result must match in order to perform the "
1048          "extend in-register.");
1049   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1050          "The destination vector type must have fewer lanes than the input.");
1051   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1052 }
1053 
1054 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1055 ///
1056 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1057   EVT EltVT = VT.getScalarType();
1058   SDValue NegOne =
1059     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1060   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1061 }
1062 
1063 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1064   EVT EltVT = VT.getScalarType();
1065   SDValue TrueValue;
1066   switch (TLI->getBooleanContents(VT)) {
1067     case TargetLowering::ZeroOrOneBooleanContent:
1068     case TargetLowering::UndefinedBooleanContent:
1069       TrueValue = getConstant(1, DL, VT);
1070       break;
1071     case TargetLowering::ZeroOrNegativeOneBooleanContent:
1072       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
1073                               VT);
1074       break;
1075   }
1076   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1077 }
1078 
1079 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1080                                   bool isT, bool isO) {
1081   EVT EltVT = VT.getScalarType();
1082   assert((EltVT.getSizeInBits() >= 64 ||
1083          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1084          "getConstant with a uint64_t value that doesn't fit in the type!");
1085   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1086 }
1087 
1088 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1089                                   bool isT, bool isO) {
1090   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1091 }
1092 
1093 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1094                                   EVT VT, bool isT, bool isO) {
1095   assert(VT.isInteger() && "Cannot create FP integer constant!");
1096 
1097   EVT EltVT = VT.getScalarType();
1098   const ConstantInt *Elt = &Val;
1099 
1100   // In some cases the vector type is legal but the element type is illegal and
1101   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1102   // inserted value (the type does not need to match the vector element type).
1103   // Any extra bits introduced will be truncated away.
1104   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1105       TargetLowering::TypePromoteInteger) {
1106    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1107    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1108    Elt = ConstantInt::get(*getContext(), NewVal);
1109   }
1110   // In other cases the element type is illegal and needs to be expanded, for
1111   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1112   // the value into n parts and use a vector type with n-times the elements.
1113   // Then bitcast to the type requested.
1114   // Legalizing constants too early makes the DAGCombiner's job harder so we
1115   // only legalize if the DAG tells us we must produce legal types.
1116   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1117            TLI->getTypeAction(*getContext(), EltVT) ==
1118            TargetLowering::TypeExpandInteger) {
1119     const APInt &NewVal = Elt->getValue();
1120     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1121     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1122     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1123     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1124 
1125     // Check the temporary vector is the correct size. If this fails then
1126     // getTypeToTransformTo() probably returned a type whose size (in bits)
1127     // isn't a power-of-2 factor of the requested type size.
1128     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1129 
1130     SmallVector<SDValue, 2> EltParts;
1131     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1132       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1133                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1134                                      ViaEltVT, isT, isO));
1135     }
1136 
1137     // EltParts is currently in little endian order. If we actually want
1138     // big-endian order then reverse it now.
1139     if (getDataLayout().isBigEndian())
1140       std::reverse(EltParts.begin(), EltParts.end());
1141 
1142     // The elements must be reversed when the element order is different
1143     // to the endianness of the elements (because the BITCAST is itself a
1144     // vector shuffle in this situation). However, we do not need any code to
1145     // perform this reversal because getConstant() is producing a vector
1146     // splat.
1147     // This situation occurs in MIPS MSA.
1148 
1149     SmallVector<SDValue, 8> Ops;
1150     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1151       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1152     return getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1153   }
1154 
1155   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1156          "APInt size does not match type size!");
1157   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1158   FoldingSetNodeID ID;
1159   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1160   ID.AddPointer(Elt);
1161   ID.AddBoolean(isO);
1162   void *IP = nullptr;
1163   SDNode *N = nullptr;
1164   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1165     if (!VT.isVector())
1166       return SDValue(N, 0);
1167 
1168   if (!N) {
1169     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1170     CSEMap.InsertNode(N, IP);
1171     InsertNode(N);
1172   }
1173 
1174   SDValue Result(N, 0);
1175   if (VT.isVector())
1176     Result = getSplatBuildVector(VT, DL, Result);
1177   return Result;
1178 }
1179 
1180 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1181                                         bool isTarget) {
1182   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1183 }
1184 
1185 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1186                                     bool isTarget) {
1187   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1188 }
1189 
1190 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1191                                     EVT VT, bool isTarget) {
1192   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1193 
1194   EVT EltVT = VT.getScalarType();
1195 
1196   // Do the map lookup using the actual bit pattern for the floating point
1197   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1198   // we don't have issues with SNANs.
1199   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1200   FoldingSetNodeID ID;
1201   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1202   ID.AddPointer(&V);
1203   void *IP = nullptr;
1204   SDNode *N = nullptr;
1205   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1206     if (!VT.isVector())
1207       return SDValue(N, 0);
1208 
1209   if (!N) {
1210     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1211     CSEMap.InsertNode(N, IP);
1212     InsertNode(N);
1213   }
1214 
1215   SDValue Result(N, 0);
1216   if (VT.isVector())
1217     Result = getSplatBuildVector(VT, DL, Result);
1218   return Result;
1219 }
1220 
1221 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1222                                     bool isTarget) {
1223   EVT EltVT = VT.getScalarType();
1224   if (EltVT == MVT::f32)
1225     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1226   else if (EltVT == MVT::f64)
1227     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1228   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1229            EltVT == MVT::f16) {
1230     bool Ignored;
1231     APFloat APF = APFloat(Val);
1232     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1233                 &Ignored);
1234     return getConstantFP(APF, DL, VT, isTarget);
1235   } else
1236     llvm_unreachable("Unsupported type in getConstantFP");
1237 }
1238 
1239 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1240                                        EVT VT, int64_t Offset, bool isTargetGA,
1241                                        unsigned char TargetFlags) {
1242   assert((TargetFlags == 0 || isTargetGA) &&
1243          "Cannot set target flags on target-independent globals");
1244 
1245   // Truncate (with sign-extension) the offset value to the pointer size.
1246   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1247   if (BitWidth < 64)
1248     Offset = SignExtend64(Offset, BitWidth);
1249 
1250   unsigned Opc;
1251   if (GV->isThreadLocal())
1252     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1253   else
1254     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1255 
1256   FoldingSetNodeID ID;
1257   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1258   ID.AddPointer(GV);
1259   ID.AddInteger(Offset);
1260   ID.AddInteger(TargetFlags);
1261   void *IP = nullptr;
1262   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1263     return SDValue(E, 0);
1264 
1265   auto *N = newSDNode<GlobalAddressSDNode>(
1266       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1267   CSEMap.InsertNode(N, IP);
1268     InsertNode(N);
1269   return SDValue(N, 0);
1270 }
1271 
1272 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1273   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1274   FoldingSetNodeID ID;
1275   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1276   ID.AddInteger(FI);
1277   void *IP = nullptr;
1278   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1279     return SDValue(E, 0);
1280 
1281   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1282   CSEMap.InsertNode(N, IP);
1283   InsertNode(N);
1284   return SDValue(N, 0);
1285 }
1286 
1287 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1288                                    unsigned char TargetFlags) {
1289   assert((TargetFlags == 0 || isTarget) &&
1290          "Cannot set target flags on target-independent jump tables");
1291   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1292   FoldingSetNodeID ID;
1293   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1294   ID.AddInteger(JTI);
1295   ID.AddInteger(TargetFlags);
1296   void *IP = nullptr;
1297   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1298     return SDValue(E, 0);
1299 
1300   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1301   CSEMap.InsertNode(N, IP);
1302   InsertNode(N);
1303   return SDValue(N, 0);
1304 }
1305 
1306 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1307                                       unsigned Alignment, int Offset,
1308                                       bool isTarget,
1309                                       unsigned char TargetFlags) {
1310   assert((TargetFlags == 0 || isTarget) &&
1311          "Cannot set target flags on target-independent globals");
1312   if (Alignment == 0)
1313     Alignment = MF->getFunction()->optForSize()
1314                     ? getDataLayout().getABITypeAlignment(C->getType())
1315                     : getDataLayout().getPrefTypeAlignment(C->getType());
1316   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1317   FoldingSetNodeID ID;
1318   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1319   ID.AddInteger(Alignment);
1320   ID.AddInteger(Offset);
1321   ID.AddPointer(C);
1322   ID.AddInteger(TargetFlags);
1323   void *IP = nullptr;
1324   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1325     return SDValue(E, 0);
1326 
1327   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1328                                           TargetFlags);
1329   CSEMap.InsertNode(N, IP);
1330   InsertNode(N);
1331   return SDValue(N, 0);
1332 }
1333 
1334 
1335 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1336                                       unsigned Alignment, int Offset,
1337                                       bool isTarget,
1338                                       unsigned char TargetFlags) {
1339   assert((TargetFlags == 0 || isTarget) &&
1340          "Cannot set target flags on target-independent globals");
1341   if (Alignment == 0)
1342     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1343   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1344   FoldingSetNodeID ID;
1345   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1346   ID.AddInteger(Alignment);
1347   ID.AddInteger(Offset);
1348   C->addSelectionDAGCSEId(ID);
1349   ID.AddInteger(TargetFlags);
1350   void *IP = nullptr;
1351   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1352     return SDValue(E, 0);
1353 
1354   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1355                                           TargetFlags);
1356   CSEMap.InsertNode(N, IP);
1357   InsertNode(N);
1358   return SDValue(N, 0);
1359 }
1360 
1361 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1362                                      unsigned char TargetFlags) {
1363   FoldingSetNodeID ID;
1364   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1365   ID.AddInteger(Index);
1366   ID.AddInteger(Offset);
1367   ID.AddInteger(TargetFlags);
1368   void *IP = nullptr;
1369   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1370     return SDValue(E, 0);
1371 
1372   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1373   CSEMap.InsertNode(N, IP);
1374   InsertNode(N);
1375   return SDValue(N, 0);
1376 }
1377 
1378 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1379   FoldingSetNodeID ID;
1380   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1381   ID.AddPointer(MBB);
1382   void *IP = nullptr;
1383   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1384     return SDValue(E, 0);
1385 
1386   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1387   CSEMap.InsertNode(N, IP);
1388   InsertNode(N);
1389   return SDValue(N, 0);
1390 }
1391 
1392 SDValue SelectionDAG::getValueType(EVT VT) {
1393   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1394       ValueTypeNodes.size())
1395     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1396 
1397   SDNode *&N = VT.isExtended() ?
1398     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1399 
1400   if (N) return SDValue(N, 0);
1401   N = newSDNode<VTSDNode>(VT);
1402   InsertNode(N);
1403   return SDValue(N, 0);
1404 }
1405 
1406 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1407   SDNode *&N = ExternalSymbols[Sym];
1408   if (N) return SDValue(N, 0);
1409   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1410   InsertNode(N);
1411   return SDValue(N, 0);
1412 }
1413 
1414 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1415   SDNode *&N = MCSymbols[Sym];
1416   if (N)
1417     return SDValue(N, 0);
1418   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1419   InsertNode(N);
1420   return SDValue(N, 0);
1421 }
1422 
1423 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1424                                               unsigned char TargetFlags) {
1425   SDNode *&N =
1426     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1427                                                                TargetFlags)];
1428   if (N) return SDValue(N, 0);
1429   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1430   InsertNode(N);
1431   return SDValue(N, 0);
1432 }
1433 
1434 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1435   if ((unsigned)Cond >= CondCodeNodes.size())
1436     CondCodeNodes.resize(Cond+1);
1437 
1438   if (!CondCodeNodes[Cond]) {
1439     auto *N = newSDNode<CondCodeSDNode>(Cond);
1440     CondCodeNodes[Cond] = N;
1441     InsertNode(N);
1442   }
1443 
1444   return SDValue(CondCodeNodes[Cond], 0);
1445 }
1446 
1447 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1448 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1449 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1450   std::swap(N1, N2);
1451   ShuffleVectorSDNode::commuteMask(M);
1452 }
1453 
1454 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1455                                        SDValue N2, ArrayRef<int> Mask) {
1456   assert(VT.getVectorNumElements() == Mask.size() &&
1457            "Must have the same number of vector elements as mask elements!");
1458   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1459          "Invalid VECTOR_SHUFFLE");
1460 
1461   // Canonicalize shuffle undef, undef -> undef
1462   if (N1.isUndef() && N2.isUndef())
1463     return getUNDEF(VT);
1464 
1465   // Validate that all indices in Mask are within the range of the elements
1466   // input to the shuffle.
1467   int NElts = Mask.size();
1468   assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) &&
1469          "Index out of range");
1470 
1471   // Copy the mask so we can do any needed cleanup.
1472   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1473 
1474   // Canonicalize shuffle v, v -> v, undef
1475   if (N1 == N2) {
1476     N2 = getUNDEF(VT);
1477     for (int i = 0; i != NElts; ++i)
1478       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1479   }
1480 
1481   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1482   if (N1.isUndef())
1483     commuteShuffle(N1, N2, MaskVec);
1484 
1485   // If shuffling a splat, try to blend the splat instead. We do this here so
1486   // that even when this arises during lowering we don't have to re-handle it.
1487   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1488     BitVector UndefElements;
1489     SDValue Splat = BV->getSplatValue(&UndefElements);
1490     if (!Splat)
1491       return;
1492 
1493     for (int i = 0; i < NElts; ++i) {
1494       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1495         continue;
1496 
1497       // If this input comes from undef, mark it as such.
1498       if (UndefElements[MaskVec[i] - Offset]) {
1499         MaskVec[i] = -1;
1500         continue;
1501       }
1502 
1503       // If we can blend a non-undef lane, use that instead.
1504       if (!UndefElements[i])
1505         MaskVec[i] = i + Offset;
1506     }
1507   };
1508   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1509     BlendSplat(N1BV, 0);
1510   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1511     BlendSplat(N2BV, NElts);
1512 
1513   // Canonicalize all index into lhs, -> shuffle lhs, undef
1514   // Canonicalize all index into rhs, -> shuffle rhs, undef
1515   bool AllLHS = true, AllRHS = true;
1516   bool N2Undef = N2.isUndef();
1517   for (int i = 0; i != NElts; ++i) {
1518     if (MaskVec[i] >= NElts) {
1519       if (N2Undef)
1520         MaskVec[i] = -1;
1521       else
1522         AllLHS = false;
1523     } else if (MaskVec[i] >= 0) {
1524       AllRHS = false;
1525     }
1526   }
1527   if (AllLHS && AllRHS)
1528     return getUNDEF(VT);
1529   if (AllLHS && !N2Undef)
1530     N2 = getUNDEF(VT);
1531   if (AllRHS) {
1532     N1 = getUNDEF(VT);
1533     commuteShuffle(N1, N2, MaskVec);
1534   }
1535   // Reset our undef status after accounting for the mask.
1536   N2Undef = N2.isUndef();
1537   // Re-check whether both sides ended up undef.
1538   if (N1.isUndef() && N2Undef)
1539     return getUNDEF(VT);
1540 
1541   // If Identity shuffle return that node.
1542   bool Identity = true, AllSame = true;
1543   for (int i = 0; i != NElts; ++i) {
1544     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1545     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1546   }
1547   if (Identity && NElts)
1548     return N1;
1549 
1550   // Shuffling a constant splat doesn't change the result.
1551   if (N2Undef) {
1552     SDValue V = N1;
1553 
1554     // Look through any bitcasts. We check that these don't change the number
1555     // (and size) of elements and just changes their types.
1556     while (V.getOpcode() == ISD::BITCAST)
1557       V = V->getOperand(0);
1558 
1559     // A splat should always show up as a build vector node.
1560     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1561       BitVector UndefElements;
1562       SDValue Splat = BV->getSplatValue(&UndefElements);
1563       // If this is a splat of an undef, shuffling it is also undef.
1564       if (Splat && Splat.isUndef())
1565         return getUNDEF(VT);
1566 
1567       bool SameNumElts =
1568           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1569 
1570       // We only have a splat which can skip shuffles if there is a splatted
1571       // value and no undef lanes rearranged by the shuffle.
1572       if (Splat && UndefElements.none()) {
1573         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1574         // number of elements match or the value splatted is a zero constant.
1575         if (SameNumElts)
1576           return N1;
1577         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1578           if (C->isNullValue())
1579             return N1;
1580       }
1581 
1582       // If the shuffle itself creates a splat, build the vector directly.
1583       if (AllSame && SameNumElts) {
1584         EVT BuildVT = BV->getValueType(0);
1585         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1586         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1587 
1588         // We may have jumped through bitcasts, so the type of the
1589         // BUILD_VECTOR may not match the type of the shuffle.
1590         if (BuildVT != VT)
1591           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1592         return NewBV;
1593       }
1594     }
1595   }
1596 
1597   FoldingSetNodeID ID;
1598   SDValue Ops[2] = { N1, N2 };
1599   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1600   for (int i = 0; i != NElts; ++i)
1601     ID.AddInteger(MaskVec[i]);
1602 
1603   void* IP = nullptr;
1604   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1605     return SDValue(E, 0);
1606 
1607   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1608   // SDNode doesn't have access to it.  This memory will be "leaked" when
1609   // the node is deallocated, but recovered when the NodeAllocator is released.
1610   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1611   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1612 
1613   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1614                                            dl.getDebugLoc(), MaskAlloc);
1615   createOperands(N, Ops);
1616 
1617   CSEMap.InsertNode(N, IP);
1618   InsertNode(N);
1619   return SDValue(N, 0);
1620 }
1621 
1622 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1623   MVT VT = SV.getSimpleValueType(0);
1624   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1625   ShuffleVectorSDNode::commuteMask(MaskVec);
1626 
1627   SDValue Op0 = SV.getOperand(0);
1628   SDValue Op1 = SV.getOperand(1);
1629   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1630 }
1631 
1632 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1633   FoldingSetNodeID ID;
1634   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1635   ID.AddInteger(RegNo);
1636   void *IP = nullptr;
1637   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1638     return SDValue(E, 0);
1639 
1640   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1641   CSEMap.InsertNode(N, IP);
1642   InsertNode(N);
1643   return SDValue(N, 0);
1644 }
1645 
1646 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1647   FoldingSetNodeID ID;
1648   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1649   ID.AddPointer(RegMask);
1650   void *IP = nullptr;
1651   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1652     return SDValue(E, 0);
1653 
1654   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1655   CSEMap.InsertNode(N, IP);
1656   InsertNode(N);
1657   return SDValue(N, 0);
1658 }
1659 
1660 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1661                                  MCSymbol *Label) {
1662   FoldingSetNodeID ID;
1663   SDValue Ops[] = { Root };
1664   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
1665   ID.AddPointer(Label);
1666   void *IP = nullptr;
1667   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1668     return SDValue(E, 0);
1669 
1670   auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1671   createOperands(N, Ops);
1672 
1673   CSEMap.InsertNode(N, IP);
1674   InsertNode(N);
1675   return SDValue(N, 0);
1676 }
1677 
1678 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1679                                       int64_t Offset,
1680                                       bool isTarget,
1681                                       unsigned char TargetFlags) {
1682   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1683 
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1686   ID.AddPointer(BA);
1687   ID.AddInteger(Offset);
1688   ID.AddInteger(TargetFlags);
1689   void *IP = nullptr;
1690   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1691     return SDValue(E, 0);
1692 
1693   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1694   CSEMap.InsertNode(N, IP);
1695   InsertNode(N);
1696   return SDValue(N, 0);
1697 }
1698 
1699 SDValue SelectionDAG::getSrcValue(const Value *V) {
1700   assert((!V || V->getType()->isPointerTy()) &&
1701          "SrcValue is not a pointer?");
1702 
1703   FoldingSetNodeID ID;
1704   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1705   ID.AddPointer(V);
1706 
1707   void *IP = nullptr;
1708   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1709     return SDValue(E, 0);
1710 
1711   auto *N = newSDNode<SrcValueSDNode>(V);
1712   CSEMap.InsertNode(N, IP);
1713   InsertNode(N);
1714   return SDValue(N, 0);
1715 }
1716 
1717 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1718   FoldingSetNodeID ID;
1719   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1720   ID.AddPointer(MD);
1721 
1722   void *IP = nullptr;
1723   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1724     return SDValue(E, 0);
1725 
1726   auto *N = newSDNode<MDNodeSDNode>(MD);
1727   CSEMap.InsertNode(N, IP);
1728   InsertNode(N);
1729   return SDValue(N, 0);
1730 }
1731 
1732 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1733   if (VT == V.getValueType())
1734     return V;
1735 
1736   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1737 }
1738 
1739 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1740                                        unsigned SrcAS, unsigned DestAS) {
1741   SDValue Ops[] = {Ptr};
1742   FoldingSetNodeID ID;
1743   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1744   ID.AddInteger(SrcAS);
1745   ID.AddInteger(DestAS);
1746 
1747   void *IP = nullptr;
1748   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1749     return SDValue(E, 0);
1750 
1751   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1752                                            VT, SrcAS, DestAS);
1753   createOperands(N, Ops);
1754 
1755   CSEMap.InsertNode(N, IP);
1756   InsertNode(N);
1757   return SDValue(N, 0);
1758 }
1759 
1760 /// getShiftAmountOperand - Return the specified value casted to
1761 /// the target's desired shift amount type.
1762 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1763   EVT OpTy = Op.getValueType();
1764   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1765   if (OpTy == ShTy || OpTy.isVector()) return Op;
1766 
1767   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1768 }
1769 
1770 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1771   SDLoc dl(Node);
1772   const TargetLowering &TLI = getTargetLoweringInfo();
1773   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1774   EVT VT = Node->getValueType(0);
1775   SDValue Tmp1 = Node->getOperand(0);
1776   SDValue Tmp2 = Node->getOperand(1);
1777   unsigned Align = Node->getConstantOperandVal(3);
1778 
1779   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1780                                Tmp2, MachinePointerInfo(V));
1781   SDValue VAList = VAListLoad;
1782 
1783   if (Align > TLI.getMinStackArgumentAlignment()) {
1784     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1785 
1786     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1787                      getConstant(Align - 1, dl, VAList.getValueType()));
1788 
1789     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1790                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1791   }
1792 
1793   // Increment the pointer, VAList, to the next vaarg
1794   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1795                  getConstant(getDataLayout().getTypeAllocSize(
1796                                                VT.getTypeForEVT(*getContext())),
1797                              dl, VAList.getValueType()));
1798   // Store the incremented VAList to the legalized pointer
1799   Tmp1 =
1800       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1801   // Load the actual argument out of the pointer VAList
1802   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1803 }
1804 
1805 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1806   SDLoc dl(Node);
1807   const TargetLowering &TLI = getTargetLoweringInfo();
1808   // This defaults to loading a pointer from the input and storing it to the
1809   // output, returning the chain.
1810   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1811   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1812   SDValue Tmp1 =
1813       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1814               Node->getOperand(2), MachinePointerInfo(VS));
1815   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1816                   MachinePointerInfo(VD));
1817 }
1818 
1819 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1820   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1821   unsigned ByteSize = VT.getStoreSize();
1822   Type *Ty = VT.getTypeForEVT(*getContext());
1823   unsigned StackAlign =
1824       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1825 
1826   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1827   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1828 }
1829 
1830 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1831   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1832   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1833   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1834   const DataLayout &DL = getDataLayout();
1835   unsigned Align =
1836       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1837 
1838   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1839   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1840   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1841 }
1842 
1843 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1844                                 ISD::CondCode Cond, const SDLoc &dl) {
1845   // These setcc operations always fold.
1846   switch (Cond) {
1847   default: break;
1848   case ISD::SETFALSE:
1849   case ISD::SETFALSE2: return getConstant(0, dl, VT);
1850   case ISD::SETTRUE:
1851   case ISD::SETTRUE2: {
1852     TargetLowering::BooleanContent Cnt =
1853         TLI->getBooleanContents(N1->getValueType(0));
1854     return getConstant(
1855         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1856         VT);
1857   }
1858 
1859   case ISD::SETOEQ:
1860   case ISD::SETOGT:
1861   case ISD::SETOGE:
1862   case ISD::SETOLT:
1863   case ISD::SETOLE:
1864   case ISD::SETONE:
1865   case ISD::SETO:
1866   case ISD::SETUO:
1867   case ISD::SETUEQ:
1868   case ISD::SETUNE:
1869     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1870     break;
1871   }
1872 
1873   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1874     const APInt &C2 = N2C->getAPIntValue();
1875     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1876       const APInt &C1 = N1C->getAPIntValue();
1877 
1878       switch (Cond) {
1879       default: llvm_unreachable("Unknown integer setcc!");
1880       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
1881       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
1882       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
1883       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
1884       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
1885       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
1886       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
1887       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
1888       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
1889       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
1890       }
1891     }
1892   }
1893   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1894     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1895       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1896       switch (Cond) {
1897       default: break;
1898       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1899                           return getUNDEF(VT);
1900                         LLVM_FALLTHROUGH;
1901       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
1902       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1903                           return getUNDEF(VT);
1904                         LLVM_FALLTHROUGH;
1905       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1906                                            R==APFloat::cmpLessThan, dl, VT);
1907       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1908                           return getUNDEF(VT);
1909                         LLVM_FALLTHROUGH;
1910       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
1911       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1912                           return getUNDEF(VT);
1913                         LLVM_FALLTHROUGH;
1914       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
1915       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1916                           return getUNDEF(VT);
1917                         LLVM_FALLTHROUGH;
1918       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1919                                            R==APFloat::cmpEqual, dl, VT);
1920       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1921                           return getUNDEF(VT);
1922                         LLVM_FALLTHROUGH;
1923       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1924                                            R==APFloat::cmpEqual, dl, VT);
1925       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
1926       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
1927       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1928                                            R==APFloat::cmpEqual, dl, VT);
1929       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
1930       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1931                                            R==APFloat::cmpLessThan, dl, VT);
1932       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1933                                            R==APFloat::cmpUnordered, dl, VT);
1934       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
1935       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
1936       }
1937     } else {
1938       // Ensure that the constant occurs on the RHS.
1939       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1940       MVT CompVT = N1.getValueType().getSimpleVT();
1941       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
1942         return SDValue();
1943 
1944       return getSetCC(dl, VT, N2, N1, SwappedCond);
1945     }
1946   }
1947 
1948   // Could not fold it.
1949   return SDValue();
1950 }
1951 
1952 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1953 /// use this predicate to simplify operations downstream.
1954 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1955   unsigned BitWidth = Op.getScalarValueSizeInBits();
1956   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1957 }
1958 
1959 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1960 /// this predicate to simplify operations downstream.  Mask is known to be zero
1961 /// for bits that V cannot have.
1962 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1963                                      unsigned Depth) const {
1964   APInt KnownZero, KnownOne;
1965   computeKnownBits(Op, KnownZero, KnownOne, Depth);
1966   return (KnownZero & Mask) == Mask;
1967 }
1968 
1969 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
1970 /// is less than the element bit-width of the shift node, return it.
1971 static const APInt *getValidShiftAmountConstant(SDValue V) {
1972   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
1973     // Shifting more than the bitwidth is not valid.
1974     const APInt &ShAmt = SA->getAPIntValue();
1975     if (ShAmt.ult(V.getScalarValueSizeInBits()))
1976       return &ShAmt;
1977   }
1978   return nullptr;
1979 }
1980 
1981 /// Determine which bits of Op are known to be either zero or one and return
1982 /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are
1983 /// those that are shared by every vector element.
1984 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
1985                                     APInt &KnownOne, unsigned Depth) const {
1986   EVT VT = Op.getValueType();
1987   APInt DemandedElts = VT.isVector()
1988                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
1989                            : APInt(1, 1);
1990   computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth);
1991 }
1992 
1993 /// Determine which bits of Op are known to be either zero or one and return
1994 /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows
1995 /// us to only collect the known bits that are shared by the requested vector
1996 /// elements.
1997 /// TODO: We only support DemandedElts on a few opcodes so far, the remainder
1998 /// should be added when they become necessary.
1999 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
2000                                     APInt &KnownOne, const APInt &DemandedElts,
2001                                     unsigned Depth) const {
2002   unsigned BitWidth = Op.getScalarValueSizeInBits();
2003 
2004   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
2005   if (Depth == 6)
2006     return;  // Limit search depth.
2007 
2008   APInt KnownZero2, KnownOne2;
2009   unsigned NumElts = DemandedElts.getBitWidth();
2010 
2011   if (!DemandedElts)
2012     return;  // No demanded elts, better to assume we don't know anything.
2013 
2014   unsigned Opcode = Op.getOpcode();
2015   switch (Opcode) {
2016   case ISD::Constant:
2017     // We know all of the bits for a constant!
2018     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
2019     KnownZero = ~KnownOne;
2020     break;
2021   case ISD::BUILD_VECTOR:
2022     // Collect the known bits that are shared by every demanded vector element.
2023     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2024            "Unexpected vector size");
2025     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2026     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2027       if (!DemandedElts[i])
2028         continue;
2029 
2030       SDValue SrcOp = Op.getOperand(i);
2031       computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1);
2032 
2033       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2034       if (SrcOp.getValueSizeInBits() != BitWidth) {
2035         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2036                "Expected BUILD_VECTOR implicit truncation");
2037         KnownOne2 = KnownOne2.trunc(BitWidth);
2038         KnownZero2 = KnownZero2.trunc(BitWidth);
2039       }
2040 
2041       // Known bits are the values that are shared by every demanded element.
2042       KnownOne &= KnownOne2;
2043       KnownZero &= KnownZero2;
2044 
2045       // If we don't know any bits, early out.
2046       if (!KnownOne && !KnownZero)
2047         break;
2048     }
2049     break;
2050   case ISD::VECTOR_SHUFFLE: {
2051     // Collect the known bits that are shared by every vector element referenced
2052     // by the shuffle.
2053     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2054     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2055     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2056     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2057     for (unsigned i = 0; i != NumElts; ++i) {
2058       if (!DemandedElts[i])
2059         continue;
2060 
2061       int M = SVN->getMaskElt(i);
2062       if (M < 0) {
2063         // For UNDEF elements, we don't know anything about the common state of
2064         // the shuffle result.
2065         KnownOne.clearAllBits();
2066         KnownZero.clearAllBits();
2067         DemandedLHS.clearAllBits();
2068         DemandedRHS.clearAllBits();
2069         break;
2070       }
2071 
2072       if ((unsigned)M < NumElts)
2073         DemandedLHS.setBit((unsigned)M % NumElts);
2074       else
2075         DemandedRHS.setBit((unsigned)M % NumElts);
2076     }
2077     // Known bits are the values that are shared by every demanded element.
2078     if (!!DemandedLHS) {
2079       SDValue LHS = Op.getOperand(0);
2080       computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1);
2081       KnownOne &= KnownOne2;
2082       KnownZero &= KnownZero2;
2083     }
2084     // If we don't know any bits, early out.
2085     if (!KnownOne && !KnownZero)
2086       break;
2087     if (!!DemandedRHS) {
2088       SDValue RHS = Op.getOperand(1);
2089       computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1);
2090       KnownOne &= KnownOne2;
2091       KnownZero &= KnownZero2;
2092     }
2093     break;
2094   }
2095   case ISD::CONCAT_VECTORS: {
2096     // Split DemandedElts and test each of the demanded subvectors.
2097     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2098     EVT SubVectorVT = Op.getOperand(0).getValueType();
2099     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2100     unsigned NumSubVectors = Op.getNumOperands();
2101     for (unsigned i = 0; i != NumSubVectors; ++i) {
2102       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2103       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2104       if (!!DemandedSub) {
2105         SDValue Sub = Op.getOperand(i);
2106         computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1);
2107         KnownOne &= KnownOne2;
2108         KnownZero &= KnownZero2;
2109       }
2110       // If we don't know any bits, early out.
2111       if (!KnownOne && !KnownZero)
2112         break;
2113     }
2114     break;
2115   }
2116   case ISD::EXTRACT_SUBVECTOR: {
2117     // If we know the element index, just demand that subvector elements,
2118     // otherwise demand them all.
2119     SDValue Src = Op.getOperand(0);
2120     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2121     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2122     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2123       // Offset the demanded elts by the subvector index.
2124       uint64_t Idx = SubIdx->getZExtValue();
2125       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
2126       computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1);
2127     } else {
2128       computeKnownBits(Src, KnownZero, KnownOne, Depth + 1);
2129     }
2130     break;
2131   }
2132   case ISD::BITCAST: {
2133     SDValue N0 = Op.getOperand(0);
2134     unsigned SubBitWidth = N0.getScalarValueSizeInBits();
2135 
2136     // Ignore bitcasts from floating point.
2137     if (!N0.getValueType().isInteger())
2138       break;
2139 
2140     // Fast handling of 'identity' bitcasts.
2141     if (BitWidth == SubBitWidth) {
2142       computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1);
2143       break;
2144     }
2145 
2146     // Support big-endian targets when it becomes useful.
2147     bool IsLE = getDataLayout().isLittleEndian();
2148     if (!IsLE)
2149       break;
2150 
2151     // Bitcast 'small element' vector to 'large element' scalar/vector.
2152     if ((BitWidth % SubBitWidth) == 0) {
2153       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2154 
2155       // Collect known bits for the (larger) output by collecting the known
2156       // bits from each set of sub elements and shift these into place.
2157       // We need to separately call computeKnownBits for each set of
2158       // sub elements as the knownbits for each is likely to be different.
2159       unsigned SubScale = BitWidth / SubBitWidth;
2160       APInt SubDemandedElts(NumElts * SubScale, 0);
2161       for (unsigned i = 0; i != NumElts; ++i)
2162         if (DemandedElts[i])
2163           SubDemandedElts.setBit(i * SubScale);
2164 
2165       for (unsigned i = 0; i != SubScale; ++i) {
2166         computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i),
2167                          Depth + 1);
2168         KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i);
2169         KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i);
2170       }
2171     }
2172 
2173     // Bitcast 'large element' scalar/vector to 'small element' vector.
2174     if ((SubBitWidth % BitWidth) == 0) {
2175       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2176 
2177       // Collect known bits for the (smaller) output by collecting the known
2178       // bits from the overlapping larger input elements and extracting the
2179       // sub sections we actually care about.
2180       unsigned SubScale = SubBitWidth / BitWidth;
2181       APInt SubDemandedElts(NumElts / SubScale, 0);
2182       for (unsigned i = 0; i != NumElts; ++i)
2183         if (DemandedElts[i])
2184           SubDemandedElts.setBit(i / SubScale);
2185 
2186       computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1);
2187 
2188       KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2189       for (unsigned i = 0; i != NumElts; ++i)
2190         if (DemandedElts[i]) {
2191           unsigned Offset = (i % SubScale) * BitWidth;
2192           KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth);
2193           KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth);
2194           // If we don't know any bits, early out.
2195           if (!KnownOne && !KnownZero)
2196             break;
2197         }
2198     }
2199     break;
2200   }
2201   case ISD::AND:
2202     // If either the LHS or the RHS are Zero, the result is zero.
2203     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2204                      Depth + 1);
2205     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2206                      Depth + 1);
2207 
2208     // Output known-1 bits are only known if set in both the LHS & RHS.
2209     KnownOne &= KnownOne2;
2210     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2211     KnownZero |= KnownZero2;
2212     break;
2213   case ISD::OR:
2214     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2215                      Depth + 1);
2216     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2217                      Depth + 1);
2218 
2219     // Output known-0 bits are only known if clear in both the LHS & RHS.
2220     KnownZero &= KnownZero2;
2221     // Output known-1 are known to be set if set in either the LHS | RHS.
2222     KnownOne |= KnownOne2;
2223     break;
2224   case ISD::XOR: {
2225     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2226                      Depth + 1);
2227     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2228                      Depth + 1);
2229 
2230     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2231     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
2232     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2233     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
2234     KnownZero = KnownZeroOut;
2235     break;
2236   }
2237   case ISD::MUL: {
2238     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2239                      Depth + 1);
2240     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2241                      Depth + 1);
2242 
2243     // If low bits are zero in either operand, output low known-0 bits.
2244     // Also compute a conservative estimate for high known-0 bits.
2245     // More trickiness is possible, but this is sufficient for the
2246     // interesting case of alignment computation.
2247     KnownOne.clearAllBits();
2248     unsigned TrailZ = KnownZero.countTrailingOnes() +
2249                       KnownZero2.countTrailingOnes();
2250     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
2251                                KnownZero2.countLeadingOnes(),
2252                                BitWidth) - BitWidth;
2253 
2254     TrailZ = std::min(TrailZ, BitWidth);
2255     LeadZ = std::min(LeadZ, BitWidth);
2256     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
2257                 APInt::getHighBitsSet(BitWidth, LeadZ);
2258     break;
2259   }
2260   case ISD::UDIV: {
2261     // For the purposes of computing leading zeros we can conservatively
2262     // treat a udiv as a logical right shift by the power of 2 known to
2263     // be less than the denominator.
2264     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2265                      Depth + 1);
2266     unsigned LeadZ = KnownZero2.countLeadingOnes();
2267 
2268     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2269                      Depth + 1);
2270     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
2271     if (RHSUnknownLeadingOnes != BitWidth)
2272       LeadZ = std::min(BitWidth,
2273                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
2274 
2275     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
2276     break;
2277   }
2278   case ISD::SELECT:
2279     computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
2280     // If we don't know any bits, early out.
2281     if (!KnownOne && !KnownZero)
2282       break;
2283     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2284 
2285     // Only known if known in both the LHS and RHS.
2286     KnownOne &= KnownOne2;
2287     KnownZero &= KnownZero2;
2288     break;
2289   case ISD::SELECT_CC:
2290     computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
2291     // If we don't know any bits, early out.
2292     if (!KnownOne && !KnownZero)
2293       break;
2294     computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
2295 
2296     // Only known if known in both the LHS and RHS.
2297     KnownOne &= KnownOne2;
2298     KnownZero &= KnownZero2;
2299     break;
2300   case ISD::SMULO:
2301   case ISD::UMULO:
2302     if (Op.getResNo() != 1)
2303       break;
2304     // The boolean result conforms to getBooleanContents.
2305     // If we know the result of a setcc has the top bits zero, use this info.
2306     // We know that we have an integer-based boolean since these operations
2307     // are only available for integer.
2308     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2309             TargetLowering::ZeroOrOneBooleanContent &&
2310         BitWidth > 1)
2311       KnownZero.setBitsFrom(1);
2312     break;
2313   case ISD::SETCC:
2314     // If we know the result of a setcc has the top bits zero, use this info.
2315     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2316             TargetLowering::ZeroOrOneBooleanContent &&
2317         BitWidth > 1)
2318       KnownZero.setBitsFrom(1);
2319     break;
2320   case ISD::SHL:
2321     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2322       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2323                        Depth + 1);
2324       KnownZero = KnownZero << *ShAmt;
2325       KnownOne = KnownOne << *ShAmt;
2326       // Low bits are known zero.
2327       KnownZero.setLowBits(ShAmt->getZExtValue());
2328     }
2329     break;
2330   case ISD::SRL:
2331     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2332       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2333                        Depth + 1);
2334       KnownZero = KnownZero.lshr(*ShAmt);
2335       KnownOne  = KnownOne.lshr(*ShAmt);
2336       // High bits are known zero.
2337       KnownZero.setHighBits(ShAmt->getZExtValue());
2338     }
2339     break;
2340   case ISD::SRA:
2341     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2342       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2343                        Depth + 1);
2344       KnownZero = KnownZero.lshr(*ShAmt);
2345       KnownOne  = KnownOne.lshr(*ShAmt);
2346       // If we know the value of the sign bit, then we know it is copied across
2347       // the high bits by the shift amount.
2348       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue());
2349       APInt SignBit = APInt::getSignBit(BitWidth);
2350       SignBit = SignBit.lshr(*ShAmt);  // Adjust to where it is now in the mask.
2351       if (KnownZero.intersects(SignBit)) {
2352         KnownZero |= HighBits;  // New bits are known zero.
2353       } else if (KnownOne.intersects(SignBit)) {
2354         KnownOne  |= HighBits;  // New bits are known one.
2355       }
2356     }
2357     break;
2358   case ISD::SIGN_EXTEND_INREG: {
2359     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2360     unsigned EBits = EVT.getScalarSizeInBits();
2361 
2362     // Sign extension.  Compute the demanded bits in the result that are not
2363     // present in the input.
2364     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2365 
2366     APInt InSignBit = APInt::getSignBit(EBits);
2367     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2368 
2369     // If the sign extended bits are demanded, we know that the sign
2370     // bit is demanded.
2371     InSignBit = InSignBit.zext(BitWidth);
2372     if (NewBits.getBoolValue())
2373       InputDemandedBits |= InSignBit;
2374 
2375     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2376                      Depth + 1);
2377     KnownOne &= InputDemandedBits;
2378     KnownZero &= InputDemandedBits;
2379 
2380     // If the sign bit of the input is known set or clear, then we know the
2381     // top bits of the result.
2382     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
2383       KnownZero |= NewBits;
2384       KnownOne  &= ~NewBits;
2385     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
2386       KnownOne  |= NewBits;
2387       KnownZero &= ~NewBits;
2388     } else {                              // Input sign bit unknown
2389       KnownZero &= ~NewBits;
2390       KnownOne  &= ~NewBits;
2391     }
2392     break;
2393   }
2394   case ISD::CTTZ:
2395   case ISD::CTTZ_ZERO_UNDEF:
2396   case ISD::CTLZ:
2397   case ISD::CTLZ_ZERO_UNDEF:
2398   case ISD::CTPOP: {
2399     unsigned LowBits = Log2_32(BitWidth)+1;
2400     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
2401     KnownOne.clearAllBits();
2402     break;
2403   }
2404   case ISD::LOAD: {
2405     LoadSDNode *LD = cast<LoadSDNode>(Op);
2406     // If this is a ZEXTLoad and we are looking at the loaded value.
2407     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2408       EVT VT = LD->getMemoryVT();
2409       unsigned MemBits = VT.getScalarSizeInBits();
2410       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
2411     } else if (const MDNode *Ranges = LD->getRanges()) {
2412       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2413         computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne);
2414     }
2415     break;
2416   }
2417   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2418     EVT InVT = Op.getOperand(0).getValueType();
2419     unsigned InBits = InVT.getScalarSizeInBits();
2420     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2421     KnownZero = KnownZero.trunc(InBits);
2422     KnownOne = KnownOne.trunc(InBits);
2423     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne,
2424                      DemandedElts.zext(InVT.getVectorNumElements()),
2425                      Depth + 1);
2426     KnownZero = KnownZero.zext(BitWidth);
2427     KnownOne = KnownOne.zext(BitWidth);
2428     KnownZero |= NewBits;
2429     break;
2430   }
2431   case ISD::ZERO_EXTEND: {
2432     EVT InVT = Op.getOperand(0).getValueType();
2433     unsigned InBits = InVT.getScalarSizeInBits();
2434     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2435     KnownZero = KnownZero.trunc(InBits);
2436     KnownOne = KnownOne.trunc(InBits);
2437     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2438                      Depth + 1);
2439     KnownZero = KnownZero.zext(BitWidth);
2440     KnownOne = KnownOne.zext(BitWidth);
2441     KnownZero |= NewBits;
2442     break;
2443   }
2444   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
2445   case ISD::SIGN_EXTEND: {
2446     EVT InVT = Op.getOperand(0).getValueType();
2447     unsigned InBits = InVT.getScalarSizeInBits();
2448 
2449     KnownZero = KnownZero.trunc(InBits);
2450     KnownOne = KnownOne.trunc(InBits);
2451     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2452                      Depth + 1);
2453 
2454     // If the sign bit is known to be zero or one, then sext will extend
2455     // it to the top bits, else it will just zext.
2456     KnownZero = KnownZero.sext(BitWidth);
2457     KnownOne = KnownOne.sext(BitWidth);
2458     break;
2459   }
2460   case ISD::ANY_EXTEND: {
2461     EVT InVT = Op.getOperand(0).getValueType();
2462     unsigned InBits = InVT.getScalarSizeInBits();
2463     KnownZero = KnownZero.trunc(InBits);
2464     KnownOne = KnownOne.trunc(InBits);
2465     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2466     KnownZero = KnownZero.zext(BitWidth);
2467     KnownOne = KnownOne.zext(BitWidth);
2468     break;
2469   }
2470   case ISD::TRUNCATE: {
2471     EVT InVT = Op.getOperand(0).getValueType();
2472     unsigned InBits = InVT.getScalarSizeInBits();
2473     KnownZero = KnownZero.zext(InBits);
2474     KnownOne = KnownOne.zext(InBits);
2475     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2476                      Depth + 1);
2477     KnownZero = KnownZero.trunc(BitWidth);
2478     KnownOne = KnownOne.trunc(BitWidth);
2479     break;
2480   }
2481   case ISD::AssertZext: {
2482     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2483     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2484     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2485     KnownZero |= (~InMask);
2486     KnownOne  &= (~KnownZero);
2487     break;
2488   }
2489   case ISD::FGETSIGN:
2490     // All bits are zero except the low bit.
2491     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2492     break;
2493   case ISD::USUBO:
2494   case ISD::SSUBO:
2495     if (Op.getResNo() == 1) {
2496       // If we know the result of a setcc has the top bits zero, use this info.
2497       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2498               TargetLowering::ZeroOrOneBooleanContent &&
2499           BitWidth > 1)
2500         KnownZero.setBitsFrom(1);
2501       break;
2502     }
2503     LLVM_FALLTHROUGH;
2504   case ISD::SUB:
2505   case ISD::SUBC: {
2506     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2507       // We know that the top bits of C-X are clear if X contains less bits
2508       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2509       // positive if we can prove that X is >= 0 and < 16.
2510       if (CLHS->getAPIntValue().isNonNegative()) {
2511         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2512         // NLZ can't be BitWidth with no sign bit
2513         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2514         computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2515                          Depth + 1);
2516 
2517         // If all of the MaskV bits are known to be zero, then we know the
2518         // output top bits are zero, because we now know that the output is
2519         // from [0-C].
2520         if ((KnownZero2 & MaskV) == MaskV) {
2521           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2522           // Top bits known zero.
2523           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2524         }
2525       }
2526     }
2527 
2528     // If low bits are know to be zero in both operands, then we know they are
2529     // going to be 0 in the result. Both addition and complement operations
2530     // preserve the low zero bits.
2531     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2532                      Depth + 1);
2533     unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
2534     if (KnownZeroLow == 0)
2535       break;
2536 
2537     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2538                      Depth + 1);
2539     KnownZeroLow = std::min(KnownZeroLow,
2540                             KnownZero2.countTrailingOnes());
2541     KnownZero.setBits(0, KnownZeroLow);
2542     break;
2543   }
2544   case ISD::UADDO:
2545   case ISD::SADDO:
2546     if (Op.getResNo() == 1) {
2547       // If we know the result of a setcc has the top bits zero, use this info.
2548       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2549               TargetLowering::ZeroOrOneBooleanContent &&
2550           BitWidth > 1)
2551         KnownZero.setBitsFrom(1);
2552       break;
2553     }
2554     LLVM_FALLTHROUGH;
2555   case ISD::ADD:
2556   case ISD::ADDC:
2557   case ISD::ADDE: {
2558     // Output known-0 bits are known if clear or set in both the low clear bits
2559     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2560     // low 3 bits clear.
2561     // Output known-0 bits are also known if the top bits of each input are
2562     // known to be clear. For example, if one input has the top 10 bits clear
2563     // and the other has the top 8 bits clear, we know the top 7 bits of the
2564     // output must be clear.
2565     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2566                      Depth + 1);
2567     unsigned KnownZeroHigh = KnownZero2.countLeadingOnes();
2568     unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
2569 
2570     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2571                      Depth + 1);
2572     KnownZeroHigh = std::min(KnownZeroHigh,
2573                              KnownZero2.countLeadingOnes());
2574     KnownZeroLow = std::min(KnownZeroLow,
2575                             KnownZero2.countTrailingOnes());
2576 
2577     if (Opcode == ISD::ADDE) {
2578       // With ADDE, a carry bit may be added in, so we can only use this
2579       // information if we know (at least) that the low two bits are clear.
2580       // We then return to the caller that the low bit is unknown but that
2581       // other bits are known zero.
2582       if (KnownZeroLow >= 2)
2583         KnownZero.setBits(1, KnownZeroLow);
2584       break;
2585     }
2586 
2587     KnownZero.setLowBits(KnownZeroLow);
2588     if (KnownZeroHigh > 1)
2589       KnownZero.setHighBits(KnownZeroHigh - 1);
2590     break;
2591   }
2592   case ISD::SREM:
2593     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2594       const APInt &RA = Rem->getAPIntValue().abs();
2595       if (RA.isPowerOf2()) {
2596         APInt LowBits = RA - 1;
2597         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2598                          Depth + 1);
2599 
2600         // The low bits of the first operand are unchanged by the srem.
2601         KnownZero = KnownZero2 & LowBits;
2602         KnownOne = KnownOne2 & LowBits;
2603 
2604         // If the first operand is non-negative or has all low bits zero, then
2605         // the upper bits are all zero.
2606         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2607           KnownZero |= ~LowBits;
2608 
2609         // If the first operand is negative and not all low bits are zero, then
2610         // the upper bits are all one.
2611         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2612           KnownOne |= ~LowBits;
2613         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2614       }
2615     }
2616     break;
2617   case ISD::UREM: {
2618     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2619       const APInt &RA = Rem->getAPIntValue();
2620       if (RA.isPowerOf2()) {
2621         APInt LowBits = (RA - 1);
2622         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2623                          Depth + 1);
2624 
2625         // The upper bits are all zero, the lower ones are unchanged.
2626         KnownZero = KnownZero2 | ~LowBits;
2627         KnownOne = KnownOne2 & LowBits;
2628         break;
2629       }
2630     }
2631 
2632     // Since the result is less than or equal to either operand, any leading
2633     // zero bits in either operand must also exist in the result.
2634     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2635                      Depth + 1);
2636     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2637                      Depth + 1);
2638 
2639     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2640                                 KnownZero2.countLeadingOnes());
2641     KnownOne.clearAllBits();
2642     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2643     break;
2644   }
2645   case ISD::EXTRACT_ELEMENT: {
2646     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2647     const unsigned Index = Op.getConstantOperandVal(1);
2648     const unsigned BitWidth = Op.getValueSizeInBits();
2649 
2650     // Remove low part of known bits mask
2651     KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
2652     KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);
2653 
2654     // Remove high part of known bit mask
2655     KnownZero = KnownZero.trunc(BitWidth);
2656     KnownOne = KnownOne.trunc(BitWidth);
2657     break;
2658   }
2659   case ISD::EXTRACT_VECTOR_ELT: {
2660     SDValue InVec = Op.getOperand(0);
2661     SDValue EltNo = Op.getOperand(1);
2662     EVT VecVT = InVec.getValueType();
2663     const unsigned BitWidth = Op.getValueSizeInBits();
2664     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2665     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2666     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2667     // anything about the extended bits.
2668     if (BitWidth > EltBitWidth) {
2669       KnownZero = KnownZero.trunc(EltBitWidth);
2670       KnownOne = KnownOne.trunc(EltBitWidth);
2671     }
2672     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2673     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2674       // If we know the element index, just demand that vector element.
2675       unsigned Idx = ConstEltNo->getZExtValue();
2676       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2677       computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1);
2678     } else {
2679       // Unknown element index, so ignore DemandedElts and demand them all.
2680       computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
2681     }
2682     if (BitWidth > EltBitWidth) {
2683       KnownZero = KnownZero.zext(BitWidth);
2684       KnownOne = KnownOne.zext(BitWidth);
2685     }
2686     break;
2687   }
2688   case ISD::INSERT_VECTOR_ELT: {
2689     SDValue InVec = Op.getOperand(0);
2690     SDValue InVal = Op.getOperand(1);
2691     SDValue EltNo = Op.getOperand(2);
2692 
2693     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2694     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2695       // If we know the element index, split the demand between the
2696       // source vector and the inserted element.
2697       KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2698       unsigned EltIdx = CEltNo->getZExtValue();
2699 
2700       // If we demand the inserted element then add its common known bits.
2701       if (DemandedElts[EltIdx]) {
2702         computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
2703         KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
2704         KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
2705       }
2706 
2707       // If we demand the source vector then add its common known bits, ensuring
2708       // that we don't demand the inserted element.
2709       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2710       if (!!VectorElts) {
2711         computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1);
2712         KnownOne &= KnownOne2;
2713         KnownZero &= KnownZero2;
2714       }
2715     } else {
2716       // Unknown element index, so ignore DemandedElts and demand them all.
2717       computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
2718       computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
2719       KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
2720       KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
2721     }
2722     break;
2723   }
2724   case ISD::BITREVERSE: {
2725     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2726                      Depth + 1);
2727     KnownZero = KnownZero2.reverseBits();
2728     KnownOne = KnownOne2.reverseBits();
2729     break;
2730   }
2731   case ISD::BSWAP: {
2732     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2733                      Depth + 1);
2734     KnownZero = KnownZero2.byteSwap();
2735     KnownOne = KnownOne2.byteSwap();
2736     break;
2737   }
2738   case ISD::UMIN: {
2739     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2740                      Depth + 1);
2741     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2742                      Depth + 1);
2743 
2744     // UMIN - we know that the result will have the maximum of the
2745     // known zero leading bits of the inputs.
2746     unsigned LeadZero = KnownZero.countLeadingOnes();
2747     LeadZero = std::max(LeadZero, KnownZero2.countLeadingOnes());
2748 
2749     KnownZero &= KnownZero2;
2750     KnownOne &= KnownOne2;
2751     KnownZero.setHighBits(LeadZero);
2752     break;
2753   }
2754   case ISD::UMAX: {
2755     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2756                      Depth + 1);
2757     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2758                      Depth + 1);
2759 
2760     // UMAX - we know that the result will have the maximum of the
2761     // known one leading bits of the inputs.
2762     unsigned LeadOne = KnownOne.countLeadingOnes();
2763     LeadOne = std::max(LeadOne, KnownOne2.countLeadingOnes());
2764 
2765     KnownZero &= KnownZero2;
2766     KnownOne &= KnownOne2;
2767     KnownOne.setHighBits(LeadOne);
2768     break;
2769   }
2770   case ISD::SMIN:
2771   case ISD::SMAX: {
2772     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2773                      Depth + 1);
2774     // If we don't know any bits, early out.
2775     if (!KnownOne && !KnownZero)
2776       break;
2777     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2778                      Depth + 1);
2779     KnownZero &= KnownZero2;
2780     KnownOne &= KnownOne2;
2781     break;
2782   }
2783   case ISD::FrameIndex:
2784   case ISD::TargetFrameIndex:
2785     if (unsigned Align = InferPtrAlignment(Op)) {
2786       // The low bits are known zero if the pointer is aligned.
2787       KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2788       break;
2789     }
2790     break;
2791 
2792   default:
2793     if (Opcode < ISD::BUILTIN_OP_END)
2794       break;
2795     LLVM_FALLTHROUGH;
2796   case ISD::INTRINSIC_WO_CHAIN:
2797   case ISD::INTRINSIC_W_CHAIN:
2798   case ISD::INTRINSIC_VOID:
2799     // Allow the target to implement this method for its nodes.
2800     TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2801     break;
2802   }
2803 
2804   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
2805 }
2806 
2807 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
2808                                                              SDValue N1) const {
2809   // X + 0 never overflow
2810   if (isNullConstant(N1))
2811     return OFK_Never;
2812 
2813   APInt N1Zero, N1One;
2814   computeKnownBits(N1, N1Zero, N1One);
2815   if (N1Zero.getBoolValue()) {
2816     APInt N0Zero, N0One;
2817     computeKnownBits(N0, N0Zero, N0One);
2818 
2819     bool overflow;
2820     (~N0Zero).uadd_ov(~N1Zero, overflow);
2821     if (!overflow)
2822       return OFK_Never;
2823   }
2824 
2825   // mulhi + 1 never overflow
2826   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
2827       (~N1Zero & 0x01) == ~N1Zero)
2828     return OFK_Never;
2829 
2830   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
2831     APInt N0Zero, N0One;
2832     computeKnownBits(N0, N0Zero, N0One);
2833 
2834     if ((~N0Zero & 0x01) == ~N0Zero)
2835       return OFK_Never;
2836   }
2837 
2838   return OFK_Sometime;
2839 }
2840 
2841 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
2842   EVT OpVT = Val.getValueType();
2843   unsigned BitWidth = OpVT.getScalarSizeInBits();
2844 
2845   // Is the constant a known power of 2?
2846   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
2847     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2848 
2849   // A left-shift of a constant one will have exactly one bit set because
2850   // shifting the bit off the end is undefined.
2851   if (Val.getOpcode() == ISD::SHL) {
2852     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2853     if (C && C->getAPIntValue() == 1)
2854       return true;
2855   }
2856 
2857   // Similarly, a logical right-shift of a constant sign-bit will have exactly
2858   // one bit set.
2859   if (Val.getOpcode() == ISD::SRL) {
2860     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2861     if (C && C->getAPIntValue().isSignBit())
2862       return true;
2863   }
2864 
2865   // Are all operands of a build vector constant powers of two?
2866   if (Val.getOpcode() == ISD::BUILD_VECTOR)
2867     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
2868           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
2869             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2870           return false;
2871         }))
2872       return true;
2873 
2874   // More could be done here, though the above checks are enough
2875   // to handle some common cases.
2876 
2877   // Fall back to computeKnownBits to catch other known cases.
2878   APInt KnownZero, KnownOne;
2879   computeKnownBits(Val, KnownZero, KnownOne);
2880   return (KnownZero.countPopulation() == BitWidth - 1) &&
2881          (KnownOne.countPopulation() == 1);
2882 }
2883 
2884 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
2885   EVT VT = Op.getValueType();
2886   assert(VT.isInteger() && "Invalid VT!");
2887   unsigned VTBits = VT.getScalarSizeInBits();
2888   unsigned Tmp, Tmp2;
2889   unsigned FirstAnswer = 1;
2890 
2891   if (Depth == 6)
2892     return 1;  // Limit search depth.
2893 
2894   switch (Op.getOpcode()) {
2895   default: break;
2896   case ISD::AssertSext:
2897     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2898     return VTBits-Tmp+1;
2899   case ISD::AssertZext:
2900     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2901     return VTBits-Tmp;
2902 
2903   case ISD::Constant: {
2904     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2905     return Val.getNumSignBits();
2906   }
2907 
2908   case ISD::BUILD_VECTOR:
2909     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2910     for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i)
2911       Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1));
2912     return Tmp;
2913 
2914   case ISD::SIGN_EXTEND:
2915   case ISD::SIGN_EXTEND_VECTOR_INREG:
2916     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
2917     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2918 
2919   case ISD::SIGN_EXTEND_INREG:
2920     // Max of the input and what this extends.
2921     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
2922     Tmp = VTBits-Tmp+1;
2923 
2924     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2925     return std::max(Tmp, Tmp2);
2926 
2927   case ISD::SRA:
2928     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2929     // SRA X, C   -> adds C sign bits.
2930     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
2931       APInt ShiftVal = C->getAPIntValue();
2932       ShiftVal += Tmp;
2933       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
2934     }
2935     return Tmp;
2936   case ISD::SHL:
2937     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
2938       // shl destroys sign bits.
2939       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2940       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
2941           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
2942       return Tmp - C->getZExtValue();
2943     }
2944     break;
2945   case ISD::AND:
2946   case ISD::OR:
2947   case ISD::XOR:    // NOT is handled here.
2948     // Logical binary ops preserve the number of sign bits at the worst.
2949     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2950     if (Tmp != 1) {
2951       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2952       FirstAnswer = std::min(Tmp, Tmp2);
2953       // We computed what we know about the sign bits as our first
2954       // answer. Now proceed to the generic code that uses
2955       // computeKnownBits, and pick whichever answer is better.
2956     }
2957     break;
2958 
2959   case ISD::SELECT:
2960     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2961     if (Tmp == 1) return 1;  // Early out.
2962     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2963     return std::min(Tmp, Tmp2);
2964   case ISD::SELECT_CC:
2965     Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2966     if (Tmp == 1) return 1;  // Early out.
2967     Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1);
2968     return std::min(Tmp, Tmp2);
2969   case ISD::SMIN:
2970   case ISD::SMAX:
2971   case ISD::UMIN:
2972   case ISD::UMAX:
2973     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2974     if (Tmp == 1)
2975       return 1;  // Early out.
2976     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
2977     return std::min(Tmp, Tmp2);
2978   case ISD::SADDO:
2979   case ISD::UADDO:
2980   case ISD::SSUBO:
2981   case ISD::USUBO:
2982   case ISD::SMULO:
2983   case ISD::UMULO:
2984     if (Op.getResNo() != 1)
2985       break;
2986     // The boolean result conforms to getBooleanContents.  Fall through.
2987     // If setcc returns 0/-1, all bits are sign bits.
2988     // We know that we have an integer-based boolean since these operations
2989     // are only available for integer.
2990     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2991         TargetLowering::ZeroOrNegativeOneBooleanContent)
2992       return VTBits;
2993     break;
2994   case ISD::SETCC:
2995     // If setcc returns 0/-1, all bits are sign bits.
2996     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2997         TargetLowering::ZeroOrNegativeOneBooleanContent)
2998       return VTBits;
2999     break;
3000   case ISD::ROTL:
3001   case ISD::ROTR:
3002     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3003       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
3004 
3005       // Handle rotate right by N like a rotate left by 32-N.
3006       if (Op.getOpcode() == ISD::ROTR)
3007         RotAmt = (VTBits-RotAmt) & (VTBits-1);
3008 
3009       // If we aren't rotating out all of the known-in sign bits, return the
3010       // number that are left.  This handles rotl(sext(x), 1) for example.
3011       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3012       if (Tmp > RotAmt+1) return Tmp-RotAmt;
3013     }
3014     break;
3015   case ISD::ADD:
3016   case ISD::ADDC:
3017     // Add can have at most one carry bit.  Thus we know that the output
3018     // is, at worst, one more bit than the inputs.
3019     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3020     if (Tmp == 1) return 1;  // Early out.
3021 
3022     // Special case decrementing a value (ADD X, -1):
3023     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3024       if (CRHS->isAllOnesValue()) {
3025         APInt KnownZero, KnownOne;
3026         computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
3027 
3028         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3029         // sign bits set.
3030         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
3031           return VTBits;
3032 
3033         // If we are subtracting one from a positive number, there is no carry
3034         // out of the result.
3035         if (KnownZero.isNegative())
3036           return Tmp;
3037       }
3038 
3039     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3040     if (Tmp2 == 1) return 1;
3041     return std::min(Tmp, Tmp2)-1;
3042 
3043   case ISD::SUB:
3044     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3045     if (Tmp2 == 1) return 1;
3046 
3047     // Handle NEG.
3048     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3049       if (CLHS->isNullValue()) {
3050         APInt KnownZero, KnownOne;
3051         computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
3052         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3053         // sign bits set.
3054         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
3055           return VTBits;
3056 
3057         // If the input is known to be positive (the sign bit is known clear),
3058         // the output of the NEG has the same number of sign bits as the input.
3059         if (KnownZero.isNegative())
3060           return Tmp2;
3061 
3062         // Otherwise, we treat this like a SUB.
3063       }
3064 
3065     // Sub can have at most one carry bit.  Thus we know that the output
3066     // is, at worst, one more bit than the inputs.
3067     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3068     if (Tmp == 1) return 1;  // Early out.
3069     return std::min(Tmp, Tmp2)-1;
3070   case ISD::TRUNCATE: {
3071     // Check if the sign bits of source go down as far as the truncated value.
3072     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3073     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3074     if (NumSrcSignBits > (NumSrcBits - VTBits))
3075       return NumSrcSignBits - (NumSrcBits - VTBits);
3076     break;
3077   }
3078   case ISD::EXTRACT_ELEMENT: {
3079     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3080     const int BitWidth = Op.getValueSizeInBits();
3081     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3082 
3083     // Get reverse index (starting from 1), Op1 value indexes elements from
3084     // little end. Sign starts at big end.
3085     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3086 
3087     // If the sign portion ends in our element the subtraction gives correct
3088     // result. Otherwise it gives either negative or > bitwidth result
3089     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3090   }
3091   case ISD::EXTRACT_VECTOR_ELT: {
3092     // At the moment we keep this simple and skip tracking the specific
3093     // element. This way we get the lowest common denominator for all elements
3094     // of the vector.
3095     // TODO: get information for given vector element
3096     const unsigned BitWidth = Op.getValueSizeInBits();
3097     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3098     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3099     // anything about sign bits. But if the sizes match we can derive knowledge
3100     // about sign bits from the vector operand.
3101     if (BitWidth == EltBitWidth)
3102       return ComputeNumSignBits(Op.getOperand(0), Depth+1);
3103     break;
3104   }
3105   case ISD::EXTRACT_SUBVECTOR:
3106     return ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3107   case ISD::CONCAT_VECTORS:
3108     // Determine the minimum number of sign bits across all input vectors.
3109     // Early out if the result is already 1.
3110     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3111     for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i)
3112       Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1));
3113     return Tmp;
3114   }
3115 
3116   // If we are looking at the loaded value of the SDNode.
3117   if (Op.getResNo() == 0) {
3118     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3119     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3120       unsigned ExtType = LD->getExtensionType();
3121       switch (ExtType) {
3122         default: break;
3123         case ISD::SEXTLOAD:    // '17' bits known
3124           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3125           return VTBits-Tmp+1;
3126         case ISD::ZEXTLOAD:    // '16' bits known
3127           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3128           return VTBits-Tmp;
3129       }
3130     }
3131   }
3132 
3133   // Allow the target to implement this method for its nodes.
3134   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3135       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3136       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3137       Op.getOpcode() == ISD::INTRINSIC_VOID) {
3138     unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth);
3139     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
3140   }
3141 
3142   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3143   // use this information.
3144   APInt KnownZero, KnownOne;
3145   computeKnownBits(Op, KnownZero, KnownOne, Depth);
3146 
3147   APInt Mask;
3148   if (KnownZero.isNegative()) {        // sign bit is 0
3149     Mask = KnownZero;
3150   } else if (KnownOne.isNegative()) {  // sign bit is 1;
3151     Mask = KnownOne;
3152   } else {
3153     // Nothing known.
3154     return FirstAnswer;
3155   }
3156 
3157   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3158   // the number of identical bits in the top of the input value.
3159   Mask = ~Mask;
3160   Mask <<= Mask.getBitWidth()-VTBits;
3161   // Return # leading zeros.  We use 'min' here in case Val was zero before
3162   // shifting.  We don't want to return '64' as for an i32 "0".
3163   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3164 }
3165 
3166 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3167   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3168       !isa<ConstantSDNode>(Op.getOperand(1)))
3169     return false;
3170 
3171   if (Op.getOpcode() == ISD::OR &&
3172       !MaskedValueIsZero(Op.getOperand(0),
3173                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3174     return false;
3175 
3176   return true;
3177 }
3178 
3179 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
3180   // If we're told that NaNs won't happen, assume they won't.
3181   if (getTarget().Options.NoNaNsFPMath)
3182     return true;
3183 
3184   if (const BinaryWithFlagsSDNode *BF = dyn_cast<BinaryWithFlagsSDNode>(Op))
3185     return BF->Flags.hasNoNaNs();
3186 
3187   // If the value is a constant, we can obviously see if it is a NaN or not.
3188   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3189     return !C->getValueAPF().isNaN();
3190 
3191   // TODO: Recognize more cases here.
3192 
3193   return false;
3194 }
3195 
3196 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3197   // If the value is a constant, we can obviously see if it is a zero or not.
3198   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3199     return !C->isZero();
3200 
3201   // TODO: Recognize more cases here.
3202   switch (Op.getOpcode()) {
3203   default: break;
3204   case ISD::OR:
3205     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3206       return !C->isNullValue();
3207     break;
3208   }
3209 
3210   return false;
3211 }
3212 
3213 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3214   // Check the obvious case.
3215   if (A == B) return true;
3216 
3217   // For for negative and positive zero.
3218   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3219     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3220       if (CA->isZero() && CB->isZero()) return true;
3221 
3222   // Otherwise they may not be equal.
3223   return false;
3224 }
3225 
3226 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3227   assert(A.getValueType() == B.getValueType() &&
3228          "Values must have the same type");
3229   APInt AZero, AOne;
3230   APInt BZero, BOne;
3231   computeKnownBits(A, AZero, AOne);
3232   computeKnownBits(B, BZero, BOne);
3233   return (AZero | BZero).isAllOnesValue();
3234 }
3235 
3236 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3237                                   ArrayRef<SDValue> Ops,
3238                                   llvm::SelectionDAG &DAG) {
3239   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3240   assert(llvm::all_of(Ops,
3241                       [Ops](SDValue Op) {
3242                         return Ops[0].getValueType() == Op.getValueType();
3243                       }) &&
3244          "Concatenation of vectors with inconsistent value types!");
3245   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3246              VT.getVectorNumElements() &&
3247          "Incorrect element count in vector concatenation!");
3248 
3249   if (Ops.size() == 1)
3250     return Ops[0];
3251 
3252   // Concat of UNDEFs is UNDEF.
3253   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3254     return DAG.getUNDEF(VT);
3255 
3256   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3257   // simplified to one big BUILD_VECTOR.
3258   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3259   EVT SVT = VT.getScalarType();
3260   SmallVector<SDValue, 16> Elts;
3261   for (SDValue Op : Ops) {
3262     EVT OpVT = Op.getValueType();
3263     if (Op.isUndef())
3264       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3265     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3266       Elts.append(Op->op_begin(), Op->op_end());
3267     else
3268       return SDValue();
3269   }
3270 
3271   // BUILD_VECTOR requires all inputs to be of the same type, find the
3272   // maximum type and extend them all.
3273   for (SDValue Op : Elts)
3274     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3275 
3276   if (SVT.bitsGT(VT.getScalarType()))
3277     for (SDValue &Op : Elts)
3278       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3279                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3280                : DAG.getSExtOrTrunc(Op, DL, SVT);
3281 
3282   return DAG.getBuildVector(VT, DL, Elts);
3283 }
3284 
3285 /// Gets or creates the specified node.
3286 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3287   FoldingSetNodeID ID;
3288   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3289   void *IP = nullptr;
3290   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3291     return SDValue(E, 0);
3292 
3293   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3294                               getVTList(VT));
3295   CSEMap.InsertNode(N, IP);
3296 
3297   InsertNode(N);
3298   return SDValue(N, 0);
3299 }
3300 
3301 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3302                               SDValue Operand) {
3303   // Constant fold unary operations with an integer constant operand. Even
3304   // opaque constant will be folded, because the folding of unary operations
3305   // doesn't create new constants with different values. Nevertheless, the
3306   // opaque flag is preserved during folding to prevent future folding with
3307   // other constants.
3308   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3309     const APInt &Val = C->getAPIntValue();
3310     switch (Opcode) {
3311     default: break;
3312     case ISD::SIGN_EXTEND:
3313       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3314                          C->isTargetOpcode(), C->isOpaque());
3315     case ISD::ANY_EXTEND:
3316     case ISD::ZERO_EXTEND:
3317     case ISD::TRUNCATE:
3318       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3319                          C->isTargetOpcode(), C->isOpaque());
3320     case ISD::UINT_TO_FP:
3321     case ISD::SINT_TO_FP: {
3322       APFloat apf(EVTToAPFloatSemantics(VT),
3323                   APInt::getNullValue(VT.getSizeInBits()));
3324       (void)apf.convertFromAPInt(Val,
3325                                  Opcode==ISD::SINT_TO_FP,
3326                                  APFloat::rmNearestTiesToEven);
3327       return getConstantFP(apf, DL, VT);
3328     }
3329     case ISD::BITCAST:
3330       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3331         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3332       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3333         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3334       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3335         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3336       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3337         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3338       break;
3339     case ISD::ABS:
3340       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
3341                          C->isOpaque());
3342     case ISD::BITREVERSE:
3343       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3344                          C->isOpaque());
3345     case ISD::BSWAP:
3346       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3347                          C->isOpaque());
3348     case ISD::CTPOP:
3349       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3350                          C->isOpaque());
3351     case ISD::CTLZ:
3352     case ISD::CTLZ_ZERO_UNDEF:
3353       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3354                          C->isOpaque());
3355     case ISD::CTTZ:
3356     case ISD::CTTZ_ZERO_UNDEF:
3357       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3358                          C->isOpaque());
3359     case ISD::FP16_TO_FP: {
3360       bool Ignored;
3361       APFloat FPV(APFloat::IEEEhalf(),
3362                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3363 
3364       // This can return overflow, underflow, or inexact; we don't care.
3365       // FIXME need to be more flexible about rounding mode.
3366       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3367                         APFloat::rmNearestTiesToEven, &Ignored);
3368       return getConstantFP(FPV, DL, VT);
3369     }
3370     }
3371   }
3372 
3373   // Constant fold unary operations with a floating point constant operand.
3374   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3375     APFloat V = C->getValueAPF();    // make copy
3376     switch (Opcode) {
3377     case ISD::FNEG:
3378       V.changeSign();
3379       return getConstantFP(V, DL, VT);
3380     case ISD::FABS:
3381       V.clearSign();
3382       return getConstantFP(V, DL, VT);
3383     case ISD::FCEIL: {
3384       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3385       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3386         return getConstantFP(V, DL, VT);
3387       break;
3388     }
3389     case ISD::FTRUNC: {
3390       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3391       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3392         return getConstantFP(V, DL, VT);
3393       break;
3394     }
3395     case ISD::FFLOOR: {
3396       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3397       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3398         return getConstantFP(V, DL, VT);
3399       break;
3400     }
3401     case ISD::FP_EXTEND: {
3402       bool ignored;
3403       // This can return overflow, underflow, or inexact; we don't care.
3404       // FIXME need to be more flexible about rounding mode.
3405       (void)V.convert(EVTToAPFloatSemantics(VT),
3406                       APFloat::rmNearestTiesToEven, &ignored);
3407       return getConstantFP(V, DL, VT);
3408     }
3409     case ISD::FP_TO_SINT:
3410     case ISD::FP_TO_UINT: {
3411       integerPart x[2];
3412       bool ignored;
3413       static_assert(integerPartWidth >= 64, "APFloat parts too small!");
3414       // FIXME need to be more flexible about rounding mode.
3415       APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
3416                             Opcode==ISD::FP_TO_SINT,
3417                             APFloat::rmTowardZero, &ignored);
3418       if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
3419         break;
3420       APInt api(VT.getSizeInBits(), x);
3421       return getConstant(api, DL, VT);
3422     }
3423     case ISD::BITCAST:
3424       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3425         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3426       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3427         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3428       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3429         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3430       break;
3431     case ISD::FP_TO_FP16: {
3432       bool Ignored;
3433       // This can return overflow, underflow, or inexact; we don't care.
3434       // FIXME need to be more flexible about rounding mode.
3435       (void)V.convert(APFloat::IEEEhalf(),
3436                       APFloat::rmNearestTiesToEven, &Ignored);
3437       return getConstant(V.bitcastToAPInt(), DL, VT);
3438     }
3439     }
3440   }
3441 
3442   // Constant fold unary operations with a vector integer or float operand.
3443   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3444     if (BV->isConstant()) {
3445       switch (Opcode) {
3446       default:
3447         // FIXME: Entirely reasonable to perform folding of other unary
3448         // operations here as the need arises.
3449         break;
3450       case ISD::FNEG:
3451       case ISD::FABS:
3452       case ISD::FCEIL:
3453       case ISD::FTRUNC:
3454       case ISD::FFLOOR:
3455       case ISD::FP_EXTEND:
3456       case ISD::FP_TO_SINT:
3457       case ISD::FP_TO_UINT:
3458       case ISD::TRUNCATE:
3459       case ISD::UINT_TO_FP:
3460       case ISD::SINT_TO_FP:
3461       case ISD::ABS:
3462       case ISD::BITREVERSE:
3463       case ISD::BSWAP:
3464       case ISD::CTLZ:
3465       case ISD::CTLZ_ZERO_UNDEF:
3466       case ISD::CTTZ:
3467       case ISD::CTTZ_ZERO_UNDEF:
3468       case ISD::CTPOP: {
3469         SDValue Ops = { Operand };
3470         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3471           return Fold;
3472       }
3473       }
3474     }
3475   }
3476 
3477   unsigned OpOpcode = Operand.getNode()->getOpcode();
3478   switch (Opcode) {
3479   case ISD::TokenFactor:
3480   case ISD::MERGE_VALUES:
3481   case ISD::CONCAT_VECTORS:
3482     return Operand;         // Factor, merge or concat of one node?  No need.
3483   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3484   case ISD::FP_EXTEND:
3485     assert(VT.isFloatingPoint() &&
3486            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3487     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3488     assert((!VT.isVector() ||
3489             VT.getVectorNumElements() ==
3490             Operand.getValueType().getVectorNumElements()) &&
3491            "Vector element count mismatch!");
3492     assert(Operand.getValueType().bitsLT(VT) &&
3493            "Invalid fpext node, dst < src!");
3494     if (Operand.isUndef())
3495       return getUNDEF(VT);
3496     break;
3497   case ISD::SIGN_EXTEND:
3498     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3499            "Invalid SIGN_EXTEND!");
3500     if (Operand.getValueType() == VT) return Operand;   // noop extension
3501     assert((!VT.isVector() ||
3502             VT.getVectorNumElements() ==
3503             Operand.getValueType().getVectorNumElements()) &&
3504            "Vector element count mismatch!");
3505     assert(Operand.getValueType().bitsLT(VT) &&
3506            "Invalid sext node, dst < src!");
3507     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3508       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3509     else if (OpOpcode == ISD::UNDEF)
3510       // sext(undef) = 0, because the top bits will all be the same.
3511       return getConstant(0, DL, VT);
3512     break;
3513   case ISD::ZERO_EXTEND:
3514     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3515            "Invalid ZERO_EXTEND!");
3516     if (Operand.getValueType() == VT) return Operand;   // noop extension
3517     assert((!VT.isVector() ||
3518             VT.getVectorNumElements() ==
3519             Operand.getValueType().getVectorNumElements()) &&
3520            "Vector element count mismatch!");
3521     assert(Operand.getValueType().bitsLT(VT) &&
3522            "Invalid zext node, dst < src!");
3523     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3524       return getNode(ISD::ZERO_EXTEND, DL, VT,
3525                      Operand.getNode()->getOperand(0));
3526     else if (OpOpcode == ISD::UNDEF)
3527       // zext(undef) = 0, because the top bits will be zero.
3528       return getConstant(0, DL, VT);
3529     break;
3530   case ISD::ANY_EXTEND:
3531     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3532            "Invalid ANY_EXTEND!");
3533     if (Operand.getValueType() == VT) return Operand;   // noop extension
3534     assert((!VT.isVector() ||
3535             VT.getVectorNumElements() ==
3536             Operand.getValueType().getVectorNumElements()) &&
3537            "Vector element count mismatch!");
3538     assert(Operand.getValueType().bitsLT(VT) &&
3539            "Invalid anyext node, dst < src!");
3540 
3541     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3542         OpOpcode == ISD::ANY_EXTEND)
3543       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3544       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3545     else if (OpOpcode == ISD::UNDEF)
3546       return getUNDEF(VT);
3547 
3548     // (ext (trunx x)) -> x
3549     if (OpOpcode == ISD::TRUNCATE) {
3550       SDValue OpOp = Operand.getNode()->getOperand(0);
3551       if (OpOp.getValueType() == VT)
3552         return OpOp;
3553     }
3554     break;
3555   case ISD::TRUNCATE:
3556     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3557            "Invalid TRUNCATE!");
3558     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3559     assert((!VT.isVector() ||
3560             VT.getVectorNumElements() ==
3561             Operand.getValueType().getVectorNumElements()) &&
3562            "Vector element count mismatch!");
3563     assert(Operand.getValueType().bitsGT(VT) &&
3564            "Invalid truncate node, src < dst!");
3565     if (OpOpcode == ISD::TRUNCATE)
3566       return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3567     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3568         OpOpcode == ISD::ANY_EXTEND) {
3569       // If the source is smaller than the dest, we still need an extend.
3570       if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
3571             .bitsLT(VT.getScalarType()))
3572         return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3573       if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
3574         return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3575       return Operand.getNode()->getOperand(0);
3576     }
3577     if (OpOpcode == ISD::UNDEF)
3578       return getUNDEF(VT);
3579       break;
3580   case ISD::ABS:
3581     assert(VT.isInteger() && VT == Operand.getValueType() &&
3582            "Invalid ABS!");
3583     if (OpOpcode == ISD::UNDEF)
3584       return getUNDEF(VT);
3585     break;
3586   case ISD::BSWAP:
3587     assert(VT.isInteger() && VT == Operand.getValueType() &&
3588            "Invalid BSWAP!");
3589     assert((VT.getScalarSizeInBits() % 16 == 0) &&
3590            "BSWAP types must be a multiple of 16 bits!");
3591     if (OpOpcode == ISD::UNDEF)
3592       return getUNDEF(VT);
3593     break;
3594   case ISD::BITREVERSE:
3595     assert(VT.isInteger() && VT == Operand.getValueType() &&
3596            "Invalid BITREVERSE!");
3597     if (OpOpcode == ISD::UNDEF)
3598       return getUNDEF(VT);
3599     break;
3600   case ISD::BITCAST:
3601     // Basic sanity checking.
3602     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
3603            "Cannot BITCAST between types of different sizes!");
3604     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
3605     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
3606       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
3607     if (OpOpcode == ISD::UNDEF)
3608       return getUNDEF(VT);
3609     break;
3610   case ISD::SCALAR_TO_VECTOR:
3611     assert(VT.isVector() && !Operand.getValueType().isVector() &&
3612            (VT.getVectorElementType() == Operand.getValueType() ||
3613             (VT.getVectorElementType().isInteger() &&
3614              Operand.getValueType().isInteger() &&
3615              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
3616            "Illegal SCALAR_TO_VECTOR node!");
3617     if (OpOpcode == ISD::UNDEF)
3618       return getUNDEF(VT);
3619     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
3620     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
3621         isa<ConstantSDNode>(Operand.getOperand(1)) &&
3622         Operand.getConstantOperandVal(1) == 0 &&
3623         Operand.getOperand(0).getValueType() == VT)
3624       return Operand.getOperand(0);
3625     break;
3626   case ISD::FNEG:
3627     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
3628     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
3629       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
3630       return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
3631                        Operand.getNode()->getOperand(0),
3632                        &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags);
3633     if (OpOpcode == ISD::FNEG)  // --X -> X
3634       return Operand.getNode()->getOperand(0);
3635     break;
3636   case ISD::FABS:
3637     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
3638       return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
3639     break;
3640   }
3641 
3642   SDNode *N;
3643   SDVTList VTs = getVTList(VT);
3644   SDValue Ops[] = {Operand};
3645   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
3646     FoldingSetNodeID ID;
3647     AddNodeIDNode(ID, Opcode, VTs, Ops);
3648     void *IP = nullptr;
3649     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3650       return SDValue(E, 0);
3651 
3652     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3653     createOperands(N, Ops);
3654     CSEMap.InsertNode(N, IP);
3655   } else {
3656     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3657     createOperands(N, Ops);
3658   }
3659 
3660   InsertNode(N);
3661   return SDValue(N, 0);
3662 }
3663 
3664 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
3665                                         const APInt &C2) {
3666   switch (Opcode) {
3667   case ISD::ADD:  return std::make_pair(C1 + C2, true);
3668   case ISD::SUB:  return std::make_pair(C1 - C2, true);
3669   case ISD::MUL:  return std::make_pair(C1 * C2, true);
3670   case ISD::AND:  return std::make_pair(C1 & C2, true);
3671   case ISD::OR:   return std::make_pair(C1 | C2, true);
3672   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
3673   case ISD::SHL:  return std::make_pair(C1 << C2, true);
3674   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
3675   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
3676   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
3677   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
3678   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
3679   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
3680   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
3681   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
3682   case ISD::UDIV:
3683     if (!C2.getBoolValue())
3684       break;
3685     return std::make_pair(C1.udiv(C2), true);
3686   case ISD::UREM:
3687     if (!C2.getBoolValue())
3688       break;
3689     return std::make_pair(C1.urem(C2), true);
3690   case ISD::SDIV:
3691     if (!C2.getBoolValue())
3692       break;
3693     return std::make_pair(C1.sdiv(C2), true);
3694   case ISD::SREM:
3695     if (!C2.getBoolValue())
3696       break;
3697     return std::make_pair(C1.srem(C2), true);
3698   }
3699   return std::make_pair(APInt(1, 0), false);
3700 }
3701 
3702 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3703                                              EVT VT, const ConstantSDNode *Cst1,
3704                                              const ConstantSDNode *Cst2) {
3705   if (Cst1->isOpaque() || Cst2->isOpaque())
3706     return SDValue();
3707 
3708   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
3709                                             Cst2->getAPIntValue());
3710   if (!Folded.second)
3711     return SDValue();
3712   return getConstant(Folded.first, DL, VT);
3713 }
3714 
3715 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
3716                                        const GlobalAddressSDNode *GA,
3717                                        const SDNode *N2) {
3718   if (GA->getOpcode() != ISD::GlobalAddress)
3719     return SDValue();
3720   if (!TLI->isOffsetFoldingLegal(GA))
3721     return SDValue();
3722   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
3723   if (!Cst2)
3724     return SDValue();
3725   int64_t Offset = Cst2->getSExtValue();
3726   switch (Opcode) {
3727   case ISD::ADD: break;
3728   case ISD::SUB: Offset = -uint64_t(Offset); break;
3729   default: return SDValue();
3730   }
3731   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
3732                           GA->getOffset() + uint64_t(Offset));
3733 }
3734 
3735 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
3736   switch (Opcode) {
3737   case ISD::SDIV:
3738   case ISD::UDIV:
3739   case ISD::SREM:
3740   case ISD::UREM: {
3741     // If a divisor is zero/undef or any element of a divisor vector is
3742     // zero/undef, the whole op is undef.
3743     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
3744     SDValue Divisor = Ops[1];
3745     if (Divisor.isUndef() || isNullConstant(Divisor))
3746       return true;
3747 
3748     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
3749            any_of(Divisor->op_values(),
3750                   [](SDValue V) { return V.isUndef() || isNullConstant(V); });
3751     // TODO: Handle signed overflow.
3752   }
3753   // TODO: Handle oversized shifts.
3754   default:
3755     return false;
3756   }
3757 }
3758 
3759 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3760                                              EVT VT, SDNode *Cst1,
3761                                              SDNode *Cst2) {
3762   // If the opcode is a target-specific ISD node, there's nothing we can
3763   // do here and the operand rules may not line up with the below, so
3764   // bail early.
3765   if (Opcode >= ISD::BUILTIN_OP_END)
3766     return SDValue();
3767 
3768   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
3769     return getUNDEF(VT);
3770 
3771   // Handle the case of two scalars.
3772   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
3773     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
3774       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
3775       assert((!Folded || !VT.isVector()) &&
3776              "Can't fold vectors ops with scalar operands");
3777       return Folded;
3778     }
3779   }
3780 
3781   // fold (add Sym, c) -> Sym+c
3782   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
3783     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
3784   if (isCommutativeBinOp(Opcode))
3785     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
3786       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
3787 
3788   // For vectors extract each constant element into Inputs so we can constant
3789   // fold them individually.
3790   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
3791   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
3792   if (!BV1 || !BV2)
3793     return SDValue();
3794 
3795   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
3796 
3797   EVT SVT = VT.getScalarType();
3798   SmallVector<SDValue, 4> Outputs;
3799   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
3800     SDValue V1 = BV1->getOperand(I);
3801     SDValue V2 = BV2->getOperand(I);
3802 
3803     // Avoid BUILD_VECTOR nodes that perform implicit truncation.
3804     // FIXME: This is valid and could be handled by truncation.
3805     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
3806       return SDValue();
3807 
3808     // Fold one vector element.
3809     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
3810 
3811     // Scalar folding only succeeded if the result is a constant or UNDEF.
3812     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3813         ScalarResult.getOpcode() != ISD::ConstantFP)
3814       return SDValue();
3815     Outputs.push_back(ScalarResult);
3816   }
3817 
3818   assert(VT.getVectorNumElements() == Outputs.size() &&
3819          "Vector size mismatch!");
3820 
3821   // We may have a vector type but a scalar result. Create a splat.
3822   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
3823 
3824   // Build a big vector out of the scalar elements we generated.
3825   return getBuildVector(VT, SDLoc(), Outputs);
3826 }
3827 
3828 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
3829                                                    const SDLoc &DL, EVT VT,
3830                                                    ArrayRef<SDValue> Ops,
3831                                                    const SDNodeFlags *Flags) {
3832   // If the opcode is a target-specific ISD node, there's nothing we can
3833   // do here and the operand rules may not line up with the below, so
3834   // bail early.
3835   if (Opcode >= ISD::BUILTIN_OP_END)
3836     return SDValue();
3837 
3838   if (isUndef(Opcode, Ops))
3839     return getUNDEF(VT);
3840 
3841   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
3842   if (!VT.isVector())
3843     return SDValue();
3844 
3845   unsigned NumElts = VT.getVectorNumElements();
3846 
3847   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
3848     return !Op.getValueType().isVector() ||
3849            Op.getValueType().getVectorNumElements() == NumElts;
3850   };
3851 
3852   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
3853     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
3854     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
3855            (BV && BV->isConstant());
3856   };
3857 
3858   // All operands must be vector types with the same number of elements as
3859   // the result type and must be either UNDEF or a build vector of constant
3860   // or UNDEF scalars.
3861   if (!all_of(Ops, IsConstantBuildVectorOrUndef) ||
3862       !all_of(Ops, IsScalarOrSameVectorSize))
3863     return SDValue();
3864 
3865   // If we are comparing vectors, then the result needs to be a i1 boolean
3866   // that is then sign-extended back to the legal result type.
3867   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
3868 
3869   // Find legal integer scalar type for constant promotion and
3870   // ensure that its scalar size is at least as large as source.
3871   EVT LegalSVT = VT.getScalarType();
3872   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
3873     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3874     if (LegalSVT.bitsLT(VT.getScalarType()))
3875       return SDValue();
3876   }
3877 
3878   // Constant fold each scalar lane separately.
3879   SmallVector<SDValue, 4> ScalarResults;
3880   for (unsigned i = 0; i != NumElts; i++) {
3881     SmallVector<SDValue, 4> ScalarOps;
3882     for (SDValue Op : Ops) {
3883       EVT InSVT = Op.getValueType().getScalarType();
3884       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
3885       if (!InBV) {
3886         // We've checked that this is UNDEF or a constant of some kind.
3887         if (Op.isUndef())
3888           ScalarOps.push_back(getUNDEF(InSVT));
3889         else
3890           ScalarOps.push_back(Op);
3891         continue;
3892       }
3893 
3894       SDValue ScalarOp = InBV->getOperand(i);
3895       EVT ScalarVT = ScalarOp.getValueType();
3896 
3897       // Build vector (integer) scalar operands may need implicit
3898       // truncation - do this before constant folding.
3899       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
3900         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
3901 
3902       ScalarOps.push_back(ScalarOp);
3903     }
3904 
3905     // Constant fold the scalar operands.
3906     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
3907 
3908     // Legalize the (integer) scalar constant if necessary.
3909     if (LegalSVT != SVT)
3910       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
3911 
3912     // Scalar folding only succeeded if the result is a constant or UNDEF.
3913     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3914         ScalarResult.getOpcode() != ISD::ConstantFP)
3915       return SDValue();
3916     ScalarResults.push_back(ScalarResult);
3917   }
3918 
3919   return getBuildVector(VT, DL, ScalarResults);
3920 }
3921 
3922 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3923                               SDValue N1, SDValue N2,
3924                               const SDNodeFlags *Flags) {
3925   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3926   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
3927   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3928   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
3929 
3930   // Canonicalize constant to RHS if commutative.
3931   if (isCommutativeBinOp(Opcode)) {
3932     if (N1C && !N2C) {
3933       std::swap(N1C, N2C);
3934       std::swap(N1, N2);
3935     } else if (N1CFP && !N2CFP) {
3936       std::swap(N1CFP, N2CFP);
3937       std::swap(N1, N2);
3938     }
3939   }
3940 
3941   switch (Opcode) {
3942   default: break;
3943   case ISD::TokenFactor:
3944     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
3945            N2.getValueType() == MVT::Other && "Invalid token factor!");
3946     // Fold trivial token factors.
3947     if (N1.getOpcode() == ISD::EntryToken) return N2;
3948     if (N2.getOpcode() == ISD::EntryToken) return N1;
3949     if (N1 == N2) return N1;
3950     break;
3951   case ISD::CONCAT_VECTORS: {
3952     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
3953     SDValue Ops[] = {N1, N2};
3954     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
3955       return V;
3956     break;
3957   }
3958   case ISD::AND:
3959     assert(VT.isInteger() && "This operator does not apply to FP types!");
3960     assert(N1.getValueType() == N2.getValueType() &&
3961            N1.getValueType() == VT && "Binary operator types must match!");
3962     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
3963     // worth handling here.
3964     if (N2C && N2C->isNullValue())
3965       return N2;
3966     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
3967       return N1;
3968     break;
3969   case ISD::OR:
3970   case ISD::XOR:
3971   case ISD::ADD:
3972   case ISD::SUB:
3973     assert(VT.isInteger() && "This operator does not apply to FP types!");
3974     assert(N1.getValueType() == N2.getValueType() &&
3975            N1.getValueType() == VT && "Binary operator types must match!");
3976     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
3977     // it's worth handling here.
3978     if (N2C && N2C->isNullValue())
3979       return N1;
3980     break;
3981   case ISD::UDIV:
3982   case ISD::UREM:
3983   case ISD::MULHU:
3984   case ISD::MULHS:
3985   case ISD::MUL:
3986   case ISD::SDIV:
3987   case ISD::SREM:
3988   case ISD::SMIN:
3989   case ISD::SMAX:
3990   case ISD::UMIN:
3991   case ISD::UMAX:
3992     assert(VT.isInteger() && "This operator does not apply to FP types!");
3993     assert(N1.getValueType() == N2.getValueType() &&
3994            N1.getValueType() == VT && "Binary operator types must match!");
3995     break;
3996   case ISD::FADD:
3997   case ISD::FSUB:
3998   case ISD::FMUL:
3999   case ISD::FDIV:
4000   case ISD::FREM:
4001     if (getTarget().Options.UnsafeFPMath) {
4002       if (Opcode == ISD::FADD) {
4003         // x+0 --> x
4004         if (N2CFP && N2CFP->getValueAPF().isZero())
4005           return N1;
4006       } else if (Opcode == ISD::FSUB) {
4007         // x-0 --> x
4008         if (N2CFP && N2CFP->getValueAPF().isZero())
4009           return N1;
4010       } else if (Opcode == ISD::FMUL) {
4011         // x*0 --> 0
4012         if (N2CFP && N2CFP->isZero())
4013           return N2;
4014         // x*1 --> x
4015         if (N2CFP && N2CFP->isExactlyValue(1.0))
4016           return N1;
4017       }
4018     }
4019     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4020     assert(N1.getValueType() == N2.getValueType() &&
4021            N1.getValueType() == VT && "Binary operator types must match!");
4022     break;
4023   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4024     assert(N1.getValueType() == VT &&
4025            N1.getValueType().isFloatingPoint() &&
4026            N2.getValueType().isFloatingPoint() &&
4027            "Invalid FCOPYSIGN!");
4028     break;
4029   case ISD::SHL:
4030   case ISD::SRA:
4031   case ISD::SRL:
4032   case ISD::ROTL:
4033   case ISD::ROTR:
4034     assert(VT == N1.getValueType() &&
4035            "Shift operators return type must be the same as their first arg");
4036     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4037            "Shifts only work on integers");
4038     assert((!VT.isVector() || VT == N2.getValueType()) &&
4039            "Vector shift amounts must be in the same as their first arg");
4040     // Verify that the shift amount VT is bit enough to hold valid shift
4041     // amounts.  This catches things like trying to shift an i1024 value by an
4042     // i8, which is easy to fall into in generic code that uses
4043     // TLI.getShiftAmount().
4044     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4045            "Invalid use of small shift amount with oversized value!");
4046 
4047     // Always fold shifts of i1 values so the code generator doesn't need to
4048     // handle them.  Since we know the size of the shift has to be less than the
4049     // size of the value, the shift/rotate count is guaranteed to be zero.
4050     if (VT == MVT::i1)
4051       return N1;
4052     if (N2C && N2C->isNullValue())
4053       return N1;
4054     break;
4055   case ISD::FP_ROUND_INREG: {
4056     EVT EVT = cast<VTSDNode>(N2)->getVT();
4057     assert(VT == N1.getValueType() && "Not an inreg round!");
4058     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4059            "Cannot FP_ROUND_INREG integer types");
4060     assert(EVT.isVector() == VT.isVector() &&
4061            "FP_ROUND_INREG type should be vector iff the operand "
4062            "type is vector!");
4063     assert((!EVT.isVector() ||
4064             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4065            "Vector element counts must match in FP_ROUND_INREG");
4066     assert(EVT.bitsLE(VT) && "Not rounding down!");
4067     (void)EVT;
4068     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4069     break;
4070   }
4071   case ISD::FP_ROUND:
4072     assert(VT.isFloatingPoint() &&
4073            N1.getValueType().isFloatingPoint() &&
4074            VT.bitsLE(N1.getValueType()) &&
4075            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4076            "Invalid FP_ROUND!");
4077     if (N1.getValueType() == VT) return N1;  // noop conversion.
4078     break;
4079   case ISD::AssertSext:
4080   case ISD::AssertZext: {
4081     EVT EVT = cast<VTSDNode>(N2)->getVT();
4082     assert(VT == N1.getValueType() && "Not an inreg extend!");
4083     assert(VT.isInteger() && EVT.isInteger() &&
4084            "Cannot *_EXTEND_INREG FP types");
4085     assert(!EVT.isVector() &&
4086            "AssertSExt/AssertZExt type should be the vector element type "
4087            "rather than the vector type!");
4088     assert(EVT.bitsLE(VT) && "Not extending!");
4089     if (VT == EVT) return N1; // noop assertion.
4090     break;
4091   }
4092   case ISD::SIGN_EXTEND_INREG: {
4093     EVT EVT = cast<VTSDNode>(N2)->getVT();
4094     assert(VT == N1.getValueType() && "Not an inreg extend!");
4095     assert(VT.isInteger() && EVT.isInteger() &&
4096            "Cannot *_EXTEND_INREG FP types");
4097     assert(EVT.isVector() == VT.isVector() &&
4098            "SIGN_EXTEND_INREG type should be vector iff the operand "
4099            "type is vector!");
4100     assert((!EVT.isVector() ||
4101             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4102            "Vector element counts must match in SIGN_EXTEND_INREG");
4103     assert(EVT.bitsLE(VT) && "Not extending!");
4104     if (EVT == VT) return N1;  // Not actually extending
4105 
4106     auto SignExtendInReg = [&](APInt Val) {
4107       unsigned FromBits = EVT.getScalarSizeInBits();
4108       Val <<= Val.getBitWidth() - FromBits;
4109       Val = Val.ashr(Val.getBitWidth() - FromBits);
4110       return getConstant(Val, DL, VT.getScalarType());
4111     };
4112 
4113     if (N1C) {
4114       const APInt &Val = N1C->getAPIntValue();
4115       return SignExtendInReg(Val);
4116     }
4117     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4118       SmallVector<SDValue, 8> Ops;
4119       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4120         SDValue Op = N1.getOperand(i);
4121         if (Op.isUndef()) {
4122           Ops.push_back(getUNDEF(VT.getScalarType()));
4123           continue;
4124         }
4125         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4126           APInt Val = C->getAPIntValue();
4127           Val = Val.zextOrTrunc(VT.getScalarSizeInBits());
4128           Ops.push_back(SignExtendInReg(Val));
4129           continue;
4130         }
4131         break;
4132       }
4133       if (Ops.size() == VT.getVectorNumElements())
4134         return getBuildVector(VT, DL, Ops);
4135     }
4136     break;
4137   }
4138   case ISD::EXTRACT_VECTOR_ELT:
4139     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4140     if (N1.isUndef())
4141       return getUNDEF(VT);
4142 
4143     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4144     if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4145       return getUNDEF(VT);
4146 
4147     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4148     // expanding copies of large vectors from registers.
4149     if (N2C &&
4150         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4151         N1.getNumOperands() > 0) {
4152       unsigned Factor =
4153         N1.getOperand(0).getValueType().getVectorNumElements();
4154       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4155                      N1.getOperand(N2C->getZExtValue() / Factor),
4156                      getConstant(N2C->getZExtValue() % Factor, DL,
4157                                  N2.getValueType()));
4158     }
4159 
4160     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4161     // expanding large vector constants.
4162     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4163       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4164 
4165       if (VT != Elt.getValueType())
4166         // If the vector element type is not legal, the BUILD_VECTOR operands
4167         // are promoted and implicitly truncated, and the result implicitly
4168         // extended. Make that explicit here.
4169         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4170 
4171       return Elt;
4172     }
4173 
4174     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4175     // operations are lowered to scalars.
4176     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4177       // If the indices are the same, return the inserted element else
4178       // if the indices are known different, extract the element from
4179       // the original vector.
4180       SDValue N1Op2 = N1.getOperand(2);
4181       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4182 
4183       if (N1Op2C && N2C) {
4184         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4185           if (VT == N1.getOperand(1).getValueType())
4186             return N1.getOperand(1);
4187           else
4188             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4189         }
4190 
4191         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4192       }
4193     }
4194     break;
4195   case ISD::EXTRACT_ELEMENT:
4196     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4197     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4198            (N1.getValueType().isInteger() == VT.isInteger()) &&
4199            N1.getValueType() != VT &&
4200            "Wrong types for EXTRACT_ELEMENT!");
4201 
4202     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4203     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4204     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4205     if (N1.getOpcode() == ISD::BUILD_PAIR)
4206       return N1.getOperand(N2C->getZExtValue());
4207 
4208     // EXTRACT_ELEMENT of a constant int is also very common.
4209     if (N1C) {
4210       unsigned ElementSize = VT.getSizeInBits();
4211       unsigned Shift = ElementSize * N2C->getZExtValue();
4212       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4213       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4214     }
4215     break;
4216   case ISD::EXTRACT_SUBVECTOR:
4217     if (VT.isSimple() && N1.getValueType().isSimple()) {
4218       assert(VT.isVector() && N1.getValueType().isVector() &&
4219              "Extract subvector VTs must be a vectors!");
4220       assert(VT.getVectorElementType() ==
4221              N1.getValueType().getVectorElementType() &&
4222              "Extract subvector VTs must have the same element type!");
4223       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4224              "Extract subvector must be from larger vector to smaller vector!");
4225 
4226       if (N2C) {
4227         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4228                 <= N1.getValueType().getVectorNumElements())
4229                && "Extract subvector overflow!");
4230       }
4231 
4232       // Trivial extraction.
4233       if (VT.getSimpleVT() == N1.getSimpleValueType())
4234         return N1;
4235 
4236       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4237       if (N1.isUndef())
4238         return getUNDEF(VT);
4239 
4240       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4241       // the concat have the same type as the extract.
4242       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4243           N1.getNumOperands() > 0 &&
4244           VT == N1.getOperand(0).getValueType()) {
4245         unsigned Factor = VT.getVectorNumElements();
4246         return N1.getOperand(N2C->getZExtValue() / Factor);
4247       }
4248 
4249       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4250       // during shuffle legalization.
4251       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4252           VT == N1.getOperand(1).getValueType())
4253         return N1.getOperand(1);
4254     }
4255     break;
4256   }
4257 
4258   // Perform trivial constant folding.
4259   if (SDValue SV =
4260           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4261     return SV;
4262 
4263   // Constant fold FP operations.
4264   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4265   if (N1CFP) {
4266     if (N2CFP) {
4267       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4268       APFloat::opStatus s;
4269       switch (Opcode) {
4270       case ISD::FADD:
4271         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4272         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4273           return getConstantFP(V1, DL, VT);
4274         break;
4275       case ISD::FSUB:
4276         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4277         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4278           return getConstantFP(V1, DL, VT);
4279         break;
4280       case ISD::FMUL:
4281         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4282         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4283           return getConstantFP(V1, DL, VT);
4284         break;
4285       case ISD::FDIV:
4286         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4287         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4288                                  s!=APFloat::opDivByZero)) {
4289           return getConstantFP(V1, DL, VT);
4290         }
4291         break;
4292       case ISD::FREM :
4293         s = V1.mod(V2);
4294         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4295                                  s!=APFloat::opDivByZero)) {
4296           return getConstantFP(V1, DL, VT);
4297         }
4298         break;
4299       case ISD::FCOPYSIGN:
4300         V1.copySign(V2);
4301         return getConstantFP(V1, DL, VT);
4302       default: break;
4303       }
4304     }
4305 
4306     if (Opcode == ISD::FP_ROUND) {
4307       APFloat V = N1CFP->getValueAPF();    // make copy
4308       bool ignored;
4309       // This can return overflow, underflow, or inexact; we don't care.
4310       // FIXME need to be more flexible about rounding mode.
4311       (void)V.convert(EVTToAPFloatSemantics(VT),
4312                       APFloat::rmNearestTiesToEven, &ignored);
4313       return getConstantFP(V, DL, VT);
4314     }
4315   }
4316 
4317   // Canonicalize an UNDEF to the RHS, even over a constant.
4318   if (N1.isUndef()) {
4319     if (isCommutativeBinOp(Opcode)) {
4320       std::swap(N1, N2);
4321     } else {
4322       switch (Opcode) {
4323       case ISD::FP_ROUND_INREG:
4324       case ISD::SIGN_EXTEND_INREG:
4325       case ISD::SUB:
4326       case ISD::FSUB:
4327       case ISD::FDIV:
4328       case ISD::FREM:
4329       case ISD::SRA:
4330         return N1;     // fold op(undef, arg2) -> undef
4331       case ISD::UDIV:
4332       case ISD::SDIV:
4333       case ISD::UREM:
4334       case ISD::SREM:
4335       case ISD::SRL:
4336       case ISD::SHL:
4337         if (!VT.isVector())
4338           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4339         // For vectors, we can't easily build an all zero vector, just return
4340         // the LHS.
4341         return N2;
4342       }
4343     }
4344   }
4345 
4346   // Fold a bunch of operators when the RHS is undef.
4347   if (N2.isUndef()) {
4348     switch (Opcode) {
4349     case ISD::XOR:
4350       if (N1.isUndef())
4351         // Handle undef ^ undef -> 0 special case. This is a common
4352         // idiom (misuse).
4353         return getConstant(0, DL, VT);
4354       LLVM_FALLTHROUGH;
4355     case ISD::ADD:
4356     case ISD::ADDC:
4357     case ISD::ADDE:
4358     case ISD::SUB:
4359     case ISD::UDIV:
4360     case ISD::SDIV:
4361     case ISD::UREM:
4362     case ISD::SREM:
4363       return N2;       // fold op(arg1, undef) -> undef
4364     case ISD::FADD:
4365     case ISD::FSUB:
4366     case ISD::FMUL:
4367     case ISD::FDIV:
4368     case ISD::FREM:
4369       if (getTarget().Options.UnsafeFPMath)
4370         return N2;
4371       break;
4372     case ISD::MUL:
4373     case ISD::AND:
4374     case ISD::SRL:
4375     case ISD::SHL:
4376       if (!VT.isVector())
4377         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4378       // For vectors, we can't easily build an all zero vector, just return
4379       // the LHS.
4380       return N1;
4381     case ISD::OR:
4382       if (!VT.isVector())
4383         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
4384       // For vectors, we can't easily build an all one vector, just return
4385       // the LHS.
4386       return N1;
4387     case ISD::SRA:
4388       return N1;
4389     }
4390   }
4391 
4392   // Memoize this node if possible.
4393   SDNode *N;
4394   SDVTList VTs = getVTList(VT);
4395   if (VT != MVT::Glue) {
4396     SDValue Ops[] = {N1, N2};
4397     FoldingSetNodeID ID;
4398     AddNodeIDNode(ID, Opcode, VTs, Ops);
4399     void *IP = nullptr;
4400     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4401       if (Flags)
4402         E->intersectFlagsWith(Flags);
4403       return SDValue(E, 0);
4404     }
4405 
4406     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
4407     CSEMap.InsertNode(N, IP);
4408   } else {
4409     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
4410   }
4411 
4412   InsertNode(N);
4413   return SDValue(N, 0);
4414 }
4415 
4416 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4417                               SDValue N1, SDValue N2, SDValue N3) {
4418   // Perform various simplifications.
4419   switch (Opcode) {
4420   case ISD::FMA: {
4421     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4422     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4423     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4424     if (N1CFP && N2CFP && N3CFP) {
4425       APFloat  V1 = N1CFP->getValueAPF();
4426       const APFloat &V2 = N2CFP->getValueAPF();
4427       const APFloat &V3 = N3CFP->getValueAPF();
4428       APFloat::opStatus s =
4429         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4430       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4431         return getConstantFP(V1, DL, VT);
4432     }
4433     break;
4434   }
4435   case ISD::CONCAT_VECTORS: {
4436     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4437     SDValue Ops[] = {N1, N2, N3};
4438     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4439       return V;
4440     break;
4441   }
4442   case ISD::SETCC: {
4443     // Use FoldSetCC to simplify SETCC's.
4444     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4445       return V;
4446     // Vector constant folding.
4447     SDValue Ops[] = {N1, N2, N3};
4448     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4449       return V;
4450     break;
4451   }
4452   case ISD::SELECT:
4453     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4454      if (N1C->getZExtValue())
4455        return N2;             // select true, X, Y -> X
4456      return N3;             // select false, X, Y -> Y
4457     }
4458 
4459     if (N2 == N3) return N2;   // select C, X, X -> X
4460     break;
4461   case ISD::VECTOR_SHUFFLE:
4462     llvm_unreachable("should use getVectorShuffle constructor!");
4463   case ISD::INSERT_VECTOR_ELT: {
4464     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
4465     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
4466     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4467       return getUNDEF(VT);
4468     break;
4469   }
4470   case ISD::INSERT_SUBVECTOR: {
4471     SDValue Index = N3;
4472     if (VT.isSimple() && N1.getValueType().isSimple()
4473         && N2.getValueType().isSimple()) {
4474       assert(VT.isVector() && N1.getValueType().isVector() &&
4475              N2.getValueType().isVector() &&
4476              "Insert subvector VTs must be a vectors");
4477       assert(VT == N1.getValueType() &&
4478              "Dest and insert subvector source types must match!");
4479       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4480              "Insert subvector must be from smaller vector to larger vector!");
4481       if (isa<ConstantSDNode>(Index)) {
4482         assert((N2.getValueType().getVectorNumElements() +
4483                 cast<ConstantSDNode>(Index)->getZExtValue()
4484                 <= VT.getVectorNumElements())
4485                && "Insert subvector overflow!");
4486       }
4487 
4488       // Trivial insertion.
4489       if (VT.getSimpleVT() == N2.getSimpleValueType())
4490         return N2;
4491     }
4492     break;
4493   }
4494   case ISD::BITCAST:
4495     // Fold bit_convert nodes from a type to themselves.
4496     if (N1.getValueType() == VT)
4497       return N1;
4498     break;
4499   }
4500 
4501   // Memoize node if it doesn't produce a flag.
4502   SDNode *N;
4503   SDVTList VTs = getVTList(VT);
4504   SDValue Ops[] = {N1, N2, N3};
4505   if (VT != MVT::Glue) {
4506     FoldingSetNodeID ID;
4507     AddNodeIDNode(ID, Opcode, VTs, Ops);
4508     void *IP = nullptr;
4509     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4510       return SDValue(E, 0);
4511 
4512     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4513     createOperands(N, Ops);
4514     CSEMap.InsertNode(N, IP);
4515   } else {
4516     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4517     createOperands(N, Ops);
4518   }
4519 
4520   InsertNode(N);
4521   return SDValue(N, 0);
4522 }
4523 
4524 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4525                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4526   SDValue Ops[] = { N1, N2, N3, N4 };
4527   return getNode(Opcode, DL, VT, Ops);
4528 }
4529 
4530 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4531                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4532                               SDValue N5) {
4533   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4534   return getNode(Opcode, DL, VT, Ops);
4535 }
4536 
4537 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4538 /// the incoming stack arguments to be loaded from the stack.
4539 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4540   SmallVector<SDValue, 8> ArgChains;
4541 
4542   // Include the original chain at the beginning of the list. When this is
4543   // used by target LowerCall hooks, this helps legalize find the
4544   // CALLSEQ_BEGIN node.
4545   ArgChains.push_back(Chain);
4546 
4547   // Add a chain value for each stack argument.
4548   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4549        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4550     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
4551       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
4552         if (FI->getIndex() < 0)
4553           ArgChains.push_back(SDValue(L, 1));
4554 
4555   // Build a tokenfactor for all the chains.
4556   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
4557 }
4558 
4559 /// getMemsetValue - Vectorized representation of the memset value
4560 /// operand.
4561 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
4562                               const SDLoc &dl) {
4563   assert(!Value.isUndef());
4564 
4565   unsigned NumBits = VT.getScalarSizeInBits();
4566   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4567     assert(C->getAPIntValue().getBitWidth() == 8);
4568     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
4569     if (VT.isInteger())
4570       return DAG.getConstant(Val, dl, VT);
4571     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
4572                              VT);
4573   }
4574 
4575   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
4576   EVT IntVT = VT.getScalarType();
4577   if (!IntVT.isInteger())
4578     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
4579 
4580   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
4581   if (NumBits > 8) {
4582     // Use a multiplication with 0x010101... to extend the input to the
4583     // required length.
4584     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
4585     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
4586                         DAG.getConstant(Magic, dl, IntVT));
4587   }
4588 
4589   if (VT != Value.getValueType() && !VT.isInteger())
4590     Value = DAG.getBitcast(VT.getScalarType(), Value);
4591   if (VT != Value.getValueType())
4592     Value = DAG.getSplatBuildVector(VT, dl, Value);
4593 
4594   return Value;
4595 }
4596 
4597 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4598 /// used when a memcpy is turned into a memset when the source is a constant
4599 /// string ptr.
4600 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
4601                                   const TargetLowering &TLI, StringRef Str) {
4602   // Handle vector with all elements zero.
4603   if (Str.empty()) {
4604     if (VT.isInteger())
4605       return DAG.getConstant(0, dl, VT);
4606     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
4607       return DAG.getConstantFP(0.0, dl, VT);
4608     else if (VT.isVector()) {
4609       unsigned NumElts = VT.getVectorNumElements();
4610       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
4611       return DAG.getNode(ISD::BITCAST, dl, VT,
4612                          DAG.getConstant(0, dl,
4613                                          EVT::getVectorVT(*DAG.getContext(),
4614                                                           EltVT, NumElts)));
4615     } else
4616       llvm_unreachable("Expected type!");
4617   }
4618 
4619   assert(!VT.isVector() && "Can't handle vector type here!");
4620   unsigned NumVTBits = VT.getSizeInBits();
4621   unsigned NumVTBytes = NumVTBits / 8;
4622   unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
4623 
4624   APInt Val(NumVTBits, 0);
4625   if (DAG.getDataLayout().isLittleEndian()) {
4626     for (unsigned i = 0; i != NumBytes; ++i)
4627       Val |= (uint64_t)(unsigned char)Str[i] << i*8;
4628   } else {
4629     for (unsigned i = 0; i != NumBytes; ++i)
4630       Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
4631   }
4632 
4633   // If the "cost" of materializing the integer immediate is less than the cost
4634   // of a load, then it is cost effective to turn the load into the immediate.
4635   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
4636   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
4637     return DAG.getConstant(Val, dl, VT);
4638   return SDValue(nullptr, 0);
4639 }
4640 
4641 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
4642                                            const SDLoc &DL) {
4643   EVT VT = Base.getValueType();
4644   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
4645 }
4646 
4647 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
4648 ///
4649 static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
4650   uint64_t SrcDelta = 0;
4651   GlobalAddressSDNode *G = nullptr;
4652   if (Src.getOpcode() == ISD::GlobalAddress)
4653     G = cast<GlobalAddressSDNode>(Src);
4654   else if (Src.getOpcode() == ISD::ADD &&
4655            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4656            Src.getOperand(1).getOpcode() == ISD::Constant) {
4657     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
4658     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
4659   }
4660   if (!G)
4661     return false;
4662 
4663   return getConstantStringInfo(G->getGlobal(), Str,
4664                                SrcDelta + G->getOffset(), false);
4665 }
4666 
4667 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4668 /// Return true if the number of memory ops is below the threshold (Limit).
4669 /// It returns the types of the sequence of memory ops to perform
4670 /// memset / memcpy by reference.
4671 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
4672                                      unsigned Limit, uint64_t Size,
4673                                      unsigned DstAlign, unsigned SrcAlign,
4674                                      bool IsMemset,
4675                                      bool ZeroMemset,
4676                                      bool MemcpyStrSrc,
4677                                      bool AllowOverlap,
4678                                      unsigned DstAS, unsigned SrcAS,
4679                                      SelectionDAG &DAG,
4680                                      const TargetLowering &TLI) {
4681   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
4682          "Expecting memcpy / memset source to meet alignment requirement!");
4683   // If 'SrcAlign' is zero, that means the memory operation does not need to
4684   // load the value, i.e. memset or memcpy from constant string. Otherwise,
4685   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
4686   // is the specified alignment of the memory operation. If it is zero, that
4687   // means it's possible to change the alignment of the destination.
4688   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
4689   // not need to be loaded.
4690   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
4691                                    IsMemset, ZeroMemset, MemcpyStrSrc,
4692                                    DAG.getMachineFunction());
4693 
4694   if (VT == MVT::Other) {
4695     if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) ||
4696         TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) {
4697       VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS);
4698     } else {
4699       switch (DstAlign & 7) {
4700       case 0:  VT = MVT::i64; break;
4701       case 4:  VT = MVT::i32; break;
4702       case 2:  VT = MVT::i16; break;
4703       default: VT = MVT::i8;  break;
4704       }
4705     }
4706 
4707     MVT LVT = MVT::i64;
4708     while (!TLI.isTypeLegal(LVT))
4709       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
4710     assert(LVT.isInteger());
4711 
4712     if (VT.bitsGT(LVT))
4713       VT = LVT;
4714   }
4715 
4716   unsigned NumMemOps = 0;
4717   while (Size != 0) {
4718     unsigned VTSize = VT.getSizeInBits() / 8;
4719     while (VTSize > Size) {
4720       // For now, only use non-vector load / store's for the left-over pieces.
4721       EVT NewVT = VT;
4722       unsigned NewVTSize;
4723 
4724       bool Found = false;
4725       if (VT.isVector() || VT.isFloatingPoint()) {
4726         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
4727         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
4728             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
4729           Found = true;
4730         else if (NewVT == MVT::i64 &&
4731                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
4732                  TLI.isSafeMemOpType(MVT::f64)) {
4733           // i64 is usually not legal on 32-bit targets, but f64 may be.
4734           NewVT = MVT::f64;
4735           Found = true;
4736         }
4737       }
4738 
4739       if (!Found) {
4740         do {
4741           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
4742           if (NewVT == MVT::i8)
4743             break;
4744         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
4745       }
4746       NewVTSize = NewVT.getSizeInBits() / 8;
4747 
4748       // If the new VT cannot cover all of the remaining bits, then consider
4749       // issuing a (or a pair of) unaligned and overlapping load / store.
4750       // FIXME: Only does this for 64-bit or more since we don't have proper
4751       // cost model for unaligned load / store.
4752       bool Fast;
4753       if (NumMemOps && AllowOverlap &&
4754           VTSize >= 8 && NewVTSize < Size &&
4755           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
4756         VTSize = Size;
4757       else {
4758         VT = NewVT;
4759         VTSize = NewVTSize;
4760       }
4761     }
4762 
4763     if (++NumMemOps > Limit)
4764       return false;
4765 
4766     MemOps.push_back(VT);
4767     Size -= VTSize;
4768   }
4769 
4770   return true;
4771 }
4772 
4773 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
4774   // On Darwin, -Os means optimize for size without hurting performance, so
4775   // only really optimize for size when -Oz (MinSize) is used.
4776   if (MF.getTarget().getTargetTriple().isOSDarwin())
4777     return MF.getFunction()->optForMinSize();
4778   return MF.getFunction()->optForSize();
4779 }
4780 
4781 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4782                                        SDValue Chain, SDValue Dst, SDValue Src,
4783                                        uint64_t Size, unsigned Align,
4784                                        bool isVol, bool AlwaysInline,
4785                                        MachinePointerInfo DstPtrInfo,
4786                                        MachinePointerInfo SrcPtrInfo) {
4787   // Turn a memcpy of undef to nop.
4788   if (Src.isUndef())
4789     return Chain;
4790 
4791   // Expand memcpy to a series of load and store ops if the size operand falls
4792   // below a certain threshold.
4793   // TODO: In the AlwaysInline case, if the size is big then generate a loop
4794   // rather than maybe a humongous number of loads and stores.
4795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4796   std::vector<EVT> MemOps;
4797   bool DstAlignCanChange = false;
4798   MachineFunction &MF = DAG.getMachineFunction();
4799   MachineFrameInfo &MFI = MF.getFrameInfo();
4800   bool OptSize = shouldLowerMemFuncForSize(MF);
4801   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4802   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4803     DstAlignCanChange = true;
4804   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4805   if (Align > SrcAlign)
4806     SrcAlign = Align;
4807   StringRef Str;
4808   bool CopyFromStr = isMemSrcFromString(Src, Str);
4809   bool isZeroStr = CopyFromStr && Str.empty();
4810   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
4811 
4812   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4813                                 (DstAlignCanChange ? 0 : Align),
4814                                 (isZeroStr ? 0 : SrcAlign),
4815                                 false, false, CopyFromStr, true,
4816                                 DstPtrInfo.getAddrSpace(),
4817                                 SrcPtrInfo.getAddrSpace(),
4818                                 DAG, TLI))
4819     return SDValue();
4820 
4821   if (DstAlignCanChange) {
4822     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4823     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4824 
4825     // Don't promote to an alignment that would require dynamic stack
4826     // realignment.
4827     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
4828     if (!TRI->needsStackRealignment(MF))
4829       while (NewAlign > Align &&
4830              DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign))
4831           NewAlign /= 2;
4832 
4833     if (NewAlign > Align) {
4834       // Give the stack frame object a larger alignment if needed.
4835       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4836         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4837       Align = NewAlign;
4838     }
4839   }
4840 
4841   MachineMemOperand::Flags MMOFlags =
4842       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4843   SmallVector<SDValue, 8> OutChains;
4844   unsigned NumMemOps = MemOps.size();
4845   uint64_t SrcOff = 0, DstOff = 0;
4846   for (unsigned i = 0; i != NumMemOps; ++i) {
4847     EVT VT = MemOps[i];
4848     unsigned VTSize = VT.getSizeInBits() / 8;
4849     SDValue Value, Store;
4850 
4851     if (VTSize > Size) {
4852       // Issuing an unaligned load / store pair  that overlaps with the previous
4853       // pair. Adjust the offset accordingly.
4854       assert(i == NumMemOps-1 && i != 0);
4855       SrcOff -= VTSize - Size;
4856       DstOff -= VTSize - Size;
4857     }
4858 
4859     if (CopyFromStr &&
4860         (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
4861       // It's unlikely a store of a vector immediate can be done in a single
4862       // instruction. It would require a load from a constantpool first.
4863       // We only handle zero vectors here.
4864       // FIXME: Handle other cases where store of vector immediate is done in
4865       // a single instruction.
4866       Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
4867       if (Value.getNode())
4868         Store = DAG.getStore(Chain, dl, Value,
4869                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4870                              DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4871     }
4872 
4873     if (!Store.getNode()) {
4874       // The type might not be legal for the target.  This should only happen
4875       // if the type is smaller than a legal type, as on PPC, so the right
4876       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
4877       // to Load/Store if NVT==VT.
4878       // FIXME does the case above also need this?
4879       EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
4880       assert(NVT.bitsGE(VT));
4881       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
4882                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4883                              SrcPtrInfo.getWithOffset(SrcOff), VT,
4884                              MinAlign(SrcAlign, SrcOff), MMOFlags);
4885       OutChains.push_back(Value.getValue(1));
4886       Store = DAG.getTruncStore(
4887           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4888           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
4889     }
4890     OutChains.push_back(Store);
4891     SrcOff += VTSize;
4892     DstOff += VTSize;
4893     Size -= VTSize;
4894   }
4895 
4896   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4897 }
4898 
4899 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4900                                         SDValue Chain, SDValue Dst, SDValue Src,
4901                                         uint64_t Size, unsigned Align,
4902                                         bool isVol, bool AlwaysInline,
4903                                         MachinePointerInfo DstPtrInfo,
4904                                         MachinePointerInfo SrcPtrInfo) {
4905   // Turn a memmove of undef to nop.
4906   if (Src.isUndef())
4907     return Chain;
4908 
4909   // Expand memmove to a series of load and store ops if the size operand falls
4910   // below a certain threshold.
4911   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4912   std::vector<EVT> MemOps;
4913   bool DstAlignCanChange = false;
4914   MachineFunction &MF = DAG.getMachineFunction();
4915   MachineFrameInfo &MFI = MF.getFrameInfo();
4916   bool OptSize = shouldLowerMemFuncForSize(MF);
4917   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4918   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4919     DstAlignCanChange = true;
4920   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4921   if (Align > SrcAlign)
4922     SrcAlign = Align;
4923   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
4924 
4925   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4926                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
4927                                 false, false, false, false,
4928                                 DstPtrInfo.getAddrSpace(),
4929                                 SrcPtrInfo.getAddrSpace(),
4930                                 DAG, TLI))
4931     return SDValue();
4932 
4933   if (DstAlignCanChange) {
4934     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4935     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4936     if (NewAlign > Align) {
4937       // Give the stack frame object a larger alignment if needed.
4938       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4939         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4940       Align = NewAlign;
4941     }
4942   }
4943 
4944   MachineMemOperand::Flags MMOFlags =
4945       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4946   uint64_t SrcOff = 0, DstOff = 0;
4947   SmallVector<SDValue, 8> LoadValues;
4948   SmallVector<SDValue, 8> LoadChains;
4949   SmallVector<SDValue, 8> OutChains;
4950   unsigned NumMemOps = MemOps.size();
4951   for (unsigned i = 0; i < NumMemOps; i++) {
4952     EVT VT = MemOps[i];
4953     unsigned VTSize = VT.getSizeInBits() / 8;
4954     SDValue Value;
4955 
4956     Value =
4957         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4958                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags);
4959     LoadValues.push_back(Value);
4960     LoadChains.push_back(Value.getValue(1));
4961     SrcOff += VTSize;
4962   }
4963   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
4964   OutChains.clear();
4965   for (unsigned i = 0; i < NumMemOps; i++) {
4966     EVT VT = MemOps[i];
4967     unsigned VTSize = VT.getSizeInBits() / 8;
4968     SDValue Store;
4969 
4970     Store = DAG.getStore(Chain, dl, LoadValues[i],
4971                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4972                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4973     OutChains.push_back(Store);
4974     DstOff += VTSize;
4975   }
4976 
4977   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4978 }
4979 
4980 /// \brief Lower the call to 'memset' intrinsic function into a series of store
4981 /// operations.
4982 ///
4983 /// \param DAG Selection DAG where lowered code is placed.
4984 /// \param dl Link to corresponding IR location.
4985 /// \param Chain Control flow dependency.
4986 /// \param Dst Pointer to destination memory location.
4987 /// \param Src Value of byte to write into the memory.
4988 /// \param Size Number of bytes to write.
4989 /// \param Align Alignment of the destination in bytes.
4990 /// \param isVol True if destination is volatile.
4991 /// \param DstPtrInfo IR information on the memory pointer.
4992 /// \returns New head in the control flow, if lowering was successful, empty
4993 /// SDValue otherwise.
4994 ///
4995 /// The function tries to replace 'llvm.memset' intrinsic with several store
4996 /// operations and value calculation code. This is usually profitable for small
4997 /// memory size.
4998 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
4999                                SDValue Chain, SDValue Dst, SDValue Src,
5000                                uint64_t Size, unsigned Align, bool isVol,
5001                                MachinePointerInfo DstPtrInfo) {
5002   // Turn a memset of undef to nop.
5003   if (Src.isUndef())
5004     return Chain;
5005 
5006   // Expand memset to a series of load/store ops if the size operand
5007   // falls below a certain threshold.
5008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5009   std::vector<EVT> MemOps;
5010   bool DstAlignCanChange = false;
5011   MachineFunction &MF = DAG.getMachineFunction();
5012   MachineFrameInfo &MFI = MF.getFrameInfo();
5013   bool OptSize = shouldLowerMemFuncForSize(MF);
5014   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5015   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5016     DstAlignCanChange = true;
5017   bool IsZeroVal =
5018     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5019   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5020                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5021                                 true, IsZeroVal, false, true,
5022                                 DstPtrInfo.getAddrSpace(), ~0u,
5023                                 DAG, TLI))
5024     return SDValue();
5025 
5026   if (DstAlignCanChange) {
5027     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5028     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5029     if (NewAlign > Align) {
5030       // Give the stack frame object a larger alignment if needed.
5031       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5032         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5033       Align = NewAlign;
5034     }
5035   }
5036 
5037   SmallVector<SDValue, 8> OutChains;
5038   uint64_t DstOff = 0;
5039   unsigned NumMemOps = MemOps.size();
5040 
5041   // Find the largest store and generate the bit pattern for it.
5042   EVT LargestVT = MemOps[0];
5043   for (unsigned i = 1; i < NumMemOps; i++)
5044     if (MemOps[i].bitsGT(LargestVT))
5045       LargestVT = MemOps[i];
5046   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5047 
5048   for (unsigned i = 0; i < NumMemOps; i++) {
5049     EVT VT = MemOps[i];
5050     unsigned VTSize = VT.getSizeInBits() / 8;
5051     if (VTSize > Size) {
5052       // Issuing an unaligned load / store pair  that overlaps with the previous
5053       // pair. Adjust the offset accordingly.
5054       assert(i == NumMemOps-1 && i != 0);
5055       DstOff -= VTSize - Size;
5056     }
5057 
5058     // If this store is smaller than the largest store see whether we can get
5059     // the smaller value for free with a truncate.
5060     SDValue Value = MemSetValue;
5061     if (VT.bitsLT(LargestVT)) {
5062       if (!LargestVT.isVector() && !VT.isVector() &&
5063           TLI.isTruncateFree(LargestVT, VT))
5064         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
5065       else
5066         Value = getMemsetValue(Src, VT, DAG, dl);
5067     }
5068     assert(Value.getValueType() == VT && "Value with wrong type.");
5069     SDValue Store = DAG.getStore(
5070         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5071         DstPtrInfo.getWithOffset(DstOff), Align,
5072         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
5073     OutChains.push_back(Store);
5074     DstOff += VT.getSizeInBits() / 8;
5075     Size -= VTSize;
5076   }
5077 
5078   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5079 }
5080 
5081 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
5082                                             unsigned AS) {
5083   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
5084   // pointer operands can be losslessly bitcasted to pointers of address space 0
5085   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
5086     report_fatal_error("cannot lower memory intrinsic in address space " +
5087                        Twine(AS));
5088   }
5089 }
5090 
5091 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
5092                                 SDValue Src, SDValue Size, unsigned Align,
5093                                 bool isVol, bool AlwaysInline, bool isTailCall,
5094                                 MachinePointerInfo DstPtrInfo,
5095                                 MachinePointerInfo SrcPtrInfo) {
5096   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5097 
5098   // Check to see if we should lower the memcpy to loads and stores first.
5099   // For cases within the target-specified limits, this is the best choice.
5100   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5101   if (ConstantSize) {
5102     // Memcpy with size zero? Just return the original chain.
5103     if (ConstantSize->isNullValue())
5104       return Chain;
5105 
5106     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5107                                              ConstantSize->getZExtValue(),Align,
5108                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5109     if (Result.getNode())
5110       return Result;
5111   }
5112 
5113   // Then check to see if we should lower the memcpy with target-specific
5114   // code. If the target chooses to do this, this is the next best.
5115   if (TSI) {
5116     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5117         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5118         DstPtrInfo, SrcPtrInfo);
5119     if (Result.getNode())
5120       return Result;
5121   }
5122 
5123   // If we really need inline code and the target declined to provide it,
5124   // use a (potentially long) sequence of loads and stores.
5125   if (AlwaysInline) {
5126     assert(ConstantSize && "AlwaysInline requires a constant size!");
5127     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5128                                    ConstantSize->getZExtValue(), Align, isVol,
5129                                    true, DstPtrInfo, SrcPtrInfo);
5130   }
5131 
5132   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5133   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5134 
5135   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5136   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5137   // respect volatile, so they may do things like read or write memory
5138   // beyond the given memory regions. But fixing this isn't easy, and most
5139   // people don't care.
5140 
5141   // Emit a library call.
5142   TargetLowering::ArgListTy Args;
5143   TargetLowering::ArgListEntry Entry;
5144   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5145   Entry.Node = Dst; Args.push_back(Entry);
5146   Entry.Node = Src; Args.push_back(Entry);
5147   Entry.Node = Size; Args.push_back(Entry);
5148   // FIXME: pass in SDLoc
5149   TargetLowering::CallLoweringInfo CLI(*this);
5150   CLI.setDebugLoc(dl)
5151       .setChain(Chain)
5152       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5153                  Dst.getValueType().getTypeForEVT(*getContext()),
5154                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5155                                    TLI->getPointerTy(getDataLayout())),
5156                  std::move(Args))
5157       .setDiscardResult()
5158       .setTailCall(isTailCall);
5159 
5160   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5161   return CallResult.second;
5162 }
5163 
5164 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5165                                  SDValue Src, SDValue Size, unsigned Align,
5166                                  bool isVol, bool isTailCall,
5167                                  MachinePointerInfo DstPtrInfo,
5168                                  MachinePointerInfo SrcPtrInfo) {
5169   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5170 
5171   // Check to see if we should lower the memmove to loads and stores first.
5172   // For cases within the target-specified limits, this is the best choice.
5173   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5174   if (ConstantSize) {
5175     // Memmove with size zero? Just return the original chain.
5176     if (ConstantSize->isNullValue())
5177       return Chain;
5178 
5179     SDValue Result =
5180       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5181                                ConstantSize->getZExtValue(), Align, isVol,
5182                                false, DstPtrInfo, SrcPtrInfo);
5183     if (Result.getNode())
5184       return Result;
5185   }
5186 
5187   // Then check to see if we should lower the memmove with target-specific
5188   // code. If the target chooses to do this, this is the next best.
5189   if (TSI) {
5190     SDValue Result = TSI->EmitTargetCodeForMemmove(
5191         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5192     if (Result.getNode())
5193       return Result;
5194   }
5195 
5196   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5197   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5198 
5199   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5200   // not be safe.  See memcpy above for more details.
5201 
5202   // Emit a library call.
5203   TargetLowering::ArgListTy Args;
5204   TargetLowering::ArgListEntry Entry;
5205   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5206   Entry.Node = Dst; Args.push_back(Entry);
5207   Entry.Node = Src; Args.push_back(Entry);
5208   Entry.Node = Size; Args.push_back(Entry);
5209   // FIXME:  pass in SDLoc
5210   TargetLowering::CallLoweringInfo CLI(*this);
5211   CLI.setDebugLoc(dl)
5212       .setChain(Chain)
5213       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5214                  Dst.getValueType().getTypeForEVT(*getContext()),
5215                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5216                                    TLI->getPointerTy(getDataLayout())),
5217                  std::move(Args))
5218       .setDiscardResult()
5219       .setTailCall(isTailCall);
5220 
5221   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5222   return CallResult.second;
5223 }
5224 
5225 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5226                                 SDValue Src, SDValue Size, unsigned Align,
5227                                 bool isVol, bool isTailCall,
5228                                 MachinePointerInfo DstPtrInfo) {
5229   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5230 
5231   // Check to see if we should lower the memset to stores first.
5232   // For cases within the target-specified limits, this is the best choice.
5233   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5234   if (ConstantSize) {
5235     // Memset with size zero? Just return the original chain.
5236     if (ConstantSize->isNullValue())
5237       return Chain;
5238 
5239     SDValue Result =
5240       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5241                       Align, isVol, DstPtrInfo);
5242 
5243     if (Result.getNode())
5244       return Result;
5245   }
5246 
5247   // Then check to see if we should lower the memset with target-specific
5248   // code. If the target chooses to do this, this is the next best.
5249   if (TSI) {
5250     SDValue Result = TSI->EmitTargetCodeForMemset(
5251         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
5252     if (Result.getNode())
5253       return Result;
5254   }
5255 
5256   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5257 
5258   // Emit a library call.
5259   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
5260   TargetLowering::ArgListTy Args;
5261   TargetLowering::ArgListEntry Entry;
5262   Entry.Node = Dst; Entry.Ty = IntPtrTy;
5263   Args.push_back(Entry);
5264   Entry.Node = Src;
5265   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
5266   Args.push_back(Entry);
5267   Entry.Node = Size;
5268   Entry.Ty = IntPtrTy;
5269   Args.push_back(Entry);
5270 
5271   // FIXME: pass in SDLoc
5272   TargetLowering::CallLoweringInfo CLI(*this);
5273   CLI.setDebugLoc(dl)
5274       .setChain(Chain)
5275       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
5276                  Dst.getValueType().getTypeForEVT(*getContext()),
5277                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
5278                                    TLI->getPointerTy(getDataLayout())),
5279                  std::move(Args))
5280       .setDiscardResult()
5281       .setTailCall(isTailCall);
5282 
5283   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5284   return CallResult.second;
5285 }
5286 
5287 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5288                                 SDVTList VTList, ArrayRef<SDValue> Ops,
5289                                 MachineMemOperand *MMO) {
5290   FoldingSetNodeID ID;
5291   ID.AddInteger(MemVT.getRawBits());
5292   AddNodeIDNode(ID, Opcode, VTList, Ops);
5293   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5294   void* IP = nullptr;
5295   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5296     cast<AtomicSDNode>(E)->refineAlignment(MMO);
5297     return SDValue(E, 0);
5298   }
5299 
5300   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5301                                     VTList, MemVT, MMO);
5302   createOperands(N, Ops);
5303 
5304   CSEMap.InsertNode(N, IP);
5305   InsertNode(N);
5306   return SDValue(N, 0);
5307 }
5308 
5309 SDValue SelectionDAG::getAtomicCmpSwap(
5310     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
5311     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
5312     unsigned Alignment, AtomicOrdering SuccessOrdering,
5313     AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) {
5314   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5315          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5316   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5317 
5318   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5319     Alignment = getEVTAlignment(MemVT);
5320 
5321   MachineFunction &MF = getMachineFunction();
5322 
5323   // FIXME: Volatile isn't really correct; we should keep track of atomic
5324   // orderings in the memoperand.
5325   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
5326                MachineMemOperand::MOStore;
5327   MachineMemOperand *MMO =
5328     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
5329                             AAMDNodes(), nullptr, SynchScope, SuccessOrdering,
5330                             FailureOrdering);
5331 
5332   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
5333 }
5334 
5335 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
5336                                        EVT MemVT, SDVTList VTs, SDValue Chain,
5337                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
5338                                        MachineMemOperand *MMO) {
5339   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5340          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5341   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5342 
5343   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
5344   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5345 }
5346 
5347 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5348                                 SDValue Chain, SDValue Ptr, SDValue Val,
5349                                 const Value *PtrVal, unsigned Alignment,
5350                                 AtomicOrdering Ordering,
5351                                 SynchronizationScope SynchScope) {
5352   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5353     Alignment = getEVTAlignment(MemVT);
5354 
5355   MachineFunction &MF = getMachineFunction();
5356   // An atomic store does not load. An atomic load does not store.
5357   // (An atomicrmw obviously both loads and stores.)
5358   // For now, atomics are considered to be volatile always, and they are
5359   // chained as such.
5360   // FIXME: Volatile isn't really correct; we should keep track of atomic
5361   // orderings in the memoperand.
5362   auto Flags = MachineMemOperand::MOVolatile;
5363   if (Opcode != ISD::ATOMIC_STORE)
5364     Flags |= MachineMemOperand::MOLoad;
5365   if (Opcode != ISD::ATOMIC_LOAD)
5366     Flags |= MachineMemOperand::MOStore;
5367 
5368   MachineMemOperand *MMO =
5369     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
5370                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
5371                             nullptr, SynchScope, Ordering);
5372 
5373   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
5374 }
5375 
5376 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5377                                 SDValue Chain, SDValue Ptr, SDValue Val,
5378                                 MachineMemOperand *MMO) {
5379   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
5380           Opcode == ISD::ATOMIC_LOAD_SUB ||
5381           Opcode == ISD::ATOMIC_LOAD_AND ||
5382           Opcode == ISD::ATOMIC_LOAD_OR ||
5383           Opcode == ISD::ATOMIC_LOAD_XOR ||
5384           Opcode == ISD::ATOMIC_LOAD_NAND ||
5385           Opcode == ISD::ATOMIC_LOAD_MIN ||
5386           Opcode == ISD::ATOMIC_LOAD_MAX ||
5387           Opcode == ISD::ATOMIC_LOAD_UMIN ||
5388           Opcode == ISD::ATOMIC_LOAD_UMAX ||
5389           Opcode == ISD::ATOMIC_SWAP ||
5390           Opcode == ISD::ATOMIC_STORE) &&
5391          "Invalid Atomic Op");
5392 
5393   EVT VT = Val.getValueType();
5394 
5395   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
5396                                                getVTList(VT, MVT::Other);
5397   SDValue Ops[] = {Chain, Ptr, Val};
5398   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5399 }
5400 
5401 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5402                                 EVT VT, SDValue Chain, SDValue Ptr,
5403                                 MachineMemOperand *MMO) {
5404   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
5405 
5406   SDVTList VTs = getVTList(VT, MVT::Other);
5407   SDValue Ops[] = {Chain, Ptr};
5408   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5409 }
5410 
5411 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
5412 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
5413   if (Ops.size() == 1)
5414     return Ops[0];
5415 
5416   SmallVector<EVT, 4> VTs;
5417   VTs.reserve(Ops.size());
5418   for (unsigned i = 0; i < Ops.size(); ++i)
5419     VTs.push_back(Ops[i].getValueType());
5420   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
5421 }
5422 
5423 SDValue SelectionDAG::getMemIntrinsicNode(
5424     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
5425     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol,
5426     bool ReadMem, bool WriteMem, unsigned Size) {
5427   if (Align == 0)  // Ensure that codegen never sees alignment 0
5428     Align = getEVTAlignment(MemVT);
5429 
5430   MachineFunction &MF = getMachineFunction();
5431   auto Flags = MachineMemOperand::MONone;
5432   if (WriteMem)
5433     Flags |= MachineMemOperand::MOStore;
5434   if (ReadMem)
5435     Flags |= MachineMemOperand::MOLoad;
5436   if (Vol)
5437     Flags |= MachineMemOperand::MOVolatile;
5438   if (!Size)
5439     Size = MemVT.getStoreSize();
5440   MachineMemOperand *MMO =
5441     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
5442 
5443   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
5444 }
5445 
5446 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
5447                                           SDVTList VTList,
5448                                           ArrayRef<SDValue> Ops, EVT MemVT,
5449                                           MachineMemOperand *MMO) {
5450   assert((Opcode == ISD::INTRINSIC_VOID ||
5451           Opcode == ISD::INTRINSIC_W_CHAIN ||
5452           Opcode == ISD::PREFETCH ||
5453           Opcode == ISD::LIFETIME_START ||
5454           Opcode == ISD::LIFETIME_END ||
5455           (Opcode <= INT_MAX &&
5456            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
5457          "Opcode is not a memory-accessing opcode!");
5458 
5459   // Memoize the node unless it returns a flag.
5460   MemIntrinsicSDNode *N;
5461   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5462     FoldingSetNodeID ID;
5463     AddNodeIDNode(ID, Opcode, VTList, Ops);
5464     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5465     void *IP = nullptr;
5466     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5467       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
5468       return SDValue(E, 0);
5469     }
5470 
5471     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5472                                       VTList, MemVT, MMO);
5473     createOperands(N, Ops);
5474 
5475   CSEMap.InsertNode(N, IP);
5476   } else {
5477     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5478                                       VTList, MemVT, MMO);
5479     createOperands(N, Ops);
5480   }
5481   InsertNode(N);
5482   return SDValue(N, 0);
5483 }
5484 
5485 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5486 /// MachinePointerInfo record from it.  This is particularly useful because the
5487 /// code generator has many cases where it doesn't bother passing in a
5488 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5489 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5490                                            int64_t Offset = 0) {
5491   // If this is FI+Offset, we can model it.
5492   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
5493     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5494                                              FI->getIndex(), Offset);
5495 
5496   // If this is (FI+Offset1)+Offset2, we can model it.
5497   if (Ptr.getOpcode() != ISD::ADD ||
5498       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
5499       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
5500     return MachinePointerInfo();
5501 
5502   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5503   return MachinePointerInfo::getFixedStack(
5504       DAG.getMachineFunction(), FI,
5505       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
5506 }
5507 
5508 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5509 /// MachinePointerInfo record from it.  This is particularly useful because the
5510 /// code generator has many cases where it doesn't bother passing in a
5511 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5512 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5513                                            SDValue OffsetOp) {
5514   // If the 'Offset' value isn't a constant, we can't handle this.
5515   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
5516     return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue());
5517   if (OffsetOp.isUndef())
5518     return InferPointerInfo(DAG, Ptr);
5519   return MachinePointerInfo();
5520 }
5521 
5522 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5523                               EVT VT, const SDLoc &dl, SDValue Chain,
5524                               SDValue Ptr, SDValue Offset,
5525                               MachinePointerInfo PtrInfo, EVT MemVT,
5526                               unsigned Alignment,
5527                               MachineMemOperand::Flags MMOFlags,
5528                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5529   assert(Chain.getValueType() == MVT::Other &&
5530         "Invalid chain type");
5531   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5532     Alignment = getEVTAlignment(MemVT);
5533 
5534   MMOFlags |= MachineMemOperand::MOLoad;
5535   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
5536   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
5537   // clients.
5538   if (PtrInfo.V.isNull())
5539     PtrInfo = InferPointerInfo(*this, Ptr, Offset);
5540 
5541   MachineFunction &MF = getMachineFunction();
5542   MachineMemOperand *MMO = MF.getMachineMemOperand(
5543       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
5544   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
5545 }
5546 
5547 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5548                               EVT VT, const SDLoc &dl, SDValue Chain,
5549                               SDValue Ptr, SDValue Offset, EVT MemVT,
5550                               MachineMemOperand *MMO) {
5551   if (VT == MemVT) {
5552     ExtType = ISD::NON_EXTLOAD;
5553   } else if (ExtType == ISD::NON_EXTLOAD) {
5554     assert(VT == MemVT && "Non-extending load from different memory type!");
5555   } else {
5556     // Extending load.
5557     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
5558            "Should only be an extending load, not truncating!");
5559     assert(VT.isInteger() == MemVT.isInteger() &&
5560            "Cannot convert from FP to Int or Int -> FP!");
5561     assert(VT.isVector() == MemVT.isVector() &&
5562            "Cannot use an ext load to convert to or from a vector!");
5563     assert((!VT.isVector() ||
5564             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
5565            "Cannot use an ext load to change the number of vector elements!");
5566   }
5567 
5568   bool Indexed = AM != ISD::UNINDEXED;
5569   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
5570 
5571   SDVTList VTs = Indexed ?
5572     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
5573   SDValue Ops[] = { Chain, Ptr, Offset };
5574   FoldingSetNodeID ID;
5575   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
5576   ID.AddInteger(MemVT.getRawBits());
5577   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
5578       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
5579   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5580   void *IP = nullptr;
5581   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5582     cast<LoadSDNode>(E)->refineAlignment(MMO);
5583     return SDValue(E, 0);
5584   }
5585   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5586                                   ExtType, MemVT, MMO);
5587   createOperands(N, Ops);
5588 
5589   CSEMap.InsertNode(N, IP);
5590   InsertNode(N);
5591   return SDValue(N, 0);
5592 }
5593 
5594 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5595                               SDValue Ptr, MachinePointerInfo PtrInfo,
5596                               unsigned Alignment,
5597                               MachineMemOperand::Flags MMOFlags,
5598                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5599   SDValue Undef = getUNDEF(Ptr.getValueType());
5600   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5601                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
5602 }
5603 
5604 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5605                               SDValue Ptr, MachineMemOperand *MMO) {
5606   SDValue Undef = getUNDEF(Ptr.getValueType());
5607   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5608                  VT, MMO);
5609 }
5610 
5611 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5612                                  EVT VT, SDValue Chain, SDValue Ptr,
5613                                  MachinePointerInfo PtrInfo, EVT MemVT,
5614                                  unsigned Alignment,
5615                                  MachineMemOperand::Flags MMOFlags,
5616                                  const AAMDNodes &AAInfo) {
5617   SDValue Undef = getUNDEF(Ptr.getValueType());
5618   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
5619                  MemVT, Alignment, MMOFlags, AAInfo);
5620 }
5621 
5622 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5623                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
5624                                  MachineMemOperand *MMO) {
5625   SDValue Undef = getUNDEF(Ptr.getValueType());
5626   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5627                  MemVT, MMO);
5628 }
5629 
5630 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
5631                                      SDValue Base, SDValue Offset,
5632                                      ISD::MemIndexedMode AM) {
5633   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
5634   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
5635   // Don't propagate the invariant or dereferenceable flags.
5636   auto MMOFlags =
5637       LD->getMemOperand()->getFlags() &
5638       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
5639   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
5640                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
5641                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
5642                  LD->getAAInfo());
5643 }
5644 
5645 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5646                                SDValue Ptr, MachinePointerInfo PtrInfo,
5647                                unsigned Alignment,
5648                                MachineMemOperand::Flags MMOFlags,
5649                                const AAMDNodes &AAInfo) {
5650   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
5651   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5652     Alignment = getEVTAlignment(Val.getValueType());
5653 
5654   MMOFlags |= MachineMemOperand::MOStore;
5655   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5656 
5657   if (PtrInfo.V.isNull())
5658     PtrInfo = InferPointerInfo(*this, Ptr);
5659 
5660   MachineFunction &MF = getMachineFunction();
5661   MachineMemOperand *MMO = MF.getMachineMemOperand(
5662       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
5663   return getStore(Chain, dl, Val, Ptr, MMO);
5664 }
5665 
5666 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5667                                SDValue Ptr, MachineMemOperand *MMO) {
5668   assert(Chain.getValueType() == MVT::Other &&
5669         "Invalid chain type");
5670   EVT VT = Val.getValueType();
5671   SDVTList VTs = getVTList(MVT::Other);
5672   SDValue Undef = getUNDEF(Ptr.getValueType());
5673   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5674   FoldingSetNodeID ID;
5675   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5676   ID.AddInteger(VT.getRawBits());
5677   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5678       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
5679   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5680   void *IP = nullptr;
5681   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5682     cast<StoreSDNode>(E)->refineAlignment(MMO);
5683     return SDValue(E, 0);
5684   }
5685   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5686                                    ISD::UNINDEXED, false, VT, MMO);
5687   createOperands(N, Ops);
5688 
5689   CSEMap.InsertNode(N, IP);
5690   InsertNode(N);
5691   return SDValue(N, 0);
5692 }
5693 
5694 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5695                                     SDValue Ptr, MachinePointerInfo PtrInfo,
5696                                     EVT SVT, unsigned Alignment,
5697                                     MachineMemOperand::Flags MMOFlags,
5698                                     const AAMDNodes &AAInfo) {
5699   assert(Chain.getValueType() == MVT::Other &&
5700         "Invalid chain type");
5701   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5702     Alignment = getEVTAlignment(SVT);
5703 
5704   MMOFlags |= MachineMemOperand::MOStore;
5705   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5706 
5707   if (PtrInfo.V.isNull())
5708     PtrInfo = InferPointerInfo(*this, Ptr);
5709 
5710   MachineFunction &MF = getMachineFunction();
5711   MachineMemOperand *MMO = MF.getMachineMemOperand(
5712       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
5713   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
5714 }
5715 
5716 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5717                                     SDValue Ptr, EVT SVT,
5718                                     MachineMemOperand *MMO) {
5719   EVT VT = Val.getValueType();
5720 
5721   assert(Chain.getValueType() == MVT::Other &&
5722         "Invalid chain type");
5723   if (VT == SVT)
5724     return getStore(Chain, dl, Val, Ptr, MMO);
5725 
5726   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
5727          "Should only be a truncating store, not extending!");
5728   assert(VT.isInteger() == SVT.isInteger() &&
5729          "Can't do FP-INT conversion!");
5730   assert(VT.isVector() == SVT.isVector() &&
5731          "Cannot use trunc store to convert to or from a vector!");
5732   assert((!VT.isVector() ||
5733           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
5734          "Cannot use trunc store to change the number of vector elements!");
5735 
5736   SDVTList VTs = getVTList(MVT::Other);
5737   SDValue Undef = getUNDEF(Ptr.getValueType());
5738   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5739   FoldingSetNodeID ID;
5740   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5741   ID.AddInteger(SVT.getRawBits());
5742   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5743       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
5744   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5745   void *IP = nullptr;
5746   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5747     cast<StoreSDNode>(E)->refineAlignment(MMO);
5748     return SDValue(E, 0);
5749   }
5750   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5751                                    ISD::UNINDEXED, true, SVT, MMO);
5752   createOperands(N, Ops);
5753 
5754   CSEMap.InsertNode(N, IP);
5755   InsertNode(N);
5756   return SDValue(N, 0);
5757 }
5758 
5759 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
5760                                       SDValue Base, SDValue Offset,
5761                                       ISD::MemIndexedMode AM) {
5762   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
5763   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
5764   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
5765   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
5766   FoldingSetNodeID ID;
5767   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5768   ID.AddInteger(ST->getMemoryVT().getRawBits());
5769   ID.AddInteger(ST->getRawSubclassData());
5770   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
5771   void *IP = nullptr;
5772   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
5773     return SDValue(E, 0);
5774 
5775   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5776                                    ST->isTruncatingStore(), ST->getMemoryVT(),
5777                                    ST->getMemOperand());
5778   createOperands(N, Ops);
5779 
5780   CSEMap.InsertNode(N, IP);
5781   InsertNode(N);
5782   return SDValue(N, 0);
5783 }
5784 
5785 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5786                                     SDValue Ptr, SDValue Mask, SDValue Src0,
5787                                     EVT MemVT, MachineMemOperand *MMO,
5788                                     ISD::LoadExtType ExtTy, bool isExpanding) {
5789 
5790   SDVTList VTs = getVTList(VT, MVT::Other);
5791   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
5792   FoldingSetNodeID ID;
5793   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
5794   ID.AddInteger(VT.getRawBits());
5795   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
5796       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
5797   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5798   void *IP = nullptr;
5799   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5800     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
5801     return SDValue(E, 0);
5802   }
5803   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5804                                         ExtTy, isExpanding, MemVT, MMO);
5805   createOperands(N, Ops);
5806 
5807   CSEMap.InsertNode(N, IP);
5808   InsertNode(N);
5809   return SDValue(N, 0);
5810 }
5811 
5812 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
5813                                      SDValue Val, SDValue Ptr, SDValue Mask,
5814                                      EVT MemVT, MachineMemOperand *MMO,
5815                                      bool IsTruncating, bool IsCompressing) {
5816   assert(Chain.getValueType() == MVT::Other &&
5817         "Invalid chain type");
5818   EVT VT = Val.getValueType();
5819   SDVTList VTs = getVTList(MVT::Other);
5820   SDValue Ops[] = { Chain, Ptr, Mask, Val };
5821   FoldingSetNodeID ID;
5822   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
5823   ID.AddInteger(VT.getRawBits());
5824   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
5825       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
5826   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5827   void *IP = nullptr;
5828   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5829     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
5830     return SDValue(E, 0);
5831   }
5832   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5833                                          IsTruncating, IsCompressing, MemVT, MMO);
5834   createOperands(N, Ops);
5835 
5836   CSEMap.InsertNode(N, IP);
5837   InsertNode(N);
5838   return SDValue(N, 0);
5839 }
5840 
5841 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
5842                                       ArrayRef<SDValue> Ops,
5843                                       MachineMemOperand *MMO) {
5844   assert(Ops.size() == 5 && "Incompatible number of operands");
5845 
5846   FoldingSetNodeID ID;
5847   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
5848   ID.AddInteger(VT.getRawBits());
5849   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
5850       dl.getIROrder(), VTs, VT, MMO));
5851   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5852   void *IP = nullptr;
5853   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5854     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
5855     return SDValue(E, 0);
5856   }
5857 
5858   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5859                                           VTs, VT, MMO);
5860   createOperands(N, Ops);
5861 
5862   assert(N->getValue().getValueType() == N->getValueType(0) &&
5863          "Incompatible type of the PassThru value in MaskedGatherSDNode");
5864   assert(N->getMask().getValueType().getVectorNumElements() ==
5865              N->getValueType(0).getVectorNumElements() &&
5866          "Vector width mismatch between mask and data");
5867   assert(N->getIndex().getValueType().getVectorNumElements() ==
5868              N->getValueType(0).getVectorNumElements() &&
5869          "Vector width mismatch between index and data");
5870 
5871   CSEMap.InsertNode(N, IP);
5872   InsertNode(N);
5873   return SDValue(N, 0);
5874 }
5875 
5876 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
5877                                        ArrayRef<SDValue> Ops,
5878                                        MachineMemOperand *MMO) {
5879   assert(Ops.size() == 5 && "Incompatible number of operands");
5880 
5881   FoldingSetNodeID ID;
5882   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
5883   ID.AddInteger(VT.getRawBits());
5884   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
5885       dl.getIROrder(), VTs, VT, MMO));
5886   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5887   void *IP = nullptr;
5888   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5889     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
5890     return SDValue(E, 0);
5891   }
5892   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5893                                            VTs, VT, MMO);
5894   createOperands(N, Ops);
5895 
5896   assert(N->getMask().getValueType().getVectorNumElements() ==
5897              N->getValue().getValueType().getVectorNumElements() &&
5898          "Vector width mismatch between mask and data");
5899   assert(N->getIndex().getValueType().getVectorNumElements() ==
5900              N->getValue().getValueType().getVectorNumElements() &&
5901          "Vector width mismatch between index and data");
5902 
5903   CSEMap.InsertNode(N, IP);
5904   InsertNode(N);
5905   return SDValue(N, 0);
5906 }
5907 
5908 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
5909                                SDValue Ptr, SDValue SV, unsigned Align) {
5910   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
5911   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
5912 }
5913 
5914 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5915                               ArrayRef<SDUse> Ops) {
5916   switch (Ops.size()) {
5917   case 0: return getNode(Opcode, DL, VT);
5918   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
5919   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
5920   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5921   default: break;
5922   }
5923 
5924   // Copy from an SDUse array into an SDValue array for use with
5925   // the regular getNode logic.
5926   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
5927   return getNode(Opcode, DL, VT, NewOps);
5928 }
5929 
5930 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5931                               ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) {
5932   unsigned NumOps = Ops.size();
5933   switch (NumOps) {
5934   case 0: return getNode(Opcode, DL, VT);
5935   case 1: return getNode(Opcode, DL, VT, Ops[0]);
5936   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
5937   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5938   default: break;
5939   }
5940 
5941   switch (Opcode) {
5942   default: break;
5943   case ISD::CONCAT_VECTORS: {
5944     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5945     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5946       return V;
5947     break;
5948   }
5949   case ISD::SELECT_CC: {
5950     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
5951     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
5952            "LHS and RHS of condition must have same type!");
5953     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5954            "True and False arms of SelectCC must have same type!");
5955     assert(Ops[2].getValueType() == VT &&
5956            "select_cc node must be of same type as true and false value!");
5957     break;
5958   }
5959   case ISD::BR_CC: {
5960     assert(NumOps == 5 && "BR_CC takes 5 operands!");
5961     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5962            "LHS/RHS of comparison should match types!");
5963     break;
5964   }
5965   }
5966 
5967   // Memoize nodes.
5968   SDNode *N;
5969   SDVTList VTs = getVTList(VT);
5970 
5971   if (VT != MVT::Glue) {
5972     FoldingSetNodeID ID;
5973     AddNodeIDNode(ID, Opcode, VTs, Ops);
5974     void *IP = nullptr;
5975 
5976     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5977       return SDValue(E, 0);
5978 
5979     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5980     createOperands(N, Ops);
5981 
5982     CSEMap.InsertNode(N, IP);
5983   } else {
5984     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5985     createOperands(N, Ops);
5986   }
5987 
5988   InsertNode(N);
5989   return SDValue(N, 0);
5990 }
5991 
5992 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5993                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
5994   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
5995 }
5996 
5997 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5998                               ArrayRef<SDValue> Ops) {
5999   if (VTList.NumVTs == 1)
6000     return getNode(Opcode, DL, VTList.VTs[0], Ops);
6001 
6002 #if 0
6003   switch (Opcode) {
6004   // FIXME: figure out how to safely handle things like
6005   // int foo(int x) { return 1 << (x & 255); }
6006   // int bar() { return foo(256); }
6007   case ISD::SRA_PARTS:
6008   case ISD::SRL_PARTS:
6009   case ISD::SHL_PARTS:
6010     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6011         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
6012       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6013     else if (N3.getOpcode() == ISD::AND)
6014       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
6015         // If the and is only masking out bits that cannot effect the shift,
6016         // eliminate the and.
6017         unsigned NumBits = VT.getScalarSizeInBits()*2;
6018         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
6019           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
6020       }
6021     break;
6022   }
6023 #endif
6024 
6025   // Memoize the node unless it returns a flag.
6026   SDNode *N;
6027   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6028     FoldingSetNodeID ID;
6029     AddNodeIDNode(ID, Opcode, VTList, Ops);
6030     void *IP = nullptr;
6031     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6032       return SDValue(E, 0);
6033 
6034     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6035     createOperands(N, Ops);
6036     CSEMap.InsertNode(N, IP);
6037   } else {
6038     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
6039     createOperands(N, Ops);
6040   }
6041   InsertNode(N);
6042   return SDValue(N, 0);
6043 }
6044 
6045 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
6046                               SDVTList VTList) {
6047   return getNode(Opcode, DL, VTList, None);
6048 }
6049 
6050 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6051                               SDValue N1) {
6052   SDValue Ops[] = { N1 };
6053   return getNode(Opcode, DL, VTList, Ops);
6054 }
6055 
6056 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6057                               SDValue N1, SDValue N2) {
6058   SDValue Ops[] = { N1, N2 };
6059   return getNode(Opcode, DL, VTList, Ops);
6060 }
6061 
6062 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6063                               SDValue N1, SDValue N2, SDValue N3) {
6064   SDValue Ops[] = { N1, N2, N3 };
6065   return getNode(Opcode, DL, VTList, Ops);
6066 }
6067 
6068 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6069                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6070   SDValue Ops[] = { N1, N2, N3, N4 };
6071   return getNode(Opcode, DL, VTList, Ops);
6072 }
6073 
6074 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
6075                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6076                               SDValue N5) {
6077   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6078   return getNode(Opcode, DL, VTList, Ops);
6079 }
6080 
6081 SDVTList SelectionDAG::getVTList(EVT VT) {
6082   return makeVTList(SDNode::getValueTypeList(VT), 1);
6083 }
6084 
6085 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
6086   FoldingSetNodeID ID;
6087   ID.AddInteger(2U);
6088   ID.AddInteger(VT1.getRawBits());
6089   ID.AddInteger(VT2.getRawBits());
6090 
6091   void *IP = nullptr;
6092   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6093   if (!Result) {
6094     EVT *Array = Allocator.Allocate<EVT>(2);
6095     Array[0] = VT1;
6096     Array[1] = VT2;
6097     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
6098     VTListMap.InsertNode(Result, IP);
6099   }
6100   return Result->getSDVTList();
6101 }
6102 
6103 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
6104   FoldingSetNodeID ID;
6105   ID.AddInteger(3U);
6106   ID.AddInteger(VT1.getRawBits());
6107   ID.AddInteger(VT2.getRawBits());
6108   ID.AddInteger(VT3.getRawBits());
6109 
6110   void *IP = nullptr;
6111   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6112   if (!Result) {
6113     EVT *Array = Allocator.Allocate<EVT>(3);
6114     Array[0] = VT1;
6115     Array[1] = VT2;
6116     Array[2] = VT3;
6117     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6118     VTListMap.InsertNode(Result, IP);
6119   }
6120   return Result->getSDVTList();
6121 }
6122 
6123 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6124   FoldingSetNodeID ID;
6125   ID.AddInteger(4U);
6126   ID.AddInteger(VT1.getRawBits());
6127   ID.AddInteger(VT2.getRawBits());
6128   ID.AddInteger(VT3.getRawBits());
6129   ID.AddInteger(VT4.getRawBits());
6130 
6131   void *IP = nullptr;
6132   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6133   if (!Result) {
6134     EVT *Array = Allocator.Allocate<EVT>(4);
6135     Array[0] = VT1;
6136     Array[1] = VT2;
6137     Array[2] = VT3;
6138     Array[3] = VT4;
6139     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6140     VTListMap.InsertNode(Result, IP);
6141   }
6142   return Result->getSDVTList();
6143 }
6144 
6145 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6146   unsigned NumVTs = VTs.size();
6147   FoldingSetNodeID ID;
6148   ID.AddInteger(NumVTs);
6149   for (unsigned index = 0; index < NumVTs; index++) {
6150     ID.AddInteger(VTs[index].getRawBits());
6151   }
6152 
6153   void *IP = nullptr;
6154   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6155   if (!Result) {
6156     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6157     std::copy(VTs.begin(), VTs.end(), Array);
6158     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6159     VTListMap.InsertNode(Result, IP);
6160   }
6161   return Result->getSDVTList();
6162 }
6163 
6164 
6165 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6166 /// specified operands.  If the resultant node already exists in the DAG,
6167 /// this does not modify the specified node, instead it returns the node that
6168 /// already exists.  If the resultant node does not exist in the DAG, the
6169 /// input node is returned.  As a degenerate case, if you specify the same
6170 /// input operands as the node already has, the input node is returned.
6171 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6172   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6173 
6174   // Check to see if there is no change.
6175   if (Op == N->getOperand(0)) return N;
6176 
6177   // See if the modified node already exists.
6178   void *InsertPos = nullptr;
6179   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6180     return Existing;
6181 
6182   // Nope it doesn't.  Remove the node from its current place in the maps.
6183   if (InsertPos)
6184     if (!RemoveNodeFromCSEMaps(N))
6185       InsertPos = nullptr;
6186 
6187   // Now we update the operands.
6188   N->OperandList[0].set(Op);
6189 
6190   // If this gets put into a CSE map, add it.
6191   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6192   return N;
6193 }
6194 
6195 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
6196   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
6197 
6198   // Check to see if there is no change.
6199   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
6200     return N;   // No operands changed, just return the input node.
6201 
6202   // See if the modified node already exists.
6203   void *InsertPos = nullptr;
6204   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
6205     return Existing;
6206 
6207   // Nope it doesn't.  Remove the node from its current place in the maps.
6208   if (InsertPos)
6209     if (!RemoveNodeFromCSEMaps(N))
6210       InsertPos = nullptr;
6211 
6212   // Now we update the operands.
6213   if (N->OperandList[0] != Op1)
6214     N->OperandList[0].set(Op1);
6215   if (N->OperandList[1] != Op2)
6216     N->OperandList[1].set(Op2);
6217 
6218   // If this gets put into a CSE map, add it.
6219   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6220   return N;
6221 }
6222 
6223 SDNode *SelectionDAG::
6224 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
6225   SDValue Ops[] = { Op1, Op2, Op3 };
6226   return UpdateNodeOperands(N, Ops);
6227 }
6228 
6229 SDNode *SelectionDAG::
6230 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6231                    SDValue Op3, SDValue Op4) {
6232   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
6233   return UpdateNodeOperands(N, Ops);
6234 }
6235 
6236 SDNode *SelectionDAG::
6237 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6238                    SDValue Op3, SDValue Op4, SDValue Op5) {
6239   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
6240   return UpdateNodeOperands(N, Ops);
6241 }
6242 
6243 SDNode *SelectionDAG::
6244 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
6245   unsigned NumOps = Ops.size();
6246   assert(N->getNumOperands() == NumOps &&
6247          "Update with wrong number of operands");
6248 
6249   // If no operands changed just return the input node.
6250   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
6251     return N;
6252 
6253   // See if the modified node already exists.
6254   void *InsertPos = nullptr;
6255   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
6256     return Existing;
6257 
6258   // Nope it doesn't.  Remove the node from its current place in the maps.
6259   if (InsertPos)
6260     if (!RemoveNodeFromCSEMaps(N))
6261       InsertPos = nullptr;
6262 
6263   // Now we update the operands.
6264   for (unsigned i = 0; i != NumOps; ++i)
6265     if (N->OperandList[i] != Ops[i])
6266       N->OperandList[i].set(Ops[i]);
6267 
6268   // If this gets put into a CSE map, add it.
6269   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6270   return N;
6271 }
6272 
6273 /// DropOperands - Release the operands and set this node to have
6274 /// zero operands.
6275 void SDNode::DropOperands() {
6276   // Unlike the code in MorphNodeTo that does this, we don't need to
6277   // watch for dead nodes here.
6278   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
6279     SDUse &Use = *I++;
6280     Use.set(SDValue());
6281   }
6282 }
6283 
6284 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
6285 /// machine opcode.
6286 ///
6287 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6288                                    EVT VT) {
6289   SDVTList VTs = getVTList(VT);
6290   return SelectNodeTo(N, MachineOpc, VTs, None);
6291 }
6292 
6293 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6294                                    EVT VT, SDValue Op1) {
6295   SDVTList VTs = getVTList(VT);
6296   SDValue Ops[] = { Op1 };
6297   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6298 }
6299 
6300 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6301                                    EVT VT, SDValue Op1,
6302                                    SDValue Op2) {
6303   SDVTList VTs = getVTList(VT);
6304   SDValue Ops[] = { Op1, Op2 };
6305   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6306 }
6307 
6308 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6309                                    EVT VT, SDValue Op1,
6310                                    SDValue Op2, SDValue Op3) {
6311   SDVTList VTs = getVTList(VT);
6312   SDValue Ops[] = { Op1, Op2, Op3 };
6313   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6314 }
6315 
6316 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6317                                    EVT VT, ArrayRef<SDValue> Ops) {
6318   SDVTList VTs = getVTList(VT);
6319   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6320 }
6321 
6322 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6323                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
6324   SDVTList VTs = getVTList(VT1, VT2);
6325   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6326 }
6327 
6328 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6329                                    EVT VT1, EVT VT2) {
6330   SDVTList VTs = getVTList(VT1, VT2);
6331   return SelectNodeTo(N, MachineOpc, VTs, None);
6332 }
6333 
6334 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6335                                    EVT VT1, EVT VT2, EVT VT3,
6336                                    ArrayRef<SDValue> Ops) {
6337   SDVTList VTs = getVTList(VT1, VT2, VT3);
6338   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6339 }
6340 
6341 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6342                                    EVT VT1, EVT VT2,
6343                                    SDValue Op1, SDValue Op2) {
6344   SDVTList VTs = getVTList(VT1, VT2);
6345   SDValue Ops[] = { Op1, Op2 };
6346   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6347 }
6348 
6349 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6350                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
6351   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
6352   // Reset the NodeID to -1.
6353   New->setNodeId(-1);
6354   if (New != N) {
6355     ReplaceAllUsesWith(N, New);
6356     RemoveDeadNode(N);
6357   }
6358   return New;
6359 }
6360 
6361 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
6362 /// the line number information on the merged node since it is not possible to
6363 /// preserve the information that operation is associated with multiple lines.
6364 /// This will make the debugger working better at -O0, were there is a higher
6365 /// probability having other instructions associated with that line.
6366 ///
6367 /// For IROrder, we keep the smaller of the two
6368 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
6369   DebugLoc NLoc = N->getDebugLoc();
6370   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
6371     N->setDebugLoc(DebugLoc());
6372   }
6373   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
6374   N->setIROrder(Order);
6375   return N;
6376 }
6377 
6378 /// MorphNodeTo - This *mutates* the specified node to have the specified
6379 /// return type, opcode, and operands.
6380 ///
6381 /// Note that MorphNodeTo returns the resultant node.  If there is already a
6382 /// node of the specified opcode and operands, it returns that node instead of
6383 /// the current one.  Note that the SDLoc need not be the same.
6384 ///
6385 /// Using MorphNodeTo is faster than creating a new node and swapping it in
6386 /// with ReplaceAllUsesWith both because it often avoids allocating a new
6387 /// node, and because it doesn't require CSE recalculation for any of
6388 /// the node's users.
6389 ///
6390 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
6391 /// As a consequence it isn't appropriate to use from within the DAG combiner or
6392 /// the legalizer which maintain worklists that would need to be updated when
6393 /// deleting things.
6394 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
6395                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
6396   // If an identical node already exists, use it.
6397   void *IP = nullptr;
6398   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
6399     FoldingSetNodeID ID;
6400     AddNodeIDNode(ID, Opc, VTs, Ops);
6401     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
6402       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
6403   }
6404 
6405   if (!RemoveNodeFromCSEMaps(N))
6406     IP = nullptr;
6407 
6408   // Start the morphing.
6409   N->NodeType = Opc;
6410   N->ValueList = VTs.VTs;
6411   N->NumValues = VTs.NumVTs;
6412 
6413   // Clear the operands list, updating used nodes to remove this from their
6414   // use list.  Keep track of any operands that become dead as a result.
6415   SmallPtrSet<SDNode*, 16> DeadNodeSet;
6416   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
6417     SDUse &Use = *I++;
6418     SDNode *Used = Use.getNode();
6419     Use.set(SDValue());
6420     if (Used->use_empty())
6421       DeadNodeSet.insert(Used);
6422   }
6423 
6424   // For MachineNode, initialize the memory references information.
6425   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
6426     MN->setMemRefs(nullptr, nullptr);
6427 
6428   // Swap for an appropriately sized array from the recycler.
6429   removeOperands(N);
6430   createOperands(N, Ops);
6431 
6432   // Delete any nodes that are still dead after adding the uses for the
6433   // new operands.
6434   if (!DeadNodeSet.empty()) {
6435     SmallVector<SDNode *, 16> DeadNodes;
6436     for (SDNode *N : DeadNodeSet)
6437       if (N->use_empty())
6438         DeadNodes.push_back(N);
6439     RemoveDeadNodes(DeadNodes);
6440   }
6441 
6442   if (IP)
6443     CSEMap.InsertNode(N, IP);   // Memoize the new node.
6444   return N;
6445 }
6446 
6447 
6448 /// getMachineNode - These are used for target selectors to create a new node
6449 /// with specified return type(s), MachineInstr opcode, and operands.
6450 ///
6451 /// Note that getMachineNode returns the resultant node.  If there is already a
6452 /// node of the specified opcode and operands, it returns that node instead of
6453 /// the current one.
6454 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6455                                             EVT VT) {
6456   SDVTList VTs = getVTList(VT);
6457   return getMachineNode(Opcode, dl, VTs, None);
6458 }
6459 
6460 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6461                                             EVT VT, SDValue Op1) {
6462   SDVTList VTs = getVTList(VT);
6463   SDValue Ops[] = { Op1 };
6464   return getMachineNode(Opcode, dl, VTs, Ops);
6465 }
6466 
6467 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6468                                             EVT VT, SDValue Op1, SDValue Op2) {
6469   SDVTList VTs = getVTList(VT);
6470   SDValue Ops[] = { Op1, Op2 };
6471   return getMachineNode(Opcode, dl, VTs, Ops);
6472 }
6473 
6474 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6475                                             EVT VT, SDValue Op1, SDValue Op2,
6476                                             SDValue Op3) {
6477   SDVTList VTs = getVTList(VT);
6478   SDValue Ops[] = { Op1, Op2, Op3 };
6479   return getMachineNode(Opcode, dl, VTs, Ops);
6480 }
6481 
6482 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6483                                             EVT VT, ArrayRef<SDValue> Ops) {
6484   SDVTList VTs = getVTList(VT);
6485   return getMachineNode(Opcode, dl, VTs, Ops);
6486 }
6487 
6488 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6489                                             EVT VT1, EVT VT2, SDValue Op1,
6490                                             SDValue Op2) {
6491   SDVTList VTs = getVTList(VT1, VT2);
6492   SDValue Ops[] = { Op1, Op2 };
6493   return getMachineNode(Opcode, dl, VTs, Ops);
6494 }
6495 
6496 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6497                                             EVT VT1, EVT VT2, SDValue Op1,
6498                                             SDValue Op2, SDValue Op3) {
6499   SDVTList VTs = getVTList(VT1, VT2);
6500   SDValue Ops[] = { Op1, Op2, Op3 };
6501   return getMachineNode(Opcode, dl, VTs, Ops);
6502 }
6503 
6504 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6505                                             EVT VT1, EVT VT2,
6506                                             ArrayRef<SDValue> Ops) {
6507   SDVTList VTs = getVTList(VT1, VT2);
6508   return getMachineNode(Opcode, dl, VTs, Ops);
6509 }
6510 
6511 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6512                                             EVT VT1, EVT VT2, EVT VT3,
6513                                             SDValue Op1, SDValue Op2) {
6514   SDVTList VTs = getVTList(VT1, VT2, VT3);
6515   SDValue Ops[] = { Op1, Op2 };
6516   return getMachineNode(Opcode, dl, VTs, Ops);
6517 }
6518 
6519 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6520                                             EVT VT1, EVT VT2, EVT VT3,
6521                                             SDValue Op1, SDValue Op2,
6522                                             SDValue Op3) {
6523   SDVTList VTs = getVTList(VT1, VT2, VT3);
6524   SDValue Ops[] = { Op1, Op2, Op3 };
6525   return getMachineNode(Opcode, dl, VTs, Ops);
6526 }
6527 
6528 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6529                                             EVT VT1, EVT VT2, EVT VT3,
6530                                             ArrayRef<SDValue> Ops) {
6531   SDVTList VTs = getVTList(VT1, VT2, VT3);
6532   return getMachineNode(Opcode, dl, VTs, Ops);
6533 }
6534 
6535 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6536                                             ArrayRef<EVT> ResultTys,
6537                                             ArrayRef<SDValue> Ops) {
6538   SDVTList VTs = getVTList(ResultTys);
6539   return getMachineNode(Opcode, dl, VTs, Ops);
6540 }
6541 
6542 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
6543                                             SDVTList VTs,
6544                                             ArrayRef<SDValue> Ops) {
6545   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
6546   MachineSDNode *N;
6547   void *IP = nullptr;
6548 
6549   if (DoCSE) {
6550     FoldingSetNodeID ID;
6551     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
6552     IP = nullptr;
6553     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6554       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
6555     }
6556   }
6557 
6558   // Allocate a new MachineSDNode.
6559   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6560   createOperands(N, Ops);
6561 
6562   if (DoCSE)
6563     CSEMap.InsertNode(N, IP);
6564 
6565   InsertNode(N);
6566   return N;
6567 }
6568 
6569 /// getTargetExtractSubreg - A convenience function for creating
6570 /// TargetOpcode::EXTRACT_SUBREG nodes.
6571 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6572                                              SDValue Operand) {
6573   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6574   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
6575                                   VT, Operand, SRIdxVal);
6576   return SDValue(Subreg, 0);
6577 }
6578 
6579 /// getTargetInsertSubreg - A convenience function for creating
6580 /// TargetOpcode::INSERT_SUBREG nodes.
6581 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6582                                             SDValue Operand, SDValue Subreg) {
6583   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6584   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
6585                                   VT, Operand, Subreg, SRIdxVal);
6586   return SDValue(Result, 0);
6587 }
6588 
6589 /// getNodeIfExists - Get the specified node if it's already available, or
6590 /// else return NULL.
6591 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
6592                                       ArrayRef<SDValue> Ops,
6593                                       const SDNodeFlags *Flags) {
6594   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
6595     FoldingSetNodeID ID;
6596     AddNodeIDNode(ID, Opcode, VTList, Ops);
6597     void *IP = nullptr;
6598     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
6599       if (Flags)
6600         E->intersectFlagsWith(Flags);
6601       return E;
6602     }
6603   }
6604   return nullptr;
6605 }
6606 
6607 /// getDbgValue - Creates a SDDbgValue node.
6608 ///
6609 /// SDNode
6610 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
6611                                       unsigned R, bool IsIndirect, uint64_t Off,
6612                                       const DebugLoc &DL, unsigned O) {
6613   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6614          "Expected inlined-at fields to agree");
6615   return new (DbgInfo->getAlloc())
6616       SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
6617 }
6618 
6619 /// Constant
6620 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
6621                                               const Value *C, uint64_t Off,
6622                                               const DebugLoc &DL, unsigned O) {
6623   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6624          "Expected inlined-at fields to agree");
6625   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O);
6626 }
6627 
6628 /// FrameIndex
6629 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
6630                                                 unsigned FI, uint64_t Off,
6631                                                 const DebugLoc &DL,
6632                                                 unsigned O) {
6633   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6634          "Expected inlined-at fields to agree");
6635   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O);
6636 }
6637 
6638 namespace {
6639 
6640 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
6641 /// pointed to by a use iterator is deleted, increment the use iterator
6642 /// so that it doesn't dangle.
6643 ///
6644 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
6645   SDNode::use_iterator &UI;
6646   SDNode::use_iterator &UE;
6647 
6648   void NodeDeleted(SDNode *N, SDNode *E) override {
6649     // Increment the iterator as needed.
6650     while (UI != UE && N == *UI)
6651       ++UI;
6652   }
6653 
6654 public:
6655   RAUWUpdateListener(SelectionDAG &d,
6656                      SDNode::use_iterator &ui,
6657                      SDNode::use_iterator &ue)
6658     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
6659 };
6660 
6661 }
6662 
6663 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6664 /// This can cause recursive merging of nodes in the DAG.
6665 ///
6666 /// This version assumes From has a single result value.
6667 ///
6668 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
6669   SDNode *From = FromN.getNode();
6670   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
6671          "Cannot replace with this method!");
6672   assert(From != To.getNode() && "Cannot replace uses of with self");
6673 
6674   // Preserve Debug Values
6675   TransferDbgValues(FromN, To);
6676 
6677   // Iterate over all the existing uses of From. New uses will be added
6678   // to the beginning of the use list, which we avoid visiting.
6679   // This specifically avoids visiting uses of From that arise while the
6680   // replacement is happening, because any such uses would be the result
6681   // of CSE: If an existing node looks like From after one of its operands
6682   // is replaced by To, we don't want to replace of all its users with To
6683   // too. See PR3018 for more info.
6684   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6685   RAUWUpdateListener Listener(*this, UI, UE);
6686   while (UI != UE) {
6687     SDNode *User = *UI;
6688 
6689     // This node is about to morph, remove its old self from the CSE maps.
6690     RemoveNodeFromCSEMaps(User);
6691 
6692     // A user can appear in a use list multiple times, and when this
6693     // happens the uses are usually next to each other in the list.
6694     // To help reduce the number of CSE recomputations, process all
6695     // the uses of this user that we can find this way.
6696     do {
6697       SDUse &Use = UI.getUse();
6698       ++UI;
6699       Use.set(To);
6700     } while (UI != UE && *UI == User);
6701 
6702     // Now that we have modified User, add it back to the CSE maps.  If it
6703     // already exists there, recursively merge the results together.
6704     AddModifiedNodeToCSEMaps(User);
6705   }
6706 
6707 
6708   // If we just RAUW'd the root, take note.
6709   if (FromN == getRoot())
6710     setRoot(To);
6711 }
6712 
6713 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6714 /// This can cause recursive merging of nodes in the DAG.
6715 ///
6716 /// This version assumes that for each value of From, there is a
6717 /// corresponding value in To in the same position with the same type.
6718 ///
6719 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
6720 #ifndef NDEBUG
6721   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6722     assert((!From->hasAnyUseOfValue(i) ||
6723             From->getValueType(i) == To->getValueType(i)) &&
6724            "Cannot use this version of ReplaceAllUsesWith!");
6725 #endif
6726 
6727   // Handle the trivial case.
6728   if (From == To)
6729     return;
6730 
6731   // Preserve Debug Info. Only do this if there's a use.
6732   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6733     if (From->hasAnyUseOfValue(i)) {
6734       assert((i < To->getNumValues()) && "Invalid To location");
6735       TransferDbgValues(SDValue(From, i), SDValue(To, i));
6736     }
6737 
6738   // Iterate over just the existing users of From. See the comments in
6739   // the ReplaceAllUsesWith above.
6740   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6741   RAUWUpdateListener Listener(*this, UI, UE);
6742   while (UI != UE) {
6743     SDNode *User = *UI;
6744 
6745     // This node is about to morph, remove its old self from the CSE maps.
6746     RemoveNodeFromCSEMaps(User);
6747 
6748     // A user can appear in a use list multiple times, and when this
6749     // happens the uses are usually next to each other in the list.
6750     // To help reduce the number of CSE recomputations, process all
6751     // the uses of this user that we can find this way.
6752     do {
6753       SDUse &Use = UI.getUse();
6754       ++UI;
6755       Use.setNode(To);
6756     } while (UI != UE && *UI == User);
6757 
6758     // Now that we have modified User, add it back to the CSE maps.  If it
6759     // already exists there, recursively merge the results together.
6760     AddModifiedNodeToCSEMaps(User);
6761   }
6762 
6763   // If we just RAUW'd the root, take note.
6764   if (From == getRoot().getNode())
6765     setRoot(SDValue(To, getRoot().getResNo()));
6766 }
6767 
6768 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6769 /// This can cause recursive merging of nodes in the DAG.
6770 ///
6771 /// This version can replace From with any result values.  To must match the
6772 /// number and types of values returned by From.
6773 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
6774   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
6775     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
6776 
6777   // Preserve Debug Info.
6778   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6779     TransferDbgValues(SDValue(From, i), *To);
6780 
6781   // Iterate over just the existing users of From. See the comments in
6782   // the ReplaceAllUsesWith above.
6783   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6784   RAUWUpdateListener Listener(*this, UI, UE);
6785   while (UI != UE) {
6786     SDNode *User = *UI;
6787 
6788     // This node is about to morph, remove its old self from the CSE maps.
6789     RemoveNodeFromCSEMaps(User);
6790 
6791     // A user can appear in a use list multiple times, and when this
6792     // happens the uses are usually next to each other in the list.
6793     // To help reduce the number of CSE recomputations, process all
6794     // the uses of this user that we can find this way.
6795     do {
6796       SDUse &Use = UI.getUse();
6797       const SDValue &ToOp = To[Use.getResNo()];
6798       ++UI;
6799       Use.set(ToOp);
6800     } while (UI != UE && *UI == User);
6801 
6802     // Now that we have modified User, add it back to the CSE maps.  If it
6803     // already exists there, recursively merge the results together.
6804     AddModifiedNodeToCSEMaps(User);
6805   }
6806 
6807   // If we just RAUW'd the root, take note.
6808   if (From == getRoot().getNode())
6809     setRoot(SDValue(To[getRoot().getResNo()]));
6810 }
6811 
6812 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
6813 /// uses of other values produced by From.getNode() alone.  The Deleted
6814 /// vector is handled the same way as for ReplaceAllUsesWith.
6815 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
6816   // Handle the really simple, really trivial case efficiently.
6817   if (From == To) return;
6818 
6819   // Handle the simple, trivial, case efficiently.
6820   if (From.getNode()->getNumValues() == 1) {
6821     ReplaceAllUsesWith(From, To);
6822     return;
6823   }
6824 
6825   // Preserve Debug Info.
6826   TransferDbgValues(From, To);
6827 
6828   // Iterate over just the existing users of From. See the comments in
6829   // the ReplaceAllUsesWith above.
6830   SDNode::use_iterator UI = From.getNode()->use_begin(),
6831                        UE = From.getNode()->use_end();
6832   RAUWUpdateListener Listener(*this, UI, UE);
6833   while (UI != UE) {
6834     SDNode *User = *UI;
6835     bool UserRemovedFromCSEMaps = false;
6836 
6837     // A user can appear in a use list multiple times, and when this
6838     // happens the uses are usually next to each other in the list.
6839     // To help reduce the number of CSE recomputations, process all
6840     // the uses of this user that we can find this way.
6841     do {
6842       SDUse &Use = UI.getUse();
6843 
6844       // Skip uses of different values from the same node.
6845       if (Use.getResNo() != From.getResNo()) {
6846         ++UI;
6847         continue;
6848       }
6849 
6850       // If this node hasn't been modified yet, it's still in the CSE maps,
6851       // so remove its old self from the CSE maps.
6852       if (!UserRemovedFromCSEMaps) {
6853         RemoveNodeFromCSEMaps(User);
6854         UserRemovedFromCSEMaps = true;
6855       }
6856 
6857       ++UI;
6858       Use.set(To);
6859     } while (UI != UE && *UI == User);
6860 
6861     // We are iterating over all uses of the From node, so if a use
6862     // doesn't use the specific value, no changes are made.
6863     if (!UserRemovedFromCSEMaps)
6864       continue;
6865 
6866     // Now that we have modified User, add it back to the CSE maps.  If it
6867     // already exists there, recursively merge the results together.
6868     AddModifiedNodeToCSEMaps(User);
6869   }
6870 
6871   // If we just RAUW'd the root, take note.
6872   if (From == getRoot())
6873     setRoot(To);
6874 }
6875 
6876 namespace {
6877   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
6878   /// to record information about a use.
6879   struct UseMemo {
6880     SDNode *User;
6881     unsigned Index;
6882     SDUse *Use;
6883   };
6884 
6885   /// operator< - Sort Memos by User.
6886   bool operator<(const UseMemo &L, const UseMemo &R) {
6887     return (intptr_t)L.User < (intptr_t)R.User;
6888   }
6889 }
6890 
6891 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
6892 /// uses of other values produced by From.getNode() alone.  The same value
6893 /// may appear in both the From and To list.  The Deleted vector is
6894 /// handled the same way as for ReplaceAllUsesWith.
6895 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
6896                                               const SDValue *To,
6897                                               unsigned Num){
6898   // Handle the simple, trivial case efficiently.
6899   if (Num == 1)
6900     return ReplaceAllUsesOfValueWith(*From, *To);
6901 
6902   TransferDbgValues(*From, *To);
6903 
6904   // Read up all the uses and make records of them. This helps
6905   // processing new uses that are introduced during the
6906   // replacement process.
6907   SmallVector<UseMemo, 4> Uses;
6908   for (unsigned i = 0; i != Num; ++i) {
6909     unsigned FromResNo = From[i].getResNo();
6910     SDNode *FromNode = From[i].getNode();
6911     for (SDNode::use_iterator UI = FromNode->use_begin(),
6912          E = FromNode->use_end(); UI != E; ++UI) {
6913       SDUse &Use = UI.getUse();
6914       if (Use.getResNo() == FromResNo) {
6915         UseMemo Memo = { *UI, i, &Use };
6916         Uses.push_back(Memo);
6917       }
6918     }
6919   }
6920 
6921   // Sort the uses, so that all the uses from a given User are together.
6922   std::sort(Uses.begin(), Uses.end());
6923 
6924   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
6925        UseIndex != UseIndexEnd; ) {
6926     // We know that this user uses some value of From.  If it is the right
6927     // value, update it.
6928     SDNode *User = Uses[UseIndex].User;
6929 
6930     // This node is about to morph, remove its old self from the CSE maps.
6931     RemoveNodeFromCSEMaps(User);
6932 
6933     // The Uses array is sorted, so all the uses for a given User
6934     // are next to each other in the list.
6935     // To help reduce the number of CSE recomputations, process all
6936     // the uses of this user that we can find this way.
6937     do {
6938       unsigned i = Uses[UseIndex].Index;
6939       SDUse &Use = *Uses[UseIndex].Use;
6940       ++UseIndex;
6941 
6942       Use.set(To[i]);
6943     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
6944 
6945     // Now that we have modified User, add it back to the CSE maps.  If it
6946     // already exists there, recursively merge the results together.
6947     AddModifiedNodeToCSEMaps(User);
6948   }
6949 }
6950 
6951 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
6952 /// based on their topological order. It returns the maximum id and a vector
6953 /// of the SDNodes* in assigned order by reference.
6954 unsigned SelectionDAG::AssignTopologicalOrder() {
6955 
6956   unsigned DAGSize = 0;
6957 
6958   // SortedPos tracks the progress of the algorithm. Nodes before it are
6959   // sorted, nodes after it are unsorted. When the algorithm completes
6960   // it is at the end of the list.
6961   allnodes_iterator SortedPos = allnodes_begin();
6962 
6963   // Visit all the nodes. Move nodes with no operands to the front of
6964   // the list immediately. Annotate nodes that do have operands with their
6965   // operand count. Before we do this, the Node Id fields of the nodes
6966   // may contain arbitrary values. After, the Node Id fields for nodes
6967   // before SortedPos will contain the topological sort index, and the
6968   // Node Id fields for nodes At SortedPos and after will contain the
6969   // count of outstanding operands.
6970   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
6971     SDNode *N = &*I++;
6972     checkForCycles(N, this);
6973     unsigned Degree = N->getNumOperands();
6974     if (Degree == 0) {
6975       // A node with no uses, add it to the result array immediately.
6976       N->setNodeId(DAGSize++);
6977       allnodes_iterator Q(N);
6978       if (Q != SortedPos)
6979         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
6980       assert(SortedPos != AllNodes.end() && "Overran node list");
6981       ++SortedPos;
6982     } else {
6983       // Temporarily use the Node Id as scratch space for the degree count.
6984       N->setNodeId(Degree);
6985     }
6986   }
6987 
6988   // Visit all the nodes. As we iterate, move nodes into sorted order,
6989   // such that by the time the end is reached all nodes will be sorted.
6990   for (SDNode &Node : allnodes()) {
6991     SDNode *N = &Node;
6992     checkForCycles(N, this);
6993     // N is in sorted position, so all its uses have one less operand
6994     // that needs to be sorted.
6995     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6996          UI != UE; ++UI) {
6997       SDNode *P = *UI;
6998       unsigned Degree = P->getNodeId();
6999       assert(Degree != 0 && "Invalid node degree");
7000       --Degree;
7001       if (Degree == 0) {
7002         // All of P's operands are sorted, so P may sorted now.
7003         P->setNodeId(DAGSize++);
7004         if (P->getIterator() != SortedPos)
7005           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
7006         assert(SortedPos != AllNodes.end() && "Overran node list");
7007         ++SortedPos;
7008       } else {
7009         // Update P's outstanding operand count.
7010         P->setNodeId(Degree);
7011       }
7012     }
7013     if (Node.getIterator() == SortedPos) {
7014 #ifndef NDEBUG
7015       allnodes_iterator I(N);
7016       SDNode *S = &*++I;
7017       dbgs() << "Overran sorted position:\n";
7018       S->dumprFull(this); dbgs() << "\n";
7019       dbgs() << "Checking if this is due to cycles\n";
7020       checkForCycles(this, true);
7021 #endif
7022       llvm_unreachable(nullptr);
7023     }
7024   }
7025 
7026   assert(SortedPos == AllNodes.end() &&
7027          "Topological sort incomplete!");
7028   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
7029          "First node in topological sort is not the entry token!");
7030   assert(AllNodes.front().getNodeId() == 0 &&
7031          "First node in topological sort has non-zero id!");
7032   assert(AllNodes.front().getNumOperands() == 0 &&
7033          "First node in topological sort has operands!");
7034   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
7035          "Last node in topologic sort has unexpected id!");
7036   assert(AllNodes.back().use_empty() &&
7037          "Last node in topologic sort has users!");
7038   assert(DAGSize == allnodes_size() && "Node count mismatch!");
7039   return DAGSize;
7040 }
7041 
7042 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
7043 /// value is produced by SD.
7044 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
7045   if (SD) {
7046     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
7047     SD->setHasDebugValue(true);
7048   }
7049   DbgInfo->add(DB, SD, isParameter);
7050 }
7051 
7052 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes.
7053 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
7054   if (From == To || !From.getNode()->getHasDebugValue())
7055     return;
7056   SDNode *FromNode = From.getNode();
7057   SDNode *ToNode = To.getNode();
7058   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
7059   SmallVector<SDDbgValue *, 2> ClonedDVs;
7060   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
7061        I != E; ++I) {
7062     SDDbgValue *Dbg = *I;
7063     // Only add Dbgvalues attached to same ResNo.
7064     if (Dbg->getKind() == SDDbgValue::SDNODE &&
7065         Dbg->getSDNode() == From.getNode() &&
7066         Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) {
7067       assert(FromNode != ToNode &&
7068              "Should not transfer Debug Values intranode");
7069       SDDbgValue *Clone =
7070           getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
7071                       To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
7072                       Dbg->getDebugLoc(), Dbg->getOrder());
7073       ClonedDVs.push_back(Clone);
7074       Dbg->setIsInvalidated();
7075     }
7076   }
7077   for (SDDbgValue *I : ClonedDVs)
7078     AddDbgValue(I, ToNode, false);
7079 }
7080 
7081 //===----------------------------------------------------------------------===//
7082 //                              SDNode Class
7083 //===----------------------------------------------------------------------===//
7084 
7085 bool llvm::isNullConstant(SDValue V) {
7086   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7087   return Const != nullptr && Const->isNullValue();
7088 }
7089 
7090 bool llvm::isNullFPConstant(SDValue V) {
7091   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
7092   return Const != nullptr && Const->isZero() && !Const->isNegative();
7093 }
7094 
7095 bool llvm::isAllOnesConstant(SDValue V) {
7096   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7097   return Const != nullptr && Const->isAllOnesValue();
7098 }
7099 
7100 bool llvm::isOneConstant(SDValue V) {
7101   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
7102   return Const != nullptr && Const->isOne();
7103 }
7104 
7105 bool llvm::isBitwiseNot(SDValue V) {
7106   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
7107 }
7108 
7109 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
7110   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
7111     return CN;
7112 
7113   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7114     BitVector UndefElements;
7115     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
7116 
7117     // BuildVectors can truncate their operands. Ignore that case here.
7118     // FIXME: We blindly ignore splats which include undef which is overly
7119     // pessimistic.
7120     if (CN && UndefElements.none() &&
7121         CN->getValueType(0) == N.getValueType().getScalarType())
7122       return CN;
7123   }
7124 
7125   return nullptr;
7126 }
7127 
7128 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
7129   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
7130     return CN;
7131 
7132   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7133     BitVector UndefElements;
7134     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
7135 
7136     if (CN && UndefElements.none())
7137       return CN;
7138   }
7139 
7140   return nullptr;
7141 }
7142 
7143 HandleSDNode::~HandleSDNode() {
7144   DropOperands();
7145 }
7146 
7147 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
7148                                          const DebugLoc &DL,
7149                                          const GlobalValue *GA, EVT VT,
7150                                          int64_t o, unsigned char TF)
7151     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
7152   TheGlobal = GA;
7153 }
7154 
7155 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
7156                                          EVT VT, unsigned SrcAS,
7157                                          unsigned DestAS)
7158     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
7159       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
7160 
7161 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
7162                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
7163     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
7164   MemSDNodeBits.IsVolatile = MMO->isVolatile();
7165   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
7166   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
7167   MemSDNodeBits.IsInvariant = MMO->isInvariant();
7168 
7169   // We check here that the size of the memory operand fits within the size of
7170   // the MMO. This is because the MMO might indicate only a possible address
7171   // range instead of specifying the affected memory addresses precisely.
7172   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
7173 }
7174 
7175 /// Profile - Gather unique data for the node.
7176 ///
7177 void SDNode::Profile(FoldingSetNodeID &ID) const {
7178   AddNodeIDNode(ID, this);
7179 }
7180 
7181 namespace {
7182   struct EVTArray {
7183     std::vector<EVT> VTs;
7184 
7185     EVTArray() {
7186       VTs.reserve(MVT::LAST_VALUETYPE);
7187       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
7188         VTs.push_back(MVT((MVT::SimpleValueType)i));
7189     }
7190   };
7191 }
7192 
7193 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
7194 static ManagedStatic<EVTArray> SimpleVTArray;
7195 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
7196 
7197 /// getValueTypeList - Return a pointer to the specified value type.
7198 ///
7199 const EVT *SDNode::getValueTypeList(EVT VT) {
7200   if (VT.isExtended()) {
7201     sys::SmartScopedLock<true> Lock(*VTMutex);
7202     return &(*EVTs->insert(VT).first);
7203   } else {
7204     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
7205            "Value type out of range!");
7206     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
7207   }
7208 }
7209 
7210 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
7211 /// indicated value.  This method ignores uses of other values defined by this
7212 /// operation.
7213 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
7214   assert(Value < getNumValues() && "Bad value!");
7215 
7216   // TODO: Only iterate over uses of a given value of the node
7217   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
7218     if (UI.getUse().getResNo() == Value) {
7219       if (NUses == 0)
7220         return false;
7221       --NUses;
7222     }
7223   }
7224 
7225   // Found exactly the right number of uses?
7226   return NUses == 0;
7227 }
7228 
7229 
7230 /// hasAnyUseOfValue - Return true if there are any use of the indicated
7231 /// value. This method ignores uses of other values defined by this operation.
7232 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
7233   assert(Value < getNumValues() && "Bad value!");
7234 
7235   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
7236     if (UI.getUse().getResNo() == Value)
7237       return true;
7238 
7239   return false;
7240 }
7241 
7242 
7243 /// isOnlyUserOf - Return true if this node is the only use of N.
7244 ///
7245 bool SDNode::isOnlyUserOf(const SDNode *N) const {
7246   bool Seen = false;
7247   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7248     SDNode *User = *I;
7249     if (User == this)
7250       Seen = true;
7251     else
7252       return false;
7253   }
7254 
7255   return Seen;
7256 }
7257 
7258 /// Return true if the only users of N are contained in Nodes.
7259 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
7260   bool Seen = false;
7261   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7262     SDNode *User = *I;
7263     if (llvm::any_of(Nodes,
7264                      [&User](const SDNode *Node) { return User == Node; }))
7265       Seen = true;
7266     else
7267       return false;
7268   }
7269 
7270   return Seen;
7271 }
7272 
7273 /// isOperand - Return true if this node is an operand of N.
7274 ///
7275 bool SDValue::isOperandOf(const SDNode *N) const {
7276   for (const SDValue &Op : N->op_values())
7277     if (*this == Op)
7278       return true;
7279   return false;
7280 }
7281 
7282 bool SDNode::isOperandOf(const SDNode *N) const {
7283   for (const SDValue &Op : N->op_values())
7284     if (this == Op.getNode())
7285       return true;
7286   return false;
7287 }
7288 
7289 /// reachesChainWithoutSideEffects - Return true if this operand (which must
7290 /// be a chain) reaches the specified operand without crossing any
7291 /// side-effecting instructions on any chain path.  In practice, this looks
7292 /// through token factors and non-volatile loads.  In order to remain efficient,
7293 /// this only looks a couple of nodes in, it does not do an exhaustive search.
7294 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
7295                                                unsigned Depth) const {
7296   if (*this == Dest) return true;
7297 
7298   // Don't search too deeply, we just want to be able to see through
7299   // TokenFactor's etc.
7300   if (Depth == 0) return false;
7301 
7302   // If this is a token factor, all inputs to the TF happen in parallel.  If any
7303   // of the operands of the TF does not reach dest, then we cannot do the xform.
7304   if (getOpcode() == ISD::TokenFactor) {
7305     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7306       if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
7307         return false;
7308     return true;
7309   }
7310 
7311   // Loads don't have side effects, look through them.
7312   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
7313     if (!Ld->isVolatile())
7314       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
7315   }
7316   return false;
7317 }
7318 
7319 bool SDNode::hasPredecessor(const SDNode *N) const {
7320   SmallPtrSet<const SDNode *, 32> Visited;
7321   SmallVector<const SDNode *, 16> Worklist;
7322   Worklist.push_back(this);
7323   return hasPredecessorHelper(N, Visited, Worklist);
7324 }
7325 
7326 const SDNodeFlags *SDNode::getFlags() const {
7327   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
7328     return &FlagsNode->Flags;
7329   return nullptr;
7330 }
7331 
7332 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) {
7333   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
7334     FlagsNode->Flags.intersectWith(Flags);
7335 }
7336 
7337 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
7338   assert(N->getNumValues() == 1 &&
7339          "Can't unroll a vector with multiple results!");
7340 
7341   EVT VT = N->getValueType(0);
7342   unsigned NE = VT.getVectorNumElements();
7343   EVT EltVT = VT.getVectorElementType();
7344   SDLoc dl(N);
7345 
7346   SmallVector<SDValue, 8> Scalars;
7347   SmallVector<SDValue, 4> Operands(N->getNumOperands());
7348 
7349   // If ResNE is 0, fully unroll the vector op.
7350   if (ResNE == 0)
7351     ResNE = NE;
7352   else if (NE > ResNE)
7353     NE = ResNE;
7354 
7355   unsigned i;
7356   for (i= 0; i != NE; ++i) {
7357     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
7358       SDValue Operand = N->getOperand(j);
7359       EVT OperandVT = Operand.getValueType();
7360       if (OperandVT.isVector()) {
7361         // A vector operand; extract a single element.
7362         EVT OperandEltVT = OperandVT.getVectorElementType();
7363         Operands[j] =
7364             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
7365                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
7366       } else {
7367         // A scalar operand; just use it as is.
7368         Operands[j] = Operand;
7369       }
7370     }
7371 
7372     switch (N->getOpcode()) {
7373     default: {
7374       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
7375                                 N->getFlags()));
7376       break;
7377     }
7378     case ISD::VSELECT:
7379       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
7380       break;
7381     case ISD::SHL:
7382     case ISD::SRA:
7383     case ISD::SRL:
7384     case ISD::ROTL:
7385     case ISD::ROTR:
7386       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
7387                                getShiftAmountOperand(Operands[0].getValueType(),
7388                                                      Operands[1])));
7389       break;
7390     case ISD::SIGN_EXTEND_INREG:
7391     case ISD::FP_ROUND_INREG: {
7392       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
7393       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
7394                                 Operands[0],
7395                                 getValueType(ExtVT)));
7396     }
7397     }
7398   }
7399 
7400   for (; i < ResNE; ++i)
7401     Scalars.push_back(getUNDEF(EltVT));
7402 
7403   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
7404   return getBuildVector(VecVT, dl, Scalars);
7405 }
7406 
7407 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
7408                                                   LoadSDNode *Base,
7409                                                   unsigned Bytes,
7410                                                   int Dist) const {
7411   if (LD->isVolatile() || Base->isVolatile())
7412     return false;
7413   if (LD->isIndexed() || Base->isIndexed())
7414     return false;
7415   if (LD->getChain() != Base->getChain())
7416     return false;
7417   EVT VT = LD->getValueType(0);
7418   if (VT.getSizeInBits() / 8 != Bytes)
7419     return false;
7420 
7421   SDValue Loc = LD->getOperand(1);
7422   SDValue BaseLoc = Base->getOperand(1);
7423   if (Loc.getOpcode() == ISD::FrameIndex) {
7424     if (BaseLoc.getOpcode() != ISD::FrameIndex)
7425       return false;
7426     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7427     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
7428     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
7429     int FS  = MFI.getObjectSize(FI);
7430     int BFS = MFI.getObjectSize(BFI);
7431     if (FS != BFS || FS != (int)Bytes) return false;
7432     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
7433   }
7434 
7435   // Handle X + C.
7436   if (isBaseWithConstantOffset(Loc)) {
7437     int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
7438     if (Loc.getOperand(0) == BaseLoc) {
7439       // If the base location is a simple address with no offset itself, then
7440       // the second load's first add operand should be the base address.
7441       if (LocOffset == Dist * (int)Bytes)
7442         return true;
7443     } else if (isBaseWithConstantOffset(BaseLoc)) {
7444       // The base location itself has an offset, so subtract that value from the
7445       // second load's offset before comparing to distance * size.
7446       int64_t BOffset =
7447         cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
7448       if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
7449         if ((LocOffset - BOffset) == Dist * (int)Bytes)
7450           return true;
7451       }
7452     }
7453   }
7454   const GlobalValue *GV1 = nullptr;
7455   const GlobalValue *GV2 = nullptr;
7456   int64_t Offset1 = 0;
7457   int64_t Offset2 = 0;
7458   bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
7459   bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
7460   if (isGA1 && isGA2 && GV1 == GV2)
7461     return Offset1 == (Offset2 + Dist*Bytes);
7462   return false;
7463 }
7464 
7465 
7466 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
7467 /// it cannot be inferred.
7468 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
7469   // If this is a GlobalAddress + cst, return the alignment.
7470   const GlobalValue *GV;
7471   int64_t GVOffset = 0;
7472   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
7473     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
7474     APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
7475     llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne,
7476                            getDataLayout());
7477     unsigned AlignBits = KnownZero.countTrailingOnes();
7478     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
7479     if (Align)
7480       return MinAlign(Align, GVOffset);
7481   }
7482 
7483   // If this is a direct reference to a stack slot, use information about the
7484   // stack slot's alignment.
7485   int FrameIdx = 1 << 31;
7486   int64_t FrameOffset = 0;
7487   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
7488     FrameIdx = FI->getIndex();
7489   } else if (isBaseWithConstantOffset(Ptr) &&
7490              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7491     // Handle FI+Cst
7492     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7493     FrameOffset = Ptr.getConstantOperandVal(1);
7494   }
7495 
7496   if (FrameIdx != (1 << 31)) {
7497     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7498     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
7499                                     FrameOffset);
7500     return FIInfoAlign;
7501   }
7502 
7503   return 0;
7504 }
7505 
7506 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
7507 /// which is split (or expanded) into two not necessarily identical pieces.
7508 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
7509   // Currently all types are split in half.
7510   EVT LoVT, HiVT;
7511   if (!VT.isVector()) {
7512     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
7513   } else {
7514     unsigned NumElements = VT.getVectorNumElements();
7515     assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7516     LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
7517                                    NumElements/2);
7518   }
7519   return std::make_pair(LoVT, HiVT);
7520 }
7521 
7522 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
7523 /// low/high part.
7524 std::pair<SDValue, SDValue>
7525 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
7526                           const EVT &HiVT) {
7527   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
7528          N.getValueType().getVectorNumElements() &&
7529          "More vector elements requested than available!");
7530   SDValue Lo, Hi;
7531   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
7532                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
7533   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
7534                getConstant(LoVT.getVectorNumElements(), DL,
7535                            TLI->getVectorIdxTy(getDataLayout())));
7536   return std::make_pair(Lo, Hi);
7537 }
7538 
7539 void SelectionDAG::ExtractVectorElements(SDValue Op,
7540                                          SmallVectorImpl<SDValue> &Args,
7541                                          unsigned Start, unsigned Count) {
7542   EVT VT = Op.getValueType();
7543   if (Count == 0)
7544     Count = VT.getVectorNumElements();
7545 
7546   EVT EltVT = VT.getVectorElementType();
7547   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
7548   SDLoc SL(Op);
7549   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
7550     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7551                            Op, getConstant(i, SL, IdxTy)));
7552   }
7553 }
7554 
7555 // getAddressSpace - Return the address space this GlobalAddress belongs to.
7556 unsigned GlobalAddressSDNode::getAddressSpace() const {
7557   return getGlobal()->getType()->getAddressSpace();
7558 }
7559 
7560 
7561 Type *ConstantPoolSDNode::getType() const {
7562   if (isMachineConstantPoolEntry())
7563     return Val.MachineCPVal->getType();
7564   return Val.ConstVal->getType();
7565 }
7566 
7567 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
7568                                         APInt &SplatUndef,
7569                                         unsigned &SplatBitSize,
7570                                         bool &HasAnyUndefs,
7571                                         unsigned MinSplatBits,
7572                                         bool isBigEndian) const {
7573   EVT VT = getValueType(0);
7574   assert(VT.isVector() && "Expected a vector type");
7575   unsigned sz = VT.getSizeInBits();
7576   if (MinSplatBits > sz)
7577     return false;
7578 
7579   SplatValue = APInt(sz, 0);
7580   SplatUndef = APInt(sz, 0);
7581 
7582   // Get the bits.  Bits with undefined values (when the corresponding element
7583   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
7584   // in SplatValue.  If any of the values are not constant, give up and return
7585   // false.
7586   unsigned int nOps = getNumOperands();
7587   assert(nOps > 0 && "isConstantSplat has 0-size build vector");
7588   unsigned EltBitSize = VT.getScalarSizeInBits();
7589 
7590   for (unsigned j = 0; j < nOps; ++j) {
7591     unsigned i = isBigEndian ? nOps-1-j : j;
7592     SDValue OpVal = getOperand(i);
7593     unsigned BitPos = j * EltBitSize;
7594 
7595     if (OpVal.isUndef())
7596       SplatUndef.setBits(BitPos, BitPos + EltBitSize);
7597     else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
7598       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltBitSize),
7599                             BitPos);
7600     else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
7601       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
7602     else
7603       return false;
7604   }
7605 
7606   // The build_vector is all constants or undefs.  Find the smallest element
7607   // size that splats the vector.
7608 
7609   HasAnyUndefs = (SplatUndef != 0);
7610   while (sz > 8) {
7611 
7612     unsigned HalfSize = sz / 2;
7613     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
7614     APInt LowValue = SplatValue.trunc(HalfSize);
7615     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
7616     APInt LowUndef = SplatUndef.trunc(HalfSize);
7617 
7618     // If the two halves do not match (ignoring undef bits), stop here.
7619     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
7620         MinSplatBits > HalfSize)
7621       break;
7622 
7623     SplatValue = HighValue | LowValue;
7624     SplatUndef = HighUndef & LowUndef;
7625 
7626     sz = HalfSize;
7627   }
7628 
7629   SplatBitSize = sz;
7630   return true;
7631 }
7632 
7633 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
7634   if (UndefElements) {
7635     UndefElements->clear();
7636     UndefElements->resize(getNumOperands());
7637   }
7638   SDValue Splatted;
7639   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
7640     SDValue Op = getOperand(i);
7641     if (Op.isUndef()) {
7642       if (UndefElements)
7643         (*UndefElements)[i] = true;
7644     } else if (!Splatted) {
7645       Splatted = Op;
7646     } else if (Splatted != Op) {
7647       return SDValue();
7648     }
7649   }
7650 
7651   if (!Splatted) {
7652     assert(getOperand(0).isUndef() &&
7653            "Can only have a splat without a constant for all undefs.");
7654     return getOperand(0);
7655   }
7656 
7657   return Splatted;
7658 }
7659 
7660 ConstantSDNode *
7661 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
7662   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
7663 }
7664 
7665 ConstantFPSDNode *
7666 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
7667   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
7668 }
7669 
7670 int32_t
7671 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
7672                                                    uint32_t BitWidth) const {
7673   if (ConstantFPSDNode *CN =
7674           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
7675     bool IsExact;
7676     APSInt IntVal(BitWidth);
7677     const APFloat &APF = CN->getValueAPF();
7678     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
7679             APFloat::opOK ||
7680         !IsExact)
7681       return -1;
7682 
7683     return IntVal.exactLogBase2();
7684   }
7685   return -1;
7686 }
7687 
7688 bool BuildVectorSDNode::isConstant() const {
7689   for (const SDValue &Op : op_values()) {
7690     unsigned Opc = Op.getOpcode();
7691     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
7692       return false;
7693   }
7694   return true;
7695 }
7696 
7697 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
7698   // Find the first non-undef value in the shuffle mask.
7699   unsigned i, e;
7700   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
7701     /* search */;
7702 
7703   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
7704 
7705   // Make sure all remaining elements are either undef or the same as the first
7706   // non-undef value.
7707   for (int Idx = Mask[i]; i != e; ++i)
7708     if (Mask[i] >= 0 && Mask[i] != Idx)
7709       return false;
7710   return true;
7711 }
7712 
7713 // \brief Returns the SDNode if it is a constant integer BuildVector
7714 // or constant integer.
7715 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
7716   if (isa<ConstantSDNode>(N))
7717     return N.getNode();
7718   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
7719     return N.getNode();
7720   // Treat a GlobalAddress supporting constant offset folding as a
7721   // constant integer.
7722   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
7723     if (GA->getOpcode() == ISD::GlobalAddress &&
7724         TLI->isOffsetFoldingLegal(GA))
7725       return GA;
7726   return nullptr;
7727 }
7728 
7729 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
7730   if (isa<ConstantFPSDNode>(N))
7731     return N.getNode();
7732 
7733   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
7734     return N.getNode();
7735 
7736   return nullptr;
7737 }
7738 
7739 #ifndef NDEBUG
7740 static void checkForCyclesHelper(const SDNode *N,
7741                                  SmallPtrSetImpl<const SDNode*> &Visited,
7742                                  SmallPtrSetImpl<const SDNode*> &Checked,
7743                                  const llvm::SelectionDAG *DAG) {
7744   // If this node has already been checked, don't check it again.
7745   if (Checked.count(N))
7746     return;
7747 
7748   // If a node has already been visited on this depth-first walk, reject it as
7749   // a cycle.
7750   if (!Visited.insert(N).second) {
7751     errs() << "Detected cycle in SelectionDAG\n";
7752     dbgs() << "Offending node:\n";
7753     N->dumprFull(DAG); dbgs() << "\n";
7754     abort();
7755   }
7756 
7757   for (const SDValue &Op : N->op_values())
7758     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
7759 
7760   Checked.insert(N);
7761   Visited.erase(N);
7762 }
7763 #endif
7764 
7765 void llvm::checkForCycles(const llvm::SDNode *N,
7766                           const llvm::SelectionDAG *DAG,
7767                           bool force) {
7768 #ifndef NDEBUG
7769   bool check = force;
7770 #ifdef EXPENSIVE_CHECKS
7771   check = true;
7772 #endif  // EXPENSIVE_CHECKS
7773   if (check) {
7774     assert(N && "Checking nonexistent SDNode");
7775     SmallPtrSet<const SDNode*, 32> visited;
7776     SmallPtrSet<const SDNode*, 32> checked;
7777     checkForCyclesHelper(N, visited, checked, DAG);
7778   }
7779 #endif  // !NDEBUG
7780 }
7781 
7782 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
7783   checkForCycles(DAG->getRoot().getNode(), DAG, force);
7784 }
7785