1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
346       ISD::BUILD_VECTOR != RHS.getOpcode())
347     return false;
348 
349   EVT SVT = LHS.getValueType().getScalarType();
350   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
351     SDValue LHSOp = LHS.getOperand(i);
352     SDValue RHSOp = RHS.getOperand(i);
353     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
354     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
355     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
356     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
357     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
358       return false;
359     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
360                                LHSOp.getValueType() != RHSOp.getValueType()))
361       return false;
362     if (!Match(LHSCst, RHSCst))
363       return false;
364   }
365   return true;
366 }
367 
368 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
369   switch (VecReduceOpcode) {
370   default:
371     llvm_unreachable("Expected VECREDUCE opcode");
372   case ISD::VECREDUCE_FADD:
373   case ISD::VECREDUCE_SEQ_FADD:
374     return ISD::FADD;
375   case ISD::VECREDUCE_FMUL:
376   case ISD::VECREDUCE_SEQ_FMUL:
377     return ISD::FMUL;
378   case ISD::VECREDUCE_ADD:
379     return ISD::ADD;
380   case ISD::VECREDUCE_MUL:
381     return ISD::MUL;
382   case ISD::VECREDUCE_AND:
383     return ISD::AND;
384   case ISD::VECREDUCE_OR:
385     return ISD::OR;
386   case ISD::VECREDUCE_XOR:
387     return ISD::XOR;
388   case ISD::VECREDUCE_SMAX:
389     return ISD::SMAX;
390   case ISD::VECREDUCE_SMIN:
391     return ISD::SMIN;
392   case ISD::VECREDUCE_UMAX:
393     return ISD::UMAX;
394   case ISD::VECREDUCE_UMIN:
395     return ISD::UMIN;
396   case ISD::VECREDUCE_FMAX:
397     return ISD::FMAXNUM;
398   case ISD::VECREDUCE_FMIN:
399     return ISD::FMINNUM;
400   }
401 }
402 
403 bool ISD::isVPOpcode(unsigned Opcode) {
404   switch (Opcode) {
405   default:
406     return false;
407 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
408   case ISD::SDOPC:                                                             \
409     return true;
410 #include "llvm/IR/VPIntrinsics.def"
411   }
412 }
413 
414 /// The operand position of the vector mask.
415 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
416   switch (Opcode) {
417   default:
418     return None;
419 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
420   case ISD::SDOPC:                                                             \
421     return MASKPOS;
422 #include "llvm/IR/VPIntrinsics.def"
423   }
424 }
425 
426 /// The operand position of the explicit vector length parameter.
427 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
428   switch (Opcode) {
429   default:
430     return None;
431 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
432   case ISD::SDOPC:                                                             \
433     return EVLPOS;
434 #include "llvm/IR/VPIntrinsics.def"
435   }
436 }
437 
438 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
439   switch (ExtType) {
440   case ISD::EXTLOAD:
441     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
442   case ISD::SEXTLOAD:
443     return ISD::SIGN_EXTEND;
444   case ISD::ZEXTLOAD:
445     return ISD::ZERO_EXTEND;
446   default:
447     break;
448   }
449 
450   llvm_unreachable("Invalid LoadExtType");
451 }
452 
453 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
454   // To perform this operation, we just need to swap the L and G bits of the
455   // operation.
456   unsigned OldL = (Operation >> 2) & 1;
457   unsigned OldG = (Operation >> 1) & 1;
458   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
459                        (OldL << 1) |       // New G bit
460                        (OldG << 2));       // New L bit.
461 }
462 
463 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
464   unsigned Operation = Op;
465   if (isIntegerLike)
466     Operation ^= 7;   // Flip L, G, E bits, but not U.
467   else
468     Operation ^= 15;  // Flip all of the condition bits.
469 
470   if (Operation > ISD::SETTRUE2)
471     Operation &= ~8;  // Don't let N and U bits get set.
472 
473   return ISD::CondCode(Operation);
474 }
475 
476 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
477   return getSetCCInverseImpl(Op, Type.isInteger());
478 }
479 
480 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
481                                                bool isIntegerLike) {
482   return getSetCCInverseImpl(Op, isIntegerLike);
483 }
484 
485 /// For an integer comparison, return 1 if the comparison is a signed operation
486 /// and 2 if the result is an unsigned comparison. Return zero if the operation
487 /// does not depend on the sign of the input (setne and seteq).
488 static int isSignedOp(ISD::CondCode Opcode) {
489   switch (Opcode) {
490   default: llvm_unreachable("Illegal integer setcc operation!");
491   case ISD::SETEQ:
492   case ISD::SETNE: return 0;
493   case ISD::SETLT:
494   case ISD::SETLE:
495   case ISD::SETGT:
496   case ISD::SETGE: return 1;
497   case ISD::SETULT:
498   case ISD::SETULE:
499   case ISD::SETUGT:
500   case ISD::SETUGE: return 2;
501   }
502 }
503 
504 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
505                                        EVT Type) {
506   bool IsInteger = Type.isInteger();
507   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
508     // Cannot fold a signed integer setcc with an unsigned integer setcc.
509     return ISD::SETCC_INVALID;
510 
511   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
512 
513   // If the N and U bits get set, then the resultant comparison DOES suddenly
514   // care about orderedness, and it is true when ordered.
515   if (Op > ISD::SETTRUE2)
516     Op &= ~16;     // Clear the U bit if the N bit is set.
517 
518   // Canonicalize illegal integer setcc's.
519   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
520     Op = ISD::SETNE;
521 
522   return ISD::CondCode(Op);
523 }
524 
525 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
526                                         EVT Type) {
527   bool IsInteger = Type.isInteger();
528   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
529     // Cannot fold a signed setcc with an unsigned setcc.
530     return ISD::SETCC_INVALID;
531 
532   // Combine all of the condition bits.
533   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
534 
535   // Canonicalize illegal integer setcc's.
536   if (IsInteger) {
537     switch (Result) {
538     default: break;
539     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
540     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
541     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
542     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
543     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
544     }
545   }
546 
547   return Result;
548 }
549 
550 //===----------------------------------------------------------------------===//
551 //                           SDNode Profile Support
552 //===----------------------------------------------------------------------===//
553 
554 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
555 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
556   ID.AddInteger(OpC);
557 }
558 
559 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
560 /// solely with their pointer.
561 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
562   ID.AddPointer(VTList.VTs);
563 }
564 
565 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
566 static void AddNodeIDOperands(FoldingSetNodeID &ID,
567                               ArrayRef<SDValue> Ops) {
568   for (auto& Op : Ops) {
569     ID.AddPointer(Op.getNode());
570     ID.AddInteger(Op.getResNo());
571   }
572 }
573 
574 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
575 static void AddNodeIDOperands(FoldingSetNodeID &ID,
576                               ArrayRef<SDUse> Ops) {
577   for (auto& Op : Ops) {
578     ID.AddPointer(Op.getNode());
579     ID.AddInteger(Op.getResNo());
580   }
581 }
582 
583 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
584                           SDVTList VTList, ArrayRef<SDValue> OpList) {
585   AddNodeIDOpcode(ID, OpC);
586   AddNodeIDValueTypes(ID, VTList);
587   AddNodeIDOperands(ID, OpList);
588 }
589 
590 /// If this is an SDNode with special info, add this info to the NodeID data.
591 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
592   switch (N->getOpcode()) {
593   case ISD::TargetExternalSymbol:
594   case ISD::ExternalSymbol:
595   case ISD::MCSymbol:
596     llvm_unreachable("Should only be used on nodes with operands");
597   default: break;  // Normal nodes don't need extra info.
598   case ISD::TargetConstant:
599   case ISD::Constant: {
600     const ConstantSDNode *C = cast<ConstantSDNode>(N);
601     ID.AddPointer(C->getConstantIntValue());
602     ID.AddBoolean(C->isOpaque());
603     break;
604   }
605   case ISD::TargetConstantFP:
606   case ISD::ConstantFP:
607     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
608     break;
609   case ISD::TargetGlobalAddress:
610   case ISD::GlobalAddress:
611   case ISD::TargetGlobalTLSAddress:
612   case ISD::GlobalTLSAddress: {
613     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
614     ID.AddPointer(GA->getGlobal());
615     ID.AddInteger(GA->getOffset());
616     ID.AddInteger(GA->getTargetFlags());
617     break;
618   }
619   case ISD::BasicBlock:
620     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
621     break;
622   case ISD::Register:
623     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
624     break;
625   case ISD::RegisterMask:
626     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
627     break;
628   case ISD::SRCVALUE:
629     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
630     break;
631   case ISD::FrameIndex:
632   case ISD::TargetFrameIndex:
633     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
634     break;
635   case ISD::LIFETIME_START:
636   case ISD::LIFETIME_END:
637     if (cast<LifetimeSDNode>(N)->hasOffset()) {
638       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
639       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
640     }
641     break;
642   case ISD::PSEUDO_PROBE:
643     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
645     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
646     break;
647   case ISD::JumpTable:
648   case ISD::TargetJumpTable:
649     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
650     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
651     break;
652   case ISD::ConstantPool:
653   case ISD::TargetConstantPool: {
654     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
655     ID.AddInteger(CP->getAlign().value());
656     ID.AddInteger(CP->getOffset());
657     if (CP->isMachineConstantPoolEntry())
658       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
659     else
660       ID.AddPointer(CP->getConstVal());
661     ID.AddInteger(CP->getTargetFlags());
662     break;
663   }
664   case ISD::TargetIndex: {
665     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
666     ID.AddInteger(TI->getIndex());
667     ID.AddInteger(TI->getOffset());
668     ID.AddInteger(TI->getTargetFlags());
669     break;
670   }
671   case ISD::LOAD: {
672     const LoadSDNode *LD = cast<LoadSDNode>(N);
673     ID.AddInteger(LD->getMemoryVT().getRawBits());
674     ID.AddInteger(LD->getRawSubclassData());
675     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
676     break;
677   }
678   case ISD::STORE: {
679     const StoreSDNode *ST = cast<StoreSDNode>(N);
680     ID.AddInteger(ST->getMemoryVT().getRawBits());
681     ID.AddInteger(ST->getRawSubclassData());
682     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
683     break;
684   }
685   case ISD::MLOAD: {
686     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
687     ID.AddInteger(MLD->getMemoryVT().getRawBits());
688     ID.AddInteger(MLD->getRawSubclassData());
689     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
690     break;
691   }
692   case ISD::MSTORE: {
693     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
694     ID.AddInteger(MST->getMemoryVT().getRawBits());
695     ID.AddInteger(MST->getRawSubclassData());
696     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
697     break;
698   }
699   case ISD::MGATHER: {
700     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
701     ID.AddInteger(MG->getMemoryVT().getRawBits());
702     ID.AddInteger(MG->getRawSubclassData());
703     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
704     break;
705   }
706   case ISD::MSCATTER: {
707     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
708     ID.AddInteger(MS->getMemoryVT().getRawBits());
709     ID.AddInteger(MS->getRawSubclassData());
710     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
711     break;
712   }
713   case ISD::ATOMIC_CMP_SWAP:
714   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
715   case ISD::ATOMIC_SWAP:
716   case ISD::ATOMIC_LOAD_ADD:
717   case ISD::ATOMIC_LOAD_SUB:
718   case ISD::ATOMIC_LOAD_AND:
719   case ISD::ATOMIC_LOAD_CLR:
720   case ISD::ATOMIC_LOAD_OR:
721   case ISD::ATOMIC_LOAD_XOR:
722   case ISD::ATOMIC_LOAD_NAND:
723   case ISD::ATOMIC_LOAD_MIN:
724   case ISD::ATOMIC_LOAD_MAX:
725   case ISD::ATOMIC_LOAD_UMIN:
726   case ISD::ATOMIC_LOAD_UMAX:
727   case ISD::ATOMIC_LOAD:
728   case ISD::ATOMIC_STORE: {
729     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
730     ID.AddInteger(AT->getMemoryVT().getRawBits());
731     ID.AddInteger(AT->getRawSubclassData());
732     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
733     break;
734   }
735   case ISD::PREFETCH: {
736     const MemSDNode *PF = cast<MemSDNode>(N);
737     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VECTOR_SHUFFLE: {
741     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
742     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
743          i != e; ++i)
744       ID.AddInteger(SVN->getMaskElt(i));
745     break;
746   }
747   case ISD::TargetBlockAddress:
748   case ISD::BlockAddress: {
749     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
750     ID.AddPointer(BA->getBlockAddress());
751     ID.AddInteger(BA->getOffset());
752     ID.AddInteger(BA->getTargetFlags());
753     break;
754   }
755   } // end switch (N->getOpcode())
756 
757   // Target specific memory nodes could also have address spaces to check.
758   if (N->isTargetMemoryOpcode())
759     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
760 }
761 
762 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
763 /// data.
764 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
765   AddNodeIDOpcode(ID, N->getOpcode());
766   // Add the return value info.
767   AddNodeIDValueTypes(ID, N->getVTList());
768   // Add the operand info.
769   AddNodeIDOperands(ID, N->ops());
770 
771   // Handle SDNode leafs with special info.
772   AddNodeIDCustom(ID, N);
773 }
774 
775 //===----------------------------------------------------------------------===//
776 //                              SelectionDAG Class
777 //===----------------------------------------------------------------------===//
778 
779 /// doNotCSE - Return true if CSE should not be performed for this node.
780 static bool doNotCSE(SDNode *N) {
781   if (N->getValueType(0) == MVT::Glue)
782     return true; // Never CSE anything that produces a flag.
783 
784   switch (N->getOpcode()) {
785   default: break;
786   case ISD::HANDLENODE:
787   case ISD::EH_LABEL:
788     return true;   // Never CSE these nodes.
789   }
790 
791   // Check that remaining values produced are not flags.
792   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
793     if (N->getValueType(i) == MVT::Glue)
794       return true; // Never CSE anything that produces a flag.
795 
796   return false;
797 }
798 
799 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
800 /// SelectionDAG.
801 void SelectionDAG::RemoveDeadNodes() {
802   // Create a dummy node (which is not added to allnodes), that adds a reference
803   // to the root node, preventing it from being deleted.
804   HandleSDNode Dummy(getRoot());
805 
806   SmallVector<SDNode*, 128> DeadNodes;
807 
808   // Add all obviously-dead nodes to the DeadNodes worklist.
809   for (SDNode &Node : allnodes())
810     if (Node.use_empty())
811       DeadNodes.push_back(&Node);
812 
813   RemoveDeadNodes(DeadNodes);
814 
815   // If the root changed (e.g. it was a dead load, update the root).
816   setRoot(Dummy.getValue());
817 }
818 
819 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
820 /// given list, and any nodes that become unreachable as a result.
821 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
822 
823   // Process the worklist, deleting the nodes and adding their uses to the
824   // worklist.
825   while (!DeadNodes.empty()) {
826     SDNode *N = DeadNodes.pop_back_val();
827     // Skip to next node if we've already managed to delete the node. This could
828     // happen if replacing a node causes a node previously added to the node to
829     // be deleted.
830     if (N->getOpcode() == ISD::DELETED_NODE)
831       continue;
832 
833     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
834       DUL->NodeDeleted(N, nullptr);
835 
836     // Take the node out of the appropriate CSE map.
837     RemoveNodeFromCSEMaps(N);
838 
839     // Next, brutally remove the operand list.  This is safe to do, as there are
840     // no cycles in the graph.
841     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
842       SDUse &Use = *I++;
843       SDNode *Operand = Use.getNode();
844       Use.set(SDValue());
845 
846       // Now that we removed this operand, see if there are no uses of it left.
847       if (Operand->use_empty())
848         DeadNodes.push_back(Operand);
849     }
850 
851     DeallocateNode(N);
852   }
853 }
854 
855 void SelectionDAG::RemoveDeadNode(SDNode *N){
856   SmallVector<SDNode*, 16> DeadNodes(1, N);
857 
858   // Create a dummy node that adds a reference to the root node, preventing
859   // it from being deleted.  (This matters if the root is an operand of the
860   // dead node.)
861   HandleSDNode Dummy(getRoot());
862 
863   RemoveDeadNodes(DeadNodes);
864 }
865 
866 void SelectionDAG::DeleteNode(SDNode *N) {
867   // First take this out of the appropriate CSE map.
868   RemoveNodeFromCSEMaps(N);
869 
870   // Finally, remove uses due to operands of this node, remove from the
871   // AllNodes list, and delete the node.
872   DeleteNodeNotInCSEMaps(N);
873 }
874 
875 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
876   assert(N->getIterator() != AllNodes.begin() &&
877          "Cannot delete the entry node!");
878   assert(N->use_empty() && "Cannot delete a node that is not dead!");
879 
880   // Drop all of the operands and decrement used node's use counts.
881   N->DropOperands();
882 
883   DeallocateNode(N);
884 }
885 
886 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
887   assert(!(V->isVariadic() && isParameter));
888   if (isParameter)
889     ByvalParmDbgValues.push_back(V);
890   else
891     DbgValues.push_back(V);
892   for (const SDNode *Node : V->getSDNodes())
893     if (Node)
894       DbgValMap[Node].push_back(V);
895 }
896 
897 void SDDbgInfo::erase(const SDNode *Node) {
898   DbgValMapType::iterator I = DbgValMap.find(Node);
899   if (I == DbgValMap.end())
900     return;
901   for (auto &Val: I->second)
902     Val->setIsInvalidated();
903   DbgValMap.erase(I);
904 }
905 
906 void SelectionDAG::DeallocateNode(SDNode *N) {
907   // If we have operands, deallocate them.
908   removeOperands(N);
909 
910   NodeAllocator.Deallocate(AllNodes.remove(N));
911 
912   // Set the opcode to DELETED_NODE to help catch bugs when node
913   // memory is reallocated.
914   // FIXME: There are places in SDag that have grown a dependency on the opcode
915   // value in the released node.
916   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
917   N->NodeType = ISD::DELETED_NODE;
918 
919   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
920   // them and forget about that node.
921   DbgInfo->erase(N);
922 }
923 
924 #ifndef NDEBUG
925 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
926 static void VerifySDNode(SDNode *N) {
927   switch (N->getOpcode()) {
928   default:
929     break;
930   case ISD::BUILD_PAIR: {
931     EVT VT = N->getValueType(0);
932     assert(N->getNumValues() == 1 && "Too many results!");
933     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
934            "Wrong return type!");
935     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
936     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
937            "Mismatched operand types!");
938     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
939            "Wrong operand type!");
940     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
941            "Wrong return type size");
942     break;
943   }
944   case ISD::BUILD_VECTOR: {
945     assert(N->getNumValues() == 1 && "Too many results!");
946     assert(N->getValueType(0).isVector() && "Wrong return type!");
947     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
948            "Wrong number of operands!");
949     EVT EltVT = N->getValueType(0).getVectorElementType();
950     for (const SDUse &Op : N->ops()) {
951       assert((Op.getValueType() == EltVT ||
952               (EltVT.isInteger() && Op.getValueType().isInteger() &&
953                EltVT.bitsLE(Op.getValueType()))) &&
954              "Wrong operand type!");
955       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
956              "Operands must all have the same type");
957     }
958     break;
959   }
960   }
961 }
962 #endif // NDEBUG
963 
964 /// Insert a newly allocated node into the DAG.
965 ///
966 /// Handles insertion into the all nodes list and CSE map, as well as
967 /// verification and other common operations when a new node is allocated.
968 void SelectionDAG::InsertNode(SDNode *N) {
969   AllNodes.push_back(N);
970 #ifndef NDEBUG
971   N->PersistentId = NextPersistentId++;
972   VerifySDNode(N);
973 #endif
974   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
975     DUL->NodeInserted(N);
976 }
977 
978 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
979 /// correspond to it.  This is useful when we're about to delete or repurpose
980 /// the node.  We don't want future request for structurally identical nodes
981 /// to return N anymore.
982 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
983   bool Erased = false;
984   switch (N->getOpcode()) {
985   case ISD::HANDLENODE: return false;  // noop.
986   case ISD::CONDCODE:
987     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
988            "Cond code doesn't exist!");
989     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
990     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
991     break;
992   case ISD::ExternalSymbol:
993     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
994     break;
995   case ISD::TargetExternalSymbol: {
996     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
997     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
998         ESN->getSymbol(), ESN->getTargetFlags()));
999     break;
1000   }
1001   case ISD::MCSymbol: {
1002     auto *MCSN = cast<MCSymbolSDNode>(N);
1003     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1004     break;
1005   }
1006   case ISD::VALUETYPE: {
1007     EVT VT = cast<VTSDNode>(N)->getVT();
1008     if (VT.isExtended()) {
1009       Erased = ExtendedValueTypeNodes.erase(VT);
1010     } else {
1011       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1012       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1013     }
1014     break;
1015   }
1016   default:
1017     // Remove it from the CSE Map.
1018     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1019     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1020     Erased = CSEMap.RemoveNode(N);
1021     break;
1022   }
1023 #ifndef NDEBUG
1024   // Verify that the node was actually in one of the CSE maps, unless it has a
1025   // flag result (which cannot be CSE'd) or is one of the special cases that are
1026   // not subject to CSE.
1027   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1028       !N->isMachineOpcode() && !doNotCSE(N)) {
1029     N->dump(this);
1030     dbgs() << "\n";
1031     llvm_unreachable("Node is not in map!");
1032   }
1033 #endif
1034   return Erased;
1035 }
1036 
1037 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1038 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1039 /// node already exists, in which case transfer all its users to the existing
1040 /// node. This transfer can potentially trigger recursive merging.
1041 void
1042 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1043   // For node types that aren't CSE'd, just act as if no identical node
1044   // already exists.
1045   if (!doNotCSE(N)) {
1046     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1047     if (Existing != N) {
1048       // If there was already an existing matching node, use ReplaceAllUsesWith
1049       // to replace the dead one with the existing one.  This can cause
1050       // recursive merging of other unrelated nodes down the line.
1051       ReplaceAllUsesWith(N, Existing);
1052 
1053       // N is now dead. Inform the listeners and delete it.
1054       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1055         DUL->NodeDeleted(N, Existing);
1056       DeleteNodeNotInCSEMaps(N);
1057       return;
1058     }
1059   }
1060 
1061   // If the node doesn't already exist, we updated it.  Inform listeners.
1062   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1063     DUL->NodeUpdated(N);
1064 }
1065 
1066 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1067 /// were replaced with those specified.  If this node is never memoized,
1068 /// return null, otherwise return a pointer to the slot it would take.  If a
1069 /// node already exists with these operands, the slot will be non-null.
1070 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1071                                            void *&InsertPos) {
1072   if (doNotCSE(N))
1073     return nullptr;
1074 
1075   SDValue Ops[] = { Op };
1076   FoldingSetNodeID ID;
1077   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1078   AddNodeIDCustom(ID, N);
1079   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1080   if (Node)
1081     Node->intersectFlagsWith(N->getFlags());
1082   return Node;
1083 }
1084 
1085 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1086 /// were replaced with those specified.  If this node is never memoized,
1087 /// return null, otherwise return a pointer to the slot it would take.  If a
1088 /// node already exists with these operands, the slot will be non-null.
1089 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1090                                            SDValue Op1, SDValue Op2,
1091                                            void *&InsertPos) {
1092   if (doNotCSE(N))
1093     return nullptr;
1094 
1095   SDValue Ops[] = { Op1, Op2 };
1096   FoldingSetNodeID ID;
1097   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1098   AddNodeIDCustom(ID, N);
1099   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1100   if (Node)
1101     Node->intersectFlagsWith(N->getFlags());
1102   return Node;
1103 }
1104 
1105 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1106 /// were replaced with those specified.  If this node is never memoized,
1107 /// return null, otherwise return a pointer to the slot it would take.  If a
1108 /// node already exists with these operands, the slot will be non-null.
1109 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1110                                            void *&InsertPos) {
1111   if (doNotCSE(N))
1112     return nullptr;
1113 
1114   FoldingSetNodeID ID;
1115   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1116   AddNodeIDCustom(ID, N);
1117   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1118   if (Node)
1119     Node->intersectFlagsWith(N->getFlags());
1120   return Node;
1121 }
1122 
1123 Align SelectionDAG::getEVTAlign(EVT VT) const {
1124   Type *Ty = VT == MVT::iPTR ?
1125                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1126                    VT.getTypeForEVT(*getContext());
1127 
1128   return getDataLayout().getABITypeAlign(Ty);
1129 }
1130 
1131 // EntryNode could meaningfully have debug info if we can find it...
1132 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1133     : TM(tm), OptLevel(OL),
1134       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1135       Root(getEntryNode()) {
1136   InsertNode(&EntryNode);
1137   DbgInfo = new SDDbgInfo();
1138 }
1139 
1140 void SelectionDAG::init(MachineFunction &NewMF,
1141                         OptimizationRemarkEmitter &NewORE,
1142                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1143                         LegacyDivergenceAnalysis * Divergence,
1144                         ProfileSummaryInfo *PSIin,
1145                         BlockFrequencyInfo *BFIin) {
1146   MF = &NewMF;
1147   SDAGISelPass = PassPtr;
1148   ORE = &NewORE;
1149   TLI = getSubtarget().getTargetLowering();
1150   TSI = getSubtarget().getSelectionDAGInfo();
1151   LibInfo = LibraryInfo;
1152   Context = &MF->getFunction().getContext();
1153   DA = Divergence;
1154   PSI = PSIin;
1155   BFI = BFIin;
1156 }
1157 
1158 SelectionDAG::~SelectionDAG() {
1159   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1160   allnodes_clear();
1161   OperandRecycler.clear(OperandAllocator);
1162   delete DbgInfo;
1163 }
1164 
1165 bool SelectionDAG::shouldOptForSize() const {
1166   return MF->getFunction().hasOptSize() ||
1167       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1168 }
1169 
1170 void SelectionDAG::allnodes_clear() {
1171   assert(&*AllNodes.begin() == &EntryNode);
1172   AllNodes.remove(AllNodes.begin());
1173   while (!AllNodes.empty())
1174     DeallocateNode(&AllNodes.front());
1175 #ifndef NDEBUG
1176   NextPersistentId = 0;
1177 #endif
1178 }
1179 
1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1181                                           void *&InsertPos) {
1182   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1183   if (N) {
1184     switch (N->getOpcode()) {
1185     default: break;
1186     case ISD::Constant:
1187     case ISD::ConstantFP:
1188       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1189                        "debug location.  Use another overload.");
1190     }
1191   }
1192   return N;
1193 }
1194 
1195 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1196                                           const SDLoc &DL, void *&InsertPos) {
1197   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1198   if (N) {
1199     switch (N->getOpcode()) {
1200     case ISD::Constant:
1201     case ISD::ConstantFP:
1202       // Erase debug location from the node if the node is used at several
1203       // different places. Do not propagate one location to all uses as it
1204       // will cause a worse single stepping debugging experience.
1205       if (N->getDebugLoc() != DL.getDebugLoc())
1206         N->setDebugLoc(DebugLoc());
1207       break;
1208     default:
1209       // When the node's point of use is located earlier in the instruction
1210       // sequence than its prior point of use, update its debug info to the
1211       // earlier location.
1212       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1213         N->setDebugLoc(DL.getDebugLoc());
1214       break;
1215     }
1216   }
1217   return N;
1218 }
1219 
1220 void SelectionDAG::clear() {
1221   allnodes_clear();
1222   OperandRecycler.clear(OperandAllocator);
1223   OperandAllocator.Reset();
1224   CSEMap.clear();
1225 
1226   ExtendedValueTypeNodes.clear();
1227   ExternalSymbols.clear();
1228   TargetExternalSymbols.clear();
1229   MCSymbols.clear();
1230   SDCallSiteDbgInfo.clear();
1231   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1232             static_cast<CondCodeSDNode*>(nullptr));
1233   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1234             static_cast<SDNode*>(nullptr));
1235 
1236   EntryNode.UseList = nullptr;
1237   InsertNode(&EntryNode);
1238   Root = getEntryNode();
1239   DbgInfo->clear();
1240 }
1241 
1242 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1243   return VT.bitsGT(Op.getValueType())
1244              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1245              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1246 }
1247 
1248 std::pair<SDValue, SDValue>
1249 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1250                                        const SDLoc &DL, EVT VT) {
1251   assert(!VT.bitsEq(Op.getValueType()) &&
1252          "Strict no-op FP extend/round not allowed.");
1253   SDValue Res =
1254       VT.bitsGT(Op.getValueType())
1255           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1256           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1257                     {Chain, Op, getIntPtrConstant(0, DL)});
1258 
1259   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1260 }
1261 
1262 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1263   return VT.bitsGT(Op.getValueType()) ?
1264     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1265     getNode(ISD::TRUNCATE, DL, VT, Op);
1266 }
1267 
1268 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1269   return VT.bitsGT(Op.getValueType()) ?
1270     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1271     getNode(ISD::TRUNCATE, DL, VT, Op);
1272 }
1273 
1274 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1275   return VT.bitsGT(Op.getValueType()) ?
1276     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1277     getNode(ISD::TRUNCATE, DL, VT, Op);
1278 }
1279 
1280 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1281                                         EVT OpVT) {
1282   if (VT.bitsLE(Op.getValueType()))
1283     return getNode(ISD::TRUNCATE, SL, VT, Op);
1284 
1285   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1286   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1287 }
1288 
1289 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1290   EVT OpVT = Op.getValueType();
1291   assert(VT.isInteger() && OpVT.isInteger() &&
1292          "Cannot getZeroExtendInReg FP types");
1293   assert(VT.isVector() == OpVT.isVector() &&
1294          "getZeroExtendInReg type should be vector iff the operand "
1295          "type is vector!");
1296   assert((!VT.isVector() ||
1297           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1298          "Vector element counts must match in getZeroExtendInReg");
1299   assert(VT.bitsLE(OpVT) && "Not extending!");
1300   if (OpVT == VT)
1301     return Op;
1302   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1303                                    VT.getScalarSizeInBits());
1304   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1305 }
1306 
1307 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1308   // Only unsigned pointer semantics are supported right now. In the future this
1309   // might delegate to TLI to check pointer signedness.
1310   return getZExtOrTrunc(Op, DL, VT);
1311 }
1312 
1313 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1314   // Only unsigned pointer semantics are supported right now. In the future this
1315   // might delegate to TLI to check pointer signedness.
1316   return getZeroExtendInReg(Op, DL, VT);
1317 }
1318 
1319 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1320 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1321   EVT EltVT = VT.getScalarType();
1322   SDValue NegOne =
1323     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1324   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1325 }
1326 
1327 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1328   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1329   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1330 }
1331 
1332 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1333                                       EVT OpVT) {
1334   if (!V)
1335     return getConstant(0, DL, VT);
1336 
1337   switch (TLI->getBooleanContents(OpVT)) {
1338   case TargetLowering::ZeroOrOneBooleanContent:
1339   case TargetLowering::UndefinedBooleanContent:
1340     return getConstant(1, DL, VT);
1341   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1342     return getAllOnesConstant(DL, VT);
1343   }
1344   llvm_unreachable("Unexpected boolean content enum!");
1345 }
1346 
1347 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1348                                   bool isT, bool isO) {
1349   EVT EltVT = VT.getScalarType();
1350   assert((EltVT.getSizeInBits() >= 64 ||
1351           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1352          "getConstant with a uint64_t value that doesn't fit in the type!");
1353   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1354 }
1355 
1356 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1357                                   bool isT, bool isO) {
1358   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1359 }
1360 
1361 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1362                                   EVT VT, bool isT, bool isO) {
1363   assert(VT.isInteger() && "Cannot create FP integer constant!");
1364 
1365   EVT EltVT = VT.getScalarType();
1366   const ConstantInt *Elt = &Val;
1367 
1368   // In some cases the vector type is legal but the element type is illegal and
1369   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1370   // inserted value (the type does not need to match the vector element type).
1371   // Any extra bits introduced will be truncated away.
1372   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1373                            TargetLowering::TypePromoteInteger) {
1374     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1375     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1376     Elt = ConstantInt::get(*getContext(), NewVal);
1377   }
1378   // In other cases the element type is illegal and needs to be expanded, for
1379   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1380   // the value into n parts and use a vector type with n-times the elements.
1381   // Then bitcast to the type requested.
1382   // Legalizing constants too early makes the DAGCombiner's job harder so we
1383   // only legalize if the DAG tells us we must produce legal types.
1384   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1385            TLI->getTypeAction(*getContext(), EltVT) ==
1386                TargetLowering::TypeExpandInteger) {
1387     const APInt &NewVal = Elt->getValue();
1388     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1389     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1390 
1391     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1392     if (VT.isScalableVector()) {
1393       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1394              "Can only handle an even split!");
1395       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1396 
1397       SmallVector<SDValue, 2> ScalarParts;
1398       for (unsigned i = 0; i != Parts; ++i)
1399         ScalarParts.push_back(getConstant(
1400             NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL,
1401             ViaEltVT, isT, isO));
1402 
1403       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1404     }
1405 
1406     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1407     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1408 
1409     // Check the temporary vector is the correct size. If this fails then
1410     // getTypeToTransformTo() probably returned a type whose size (in bits)
1411     // isn't a power-of-2 factor of the requested type size.
1412     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1413 
1414     SmallVector<SDValue, 2> EltParts;
1415     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1416       EltParts.push_back(getConstant(
1417           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1418           ViaEltVT, isT, isO));
1419     }
1420 
1421     // EltParts is currently in little endian order. If we actually want
1422     // big-endian order then reverse it now.
1423     if (getDataLayout().isBigEndian())
1424       std::reverse(EltParts.begin(), EltParts.end());
1425 
1426     // The elements must be reversed when the element order is different
1427     // to the endianness of the elements (because the BITCAST is itself a
1428     // vector shuffle in this situation). However, we do not need any code to
1429     // perform this reversal because getConstant() is producing a vector
1430     // splat.
1431     // This situation occurs in MIPS MSA.
1432 
1433     SmallVector<SDValue, 8> Ops;
1434     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1435       llvm::append_range(Ops, EltParts);
1436 
1437     SDValue V =
1438         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1439     return V;
1440   }
1441 
1442   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1443          "APInt size does not match type size!");
1444   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1445   FoldingSetNodeID ID;
1446   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1447   ID.AddPointer(Elt);
1448   ID.AddBoolean(isO);
1449   void *IP = nullptr;
1450   SDNode *N = nullptr;
1451   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1452     if (!VT.isVector())
1453       return SDValue(N, 0);
1454 
1455   if (!N) {
1456     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1457     CSEMap.InsertNode(N, IP);
1458     InsertNode(N);
1459     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1460   }
1461 
1462   SDValue Result(N, 0);
1463   if (VT.isScalableVector())
1464     Result = getSplatVector(VT, DL, Result);
1465   else if (VT.isVector())
1466     Result = getSplatBuildVector(VT, DL, Result);
1467 
1468   return Result;
1469 }
1470 
1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1472                                         bool isTarget) {
1473   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1474 }
1475 
1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1477                                              const SDLoc &DL, bool LegalTypes) {
1478   assert(VT.isInteger() && "Shift amount is not an integer type!");
1479   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1480   return getConstant(Val, DL, ShiftVT);
1481 }
1482 
1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1484                                            bool isTarget) {
1485   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1486 }
1487 
1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1489                                     bool isTarget) {
1490   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1491 }
1492 
1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1494                                     EVT VT, bool isTarget) {
1495   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1496 
1497   EVT EltVT = VT.getScalarType();
1498 
1499   // Do the map lookup using the actual bit pattern for the floating point
1500   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1501   // we don't have issues with SNANs.
1502   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1503   FoldingSetNodeID ID;
1504   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1505   ID.AddPointer(&V);
1506   void *IP = nullptr;
1507   SDNode *N = nullptr;
1508   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1509     if (!VT.isVector())
1510       return SDValue(N, 0);
1511 
1512   if (!N) {
1513     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1514     CSEMap.InsertNode(N, IP);
1515     InsertNode(N);
1516   }
1517 
1518   SDValue Result(N, 0);
1519   if (VT.isScalableVector())
1520     Result = getSplatVector(VT, DL, Result);
1521   else if (VT.isVector())
1522     Result = getSplatBuildVector(VT, DL, Result);
1523   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1524   return Result;
1525 }
1526 
1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1528                                     bool isTarget) {
1529   EVT EltVT = VT.getScalarType();
1530   if (EltVT == MVT::f32)
1531     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1532   if (EltVT == MVT::f64)
1533     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1534   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1535       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1536     bool Ignored;
1537     APFloat APF = APFloat(Val);
1538     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1539                 &Ignored);
1540     return getConstantFP(APF, DL, VT, isTarget);
1541   }
1542   llvm_unreachable("Unsupported type in getConstantFP");
1543 }
1544 
1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1546                                        EVT VT, int64_t Offset, bool isTargetGA,
1547                                        unsigned TargetFlags) {
1548   assert((TargetFlags == 0 || isTargetGA) &&
1549          "Cannot set target flags on target-independent globals");
1550 
1551   // Truncate (with sign-extension) the offset value to the pointer size.
1552   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1553   if (BitWidth < 64)
1554     Offset = SignExtend64(Offset, BitWidth);
1555 
1556   unsigned Opc;
1557   if (GV->isThreadLocal())
1558     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1559   else
1560     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1561 
1562   FoldingSetNodeID ID;
1563   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1564   ID.AddPointer(GV);
1565   ID.AddInteger(Offset);
1566   ID.AddInteger(TargetFlags);
1567   void *IP = nullptr;
1568   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1569     return SDValue(E, 0);
1570 
1571   auto *N = newSDNode<GlobalAddressSDNode>(
1572       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1573   CSEMap.InsertNode(N, IP);
1574     InsertNode(N);
1575   return SDValue(N, 0);
1576 }
1577 
1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1579   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1580   FoldingSetNodeID ID;
1581   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1582   ID.AddInteger(FI);
1583   void *IP = nullptr;
1584   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1585     return SDValue(E, 0);
1586 
1587   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1588   CSEMap.InsertNode(N, IP);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1594                                    unsigned TargetFlags) {
1595   assert((TargetFlags == 0 || isTarget) &&
1596          "Cannot set target flags on target-independent jump tables");
1597   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1600   ID.AddInteger(JTI);
1601   ID.AddInteger(TargetFlags);
1602   void *IP = nullptr;
1603   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1604     return SDValue(E, 0);
1605 
1606   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1607   CSEMap.InsertNode(N, IP);
1608   InsertNode(N);
1609   return SDValue(N, 0);
1610 }
1611 
1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1613                                       MaybeAlign Alignment, int Offset,
1614                                       bool isTarget, unsigned TargetFlags) {
1615   assert((TargetFlags == 0 || isTarget) &&
1616          "Cannot set target flags on target-independent globals");
1617   if (!Alignment)
1618     Alignment = shouldOptForSize()
1619                     ? getDataLayout().getABITypeAlign(C->getType())
1620                     : getDataLayout().getPrefTypeAlign(C->getType());
1621   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1622   FoldingSetNodeID ID;
1623   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1624   ID.AddInteger(Alignment->value());
1625   ID.AddInteger(Offset);
1626   ID.AddPointer(C);
1627   ID.AddInteger(TargetFlags);
1628   void *IP = nullptr;
1629   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1630     return SDValue(E, 0);
1631 
1632   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1633                                           TargetFlags);
1634   CSEMap.InsertNode(N, IP);
1635   InsertNode(N);
1636   SDValue V = SDValue(N, 0);
1637   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1638   return V;
1639 }
1640 
1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1642                                       MaybeAlign Alignment, int Offset,
1643                                       bool isTarget, unsigned TargetFlags) {
1644   assert((TargetFlags == 0 || isTarget) &&
1645          "Cannot set target flags on target-independent globals");
1646   if (!Alignment)
1647     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1648   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1649   FoldingSetNodeID ID;
1650   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1651   ID.AddInteger(Alignment->value());
1652   ID.AddInteger(Offset);
1653   C->addSelectionDAGCSEId(ID);
1654   ID.AddInteger(TargetFlags);
1655   void *IP = nullptr;
1656   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1657     return SDValue(E, 0);
1658 
1659   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1660                                           TargetFlags);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1667                                      unsigned TargetFlags) {
1668   FoldingSetNodeID ID;
1669   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1670   ID.AddInteger(Index);
1671   ID.AddInteger(Offset);
1672   ID.AddInteger(TargetFlags);
1673   void *IP = nullptr;
1674   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1675     return SDValue(E, 0);
1676 
1677   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1678   CSEMap.InsertNode(N, IP);
1679   InsertNode(N);
1680   return SDValue(N, 0);
1681 }
1682 
1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1686   ID.AddPointer(MBB);
1687   void *IP = nullptr;
1688   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1689     return SDValue(E, 0);
1690 
1691   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1692   CSEMap.InsertNode(N, IP);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
1697 SDValue SelectionDAG::getValueType(EVT VT) {
1698   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1699       ValueTypeNodes.size())
1700     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1701 
1702   SDNode *&N = VT.isExtended() ?
1703     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1704 
1705   if (N) return SDValue(N, 0);
1706   N = newSDNode<VTSDNode>(VT);
1707   InsertNode(N);
1708   return SDValue(N, 0);
1709 }
1710 
1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1712   SDNode *&N = ExternalSymbols[Sym];
1713   if (N) return SDValue(N, 0);
1714   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1715   InsertNode(N);
1716   return SDValue(N, 0);
1717 }
1718 
1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1720   SDNode *&N = MCSymbols[Sym];
1721   if (N)
1722     return SDValue(N, 0);
1723   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1724   InsertNode(N);
1725   return SDValue(N, 0);
1726 }
1727 
1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1729                                               unsigned TargetFlags) {
1730   SDNode *&N =
1731       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1732   if (N) return SDValue(N, 0);
1733   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1734   InsertNode(N);
1735   return SDValue(N, 0);
1736 }
1737 
1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1739   if ((unsigned)Cond >= CondCodeNodes.size())
1740     CondCodeNodes.resize(Cond+1);
1741 
1742   if (!CondCodeNodes[Cond]) {
1743     auto *N = newSDNode<CondCodeSDNode>(Cond);
1744     CondCodeNodes[Cond] = N;
1745     InsertNode(N);
1746   }
1747 
1748   return SDValue(CondCodeNodes[Cond], 0);
1749 }
1750 
1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) {
1752   if (ResVT.isScalableVector())
1753     return getNode(ISD::STEP_VECTOR, DL, ResVT, Step);
1754 
1755   EVT OpVT = Step.getValueType();
1756   APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue();
1757   SmallVector<SDValue, 16> OpsStepConstants;
1758   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1759     OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT));
1760   return getBuildVector(ResVT, DL, OpsStepConstants);
1761 }
1762 
1763 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1764 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1765 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1766   std::swap(N1, N2);
1767   ShuffleVectorSDNode::commuteMask(M);
1768 }
1769 
1770 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1771                                        SDValue N2, ArrayRef<int> Mask) {
1772   assert(VT.getVectorNumElements() == Mask.size() &&
1773            "Must have the same number of vector elements as mask elements!");
1774   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1775          "Invalid VECTOR_SHUFFLE");
1776 
1777   // Canonicalize shuffle undef, undef -> undef
1778   if (N1.isUndef() && N2.isUndef())
1779     return getUNDEF(VT);
1780 
1781   // Validate that all indices in Mask are within the range of the elements
1782   // input to the shuffle.
1783   int NElts = Mask.size();
1784   assert(llvm::all_of(Mask,
1785                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1786          "Index out of range");
1787 
1788   // Copy the mask so we can do any needed cleanup.
1789   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1790 
1791   // Canonicalize shuffle v, v -> v, undef
1792   if (N1 == N2) {
1793     N2 = getUNDEF(VT);
1794     for (int i = 0; i != NElts; ++i)
1795       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1796   }
1797 
1798   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1799   if (N1.isUndef())
1800     commuteShuffle(N1, N2, MaskVec);
1801 
1802   if (TLI->hasVectorBlend()) {
1803     // If shuffling a splat, try to blend the splat instead. We do this here so
1804     // that even when this arises during lowering we don't have to re-handle it.
1805     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1806       BitVector UndefElements;
1807       SDValue Splat = BV->getSplatValue(&UndefElements);
1808       if (!Splat)
1809         return;
1810 
1811       for (int i = 0; i < NElts; ++i) {
1812         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1813           continue;
1814 
1815         // If this input comes from undef, mark it as such.
1816         if (UndefElements[MaskVec[i] - Offset]) {
1817           MaskVec[i] = -1;
1818           continue;
1819         }
1820 
1821         // If we can blend a non-undef lane, use that instead.
1822         if (!UndefElements[i])
1823           MaskVec[i] = i + Offset;
1824       }
1825     };
1826     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1827       BlendSplat(N1BV, 0);
1828     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1829       BlendSplat(N2BV, NElts);
1830   }
1831 
1832   // Canonicalize all index into lhs, -> shuffle lhs, undef
1833   // Canonicalize all index into rhs, -> shuffle rhs, undef
1834   bool AllLHS = true, AllRHS = true;
1835   bool N2Undef = N2.isUndef();
1836   for (int i = 0; i != NElts; ++i) {
1837     if (MaskVec[i] >= NElts) {
1838       if (N2Undef)
1839         MaskVec[i] = -1;
1840       else
1841         AllLHS = false;
1842     } else if (MaskVec[i] >= 0) {
1843       AllRHS = false;
1844     }
1845   }
1846   if (AllLHS && AllRHS)
1847     return getUNDEF(VT);
1848   if (AllLHS && !N2Undef)
1849     N2 = getUNDEF(VT);
1850   if (AllRHS) {
1851     N1 = getUNDEF(VT);
1852     commuteShuffle(N1, N2, MaskVec);
1853   }
1854   // Reset our undef status after accounting for the mask.
1855   N2Undef = N2.isUndef();
1856   // Re-check whether both sides ended up undef.
1857   if (N1.isUndef() && N2Undef)
1858     return getUNDEF(VT);
1859 
1860   // If Identity shuffle return that node.
1861   bool Identity = true, AllSame = true;
1862   for (int i = 0; i != NElts; ++i) {
1863     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1864     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1865   }
1866   if (Identity && NElts)
1867     return N1;
1868 
1869   // Shuffling a constant splat doesn't change the result.
1870   if (N2Undef) {
1871     SDValue V = N1;
1872 
1873     // Look through any bitcasts. We check that these don't change the number
1874     // (and size) of elements and just changes their types.
1875     while (V.getOpcode() == ISD::BITCAST)
1876       V = V->getOperand(0);
1877 
1878     // A splat should always show up as a build vector node.
1879     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1880       BitVector UndefElements;
1881       SDValue Splat = BV->getSplatValue(&UndefElements);
1882       // If this is a splat of an undef, shuffling it is also undef.
1883       if (Splat && Splat.isUndef())
1884         return getUNDEF(VT);
1885 
1886       bool SameNumElts =
1887           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1888 
1889       // We only have a splat which can skip shuffles if there is a splatted
1890       // value and no undef lanes rearranged by the shuffle.
1891       if (Splat && UndefElements.none()) {
1892         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1893         // number of elements match or the value splatted is a zero constant.
1894         if (SameNumElts)
1895           return N1;
1896         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1897           if (C->isNullValue())
1898             return N1;
1899       }
1900 
1901       // If the shuffle itself creates a splat, build the vector directly.
1902       if (AllSame && SameNumElts) {
1903         EVT BuildVT = BV->getValueType(0);
1904         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1905         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1906 
1907         // We may have jumped through bitcasts, so the type of the
1908         // BUILD_VECTOR may not match the type of the shuffle.
1909         if (BuildVT != VT)
1910           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1911         return NewBV;
1912       }
1913     }
1914   }
1915 
1916   FoldingSetNodeID ID;
1917   SDValue Ops[2] = { N1, N2 };
1918   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1919   for (int i = 0; i != NElts; ++i)
1920     ID.AddInteger(MaskVec[i]);
1921 
1922   void* IP = nullptr;
1923   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1924     return SDValue(E, 0);
1925 
1926   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1927   // SDNode doesn't have access to it.  This memory will be "leaked" when
1928   // the node is deallocated, but recovered when the NodeAllocator is released.
1929   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1930   llvm::copy(MaskVec, MaskAlloc);
1931 
1932   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1933                                            dl.getDebugLoc(), MaskAlloc);
1934   createOperands(N, Ops);
1935 
1936   CSEMap.InsertNode(N, IP);
1937   InsertNode(N);
1938   SDValue V = SDValue(N, 0);
1939   NewSDValueDbgMsg(V, "Creating new node: ", this);
1940   return V;
1941 }
1942 
1943 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1944   EVT VT = SV.getValueType(0);
1945   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1946   ShuffleVectorSDNode::commuteMask(MaskVec);
1947 
1948   SDValue Op0 = SV.getOperand(0);
1949   SDValue Op1 = SV.getOperand(1);
1950   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1951 }
1952 
1953 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1954   FoldingSetNodeID ID;
1955   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1956   ID.AddInteger(RegNo);
1957   void *IP = nullptr;
1958   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1959     return SDValue(E, 0);
1960 
1961   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1962   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1963   CSEMap.InsertNode(N, IP);
1964   InsertNode(N);
1965   return SDValue(N, 0);
1966 }
1967 
1968 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1969   FoldingSetNodeID ID;
1970   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1971   ID.AddPointer(RegMask);
1972   void *IP = nullptr;
1973   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1974     return SDValue(E, 0);
1975 
1976   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1977   CSEMap.InsertNode(N, IP);
1978   InsertNode(N);
1979   return SDValue(N, 0);
1980 }
1981 
1982 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1983                                  MCSymbol *Label) {
1984   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1985 }
1986 
1987 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1988                                    SDValue Root, MCSymbol *Label) {
1989   FoldingSetNodeID ID;
1990   SDValue Ops[] = { Root };
1991   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1992   ID.AddPointer(Label);
1993   void *IP = nullptr;
1994   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1995     return SDValue(E, 0);
1996 
1997   auto *N =
1998       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1999   createOperands(N, Ops);
2000 
2001   CSEMap.InsertNode(N, IP);
2002   InsertNode(N);
2003   return SDValue(N, 0);
2004 }
2005 
2006 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2007                                       int64_t Offset, bool isTarget,
2008                                       unsigned TargetFlags) {
2009   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2010 
2011   FoldingSetNodeID ID;
2012   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2013   ID.AddPointer(BA);
2014   ID.AddInteger(Offset);
2015   ID.AddInteger(TargetFlags);
2016   void *IP = nullptr;
2017   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2018     return SDValue(E, 0);
2019 
2020   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2021   CSEMap.InsertNode(N, IP);
2022   InsertNode(N);
2023   return SDValue(N, 0);
2024 }
2025 
2026 SDValue SelectionDAG::getSrcValue(const Value *V) {
2027   FoldingSetNodeID ID;
2028   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2029   ID.AddPointer(V);
2030 
2031   void *IP = nullptr;
2032   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2033     return SDValue(E, 0);
2034 
2035   auto *N = newSDNode<SrcValueSDNode>(V);
2036   CSEMap.InsertNode(N, IP);
2037   InsertNode(N);
2038   return SDValue(N, 0);
2039 }
2040 
2041 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2042   FoldingSetNodeID ID;
2043   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2044   ID.AddPointer(MD);
2045 
2046   void *IP = nullptr;
2047   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2048     return SDValue(E, 0);
2049 
2050   auto *N = newSDNode<MDNodeSDNode>(MD);
2051   CSEMap.InsertNode(N, IP);
2052   InsertNode(N);
2053   return SDValue(N, 0);
2054 }
2055 
2056 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2057   if (VT == V.getValueType())
2058     return V;
2059 
2060   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2061 }
2062 
2063 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2064                                        unsigned SrcAS, unsigned DestAS) {
2065   SDValue Ops[] = {Ptr};
2066   FoldingSetNodeID ID;
2067   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2068   ID.AddInteger(SrcAS);
2069   ID.AddInteger(DestAS);
2070 
2071   void *IP = nullptr;
2072   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2073     return SDValue(E, 0);
2074 
2075   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2076                                            VT, SrcAS, DestAS);
2077   createOperands(N, Ops);
2078 
2079   CSEMap.InsertNode(N, IP);
2080   InsertNode(N);
2081   return SDValue(N, 0);
2082 }
2083 
2084 SDValue SelectionDAG::getFreeze(SDValue V) {
2085   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2086 }
2087 
2088 /// getShiftAmountOperand - Return the specified value casted to
2089 /// the target's desired shift amount type.
2090 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2091   EVT OpTy = Op.getValueType();
2092   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2093   if (OpTy == ShTy || OpTy.isVector()) return Op;
2094 
2095   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2096 }
2097 
2098 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2099   SDLoc dl(Node);
2100   const TargetLowering &TLI = getTargetLoweringInfo();
2101   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2102   EVT VT = Node->getValueType(0);
2103   SDValue Tmp1 = Node->getOperand(0);
2104   SDValue Tmp2 = Node->getOperand(1);
2105   const MaybeAlign MA(Node->getConstantOperandVal(3));
2106 
2107   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2108                                Tmp2, MachinePointerInfo(V));
2109   SDValue VAList = VAListLoad;
2110 
2111   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2112     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2113                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2114 
2115     VAList =
2116         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2117                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2118   }
2119 
2120   // Increment the pointer, VAList, to the next vaarg
2121   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2122                  getConstant(getDataLayout().getTypeAllocSize(
2123                                                VT.getTypeForEVT(*getContext())),
2124                              dl, VAList.getValueType()));
2125   // Store the incremented VAList to the legalized pointer
2126   Tmp1 =
2127       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2128   // Load the actual argument out of the pointer VAList
2129   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2130 }
2131 
2132 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2133   SDLoc dl(Node);
2134   const TargetLowering &TLI = getTargetLoweringInfo();
2135   // This defaults to loading a pointer from the input and storing it to the
2136   // output, returning the chain.
2137   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2138   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2139   SDValue Tmp1 =
2140       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2141               Node->getOperand(2), MachinePointerInfo(VS));
2142   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2143                   MachinePointerInfo(VD));
2144 }
2145 
2146 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2147   const DataLayout &DL = getDataLayout();
2148   Type *Ty = VT.getTypeForEVT(*getContext());
2149   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2150 
2151   if (TLI->isTypeLegal(VT) || !VT.isVector())
2152     return RedAlign;
2153 
2154   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2155   const Align StackAlign = TFI->getStackAlign();
2156 
2157   // See if we can choose a smaller ABI alignment in cases where it's an
2158   // illegal vector type that will get broken down.
2159   if (RedAlign > StackAlign) {
2160     EVT IntermediateVT;
2161     MVT RegisterVT;
2162     unsigned NumIntermediates;
2163     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2164                                 NumIntermediates, RegisterVT);
2165     Ty = IntermediateVT.getTypeForEVT(*getContext());
2166     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2167     if (RedAlign2 < RedAlign)
2168       RedAlign = RedAlign2;
2169   }
2170 
2171   return RedAlign;
2172 }
2173 
2174 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2175   MachineFrameInfo &MFI = MF->getFrameInfo();
2176   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2177   int StackID = 0;
2178   if (Bytes.isScalable())
2179     StackID = TFI->getStackIDForScalableVectors();
2180   // The stack id gives an indication of whether the object is scalable or
2181   // not, so it's safe to pass in the minimum size here.
2182   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2183                                        false, nullptr, StackID);
2184   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2185 }
2186 
2187 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2188   Type *Ty = VT.getTypeForEVT(*getContext());
2189   Align StackAlign =
2190       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2191   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2192 }
2193 
2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2195   TypeSize VT1Size = VT1.getStoreSize();
2196   TypeSize VT2Size = VT2.getStoreSize();
2197   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2198          "Don't know how to choose the maximum size when creating a stack "
2199          "temporary");
2200   TypeSize Bytes =
2201       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2202 
2203   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2204   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2205   const DataLayout &DL = getDataLayout();
2206   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2207   return CreateStackTemporary(Bytes, Align);
2208 }
2209 
2210 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2211                                 ISD::CondCode Cond, const SDLoc &dl) {
2212   EVT OpVT = N1.getValueType();
2213 
2214   // These setcc operations always fold.
2215   switch (Cond) {
2216   default: break;
2217   case ISD::SETFALSE:
2218   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2219   case ISD::SETTRUE:
2220   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2221 
2222   case ISD::SETOEQ:
2223   case ISD::SETOGT:
2224   case ISD::SETOGE:
2225   case ISD::SETOLT:
2226   case ISD::SETOLE:
2227   case ISD::SETONE:
2228   case ISD::SETO:
2229   case ISD::SETUO:
2230   case ISD::SETUEQ:
2231   case ISD::SETUNE:
2232     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2233     break;
2234   }
2235 
2236   if (OpVT.isInteger()) {
2237     // For EQ and NE, we can always pick a value for the undef to make the
2238     // predicate pass or fail, so we can return undef.
2239     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2240     // icmp eq/ne X, undef -> undef.
2241     if ((N1.isUndef() || N2.isUndef()) &&
2242         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2243       return getUNDEF(VT);
2244 
2245     // If both operands are undef, we can return undef for int comparison.
2246     // icmp undef, undef -> undef.
2247     if (N1.isUndef() && N2.isUndef())
2248       return getUNDEF(VT);
2249 
2250     // icmp X, X -> true/false
2251     // icmp X, undef -> true/false because undef could be X.
2252     if (N1 == N2)
2253       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2254   }
2255 
2256   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2257     const APInt &C2 = N2C->getAPIntValue();
2258     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2259       const APInt &C1 = N1C->getAPIntValue();
2260 
2261       switch (Cond) {
2262       default: llvm_unreachable("Unknown integer setcc!");
2263       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2264       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2265       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2266       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2267       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2268       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2269       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2270       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2271       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2272       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2273       }
2274     }
2275   }
2276 
2277   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2278   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2279 
2280   if (N1CFP && N2CFP) {
2281     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2282     switch (Cond) {
2283     default: break;
2284     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2285                         return getUNDEF(VT);
2286                       LLVM_FALLTHROUGH;
2287     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2288                                              OpVT);
2289     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2290                         return getUNDEF(VT);
2291                       LLVM_FALLTHROUGH;
2292     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2293                                              R==APFloat::cmpLessThan, dl, VT,
2294                                              OpVT);
2295     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2296                         return getUNDEF(VT);
2297                       LLVM_FALLTHROUGH;
2298     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2299                                              OpVT);
2300     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2301                         return getUNDEF(VT);
2302                       LLVM_FALLTHROUGH;
2303     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2304                                              VT, OpVT);
2305     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2306                         return getUNDEF(VT);
2307                       LLVM_FALLTHROUGH;
2308     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2309                                              R==APFloat::cmpEqual, dl, VT,
2310                                              OpVT);
2311     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2312                         return getUNDEF(VT);
2313                       LLVM_FALLTHROUGH;
2314     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2315                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2316     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2317                                              OpVT);
2318     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2319                                              OpVT);
2320     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2321                                              R==APFloat::cmpEqual, dl, VT,
2322                                              OpVT);
2323     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2324                                              OpVT);
2325     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2326                                              R==APFloat::cmpLessThan, dl, VT,
2327                                              OpVT);
2328     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2329                                              R==APFloat::cmpUnordered, dl, VT,
2330                                              OpVT);
2331     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2332                                              VT, OpVT);
2333     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2334                                              OpVT);
2335     }
2336   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2337     // Ensure that the constant occurs on the RHS.
2338     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2339     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2340       return SDValue();
2341     return getSetCC(dl, VT, N2, N1, SwappedCond);
2342   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2343              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2344     // If an operand is known to be a nan (or undef that could be a nan), we can
2345     // fold it.
2346     // Choosing NaN for the undef will always make unordered comparison succeed
2347     // and ordered comparison fails.
2348     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2349     switch (ISD::getUnorderedFlavor(Cond)) {
2350     default:
2351       llvm_unreachable("Unknown flavor!");
2352     case 0: // Known false.
2353       return getBoolConstant(false, dl, VT, OpVT);
2354     case 1: // Known true.
2355       return getBoolConstant(true, dl, VT, OpVT);
2356     case 2: // Undefined.
2357       return getUNDEF(VT);
2358     }
2359   }
2360 
2361   // Could not fold it.
2362   return SDValue();
2363 }
2364 
2365 /// See if the specified operand can be simplified with the knowledge that only
2366 /// the bits specified by DemandedBits are used.
2367 /// TODO: really we should be making this into the DAG equivalent of
2368 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2369 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2370   EVT VT = V.getValueType();
2371 
2372   if (VT.isScalableVector())
2373     return SDValue();
2374 
2375   APInt DemandedElts = VT.isVector()
2376                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2377                            : APInt(1, 1);
2378   return GetDemandedBits(V, DemandedBits, DemandedElts);
2379 }
2380 
2381 /// See if the specified operand can be simplified with the knowledge that only
2382 /// the bits specified by DemandedBits are used in the elements specified by
2383 /// DemandedElts.
2384 /// TODO: really we should be making this into the DAG equivalent of
2385 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2386 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2387                                       const APInt &DemandedElts) {
2388   switch (V.getOpcode()) {
2389   default:
2390     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2391                                                 *this, 0);
2392   case ISD::Constant: {
2393     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2394     APInt NewVal = CVal & DemandedBits;
2395     if (NewVal != CVal)
2396       return getConstant(NewVal, SDLoc(V), V.getValueType());
2397     break;
2398   }
2399   case ISD::SRL:
2400     // Only look at single-use SRLs.
2401     if (!V.getNode()->hasOneUse())
2402       break;
2403     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2404       // See if we can recursively simplify the LHS.
2405       unsigned Amt = RHSC->getZExtValue();
2406 
2407       // Watch out for shift count overflow though.
2408       if (Amt >= DemandedBits.getBitWidth())
2409         break;
2410       APInt SrcDemandedBits = DemandedBits << Amt;
2411       if (SDValue SimplifyLHS =
2412               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2413         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2414                        V.getOperand(1));
2415     }
2416     break;
2417   }
2418   return SDValue();
2419 }
2420 
2421 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2422 /// use this predicate to simplify operations downstream.
2423 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2424   unsigned BitWidth = Op.getScalarValueSizeInBits();
2425   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2426 }
2427 
2428 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2429 /// this predicate to simplify operations downstream.  Mask is known to be zero
2430 /// for bits that V cannot have.
2431 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2432                                      unsigned Depth) const {
2433   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2434 }
2435 
2436 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2437 /// DemandedElts.  We use this predicate to simplify operations downstream.
2438 /// Mask is known to be zero for bits that V cannot have.
2439 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2440                                      const APInt &DemandedElts,
2441                                      unsigned Depth) const {
2442   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2443 }
2444 
2445 /// Return true if the DemandedElts of the vector Op are all zero.  We
2446 /// use this predicate to simplify operations downstream.
2447 bool SelectionDAG::MaskedElementsAreZero(SDValue Op, const APInt &DemandedElts,
2448                                          unsigned Depth) const {
2449   unsigned BitWidth = Op.getScalarValueSizeInBits();
2450   APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
2451   return MaskedValueIsZero(Op, DemandedBits, DemandedElts, Depth);
2452 }
2453 
2454 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2455 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2456                                         unsigned Depth) const {
2457   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2458 }
2459 
2460 /// isSplatValue - Return true if the vector V has the same value
2461 /// across all DemandedElts. For scalable vectors it does not make
2462 /// sense to specify which elements are demanded or undefined, therefore
2463 /// they are simply ignored.
2464 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2465                                 APInt &UndefElts, unsigned Depth) {
2466   EVT VT = V.getValueType();
2467   assert(VT.isVector() && "Vector type expected");
2468 
2469   if (!VT.isScalableVector() && !DemandedElts)
2470     return false; // No demanded elts, better to assume we don't know anything.
2471 
2472   if (Depth >= MaxRecursionDepth)
2473     return false; // Limit search depth.
2474 
2475   // Deal with some common cases here that work for both fixed and scalable
2476   // vector types.
2477   switch (V.getOpcode()) {
2478   case ISD::SPLAT_VECTOR:
2479     UndefElts = V.getOperand(0).isUndef()
2480                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2481                     : APInt(DemandedElts.getBitWidth(), 0);
2482     return true;
2483   case ISD::ADD:
2484   case ISD::SUB:
2485   case ISD::AND:
2486   case ISD::XOR:
2487   case ISD::OR: {
2488     APInt UndefLHS, UndefRHS;
2489     SDValue LHS = V.getOperand(0);
2490     SDValue RHS = V.getOperand(1);
2491     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2492         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2493       UndefElts = UndefLHS | UndefRHS;
2494       return true;
2495     }
2496     return false;
2497   }
2498   case ISD::ABS:
2499   case ISD::TRUNCATE:
2500   case ISD::SIGN_EXTEND:
2501   case ISD::ZERO_EXTEND:
2502     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2503   }
2504 
2505   // We don't support other cases than those above for scalable vectors at
2506   // the moment.
2507   if (VT.isScalableVector())
2508     return false;
2509 
2510   unsigned NumElts = VT.getVectorNumElements();
2511   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2512   UndefElts = APInt::getNullValue(NumElts);
2513 
2514   switch (V.getOpcode()) {
2515   case ISD::BUILD_VECTOR: {
2516     SDValue Scl;
2517     for (unsigned i = 0; i != NumElts; ++i) {
2518       SDValue Op = V.getOperand(i);
2519       if (Op.isUndef()) {
2520         UndefElts.setBit(i);
2521         continue;
2522       }
2523       if (!DemandedElts[i])
2524         continue;
2525       if (Scl && Scl != Op)
2526         return false;
2527       Scl = Op;
2528     }
2529     return true;
2530   }
2531   case ISD::VECTOR_SHUFFLE: {
2532     // Check if this is a shuffle node doing a splat.
2533     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2534     int SplatIndex = -1;
2535     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2536     for (int i = 0; i != (int)NumElts; ++i) {
2537       int M = Mask[i];
2538       if (M < 0) {
2539         UndefElts.setBit(i);
2540         continue;
2541       }
2542       if (!DemandedElts[i])
2543         continue;
2544       if (0 <= SplatIndex && SplatIndex != M)
2545         return false;
2546       SplatIndex = M;
2547     }
2548     return true;
2549   }
2550   case ISD::EXTRACT_SUBVECTOR: {
2551     // Offset the demanded elts by the subvector index.
2552     SDValue Src = V.getOperand(0);
2553     // We don't support scalable vectors at the moment.
2554     if (Src.getValueType().isScalableVector())
2555       return false;
2556     uint64_t Idx = V.getConstantOperandVal(1);
2557     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2558     APInt UndefSrcElts;
2559     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2560     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2561       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2562       return true;
2563     }
2564     break;
2565   }
2566   }
2567 
2568   return false;
2569 }
2570 
2571 /// Helper wrapper to main isSplatValue function.
2572 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2573   EVT VT = V.getValueType();
2574   assert(VT.isVector() && "Vector type expected");
2575 
2576   APInt UndefElts;
2577   APInt DemandedElts;
2578 
2579   // For now we don't support this with scalable vectors.
2580   if (!VT.isScalableVector())
2581     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2582   return isSplatValue(V, DemandedElts, UndefElts) &&
2583          (AllowUndefs || !UndefElts);
2584 }
2585 
2586 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2587   V = peekThroughExtractSubvectors(V);
2588 
2589   EVT VT = V.getValueType();
2590   unsigned Opcode = V.getOpcode();
2591   switch (Opcode) {
2592   default: {
2593     APInt UndefElts;
2594     APInt DemandedElts;
2595 
2596     if (!VT.isScalableVector())
2597       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2598 
2599     if (isSplatValue(V, DemandedElts, UndefElts)) {
2600       if (VT.isScalableVector()) {
2601         // DemandedElts and UndefElts are ignored for scalable vectors, since
2602         // the only supported cases are SPLAT_VECTOR nodes.
2603         SplatIdx = 0;
2604       } else {
2605         // Handle case where all demanded elements are UNDEF.
2606         if (DemandedElts.isSubsetOf(UndefElts)) {
2607           SplatIdx = 0;
2608           return getUNDEF(VT);
2609         }
2610         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2611       }
2612       return V;
2613     }
2614     break;
2615   }
2616   case ISD::SPLAT_VECTOR:
2617     SplatIdx = 0;
2618     return V;
2619   case ISD::VECTOR_SHUFFLE: {
2620     if (VT.isScalableVector())
2621       return SDValue();
2622 
2623     // Check if this is a shuffle node doing a splat.
2624     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2625     // getTargetVShiftNode currently struggles without the splat source.
2626     auto *SVN = cast<ShuffleVectorSDNode>(V);
2627     if (!SVN->isSplat())
2628       break;
2629     int Idx = SVN->getSplatIndex();
2630     int NumElts = V.getValueType().getVectorNumElements();
2631     SplatIdx = Idx % NumElts;
2632     return V.getOperand(Idx / NumElts);
2633   }
2634   }
2635 
2636   return SDValue();
2637 }
2638 
2639 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2640   int SplatIdx;
2641   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2642     EVT SVT = SrcVector.getValueType().getScalarType();
2643     EVT LegalSVT = SVT;
2644     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2645       if (!SVT.isInteger())
2646         return SDValue();
2647       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2648       if (LegalSVT.bitsLT(SVT))
2649         return SDValue();
2650     }
2651     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2652                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2653   }
2654   return SDValue();
2655 }
2656 
2657 const APInt *
2658 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2659                                           const APInt &DemandedElts) const {
2660   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2661           V.getOpcode() == ISD::SRA) &&
2662          "Unknown shift node");
2663   unsigned BitWidth = V.getScalarValueSizeInBits();
2664   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2665     // Shifting more than the bitwidth is not valid.
2666     const APInt &ShAmt = SA->getAPIntValue();
2667     if (ShAmt.ult(BitWidth))
2668       return &ShAmt;
2669   }
2670   return nullptr;
2671 }
2672 
2673 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2674     SDValue V, const APInt &DemandedElts) const {
2675   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2676           V.getOpcode() == ISD::SRA) &&
2677          "Unknown shift node");
2678   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2679     return ValidAmt;
2680   unsigned BitWidth = V.getScalarValueSizeInBits();
2681   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2682   if (!BV)
2683     return nullptr;
2684   const APInt *MinShAmt = nullptr;
2685   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2686     if (!DemandedElts[i])
2687       continue;
2688     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2689     if (!SA)
2690       return nullptr;
2691     // Shifting more than the bitwidth is not valid.
2692     const APInt &ShAmt = SA->getAPIntValue();
2693     if (ShAmt.uge(BitWidth))
2694       return nullptr;
2695     if (MinShAmt && MinShAmt->ule(ShAmt))
2696       continue;
2697     MinShAmt = &ShAmt;
2698   }
2699   return MinShAmt;
2700 }
2701 
2702 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2703     SDValue V, const APInt &DemandedElts) const {
2704   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2705           V.getOpcode() == ISD::SRA) &&
2706          "Unknown shift node");
2707   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2708     return ValidAmt;
2709   unsigned BitWidth = V.getScalarValueSizeInBits();
2710   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2711   if (!BV)
2712     return nullptr;
2713   const APInt *MaxShAmt = nullptr;
2714   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2715     if (!DemandedElts[i])
2716       continue;
2717     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2718     if (!SA)
2719       return nullptr;
2720     // Shifting more than the bitwidth is not valid.
2721     const APInt &ShAmt = SA->getAPIntValue();
2722     if (ShAmt.uge(BitWidth))
2723       return nullptr;
2724     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2725       continue;
2726     MaxShAmt = &ShAmt;
2727   }
2728   return MaxShAmt;
2729 }
2730 
2731 /// Determine which bits of Op are known to be either zero or one and return
2732 /// them in Known. For vectors, the known bits are those that are shared by
2733 /// every vector element.
2734 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2735   EVT VT = Op.getValueType();
2736 
2737   // TOOD: Until we have a plan for how to represent demanded elements for
2738   // scalable vectors, we can just bail out for now.
2739   if (Op.getValueType().isScalableVector()) {
2740     unsigned BitWidth = Op.getScalarValueSizeInBits();
2741     return KnownBits(BitWidth);
2742   }
2743 
2744   APInt DemandedElts = VT.isVector()
2745                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2746                            : APInt(1, 1);
2747   return computeKnownBits(Op, DemandedElts, Depth);
2748 }
2749 
2750 /// Determine which bits of Op are known to be either zero or one and return
2751 /// them in Known. The DemandedElts argument allows us to only collect the known
2752 /// bits that are shared by the requested vector elements.
2753 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2754                                          unsigned Depth) const {
2755   unsigned BitWidth = Op.getScalarValueSizeInBits();
2756 
2757   KnownBits Known(BitWidth);   // Don't know anything.
2758 
2759   // TOOD: Until we have a plan for how to represent demanded elements for
2760   // scalable vectors, we can just bail out for now.
2761   if (Op.getValueType().isScalableVector())
2762     return Known;
2763 
2764   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2765     // We know all of the bits for a constant!
2766     return KnownBits::makeConstant(C->getAPIntValue());
2767   }
2768   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2769     // We know all of the bits for a constant fp!
2770     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2771   }
2772 
2773   if (Depth >= MaxRecursionDepth)
2774     return Known;  // Limit search depth.
2775 
2776   KnownBits Known2;
2777   unsigned NumElts = DemandedElts.getBitWidth();
2778   assert((!Op.getValueType().isVector() ||
2779           NumElts == Op.getValueType().getVectorNumElements()) &&
2780          "Unexpected vector size");
2781 
2782   if (!DemandedElts)
2783     return Known;  // No demanded elts, better to assume we don't know anything.
2784 
2785   unsigned Opcode = Op.getOpcode();
2786   switch (Opcode) {
2787   case ISD::BUILD_VECTOR:
2788     // Collect the known bits that are shared by every demanded vector element.
2789     Known.Zero.setAllBits(); Known.One.setAllBits();
2790     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2791       if (!DemandedElts[i])
2792         continue;
2793 
2794       SDValue SrcOp = Op.getOperand(i);
2795       Known2 = computeKnownBits(SrcOp, Depth + 1);
2796 
2797       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2798       if (SrcOp.getValueSizeInBits() != BitWidth) {
2799         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2800                "Expected BUILD_VECTOR implicit truncation");
2801         Known2 = Known2.trunc(BitWidth);
2802       }
2803 
2804       // Known bits are the values that are shared by every demanded element.
2805       Known = KnownBits::commonBits(Known, Known2);
2806 
2807       // If we don't know any bits, early out.
2808       if (Known.isUnknown())
2809         break;
2810     }
2811     break;
2812   case ISD::VECTOR_SHUFFLE: {
2813     // Collect the known bits that are shared by every vector element referenced
2814     // by the shuffle.
2815     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2816     Known.Zero.setAllBits(); Known.One.setAllBits();
2817     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2818     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2819     for (unsigned i = 0; i != NumElts; ++i) {
2820       if (!DemandedElts[i])
2821         continue;
2822 
2823       int M = SVN->getMaskElt(i);
2824       if (M < 0) {
2825         // For UNDEF elements, we don't know anything about the common state of
2826         // the shuffle result.
2827         Known.resetAll();
2828         DemandedLHS.clearAllBits();
2829         DemandedRHS.clearAllBits();
2830         break;
2831       }
2832 
2833       if ((unsigned)M < NumElts)
2834         DemandedLHS.setBit((unsigned)M % NumElts);
2835       else
2836         DemandedRHS.setBit((unsigned)M % NumElts);
2837     }
2838     // Known bits are the values that are shared by every demanded element.
2839     if (!!DemandedLHS) {
2840       SDValue LHS = Op.getOperand(0);
2841       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2842       Known = KnownBits::commonBits(Known, Known2);
2843     }
2844     // If we don't know any bits, early out.
2845     if (Known.isUnknown())
2846       break;
2847     if (!!DemandedRHS) {
2848       SDValue RHS = Op.getOperand(1);
2849       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2850       Known = KnownBits::commonBits(Known, Known2);
2851     }
2852     break;
2853   }
2854   case ISD::CONCAT_VECTORS: {
2855     // Split DemandedElts and test each of the demanded subvectors.
2856     Known.Zero.setAllBits(); Known.One.setAllBits();
2857     EVT SubVectorVT = Op.getOperand(0).getValueType();
2858     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2859     unsigned NumSubVectors = Op.getNumOperands();
2860     for (unsigned i = 0; i != NumSubVectors; ++i) {
2861       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2862       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2863       if (!!DemandedSub) {
2864         SDValue Sub = Op.getOperand(i);
2865         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2866         Known = KnownBits::commonBits(Known, Known2);
2867       }
2868       // If we don't know any bits, early out.
2869       if (Known.isUnknown())
2870         break;
2871     }
2872     break;
2873   }
2874   case ISD::INSERT_SUBVECTOR: {
2875     // Demand any elements from the subvector and the remainder from the src its
2876     // inserted into.
2877     SDValue Src = Op.getOperand(0);
2878     SDValue Sub = Op.getOperand(1);
2879     uint64_t Idx = Op.getConstantOperandVal(2);
2880     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2881     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2882     APInt DemandedSrcElts = DemandedElts;
2883     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2884 
2885     Known.One.setAllBits();
2886     Known.Zero.setAllBits();
2887     if (!!DemandedSubElts) {
2888       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2889       if (Known.isUnknown())
2890         break; // early-out.
2891     }
2892     if (!!DemandedSrcElts) {
2893       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2894       Known = KnownBits::commonBits(Known, Known2);
2895     }
2896     break;
2897   }
2898   case ISD::EXTRACT_SUBVECTOR: {
2899     // Offset the demanded elts by the subvector index.
2900     SDValue Src = Op.getOperand(0);
2901     // Bail until we can represent demanded elements for scalable vectors.
2902     if (Src.getValueType().isScalableVector())
2903       break;
2904     uint64_t Idx = Op.getConstantOperandVal(1);
2905     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2906     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2907     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2908     break;
2909   }
2910   case ISD::SCALAR_TO_VECTOR: {
2911     // We know about scalar_to_vector as much as we know about it source,
2912     // which becomes the first element of otherwise unknown vector.
2913     if (DemandedElts != 1)
2914       break;
2915 
2916     SDValue N0 = Op.getOperand(0);
2917     Known = computeKnownBits(N0, Depth + 1);
2918     if (N0.getValueSizeInBits() != BitWidth)
2919       Known = Known.trunc(BitWidth);
2920 
2921     break;
2922   }
2923   case ISD::BITCAST: {
2924     SDValue N0 = Op.getOperand(0);
2925     EVT SubVT = N0.getValueType();
2926     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2927 
2928     // Ignore bitcasts from unsupported types.
2929     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2930       break;
2931 
2932     // Fast handling of 'identity' bitcasts.
2933     if (BitWidth == SubBitWidth) {
2934       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2935       break;
2936     }
2937 
2938     bool IsLE = getDataLayout().isLittleEndian();
2939 
2940     // Bitcast 'small element' vector to 'large element' scalar/vector.
2941     if ((BitWidth % SubBitWidth) == 0) {
2942       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2943 
2944       // Collect known bits for the (larger) output by collecting the known
2945       // bits from each set of sub elements and shift these into place.
2946       // We need to separately call computeKnownBits for each set of
2947       // sub elements as the knownbits for each is likely to be different.
2948       unsigned SubScale = BitWidth / SubBitWidth;
2949       APInt SubDemandedElts(NumElts * SubScale, 0);
2950       for (unsigned i = 0; i != NumElts; ++i)
2951         if (DemandedElts[i])
2952           SubDemandedElts.setBit(i * SubScale);
2953 
2954       for (unsigned i = 0; i != SubScale; ++i) {
2955         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2956                          Depth + 1);
2957         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2958         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2959         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2960       }
2961     }
2962 
2963     // Bitcast 'large element' scalar/vector to 'small element' vector.
2964     if ((SubBitWidth % BitWidth) == 0) {
2965       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2966 
2967       // Collect known bits for the (smaller) output by collecting the known
2968       // bits from the overlapping larger input elements and extracting the
2969       // sub sections we actually care about.
2970       unsigned SubScale = SubBitWidth / BitWidth;
2971       APInt SubDemandedElts(NumElts / SubScale, 0);
2972       for (unsigned i = 0; i != NumElts; ++i)
2973         if (DemandedElts[i])
2974           SubDemandedElts.setBit(i / SubScale);
2975 
2976       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2977 
2978       Known.Zero.setAllBits(); Known.One.setAllBits();
2979       for (unsigned i = 0; i != NumElts; ++i)
2980         if (DemandedElts[i]) {
2981           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2982           unsigned Offset = (Shifts % SubScale) * BitWidth;
2983           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2984           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2985           // If we don't know any bits, early out.
2986           if (Known.isUnknown())
2987             break;
2988         }
2989     }
2990     break;
2991   }
2992   case ISD::AND:
2993     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2994     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2995 
2996     Known &= Known2;
2997     break;
2998   case ISD::OR:
2999     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3000     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3001 
3002     Known |= Known2;
3003     break;
3004   case ISD::XOR:
3005     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3006     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3007 
3008     Known ^= Known2;
3009     break;
3010   case ISD::MUL: {
3011     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3012     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3013     Known = KnownBits::mul(Known, Known2);
3014     break;
3015   }
3016   case ISD::MULHU: {
3017     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3018     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3019     Known = KnownBits::mulhu(Known, Known2);
3020     break;
3021   }
3022   case ISD::MULHS: {
3023     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3024     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3025     Known = KnownBits::mulhs(Known, Known2);
3026     break;
3027   }
3028   case ISD::UMUL_LOHI: {
3029     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3030     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3031     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3032     if (Op.getResNo() == 0)
3033       Known = KnownBits::mul(Known, Known2);
3034     else
3035       Known = KnownBits::mulhu(Known, Known2);
3036     break;
3037   }
3038   case ISD::SMUL_LOHI: {
3039     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3040     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3041     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3042     if (Op.getResNo() == 0)
3043       Known = KnownBits::mul(Known, Known2);
3044     else
3045       Known = KnownBits::mulhs(Known, Known2);
3046     break;
3047   }
3048   case ISD::UDIV: {
3049     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3050     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3051     Known = KnownBits::udiv(Known, Known2);
3052     break;
3053   }
3054   case ISD::SELECT:
3055   case ISD::VSELECT:
3056     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3057     // If we don't know any bits, early out.
3058     if (Known.isUnknown())
3059       break;
3060     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3061 
3062     // Only known if known in both the LHS and RHS.
3063     Known = KnownBits::commonBits(Known, Known2);
3064     break;
3065   case ISD::SELECT_CC:
3066     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3067     // If we don't know any bits, early out.
3068     if (Known.isUnknown())
3069       break;
3070     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3071 
3072     // Only known if known in both the LHS and RHS.
3073     Known = KnownBits::commonBits(Known, Known2);
3074     break;
3075   case ISD::SMULO:
3076   case ISD::UMULO:
3077     if (Op.getResNo() != 1)
3078       break;
3079     // The boolean result conforms to getBooleanContents.
3080     // If we know the result of a setcc has the top bits zero, use this info.
3081     // We know that we have an integer-based boolean since these operations
3082     // are only available for integer.
3083     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3084             TargetLowering::ZeroOrOneBooleanContent &&
3085         BitWidth > 1)
3086       Known.Zero.setBitsFrom(1);
3087     break;
3088   case ISD::SETCC:
3089   case ISD::STRICT_FSETCC:
3090   case ISD::STRICT_FSETCCS: {
3091     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3092     // If we know the result of a setcc has the top bits zero, use this info.
3093     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3094             TargetLowering::ZeroOrOneBooleanContent &&
3095         BitWidth > 1)
3096       Known.Zero.setBitsFrom(1);
3097     break;
3098   }
3099   case ISD::SHL:
3100     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3101     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3102     Known = KnownBits::shl(Known, Known2);
3103 
3104     // Minimum shift low bits are known zero.
3105     if (const APInt *ShMinAmt =
3106             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3107       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3108     break;
3109   case ISD::SRL:
3110     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3111     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3112     Known = KnownBits::lshr(Known, Known2);
3113 
3114     // Minimum shift high bits are known zero.
3115     if (const APInt *ShMinAmt =
3116             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3117       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3118     break;
3119   case ISD::SRA:
3120     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3121     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3122     Known = KnownBits::ashr(Known, Known2);
3123     // TODO: Add minimum shift high known sign bits.
3124     break;
3125   case ISD::FSHL:
3126   case ISD::FSHR:
3127     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3128       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3129 
3130       // For fshl, 0-shift returns the 1st arg.
3131       // For fshr, 0-shift returns the 2nd arg.
3132       if (Amt == 0) {
3133         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3134                                  DemandedElts, Depth + 1);
3135         break;
3136       }
3137 
3138       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3139       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3140       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3141       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3142       if (Opcode == ISD::FSHL) {
3143         Known.One <<= Amt;
3144         Known.Zero <<= Amt;
3145         Known2.One.lshrInPlace(BitWidth - Amt);
3146         Known2.Zero.lshrInPlace(BitWidth - Amt);
3147       } else {
3148         Known.One <<= BitWidth - Amt;
3149         Known.Zero <<= BitWidth - Amt;
3150         Known2.One.lshrInPlace(Amt);
3151         Known2.Zero.lshrInPlace(Amt);
3152       }
3153       Known.One |= Known2.One;
3154       Known.Zero |= Known2.Zero;
3155     }
3156     break;
3157   case ISD::SIGN_EXTEND_INREG: {
3158     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3159     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3160     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3161     break;
3162   }
3163   case ISD::CTTZ:
3164   case ISD::CTTZ_ZERO_UNDEF: {
3165     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3166     // If we have a known 1, its position is our upper bound.
3167     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3168     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3169     Known.Zero.setBitsFrom(LowBits);
3170     break;
3171   }
3172   case ISD::CTLZ:
3173   case ISD::CTLZ_ZERO_UNDEF: {
3174     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3175     // If we have a known 1, its position is our upper bound.
3176     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3177     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3178     Known.Zero.setBitsFrom(LowBits);
3179     break;
3180   }
3181   case ISD::CTPOP: {
3182     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3183     // If we know some of the bits are zero, they can't be one.
3184     unsigned PossibleOnes = Known2.countMaxPopulation();
3185     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3186     break;
3187   }
3188   case ISD::PARITY: {
3189     // Parity returns 0 everywhere but the LSB.
3190     Known.Zero.setBitsFrom(1);
3191     break;
3192   }
3193   case ISD::LOAD: {
3194     LoadSDNode *LD = cast<LoadSDNode>(Op);
3195     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3196     if (ISD::isNON_EXTLoad(LD) && Cst) {
3197       // Determine any common known bits from the loaded constant pool value.
3198       Type *CstTy = Cst->getType();
3199       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3200         // If its a vector splat, then we can (quickly) reuse the scalar path.
3201         // NOTE: We assume all elements match and none are UNDEF.
3202         if (CstTy->isVectorTy()) {
3203           if (const Constant *Splat = Cst->getSplatValue()) {
3204             Cst = Splat;
3205             CstTy = Cst->getType();
3206           }
3207         }
3208         // TODO - do we need to handle different bitwidths?
3209         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3210           // Iterate across all vector elements finding common known bits.
3211           Known.One.setAllBits();
3212           Known.Zero.setAllBits();
3213           for (unsigned i = 0; i != NumElts; ++i) {
3214             if (!DemandedElts[i])
3215               continue;
3216             if (Constant *Elt = Cst->getAggregateElement(i)) {
3217               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3218                 const APInt &Value = CInt->getValue();
3219                 Known.One &= Value;
3220                 Known.Zero &= ~Value;
3221                 continue;
3222               }
3223               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3224                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3225                 Known.One &= Value;
3226                 Known.Zero &= ~Value;
3227                 continue;
3228               }
3229             }
3230             Known.One.clearAllBits();
3231             Known.Zero.clearAllBits();
3232             break;
3233           }
3234         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3235           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3236             Known = KnownBits::makeConstant(CInt->getValue());
3237           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3238             Known =
3239                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3240           }
3241         }
3242       }
3243     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3244       // If this is a ZEXTLoad and we are looking at the loaded value.
3245       EVT VT = LD->getMemoryVT();
3246       unsigned MemBits = VT.getScalarSizeInBits();
3247       Known.Zero.setBitsFrom(MemBits);
3248     } else if (const MDNode *Ranges = LD->getRanges()) {
3249       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3250         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3251     }
3252     break;
3253   }
3254   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3255     EVT InVT = Op.getOperand(0).getValueType();
3256     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3257     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3258     Known = Known.zext(BitWidth);
3259     break;
3260   }
3261   case ISD::ZERO_EXTEND: {
3262     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3263     Known = Known.zext(BitWidth);
3264     break;
3265   }
3266   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3267     EVT InVT = Op.getOperand(0).getValueType();
3268     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3269     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3270     // If the sign bit is known to be zero or one, then sext will extend
3271     // it to the top bits, else it will just zext.
3272     Known = Known.sext(BitWidth);
3273     break;
3274   }
3275   case ISD::SIGN_EXTEND: {
3276     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3277     // If the sign bit is known to be zero or one, then sext will extend
3278     // it to the top bits, else it will just zext.
3279     Known = Known.sext(BitWidth);
3280     break;
3281   }
3282   case ISD::ANY_EXTEND_VECTOR_INREG: {
3283     EVT InVT = Op.getOperand(0).getValueType();
3284     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3285     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3286     Known = Known.anyext(BitWidth);
3287     break;
3288   }
3289   case ISD::ANY_EXTEND: {
3290     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3291     Known = Known.anyext(BitWidth);
3292     break;
3293   }
3294   case ISD::TRUNCATE: {
3295     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3296     Known = Known.trunc(BitWidth);
3297     break;
3298   }
3299   case ISD::AssertZext: {
3300     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3301     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3302     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3303     Known.Zero |= (~InMask);
3304     Known.One  &= (~Known.Zero);
3305     break;
3306   }
3307   case ISD::AssertAlign: {
3308     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3309     assert(LogOfAlign != 0);
3310     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3311     // well as clearing one bits.
3312     Known.Zero.setLowBits(LogOfAlign);
3313     Known.One.clearLowBits(LogOfAlign);
3314     break;
3315   }
3316   case ISD::FGETSIGN:
3317     // All bits are zero except the low bit.
3318     Known.Zero.setBitsFrom(1);
3319     break;
3320   case ISD::USUBO:
3321   case ISD::SSUBO:
3322     if (Op.getResNo() == 1) {
3323       // If we know the result of a setcc has the top bits zero, use this info.
3324       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3325               TargetLowering::ZeroOrOneBooleanContent &&
3326           BitWidth > 1)
3327         Known.Zero.setBitsFrom(1);
3328       break;
3329     }
3330     LLVM_FALLTHROUGH;
3331   case ISD::SUB:
3332   case ISD::SUBC: {
3333     assert(Op.getResNo() == 0 &&
3334            "We only compute knownbits for the difference here.");
3335 
3336     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3338     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3339                                         Known, Known2);
3340     break;
3341   }
3342   case ISD::UADDO:
3343   case ISD::SADDO:
3344   case ISD::ADDCARRY:
3345     if (Op.getResNo() == 1) {
3346       // If we know the result of a setcc has the top bits zero, use this info.
3347       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3348               TargetLowering::ZeroOrOneBooleanContent &&
3349           BitWidth > 1)
3350         Known.Zero.setBitsFrom(1);
3351       break;
3352     }
3353     LLVM_FALLTHROUGH;
3354   case ISD::ADD:
3355   case ISD::ADDC:
3356   case ISD::ADDE: {
3357     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3358 
3359     // With ADDE and ADDCARRY, a carry bit may be added in.
3360     KnownBits Carry(1);
3361     if (Opcode == ISD::ADDE)
3362       // Can't track carry from glue, set carry to unknown.
3363       Carry.resetAll();
3364     else if (Opcode == ISD::ADDCARRY)
3365       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3366       // the trouble (how often will we find a known carry bit). And I haven't
3367       // tested this very much yet, but something like this might work:
3368       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3369       //   Carry = Carry.zextOrTrunc(1, false);
3370       Carry.resetAll();
3371     else
3372       Carry.setAllZero();
3373 
3374     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3375     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3376     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3377     break;
3378   }
3379   case ISD::SREM: {
3380     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3381     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3382     Known = KnownBits::srem(Known, Known2);
3383     break;
3384   }
3385   case ISD::UREM: {
3386     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3387     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3388     Known = KnownBits::urem(Known, Known2);
3389     break;
3390   }
3391   case ISD::EXTRACT_ELEMENT: {
3392     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3393     const unsigned Index = Op.getConstantOperandVal(1);
3394     const unsigned EltBitWidth = Op.getValueSizeInBits();
3395 
3396     // Remove low part of known bits mask
3397     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3398     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3399 
3400     // Remove high part of known bit mask
3401     Known = Known.trunc(EltBitWidth);
3402     break;
3403   }
3404   case ISD::EXTRACT_VECTOR_ELT: {
3405     SDValue InVec = Op.getOperand(0);
3406     SDValue EltNo = Op.getOperand(1);
3407     EVT VecVT = InVec.getValueType();
3408     // computeKnownBits not yet implemented for scalable vectors.
3409     if (VecVT.isScalableVector())
3410       break;
3411     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3412     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3413 
3414     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3415     // anything about the extended bits.
3416     if (BitWidth > EltBitWidth)
3417       Known = Known.trunc(EltBitWidth);
3418 
3419     // If we know the element index, just demand that vector element, else for
3420     // an unknown element index, ignore DemandedElts and demand them all.
3421     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3422     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3423     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3424       DemandedSrcElts =
3425           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3426 
3427     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3428     if (BitWidth > EltBitWidth)
3429       Known = Known.anyext(BitWidth);
3430     break;
3431   }
3432   case ISD::INSERT_VECTOR_ELT: {
3433     // If we know the element index, split the demand between the
3434     // source vector and the inserted element, otherwise assume we need
3435     // the original demanded vector elements and the value.
3436     SDValue InVec = Op.getOperand(0);
3437     SDValue InVal = Op.getOperand(1);
3438     SDValue EltNo = Op.getOperand(2);
3439     bool DemandedVal = true;
3440     APInt DemandedVecElts = DemandedElts;
3441     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3442     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3443       unsigned EltIdx = CEltNo->getZExtValue();
3444       DemandedVal = !!DemandedElts[EltIdx];
3445       DemandedVecElts.clearBit(EltIdx);
3446     }
3447     Known.One.setAllBits();
3448     Known.Zero.setAllBits();
3449     if (DemandedVal) {
3450       Known2 = computeKnownBits(InVal, Depth + 1);
3451       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3452     }
3453     if (!!DemandedVecElts) {
3454       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3455       Known = KnownBits::commonBits(Known, Known2);
3456     }
3457     break;
3458   }
3459   case ISD::BITREVERSE: {
3460     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3461     Known = Known2.reverseBits();
3462     break;
3463   }
3464   case ISD::BSWAP: {
3465     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3466     Known = Known2.byteSwap();
3467     break;
3468   }
3469   case ISD::ABS: {
3470     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3471     Known = Known2.abs();
3472     break;
3473   }
3474   case ISD::USUBSAT: {
3475     // The result of usubsat will never be larger than the LHS.
3476     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3477     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3478     break;
3479   }
3480   case ISD::UMIN: {
3481     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3482     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3483     Known = KnownBits::umin(Known, Known2);
3484     break;
3485   }
3486   case ISD::UMAX: {
3487     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3488     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3489     Known = KnownBits::umax(Known, Known2);
3490     break;
3491   }
3492   case ISD::SMIN:
3493   case ISD::SMAX: {
3494     // If we have a clamp pattern, we know that the number of sign bits will be
3495     // the minimum of the clamp min/max range.
3496     bool IsMax = (Opcode == ISD::SMAX);
3497     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3498     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3499       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3500         CstHigh =
3501             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3502     if (CstLow && CstHigh) {
3503       if (!IsMax)
3504         std::swap(CstLow, CstHigh);
3505 
3506       const APInt &ValueLow = CstLow->getAPIntValue();
3507       const APInt &ValueHigh = CstHigh->getAPIntValue();
3508       if (ValueLow.sle(ValueHigh)) {
3509         unsigned LowSignBits = ValueLow.getNumSignBits();
3510         unsigned HighSignBits = ValueHigh.getNumSignBits();
3511         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3512         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3513           Known.One.setHighBits(MinSignBits);
3514           break;
3515         }
3516         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3517           Known.Zero.setHighBits(MinSignBits);
3518           break;
3519         }
3520       }
3521     }
3522 
3523     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3524     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3525     if (IsMax)
3526       Known = KnownBits::smax(Known, Known2);
3527     else
3528       Known = KnownBits::smin(Known, Known2);
3529     break;
3530   }
3531   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3532     if (Op.getResNo() == 1) {
3533       // The boolean result conforms to getBooleanContents.
3534       // If we know the result of a setcc has the top bits zero, use this info.
3535       // We know that we have an integer-based boolean since these operations
3536       // are only available for integer.
3537       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3538               TargetLowering::ZeroOrOneBooleanContent &&
3539           BitWidth > 1)
3540         Known.Zero.setBitsFrom(1);
3541       break;
3542     }
3543     LLVM_FALLTHROUGH;
3544   case ISD::ATOMIC_CMP_SWAP:
3545   case ISD::ATOMIC_SWAP:
3546   case ISD::ATOMIC_LOAD_ADD:
3547   case ISD::ATOMIC_LOAD_SUB:
3548   case ISD::ATOMIC_LOAD_AND:
3549   case ISD::ATOMIC_LOAD_CLR:
3550   case ISD::ATOMIC_LOAD_OR:
3551   case ISD::ATOMIC_LOAD_XOR:
3552   case ISD::ATOMIC_LOAD_NAND:
3553   case ISD::ATOMIC_LOAD_MIN:
3554   case ISD::ATOMIC_LOAD_MAX:
3555   case ISD::ATOMIC_LOAD_UMIN:
3556   case ISD::ATOMIC_LOAD_UMAX:
3557   case ISD::ATOMIC_LOAD: {
3558     unsigned MemBits =
3559         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3560     // If we are looking at the loaded value.
3561     if (Op.getResNo() == 0) {
3562       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3563         Known.Zero.setBitsFrom(MemBits);
3564     }
3565     break;
3566   }
3567   case ISD::FrameIndex:
3568   case ISD::TargetFrameIndex:
3569     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3570                                        Known, getMachineFunction());
3571     break;
3572 
3573   default:
3574     if (Opcode < ISD::BUILTIN_OP_END)
3575       break;
3576     LLVM_FALLTHROUGH;
3577   case ISD::INTRINSIC_WO_CHAIN:
3578   case ISD::INTRINSIC_W_CHAIN:
3579   case ISD::INTRINSIC_VOID:
3580     // Allow the target to implement this method for its nodes.
3581     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3582     break;
3583   }
3584 
3585   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3586   return Known;
3587 }
3588 
3589 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3590                                                              SDValue N1) const {
3591   // X + 0 never overflow
3592   if (isNullConstant(N1))
3593     return OFK_Never;
3594 
3595   KnownBits N1Known = computeKnownBits(N1);
3596   if (N1Known.Zero.getBoolValue()) {
3597     KnownBits N0Known = computeKnownBits(N0);
3598 
3599     bool overflow;
3600     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3601     if (!overflow)
3602       return OFK_Never;
3603   }
3604 
3605   // mulhi + 1 never overflow
3606   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3607       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3608     return OFK_Never;
3609 
3610   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3611     KnownBits N0Known = computeKnownBits(N0);
3612 
3613     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3614       return OFK_Never;
3615   }
3616 
3617   return OFK_Sometime;
3618 }
3619 
3620 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3621   EVT OpVT = Val.getValueType();
3622   unsigned BitWidth = OpVT.getScalarSizeInBits();
3623 
3624   // Is the constant a known power of 2?
3625   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3626     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3627 
3628   // A left-shift of a constant one will have exactly one bit set because
3629   // shifting the bit off the end is undefined.
3630   if (Val.getOpcode() == ISD::SHL) {
3631     auto *C = isConstOrConstSplat(Val.getOperand(0));
3632     if (C && C->getAPIntValue() == 1)
3633       return true;
3634   }
3635 
3636   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3637   // one bit set.
3638   if (Val.getOpcode() == ISD::SRL) {
3639     auto *C = isConstOrConstSplat(Val.getOperand(0));
3640     if (C && C->getAPIntValue().isSignMask())
3641       return true;
3642   }
3643 
3644   // Are all operands of a build vector constant powers of two?
3645   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3646     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3647           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3648             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3649           return false;
3650         }))
3651       return true;
3652 
3653   // More could be done here, though the above checks are enough
3654   // to handle some common cases.
3655 
3656   // Fall back to computeKnownBits to catch other known cases.
3657   KnownBits Known = computeKnownBits(Val);
3658   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3659 }
3660 
3661 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3662   EVT VT = Op.getValueType();
3663 
3664   // TODO: Assume we don't know anything for now.
3665   if (VT.isScalableVector())
3666     return 1;
3667 
3668   APInt DemandedElts = VT.isVector()
3669                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3670                            : APInt(1, 1);
3671   return ComputeNumSignBits(Op, DemandedElts, Depth);
3672 }
3673 
3674 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3675                                           unsigned Depth) const {
3676   EVT VT = Op.getValueType();
3677   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3678   unsigned VTBits = VT.getScalarSizeInBits();
3679   unsigned NumElts = DemandedElts.getBitWidth();
3680   unsigned Tmp, Tmp2;
3681   unsigned FirstAnswer = 1;
3682 
3683   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3684     const APInt &Val = C->getAPIntValue();
3685     return Val.getNumSignBits();
3686   }
3687 
3688   if (Depth >= MaxRecursionDepth)
3689     return 1;  // Limit search depth.
3690 
3691   if (!DemandedElts || VT.isScalableVector())
3692     return 1;  // No demanded elts, better to assume we don't know anything.
3693 
3694   unsigned Opcode = Op.getOpcode();
3695   switch (Opcode) {
3696   default: break;
3697   case ISD::AssertSext:
3698     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3699     return VTBits-Tmp+1;
3700   case ISD::AssertZext:
3701     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3702     return VTBits-Tmp;
3703 
3704   case ISD::BUILD_VECTOR:
3705     Tmp = VTBits;
3706     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3707       if (!DemandedElts[i])
3708         continue;
3709 
3710       SDValue SrcOp = Op.getOperand(i);
3711       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3712 
3713       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3714       if (SrcOp.getValueSizeInBits() != VTBits) {
3715         assert(SrcOp.getValueSizeInBits() > VTBits &&
3716                "Expected BUILD_VECTOR implicit truncation");
3717         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3718         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3719       }
3720       Tmp = std::min(Tmp, Tmp2);
3721     }
3722     return Tmp;
3723 
3724   case ISD::VECTOR_SHUFFLE: {
3725     // Collect the minimum number of sign bits that are shared by every vector
3726     // element referenced by the shuffle.
3727     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3728     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3729     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3730     for (unsigned i = 0; i != NumElts; ++i) {
3731       int M = SVN->getMaskElt(i);
3732       if (!DemandedElts[i])
3733         continue;
3734       // For UNDEF elements, we don't know anything about the common state of
3735       // the shuffle result.
3736       if (M < 0)
3737         return 1;
3738       if ((unsigned)M < NumElts)
3739         DemandedLHS.setBit((unsigned)M % NumElts);
3740       else
3741         DemandedRHS.setBit((unsigned)M % NumElts);
3742     }
3743     Tmp = std::numeric_limits<unsigned>::max();
3744     if (!!DemandedLHS)
3745       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3746     if (!!DemandedRHS) {
3747       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3748       Tmp = std::min(Tmp, Tmp2);
3749     }
3750     // If we don't know anything, early out and try computeKnownBits fall-back.
3751     if (Tmp == 1)
3752       break;
3753     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3754     return Tmp;
3755   }
3756 
3757   case ISD::BITCAST: {
3758     SDValue N0 = Op.getOperand(0);
3759     EVT SrcVT = N0.getValueType();
3760     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3761 
3762     // Ignore bitcasts from unsupported types..
3763     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3764       break;
3765 
3766     // Fast handling of 'identity' bitcasts.
3767     if (VTBits == SrcBits)
3768       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3769 
3770     bool IsLE = getDataLayout().isLittleEndian();
3771 
3772     // Bitcast 'large element' scalar/vector to 'small element' vector.
3773     if ((SrcBits % VTBits) == 0) {
3774       assert(VT.isVector() && "Expected bitcast to vector");
3775 
3776       unsigned Scale = SrcBits / VTBits;
3777       APInt SrcDemandedElts(NumElts / Scale, 0);
3778       for (unsigned i = 0; i != NumElts; ++i)
3779         if (DemandedElts[i])
3780           SrcDemandedElts.setBit(i / Scale);
3781 
3782       // Fast case - sign splat can be simply split across the small elements.
3783       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3784       if (Tmp == SrcBits)
3785         return VTBits;
3786 
3787       // Slow case - determine how far the sign extends into each sub-element.
3788       Tmp2 = VTBits;
3789       for (unsigned i = 0; i != NumElts; ++i)
3790         if (DemandedElts[i]) {
3791           unsigned SubOffset = i % Scale;
3792           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3793           SubOffset = SubOffset * VTBits;
3794           if (Tmp <= SubOffset)
3795             return 1;
3796           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3797         }
3798       return Tmp2;
3799     }
3800     break;
3801   }
3802 
3803   case ISD::SIGN_EXTEND:
3804     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3805     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3806   case ISD::SIGN_EXTEND_INREG:
3807     // Max of the input and what this extends.
3808     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3809     Tmp = VTBits-Tmp+1;
3810     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3811     return std::max(Tmp, Tmp2);
3812   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3813     SDValue Src = Op.getOperand(0);
3814     EVT SrcVT = Src.getValueType();
3815     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3816     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3817     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3818   }
3819   case ISD::SRA:
3820     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3821     // SRA X, C -> adds C sign bits.
3822     if (const APInt *ShAmt =
3823             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3824       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3825     return Tmp;
3826   case ISD::SHL:
3827     if (const APInt *ShAmt =
3828             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3829       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3830       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3831       if (ShAmt->ult(Tmp))
3832         return Tmp - ShAmt->getZExtValue();
3833     }
3834     break;
3835   case ISD::AND:
3836   case ISD::OR:
3837   case ISD::XOR:    // NOT is handled here.
3838     // Logical binary ops preserve the number of sign bits at the worst.
3839     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3840     if (Tmp != 1) {
3841       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3842       FirstAnswer = std::min(Tmp, Tmp2);
3843       // We computed what we know about the sign bits as our first
3844       // answer. Now proceed to the generic code that uses
3845       // computeKnownBits, and pick whichever answer is better.
3846     }
3847     break;
3848 
3849   case ISD::SELECT:
3850   case ISD::VSELECT:
3851     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3852     if (Tmp == 1) return 1;  // Early out.
3853     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3854     return std::min(Tmp, Tmp2);
3855   case ISD::SELECT_CC:
3856     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3857     if (Tmp == 1) return 1;  // Early out.
3858     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3859     return std::min(Tmp, Tmp2);
3860 
3861   case ISD::SMIN:
3862   case ISD::SMAX: {
3863     // If we have a clamp pattern, we know that the number of sign bits will be
3864     // the minimum of the clamp min/max range.
3865     bool IsMax = (Opcode == ISD::SMAX);
3866     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3867     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3868       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3869         CstHigh =
3870             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3871     if (CstLow && CstHigh) {
3872       if (!IsMax)
3873         std::swap(CstLow, CstHigh);
3874       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3875         Tmp = CstLow->getAPIntValue().getNumSignBits();
3876         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3877         return std::min(Tmp, Tmp2);
3878       }
3879     }
3880 
3881     // Fallback - just get the minimum number of sign bits of the operands.
3882     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3883     if (Tmp == 1)
3884       return 1;  // Early out.
3885     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3886     return std::min(Tmp, Tmp2);
3887   }
3888   case ISD::UMIN:
3889   case ISD::UMAX:
3890     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3891     if (Tmp == 1)
3892       return 1;  // Early out.
3893     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3894     return std::min(Tmp, Tmp2);
3895   case ISD::SADDO:
3896   case ISD::UADDO:
3897   case ISD::SSUBO:
3898   case ISD::USUBO:
3899   case ISD::SMULO:
3900   case ISD::UMULO:
3901     if (Op.getResNo() != 1)
3902       break;
3903     // The boolean result conforms to getBooleanContents.  Fall through.
3904     // If setcc returns 0/-1, all bits are sign bits.
3905     // We know that we have an integer-based boolean since these operations
3906     // are only available for integer.
3907     if (TLI->getBooleanContents(VT.isVector(), false) ==
3908         TargetLowering::ZeroOrNegativeOneBooleanContent)
3909       return VTBits;
3910     break;
3911   case ISD::SETCC:
3912   case ISD::STRICT_FSETCC:
3913   case ISD::STRICT_FSETCCS: {
3914     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3915     // If setcc returns 0/-1, all bits are sign bits.
3916     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3917         TargetLowering::ZeroOrNegativeOneBooleanContent)
3918       return VTBits;
3919     break;
3920   }
3921   case ISD::ROTL:
3922   case ISD::ROTR:
3923     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3924 
3925     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3926     if (Tmp == VTBits)
3927       return VTBits;
3928 
3929     if (ConstantSDNode *C =
3930             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3931       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3932 
3933       // Handle rotate right by N like a rotate left by 32-N.
3934       if (Opcode == ISD::ROTR)
3935         RotAmt = (VTBits - RotAmt) % VTBits;
3936 
3937       // If we aren't rotating out all of the known-in sign bits, return the
3938       // number that are left.  This handles rotl(sext(x), 1) for example.
3939       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3940     }
3941     break;
3942   case ISD::ADD:
3943   case ISD::ADDC:
3944     // Add can have at most one carry bit.  Thus we know that the output
3945     // is, at worst, one more bit than the inputs.
3946     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3947     if (Tmp == 1) return 1; // Early out.
3948 
3949     // Special case decrementing a value (ADD X, -1):
3950     if (ConstantSDNode *CRHS =
3951             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3952       if (CRHS->isAllOnesValue()) {
3953         KnownBits Known =
3954             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3955 
3956         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3957         // sign bits set.
3958         if ((Known.Zero | 1).isAllOnesValue())
3959           return VTBits;
3960 
3961         // If we are subtracting one from a positive number, there is no carry
3962         // out of the result.
3963         if (Known.isNonNegative())
3964           return Tmp;
3965       }
3966 
3967     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3968     if (Tmp2 == 1) return 1; // Early out.
3969     return std::min(Tmp, Tmp2) - 1;
3970   case ISD::SUB:
3971     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3972     if (Tmp2 == 1) return 1; // Early out.
3973 
3974     // Handle NEG.
3975     if (ConstantSDNode *CLHS =
3976             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3977       if (CLHS->isNullValue()) {
3978         KnownBits Known =
3979             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3980         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3981         // sign bits set.
3982         if ((Known.Zero | 1).isAllOnesValue())
3983           return VTBits;
3984 
3985         // If the input is known to be positive (the sign bit is known clear),
3986         // the output of the NEG has the same number of sign bits as the input.
3987         if (Known.isNonNegative())
3988           return Tmp2;
3989 
3990         // Otherwise, we treat this like a SUB.
3991       }
3992 
3993     // Sub can have at most one carry bit.  Thus we know that the output
3994     // is, at worst, one more bit than the inputs.
3995     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3996     if (Tmp == 1) return 1; // Early out.
3997     return std::min(Tmp, Tmp2) - 1;
3998   case ISD::MUL: {
3999     // The output of the Mul can be at most twice the valid bits in the inputs.
4000     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4001     if (SignBitsOp0 == 1)
4002       break;
4003     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4004     if (SignBitsOp1 == 1)
4005       break;
4006     unsigned OutValidBits =
4007         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4008     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4009   }
4010   case ISD::SREM:
4011     // The sign bit is the LHS's sign bit, except when the result of the
4012     // remainder is zero. The magnitude of the result should be less than or
4013     // equal to the magnitude of the LHS. Therefore, the result should have
4014     // at least as many sign bits as the left hand side.
4015     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4016   case ISD::TRUNCATE: {
4017     // Check if the sign bits of source go down as far as the truncated value.
4018     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4019     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4020     if (NumSrcSignBits > (NumSrcBits - VTBits))
4021       return NumSrcSignBits - (NumSrcBits - VTBits);
4022     break;
4023   }
4024   case ISD::EXTRACT_ELEMENT: {
4025     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4026     const int BitWidth = Op.getValueSizeInBits();
4027     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4028 
4029     // Get reverse index (starting from 1), Op1 value indexes elements from
4030     // little end. Sign starts at big end.
4031     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4032 
4033     // If the sign portion ends in our element the subtraction gives correct
4034     // result. Otherwise it gives either negative or > bitwidth result
4035     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4036   }
4037   case ISD::INSERT_VECTOR_ELT: {
4038     // If we know the element index, split the demand between the
4039     // source vector and the inserted element, otherwise assume we need
4040     // the original demanded vector elements and the value.
4041     SDValue InVec = Op.getOperand(0);
4042     SDValue InVal = Op.getOperand(1);
4043     SDValue EltNo = Op.getOperand(2);
4044     bool DemandedVal = true;
4045     APInt DemandedVecElts = DemandedElts;
4046     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4047     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4048       unsigned EltIdx = CEltNo->getZExtValue();
4049       DemandedVal = !!DemandedElts[EltIdx];
4050       DemandedVecElts.clearBit(EltIdx);
4051     }
4052     Tmp = std::numeric_limits<unsigned>::max();
4053     if (DemandedVal) {
4054       // TODO - handle implicit truncation of inserted elements.
4055       if (InVal.getScalarValueSizeInBits() != VTBits)
4056         break;
4057       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4058       Tmp = std::min(Tmp, Tmp2);
4059     }
4060     if (!!DemandedVecElts) {
4061       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4062       Tmp = std::min(Tmp, Tmp2);
4063     }
4064     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4065     return Tmp;
4066   }
4067   case ISD::EXTRACT_VECTOR_ELT: {
4068     SDValue InVec = Op.getOperand(0);
4069     SDValue EltNo = Op.getOperand(1);
4070     EVT VecVT = InVec.getValueType();
4071     // ComputeNumSignBits not yet implemented for scalable vectors.
4072     if (VecVT.isScalableVector())
4073       break;
4074     const unsigned BitWidth = Op.getValueSizeInBits();
4075     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4076     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4077 
4078     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4079     // anything about sign bits. But if the sizes match we can derive knowledge
4080     // about sign bits from the vector operand.
4081     if (BitWidth != EltBitWidth)
4082       break;
4083 
4084     // If we know the element index, just demand that vector element, else for
4085     // an unknown element index, ignore DemandedElts and demand them all.
4086     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4087     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4088     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4089       DemandedSrcElts =
4090           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4091 
4092     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4093   }
4094   case ISD::EXTRACT_SUBVECTOR: {
4095     // Offset the demanded elts by the subvector index.
4096     SDValue Src = Op.getOperand(0);
4097     // Bail until we can represent demanded elements for scalable vectors.
4098     if (Src.getValueType().isScalableVector())
4099       break;
4100     uint64_t Idx = Op.getConstantOperandVal(1);
4101     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4102     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4103     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4104   }
4105   case ISD::CONCAT_VECTORS: {
4106     // Determine the minimum number of sign bits across all demanded
4107     // elts of the input vectors. Early out if the result is already 1.
4108     Tmp = std::numeric_limits<unsigned>::max();
4109     EVT SubVectorVT = Op.getOperand(0).getValueType();
4110     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4111     unsigned NumSubVectors = Op.getNumOperands();
4112     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4113       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4114       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4115       if (!DemandedSub)
4116         continue;
4117       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4118       Tmp = std::min(Tmp, Tmp2);
4119     }
4120     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4121     return Tmp;
4122   }
4123   case ISD::INSERT_SUBVECTOR: {
4124     // Demand any elements from the subvector and the remainder from the src its
4125     // inserted into.
4126     SDValue Src = Op.getOperand(0);
4127     SDValue Sub = Op.getOperand(1);
4128     uint64_t Idx = Op.getConstantOperandVal(2);
4129     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4130     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4131     APInt DemandedSrcElts = DemandedElts;
4132     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4133 
4134     Tmp = std::numeric_limits<unsigned>::max();
4135     if (!!DemandedSubElts) {
4136       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4137       if (Tmp == 1)
4138         return 1; // early-out
4139     }
4140     if (!!DemandedSrcElts) {
4141       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4142       Tmp = std::min(Tmp, Tmp2);
4143     }
4144     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4145     return Tmp;
4146   }
4147   case ISD::ATOMIC_CMP_SWAP:
4148   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4149   case ISD::ATOMIC_SWAP:
4150   case ISD::ATOMIC_LOAD_ADD:
4151   case ISD::ATOMIC_LOAD_SUB:
4152   case ISD::ATOMIC_LOAD_AND:
4153   case ISD::ATOMIC_LOAD_CLR:
4154   case ISD::ATOMIC_LOAD_OR:
4155   case ISD::ATOMIC_LOAD_XOR:
4156   case ISD::ATOMIC_LOAD_NAND:
4157   case ISD::ATOMIC_LOAD_MIN:
4158   case ISD::ATOMIC_LOAD_MAX:
4159   case ISD::ATOMIC_LOAD_UMIN:
4160   case ISD::ATOMIC_LOAD_UMAX:
4161   case ISD::ATOMIC_LOAD: {
4162     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4163     // If we are looking at the loaded value.
4164     if (Op.getResNo() == 0) {
4165       if (Tmp == VTBits)
4166         return 1; // early-out
4167       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4168         return VTBits - Tmp + 1;
4169       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4170         return VTBits - Tmp;
4171     }
4172     break;
4173   }
4174   }
4175 
4176   // If we are looking at the loaded value of the SDNode.
4177   if (Op.getResNo() == 0) {
4178     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4179     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4180       unsigned ExtType = LD->getExtensionType();
4181       switch (ExtType) {
4182       default: break;
4183       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4184         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4185         return VTBits - Tmp + 1;
4186       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4187         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4188         return VTBits - Tmp;
4189       case ISD::NON_EXTLOAD:
4190         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4191           // We only need to handle vectors - computeKnownBits should handle
4192           // scalar cases.
4193           Type *CstTy = Cst->getType();
4194           if (CstTy->isVectorTy() &&
4195               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4196             Tmp = VTBits;
4197             for (unsigned i = 0; i != NumElts; ++i) {
4198               if (!DemandedElts[i])
4199                 continue;
4200               if (Constant *Elt = Cst->getAggregateElement(i)) {
4201                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4202                   const APInt &Value = CInt->getValue();
4203                   Tmp = std::min(Tmp, Value.getNumSignBits());
4204                   continue;
4205                 }
4206                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4207                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4208                   Tmp = std::min(Tmp, Value.getNumSignBits());
4209                   continue;
4210                 }
4211               }
4212               // Unknown type. Conservatively assume no bits match sign bit.
4213               return 1;
4214             }
4215             return Tmp;
4216           }
4217         }
4218         break;
4219       }
4220     }
4221   }
4222 
4223   // Allow the target to implement this method for its nodes.
4224   if (Opcode >= ISD::BUILTIN_OP_END ||
4225       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4226       Opcode == ISD::INTRINSIC_W_CHAIN ||
4227       Opcode == ISD::INTRINSIC_VOID) {
4228     unsigned NumBits =
4229         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4230     if (NumBits > 1)
4231       FirstAnswer = std::max(FirstAnswer, NumBits);
4232   }
4233 
4234   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4235   // use this information.
4236   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4237 
4238   APInt Mask;
4239   if (Known.isNonNegative()) {        // sign bit is 0
4240     Mask = Known.Zero;
4241   } else if (Known.isNegative()) {  // sign bit is 1;
4242     Mask = Known.One;
4243   } else {
4244     // Nothing known.
4245     return FirstAnswer;
4246   }
4247 
4248   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4249   // the number of identical bits in the top of the input value.
4250   Mask <<= Mask.getBitWidth()-VTBits;
4251   return std::max(FirstAnswer, Mask.countLeadingOnes());
4252 }
4253 
4254 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4255   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4256       !isa<ConstantSDNode>(Op.getOperand(1)))
4257     return false;
4258 
4259   if (Op.getOpcode() == ISD::OR &&
4260       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4261     return false;
4262 
4263   return true;
4264 }
4265 
4266 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4267   // If we're told that NaNs won't happen, assume they won't.
4268   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4269     return true;
4270 
4271   if (Depth >= MaxRecursionDepth)
4272     return false; // Limit search depth.
4273 
4274   // TODO: Handle vectors.
4275   // If the value is a constant, we can obviously see if it is a NaN or not.
4276   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4277     return !C->getValueAPF().isNaN() ||
4278            (SNaN && !C->getValueAPF().isSignaling());
4279   }
4280 
4281   unsigned Opcode = Op.getOpcode();
4282   switch (Opcode) {
4283   case ISD::FADD:
4284   case ISD::FSUB:
4285   case ISD::FMUL:
4286   case ISD::FDIV:
4287   case ISD::FREM:
4288   case ISD::FSIN:
4289   case ISD::FCOS: {
4290     if (SNaN)
4291       return true;
4292     // TODO: Need isKnownNeverInfinity
4293     return false;
4294   }
4295   case ISD::FCANONICALIZE:
4296   case ISD::FEXP:
4297   case ISD::FEXP2:
4298   case ISD::FTRUNC:
4299   case ISD::FFLOOR:
4300   case ISD::FCEIL:
4301   case ISD::FROUND:
4302   case ISD::FROUNDEVEN:
4303   case ISD::FRINT:
4304   case ISD::FNEARBYINT: {
4305     if (SNaN)
4306       return true;
4307     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4308   }
4309   case ISD::FABS:
4310   case ISD::FNEG:
4311   case ISD::FCOPYSIGN: {
4312     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4313   }
4314   case ISD::SELECT:
4315     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4316            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4317   case ISD::FP_EXTEND:
4318   case ISD::FP_ROUND: {
4319     if (SNaN)
4320       return true;
4321     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4322   }
4323   case ISD::SINT_TO_FP:
4324   case ISD::UINT_TO_FP:
4325     return true;
4326   case ISD::FMA:
4327   case ISD::FMAD: {
4328     if (SNaN)
4329       return true;
4330     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4331            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4332            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4333   }
4334   case ISD::FSQRT: // Need is known positive
4335   case ISD::FLOG:
4336   case ISD::FLOG2:
4337   case ISD::FLOG10:
4338   case ISD::FPOWI:
4339   case ISD::FPOW: {
4340     if (SNaN)
4341       return true;
4342     // TODO: Refine on operand
4343     return false;
4344   }
4345   case ISD::FMINNUM:
4346   case ISD::FMAXNUM: {
4347     // Only one needs to be known not-nan, since it will be returned if the
4348     // other ends up being one.
4349     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4350            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4351   }
4352   case ISD::FMINNUM_IEEE:
4353   case ISD::FMAXNUM_IEEE: {
4354     if (SNaN)
4355       return true;
4356     // This can return a NaN if either operand is an sNaN, or if both operands
4357     // are NaN.
4358     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4359             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4360            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4361             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4362   }
4363   case ISD::FMINIMUM:
4364   case ISD::FMAXIMUM: {
4365     // TODO: Does this quiet or return the origina NaN as-is?
4366     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4367            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4368   }
4369   case ISD::EXTRACT_VECTOR_ELT: {
4370     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4371   }
4372   default:
4373     if (Opcode >= ISD::BUILTIN_OP_END ||
4374         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4375         Opcode == ISD::INTRINSIC_W_CHAIN ||
4376         Opcode == ISD::INTRINSIC_VOID) {
4377       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4378     }
4379 
4380     return false;
4381   }
4382 }
4383 
4384 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4385   assert(Op.getValueType().isFloatingPoint() &&
4386          "Floating point type expected");
4387 
4388   // If the value is a constant, we can obviously see if it is a zero or not.
4389   // TODO: Add BuildVector support.
4390   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4391     return !C->isZero();
4392   return false;
4393 }
4394 
4395 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4396   assert(!Op.getValueType().isFloatingPoint() &&
4397          "Floating point types unsupported - use isKnownNeverZeroFloat");
4398 
4399   // If the value is a constant, we can obviously see if it is a zero or not.
4400   if (ISD::matchUnaryPredicate(
4401           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4402     return true;
4403 
4404   // TODO: Recognize more cases here.
4405   switch (Op.getOpcode()) {
4406   default: break;
4407   case ISD::OR:
4408     if (isKnownNeverZero(Op.getOperand(1)) ||
4409         isKnownNeverZero(Op.getOperand(0)))
4410       return true;
4411     break;
4412   }
4413 
4414   return false;
4415 }
4416 
4417 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4418   // Check the obvious case.
4419   if (A == B) return true;
4420 
4421   // For for negative and positive zero.
4422   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4423     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4424       if (CA->isZero() && CB->isZero()) return true;
4425 
4426   // Otherwise they may not be equal.
4427   return false;
4428 }
4429 
4430 // FIXME: unify with llvm::haveNoCommonBitsSet.
4431 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4432 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4433   assert(A.getValueType() == B.getValueType() &&
4434          "Values must have the same type");
4435   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4436                                         computeKnownBits(B));
4437 }
4438 
4439 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4440                                SelectionDAG &DAG) {
4441   if (cast<ConstantSDNode>(Step)->isNullValue())
4442     return DAG.getConstant(0, DL, VT);
4443 
4444   return SDValue();
4445 }
4446 
4447 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4448                                 ArrayRef<SDValue> Ops,
4449                                 SelectionDAG &DAG) {
4450   int NumOps = Ops.size();
4451   assert(NumOps != 0 && "Can't build an empty vector!");
4452   assert(!VT.isScalableVector() &&
4453          "BUILD_VECTOR cannot be used with scalable types");
4454   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4455          "Incorrect element count in BUILD_VECTOR!");
4456 
4457   // BUILD_VECTOR of UNDEFs is UNDEF.
4458   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4459     return DAG.getUNDEF(VT);
4460 
4461   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4462   SDValue IdentitySrc;
4463   bool IsIdentity = true;
4464   for (int i = 0; i != NumOps; ++i) {
4465     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4466         Ops[i].getOperand(0).getValueType() != VT ||
4467         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4468         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4469         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4470       IsIdentity = false;
4471       break;
4472     }
4473     IdentitySrc = Ops[i].getOperand(0);
4474   }
4475   if (IsIdentity)
4476     return IdentitySrc;
4477 
4478   return SDValue();
4479 }
4480 
4481 /// Try to simplify vector concatenation to an input value, undef, or build
4482 /// vector.
4483 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4484                                   ArrayRef<SDValue> Ops,
4485                                   SelectionDAG &DAG) {
4486   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4487   assert(llvm::all_of(Ops,
4488                       [Ops](SDValue Op) {
4489                         return Ops[0].getValueType() == Op.getValueType();
4490                       }) &&
4491          "Concatenation of vectors with inconsistent value types!");
4492   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4493              VT.getVectorElementCount() &&
4494          "Incorrect element count in vector concatenation!");
4495 
4496   if (Ops.size() == 1)
4497     return Ops[0];
4498 
4499   // Concat of UNDEFs is UNDEF.
4500   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4501     return DAG.getUNDEF(VT);
4502 
4503   // Scan the operands and look for extract operations from a single source
4504   // that correspond to insertion at the same location via this concatenation:
4505   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4506   SDValue IdentitySrc;
4507   bool IsIdentity = true;
4508   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4509     SDValue Op = Ops[i];
4510     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4511     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4512         Op.getOperand(0).getValueType() != VT ||
4513         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4514         Op.getConstantOperandVal(1) != IdentityIndex) {
4515       IsIdentity = false;
4516       break;
4517     }
4518     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4519            "Unexpected identity source vector for concat of extracts");
4520     IdentitySrc = Op.getOperand(0);
4521   }
4522   if (IsIdentity) {
4523     assert(IdentitySrc && "Failed to set source vector of extracts");
4524     return IdentitySrc;
4525   }
4526 
4527   // The code below this point is only designed to work for fixed width
4528   // vectors, so we bail out for now.
4529   if (VT.isScalableVector())
4530     return SDValue();
4531 
4532   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4533   // simplified to one big BUILD_VECTOR.
4534   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4535   EVT SVT = VT.getScalarType();
4536   SmallVector<SDValue, 16> Elts;
4537   for (SDValue Op : Ops) {
4538     EVT OpVT = Op.getValueType();
4539     if (Op.isUndef())
4540       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4541     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4542       Elts.append(Op->op_begin(), Op->op_end());
4543     else
4544       return SDValue();
4545   }
4546 
4547   // BUILD_VECTOR requires all inputs to be of the same type, find the
4548   // maximum type and extend them all.
4549   for (SDValue Op : Elts)
4550     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4551 
4552   if (SVT.bitsGT(VT.getScalarType())) {
4553     for (SDValue &Op : Elts) {
4554       if (Op.isUndef())
4555         Op = DAG.getUNDEF(SVT);
4556       else
4557         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4558                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4559                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4560     }
4561   }
4562 
4563   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4564   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4565   return V;
4566 }
4567 
4568 /// Gets or creates the specified node.
4569 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4570   FoldingSetNodeID ID;
4571   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4572   void *IP = nullptr;
4573   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4574     return SDValue(E, 0);
4575 
4576   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4577                               getVTList(VT));
4578   CSEMap.InsertNode(N, IP);
4579 
4580   InsertNode(N);
4581   SDValue V = SDValue(N, 0);
4582   NewSDValueDbgMsg(V, "Creating new node: ", this);
4583   return V;
4584 }
4585 
4586 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4587                               SDValue Operand) {
4588   SDNodeFlags Flags;
4589   if (Inserter)
4590     Flags = Inserter->getFlags();
4591   return getNode(Opcode, DL, VT, Operand, Flags);
4592 }
4593 
4594 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4595                               SDValue Operand, const SDNodeFlags Flags) {
4596   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4597          "Operand is DELETED_NODE!");
4598   // Constant fold unary operations with an integer constant operand. Even
4599   // opaque constant will be folded, because the folding of unary operations
4600   // doesn't create new constants with different values. Nevertheless, the
4601   // opaque flag is preserved during folding to prevent future folding with
4602   // other constants.
4603   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4604     const APInt &Val = C->getAPIntValue();
4605     switch (Opcode) {
4606     default: break;
4607     case ISD::SIGN_EXTEND:
4608       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4609                          C->isTargetOpcode(), C->isOpaque());
4610     case ISD::TRUNCATE:
4611       if (C->isOpaque())
4612         break;
4613       LLVM_FALLTHROUGH;
4614     case ISD::ANY_EXTEND:
4615     case ISD::ZERO_EXTEND:
4616       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4617                          C->isTargetOpcode(), C->isOpaque());
4618     case ISD::UINT_TO_FP:
4619     case ISD::SINT_TO_FP: {
4620       APFloat apf(EVTToAPFloatSemantics(VT),
4621                   APInt::getNullValue(VT.getSizeInBits()));
4622       (void)apf.convertFromAPInt(Val,
4623                                  Opcode==ISD::SINT_TO_FP,
4624                                  APFloat::rmNearestTiesToEven);
4625       return getConstantFP(apf, DL, VT);
4626     }
4627     case ISD::BITCAST:
4628       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4629         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4630       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4631         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4632       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4633         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4634       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4635         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4636       break;
4637     case ISD::ABS:
4638       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4639                          C->isOpaque());
4640     case ISD::BITREVERSE:
4641       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4642                          C->isOpaque());
4643     case ISD::BSWAP:
4644       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4645                          C->isOpaque());
4646     case ISD::CTPOP:
4647       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4648                          C->isOpaque());
4649     case ISD::CTLZ:
4650     case ISD::CTLZ_ZERO_UNDEF:
4651       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4652                          C->isOpaque());
4653     case ISD::CTTZ:
4654     case ISD::CTTZ_ZERO_UNDEF:
4655       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4656                          C->isOpaque());
4657     case ISD::FP16_TO_FP: {
4658       bool Ignored;
4659       APFloat FPV(APFloat::IEEEhalf(),
4660                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4661 
4662       // This can return overflow, underflow, or inexact; we don't care.
4663       // FIXME need to be more flexible about rounding mode.
4664       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4665                         APFloat::rmNearestTiesToEven, &Ignored);
4666       return getConstantFP(FPV, DL, VT);
4667     }
4668     case ISD::STEP_VECTOR: {
4669       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4670         return V;
4671       break;
4672     }
4673     }
4674   }
4675 
4676   // Constant fold unary operations with a floating point constant operand.
4677   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4678     APFloat V = C->getValueAPF();    // make copy
4679     switch (Opcode) {
4680     case ISD::FNEG:
4681       V.changeSign();
4682       return getConstantFP(V, DL, VT);
4683     case ISD::FABS:
4684       V.clearSign();
4685       return getConstantFP(V, DL, VT);
4686     case ISD::FCEIL: {
4687       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4688       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4689         return getConstantFP(V, DL, VT);
4690       break;
4691     }
4692     case ISD::FTRUNC: {
4693       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4694       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4695         return getConstantFP(V, DL, VT);
4696       break;
4697     }
4698     case ISD::FFLOOR: {
4699       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4700       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4701         return getConstantFP(V, DL, VT);
4702       break;
4703     }
4704     case ISD::FP_EXTEND: {
4705       bool ignored;
4706       // This can return overflow, underflow, or inexact; we don't care.
4707       // FIXME need to be more flexible about rounding mode.
4708       (void)V.convert(EVTToAPFloatSemantics(VT),
4709                       APFloat::rmNearestTiesToEven, &ignored);
4710       return getConstantFP(V, DL, VT);
4711     }
4712     case ISD::FP_TO_SINT:
4713     case ISD::FP_TO_UINT: {
4714       bool ignored;
4715       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4716       // FIXME need to be more flexible about rounding mode.
4717       APFloat::opStatus s =
4718           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4719       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4720         break;
4721       return getConstant(IntVal, DL, VT);
4722     }
4723     case ISD::BITCAST:
4724       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4725         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4726       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4727         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4728       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4729         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4730       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4731         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4732       break;
4733     case ISD::FP_TO_FP16: {
4734       bool Ignored;
4735       // This can return overflow, underflow, or inexact; we don't care.
4736       // FIXME need to be more flexible about rounding mode.
4737       (void)V.convert(APFloat::IEEEhalf(),
4738                       APFloat::rmNearestTiesToEven, &Ignored);
4739       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4740     }
4741     }
4742   }
4743 
4744   // Constant fold unary operations with a vector integer or float operand.
4745   switch (Opcode) {
4746   default:
4747     // FIXME: Entirely reasonable to perform folding of other unary
4748     // operations here as the need arises.
4749     break;
4750   case ISD::FNEG:
4751   case ISD::FABS:
4752   case ISD::FCEIL:
4753   case ISD::FTRUNC:
4754   case ISD::FFLOOR:
4755   case ISD::FP_EXTEND:
4756   case ISD::FP_TO_SINT:
4757   case ISD::FP_TO_UINT:
4758   case ISD::TRUNCATE:
4759   case ISD::ANY_EXTEND:
4760   case ISD::ZERO_EXTEND:
4761   case ISD::SIGN_EXTEND:
4762   case ISD::UINT_TO_FP:
4763   case ISD::SINT_TO_FP:
4764   case ISD::ABS:
4765   case ISD::BITREVERSE:
4766   case ISD::BSWAP:
4767   case ISD::CTLZ:
4768   case ISD::CTLZ_ZERO_UNDEF:
4769   case ISD::CTTZ:
4770   case ISD::CTTZ_ZERO_UNDEF:
4771   case ISD::CTPOP: {
4772     SDValue Ops = {Operand};
4773     if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4774       return Fold;
4775   }
4776   }
4777 
4778   unsigned OpOpcode = Operand.getNode()->getOpcode();
4779   switch (Opcode) {
4780   case ISD::STEP_VECTOR:
4781     assert(VT.isScalableVector() &&
4782            "STEP_VECTOR can only be used with scalable types");
4783     assert(VT.getScalarSizeInBits() >= 8 &&
4784            "STEP_VECTOR can only be used with vectors of integers that are at "
4785            "least 8 bits wide");
4786     assert(isa<ConstantSDNode>(Operand) &&
4787            cast<ConstantSDNode>(Operand)->getAPIntValue().isSignedIntN(
4788                VT.getScalarSizeInBits()) &&
4789            "Expected STEP_VECTOR integer constant to fit in "
4790            "the vector element type");
4791     break;
4792   case ISD::FREEZE:
4793     assert(VT == Operand.getValueType() && "Unexpected VT!");
4794     break;
4795   case ISD::TokenFactor:
4796   case ISD::MERGE_VALUES:
4797   case ISD::CONCAT_VECTORS:
4798     return Operand;         // Factor, merge or concat of one node?  No need.
4799   case ISD::BUILD_VECTOR: {
4800     // Attempt to simplify BUILD_VECTOR.
4801     SDValue Ops[] = {Operand};
4802     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4803       return V;
4804     break;
4805   }
4806   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4807   case ISD::FP_EXTEND:
4808     assert(VT.isFloatingPoint() &&
4809            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4810     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4811     assert((!VT.isVector() ||
4812             VT.getVectorElementCount() ==
4813             Operand.getValueType().getVectorElementCount()) &&
4814            "Vector element count mismatch!");
4815     assert(Operand.getValueType().bitsLT(VT) &&
4816            "Invalid fpext node, dst < src!");
4817     if (Operand.isUndef())
4818       return getUNDEF(VT);
4819     break;
4820   case ISD::FP_TO_SINT:
4821   case ISD::FP_TO_UINT:
4822     if (Operand.isUndef())
4823       return getUNDEF(VT);
4824     break;
4825   case ISD::SINT_TO_FP:
4826   case ISD::UINT_TO_FP:
4827     // [us]itofp(undef) = 0, because the result value is bounded.
4828     if (Operand.isUndef())
4829       return getConstantFP(0.0, DL, VT);
4830     break;
4831   case ISD::SIGN_EXTEND:
4832     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4833            "Invalid SIGN_EXTEND!");
4834     assert(VT.isVector() == Operand.getValueType().isVector() &&
4835            "SIGN_EXTEND result type type should be vector iff the operand "
4836            "type is vector!");
4837     if (Operand.getValueType() == VT) return Operand;   // noop extension
4838     assert((!VT.isVector() ||
4839             VT.getVectorElementCount() ==
4840                 Operand.getValueType().getVectorElementCount()) &&
4841            "Vector element count mismatch!");
4842     assert(Operand.getValueType().bitsLT(VT) &&
4843            "Invalid sext node, dst < src!");
4844     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4845       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4846     if (OpOpcode == ISD::UNDEF)
4847       // sext(undef) = 0, because the top bits will all be the same.
4848       return getConstant(0, DL, VT);
4849     break;
4850   case ISD::ZERO_EXTEND:
4851     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4852            "Invalid ZERO_EXTEND!");
4853     assert(VT.isVector() == Operand.getValueType().isVector() &&
4854            "ZERO_EXTEND result type type should be vector iff the operand "
4855            "type is vector!");
4856     if (Operand.getValueType() == VT) return Operand;   // noop extension
4857     assert((!VT.isVector() ||
4858             VT.getVectorElementCount() ==
4859                 Operand.getValueType().getVectorElementCount()) &&
4860            "Vector element count mismatch!");
4861     assert(Operand.getValueType().bitsLT(VT) &&
4862            "Invalid zext node, dst < src!");
4863     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4864       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4865     if (OpOpcode == ISD::UNDEF)
4866       // zext(undef) = 0, because the top bits will be zero.
4867       return getConstant(0, DL, VT);
4868     break;
4869   case ISD::ANY_EXTEND:
4870     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4871            "Invalid ANY_EXTEND!");
4872     assert(VT.isVector() == Operand.getValueType().isVector() &&
4873            "ANY_EXTEND result type type should be vector iff the operand "
4874            "type is vector!");
4875     if (Operand.getValueType() == VT) return Operand;   // noop extension
4876     assert((!VT.isVector() ||
4877             VT.getVectorElementCount() ==
4878                 Operand.getValueType().getVectorElementCount()) &&
4879            "Vector element count mismatch!");
4880     assert(Operand.getValueType().bitsLT(VT) &&
4881            "Invalid anyext node, dst < src!");
4882 
4883     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4884         OpOpcode == ISD::ANY_EXTEND)
4885       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4886       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4887     if (OpOpcode == ISD::UNDEF)
4888       return getUNDEF(VT);
4889 
4890     // (ext (trunc x)) -> x
4891     if (OpOpcode == ISD::TRUNCATE) {
4892       SDValue OpOp = Operand.getOperand(0);
4893       if (OpOp.getValueType() == VT) {
4894         transferDbgValues(Operand, OpOp);
4895         return OpOp;
4896       }
4897     }
4898     break;
4899   case ISD::TRUNCATE:
4900     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4901            "Invalid TRUNCATE!");
4902     assert(VT.isVector() == Operand.getValueType().isVector() &&
4903            "TRUNCATE result type type should be vector iff the operand "
4904            "type is vector!");
4905     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4906     assert((!VT.isVector() ||
4907             VT.getVectorElementCount() ==
4908                 Operand.getValueType().getVectorElementCount()) &&
4909            "Vector element count mismatch!");
4910     assert(Operand.getValueType().bitsGT(VT) &&
4911            "Invalid truncate node, src < dst!");
4912     if (OpOpcode == ISD::TRUNCATE)
4913       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4914     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4915         OpOpcode == ISD::ANY_EXTEND) {
4916       // If the source is smaller than the dest, we still need an extend.
4917       if (Operand.getOperand(0).getValueType().getScalarType()
4918             .bitsLT(VT.getScalarType()))
4919         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4920       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4921         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4922       return Operand.getOperand(0);
4923     }
4924     if (OpOpcode == ISD::UNDEF)
4925       return getUNDEF(VT);
4926     break;
4927   case ISD::ANY_EXTEND_VECTOR_INREG:
4928   case ISD::ZERO_EXTEND_VECTOR_INREG:
4929   case ISD::SIGN_EXTEND_VECTOR_INREG:
4930     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4931     assert(Operand.getValueType().bitsLE(VT) &&
4932            "The input must be the same size or smaller than the result.");
4933     assert(VT.getVectorMinNumElements() <
4934                Operand.getValueType().getVectorMinNumElements() &&
4935            "The destination vector type must have fewer lanes than the input.");
4936     break;
4937   case ISD::ABS:
4938     assert(VT.isInteger() && VT == Operand.getValueType() &&
4939            "Invalid ABS!");
4940     if (OpOpcode == ISD::UNDEF)
4941       return getUNDEF(VT);
4942     break;
4943   case ISD::BSWAP:
4944     assert(VT.isInteger() && VT == Operand.getValueType() &&
4945            "Invalid BSWAP!");
4946     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4947            "BSWAP types must be a multiple of 16 bits!");
4948     if (OpOpcode == ISD::UNDEF)
4949       return getUNDEF(VT);
4950     break;
4951   case ISD::BITREVERSE:
4952     assert(VT.isInteger() && VT == Operand.getValueType() &&
4953            "Invalid BITREVERSE!");
4954     if (OpOpcode == ISD::UNDEF)
4955       return getUNDEF(VT);
4956     break;
4957   case ISD::BITCAST:
4958     // Basic sanity checking.
4959     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4960            "Cannot BITCAST between types of different sizes!");
4961     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4962     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4963       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4964     if (OpOpcode == ISD::UNDEF)
4965       return getUNDEF(VT);
4966     break;
4967   case ISD::SCALAR_TO_VECTOR:
4968     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4969            (VT.getVectorElementType() == Operand.getValueType() ||
4970             (VT.getVectorElementType().isInteger() &&
4971              Operand.getValueType().isInteger() &&
4972              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4973            "Illegal SCALAR_TO_VECTOR node!");
4974     if (OpOpcode == ISD::UNDEF)
4975       return getUNDEF(VT);
4976     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4977     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4978         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4979         Operand.getConstantOperandVal(1) == 0 &&
4980         Operand.getOperand(0).getValueType() == VT)
4981       return Operand.getOperand(0);
4982     break;
4983   case ISD::FNEG:
4984     // Negation of an unknown bag of bits is still completely undefined.
4985     if (OpOpcode == ISD::UNDEF)
4986       return getUNDEF(VT);
4987 
4988     if (OpOpcode == ISD::FNEG)  // --X -> X
4989       return Operand.getOperand(0);
4990     break;
4991   case ISD::FABS:
4992     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4993       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4994     break;
4995   case ISD::VSCALE:
4996     assert(VT == Operand.getValueType() && "Unexpected VT!");
4997     break;
4998   case ISD::CTPOP:
4999     if (Operand.getValueType().getScalarType() == MVT::i1)
5000       return Operand;
5001     break;
5002   case ISD::CTLZ:
5003   case ISD::CTTZ:
5004     if (Operand.getValueType().getScalarType() == MVT::i1)
5005       return getNOT(DL, Operand, Operand.getValueType());
5006     break;
5007   case ISD::VECREDUCE_SMIN:
5008   case ISD::VECREDUCE_UMAX:
5009     if (Operand.getValueType().getScalarType() == MVT::i1)
5010       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5011     break;
5012   case ISD::VECREDUCE_SMAX:
5013   case ISD::VECREDUCE_UMIN:
5014     if (Operand.getValueType().getScalarType() == MVT::i1)
5015       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5016     break;
5017   }
5018 
5019   SDNode *N;
5020   SDVTList VTs = getVTList(VT);
5021   SDValue Ops[] = {Operand};
5022   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5023     FoldingSetNodeID ID;
5024     AddNodeIDNode(ID, Opcode, VTs, Ops);
5025     void *IP = nullptr;
5026     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5027       E->intersectFlagsWith(Flags);
5028       return SDValue(E, 0);
5029     }
5030 
5031     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5032     N->setFlags(Flags);
5033     createOperands(N, Ops);
5034     CSEMap.InsertNode(N, IP);
5035   } else {
5036     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5037     createOperands(N, Ops);
5038   }
5039 
5040   InsertNode(N);
5041   SDValue V = SDValue(N, 0);
5042   NewSDValueDbgMsg(V, "Creating new node: ", this);
5043   return V;
5044 }
5045 
5046 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5047                                        const APInt &C2) {
5048   switch (Opcode) {
5049   case ISD::ADD:  return C1 + C2;
5050   case ISD::SUB:  return C1 - C2;
5051   case ISD::MUL:  return C1 * C2;
5052   case ISD::AND:  return C1 & C2;
5053   case ISD::OR:   return C1 | C2;
5054   case ISD::XOR:  return C1 ^ C2;
5055   case ISD::SHL:  return C1 << C2;
5056   case ISD::SRL:  return C1.lshr(C2);
5057   case ISD::SRA:  return C1.ashr(C2);
5058   case ISD::ROTL: return C1.rotl(C2);
5059   case ISD::ROTR: return C1.rotr(C2);
5060   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5061   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5062   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5063   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5064   case ISD::SADDSAT: return C1.sadd_sat(C2);
5065   case ISD::UADDSAT: return C1.uadd_sat(C2);
5066   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5067   case ISD::USUBSAT: return C1.usub_sat(C2);
5068   case ISD::UDIV:
5069     if (!C2.getBoolValue())
5070       break;
5071     return C1.udiv(C2);
5072   case ISD::UREM:
5073     if (!C2.getBoolValue())
5074       break;
5075     return C1.urem(C2);
5076   case ISD::SDIV:
5077     if (!C2.getBoolValue())
5078       break;
5079     return C1.sdiv(C2);
5080   case ISD::SREM:
5081     if (!C2.getBoolValue())
5082       break;
5083     return C1.srem(C2);
5084   }
5085   return llvm::None;
5086 }
5087 
5088 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5089                                        const GlobalAddressSDNode *GA,
5090                                        const SDNode *N2) {
5091   if (GA->getOpcode() != ISD::GlobalAddress)
5092     return SDValue();
5093   if (!TLI->isOffsetFoldingLegal(GA))
5094     return SDValue();
5095   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5096   if (!C2)
5097     return SDValue();
5098   int64_t Offset = C2->getSExtValue();
5099   switch (Opcode) {
5100   case ISD::ADD: break;
5101   case ISD::SUB: Offset = -uint64_t(Offset); break;
5102   default: return SDValue();
5103   }
5104   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5105                           GA->getOffset() + uint64_t(Offset));
5106 }
5107 
5108 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5109   switch (Opcode) {
5110   case ISD::SDIV:
5111   case ISD::UDIV:
5112   case ISD::SREM:
5113   case ISD::UREM: {
5114     // If a divisor is zero/undef or any element of a divisor vector is
5115     // zero/undef, the whole op is undef.
5116     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5117     SDValue Divisor = Ops[1];
5118     if (Divisor.isUndef() || isNullConstant(Divisor))
5119       return true;
5120 
5121     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5122            llvm::any_of(Divisor->op_values(),
5123                         [](SDValue V) { return V.isUndef() ||
5124                                         isNullConstant(V); });
5125     // TODO: Handle signed overflow.
5126   }
5127   // TODO: Handle oversized shifts.
5128   default:
5129     return false;
5130   }
5131 }
5132 
5133 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5134                                              EVT VT, ArrayRef<SDValue> Ops) {
5135   // If the opcode is a target-specific ISD node, there's nothing we can
5136   // do here and the operand rules may not line up with the below, so
5137   // bail early.
5138   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5139   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5140   // foldCONCAT_VECTORS in getNode before this is called.
5141   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5142     return SDValue();
5143 
5144   // For now, the array Ops should only contain two values.
5145   // This enforcement will be removed once this function is merged with
5146   // FoldConstantVectorArithmetic
5147   if (Ops.size() != 2)
5148     return SDValue();
5149 
5150   if (isUndef(Opcode, Ops))
5151     return getUNDEF(VT);
5152 
5153   SDNode *N1 = Ops[0].getNode();
5154   SDNode *N2 = Ops[1].getNode();
5155 
5156   // Handle the case of two scalars.
5157   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5158     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5159       if (C1->isOpaque() || C2->isOpaque())
5160         return SDValue();
5161 
5162       Optional<APInt> FoldAttempt =
5163           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5164       if (!FoldAttempt)
5165         return SDValue();
5166 
5167       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5168       assert((!Folded || !VT.isVector()) &&
5169              "Can't fold vectors ops with scalar operands");
5170       return Folded;
5171     }
5172   }
5173 
5174   // fold (add Sym, c) -> Sym+c
5175   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5176     return FoldSymbolOffset(Opcode, VT, GA, N2);
5177   if (TLI->isCommutativeBinOp(Opcode))
5178     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5179       return FoldSymbolOffset(Opcode, VT, GA, N1);
5180 
5181   // For fixed width vectors, extract each constant element and fold them
5182   // individually. Either input may be an undef value.
5183   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5184                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5185   if (!IsBVOrSV1 && !N1->isUndef())
5186     return SDValue();
5187   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5188                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5189   if (!IsBVOrSV2 && !N2->isUndef())
5190     return SDValue();
5191   // If both operands are undef, that's handled the same way as scalars.
5192   if (!IsBVOrSV1 && !IsBVOrSV2)
5193     return SDValue();
5194 
5195   EVT SVT = VT.getScalarType();
5196   EVT LegalSVT = SVT;
5197   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5198     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5199     if (LegalSVT.bitsLT(SVT))
5200       return SDValue();
5201   }
5202 
5203   SmallVector<SDValue, 4> Outputs;
5204   unsigned NumOps = 0;
5205   if (IsBVOrSV1)
5206     NumOps = std::max(NumOps, N1->getNumOperands());
5207   if (IsBVOrSV2)
5208     NumOps = std::max(NumOps, N2->getNumOperands());
5209   assert(NumOps != 0 && "Expected non-zero operands");
5210   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5211   // one iteration for that.
5212   assert((!VT.isScalableVector() || NumOps == 1) &&
5213          "Scalable vector should only have one scalar");
5214 
5215   for (unsigned I = 0; I != NumOps; ++I) {
5216     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5217     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5218     SDValue V1;
5219     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5220       V1 = N1->getOperand(I);
5221     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5222       V1 = N1->getOperand(0);
5223     else
5224       V1 = getUNDEF(SVT);
5225 
5226     SDValue V2;
5227     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5228       V2 = N2->getOperand(I);
5229     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5230       V2 = N2->getOperand(0);
5231     else
5232       V2 = getUNDEF(SVT);
5233 
5234     if (SVT.isInteger()) {
5235       if (V1.getValueType().bitsGT(SVT))
5236         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5237       if (V2.getValueType().bitsGT(SVT))
5238         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5239     }
5240 
5241     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5242       return SDValue();
5243 
5244     // Fold one vector element.
5245     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5246     if (LegalSVT != SVT)
5247       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5248 
5249     // Scalar folding only succeeded if the result is a constant or UNDEF.
5250     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5251         ScalarResult.getOpcode() != ISD::ConstantFP)
5252       return SDValue();
5253     Outputs.push_back(ScalarResult);
5254   }
5255 
5256   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5257       N2->getOpcode() == ISD::BUILD_VECTOR) {
5258     assert(VT.getVectorNumElements() == Outputs.size() &&
5259            "Vector size mismatch!");
5260 
5261     // Build a big vector out of the scalar elements we generated.
5262     return getBuildVector(VT, SDLoc(), Outputs);
5263   }
5264 
5265   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5266           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5267          "One operand should be a splat vector");
5268 
5269   assert(Outputs.size() == 1 && "Vector size mismatch!");
5270   return getSplatVector(VT, SDLoc(), Outputs[0]);
5271 }
5272 
5273 // TODO: Merge with FoldConstantArithmetic
5274 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5275                                                    const SDLoc &DL, EVT VT,
5276                                                    ArrayRef<SDValue> Ops,
5277                                                    const SDNodeFlags Flags) {
5278   // If the opcode is a target-specific ISD node, there's nothing we can
5279   // do here and the operand rules may not line up with the below, so
5280   // bail early.
5281   if (Opcode >= ISD::BUILTIN_OP_END)
5282     return SDValue();
5283 
5284   if (isUndef(Opcode, Ops))
5285     return getUNDEF(VT);
5286 
5287   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5288   if (!VT.isVector())
5289     return SDValue();
5290 
5291   ElementCount NumElts = VT.getVectorElementCount();
5292 
5293   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5294     return !Op.getValueType().isVector() ||
5295            Op.getValueType().getVectorElementCount() == NumElts;
5296   };
5297 
5298   auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5299     APInt SplatVal;
5300     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5301     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5302            (BV && BV->isConstant()) ||
5303            (Op.getOpcode() == ISD::SPLAT_VECTOR &&
5304             ISD::isConstantSplatVector(Op.getNode(), SplatVal));
5305   };
5306 
5307   // All operands must be vector types with the same number of elements as
5308   // the result type and must be either UNDEF or a build vector of constant
5309   // or UNDEF scalars.
5310   if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) ||
5311       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5312     return SDValue();
5313 
5314   // If we are comparing vectors, then the result needs to be a i1 boolean
5315   // that is then sign-extended back to the legal result type.
5316   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5317 
5318   // Find legal integer scalar type for constant promotion and
5319   // ensure that its scalar size is at least as large as source.
5320   EVT LegalSVT = VT.getScalarType();
5321   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5322     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5323     if (LegalSVT.bitsLT(VT.getScalarType()))
5324       return SDValue();
5325   }
5326 
5327   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5328   // only have one operand to check. For fixed-length vector types we may have
5329   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5330   unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5331 
5332   // Constant fold each scalar lane separately.
5333   SmallVector<SDValue, 4> ScalarResults;
5334   for (unsigned I = 0; I != NumOperands; I++) {
5335     SmallVector<SDValue, 4> ScalarOps;
5336     for (SDValue Op : Ops) {
5337       EVT InSVT = Op.getValueType().getScalarType();
5338       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5339           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5340         // We've checked that this is UNDEF or a constant of some kind.
5341         if (Op.isUndef())
5342           ScalarOps.push_back(getUNDEF(InSVT));
5343         else
5344           ScalarOps.push_back(Op);
5345         continue;
5346       }
5347 
5348       SDValue ScalarOp =
5349           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5350       EVT ScalarVT = ScalarOp.getValueType();
5351 
5352       // Build vector (integer) scalar operands may need implicit
5353       // truncation - do this before constant folding.
5354       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5355         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5356 
5357       ScalarOps.push_back(ScalarOp);
5358     }
5359 
5360     // Constant fold the scalar operands.
5361     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5362 
5363     // Legalize the (integer) scalar constant if necessary.
5364     if (LegalSVT != SVT)
5365       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5366 
5367     // Scalar folding only succeeded if the result is a constant or UNDEF.
5368     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5369         ScalarResult.getOpcode() != ISD::ConstantFP)
5370       return SDValue();
5371     ScalarResults.push_back(ScalarResult);
5372   }
5373 
5374   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5375                                    : getBuildVector(VT, DL, ScalarResults);
5376   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5377   return V;
5378 }
5379 
5380 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5381                                          EVT VT, SDValue N1, SDValue N2) {
5382   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5383   //       should. That will require dealing with a potentially non-default
5384   //       rounding mode, checking the "opStatus" return value from the APFloat
5385   //       math calculations, and possibly other variations.
5386   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5387   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5388   if (N1CFP && N2CFP) {
5389     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5390     switch (Opcode) {
5391     case ISD::FADD:
5392       C1.add(C2, APFloat::rmNearestTiesToEven);
5393       return getConstantFP(C1, DL, VT);
5394     case ISD::FSUB:
5395       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5396       return getConstantFP(C1, DL, VT);
5397     case ISD::FMUL:
5398       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5399       return getConstantFP(C1, DL, VT);
5400     case ISD::FDIV:
5401       C1.divide(C2, APFloat::rmNearestTiesToEven);
5402       return getConstantFP(C1, DL, VT);
5403     case ISD::FREM:
5404       C1.mod(C2);
5405       return getConstantFP(C1, DL, VT);
5406     case ISD::FCOPYSIGN:
5407       C1.copySign(C2);
5408       return getConstantFP(C1, DL, VT);
5409     default: break;
5410     }
5411   }
5412   if (N1CFP && Opcode == ISD::FP_ROUND) {
5413     APFloat C1 = N1CFP->getValueAPF();    // make copy
5414     bool Unused;
5415     // This can return overflow, underflow, or inexact; we don't care.
5416     // FIXME need to be more flexible about rounding mode.
5417     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5418                       &Unused);
5419     return getConstantFP(C1, DL, VT);
5420   }
5421 
5422   switch (Opcode) {
5423   case ISD::FSUB:
5424     // -0.0 - undef --> undef (consistent with "fneg undef")
5425     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5426       return getUNDEF(VT);
5427     LLVM_FALLTHROUGH;
5428 
5429   case ISD::FADD:
5430   case ISD::FMUL:
5431   case ISD::FDIV:
5432   case ISD::FREM:
5433     // If both operands are undef, the result is undef. If 1 operand is undef,
5434     // the result is NaN. This should match the behavior of the IR optimizer.
5435     if (N1.isUndef() && N2.isUndef())
5436       return getUNDEF(VT);
5437     if (N1.isUndef() || N2.isUndef())
5438       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5439   }
5440   return SDValue();
5441 }
5442 
5443 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5444   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5445 
5446   // There's no need to assert on a byte-aligned pointer. All pointers are at
5447   // least byte aligned.
5448   if (A == Align(1))
5449     return Val;
5450 
5451   FoldingSetNodeID ID;
5452   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5453   ID.AddInteger(A.value());
5454 
5455   void *IP = nullptr;
5456   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5457     return SDValue(E, 0);
5458 
5459   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5460                                          Val.getValueType(), A);
5461   createOperands(N, {Val});
5462 
5463   CSEMap.InsertNode(N, IP);
5464   InsertNode(N);
5465 
5466   SDValue V(N, 0);
5467   NewSDValueDbgMsg(V, "Creating new node: ", this);
5468   return V;
5469 }
5470 
5471 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5472                               SDValue N1, SDValue N2) {
5473   SDNodeFlags Flags;
5474   if (Inserter)
5475     Flags = Inserter->getFlags();
5476   return getNode(Opcode, DL, VT, N1, N2, Flags);
5477 }
5478 
5479 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5480                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5481   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5482          N2.getOpcode() != ISD::DELETED_NODE &&
5483          "Operand is DELETED_NODE!");
5484   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5485   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5486   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5487   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5488 
5489   // Canonicalize constant to RHS if commutative.
5490   if (TLI->isCommutativeBinOp(Opcode)) {
5491     if (N1C && !N2C) {
5492       std::swap(N1C, N2C);
5493       std::swap(N1, N2);
5494     } else if (N1CFP && !N2CFP) {
5495       std::swap(N1CFP, N2CFP);
5496       std::swap(N1, N2);
5497     }
5498   }
5499 
5500   switch (Opcode) {
5501   default: break;
5502   case ISD::TokenFactor:
5503     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5504            N2.getValueType() == MVT::Other && "Invalid token factor!");
5505     // Fold trivial token factors.
5506     if (N1.getOpcode() == ISD::EntryToken) return N2;
5507     if (N2.getOpcode() == ISD::EntryToken) return N1;
5508     if (N1 == N2) return N1;
5509     break;
5510   case ISD::BUILD_VECTOR: {
5511     // Attempt to simplify BUILD_VECTOR.
5512     SDValue Ops[] = {N1, N2};
5513     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5514       return V;
5515     break;
5516   }
5517   case ISD::CONCAT_VECTORS: {
5518     SDValue Ops[] = {N1, N2};
5519     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5520       return V;
5521     break;
5522   }
5523   case ISD::AND:
5524     assert(VT.isInteger() && "This operator does not apply to FP types!");
5525     assert(N1.getValueType() == N2.getValueType() &&
5526            N1.getValueType() == VT && "Binary operator types must match!");
5527     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5528     // worth handling here.
5529     if (N2C && N2C->isNullValue())
5530       return N2;
5531     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5532       return N1;
5533     break;
5534   case ISD::OR:
5535   case ISD::XOR:
5536   case ISD::ADD:
5537   case ISD::SUB:
5538     assert(VT.isInteger() && "This operator does not apply to FP types!");
5539     assert(N1.getValueType() == N2.getValueType() &&
5540            N1.getValueType() == VT && "Binary operator types must match!");
5541     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5542     // it's worth handling here.
5543     if (N2C && N2C->isNullValue())
5544       return N1;
5545     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5546         VT.getVectorElementType() == MVT::i1)
5547       return getNode(ISD::XOR, DL, VT, N1, N2);
5548     break;
5549   case ISD::MUL:
5550     assert(VT.isInteger() && "This operator does not apply to FP types!");
5551     assert(N1.getValueType() == N2.getValueType() &&
5552            N1.getValueType() == VT && "Binary operator types must match!");
5553     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5554       return getNode(ISD::AND, DL, VT, N1, N2);
5555     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5556       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5557       const APInt &N2CImm = N2C->getAPIntValue();
5558       return getVScale(DL, VT, MulImm * N2CImm);
5559     }
5560     break;
5561   case ISD::UDIV:
5562   case ISD::UREM:
5563   case ISD::MULHU:
5564   case ISD::MULHS:
5565   case ISD::SDIV:
5566   case ISD::SREM:
5567   case ISD::SADDSAT:
5568   case ISD::SSUBSAT:
5569   case ISD::UADDSAT:
5570   case ISD::USUBSAT:
5571     assert(VT.isInteger() && "This operator does not apply to FP types!");
5572     assert(N1.getValueType() == N2.getValueType() &&
5573            N1.getValueType() == VT && "Binary operator types must match!");
5574     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5575       // fold (add_sat x, y) -> (or x, y) for bool types.
5576       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5577         return getNode(ISD::OR, DL, VT, N1, N2);
5578       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5579       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5580         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5581     }
5582     break;
5583   case ISD::SMIN:
5584   case ISD::UMAX:
5585     assert(VT.isInteger() && "This operator does not apply to FP types!");
5586     assert(N1.getValueType() == N2.getValueType() &&
5587            N1.getValueType() == VT && "Binary operator types must match!");
5588     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5589       return getNode(ISD::OR, DL, VT, N1, N2);
5590     break;
5591   case ISD::SMAX:
5592   case ISD::UMIN:
5593     assert(VT.isInteger() && "This operator does not apply to FP types!");
5594     assert(N1.getValueType() == N2.getValueType() &&
5595            N1.getValueType() == VT && "Binary operator types must match!");
5596     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5597       return getNode(ISD::AND, DL, VT, N1, N2);
5598     break;
5599   case ISD::FADD:
5600   case ISD::FSUB:
5601   case ISD::FMUL:
5602   case ISD::FDIV:
5603   case ISD::FREM:
5604     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5605     assert(N1.getValueType() == N2.getValueType() &&
5606            N1.getValueType() == VT && "Binary operator types must match!");
5607     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5608       return V;
5609     break;
5610   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5611     assert(N1.getValueType() == VT &&
5612            N1.getValueType().isFloatingPoint() &&
5613            N2.getValueType().isFloatingPoint() &&
5614            "Invalid FCOPYSIGN!");
5615     break;
5616   case ISD::SHL:
5617     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5618       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5619       const APInt &ShiftImm = N2C->getAPIntValue();
5620       return getVScale(DL, VT, MulImm << ShiftImm);
5621     }
5622     LLVM_FALLTHROUGH;
5623   case ISD::SRA:
5624   case ISD::SRL:
5625     if (SDValue V = simplifyShift(N1, N2))
5626       return V;
5627     LLVM_FALLTHROUGH;
5628   case ISD::ROTL:
5629   case ISD::ROTR:
5630     assert(VT == N1.getValueType() &&
5631            "Shift operators return type must be the same as their first arg");
5632     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5633            "Shifts only work on integers");
5634     assert((!VT.isVector() || VT == N2.getValueType()) &&
5635            "Vector shift amounts must be in the same as their first arg");
5636     // Verify that the shift amount VT is big enough to hold valid shift
5637     // amounts.  This catches things like trying to shift an i1024 value by an
5638     // i8, which is easy to fall into in generic code that uses
5639     // TLI.getShiftAmount().
5640     assert(N2.getValueType().getScalarSizeInBits() >=
5641                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5642            "Invalid use of small shift amount with oversized value!");
5643 
5644     // Always fold shifts of i1 values so the code generator doesn't need to
5645     // handle them.  Since we know the size of the shift has to be less than the
5646     // size of the value, the shift/rotate count is guaranteed to be zero.
5647     if (VT == MVT::i1)
5648       return N1;
5649     if (N2C && N2C->isNullValue())
5650       return N1;
5651     break;
5652   case ISD::FP_ROUND:
5653     assert(VT.isFloatingPoint() &&
5654            N1.getValueType().isFloatingPoint() &&
5655            VT.bitsLE(N1.getValueType()) &&
5656            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5657            "Invalid FP_ROUND!");
5658     if (N1.getValueType() == VT) return N1;  // noop conversion.
5659     break;
5660   case ISD::AssertSext:
5661   case ISD::AssertZext: {
5662     EVT EVT = cast<VTSDNode>(N2)->getVT();
5663     assert(VT == N1.getValueType() && "Not an inreg extend!");
5664     assert(VT.isInteger() && EVT.isInteger() &&
5665            "Cannot *_EXTEND_INREG FP types");
5666     assert(!EVT.isVector() &&
5667            "AssertSExt/AssertZExt type should be the vector element type "
5668            "rather than the vector type!");
5669     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5670     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5671     break;
5672   }
5673   case ISD::SIGN_EXTEND_INREG: {
5674     EVT EVT = cast<VTSDNode>(N2)->getVT();
5675     assert(VT == N1.getValueType() && "Not an inreg extend!");
5676     assert(VT.isInteger() && EVT.isInteger() &&
5677            "Cannot *_EXTEND_INREG FP types");
5678     assert(EVT.isVector() == VT.isVector() &&
5679            "SIGN_EXTEND_INREG type should be vector iff the operand "
5680            "type is vector!");
5681     assert((!EVT.isVector() ||
5682             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5683            "Vector element counts must match in SIGN_EXTEND_INREG");
5684     assert(EVT.bitsLE(VT) && "Not extending!");
5685     if (EVT == VT) return N1;  // Not actually extending
5686 
5687     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5688       unsigned FromBits = EVT.getScalarSizeInBits();
5689       Val <<= Val.getBitWidth() - FromBits;
5690       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5691       return getConstant(Val, DL, ConstantVT);
5692     };
5693 
5694     if (N1C) {
5695       const APInt &Val = N1C->getAPIntValue();
5696       return SignExtendInReg(Val, VT);
5697     }
5698     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5699       SmallVector<SDValue, 8> Ops;
5700       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5701       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5702         SDValue Op = N1.getOperand(i);
5703         if (Op.isUndef()) {
5704           Ops.push_back(getUNDEF(OpVT));
5705           continue;
5706         }
5707         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5708         APInt Val = C->getAPIntValue();
5709         Ops.push_back(SignExtendInReg(Val, OpVT));
5710       }
5711       return getBuildVector(VT, DL, Ops);
5712     }
5713     break;
5714   }
5715   case ISD::FP_TO_SINT_SAT:
5716   case ISD::FP_TO_UINT_SAT: {
5717     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5718            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5719     assert(N1.getValueType().isVector() == VT.isVector() &&
5720            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5721            "vector!");
5722     assert((!VT.isVector() || VT.getVectorNumElements() ==
5723                                   N1.getValueType().getVectorNumElements()) &&
5724            "Vector element counts must match in FP_TO_*INT_SAT");
5725     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5726            "Type to saturate to must be a scalar.");
5727     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5728            "Not extending!");
5729     break;
5730   }
5731   case ISD::EXTRACT_VECTOR_ELT:
5732     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5733            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5734              element type of the vector.");
5735 
5736     // Extract from an undefined value or using an undefined index is undefined.
5737     if (N1.isUndef() || N2.isUndef())
5738       return getUNDEF(VT);
5739 
5740     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5741     // vectors. For scalable vectors we will provide appropriate support for
5742     // dealing with arbitrary indices.
5743     if (N2C && N1.getValueType().isFixedLengthVector() &&
5744         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5745       return getUNDEF(VT);
5746 
5747     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5748     // expanding copies of large vectors from registers. This only works for
5749     // fixed length vectors, since we need to know the exact number of
5750     // elements.
5751     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5752         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5753       unsigned Factor =
5754         N1.getOperand(0).getValueType().getVectorNumElements();
5755       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5756                      N1.getOperand(N2C->getZExtValue() / Factor),
5757                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5758     }
5759 
5760     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5761     // lowering is expanding large vector constants.
5762     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5763                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5764       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5765               N1.getValueType().isFixedLengthVector()) &&
5766              "BUILD_VECTOR used for scalable vectors");
5767       unsigned Index =
5768           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5769       SDValue Elt = N1.getOperand(Index);
5770 
5771       if (VT != Elt.getValueType())
5772         // If the vector element type is not legal, the BUILD_VECTOR operands
5773         // are promoted and implicitly truncated, and the result implicitly
5774         // extended. Make that explicit here.
5775         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5776 
5777       return Elt;
5778     }
5779 
5780     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5781     // operations are lowered to scalars.
5782     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5783       // If the indices are the same, return the inserted element else
5784       // if the indices are known different, extract the element from
5785       // the original vector.
5786       SDValue N1Op2 = N1.getOperand(2);
5787       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5788 
5789       if (N1Op2C && N2C) {
5790         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5791           if (VT == N1.getOperand(1).getValueType())
5792             return N1.getOperand(1);
5793           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5794         }
5795         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5796       }
5797     }
5798 
5799     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5800     // when vector types are scalarized and v1iX is legal.
5801     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5802     // Here we are completely ignoring the extract element index (N2),
5803     // which is fine for fixed width vectors, since any index other than 0
5804     // is undefined anyway. However, this cannot be ignored for scalable
5805     // vectors - in theory we could support this, but we don't want to do this
5806     // without a profitability check.
5807     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5808         N1.getValueType().isFixedLengthVector() &&
5809         N1.getValueType().getVectorNumElements() == 1) {
5810       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5811                      N1.getOperand(1));
5812     }
5813     break;
5814   case ISD::EXTRACT_ELEMENT:
5815     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5816     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5817            (N1.getValueType().isInteger() == VT.isInteger()) &&
5818            N1.getValueType() != VT &&
5819            "Wrong types for EXTRACT_ELEMENT!");
5820 
5821     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5822     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5823     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5824     if (N1.getOpcode() == ISD::BUILD_PAIR)
5825       return N1.getOperand(N2C->getZExtValue());
5826 
5827     // EXTRACT_ELEMENT of a constant int is also very common.
5828     if (N1C) {
5829       unsigned ElementSize = VT.getSizeInBits();
5830       unsigned Shift = ElementSize * N2C->getZExtValue();
5831       const APInt &Val = N1C->getAPIntValue();
5832       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5833     }
5834     break;
5835   case ISD::EXTRACT_SUBVECTOR:
5836     EVT N1VT = N1.getValueType();
5837     assert(VT.isVector() && N1VT.isVector() &&
5838            "Extract subvector VTs must be vectors!");
5839     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5840            "Extract subvector VTs must have the same element type!");
5841     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5842            "Cannot extract a scalable vector from a fixed length vector!");
5843     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5844             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5845            "Extract subvector must be from larger vector to smaller vector!");
5846     assert(N2C && "Extract subvector index must be a constant");
5847     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5848             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5849                 N1VT.getVectorMinNumElements()) &&
5850            "Extract subvector overflow!");
5851     assert(N2C->getAPIntValue().getBitWidth() ==
5852                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5853            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5854 
5855     // Trivial extraction.
5856     if (VT == N1VT)
5857       return N1;
5858 
5859     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5860     if (N1.isUndef())
5861       return getUNDEF(VT);
5862 
5863     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5864     // the concat have the same type as the extract.
5865     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5866         VT == N1.getOperand(0).getValueType()) {
5867       unsigned Factor = VT.getVectorMinNumElements();
5868       return N1.getOperand(N2C->getZExtValue() / Factor);
5869     }
5870 
5871     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5872     // during shuffle legalization.
5873     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5874         VT == N1.getOperand(1).getValueType())
5875       return N1.getOperand(1);
5876     break;
5877   }
5878 
5879   // Perform trivial constant folding.
5880   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5881     return SV;
5882 
5883   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5884     return V;
5885 
5886   // Canonicalize an UNDEF to the RHS, even over a constant.
5887   if (N1.isUndef()) {
5888     if (TLI->isCommutativeBinOp(Opcode)) {
5889       std::swap(N1, N2);
5890     } else {
5891       switch (Opcode) {
5892       case ISD::SIGN_EXTEND_INREG:
5893       case ISD::SUB:
5894         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5895       case ISD::UDIV:
5896       case ISD::SDIV:
5897       case ISD::UREM:
5898       case ISD::SREM:
5899       case ISD::SSUBSAT:
5900       case ISD::USUBSAT:
5901         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5902       }
5903     }
5904   }
5905 
5906   // Fold a bunch of operators when the RHS is undef.
5907   if (N2.isUndef()) {
5908     switch (Opcode) {
5909     case ISD::XOR:
5910       if (N1.isUndef())
5911         // Handle undef ^ undef -> 0 special case. This is a common
5912         // idiom (misuse).
5913         return getConstant(0, DL, VT);
5914       LLVM_FALLTHROUGH;
5915     case ISD::ADD:
5916     case ISD::SUB:
5917     case ISD::UDIV:
5918     case ISD::SDIV:
5919     case ISD::UREM:
5920     case ISD::SREM:
5921       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5922     case ISD::MUL:
5923     case ISD::AND:
5924     case ISD::SSUBSAT:
5925     case ISD::USUBSAT:
5926       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5927     case ISD::OR:
5928     case ISD::SADDSAT:
5929     case ISD::UADDSAT:
5930       return getAllOnesConstant(DL, VT);
5931     }
5932   }
5933 
5934   // Memoize this node if possible.
5935   SDNode *N;
5936   SDVTList VTs = getVTList(VT);
5937   SDValue Ops[] = {N1, N2};
5938   if (VT != MVT::Glue) {
5939     FoldingSetNodeID ID;
5940     AddNodeIDNode(ID, Opcode, VTs, Ops);
5941     void *IP = nullptr;
5942     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5943       E->intersectFlagsWith(Flags);
5944       return SDValue(E, 0);
5945     }
5946 
5947     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5948     N->setFlags(Flags);
5949     createOperands(N, Ops);
5950     CSEMap.InsertNode(N, IP);
5951   } else {
5952     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5953     createOperands(N, Ops);
5954   }
5955 
5956   InsertNode(N);
5957   SDValue V = SDValue(N, 0);
5958   NewSDValueDbgMsg(V, "Creating new node: ", this);
5959   return V;
5960 }
5961 
5962 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5963                               SDValue N1, SDValue N2, SDValue N3) {
5964   SDNodeFlags Flags;
5965   if (Inserter)
5966     Flags = Inserter->getFlags();
5967   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5968 }
5969 
5970 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5971                               SDValue N1, SDValue N2, SDValue N3,
5972                               const SDNodeFlags Flags) {
5973   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5974          N2.getOpcode() != ISD::DELETED_NODE &&
5975          N3.getOpcode() != ISD::DELETED_NODE &&
5976          "Operand is DELETED_NODE!");
5977   // Perform various simplifications.
5978   switch (Opcode) {
5979   case ISD::FMA: {
5980     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5981     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5982            N3.getValueType() == VT && "FMA types must match!");
5983     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5984     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5985     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5986     if (N1CFP && N2CFP && N3CFP) {
5987       APFloat  V1 = N1CFP->getValueAPF();
5988       const APFloat &V2 = N2CFP->getValueAPF();
5989       const APFloat &V3 = N3CFP->getValueAPF();
5990       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5991       return getConstantFP(V1, DL, VT);
5992     }
5993     break;
5994   }
5995   case ISD::BUILD_VECTOR: {
5996     // Attempt to simplify BUILD_VECTOR.
5997     SDValue Ops[] = {N1, N2, N3};
5998     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5999       return V;
6000     break;
6001   }
6002   case ISD::CONCAT_VECTORS: {
6003     SDValue Ops[] = {N1, N2, N3};
6004     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6005       return V;
6006     break;
6007   }
6008   case ISD::SETCC: {
6009     assert(VT.isInteger() && "SETCC result type must be an integer!");
6010     assert(N1.getValueType() == N2.getValueType() &&
6011            "SETCC operands must have the same type!");
6012     assert(VT.isVector() == N1.getValueType().isVector() &&
6013            "SETCC type should be vector iff the operand type is vector!");
6014     assert((!VT.isVector() || VT.getVectorElementCount() ==
6015                                   N1.getValueType().getVectorElementCount()) &&
6016            "SETCC vector element counts must match!");
6017     // Use FoldSetCC to simplify SETCC's.
6018     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6019       return V;
6020     // Vector constant folding.
6021     SDValue Ops[] = {N1, N2, N3};
6022     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
6023       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6024       return V;
6025     }
6026     break;
6027   }
6028   case ISD::SELECT:
6029   case ISD::VSELECT:
6030     if (SDValue V = simplifySelect(N1, N2, N3))
6031       return V;
6032     break;
6033   case ISD::VECTOR_SHUFFLE:
6034     llvm_unreachable("should use getVectorShuffle constructor!");
6035   case ISD::INSERT_VECTOR_ELT: {
6036     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6037     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6038     // for scalable vectors where we will generate appropriate code to
6039     // deal with out-of-bounds cases correctly.
6040     if (N3C && N1.getValueType().isFixedLengthVector() &&
6041         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6042       return getUNDEF(VT);
6043 
6044     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6045     if (N3.isUndef())
6046       return getUNDEF(VT);
6047 
6048     // If the inserted element is an UNDEF, just use the input vector.
6049     if (N2.isUndef())
6050       return N1;
6051 
6052     break;
6053   }
6054   case ISD::INSERT_SUBVECTOR: {
6055     // Inserting undef into undef is still undef.
6056     if (N1.isUndef() && N2.isUndef())
6057       return getUNDEF(VT);
6058 
6059     EVT N2VT = N2.getValueType();
6060     assert(VT == N1.getValueType() &&
6061            "Dest and insert subvector source types must match!");
6062     assert(VT.isVector() && N2VT.isVector() &&
6063            "Insert subvector VTs must be vectors!");
6064     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6065            "Cannot insert a scalable vector into a fixed length vector!");
6066     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6067             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6068            "Insert subvector must be from smaller vector to larger vector!");
6069     assert(isa<ConstantSDNode>(N3) &&
6070            "Insert subvector index must be constant");
6071     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6072             (N2VT.getVectorMinNumElements() +
6073              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6074                 VT.getVectorMinNumElements()) &&
6075            "Insert subvector overflow!");
6076     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6077                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6078            "Constant index for INSERT_SUBVECTOR has an invalid size");
6079 
6080     // Trivial insertion.
6081     if (VT == N2VT)
6082       return N2;
6083 
6084     // If this is an insert of an extracted vector into an undef vector, we
6085     // can just use the input to the extract.
6086     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6087         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6088       return N2.getOperand(0);
6089     break;
6090   }
6091   case ISD::BITCAST:
6092     // Fold bit_convert nodes from a type to themselves.
6093     if (N1.getValueType() == VT)
6094       return N1;
6095     break;
6096   }
6097 
6098   // Memoize node if it doesn't produce a flag.
6099   SDNode *N;
6100   SDVTList VTs = getVTList(VT);
6101   SDValue Ops[] = {N1, N2, N3};
6102   if (VT != MVT::Glue) {
6103     FoldingSetNodeID ID;
6104     AddNodeIDNode(ID, Opcode, VTs, Ops);
6105     void *IP = nullptr;
6106     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6107       E->intersectFlagsWith(Flags);
6108       return SDValue(E, 0);
6109     }
6110 
6111     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6112     N->setFlags(Flags);
6113     createOperands(N, Ops);
6114     CSEMap.InsertNode(N, IP);
6115   } else {
6116     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6117     createOperands(N, Ops);
6118   }
6119 
6120   InsertNode(N);
6121   SDValue V = SDValue(N, 0);
6122   NewSDValueDbgMsg(V, "Creating new node: ", this);
6123   return V;
6124 }
6125 
6126 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6127                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6128   SDValue Ops[] = { N1, N2, N3, N4 };
6129   return getNode(Opcode, DL, VT, Ops);
6130 }
6131 
6132 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6133                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6134                               SDValue N5) {
6135   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6136   return getNode(Opcode, DL, VT, Ops);
6137 }
6138 
6139 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6140 /// the incoming stack arguments to be loaded from the stack.
6141 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6142   SmallVector<SDValue, 8> ArgChains;
6143 
6144   // Include the original chain at the beginning of the list. When this is
6145   // used by target LowerCall hooks, this helps legalize find the
6146   // CALLSEQ_BEGIN node.
6147   ArgChains.push_back(Chain);
6148 
6149   // Add a chain value for each stack argument.
6150   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6151        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6152     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6153       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6154         if (FI->getIndex() < 0)
6155           ArgChains.push_back(SDValue(L, 1));
6156 
6157   // Build a tokenfactor for all the chains.
6158   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6159 }
6160 
6161 /// getMemsetValue - Vectorized representation of the memset value
6162 /// operand.
6163 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6164                               const SDLoc &dl) {
6165   assert(!Value.isUndef());
6166 
6167   unsigned NumBits = VT.getScalarSizeInBits();
6168   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6169     assert(C->getAPIntValue().getBitWidth() == 8);
6170     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6171     if (VT.isInteger()) {
6172       bool IsOpaque = VT.getSizeInBits() > 64 ||
6173           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6174       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6175     }
6176     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6177                              VT);
6178   }
6179 
6180   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6181   EVT IntVT = VT.getScalarType();
6182   if (!IntVT.isInteger())
6183     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6184 
6185   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6186   if (NumBits > 8) {
6187     // Use a multiplication with 0x010101... to extend the input to the
6188     // required length.
6189     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6190     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6191                         DAG.getConstant(Magic, dl, IntVT));
6192   }
6193 
6194   if (VT != Value.getValueType() && !VT.isInteger())
6195     Value = DAG.getBitcast(VT.getScalarType(), Value);
6196   if (VT != Value.getValueType())
6197     Value = DAG.getSplatBuildVector(VT, dl, Value);
6198 
6199   return Value;
6200 }
6201 
6202 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6203 /// used when a memcpy is turned into a memset when the source is a constant
6204 /// string ptr.
6205 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6206                                   const TargetLowering &TLI,
6207                                   const ConstantDataArraySlice &Slice) {
6208   // Handle vector with all elements zero.
6209   if (Slice.Array == nullptr) {
6210     if (VT.isInteger())
6211       return DAG.getConstant(0, dl, VT);
6212     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6213       return DAG.getConstantFP(0.0, dl, VT);
6214     if (VT.isVector()) {
6215       unsigned NumElts = VT.getVectorNumElements();
6216       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6217       return DAG.getNode(ISD::BITCAST, dl, VT,
6218                          DAG.getConstant(0, dl,
6219                                          EVT::getVectorVT(*DAG.getContext(),
6220                                                           EltVT, NumElts)));
6221     }
6222     llvm_unreachable("Expected type!");
6223   }
6224 
6225   assert(!VT.isVector() && "Can't handle vector type here!");
6226   unsigned NumVTBits = VT.getSizeInBits();
6227   unsigned NumVTBytes = NumVTBits / 8;
6228   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6229 
6230   APInt Val(NumVTBits, 0);
6231   if (DAG.getDataLayout().isLittleEndian()) {
6232     for (unsigned i = 0; i != NumBytes; ++i)
6233       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6234   } else {
6235     for (unsigned i = 0; i != NumBytes; ++i)
6236       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6237   }
6238 
6239   // If the "cost" of materializing the integer immediate is less than the cost
6240   // of a load, then it is cost effective to turn the load into the immediate.
6241   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6242   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6243     return DAG.getConstant(Val, dl, VT);
6244   return SDValue(nullptr, 0);
6245 }
6246 
6247 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6248                                            const SDLoc &DL,
6249                                            const SDNodeFlags Flags) {
6250   EVT VT = Base.getValueType();
6251   SDValue Index;
6252 
6253   if (Offset.isScalable())
6254     Index = getVScale(DL, Base.getValueType(),
6255                       APInt(Base.getValueSizeInBits().getFixedSize(),
6256                             Offset.getKnownMinSize()));
6257   else
6258     Index = getConstant(Offset.getFixedSize(), DL, VT);
6259 
6260   return getMemBasePlusOffset(Base, Index, DL, Flags);
6261 }
6262 
6263 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6264                                            const SDLoc &DL,
6265                                            const SDNodeFlags Flags) {
6266   assert(Offset.getValueType().isInteger());
6267   EVT BasePtrVT = Ptr.getValueType();
6268   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6269 }
6270 
6271 /// Returns true if memcpy source is constant data.
6272 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6273   uint64_t SrcDelta = 0;
6274   GlobalAddressSDNode *G = nullptr;
6275   if (Src.getOpcode() == ISD::GlobalAddress)
6276     G = cast<GlobalAddressSDNode>(Src);
6277   else if (Src.getOpcode() == ISD::ADD &&
6278            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6279            Src.getOperand(1).getOpcode() == ISD::Constant) {
6280     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6281     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6282   }
6283   if (!G)
6284     return false;
6285 
6286   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6287                                   SrcDelta + G->getOffset());
6288 }
6289 
6290 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6291                                       SelectionDAG &DAG) {
6292   // On Darwin, -Os means optimize for size without hurting performance, so
6293   // only really optimize for size when -Oz (MinSize) is used.
6294   if (MF.getTarget().getTargetTriple().isOSDarwin())
6295     return MF.getFunction().hasMinSize();
6296   return DAG.shouldOptForSize();
6297 }
6298 
6299 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6300                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6301                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6302                           SmallVector<SDValue, 16> &OutStoreChains) {
6303   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6304   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6305   SmallVector<SDValue, 16> GluedLoadChains;
6306   for (unsigned i = From; i < To; ++i) {
6307     OutChains.push_back(OutLoadChains[i]);
6308     GluedLoadChains.push_back(OutLoadChains[i]);
6309   }
6310 
6311   // Chain for all loads.
6312   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6313                                   GluedLoadChains);
6314 
6315   for (unsigned i = From; i < To; ++i) {
6316     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6317     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6318                                   ST->getBasePtr(), ST->getMemoryVT(),
6319                                   ST->getMemOperand());
6320     OutChains.push_back(NewStore);
6321   }
6322 }
6323 
6324 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6325                                        SDValue Chain, SDValue Dst, SDValue Src,
6326                                        uint64_t Size, Align Alignment,
6327                                        bool isVol, bool AlwaysInline,
6328                                        MachinePointerInfo DstPtrInfo,
6329                                        MachinePointerInfo SrcPtrInfo,
6330                                        const AAMDNodes &AAInfo) {
6331   // Turn a memcpy of undef to nop.
6332   // FIXME: We need to honor volatile even is Src is undef.
6333   if (Src.isUndef())
6334     return Chain;
6335 
6336   // Expand memcpy to a series of load and store ops if the size operand falls
6337   // below a certain threshold.
6338   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6339   // rather than maybe a humongous number of loads and stores.
6340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6341   const DataLayout &DL = DAG.getDataLayout();
6342   LLVMContext &C = *DAG.getContext();
6343   std::vector<EVT> MemOps;
6344   bool DstAlignCanChange = false;
6345   MachineFunction &MF = DAG.getMachineFunction();
6346   MachineFrameInfo &MFI = MF.getFrameInfo();
6347   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6348   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6349   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6350     DstAlignCanChange = true;
6351   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6352   if (!SrcAlign || Alignment > *SrcAlign)
6353     SrcAlign = Alignment;
6354   assert(SrcAlign && "SrcAlign must be set");
6355   ConstantDataArraySlice Slice;
6356   // If marked as volatile, perform a copy even when marked as constant.
6357   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6358   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6359   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6360   const MemOp Op = isZeroConstant
6361                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6362                                     /*IsZeroMemset*/ true, isVol)
6363                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6364                                      *SrcAlign, isVol, CopyFromConstant);
6365   if (!TLI.findOptimalMemOpLowering(
6366           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6367           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6368     return SDValue();
6369 
6370   if (DstAlignCanChange) {
6371     Type *Ty = MemOps[0].getTypeForEVT(C);
6372     Align NewAlign = DL.getABITypeAlign(Ty);
6373 
6374     // Don't promote to an alignment that would require dynamic stack
6375     // realignment.
6376     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6377     if (!TRI->hasStackRealignment(MF))
6378       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6379         NewAlign = NewAlign / 2;
6380 
6381     if (NewAlign > Alignment) {
6382       // Give the stack frame object a larger alignment if needed.
6383       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6384         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6385       Alignment = NewAlign;
6386     }
6387   }
6388 
6389   // Prepare AAInfo for loads/stores after lowering this memcpy.
6390   AAMDNodes NewAAInfo = AAInfo;
6391   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6392 
6393   MachineMemOperand::Flags MMOFlags =
6394       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6395   SmallVector<SDValue, 16> OutLoadChains;
6396   SmallVector<SDValue, 16> OutStoreChains;
6397   SmallVector<SDValue, 32> OutChains;
6398   unsigned NumMemOps = MemOps.size();
6399   uint64_t SrcOff = 0, DstOff = 0;
6400   for (unsigned i = 0; i != NumMemOps; ++i) {
6401     EVT VT = MemOps[i];
6402     unsigned VTSize = VT.getSizeInBits() / 8;
6403     SDValue Value, Store;
6404 
6405     if (VTSize > Size) {
6406       // Issuing an unaligned load / store pair  that overlaps with the previous
6407       // pair. Adjust the offset accordingly.
6408       assert(i == NumMemOps-1 && i != 0);
6409       SrcOff -= VTSize - Size;
6410       DstOff -= VTSize - Size;
6411     }
6412 
6413     if (CopyFromConstant &&
6414         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6415       // It's unlikely a store of a vector immediate can be done in a single
6416       // instruction. It would require a load from a constantpool first.
6417       // We only handle zero vectors here.
6418       // FIXME: Handle other cases where store of vector immediate is done in
6419       // a single instruction.
6420       ConstantDataArraySlice SubSlice;
6421       if (SrcOff < Slice.Length) {
6422         SubSlice = Slice;
6423         SubSlice.move(SrcOff);
6424       } else {
6425         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6426         SubSlice.Array = nullptr;
6427         SubSlice.Offset = 0;
6428         SubSlice.Length = VTSize;
6429       }
6430       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6431       if (Value.getNode()) {
6432         Store = DAG.getStore(
6433             Chain, dl, Value,
6434             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6435             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6436         OutChains.push_back(Store);
6437       }
6438     }
6439 
6440     if (!Store.getNode()) {
6441       // The type might not be legal for the target.  This should only happen
6442       // if the type is smaller than a legal type, as on PPC, so the right
6443       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6444       // to Load/Store if NVT==VT.
6445       // FIXME does the case above also need this?
6446       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6447       assert(NVT.bitsGE(VT));
6448 
6449       bool isDereferenceable =
6450         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6451       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6452       if (isDereferenceable)
6453         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6454 
6455       Value = DAG.getExtLoad(
6456           ISD::EXTLOAD, dl, NVT, Chain,
6457           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6458           SrcPtrInfo.getWithOffset(SrcOff), VT,
6459           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6460       OutLoadChains.push_back(Value.getValue(1));
6461 
6462       Store = DAG.getTruncStore(
6463           Chain, dl, Value,
6464           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6465           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6466       OutStoreChains.push_back(Store);
6467     }
6468     SrcOff += VTSize;
6469     DstOff += VTSize;
6470     Size -= VTSize;
6471   }
6472 
6473   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6474                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6475   unsigned NumLdStInMemcpy = OutStoreChains.size();
6476 
6477   if (NumLdStInMemcpy) {
6478     // It may be that memcpy might be converted to memset if it's memcpy
6479     // of constants. In such a case, we won't have loads and stores, but
6480     // just stores. In the absence of loads, there is nothing to gang up.
6481     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6482       // If target does not care, just leave as it.
6483       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6484         OutChains.push_back(OutLoadChains[i]);
6485         OutChains.push_back(OutStoreChains[i]);
6486       }
6487     } else {
6488       // Ld/St less than/equal limit set by target.
6489       if (NumLdStInMemcpy <= GluedLdStLimit) {
6490           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6491                                         NumLdStInMemcpy, OutLoadChains,
6492                                         OutStoreChains);
6493       } else {
6494         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6495         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6496         unsigned GlueIter = 0;
6497 
6498         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6499           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6500           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6501 
6502           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6503                                        OutLoadChains, OutStoreChains);
6504           GlueIter += GluedLdStLimit;
6505         }
6506 
6507         // Residual ld/st.
6508         if (RemainingLdStInMemcpy) {
6509           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6510                                         RemainingLdStInMemcpy, OutLoadChains,
6511                                         OutStoreChains);
6512         }
6513       }
6514     }
6515   }
6516   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6517 }
6518 
6519 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6520                                         SDValue Chain, SDValue Dst, SDValue Src,
6521                                         uint64_t Size, Align Alignment,
6522                                         bool isVol, bool AlwaysInline,
6523                                         MachinePointerInfo DstPtrInfo,
6524                                         MachinePointerInfo SrcPtrInfo,
6525                                         const AAMDNodes &AAInfo) {
6526   // Turn a memmove of undef to nop.
6527   // FIXME: We need to honor volatile even is Src is undef.
6528   if (Src.isUndef())
6529     return Chain;
6530 
6531   // Expand memmove to a series of load and store ops if the size operand falls
6532   // below a certain threshold.
6533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6534   const DataLayout &DL = DAG.getDataLayout();
6535   LLVMContext &C = *DAG.getContext();
6536   std::vector<EVT> MemOps;
6537   bool DstAlignCanChange = false;
6538   MachineFunction &MF = DAG.getMachineFunction();
6539   MachineFrameInfo &MFI = MF.getFrameInfo();
6540   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6541   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6542   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6543     DstAlignCanChange = true;
6544   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6545   if (!SrcAlign || Alignment > *SrcAlign)
6546     SrcAlign = Alignment;
6547   assert(SrcAlign && "SrcAlign must be set");
6548   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6549   if (!TLI.findOptimalMemOpLowering(
6550           MemOps, Limit,
6551           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6552                       /*IsVolatile*/ true),
6553           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6554           MF.getFunction().getAttributes()))
6555     return SDValue();
6556 
6557   if (DstAlignCanChange) {
6558     Type *Ty = MemOps[0].getTypeForEVT(C);
6559     Align NewAlign = DL.getABITypeAlign(Ty);
6560     if (NewAlign > Alignment) {
6561       // Give the stack frame object a larger alignment if needed.
6562       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6563         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6564       Alignment = NewAlign;
6565     }
6566   }
6567 
6568   // Prepare AAInfo for loads/stores after lowering this memmove.
6569   AAMDNodes NewAAInfo = AAInfo;
6570   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6571 
6572   MachineMemOperand::Flags MMOFlags =
6573       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6574   uint64_t SrcOff = 0, DstOff = 0;
6575   SmallVector<SDValue, 8> LoadValues;
6576   SmallVector<SDValue, 8> LoadChains;
6577   SmallVector<SDValue, 8> OutChains;
6578   unsigned NumMemOps = MemOps.size();
6579   for (unsigned i = 0; i < NumMemOps; i++) {
6580     EVT VT = MemOps[i];
6581     unsigned VTSize = VT.getSizeInBits() / 8;
6582     SDValue Value;
6583 
6584     bool isDereferenceable =
6585       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6586     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6587     if (isDereferenceable)
6588       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6589 
6590     Value = DAG.getLoad(
6591         VT, dl, Chain,
6592         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6593         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6594     LoadValues.push_back(Value);
6595     LoadChains.push_back(Value.getValue(1));
6596     SrcOff += VTSize;
6597   }
6598   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6599   OutChains.clear();
6600   for (unsigned i = 0; i < NumMemOps; i++) {
6601     EVT VT = MemOps[i];
6602     unsigned VTSize = VT.getSizeInBits() / 8;
6603     SDValue Store;
6604 
6605     Store = DAG.getStore(
6606         Chain, dl, LoadValues[i],
6607         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6608         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6609     OutChains.push_back(Store);
6610     DstOff += VTSize;
6611   }
6612 
6613   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6614 }
6615 
6616 /// Lower the call to 'memset' intrinsic function into a series of store
6617 /// operations.
6618 ///
6619 /// \param DAG Selection DAG where lowered code is placed.
6620 /// \param dl Link to corresponding IR location.
6621 /// \param Chain Control flow dependency.
6622 /// \param Dst Pointer to destination memory location.
6623 /// \param Src Value of byte to write into the memory.
6624 /// \param Size Number of bytes to write.
6625 /// \param Alignment Alignment of the destination in bytes.
6626 /// \param isVol True if destination is volatile.
6627 /// \param DstPtrInfo IR information on the memory pointer.
6628 /// \returns New head in the control flow, if lowering was successful, empty
6629 /// SDValue otherwise.
6630 ///
6631 /// The function tries to replace 'llvm.memset' intrinsic with several store
6632 /// operations and value calculation code. This is usually profitable for small
6633 /// memory size.
6634 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6635                                SDValue Chain, SDValue Dst, SDValue Src,
6636                                uint64_t Size, Align Alignment, bool isVol,
6637                                MachinePointerInfo DstPtrInfo,
6638                                const AAMDNodes &AAInfo) {
6639   // Turn a memset of undef to nop.
6640   // FIXME: We need to honor volatile even is Src is undef.
6641   if (Src.isUndef())
6642     return Chain;
6643 
6644   // Expand memset to a series of load/store ops if the size operand
6645   // falls below a certain threshold.
6646   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6647   std::vector<EVT> MemOps;
6648   bool DstAlignCanChange = false;
6649   MachineFunction &MF = DAG.getMachineFunction();
6650   MachineFrameInfo &MFI = MF.getFrameInfo();
6651   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6652   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6653   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6654     DstAlignCanChange = true;
6655   bool IsZeroVal =
6656     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6657   if (!TLI.findOptimalMemOpLowering(
6658           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6659           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6660           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6661     return SDValue();
6662 
6663   if (DstAlignCanChange) {
6664     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6665     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6666     if (NewAlign > Alignment) {
6667       // Give the stack frame object a larger alignment if needed.
6668       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6669         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6670       Alignment = NewAlign;
6671     }
6672   }
6673 
6674   SmallVector<SDValue, 8> OutChains;
6675   uint64_t DstOff = 0;
6676   unsigned NumMemOps = MemOps.size();
6677 
6678   // Find the largest store and generate the bit pattern for it.
6679   EVT LargestVT = MemOps[0];
6680   for (unsigned i = 1; i < NumMemOps; i++)
6681     if (MemOps[i].bitsGT(LargestVT))
6682       LargestVT = MemOps[i];
6683   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6684 
6685   // Prepare AAInfo for loads/stores after lowering this memset.
6686   AAMDNodes NewAAInfo = AAInfo;
6687   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6688 
6689   for (unsigned i = 0; i < NumMemOps; i++) {
6690     EVT VT = MemOps[i];
6691     unsigned VTSize = VT.getSizeInBits() / 8;
6692     if (VTSize > Size) {
6693       // Issuing an unaligned load / store pair  that overlaps with the previous
6694       // pair. Adjust the offset accordingly.
6695       assert(i == NumMemOps-1 && i != 0);
6696       DstOff -= VTSize - Size;
6697     }
6698 
6699     // If this store is smaller than the largest store see whether we can get
6700     // the smaller value for free with a truncate.
6701     SDValue Value = MemSetValue;
6702     if (VT.bitsLT(LargestVT)) {
6703       if (!LargestVT.isVector() && !VT.isVector() &&
6704           TLI.isTruncateFree(LargestVT, VT))
6705         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6706       else
6707         Value = getMemsetValue(Src, VT, DAG, dl);
6708     }
6709     assert(Value.getValueType() == VT && "Value with wrong type.");
6710     SDValue Store = DAG.getStore(
6711         Chain, dl, Value,
6712         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6713         DstPtrInfo.getWithOffset(DstOff), Alignment,
6714         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6715         NewAAInfo);
6716     OutChains.push_back(Store);
6717     DstOff += VT.getSizeInBits() / 8;
6718     Size -= VTSize;
6719   }
6720 
6721   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6722 }
6723 
6724 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6725                                             unsigned AS) {
6726   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6727   // pointer operands can be losslessly bitcasted to pointers of address space 0
6728   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6729     report_fatal_error("cannot lower memory intrinsic in address space " +
6730                        Twine(AS));
6731   }
6732 }
6733 
6734 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6735                                 SDValue Src, SDValue Size, Align Alignment,
6736                                 bool isVol, bool AlwaysInline, bool isTailCall,
6737                                 MachinePointerInfo DstPtrInfo,
6738                                 MachinePointerInfo SrcPtrInfo,
6739                                 const AAMDNodes &AAInfo) {
6740   // Check to see if we should lower the memcpy to loads and stores first.
6741   // For cases within the target-specified limits, this is the best choice.
6742   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6743   if (ConstantSize) {
6744     // Memcpy with size zero? Just return the original chain.
6745     if (ConstantSize->isNullValue())
6746       return Chain;
6747 
6748     SDValue Result = getMemcpyLoadsAndStores(
6749         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6750         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6751     if (Result.getNode())
6752       return Result;
6753   }
6754 
6755   // Then check to see if we should lower the memcpy with target-specific
6756   // code. If the target chooses to do this, this is the next best.
6757   if (TSI) {
6758     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6759         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6760         DstPtrInfo, SrcPtrInfo);
6761     if (Result.getNode())
6762       return Result;
6763   }
6764 
6765   // If we really need inline code and the target declined to provide it,
6766   // use a (potentially long) sequence of loads and stores.
6767   if (AlwaysInline) {
6768     assert(ConstantSize && "AlwaysInline requires a constant size!");
6769     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6770                                    ConstantSize->getZExtValue(), Alignment,
6771                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6772   }
6773 
6774   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6775   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6776 
6777   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6778   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6779   // respect volatile, so they may do things like read or write memory
6780   // beyond the given memory regions. But fixing this isn't easy, and most
6781   // people don't care.
6782 
6783   // Emit a library call.
6784   TargetLowering::ArgListTy Args;
6785   TargetLowering::ArgListEntry Entry;
6786   Entry.Ty = Type::getInt8PtrTy(*getContext());
6787   Entry.Node = Dst; Args.push_back(Entry);
6788   Entry.Node = Src; Args.push_back(Entry);
6789 
6790   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6791   Entry.Node = Size; Args.push_back(Entry);
6792   // FIXME: pass in SDLoc
6793   TargetLowering::CallLoweringInfo CLI(*this);
6794   CLI.setDebugLoc(dl)
6795       .setChain(Chain)
6796       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6797                     Dst.getValueType().getTypeForEVT(*getContext()),
6798                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6799                                       TLI->getPointerTy(getDataLayout())),
6800                     std::move(Args))
6801       .setDiscardResult()
6802       .setTailCall(isTailCall);
6803 
6804   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6805   return CallResult.second;
6806 }
6807 
6808 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6809                                       SDValue Dst, unsigned DstAlign,
6810                                       SDValue Src, unsigned SrcAlign,
6811                                       SDValue Size, Type *SizeTy,
6812                                       unsigned ElemSz, bool isTailCall,
6813                                       MachinePointerInfo DstPtrInfo,
6814                                       MachinePointerInfo SrcPtrInfo) {
6815   // Emit a library call.
6816   TargetLowering::ArgListTy Args;
6817   TargetLowering::ArgListEntry Entry;
6818   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6819   Entry.Node = Dst;
6820   Args.push_back(Entry);
6821 
6822   Entry.Node = Src;
6823   Args.push_back(Entry);
6824 
6825   Entry.Ty = SizeTy;
6826   Entry.Node = Size;
6827   Args.push_back(Entry);
6828 
6829   RTLIB::Libcall LibraryCall =
6830       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6831   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6832     report_fatal_error("Unsupported element size");
6833 
6834   TargetLowering::CallLoweringInfo CLI(*this);
6835   CLI.setDebugLoc(dl)
6836       .setChain(Chain)
6837       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6838                     Type::getVoidTy(*getContext()),
6839                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6840                                       TLI->getPointerTy(getDataLayout())),
6841                     std::move(Args))
6842       .setDiscardResult()
6843       .setTailCall(isTailCall);
6844 
6845   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6846   return CallResult.second;
6847 }
6848 
6849 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6850                                  SDValue Src, SDValue Size, Align Alignment,
6851                                  bool isVol, bool isTailCall,
6852                                  MachinePointerInfo DstPtrInfo,
6853                                  MachinePointerInfo SrcPtrInfo,
6854                                  const AAMDNodes &AAInfo) {
6855   // Check to see if we should lower the memmove to loads and stores first.
6856   // For cases within the target-specified limits, this is the best choice.
6857   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6858   if (ConstantSize) {
6859     // Memmove with size zero? Just return the original chain.
6860     if (ConstantSize->isNullValue())
6861       return Chain;
6862 
6863     SDValue Result = getMemmoveLoadsAndStores(
6864         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6865         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6866     if (Result.getNode())
6867       return Result;
6868   }
6869 
6870   // Then check to see if we should lower the memmove with target-specific
6871   // code. If the target chooses to do this, this is the next best.
6872   if (TSI) {
6873     SDValue Result =
6874         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6875                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6876     if (Result.getNode())
6877       return Result;
6878   }
6879 
6880   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6881   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6882 
6883   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6884   // not be safe.  See memcpy above for more details.
6885 
6886   // Emit a library call.
6887   TargetLowering::ArgListTy Args;
6888   TargetLowering::ArgListEntry Entry;
6889   Entry.Ty = Type::getInt8PtrTy(*getContext());
6890   Entry.Node = Dst; Args.push_back(Entry);
6891   Entry.Node = Src; Args.push_back(Entry);
6892 
6893   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6894   Entry.Node = Size; Args.push_back(Entry);
6895   // FIXME:  pass in SDLoc
6896   TargetLowering::CallLoweringInfo CLI(*this);
6897   CLI.setDebugLoc(dl)
6898       .setChain(Chain)
6899       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6900                     Dst.getValueType().getTypeForEVT(*getContext()),
6901                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6902                                       TLI->getPointerTy(getDataLayout())),
6903                     std::move(Args))
6904       .setDiscardResult()
6905       .setTailCall(isTailCall);
6906 
6907   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6908   return CallResult.second;
6909 }
6910 
6911 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6912                                        SDValue Dst, unsigned DstAlign,
6913                                        SDValue Src, unsigned SrcAlign,
6914                                        SDValue Size, Type *SizeTy,
6915                                        unsigned ElemSz, bool isTailCall,
6916                                        MachinePointerInfo DstPtrInfo,
6917                                        MachinePointerInfo SrcPtrInfo) {
6918   // Emit a library call.
6919   TargetLowering::ArgListTy Args;
6920   TargetLowering::ArgListEntry Entry;
6921   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6922   Entry.Node = Dst;
6923   Args.push_back(Entry);
6924 
6925   Entry.Node = Src;
6926   Args.push_back(Entry);
6927 
6928   Entry.Ty = SizeTy;
6929   Entry.Node = Size;
6930   Args.push_back(Entry);
6931 
6932   RTLIB::Libcall LibraryCall =
6933       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6934   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6935     report_fatal_error("Unsupported element size");
6936 
6937   TargetLowering::CallLoweringInfo CLI(*this);
6938   CLI.setDebugLoc(dl)
6939       .setChain(Chain)
6940       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6941                     Type::getVoidTy(*getContext()),
6942                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6943                                       TLI->getPointerTy(getDataLayout())),
6944                     std::move(Args))
6945       .setDiscardResult()
6946       .setTailCall(isTailCall);
6947 
6948   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6949   return CallResult.second;
6950 }
6951 
6952 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6953                                 SDValue Src, SDValue Size, Align Alignment,
6954                                 bool isVol, bool isTailCall,
6955                                 MachinePointerInfo DstPtrInfo,
6956                                 const AAMDNodes &AAInfo) {
6957   // Check to see if we should lower the memset to stores first.
6958   // For cases within the target-specified limits, this is the best choice.
6959   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6960   if (ConstantSize) {
6961     // Memset with size zero? Just return the original chain.
6962     if (ConstantSize->isNullValue())
6963       return Chain;
6964 
6965     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6966                                      ConstantSize->getZExtValue(), Alignment,
6967                                      isVol, DstPtrInfo, AAInfo);
6968 
6969     if (Result.getNode())
6970       return Result;
6971   }
6972 
6973   // Then check to see if we should lower the memset with target-specific
6974   // code. If the target chooses to do this, this is the next best.
6975   if (TSI) {
6976     SDValue Result = TSI->EmitTargetCodeForMemset(
6977         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6978     if (Result.getNode())
6979       return Result;
6980   }
6981 
6982   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6983 
6984   // Emit a library call.
6985   TargetLowering::ArgListTy Args;
6986   TargetLowering::ArgListEntry Entry;
6987   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6988   Args.push_back(Entry);
6989   Entry.Node = Src;
6990   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6991   Args.push_back(Entry);
6992   Entry.Node = Size;
6993   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6994   Args.push_back(Entry);
6995 
6996   // FIXME: pass in SDLoc
6997   TargetLowering::CallLoweringInfo CLI(*this);
6998   CLI.setDebugLoc(dl)
6999       .setChain(Chain)
7000       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7001                     Dst.getValueType().getTypeForEVT(*getContext()),
7002                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7003                                       TLI->getPointerTy(getDataLayout())),
7004                     std::move(Args))
7005       .setDiscardResult()
7006       .setTailCall(isTailCall);
7007 
7008   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7009   return CallResult.second;
7010 }
7011 
7012 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7013                                       SDValue Dst, unsigned DstAlign,
7014                                       SDValue Value, SDValue Size, Type *SizeTy,
7015                                       unsigned ElemSz, bool isTailCall,
7016                                       MachinePointerInfo DstPtrInfo) {
7017   // Emit a library call.
7018   TargetLowering::ArgListTy Args;
7019   TargetLowering::ArgListEntry Entry;
7020   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7021   Entry.Node = Dst;
7022   Args.push_back(Entry);
7023 
7024   Entry.Ty = Type::getInt8Ty(*getContext());
7025   Entry.Node = Value;
7026   Args.push_back(Entry);
7027 
7028   Entry.Ty = SizeTy;
7029   Entry.Node = Size;
7030   Args.push_back(Entry);
7031 
7032   RTLIB::Libcall LibraryCall =
7033       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7034   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7035     report_fatal_error("Unsupported element size");
7036 
7037   TargetLowering::CallLoweringInfo CLI(*this);
7038   CLI.setDebugLoc(dl)
7039       .setChain(Chain)
7040       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7041                     Type::getVoidTy(*getContext()),
7042                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7043                                       TLI->getPointerTy(getDataLayout())),
7044                     std::move(Args))
7045       .setDiscardResult()
7046       .setTailCall(isTailCall);
7047 
7048   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7049   return CallResult.second;
7050 }
7051 
7052 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7053                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7054                                 MachineMemOperand *MMO) {
7055   FoldingSetNodeID ID;
7056   ID.AddInteger(MemVT.getRawBits());
7057   AddNodeIDNode(ID, Opcode, VTList, Ops);
7058   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7059   void* IP = nullptr;
7060   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7061     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7062     return SDValue(E, 0);
7063   }
7064 
7065   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7066                                     VTList, MemVT, MMO);
7067   createOperands(N, Ops);
7068 
7069   CSEMap.InsertNode(N, IP);
7070   InsertNode(N);
7071   return SDValue(N, 0);
7072 }
7073 
7074 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7075                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7076                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7077                                        MachineMemOperand *MMO) {
7078   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7079          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7080   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7081 
7082   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7083   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7084 }
7085 
7086 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7087                                 SDValue Chain, SDValue Ptr, SDValue Val,
7088                                 MachineMemOperand *MMO) {
7089   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7090           Opcode == ISD::ATOMIC_LOAD_SUB ||
7091           Opcode == ISD::ATOMIC_LOAD_AND ||
7092           Opcode == ISD::ATOMIC_LOAD_CLR ||
7093           Opcode == ISD::ATOMIC_LOAD_OR ||
7094           Opcode == ISD::ATOMIC_LOAD_XOR ||
7095           Opcode == ISD::ATOMIC_LOAD_NAND ||
7096           Opcode == ISD::ATOMIC_LOAD_MIN ||
7097           Opcode == ISD::ATOMIC_LOAD_MAX ||
7098           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7099           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7100           Opcode == ISD::ATOMIC_LOAD_FADD ||
7101           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7102           Opcode == ISD::ATOMIC_SWAP ||
7103           Opcode == ISD::ATOMIC_STORE) &&
7104          "Invalid Atomic Op");
7105 
7106   EVT VT = Val.getValueType();
7107 
7108   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7109                                                getVTList(VT, MVT::Other);
7110   SDValue Ops[] = {Chain, Ptr, Val};
7111   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7112 }
7113 
7114 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7115                                 EVT VT, SDValue Chain, SDValue Ptr,
7116                                 MachineMemOperand *MMO) {
7117   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7118 
7119   SDVTList VTs = getVTList(VT, MVT::Other);
7120   SDValue Ops[] = {Chain, Ptr};
7121   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7122 }
7123 
7124 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7125 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7126   if (Ops.size() == 1)
7127     return Ops[0];
7128 
7129   SmallVector<EVT, 4> VTs;
7130   VTs.reserve(Ops.size());
7131   for (const SDValue &Op : Ops)
7132     VTs.push_back(Op.getValueType());
7133   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7134 }
7135 
7136 SDValue SelectionDAG::getMemIntrinsicNode(
7137     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7138     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7139     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7140   if (!Size && MemVT.isScalableVector())
7141     Size = MemoryLocation::UnknownSize;
7142   else if (!Size)
7143     Size = MemVT.getStoreSize();
7144 
7145   MachineFunction &MF = getMachineFunction();
7146   MachineMemOperand *MMO =
7147       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7148 
7149   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7150 }
7151 
7152 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7153                                           SDVTList VTList,
7154                                           ArrayRef<SDValue> Ops, EVT MemVT,
7155                                           MachineMemOperand *MMO) {
7156   assert((Opcode == ISD::INTRINSIC_VOID ||
7157           Opcode == ISD::INTRINSIC_W_CHAIN ||
7158           Opcode == ISD::PREFETCH ||
7159           ((int)Opcode <= std::numeric_limits<int>::max() &&
7160            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7161          "Opcode is not a memory-accessing opcode!");
7162 
7163   // Memoize the node unless it returns a flag.
7164   MemIntrinsicSDNode *N;
7165   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7166     FoldingSetNodeID ID;
7167     AddNodeIDNode(ID, Opcode, VTList, Ops);
7168     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7169         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7170     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7171     void *IP = nullptr;
7172     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7173       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7174       return SDValue(E, 0);
7175     }
7176 
7177     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7178                                       VTList, MemVT, MMO);
7179     createOperands(N, Ops);
7180 
7181   CSEMap.InsertNode(N, IP);
7182   } else {
7183     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7184                                       VTList, MemVT, MMO);
7185     createOperands(N, Ops);
7186   }
7187   InsertNode(N);
7188   SDValue V(N, 0);
7189   NewSDValueDbgMsg(V, "Creating new node: ", this);
7190   return V;
7191 }
7192 
7193 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7194                                       SDValue Chain, int FrameIndex,
7195                                       int64_t Size, int64_t Offset) {
7196   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7197   const auto VTs = getVTList(MVT::Other);
7198   SDValue Ops[2] = {
7199       Chain,
7200       getFrameIndex(FrameIndex,
7201                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7202                     true)};
7203 
7204   FoldingSetNodeID ID;
7205   AddNodeIDNode(ID, Opcode, VTs, Ops);
7206   ID.AddInteger(FrameIndex);
7207   ID.AddInteger(Size);
7208   ID.AddInteger(Offset);
7209   void *IP = nullptr;
7210   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7211     return SDValue(E, 0);
7212 
7213   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7214       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7215   createOperands(N, Ops);
7216   CSEMap.InsertNode(N, IP);
7217   InsertNode(N);
7218   SDValue V(N, 0);
7219   NewSDValueDbgMsg(V, "Creating new node: ", this);
7220   return V;
7221 }
7222 
7223 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7224                                          uint64_t Guid, uint64_t Index,
7225                                          uint32_t Attr) {
7226   const unsigned Opcode = ISD::PSEUDO_PROBE;
7227   const auto VTs = getVTList(MVT::Other);
7228   SDValue Ops[] = {Chain};
7229   FoldingSetNodeID ID;
7230   AddNodeIDNode(ID, Opcode, VTs, Ops);
7231   ID.AddInteger(Guid);
7232   ID.AddInteger(Index);
7233   void *IP = nullptr;
7234   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7235     return SDValue(E, 0);
7236 
7237   auto *N = newSDNode<PseudoProbeSDNode>(
7238       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7239   createOperands(N, Ops);
7240   CSEMap.InsertNode(N, IP);
7241   InsertNode(N);
7242   SDValue V(N, 0);
7243   NewSDValueDbgMsg(V, "Creating new node: ", this);
7244   return V;
7245 }
7246 
7247 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7248 /// MachinePointerInfo record from it.  This is particularly useful because the
7249 /// code generator has many cases where it doesn't bother passing in a
7250 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7251 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7252                                            SelectionDAG &DAG, SDValue Ptr,
7253                                            int64_t Offset = 0) {
7254   // If this is FI+Offset, we can model it.
7255   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7256     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7257                                              FI->getIndex(), Offset);
7258 
7259   // If this is (FI+Offset1)+Offset2, we can model it.
7260   if (Ptr.getOpcode() != ISD::ADD ||
7261       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7262       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7263     return Info;
7264 
7265   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7266   return MachinePointerInfo::getFixedStack(
7267       DAG.getMachineFunction(), FI,
7268       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7269 }
7270 
7271 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7272 /// MachinePointerInfo record from it.  This is particularly useful because the
7273 /// code generator has many cases where it doesn't bother passing in a
7274 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7275 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7276                                            SelectionDAG &DAG, SDValue Ptr,
7277                                            SDValue OffsetOp) {
7278   // If the 'Offset' value isn't a constant, we can't handle this.
7279   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7280     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7281   if (OffsetOp.isUndef())
7282     return InferPointerInfo(Info, DAG, Ptr);
7283   return Info;
7284 }
7285 
7286 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7287                               EVT VT, const SDLoc &dl, SDValue Chain,
7288                               SDValue Ptr, SDValue Offset,
7289                               MachinePointerInfo PtrInfo, EVT MemVT,
7290                               Align Alignment,
7291                               MachineMemOperand::Flags MMOFlags,
7292                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7293   assert(Chain.getValueType() == MVT::Other &&
7294         "Invalid chain type");
7295 
7296   MMOFlags |= MachineMemOperand::MOLoad;
7297   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7298   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7299   // clients.
7300   if (PtrInfo.V.isNull())
7301     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7302 
7303   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7304   MachineFunction &MF = getMachineFunction();
7305   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7306                                                    Alignment, AAInfo, Ranges);
7307   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7308 }
7309 
7310 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7311                               EVT VT, const SDLoc &dl, SDValue Chain,
7312                               SDValue Ptr, SDValue Offset, EVT MemVT,
7313                               MachineMemOperand *MMO) {
7314   if (VT == MemVT) {
7315     ExtType = ISD::NON_EXTLOAD;
7316   } else if (ExtType == ISD::NON_EXTLOAD) {
7317     assert(VT == MemVT && "Non-extending load from different memory type!");
7318   } else {
7319     // Extending load.
7320     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7321            "Should only be an extending load, not truncating!");
7322     assert(VT.isInteger() == MemVT.isInteger() &&
7323            "Cannot convert from FP to Int or Int -> FP!");
7324     assert(VT.isVector() == MemVT.isVector() &&
7325            "Cannot use an ext load to convert to or from a vector!");
7326     assert((!VT.isVector() ||
7327             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7328            "Cannot use an ext load to change the number of vector elements!");
7329   }
7330 
7331   bool Indexed = AM != ISD::UNINDEXED;
7332   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7333 
7334   SDVTList VTs = Indexed ?
7335     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7336   SDValue Ops[] = { Chain, Ptr, Offset };
7337   FoldingSetNodeID ID;
7338   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7339   ID.AddInteger(MemVT.getRawBits());
7340   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7341       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7342   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7343   void *IP = nullptr;
7344   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7345     cast<LoadSDNode>(E)->refineAlignment(MMO);
7346     return SDValue(E, 0);
7347   }
7348   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7349                                   ExtType, MemVT, MMO);
7350   createOperands(N, Ops);
7351 
7352   CSEMap.InsertNode(N, IP);
7353   InsertNode(N);
7354   SDValue V(N, 0);
7355   NewSDValueDbgMsg(V, "Creating new node: ", this);
7356   return V;
7357 }
7358 
7359 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7360                               SDValue Ptr, MachinePointerInfo PtrInfo,
7361                               MaybeAlign Alignment,
7362                               MachineMemOperand::Flags MMOFlags,
7363                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7364   SDValue Undef = getUNDEF(Ptr.getValueType());
7365   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7366                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7367 }
7368 
7369 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7370                               SDValue Ptr, MachineMemOperand *MMO) {
7371   SDValue Undef = getUNDEF(Ptr.getValueType());
7372   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7373                  VT, MMO);
7374 }
7375 
7376 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7377                                  EVT VT, SDValue Chain, SDValue Ptr,
7378                                  MachinePointerInfo PtrInfo, EVT MemVT,
7379                                  MaybeAlign Alignment,
7380                                  MachineMemOperand::Flags MMOFlags,
7381                                  const AAMDNodes &AAInfo) {
7382   SDValue Undef = getUNDEF(Ptr.getValueType());
7383   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7384                  MemVT, Alignment, MMOFlags, AAInfo);
7385 }
7386 
7387 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7388                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7389                                  MachineMemOperand *MMO) {
7390   SDValue Undef = getUNDEF(Ptr.getValueType());
7391   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7392                  MemVT, MMO);
7393 }
7394 
7395 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7396                                      SDValue Base, SDValue Offset,
7397                                      ISD::MemIndexedMode AM) {
7398   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7399   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7400   // Don't propagate the invariant or dereferenceable flags.
7401   auto MMOFlags =
7402       LD->getMemOperand()->getFlags() &
7403       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7404   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7405                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7406                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7407 }
7408 
7409 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7410                                SDValue Ptr, MachinePointerInfo PtrInfo,
7411                                Align Alignment,
7412                                MachineMemOperand::Flags MMOFlags,
7413                                const AAMDNodes &AAInfo) {
7414   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7415 
7416   MMOFlags |= MachineMemOperand::MOStore;
7417   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7418 
7419   if (PtrInfo.V.isNull())
7420     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7421 
7422   MachineFunction &MF = getMachineFunction();
7423   uint64_t Size =
7424       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7425   MachineMemOperand *MMO =
7426       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7427   return getStore(Chain, dl, Val, Ptr, MMO);
7428 }
7429 
7430 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7431                                SDValue Ptr, MachineMemOperand *MMO) {
7432   assert(Chain.getValueType() == MVT::Other &&
7433         "Invalid chain type");
7434   EVT VT = Val.getValueType();
7435   SDVTList VTs = getVTList(MVT::Other);
7436   SDValue Undef = getUNDEF(Ptr.getValueType());
7437   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7438   FoldingSetNodeID ID;
7439   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7440   ID.AddInteger(VT.getRawBits());
7441   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7442       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7443   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7444   void *IP = nullptr;
7445   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7446     cast<StoreSDNode>(E)->refineAlignment(MMO);
7447     return SDValue(E, 0);
7448   }
7449   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7450                                    ISD::UNINDEXED, false, VT, MMO);
7451   createOperands(N, Ops);
7452 
7453   CSEMap.InsertNode(N, IP);
7454   InsertNode(N);
7455   SDValue V(N, 0);
7456   NewSDValueDbgMsg(V, "Creating new node: ", this);
7457   return V;
7458 }
7459 
7460 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7461                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7462                                     EVT SVT, Align Alignment,
7463                                     MachineMemOperand::Flags MMOFlags,
7464                                     const AAMDNodes &AAInfo) {
7465   assert(Chain.getValueType() == MVT::Other &&
7466         "Invalid chain type");
7467 
7468   MMOFlags |= MachineMemOperand::MOStore;
7469   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7470 
7471   if (PtrInfo.V.isNull())
7472     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7473 
7474   MachineFunction &MF = getMachineFunction();
7475   MachineMemOperand *MMO = MF.getMachineMemOperand(
7476       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7477       Alignment, AAInfo);
7478   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7479 }
7480 
7481 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7482                                     SDValue Ptr, EVT SVT,
7483                                     MachineMemOperand *MMO) {
7484   EVT VT = Val.getValueType();
7485 
7486   assert(Chain.getValueType() == MVT::Other &&
7487         "Invalid chain type");
7488   if (VT == SVT)
7489     return getStore(Chain, dl, Val, Ptr, MMO);
7490 
7491   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7492          "Should only be a truncating store, not extending!");
7493   assert(VT.isInteger() == SVT.isInteger() &&
7494          "Can't do FP-INT conversion!");
7495   assert(VT.isVector() == SVT.isVector() &&
7496          "Cannot use trunc store to convert to or from a vector!");
7497   assert((!VT.isVector() ||
7498           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7499          "Cannot use trunc store to change the number of vector elements!");
7500 
7501   SDVTList VTs = getVTList(MVT::Other);
7502   SDValue Undef = getUNDEF(Ptr.getValueType());
7503   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7504   FoldingSetNodeID ID;
7505   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7506   ID.AddInteger(SVT.getRawBits());
7507   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7508       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7509   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7510   void *IP = nullptr;
7511   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7512     cast<StoreSDNode>(E)->refineAlignment(MMO);
7513     return SDValue(E, 0);
7514   }
7515   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7516                                    ISD::UNINDEXED, true, SVT, MMO);
7517   createOperands(N, Ops);
7518 
7519   CSEMap.InsertNode(N, IP);
7520   InsertNode(N);
7521   SDValue V(N, 0);
7522   NewSDValueDbgMsg(V, "Creating new node: ", this);
7523   return V;
7524 }
7525 
7526 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7527                                       SDValue Base, SDValue Offset,
7528                                       ISD::MemIndexedMode AM) {
7529   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7530   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7531   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7532   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7533   FoldingSetNodeID ID;
7534   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7535   ID.AddInteger(ST->getMemoryVT().getRawBits());
7536   ID.AddInteger(ST->getRawSubclassData());
7537   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7538   void *IP = nullptr;
7539   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7540     return SDValue(E, 0);
7541 
7542   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7543                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7544                                    ST->getMemOperand());
7545   createOperands(N, Ops);
7546 
7547   CSEMap.InsertNode(N, IP);
7548   InsertNode(N);
7549   SDValue V(N, 0);
7550   NewSDValueDbgMsg(V, "Creating new node: ", this);
7551   return V;
7552 }
7553 
7554 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7555                                     SDValue Base, SDValue Offset, SDValue Mask,
7556                                     SDValue PassThru, EVT MemVT,
7557                                     MachineMemOperand *MMO,
7558                                     ISD::MemIndexedMode AM,
7559                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7560   bool Indexed = AM != ISD::UNINDEXED;
7561   assert((Indexed || Offset.isUndef()) &&
7562          "Unindexed masked load with an offset!");
7563   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7564                          : getVTList(VT, MVT::Other);
7565   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7566   FoldingSetNodeID ID;
7567   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7568   ID.AddInteger(MemVT.getRawBits());
7569   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7570       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7571   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7572   void *IP = nullptr;
7573   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7574     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7575     return SDValue(E, 0);
7576   }
7577   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7578                                         AM, ExtTy, isExpanding, MemVT, MMO);
7579   createOperands(N, Ops);
7580 
7581   CSEMap.InsertNode(N, IP);
7582   InsertNode(N);
7583   SDValue V(N, 0);
7584   NewSDValueDbgMsg(V, "Creating new node: ", this);
7585   return V;
7586 }
7587 
7588 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7589                                            SDValue Base, SDValue Offset,
7590                                            ISD::MemIndexedMode AM) {
7591   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7592   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7593   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7594                        Offset, LD->getMask(), LD->getPassThru(),
7595                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7596                        LD->getExtensionType(), LD->isExpandingLoad());
7597 }
7598 
7599 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7600                                      SDValue Val, SDValue Base, SDValue Offset,
7601                                      SDValue Mask, EVT MemVT,
7602                                      MachineMemOperand *MMO,
7603                                      ISD::MemIndexedMode AM, bool IsTruncating,
7604                                      bool IsCompressing) {
7605   assert(Chain.getValueType() == MVT::Other &&
7606         "Invalid chain type");
7607   bool Indexed = AM != ISD::UNINDEXED;
7608   assert((Indexed || Offset.isUndef()) &&
7609          "Unindexed masked store with an offset!");
7610   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7611                          : getVTList(MVT::Other);
7612   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7613   FoldingSetNodeID ID;
7614   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7615   ID.AddInteger(MemVT.getRawBits());
7616   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7617       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7618   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7619   void *IP = nullptr;
7620   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7621     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7622     return SDValue(E, 0);
7623   }
7624   auto *N =
7625       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7626                                    IsTruncating, IsCompressing, MemVT, MMO);
7627   createOperands(N, Ops);
7628 
7629   CSEMap.InsertNode(N, IP);
7630   InsertNode(N);
7631   SDValue V(N, 0);
7632   NewSDValueDbgMsg(V, "Creating new node: ", this);
7633   return V;
7634 }
7635 
7636 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7637                                             SDValue Base, SDValue Offset,
7638                                             ISD::MemIndexedMode AM) {
7639   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7640   assert(ST->getOffset().isUndef() &&
7641          "Masked store is already a indexed store!");
7642   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7643                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7644                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7645 }
7646 
7647 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7648                                       ArrayRef<SDValue> Ops,
7649                                       MachineMemOperand *MMO,
7650                                       ISD::MemIndexType IndexType,
7651                                       ISD::LoadExtType ExtTy) {
7652   assert(Ops.size() == 6 && "Incompatible number of operands");
7653 
7654   FoldingSetNodeID ID;
7655   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7656   ID.AddInteger(VT.getRawBits());
7657   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7658       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7659   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7660   void *IP = nullptr;
7661   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7662     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7663     return SDValue(E, 0);
7664   }
7665 
7666   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7667   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7668                                           VTs, VT, MMO, IndexType, ExtTy);
7669   createOperands(N, Ops);
7670 
7671   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7672          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7673   assert(N->getMask().getValueType().getVectorElementCount() ==
7674              N->getValueType(0).getVectorElementCount() &&
7675          "Vector width mismatch between mask and data");
7676   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7677              N->getValueType(0).getVectorElementCount().isScalable() &&
7678          "Scalable flags of index and data do not match");
7679   assert(ElementCount::isKnownGE(
7680              N->getIndex().getValueType().getVectorElementCount(),
7681              N->getValueType(0).getVectorElementCount()) &&
7682          "Vector width mismatch between index and data");
7683   assert(isa<ConstantSDNode>(N->getScale()) &&
7684          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7685          "Scale should be a constant power of 2");
7686 
7687   CSEMap.InsertNode(N, IP);
7688   InsertNode(N);
7689   SDValue V(N, 0);
7690   NewSDValueDbgMsg(V, "Creating new node: ", this);
7691   return V;
7692 }
7693 
7694 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7695                                        ArrayRef<SDValue> Ops,
7696                                        MachineMemOperand *MMO,
7697                                        ISD::MemIndexType IndexType,
7698                                        bool IsTrunc) {
7699   assert(Ops.size() == 6 && "Incompatible number of operands");
7700 
7701   FoldingSetNodeID ID;
7702   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7703   ID.AddInteger(VT.getRawBits());
7704   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7705       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7706   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7707   void *IP = nullptr;
7708   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7709     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7710     return SDValue(E, 0);
7711   }
7712 
7713   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7714   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7715                                            VTs, VT, MMO, IndexType, IsTrunc);
7716   createOperands(N, Ops);
7717 
7718   assert(N->getMask().getValueType().getVectorElementCount() ==
7719              N->getValue().getValueType().getVectorElementCount() &&
7720          "Vector width mismatch between mask and data");
7721   assert(
7722       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7723           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7724       "Scalable flags of index and data do not match");
7725   assert(ElementCount::isKnownGE(
7726              N->getIndex().getValueType().getVectorElementCount(),
7727              N->getValue().getValueType().getVectorElementCount()) &&
7728          "Vector width mismatch between index and data");
7729   assert(isa<ConstantSDNode>(N->getScale()) &&
7730          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7731          "Scale should be a constant power of 2");
7732 
7733   CSEMap.InsertNode(N, IP);
7734   InsertNode(N);
7735   SDValue V(N, 0);
7736   NewSDValueDbgMsg(V, "Creating new node: ", this);
7737   return V;
7738 }
7739 
7740 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7741   // select undef, T, F --> T (if T is a constant), otherwise F
7742   // select, ?, undef, F --> F
7743   // select, ?, T, undef --> T
7744   if (Cond.isUndef())
7745     return isConstantValueOfAnyType(T) ? T : F;
7746   if (T.isUndef())
7747     return F;
7748   if (F.isUndef())
7749     return T;
7750 
7751   // select true, T, F --> T
7752   // select false, T, F --> F
7753   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7754     return CondC->isNullValue() ? F : T;
7755 
7756   // TODO: This should simplify VSELECT with constant condition using something
7757   // like this (but check boolean contents to be complete?):
7758   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7759   //    return T;
7760   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7761   //    return F;
7762 
7763   // select ?, T, T --> T
7764   if (T == F)
7765     return T;
7766 
7767   return SDValue();
7768 }
7769 
7770 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7771   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7772   if (X.isUndef())
7773     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7774   // shift X, undef --> undef (because it may shift by the bitwidth)
7775   if (Y.isUndef())
7776     return getUNDEF(X.getValueType());
7777 
7778   // shift 0, Y --> 0
7779   // shift X, 0 --> X
7780   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7781     return X;
7782 
7783   // shift X, C >= bitwidth(X) --> undef
7784   // All vector elements must be too big (or undef) to avoid partial undefs.
7785   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7786     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7787   };
7788   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7789     return getUNDEF(X.getValueType());
7790 
7791   return SDValue();
7792 }
7793 
7794 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7795                                       SDNodeFlags Flags) {
7796   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7797   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7798   // operation is poison. That result can be relaxed to undef.
7799   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7800   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7801   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7802                 (YC && YC->getValueAPF().isNaN());
7803   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7804                 (YC && YC->getValueAPF().isInfinity());
7805 
7806   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7807     return getUNDEF(X.getValueType());
7808 
7809   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7810     return getUNDEF(X.getValueType());
7811 
7812   if (!YC)
7813     return SDValue();
7814 
7815   // X + -0.0 --> X
7816   if (Opcode == ISD::FADD)
7817     if (YC->getValueAPF().isNegZero())
7818       return X;
7819 
7820   // X - +0.0 --> X
7821   if (Opcode == ISD::FSUB)
7822     if (YC->getValueAPF().isPosZero())
7823       return X;
7824 
7825   // X * 1.0 --> X
7826   // X / 1.0 --> X
7827   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7828     if (YC->getValueAPF().isExactlyValue(1.0))
7829       return X;
7830 
7831   // X * 0.0 --> 0.0
7832   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7833     if (YC->getValueAPF().isZero())
7834       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7835 
7836   return SDValue();
7837 }
7838 
7839 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7840                                SDValue Ptr, SDValue SV, unsigned Align) {
7841   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7842   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7843 }
7844 
7845 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7846                               ArrayRef<SDUse> Ops) {
7847   switch (Ops.size()) {
7848   case 0: return getNode(Opcode, DL, VT);
7849   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7850   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7851   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7852   default: break;
7853   }
7854 
7855   // Copy from an SDUse array into an SDValue array for use with
7856   // the regular getNode logic.
7857   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7858   return getNode(Opcode, DL, VT, NewOps);
7859 }
7860 
7861 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7862                               ArrayRef<SDValue> Ops) {
7863   SDNodeFlags Flags;
7864   if (Inserter)
7865     Flags = Inserter->getFlags();
7866   return getNode(Opcode, DL, VT, Ops, Flags);
7867 }
7868 
7869 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7870                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7871   unsigned NumOps = Ops.size();
7872   switch (NumOps) {
7873   case 0: return getNode(Opcode, DL, VT);
7874   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7875   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7876   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7877   default: break;
7878   }
7879 
7880 #ifndef NDEBUG
7881   for (auto &Op : Ops)
7882     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7883            "Operand is DELETED_NODE!");
7884 #endif
7885 
7886   switch (Opcode) {
7887   default: break;
7888   case ISD::BUILD_VECTOR:
7889     // Attempt to simplify BUILD_VECTOR.
7890     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7891       return V;
7892     break;
7893   case ISD::CONCAT_VECTORS:
7894     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7895       return V;
7896     break;
7897   case ISD::SELECT_CC:
7898     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7899     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7900            "LHS and RHS of condition must have same type!");
7901     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7902            "True and False arms of SelectCC must have same type!");
7903     assert(Ops[2].getValueType() == VT &&
7904            "select_cc node must be of same type as true and false value!");
7905     break;
7906   case ISD::BR_CC:
7907     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7908     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7909            "LHS/RHS of comparison should match types!");
7910     break;
7911   }
7912 
7913   // Memoize nodes.
7914   SDNode *N;
7915   SDVTList VTs = getVTList(VT);
7916 
7917   if (VT != MVT::Glue) {
7918     FoldingSetNodeID ID;
7919     AddNodeIDNode(ID, Opcode, VTs, Ops);
7920     void *IP = nullptr;
7921 
7922     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7923       return SDValue(E, 0);
7924 
7925     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7926     createOperands(N, Ops);
7927 
7928     CSEMap.InsertNode(N, IP);
7929   } else {
7930     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7931     createOperands(N, Ops);
7932   }
7933 
7934   N->setFlags(Flags);
7935   InsertNode(N);
7936   SDValue V(N, 0);
7937   NewSDValueDbgMsg(V, "Creating new node: ", this);
7938   return V;
7939 }
7940 
7941 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7942                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7943   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7944 }
7945 
7946 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7947                               ArrayRef<SDValue> Ops) {
7948   SDNodeFlags Flags;
7949   if (Inserter)
7950     Flags = Inserter->getFlags();
7951   return getNode(Opcode, DL, VTList, Ops, Flags);
7952 }
7953 
7954 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7955                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7956   if (VTList.NumVTs == 1)
7957     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7958 
7959 #ifndef NDEBUG
7960   for (auto &Op : Ops)
7961     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7962            "Operand is DELETED_NODE!");
7963 #endif
7964 
7965   switch (Opcode) {
7966   case ISD::STRICT_FP_EXTEND:
7967     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7968            "Invalid STRICT_FP_EXTEND!");
7969     assert(VTList.VTs[0].isFloatingPoint() &&
7970            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7971     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7972            "STRICT_FP_EXTEND result type should be vector iff the operand "
7973            "type is vector!");
7974     assert((!VTList.VTs[0].isVector() ||
7975             VTList.VTs[0].getVectorNumElements() ==
7976             Ops[1].getValueType().getVectorNumElements()) &&
7977            "Vector element count mismatch!");
7978     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7979            "Invalid fpext node, dst <= src!");
7980     break;
7981   case ISD::STRICT_FP_ROUND:
7982     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7983     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7984            "STRICT_FP_ROUND result type should be vector iff the operand "
7985            "type is vector!");
7986     assert((!VTList.VTs[0].isVector() ||
7987             VTList.VTs[0].getVectorNumElements() ==
7988             Ops[1].getValueType().getVectorNumElements()) &&
7989            "Vector element count mismatch!");
7990     assert(VTList.VTs[0].isFloatingPoint() &&
7991            Ops[1].getValueType().isFloatingPoint() &&
7992            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7993            isa<ConstantSDNode>(Ops[2]) &&
7994            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7995             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7996            "Invalid STRICT_FP_ROUND!");
7997     break;
7998 #if 0
7999   // FIXME: figure out how to safely handle things like
8000   // int foo(int x) { return 1 << (x & 255); }
8001   // int bar() { return foo(256); }
8002   case ISD::SRA_PARTS:
8003   case ISD::SRL_PARTS:
8004   case ISD::SHL_PARTS:
8005     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8006         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8007       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8008     else if (N3.getOpcode() == ISD::AND)
8009       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8010         // If the and is only masking out bits that cannot effect the shift,
8011         // eliminate the and.
8012         unsigned NumBits = VT.getScalarSizeInBits()*2;
8013         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8014           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8015       }
8016     break;
8017 #endif
8018   }
8019 
8020   // Memoize the node unless it returns a flag.
8021   SDNode *N;
8022   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8023     FoldingSetNodeID ID;
8024     AddNodeIDNode(ID, Opcode, VTList, Ops);
8025     void *IP = nullptr;
8026     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8027       return SDValue(E, 0);
8028 
8029     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8030     createOperands(N, Ops);
8031     CSEMap.InsertNode(N, IP);
8032   } else {
8033     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8034     createOperands(N, Ops);
8035   }
8036 
8037   N->setFlags(Flags);
8038   InsertNode(N);
8039   SDValue V(N, 0);
8040   NewSDValueDbgMsg(V, "Creating new node: ", this);
8041   return V;
8042 }
8043 
8044 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8045                               SDVTList VTList) {
8046   return getNode(Opcode, DL, VTList, None);
8047 }
8048 
8049 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8050                               SDValue N1) {
8051   SDValue Ops[] = { N1 };
8052   return getNode(Opcode, DL, VTList, Ops);
8053 }
8054 
8055 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8056                               SDValue N1, SDValue N2) {
8057   SDValue Ops[] = { N1, N2 };
8058   return getNode(Opcode, DL, VTList, Ops);
8059 }
8060 
8061 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8062                               SDValue N1, SDValue N2, SDValue N3) {
8063   SDValue Ops[] = { N1, N2, N3 };
8064   return getNode(Opcode, DL, VTList, Ops);
8065 }
8066 
8067 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8068                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8069   SDValue Ops[] = { N1, N2, N3, N4 };
8070   return getNode(Opcode, DL, VTList, Ops);
8071 }
8072 
8073 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8074                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8075                               SDValue N5) {
8076   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8077   return getNode(Opcode, DL, VTList, Ops);
8078 }
8079 
8080 SDVTList SelectionDAG::getVTList(EVT VT) {
8081   return makeVTList(SDNode::getValueTypeList(VT), 1);
8082 }
8083 
8084 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8085   FoldingSetNodeID ID;
8086   ID.AddInteger(2U);
8087   ID.AddInteger(VT1.getRawBits());
8088   ID.AddInteger(VT2.getRawBits());
8089 
8090   void *IP = nullptr;
8091   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8092   if (!Result) {
8093     EVT *Array = Allocator.Allocate<EVT>(2);
8094     Array[0] = VT1;
8095     Array[1] = VT2;
8096     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8097     VTListMap.InsertNode(Result, IP);
8098   }
8099   return Result->getSDVTList();
8100 }
8101 
8102 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8103   FoldingSetNodeID ID;
8104   ID.AddInteger(3U);
8105   ID.AddInteger(VT1.getRawBits());
8106   ID.AddInteger(VT2.getRawBits());
8107   ID.AddInteger(VT3.getRawBits());
8108 
8109   void *IP = nullptr;
8110   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8111   if (!Result) {
8112     EVT *Array = Allocator.Allocate<EVT>(3);
8113     Array[0] = VT1;
8114     Array[1] = VT2;
8115     Array[2] = VT3;
8116     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8117     VTListMap.InsertNode(Result, IP);
8118   }
8119   return Result->getSDVTList();
8120 }
8121 
8122 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8123   FoldingSetNodeID ID;
8124   ID.AddInteger(4U);
8125   ID.AddInteger(VT1.getRawBits());
8126   ID.AddInteger(VT2.getRawBits());
8127   ID.AddInteger(VT3.getRawBits());
8128   ID.AddInteger(VT4.getRawBits());
8129 
8130   void *IP = nullptr;
8131   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8132   if (!Result) {
8133     EVT *Array = Allocator.Allocate<EVT>(4);
8134     Array[0] = VT1;
8135     Array[1] = VT2;
8136     Array[2] = VT3;
8137     Array[3] = VT4;
8138     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8139     VTListMap.InsertNode(Result, IP);
8140   }
8141   return Result->getSDVTList();
8142 }
8143 
8144 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8145   unsigned NumVTs = VTs.size();
8146   FoldingSetNodeID ID;
8147   ID.AddInteger(NumVTs);
8148   for (unsigned index = 0; index < NumVTs; index++) {
8149     ID.AddInteger(VTs[index].getRawBits());
8150   }
8151 
8152   void *IP = nullptr;
8153   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8154   if (!Result) {
8155     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8156     llvm::copy(VTs, Array);
8157     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8158     VTListMap.InsertNode(Result, IP);
8159   }
8160   return Result->getSDVTList();
8161 }
8162 
8163 
8164 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8165 /// specified operands.  If the resultant node already exists in the DAG,
8166 /// this does not modify the specified node, instead it returns the node that
8167 /// already exists.  If the resultant node does not exist in the DAG, the
8168 /// input node is returned.  As a degenerate case, if you specify the same
8169 /// input operands as the node already has, the input node is returned.
8170 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8171   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8172 
8173   // Check to see if there is no change.
8174   if (Op == N->getOperand(0)) return N;
8175 
8176   // See if the modified node already exists.
8177   void *InsertPos = nullptr;
8178   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8179     return Existing;
8180 
8181   // Nope it doesn't.  Remove the node from its current place in the maps.
8182   if (InsertPos)
8183     if (!RemoveNodeFromCSEMaps(N))
8184       InsertPos = nullptr;
8185 
8186   // Now we update the operands.
8187   N->OperandList[0].set(Op);
8188 
8189   updateDivergence(N);
8190   // If this gets put into a CSE map, add it.
8191   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8192   return N;
8193 }
8194 
8195 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8196   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8197 
8198   // Check to see if there is no change.
8199   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8200     return N;   // No operands changed, just return the input node.
8201 
8202   // See if the modified node already exists.
8203   void *InsertPos = nullptr;
8204   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8205     return Existing;
8206 
8207   // Nope it doesn't.  Remove the node from its current place in the maps.
8208   if (InsertPos)
8209     if (!RemoveNodeFromCSEMaps(N))
8210       InsertPos = nullptr;
8211 
8212   // Now we update the operands.
8213   if (N->OperandList[0] != Op1)
8214     N->OperandList[0].set(Op1);
8215   if (N->OperandList[1] != Op2)
8216     N->OperandList[1].set(Op2);
8217 
8218   updateDivergence(N);
8219   // If this gets put into a CSE map, add it.
8220   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8221   return N;
8222 }
8223 
8224 SDNode *SelectionDAG::
8225 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8226   SDValue Ops[] = { Op1, Op2, Op3 };
8227   return UpdateNodeOperands(N, Ops);
8228 }
8229 
8230 SDNode *SelectionDAG::
8231 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8232                    SDValue Op3, SDValue Op4) {
8233   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8234   return UpdateNodeOperands(N, Ops);
8235 }
8236 
8237 SDNode *SelectionDAG::
8238 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8239                    SDValue Op3, SDValue Op4, SDValue Op5) {
8240   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8241   return UpdateNodeOperands(N, Ops);
8242 }
8243 
8244 SDNode *SelectionDAG::
8245 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8246   unsigned NumOps = Ops.size();
8247   assert(N->getNumOperands() == NumOps &&
8248          "Update with wrong number of operands");
8249 
8250   // If no operands changed just return the input node.
8251   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8252     return N;
8253 
8254   // See if the modified node already exists.
8255   void *InsertPos = nullptr;
8256   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8257     return Existing;
8258 
8259   // Nope it doesn't.  Remove the node from its current place in the maps.
8260   if (InsertPos)
8261     if (!RemoveNodeFromCSEMaps(N))
8262       InsertPos = nullptr;
8263 
8264   // Now we update the operands.
8265   for (unsigned i = 0; i != NumOps; ++i)
8266     if (N->OperandList[i] != Ops[i])
8267       N->OperandList[i].set(Ops[i]);
8268 
8269   updateDivergence(N);
8270   // If this gets put into a CSE map, add it.
8271   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8272   return N;
8273 }
8274 
8275 /// DropOperands - Release the operands and set this node to have
8276 /// zero operands.
8277 void SDNode::DropOperands() {
8278   // Unlike the code in MorphNodeTo that does this, we don't need to
8279   // watch for dead nodes here.
8280   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8281     SDUse &Use = *I++;
8282     Use.set(SDValue());
8283   }
8284 }
8285 
8286 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8287                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8288   if (NewMemRefs.empty()) {
8289     N->clearMemRefs();
8290     return;
8291   }
8292 
8293   // Check if we can avoid allocating by storing a single reference directly.
8294   if (NewMemRefs.size() == 1) {
8295     N->MemRefs = NewMemRefs[0];
8296     N->NumMemRefs = 1;
8297     return;
8298   }
8299 
8300   MachineMemOperand **MemRefsBuffer =
8301       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8302   llvm::copy(NewMemRefs, MemRefsBuffer);
8303   N->MemRefs = MemRefsBuffer;
8304   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8305 }
8306 
8307 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8308 /// machine opcode.
8309 ///
8310 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8311                                    EVT VT) {
8312   SDVTList VTs = getVTList(VT);
8313   return SelectNodeTo(N, MachineOpc, VTs, None);
8314 }
8315 
8316 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8317                                    EVT VT, SDValue Op1) {
8318   SDVTList VTs = getVTList(VT);
8319   SDValue Ops[] = { Op1 };
8320   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8321 }
8322 
8323 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8324                                    EVT VT, SDValue Op1,
8325                                    SDValue Op2) {
8326   SDVTList VTs = getVTList(VT);
8327   SDValue Ops[] = { Op1, Op2 };
8328   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8329 }
8330 
8331 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8332                                    EVT VT, SDValue Op1,
8333                                    SDValue Op2, SDValue Op3) {
8334   SDVTList VTs = getVTList(VT);
8335   SDValue Ops[] = { Op1, Op2, Op3 };
8336   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8337 }
8338 
8339 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8340                                    EVT VT, ArrayRef<SDValue> Ops) {
8341   SDVTList VTs = getVTList(VT);
8342   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8343 }
8344 
8345 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8346                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8347   SDVTList VTs = getVTList(VT1, VT2);
8348   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8349 }
8350 
8351 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8352                                    EVT VT1, EVT VT2) {
8353   SDVTList VTs = getVTList(VT1, VT2);
8354   return SelectNodeTo(N, MachineOpc, VTs, None);
8355 }
8356 
8357 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8358                                    EVT VT1, EVT VT2, EVT VT3,
8359                                    ArrayRef<SDValue> Ops) {
8360   SDVTList VTs = getVTList(VT1, VT2, VT3);
8361   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8362 }
8363 
8364 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8365                                    EVT VT1, EVT VT2,
8366                                    SDValue Op1, SDValue Op2) {
8367   SDVTList VTs = getVTList(VT1, VT2);
8368   SDValue Ops[] = { Op1, Op2 };
8369   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8370 }
8371 
8372 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8373                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8374   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8375   // Reset the NodeID to -1.
8376   New->setNodeId(-1);
8377   if (New != N) {
8378     ReplaceAllUsesWith(N, New);
8379     RemoveDeadNode(N);
8380   }
8381   return New;
8382 }
8383 
8384 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8385 /// the line number information on the merged node since it is not possible to
8386 /// preserve the information that operation is associated with multiple lines.
8387 /// This will make the debugger working better at -O0, were there is a higher
8388 /// probability having other instructions associated with that line.
8389 ///
8390 /// For IROrder, we keep the smaller of the two
8391 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8392   DebugLoc NLoc = N->getDebugLoc();
8393   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8394     N->setDebugLoc(DebugLoc());
8395   }
8396   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8397   N->setIROrder(Order);
8398   return N;
8399 }
8400 
8401 /// MorphNodeTo - This *mutates* the specified node to have the specified
8402 /// return type, opcode, and operands.
8403 ///
8404 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8405 /// node of the specified opcode and operands, it returns that node instead of
8406 /// the current one.  Note that the SDLoc need not be the same.
8407 ///
8408 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8409 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8410 /// node, and because it doesn't require CSE recalculation for any of
8411 /// the node's users.
8412 ///
8413 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8414 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8415 /// the legalizer which maintain worklists that would need to be updated when
8416 /// deleting things.
8417 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8418                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8419   // If an identical node already exists, use it.
8420   void *IP = nullptr;
8421   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8422     FoldingSetNodeID ID;
8423     AddNodeIDNode(ID, Opc, VTs, Ops);
8424     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8425       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8426   }
8427 
8428   if (!RemoveNodeFromCSEMaps(N))
8429     IP = nullptr;
8430 
8431   // Start the morphing.
8432   N->NodeType = Opc;
8433   N->ValueList = VTs.VTs;
8434   N->NumValues = VTs.NumVTs;
8435 
8436   // Clear the operands list, updating used nodes to remove this from their
8437   // use list.  Keep track of any operands that become dead as a result.
8438   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8439   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8440     SDUse &Use = *I++;
8441     SDNode *Used = Use.getNode();
8442     Use.set(SDValue());
8443     if (Used->use_empty())
8444       DeadNodeSet.insert(Used);
8445   }
8446 
8447   // For MachineNode, initialize the memory references information.
8448   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8449     MN->clearMemRefs();
8450 
8451   // Swap for an appropriately sized array from the recycler.
8452   removeOperands(N);
8453   createOperands(N, Ops);
8454 
8455   // Delete any nodes that are still dead after adding the uses for the
8456   // new operands.
8457   if (!DeadNodeSet.empty()) {
8458     SmallVector<SDNode *, 16> DeadNodes;
8459     for (SDNode *N : DeadNodeSet)
8460       if (N->use_empty())
8461         DeadNodes.push_back(N);
8462     RemoveDeadNodes(DeadNodes);
8463   }
8464 
8465   if (IP)
8466     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8467   return N;
8468 }
8469 
8470 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8471   unsigned OrigOpc = Node->getOpcode();
8472   unsigned NewOpc;
8473   switch (OrigOpc) {
8474   default:
8475     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8476 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8477   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8478 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8479   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8480 #include "llvm/IR/ConstrainedOps.def"
8481   }
8482 
8483   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8484 
8485   // We're taking this node out of the chain, so we need to re-link things.
8486   SDValue InputChain = Node->getOperand(0);
8487   SDValue OutputChain = SDValue(Node, 1);
8488   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8489 
8490   SmallVector<SDValue, 3> Ops;
8491   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8492     Ops.push_back(Node->getOperand(i));
8493 
8494   SDVTList VTs = getVTList(Node->getValueType(0));
8495   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8496 
8497   // MorphNodeTo can operate in two ways: if an existing node with the
8498   // specified operands exists, it can just return it.  Otherwise, it
8499   // updates the node in place to have the requested operands.
8500   if (Res == Node) {
8501     // If we updated the node in place, reset the node ID.  To the isel,
8502     // this should be just like a newly allocated machine node.
8503     Res->setNodeId(-1);
8504   } else {
8505     ReplaceAllUsesWith(Node, Res);
8506     RemoveDeadNode(Node);
8507   }
8508 
8509   return Res;
8510 }
8511 
8512 /// getMachineNode - These are used for target selectors to create a new node
8513 /// with specified return type(s), MachineInstr opcode, and operands.
8514 ///
8515 /// Note that getMachineNode returns the resultant node.  If there is already a
8516 /// node of the specified opcode and operands, it returns that node instead of
8517 /// the current one.
8518 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8519                                             EVT VT) {
8520   SDVTList VTs = getVTList(VT);
8521   return getMachineNode(Opcode, dl, VTs, None);
8522 }
8523 
8524 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8525                                             EVT VT, SDValue Op1) {
8526   SDVTList VTs = getVTList(VT);
8527   SDValue Ops[] = { Op1 };
8528   return getMachineNode(Opcode, dl, VTs, Ops);
8529 }
8530 
8531 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8532                                             EVT VT, SDValue Op1, SDValue Op2) {
8533   SDVTList VTs = getVTList(VT);
8534   SDValue Ops[] = { Op1, Op2 };
8535   return getMachineNode(Opcode, dl, VTs, Ops);
8536 }
8537 
8538 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8539                                             EVT VT, SDValue Op1, SDValue Op2,
8540                                             SDValue Op3) {
8541   SDVTList VTs = getVTList(VT);
8542   SDValue Ops[] = { Op1, Op2, Op3 };
8543   return getMachineNode(Opcode, dl, VTs, Ops);
8544 }
8545 
8546 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8547                                             EVT VT, ArrayRef<SDValue> Ops) {
8548   SDVTList VTs = getVTList(VT);
8549   return getMachineNode(Opcode, dl, VTs, Ops);
8550 }
8551 
8552 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8553                                             EVT VT1, EVT VT2, SDValue Op1,
8554                                             SDValue Op2) {
8555   SDVTList VTs = getVTList(VT1, VT2);
8556   SDValue Ops[] = { Op1, Op2 };
8557   return getMachineNode(Opcode, dl, VTs, Ops);
8558 }
8559 
8560 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8561                                             EVT VT1, EVT VT2, SDValue Op1,
8562                                             SDValue Op2, SDValue Op3) {
8563   SDVTList VTs = getVTList(VT1, VT2);
8564   SDValue Ops[] = { Op1, Op2, Op3 };
8565   return getMachineNode(Opcode, dl, VTs, Ops);
8566 }
8567 
8568 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8569                                             EVT VT1, EVT VT2,
8570                                             ArrayRef<SDValue> Ops) {
8571   SDVTList VTs = getVTList(VT1, VT2);
8572   return getMachineNode(Opcode, dl, VTs, Ops);
8573 }
8574 
8575 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8576                                             EVT VT1, EVT VT2, EVT VT3,
8577                                             SDValue Op1, SDValue Op2) {
8578   SDVTList VTs = getVTList(VT1, VT2, VT3);
8579   SDValue Ops[] = { Op1, Op2 };
8580   return getMachineNode(Opcode, dl, VTs, Ops);
8581 }
8582 
8583 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8584                                             EVT VT1, EVT VT2, EVT VT3,
8585                                             SDValue Op1, SDValue Op2,
8586                                             SDValue Op3) {
8587   SDVTList VTs = getVTList(VT1, VT2, VT3);
8588   SDValue Ops[] = { Op1, Op2, Op3 };
8589   return getMachineNode(Opcode, dl, VTs, Ops);
8590 }
8591 
8592 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8593                                             EVT VT1, EVT VT2, EVT VT3,
8594                                             ArrayRef<SDValue> Ops) {
8595   SDVTList VTs = getVTList(VT1, VT2, VT3);
8596   return getMachineNode(Opcode, dl, VTs, Ops);
8597 }
8598 
8599 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8600                                             ArrayRef<EVT> ResultTys,
8601                                             ArrayRef<SDValue> Ops) {
8602   SDVTList VTs = getVTList(ResultTys);
8603   return getMachineNode(Opcode, dl, VTs, Ops);
8604 }
8605 
8606 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8607                                             SDVTList VTs,
8608                                             ArrayRef<SDValue> Ops) {
8609   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8610   MachineSDNode *N;
8611   void *IP = nullptr;
8612 
8613   if (DoCSE) {
8614     FoldingSetNodeID ID;
8615     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8616     IP = nullptr;
8617     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8618       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8619     }
8620   }
8621 
8622   // Allocate a new MachineSDNode.
8623   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8624   createOperands(N, Ops);
8625 
8626   if (DoCSE)
8627     CSEMap.InsertNode(N, IP);
8628 
8629   InsertNode(N);
8630   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8631   return N;
8632 }
8633 
8634 /// getTargetExtractSubreg - A convenience function for creating
8635 /// TargetOpcode::EXTRACT_SUBREG nodes.
8636 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8637                                              SDValue Operand) {
8638   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8639   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8640                                   VT, Operand, SRIdxVal);
8641   return SDValue(Subreg, 0);
8642 }
8643 
8644 /// getTargetInsertSubreg - A convenience function for creating
8645 /// TargetOpcode::INSERT_SUBREG nodes.
8646 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8647                                             SDValue Operand, SDValue Subreg) {
8648   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8649   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8650                                   VT, Operand, Subreg, SRIdxVal);
8651   return SDValue(Result, 0);
8652 }
8653 
8654 /// getNodeIfExists - Get the specified node if it's already available, or
8655 /// else return NULL.
8656 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8657                                       ArrayRef<SDValue> Ops) {
8658   SDNodeFlags Flags;
8659   if (Inserter)
8660     Flags = Inserter->getFlags();
8661   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8662 }
8663 
8664 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8665                                       ArrayRef<SDValue> Ops,
8666                                       const SDNodeFlags Flags) {
8667   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8668     FoldingSetNodeID ID;
8669     AddNodeIDNode(ID, Opcode, VTList, Ops);
8670     void *IP = nullptr;
8671     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8672       E->intersectFlagsWith(Flags);
8673       return E;
8674     }
8675   }
8676   return nullptr;
8677 }
8678 
8679 /// doesNodeExist - Check if a node exists without modifying its flags.
8680 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8681                                  ArrayRef<SDValue> Ops) {
8682   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8683     FoldingSetNodeID ID;
8684     AddNodeIDNode(ID, Opcode, VTList, Ops);
8685     void *IP = nullptr;
8686     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8687       return true;
8688   }
8689   return false;
8690 }
8691 
8692 /// getDbgValue - Creates a SDDbgValue node.
8693 ///
8694 /// SDNode
8695 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8696                                       SDNode *N, unsigned R, bool IsIndirect,
8697                                       const DebugLoc &DL, unsigned O) {
8698   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8699          "Expected inlined-at fields to agree");
8700   return new (DbgInfo->getAlloc())
8701       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
8702                  {}, IsIndirect, DL, O,
8703                  /*IsVariadic=*/false);
8704 }
8705 
8706 /// Constant
8707 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8708                                               DIExpression *Expr,
8709                                               const Value *C,
8710                                               const DebugLoc &DL, unsigned O) {
8711   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8712          "Expected inlined-at fields to agree");
8713   return new (DbgInfo->getAlloc())
8714       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
8715                  /*IsIndirect=*/false, DL, O,
8716                  /*IsVariadic=*/false);
8717 }
8718 
8719 /// FrameIndex
8720 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8721                                                 DIExpression *Expr, unsigned FI,
8722                                                 bool IsIndirect,
8723                                                 const DebugLoc &DL,
8724                                                 unsigned O) {
8725   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8726          "Expected inlined-at fields to agree");
8727   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8728 }
8729 
8730 /// FrameIndex with dependencies
8731 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8732                                                 DIExpression *Expr, unsigned FI,
8733                                                 ArrayRef<SDNode *> Dependencies,
8734                                                 bool IsIndirect,
8735                                                 const DebugLoc &DL,
8736                                                 unsigned O) {
8737   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8738          "Expected inlined-at fields to agree");
8739   return new (DbgInfo->getAlloc())
8740       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
8741                  Dependencies, IsIndirect, DL, O,
8742                  /*IsVariadic=*/false);
8743 }
8744 
8745 /// VReg
8746 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8747                                           unsigned VReg, bool IsIndirect,
8748                                           const DebugLoc &DL, unsigned O) {
8749   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8750          "Expected inlined-at fields to agree");
8751   return new (DbgInfo->getAlloc())
8752       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
8753                  {}, IsIndirect, DL, O,
8754                  /*IsVariadic=*/false);
8755 }
8756 
8757 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8758                                           ArrayRef<SDDbgOperand> Locs,
8759                                           ArrayRef<SDNode *> Dependencies,
8760                                           bool IsIndirect, const DebugLoc &DL,
8761                                           unsigned O, bool IsVariadic) {
8762   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8763          "Expected inlined-at fields to agree");
8764   return new (DbgInfo->getAlloc())
8765       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
8766                  DL, O, IsVariadic);
8767 }
8768 
8769 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8770                                      unsigned OffsetInBits, unsigned SizeInBits,
8771                                      bool InvalidateDbg) {
8772   SDNode *FromNode = From.getNode();
8773   SDNode *ToNode = To.getNode();
8774   assert(FromNode && ToNode && "Can't modify dbg values");
8775 
8776   // PR35338
8777   // TODO: assert(From != To && "Redundant dbg value transfer");
8778   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8779   if (From == To || FromNode == ToNode)
8780     return;
8781 
8782   if (!FromNode->getHasDebugValue())
8783     return;
8784 
8785   SDDbgOperand FromLocOp =
8786       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8787   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8788 
8789   SmallVector<SDDbgValue *, 2> ClonedDVs;
8790   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8791     if (Dbg->isInvalidated())
8792       continue;
8793 
8794     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8795 
8796     // Create a new location ops vector that is equal to the old vector, but
8797     // with each instance of FromLocOp replaced with ToLocOp.
8798     bool Changed = false;
8799     auto NewLocOps = Dbg->copyLocationOps();
8800     std::replace_if(
8801         NewLocOps.begin(), NewLocOps.end(),
8802         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8803           bool Match = Op == FromLocOp;
8804           Changed |= Match;
8805           return Match;
8806         },
8807         ToLocOp);
8808     // Ignore this SDDbgValue if we didn't find a matching location.
8809     if (!Changed)
8810       continue;
8811 
8812     DIVariable *Var = Dbg->getVariable();
8813     auto *Expr = Dbg->getExpression();
8814     // If a fragment is requested, update the expression.
8815     if (SizeInBits) {
8816       // When splitting a larger (e.g., sign-extended) value whose
8817       // lower bits are described with an SDDbgValue, do not attempt
8818       // to transfer the SDDbgValue to the upper bits.
8819       if (auto FI = Expr->getFragmentInfo())
8820         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8821           continue;
8822       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8823                                                              SizeInBits);
8824       if (!Fragment)
8825         continue;
8826       Expr = *Fragment;
8827     }
8828 
8829     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
8830     // Clone the SDDbgValue and move it to To.
8831     SDDbgValue *Clone = getDbgValueList(
8832         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
8833         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8834         Dbg->isVariadic());
8835     ClonedDVs.push_back(Clone);
8836 
8837     if (InvalidateDbg) {
8838       // Invalidate value and indicate the SDDbgValue should not be emitted.
8839       Dbg->setIsInvalidated();
8840       Dbg->setIsEmitted();
8841     }
8842   }
8843 
8844   for (SDDbgValue *Dbg : ClonedDVs) {
8845     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8846            "Transferred DbgValues should depend on the new SDNode");
8847     AddDbgValue(Dbg, false);
8848   }
8849 }
8850 
8851 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8852   if (!N.getHasDebugValue())
8853     return;
8854 
8855   SmallVector<SDDbgValue *, 2> ClonedDVs;
8856   for (auto DV : GetDbgValues(&N)) {
8857     if (DV->isInvalidated())
8858       continue;
8859     switch (N.getOpcode()) {
8860     default:
8861       break;
8862     case ISD::ADD:
8863       SDValue N0 = N.getOperand(0);
8864       SDValue N1 = N.getOperand(1);
8865       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8866           isConstantIntBuildVectorOrConstantInt(N1)) {
8867         uint64_t Offset = N.getConstantOperandVal(1);
8868 
8869         // Rewrite an ADD constant node into a DIExpression. Since we are
8870         // performing arithmetic to compute the variable's *value* in the
8871         // DIExpression, we need to mark the expression with a
8872         // DW_OP_stack_value.
8873         auto *DIExpr = DV->getExpression();
8874         auto NewLocOps = DV->copyLocationOps();
8875         bool Changed = false;
8876         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8877           // We're not given a ResNo to compare against because the whole
8878           // node is going away. We know that any ISD::ADD only has one
8879           // result, so we can assume any node match is using the result.
8880           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8881               NewLocOps[i].getSDNode() != &N)
8882             continue;
8883           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8884           SmallVector<uint64_t, 3> ExprOps;
8885           DIExpression::appendOffset(ExprOps, Offset);
8886           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8887           Changed = true;
8888         }
8889         (void)Changed;
8890         assert(Changed && "Salvage target doesn't use N");
8891 
8892         auto AdditionalDependencies = DV->getAdditionalDependencies();
8893         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8894                                             NewLocOps, AdditionalDependencies,
8895                                             DV->isIndirect(), DV->getDebugLoc(),
8896                                             DV->getOrder(), DV->isVariadic());
8897         ClonedDVs.push_back(Clone);
8898         DV->setIsInvalidated();
8899         DV->setIsEmitted();
8900         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8901                    N0.getNode()->dumprFull(this);
8902                    dbgs() << " into " << *DIExpr << '\n');
8903       }
8904     }
8905   }
8906 
8907   for (SDDbgValue *Dbg : ClonedDVs) {
8908     assert(!Dbg->getSDNodes().empty() &&
8909            "Salvaged DbgValue should depend on a new SDNode");
8910     AddDbgValue(Dbg, false);
8911   }
8912 }
8913 
8914 /// Creates a SDDbgLabel node.
8915 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8916                                       const DebugLoc &DL, unsigned O) {
8917   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8918          "Expected inlined-at fields to agree");
8919   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8920 }
8921 
8922 namespace {
8923 
8924 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8925 /// pointed to by a use iterator is deleted, increment the use iterator
8926 /// so that it doesn't dangle.
8927 ///
8928 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8929   SDNode::use_iterator &UI;
8930   SDNode::use_iterator &UE;
8931 
8932   void NodeDeleted(SDNode *N, SDNode *E) override {
8933     // Increment the iterator as needed.
8934     while (UI != UE && N == *UI)
8935       ++UI;
8936   }
8937 
8938 public:
8939   RAUWUpdateListener(SelectionDAG &d,
8940                      SDNode::use_iterator &ui,
8941                      SDNode::use_iterator &ue)
8942     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8943 };
8944 
8945 } // end anonymous namespace
8946 
8947 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8948 /// This can cause recursive merging of nodes in the DAG.
8949 ///
8950 /// This version assumes From has a single result value.
8951 ///
8952 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8953   SDNode *From = FromN.getNode();
8954   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8955          "Cannot replace with this method!");
8956   assert(From != To.getNode() && "Cannot replace uses of with self");
8957 
8958   // Preserve Debug Values
8959   transferDbgValues(FromN, To);
8960 
8961   // Iterate over all the existing uses of From. New uses will be added
8962   // to the beginning of the use list, which we avoid visiting.
8963   // This specifically avoids visiting uses of From that arise while the
8964   // replacement is happening, because any such uses would be the result
8965   // of CSE: If an existing node looks like From after one of its operands
8966   // is replaced by To, we don't want to replace of all its users with To
8967   // too. See PR3018 for more info.
8968   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8969   RAUWUpdateListener Listener(*this, UI, UE);
8970   while (UI != UE) {
8971     SDNode *User = *UI;
8972 
8973     // This node is about to morph, remove its old self from the CSE maps.
8974     RemoveNodeFromCSEMaps(User);
8975 
8976     // A user can appear in a use list multiple times, and when this
8977     // happens the uses are usually next to each other in the list.
8978     // To help reduce the number of CSE recomputations, process all
8979     // the uses of this user that we can find this way.
8980     do {
8981       SDUse &Use = UI.getUse();
8982       ++UI;
8983       Use.set(To);
8984       if (To->isDivergent() != From->isDivergent())
8985         updateDivergence(User);
8986     } while (UI != UE && *UI == User);
8987     // Now that we have modified User, add it back to the CSE maps.  If it
8988     // already exists there, recursively merge the results together.
8989     AddModifiedNodeToCSEMaps(User);
8990   }
8991 
8992   // If we just RAUW'd the root, take note.
8993   if (FromN == getRoot())
8994     setRoot(To);
8995 }
8996 
8997 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8998 /// This can cause recursive merging of nodes in the DAG.
8999 ///
9000 /// This version assumes that for each value of From, there is a
9001 /// corresponding value in To in the same position with the same type.
9002 ///
9003 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9004 #ifndef NDEBUG
9005   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9006     assert((!From->hasAnyUseOfValue(i) ||
9007             From->getValueType(i) == To->getValueType(i)) &&
9008            "Cannot use this version of ReplaceAllUsesWith!");
9009 #endif
9010 
9011   // Handle the trivial case.
9012   if (From == To)
9013     return;
9014 
9015   // Preserve Debug Info. Only do this if there's a use.
9016   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9017     if (From->hasAnyUseOfValue(i)) {
9018       assert((i < To->getNumValues()) && "Invalid To location");
9019       transferDbgValues(SDValue(From, i), SDValue(To, i));
9020     }
9021 
9022   // Iterate over just the existing users of From. See the comments in
9023   // the ReplaceAllUsesWith above.
9024   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9025   RAUWUpdateListener Listener(*this, UI, UE);
9026   while (UI != UE) {
9027     SDNode *User = *UI;
9028 
9029     // This node is about to morph, remove its old self from the CSE maps.
9030     RemoveNodeFromCSEMaps(User);
9031 
9032     // A user can appear in a use list multiple times, and when this
9033     // happens the uses are usually next to each other in the list.
9034     // To help reduce the number of CSE recomputations, process all
9035     // the uses of this user that we can find this way.
9036     do {
9037       SDUse &Use = UI.getUse();
9038       ++UI;
9039       Use.setNode(To);
9040       if (To->isDivergent() != From->isDivergent())
9041         updateDivergence(User);
9042     } while (UI != UE && *UI == User);
9043 
9044     // Now that we have modified User, add it back to the CSE maps.  If it
9045     // already exists there, recursively merge the results together.
9046     AddModifiedNodeToCSEMaps(User);
9047   }
9048 
9049   // If we just RAUW'd the root, take note.
9050   if (From == getRoot().getNode())
9051     setRoot(SDValue(To, getRoot().getResNo()));
9052 }
9053 
9054 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9055 /// This can cause recursive merging of nodes in the DAG.
9056 ///
9057 /// This version can replace From with any result values.  To must match the
9058 /// number and types of values returned by From.
9059 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9060   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9061     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9062 
9063   // Preserve Debug Info.
9064   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9065     transferDbgValues(SDValue(From, i), To[i]);
9066 
9067   // Iterate over just the existing users of From. See the comments in
9068   // the ReplaceAllUsesWith above.
9069   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9070   RAUWUpdateListener Listener(*this, UI, UE);
9071   while (UI != UE) {
9072     SDNode *User = *UI;
9073 
9074     // This node is about to morph, remove its old self from the CSE maps.
9075     RemoveNodeFromCSEMaps(User);
9076 
9077     // A user can appear in a use list multiple times, and when this happens the
9078     // uses are usually next to each other in the list.  To help reduce the
9079     // number of CSE and divergence recomputations, process all the uses of this
9080     // user that we can find this way.
9081     bool To_IsDivergent = false;
9082     do {
9083       SDUse &Use = UI.getUse();
9084       const SDValue &ToOp = To[Use.getResNo()];
9085       ++UI;
9086       Use.set(ToOp);
9087       To_IsDivergent |= ToOp->isDivergent();
9088     } while (UI != UE && *UI == User);
9089 
9090     if (To_IsDivergent != From->isDivergent())
9091       updateDivergence(User);
9092 
9093     // Now that we have modified User, add it back to the CSE maps.  If it
9094     // already exists there, recursively merge the results together.
9095     AddModifiedNodeToCSEMaps(User);
9096   }
9097 
9098   // If we just RAUW'd the root, take note.
9099   if (From == getRoot().getNode())
9100     setRoot(SDValue(To[getRoot().getResNo()]));
9101 }
9102 
9103 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9104 /// uses of other values produced by From.getNode() alone.  The Deleted
9105 /// vector is handled the same way as for ReplaceAllUsesWith.
9106 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9107   // Handle the really simple, really trivial case efficiently.
9108   if (From == To) return;
9109 
9110   // Handle the simple, trivial, case efficiently.
9111   if (From.getNode()->getNumValues() == 1) {
9112     ReplaceAllUsesWith(From, To);
9113     return;
9114   }
9115 
9116   // Preserve Debug Info.
9117   transferDbgValues(From, To);
9118 
9119   // Iterate over just the existing users of From. See the comments in
9120   // the ReplaceAllUsesWith above.
9121   SDNode::use_iterator UI = From.getNode()->use_begin(),
9122                        UE = From.getNode()->use_end();
9123   RAUWUpdateListener Listener(*this, UI, UE);
9124   while (UI != UE) {
9125     SDNode *User = *UI;
9126     bool UserRemovedFromCSEMaps = false;
9127 
9128     // A user can appear in a use list multiple times, and when this
9129     // happens the uses are usually next to each other in the list.
9130     // To help reduce the number of CSE recomputations, process all
9131     // the uses of this user that we can find this way.
9132     do {
9133       SDUse &Use = UI.getUse();
9134 
9135       // Skip uses of different values from the same node.
9136       if (Use.getResNo() != From.getResNo()) {
9137         ++UI;
9138         continue;
9139       }
9140 
9141       // If this node hasn't been modified yet, it's still in the CSE maps,
9142       // so remove its old self from the CSE maps.
9143       if (!UserRemovedFromCSEMaps) {
9144         RemoveNodeFromCSEMaps(User);
9145         UserRemovedFromCSEMaps = true;
9146       }
9147 
9148       ++UI;
9149       Use.set(To);
9150       if (To->isDivergent() != From->isDivergent())
9151         updateDivergence(User);
9152     } while (UI != UE && *UI == User);
9153     // We are iterating over all uses of the From node, so if a use
9154     // doesn't use the specific value, no changes are made.
9155     if (!UserRemovedFromCSEMaps)
9156       continue;
9157 
9158     // Now that we have modified User, add it back to the CSE maps.  If it
9159     // already exists there, recursively merge the results together.
9160     AddModifiedNodeToCSEMaps(User);
9161   }
9162 
9163   // If we just RAUW'd the root, take note.
9164   if (From == getRoot())
9165     setRoot(To);
9166 }
9167 
9168 namespace {
9169 
9170   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9171   /// to record information about a use.
9172   struct UseMemo {
9173     SDNode *User;
9174     unsigned Index;
9175     SDUse *Use;
9176   };
9177 
9178   /// operator< - Sort Memos by User.
9179   bool operator<(const UseMemo &L, const UseMemo &R) {
9180     return (intptr_t)L.User < (intptr_t)R.User;
9181   }
9182 
9183 } // end anonymous namespace
9184 
9185 bool SelectionDAG::calculateDivergence(SDNode *N) {
9186   if (TLI->isSDNodeAlwaysUniform(N)) {
9187     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9188            "Conflicting divergence information!");
9189     return false;
9190   }
9191   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9192     return true;
9193   for (auto &Op : N->ops()) {
9194     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9195       return true;
9196   }
9197   return false;
9198 }
9199 
9200 void SelectionDAG::updateDivergence(SDNode *N) {
9201   SmallVector<SDNode *, 16> Worklist(1, N);
9202   do {
9203     N = Worklist.pop_back_val();
9204     bool IsDivergent = calculateDivergence(N);
9205     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9206       N->SDNodeBits.IsDivergent = IsDivergent;
9207       llvm::append_range(Worklist, N->uses());
9208     }
9209   } while (!Worklist.empty());
9210 }
9211 
9212 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9213   DenseMap<SDNode *, unsigned> Degree;
9214   Order.reserve(AllNodes.size());
9215   for (auto &N : allnodes()) {
9216     unsigned NOps = N.getNumOperands();
9217     Degree[&N] = NOps;
9218     if (0 == NOps)
9219       Order.push_back(&N);
9220   }
9221   for (size_t I = 0; I != Order.size(); ++I) {
9222     SDNode *N = Order[I];
9223     for (auto U : N->uses()) {
9224       unsigned &UnsortedOps = Degree[U];
9225       if (0 == --UnsortedOps)
9226         Order.push_back(U);
9227     }
9228   }
9229 }
9230 
9231 #ifndef NDEBUG
9232 void SelectionDAG::VerifyDAGDiverence() {
9233   std::vector<SDNode *> TopoOrder;
9234   CreateTopologicalOrder(TopoOrder);
9235   for (auto *N : TopoOrder) {
9236     assert(calculateDivergence(N) == N->isDivergent() &&
9237            "Divergence bit inconsistency detected");
9238   }
9239 }
9240 #endif
9241 
9242 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9243 /// uses of other values produced by From.getNode() alone.  The same value
9244 /// may appear in both the From and To list.  The Deleted vector is
9245 /// handled the same way as for ReplaceAllUsesWith.
9246 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9247                                               const SDValue *To,
9248                                               unsigned Num){
9249   // Handle the simple, trivial case efficiently.
9250   if (Num == 1)
9251     return ReplaceAllUsesOfValueWith(*From, *To);
9252 
9253   transferDbgValues(*From, *To);
9254 
9255   // Read up all the uses and make records of them. This helps
9256   // processing new uses that are introduced during the
9257   // replacement process.
9258   SmallVector<UseMemo, 4> Uses;
9259   for (unsigned i = 0; i != Num; ++i) {
9260     unsigned FromResNo = From[i].getResNo();
9261     SDNode *FromNode = From[i].getNode();
9262     for (SDNode::use_iterator UI = FromNode->use_begin(),
9263          E = FromNode->use_end(); UI != E; ++UI) {
9264       SDUse &Use = UI.getUse();
9265       if (Use.getResNo() == FromResNo) {
9266         UseMemo Memo = { *UI, i, &Use };
9267         Uses.push_back(Memo);
9268       }
9269     }
9270   }
9271 
9272   // Sort the uses, so that all the uses from a given User are together.
9273   llvm::sort(Uses);
9274 
9275   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9276        UseIndex != UseIndexEnd; ) {
9277     // We know that this user uses some value of From.  If it is the right
9278     // value, update it.
9279     SDNode *User = Uses[UseIndex].User;
9280 
9281     // This node is about to morph, remove its old self from the CSE maps.
9282     RemoveNodeFromCSEMaps(User);
9283 
9284     // The Uses array is sorted, so all the uses for a given User
9285     // are next to each other in the list.
9286     // To help reduce the number of CSE recomputations, process all
9287     // the uses of this user that we can find this way.
9288     do {
9289       unsigned i = Uses[UseIndex].Index;
9290       SDUse &Use = *Uses[UseIndex].Use;
9291       ++UseIndex;
9292 
9293       Use.set(To[i]);
9294     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9295 
9296     // Now that we have modified User, add it back to the CSE maps.  If it
9297     // already exists there, recursively merge the results together.
9298     AddModifiedNodeToCSEMaps(User);
9299   }
9300 }
9301 
9302 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9303 /// based on their topological order. It returns the maximum id and a vector
9304 /// of the SDNodes* in assigned order by reference.
9305 unsigned SelectionDAG::AssignTopologicalOrder() {
9306   unsigned DAGSize = 0;
9307 
9308   // SortedPos tracks the progress of the algorithm. Nodes before it are
9309   // sorted, nodes after it are unsorted. When the algorithm completes
9310   // it is at the end of the list.
9311   allnodes_iterator SortedPos = allnodes_begin();
9312 
9313   // Visit all the nodes. Move nodes with no operands to the front of
9314   // the list immediately. Annotate nodes that do have operands with their
9315   // operand count. Before we do this, the Node Id fields of the nodes
9316   // may contain arbitrary values. After, the Node Id fields for nodes
9317   // before SortedPos will contain the topological sort index, and the
9318   // Node Id fields for nodes At SortedPos and after will contain the
9319   // count of outstanding operands.
9320   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9321     SDNode *N = &*I++;
9322     checkForCycles(N, this);
9323     unsigned Degree = N->getNumOperands();
9324     if (Degree == 0) {
9325       // A node with no uses, add it to the result array immediately.
9326       N->setNodeId(DAGSize++);
9327       allnodes_iterator Q(N);
9328       if (Q != SortedPos)
9329         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9330       assert(SortedPos != AllNodes.end() && "Overran node list");
9331       ++SortedPos;
9332     } else {
9333       // Temporarily use the Node Id as scratch space for the degree count.
9334       N->setNodeId(Degree);
9335     }
9336   }
9337 
9338   // Visit all the nodes. As we iterate, move nodes into sorted order,
9339   // such that by the time the end is reached all nodes will be sorted.
9340   for (SDNode &Node : allnodes()) {
9341     SDNode *N = &Node;
9342     checkForCycles(N, this);
9343     // N is in sorted position, so all its uses have one less operand
9344     // that needs to be sorted.
9345     for (SDNode *P : N->uses()) {
9346       unsigned Degree = P->getNodeId();
9347       assert(Degree != 0 && "Invalid node degree");
9348       --Degree;
9349       if (Degree == 0) {
9350         // All of P's operands are sorted, so P may sorted now.
9351         P->setNodeId(DAGSize++);
9352         if (P->getIterator() != SortedPos)
9353           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9354         assert(SortedPos != AllNodes.end() && "Overran node list");
9355         ++SortedPos;
9356       } else {
9357         // Update P's outstanding operand count.
9358         P->setNodeId(Degree);
9359       }
9360     }
9361     if (Node.getIterator() == SortedPos) {
9362 #ifndef NDEBUG
9363       allnodes_iterator I(N);
9364       SDNode *S = &*++I;
9365       dbgs() << "Overran sorted position:\n";
9366       S->dumprFull(this); dbgs() << "\n";
9367       dbgs() << "Checking if this is due to cycles\n";
9368       checkForCycles(this, true);
9369 #endif
9370       llvm_unreachable(nullptr);
9371     }
9372   }
9373 
9374   assert(SortedPos == AllNodes.end() &&
9375          "Topological sort incomplete!");
9376   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9377          "First node in topological sort is not the entry token!");
9378   assert(AllNodes.front().getNodeId() == 0 &&
9379          "First node in topological sort has non-zero id!");
9380   assert(AllNodes.front().getNumOperands() == 0 &&
9381          "First node in topological sort has operands!");
9382   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9383          "Last node in topologic sort has unexpected id!");
9384   assert(AllNodes.back().use_empty() &&
9385          "Last node in topologic sort has users!");
9386   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9387   return DAGSize;
9388 }
9389 
9390 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9391 /// value is produced by SD.
9392 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9393   for (SDNode *SD : DB->getSDNodes()) {
9394     if (!SD)
9395       continue;
9396     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9397     SD->setHasDebugValue(true);
9398   }
9399   DbgInfo->add(DB, isParameter);
9400 }
9401 
9402 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9403 
9404 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9405                                                    SDValue NewMemOpChain) {
9406   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9407   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9408   // The new memory operation must have the same position as the old load in
9409   // terms of memory dependency. Create a TokenFactor for the old load and new
9410   // memory operation and update uses of the old load's output chain to use that
9411   // TokenFactor.
9412   if (OldChain == NewMemOpChain || OldChain.use_empty())
9413     return NewMemOpChain;
9414 
9415   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9416                                 OldChain, NewMemOpChain);
9417   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9418   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9419   return TokenFactor;
9420 }
9421 
9422 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9423                                                    SDValue NewMemOp) {
9424   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9425   SDValue OldChain = SDValue(OldLoad, 1);
9426   SDValue NewMemOpChain = NewMemOp.getValue(1);
9427   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9428 }
9429 
9430 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9431                                                      Function **OutFunction) {
9432   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9433 
9434   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9435   auto *Module = MF->getFunction().getParent();
9436   auto *Function = Module->getFunction(Symbol);
9437 
9438   if (OutFunction != nullptr)
9439       *OutFunction = Function;
9440 
9441   if (Function != nullptr) {
9442     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9443     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9444   }
9445 
9446   std::string ErrorStr;
9447   raw_string_ostream ErrorFormatter(ErrorStr);
9448 
9449   ErrorFormatter << "Undefined external symbol ";
9450   ErrorFormatter << '"' << Symbol << '"';
9451   ErrorFormatter.flush();
9452 
9453   report_fatal_error(ErrorStr);
9454 }
9455 
9456 //===----------------------------------------------------------------------===//
9457 //                              SDNode Class
9458 //===----------------------------------------------------------------------===//
9459 
9460 bool llvm::isNullConstant(SDValue V) {
9461   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9462   return Const != nullptr && Const->isNullValue();
9463 }
9464 
9465 bool llvm::isNullFPConstant(SDValue V) {
9466   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9467   return Const != nullptr && Const->isZero() && !Const->isNegative();
9468 }
9469 
9470 bool llvm::isAllOnesConstant(SDValue V) {
9471   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9472   return Const != nullptr && Const->isAllOnesValue();
9473 }
9474 
9475 bool llvm::isOneConstant(SDValue V) {
9476   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9477   return Const != nullptr && Const->isOne();
9478 }
9479 
9480 SDValue llvm::peekThroughBitcasts(SDValue V) {
9481   while (V.getOpcode() == ISD::BITCAST)
9482     V = V.getOperand(0);
9483   return V;
9484 }
9485 
9486 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9487   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9488     V = V.getOperand(0);
9489   return V;
9490 }
9491 
9492 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9493   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9494     V = V.getOperand(0);
9495   return V;
9496 }
9497 
9498 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9499   if (V.getOpcode() != ISD::XOR)
9500     return false;
9501   V = peekThroughBitcasts(V.getOperand(1));
9502   unsigned NumBits = V.getScalarValueSizeInBits();
9503   ConstantSDNode *C =
9504       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9505   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9506 }
9507 
9508 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9509                                           bool AllowTruncation) {
9510   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9511     return CN;
9512 
9513   // SplatVectors can truncate their operands. Ignore that case here unless
9514   // AllowTruncation is set.
9515   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9516     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9517     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9518       EVT CVT = CN->getValueType(0);
9519       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9520       if (AllowTruncation || CVT == VecEltVT)
9521         return CN;
9522     }
9523   }
9524 
9525   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9526     BitVector UndefElements;
9527     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9528 
9529     // BuildVectors can truncate their operands. Ignore that case here unless
9530     // AllowTruncation is set.
9531     if (CN && (UndefElements.none() || AllowUndefs)) {
9532       EVT CVT = CN->getValueType(0);
9533       EVT NSVT = N.getValueType().getScalarType();
9534       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9535       if (AllowTruncation || (CVT == NSVT))
9536         return CN;
9537     }
9538   }
9539 
9540   return nullptr;
9541 }
9542 
9543 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9544                                           bool AllowUndefs,
9545                                           bool AllowTruncation) {
9546   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9547     return CN;
9548 
9549   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9550     BitVector UndefElements;
9551     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9552 
9553     // BuildVectors can truncate their operands. Ignore that case here unless
9554     // AllowTruncation is set.
9555     if (CN && (UndefElements.none() || AllowUndefs)) {
9556       EVT CVT = CN->getValueType(0);
9557       EVT NSVT = N.getValueType().getScalarType();
9558       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9559       if (AllowTruncation || (CVT == NSVT))
9560         return CN;
9561     }
9562   }
9563 
9564   return nullptr;
9565 }
9566 
9567 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9568   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9569     return CN;
9570 
9571   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9572     BitVector UndefElements;
9573     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9574     if (CN && (UndefElements.none() || AllowUndefs))
9575       return CN;
9576   }
9577 
9578   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9579     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9580       return CN;
9581 
9582   return nullptr;
9583 }
9584 
9585 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9586                                               const APInt &DemandedElts,
9587                                               bool AllowUndefs) {
9588   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9589     return CN;
9590 
9591   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9592     BitVector UndefElements;
9593     ConstantFPSDNode *CN =
9594         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9595     if (CN && (UndefElements.none() || AllowUndefs))
9596       return CN;
9597   }
9598 
9599   return nullptr;
9600 }
9601 
9602 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9603   // TODO: may want to use peekThroughBitcast() here.
9604   ConstantSDNode *C =
9605       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
9606   return C && C->isNullValue();
9607 }
9608 
9609 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9610   // TODO: may want to use peekThroughBitcast() here.
9611   unsigned BitWidth = N.getScalarValueSizeInBits();
9612   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9613   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9614 }
9615 
9616 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9617   N = peekThroughBitcasts(N);
9618   unsigned BitWidth = N.getScalarValueSizeInBits();
9619   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9620   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9621 }
9622 
9623 HandleSDNode::~HandleSDNode() {
9624   DropOperands();
9625 }
9626 
9627 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9628                                          const DebugLoc &DL,
9629                                          const GlobalValue *GA, EVT VT,
9630                                          int64_t o, unsigned TF)
9631     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9632   TheGlobal = GA;
9633 }
9634 
9635 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9636                                          EVT VT, unsigned SrcAS,
9637                                          unsigned DestAS)
9638     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9639       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9640 
9641 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9642                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9643     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9644   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9645   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9646   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9647   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9648 
9649   // We check here that the size of the memory operand fits within the size of
9650   // the MMO. This is because the MMO might indicate only a possible address
9651   // range instead of specifying the affected memory addresses precisely.
9652   // TODO: Make MachineMemOperands aware of scalable vectors.
9653   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9654          "Size mismatch!");
9655 }
9656 
9657 /// Profile - Gather unique data for the node.
9658 ///
9659 void SDNode::Profile(FoldingSetNodeID &ID) const {
9660   AddNodeIDNode(ID, this);
9661 }
9662 
9663 namespace {
9664 
9665   struct EVTArray {
9666     std::vector<EVT> VTs;
9667 
9668     EVTArray() {
9669       VTs.reserve(MVT::VALUETYPE_SIZE);
9670       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
9671         VTs.push_back(MVT((MVT::SimpleValueType)i));
9672     }
9673   };
9674 
9675 } // end anonymous namespace
9676 
9677 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9678 static ManagedStatic<EVTArray> SimpleVTArray;
9679 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9680 
9681 /// getValueTypeList - Return a pointer to the specified value type.
9682 ///
9683 const EVT *SDNode::getValueTypeList(EVT VT) {
9684   if (VT.isExtended()) {
9685     sys::SmartScopedLock<true> Lock(*VTMutex);
9686     return &(*EVTs->insert(VT).first);
9687   }
9688   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
9689   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9690 }
9691 
9692 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9693 /// indicated value.  This method ignores uses of other values defined by this
9694 /// operation.
9695 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9696   assert(Value < getNumValues() && "Bad value!");
9697 
9698   // TODO: Only iterate over uses of a given value of the node
9699   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9700     if (UI.getUse().getResNo() == Value) {
9701       if (NUses == 0)
9702         return false;
9703       --NUses;
9704     }
9705   }
9706 
9707   // Found exactly the right number of uses?
9708   return NUses == 0;
9709 }
9710 
9711 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9712 /// value. This method ignores uses of other values defined by this operation.
9713 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9714   assert(Value < getNumValues() && "Bad value!");
9715 
9716   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9717     if (UI.getUse().getResNo() == Value)
9718       return true;
9719 
9720   return false;
9721 }
9722 
9723 /// isOnlyUserOf - Return true if this node is the only use of N.
9724 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9725   bool Seen = false;
9726   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9727     SDNode *User = *I;
9728     if (User == this)
9729       Seen = true;
9730     else
9731       return false;
9732   }
9733 
9734   return Seen;
9735 }
9736 
9737 /// Return true if the only users of N are contained in Nodes.
9738 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9739   bool Seen = false;
9740   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9741     SDNode *User = *I;
9742     if (llvm::is_contained(Nodes, User))
9743       Seen = true;
9744     else
9745       return false;
9746   }
9747 
9748   return Seen;
9749 }
9750 
9751 /// isOperand - Return true if this node is an operand of N.
9752 bool SDValue::isOperandOf(const SDNode *N) const {
9753   return is_contained(N->op_values(), *this);
9754 }
9755 
9756 bool SDNode::isOperandOf(const SDNode *N) const {
9757   return any_of(N->op_values(),
9758                 [this](SDValue Op) { return this == Op.getNode(); });
9759 }
9760 
9761 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9762 /// be a chain) reaches the specified operand without crossing any
9763 /// side-effecting instructions on any chain path.  In practice, this looks
9764 /// through token factors and non-volatile loads.  In order to remain efficient,
9765 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9766 ///
9767 /// Note that we only need to examine chains when we're searching for
9768 /// side-effects; SelectionDAG requires that all side-effects are represented
9769 /// by chains, even if another operand would force a specific ordering. This
9770 /// constraint is necessary to allow transformations like splitting loads.
9771 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9772                                              unsigned Depth) const {
9773   if (*this == Dest) return true;
9774 
9775   // Don't search too deeply, we just want to be able to see through
9776   // TokenFactor's etc.
9777   if (Depth == 0) return false;
9778 
9779   // If this is a token factor, all inputs to the TF happen in parallel.
9780   if (getOpcode() == ISD::TokenFactor) {
9781     // First, try a shallow search.
9782     if (is_contained((*this)->ops(), Dest)) {
9783       // We found the chain we want as an operand of this TokenFactor.
9784       // Essentially, we reach the chain without side-effects if we could
9785       // serialize the TokenFactor into a simple chain of operations with
9786       // Dest as the last operation. This is automatically true if the
9787       // chain has one use: there are no other ordering constraints.
9788       // If the chain has more than one use, we give up: some other
9789       // use of Dest might force a side-effect between Dest and the current
9790       // node.
9791       if (Dest.hasOneUse())
9792         return true;
9793     }
9794     // Next, try a deep search: check whether every operand of the TokenFactor
9795     // reaches Dest.
9796     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9797       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9798     });
9799   }
9800 
9801   // Loads don't have side effects, look through them.
9802   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9803     if (Ld->isUnordered())
9804       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9805   }
9806   return false;
9807 }
9808 
9809 bool SDNode::hasPredecessor(const SDNode *N) const {
9810   SmallPtrSet<const SDNode *, 32> Visited;
9811   SmallVector<const SDNode *, 16> Worklist;
9812   Worklist.push_back(this);
9813   return hasPredecessorHelper(N, Visited, Worklist);
9814 }
9815 
9816 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9817   this->Flags.intersectWith(Flags);
9818 }
9819 
9820 SDValue
9821 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9822                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9823                                   bool AllowPartials) {
9824   // The pattern must end in an extract from index 0.
9825   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9826       !isNullConstant(Extract->getOperand(1)))
9827     return SDValue();
9828 
9829   // Match against one of the candidate binary ops.
9830   SDValue Op = Extract->getOperand(0);
9831   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9832         return Op.getOpcode() == unsigned(BinOp);
9833       }))
9834     return SDValue();
9835 
9836   // Floating-point reductions may require relaxed constraints on the final step
9837   // of the reduction because they may reorder intermediate operations.
9838   unsigned CandidateBinOp = Op.getOpcode();
9839   if (Op.getValueType().isFloatingPoint()) {
9840     SDNodeFlags Flags = Op->getFlags();
9841     switch (CandidateBinOp) {
9842     case ISD::FADD:
9843       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9844         return SDValue();
9845       break;
9846     default:
9847       llvm_unreachable("Unhandled FP opcode for binop reduction");
9848     }
9849   }
9850 
9851   // Matching failed - attempt to see if we did enough stages that a partial
9852   // reduction from a subvector is possible.
9853   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9854     if (!AllowPartials || !Op)
9855       return SDValue();
9856     EVT OpVT = Op.getValueType();
9857     EVT OpSVT = OpVT.getScalarType();
9858     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9859     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9860       return SDValue();
9861     BinOp = (ISD::NodeType)CandidateBinOp;
9862     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9863                    getVectorIdxConstant(0, SDLoc(Op)));
9864   };
9865 
9866   // At each stage, we're looking for something that looks like:
9867   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9868   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9869   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9870   // %a = binop <8 x i32> %op, %s
9871   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9872   // we expect something like:
9873   // <4,5,6,7,u,u,u,u>
9874   // <2,3,u,u,u,u,u,u>
9875   // <1,u,u,u,u,u,u,u>
9876   // While a partial reduction match would be:
9877   // <2,3,u,u,u,u,u,u>
9878   // <1,u,u,u,u,u,u,u>
9879   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9880   SDValue PrevOp;
9881   for (unsigned i = 0; i < Stages; ++i) {
9882     unsigned MaskEnd = (1 << i);
9883 
9884     if (Op.getOpcode() != CandidateBinOp)
9885       return PartialReduction(PrevOp, MaskEnd);
9886 
9887     SDValue Op0 = Op.getOperand(0);
9888     SDValue Op1 = Op.getOperand(1);
9889 
9890     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9891     if (Shuffle) {
9892       Op = Op1;
9893     } else {
9894       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9895       Op = Op0;
9896     }
9897 
9898     // The first operand of the shuffle should be the same as the other operand
9899     // of the binop.
9900     if (!Shuffle || Shuffle->getOperand(0) != Op)
9901       return PartialReduction(PrevOp, MaskEnd);
9902 
9903     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9904     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9905       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9906         return PartialReduction(PrevOp, MaskEnd);
9907 
9908     PrevOp = Op;
9909   }
9910 
9911   // Handle subvector reductions, which tend to appear after the shuffle
9912   // reduction stages.
9913   while (Op.getOpcode() == CandidateBinOp) {
9914     unsigned NumElts = Op.getValueType().getVectorNumElements();
9915     SDValue Op0 = Op.getOperand(0);
9916     SDValue Op1 = Op.getOperand(1);
9917     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9918         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9919         Op0.getOperand(0) != Op1.getOperand(0))
9920       break;
9921     SDValue Src = Op0.getOperand(0);
9922     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9923     if (NumSrcElts != (2 * NumElts))
9924       break;
9925     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9926           Op1.getConstantOperandAPInt(1) == NumElts) &&
9927         !(Op1.getConstantOperandAPInt(1) == 0 &&
9928           Op0.getConstantOperandAPInt(1) == NumElts))
9929       break;
9930     Op = Src;
9931   }
9932 
9933   BinOp = (ISD::NodeType)CandidateBinOp;
9934   return Op;
9935 }
9936 
9937 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9938   assert(N->getNumValues() == 1 &&
9939          "Can't unroll a vector with multiple results!");
9940 
9941   EVT VT = N->getValueType(0);
9942   unsigned NE = VT.getVectorNumElements();
9943   EVT EltVT = VT.getVectorElementType();
9944   SDLoc dl(N);
9945 
9946   SmallVector<SDValue, 8> Scalars;
9947   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9948 
9949   // If ResNE is 0, fully unroll the vector op.
9950   if (ResNE == 0)
9951     ResNE = NE;
9952   else if (NE > ResNE)
9953     NE = ResNE;
9954 
9955   unsigned i;
9956   for (i= 0; i != NE; ++i) {
9957     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9958       SDValue Operand = N->getOperand(j);
9959       EVT OperandVT = Operand.getValueType();
9960       if (OperandVT.isVector()) {
9961         // A vector operand; extract a single element.
9962         EVT OperandEltVT = OperandVT.getVectorElementType();
9963         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9964                               Operand, getVectorIdxConstant(i, dl));
9965       } else {
9966         // A scalar operand; just use it as is.
9967         Operands[j] = Operand;
9968       }
9969     }
9970 
9971     switch (N->getOpcode()) {
9972     default: {
9973       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9974                                 N->getFlags()));
9975       break;
9976     }
9977     case ISD::VSELECT:
9978       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9979       break;
9980     case ISD::SHL:
9981     case ISD::SRA:
9982     case ISD::SRL:
9983     case ISD::ROTL:
9984     case ISD::ROTR:
9985       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9986                                getShiftAmountOperand(Operands[0].getValueType(),
9987                                                      Operands[1])));
9988       break;
9989     case ISD::SIGN_EXTEND_INREG: {
9990       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9991       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9992                                 Operands[0],
9993                                 getValueType(ExtVT)));
9994     }
9995     }
9996   }
9997 
9998   for (; i < ResNE; ++i)
9999     Scalars.push_back(getUNDEF(EltVT));
10000 
10001   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10002   return getBuildVector(VecVT, dl, Scalars);
10003 }
10004 
10005 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10006     SDNode *N, unsigned ResNE) {
10007   unsigned Opcode = N->getOpcode();
10008   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10009           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10010           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10011          "Expected an overflow opcode");
10012 
10013   EVT ResVT = N->getValueType(0);
10014   EVT OvVT = N->getValueType(1);
10015   EVT ResEltVT = ResVT.getVectorElementType();
10016   EVT OvEltVT = OvVT.getVectorElementType();
10017   SDLoc dl(N);
10018 
10019   // If ResNE is 0, fully unroll the vector op.
10020   unsigned NE = ResVT.getVectorNumElements();
10021   if (ResNE == 0)
10022     ResNE = NE;
10023   else if (NE > ResNE)
10024     NE = ResNE;
10025 
10026   SmallVector<SDValue, 8> LHSScalars;
10027   SmallVector<SDValue, 8> RHSScalars;
10028   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10029   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10030 
10031   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10032   SDVTList VTs = getVTList(ResEltVT, SVT);
10033   SmallVector<SDValue, 8> ResScalars;
10034   SmallVector<SDValue, 8> OvScalars;
10035   for (unsigned i = 0; i < NE; ++i) {
10036     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10037     SDValue Ov =
10038         getSelect(dl, OvEltVT, Res.getValue(1),
10039                   getBoolConstant(true, dl, OvEltVT, ResVT),
10040                   getConstant(0, dl, OvEltVT));
10041 
10042     ResScalars.push_back(Res);
10043     OvScalars.push_back(Ov);
10044   }
10045 
10046   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10047   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10048 
10049   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10050   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10051   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10052                         getBuildVector(NewOvVT, dl, OvScalars));
10053 }
10054 
10055 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10056                                                   LoadSDNode *Base,
10057                                                   unsigned Bytes,
10058                                                   int Dist) const {
10059   if (LD->isVolatile() || Base->isVolatile())
10060     return false;
10061   // TODO: probably too restrictive for atomics, revisit
10062   if (!LD->isSimple())
10063     return false;
10064   if (LD->isIndexed() || Base->isIndexed())
10065     return false;
10066   if (LD->getChain() != Base->getChain())
10067     return false;
10068   EVT VT = LD->getValueType(0);
10069   if (VT.getSizeInBits() / 8 != Bytes)
10070     return false;
10071 
10072   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10073   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10074 
10075   int64_t Offset = 0;
10076   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10077     return (Dist * Bytes == Offset);
10078   return false;
10079 }
10080 
10081 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10082 /// if it cannot be inferred.
10083 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10084   // If this is a GlobalAddress + cst, return the alignment.
10085   const GlobalValue *GV = nullptr;
10086   int64_t GVOffset = 0;
10087   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10088     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10089     KnownBits Known(PtrWidth);
10090     llvm::computeKnownBits(GV, Known, getDataLayout());
10091     unsigned AlignBits = Known.countMinTrailingZeros();
10092     if (AlignBits)
10093       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10094   }
10095 
10096   // If this is a direct reference to a stack slot, use information about the
10097   // stack slot's alignment.
10098   int FrameIdx = INT_MIN;
10099   int64_t FrameOffset = 0;
10100   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10101     FrameIdx = FI->getIndex();
10102   } else if (isBaseWithConstantOffset(Ptr) &&
10103              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10104     // Handle FI+Cst
10105     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10106     FrameOffset = Ptr.getConstantOperandVal(1);
10107   }
10108 
10109   if (FrameIdx != INT_MIN) {
10110     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10111     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10112   }
10113 
10114   return None;
10115 }
10116 
10117 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10118 /// which is split (or expanded) into two not necessarily identical pieces.
10119 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10120   // Currently all types are split in half.
10121   EVT LoVT, HiVT;
10122   if (!VT.isVector())
10123     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10124   else
10125     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10126 
10127   return std::make_pair(LoVT, HiVT);
10128 }
10129 
10130 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10131 /// type, dependent on an enveloping VT that has been split into two identical
10132 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10133 std::pair<EVT, EVT>
10134 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10135                                        bool *HiIsEmpty) const {
10136   EVT EltTp = VT.getVectorElementType();
10137   // Examples:
10138   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10139   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10140   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10141   //   etc.
10142   ElementCount VTNumElts = VT.getVectorElementCount();
10143   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10144   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10145          "Mixing fixed width and scalable vectors when enveloping a type");
10146   EVT LoVT, HiVT;
10147   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10148     LoVT = EnvVT;
10149     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10150     *HiIsEmpty = false;
10151   } else {
10152     // Flag that hi type has zero storage size, but return split envelop type
10153     // (this would be easier if vector types with zero elements were allowed).
10154     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10155     HiVT = EnvVT;
10156     *HiIsEmpty = true;
10157   }
10158   return std::make_pair(LoVT, HiVT);
10159 }
10160 
10161 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10162 /// low/high part.
10163 std::pair<SDValue, SDValue>
10164 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10165                           const EVT &HiVT) {
10166   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10167          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10168          "Splitting vector with an invalid mixture of fixed and scalable "
10169          "vector types");
10170   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10171              N.getValueType().getVectorMinNumElements() &&
10172          "More vector elements requested than available!");
10173   SDValue Lo, Hi;
10174   Lo =
10175       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10176   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10177   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10178   // IDX with the runtime scaling factor of the result vector type. For
10179   // fixed-width result vectors, that runtime scaling factor is 1.
10180   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10181                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10182   return std::make_pair(Lo, Hi);
10183 }
10184 
10185 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10186 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10187   EVT VT = N.getValueType();
10188   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10189                                 NextPowerOf2(VT.getVectorNumElements()));
10190   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10191                  getVectorIdxConstant(0, DL));
10192 }
10193 
10194 void SelectionDAG::ExtractVectorElements(SDValue Op,
10195                                          SmallVectorImpl<SDValue> &Args,
10196                                          unsigned Start, unsigned Count,
10197                                          EVT EltVT) {
10198   EVT VT = Op.getValueType();
10199   if (Count == 0)
10200     Count = VT.getVectorNumElements();
10201   if (EltVT == EVT())
10202     EltVT = VT.getVectorElementType();
10203   SDLoc SL(Op);
10204   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10205     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10206                            getVectorIdxConstant(i, SL)));
10207   }
10208 }
10209 
10210 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10211 unsigned GlobalAddressSDNode::getAddressSpace() const {
10212   return getGlobal()->getType()->getAddressSpace();
10213 }
10214 
10215 Type *ConstantPoolSDNode::getType() const {
10216   if (isMachineConstantPoolEntry())
10217     return Val.MachineCPVal->getType();
10218   return Val.ConstVal->getType();
10219 }
10220 
10221 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10222                                         unsigned &SplatBitSize,
10223                                         bool &HasAnyUndefs,
10224                                         unsigned MinSplatBits,
10225                                         bool IsBigEndian) const {
10226   EVT VT = getValueType(0);
10227   assert(VT.isVector() && "Expected a vector type");
10228   unsigned VecWidth = VT.getSizeInBits();
10229   if (MinSplatBits > VecWidth)
10230     return false;
10231 
10232   // FIXME: The widths are based on this node's type, but build vectors can
10233   // truncate their operands.
10234   SplatValue = APInt(VecWidth, 0);
10235   SplatUndef = APInt(VecWidth, 0);
10236 
10237   // Get the bits. Bits with undefined values (when the corresponding element
10238   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10239   // in SplatValue. If any of the values are not constant, give up and return
10240   // false.
10241   unsigned int NumOps = getNumOperands();
10242   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10243   unsigned EltWidth = VT.getScalarSizeInBits();
10244 
10245   for (unsigned j = 0; j < NumOps; ++j) {
10246     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10247     SDValue OpVal = getOperand(i);
10248     unsigned BitPos = j * EltWidth;
10249 
10250     if (OpVal.isUndef())
10251       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10252     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10253       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10254     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10255       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10256     else
10257       return false;
10258   }
10259 
10260   // The build_vector is all constants or undefs. Find the smallest element
10261   // size that splats the vector.
10262   HasAnyUndefs = (SplatUndef != 0);
10263 
10264   // FIXME: This does not work for vectors with elements less than 8 bits.
10265   while (VecWidth > 8) {
10266     unsigned HalfSize = VecWidth / 2;
10267     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
10268     APInt LowValue = SplatValue.trunc(HalfSize);
10269     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
10270     APInt LowUndef = SplatUndef.trunc(HalfSize);
10271 
10272     // If the two halves do not match (ignoring undef bits), stop here.
10273     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10274         MinSplatBits > HalfSize)
10275       break;
10276 
10277     SplatValue = HighValue | LowValue;
10278     SplatUndef = HighUndef & LowUndef;
10279 
10280     VecWidth = HalfSize;
10281   }
10282 
10283   SplatBitSize = VecWidth;
10284   return true;
10285 }
10286 
10287 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10288                                          BitVector *UndefElements) const {
10289   unsigned NumOps = getNumOperands();
10290   if (UndefElements) {
10291     UndefElements->clear();
10292     UndefElements->resize(NumOps);
10293   }
10294   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10295   if (!DemandedElts)
10296     return SDValue();
10297   SDValue Splatted;
10298   for (unsigned i = 0; i != NumOps; ++i) {
10299     if (!DemandedElts[i])
10300       continue;
10301     SDValue Op = getOperand(i);
10302     if (Op.isUndef()) {
10303       if (UndefElements)
10304         (*UndefElements)[i] = true;
10305     } else if (!Splatted) {
10306       Splatted = Op;
10307     } else if (Splatted != Op) {
10308       return SDValue();
10309     }
10310   }
10311 
10312   if (!Splatted) {
10313     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10314     assert(getOperand(FirstDemandedIdx).isUndef() &&
10315            "Can only have a splat without a constant for all undefs.");
10316     return getOperand(FirstDemandedIdx);
10317   }
10318 
10319   return Splatted;
10320 }
10321 
10322 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10323   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10324   return getSplatValue(DemandedElts, UndefElements);
10325 }
10326 
10327 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10328                                             SmallVectorImpl<SDValue> &Sequence,
10329                                             BitVector *UndefElements) const {
10330   unsigned NumOps = getNumOperands();
10331   Sequence.clear();
10332   if (UndefElements) {
10333     UndefElements->clear();
10334     UndefElements->resize(NumOps);
10335   }
10336   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10337   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10338     return false;
10339 
10340   // Set the undefs even if we don't find a sequence (like getSplatValue).
10341   if (UndefElements)
10342     for (unsigned I = 0; I != NumOps; ++I)
10343       if (DemandedElts[I] && getOperand(I).isUndef())
10344         (*UndefElements)[I] = true;
10345 
10346   // Iteratively widen the sequence length looking for repetitions.
10347   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10348     Sequence.append(SeqLen, SDValue());
10349     for (unsigned I = 0; I != NumOps; ++I) {
10350       if (!DemandedElts[I])
10351         continue;
10352       SDValue &SeqOp = Sequence[I % SeqLen];
10353       SDValue Op = getOperand(I);
10354       if (Op.isUndef()) {
10355         if (!SeqOp)
10356           SeqOp = Op;
10357         continue;
10358       }
10359       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10360         Sequence.clear();
10361         break;
10362       }
10363       SeqOp = Op;
10364     }
10365     if (!Sequence.empty())
10366       return true;
10367   }
10368 
10369   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10370   return false;
10371 }
10372 
10373 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10374                                             BitVector *UndefElements) const {
10375   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10376   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10377 }
10378 
10379 ConstantSDNode *
10380 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10381                                         BitVector *UndefElements) const {
10382   return dyn_cast_or_null<ConstantSDNode>(
10383       getSplatValue(DemandedElts, UndefElements));
10384 }
10385 
10386 ConstantSDNode *
10387 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10388   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10389 }
10390 
10391 ConstantFPSDNode *
10392 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10393                                           BitVector *UndefElements) const {
10394   return dyn_cast_or_null<ConstantFPSDNode>(
10395       getSplatValue(DemandedElts, UndefElements));
10396 }
10397 
10398 ConstantFPSDNode *
10399 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10400   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10401 }
10402 
10403 int32_t
10404 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10405                                                    uint32_t BitWidth) const {
10406   if (ConstantFPSDNode *CN =
10407           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10408     bool IsExact;
10409     APSInt IntVal(BitWidth);
10410     const APFloat &APF = CN->getValueAPF();
10411     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10412             APFloat::opOK ||
10413         !IsExact)
10414       return -1;
10415 
10416     return IntVal.exactLogBase2();
10417   }
10418   return -1;
10419 }
10420 
10421 bool BuildVectorSDNode::isConstant() const {
10422   for (const SDValue &Op : op_values()) {
10423     unsigned Opc = Op.getOpcode();
10424     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10425       return false;
10426   }
10427   return true;
10428 }
10429 
10430 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10431   // Find the first non-undef value in the shuffle mask.
10432   unsigned i, e;
10433   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10434     /* search */;
10435 
10436   // If all elements are undefined, this shuffle can be considered a splat
10437   // (although it should eventually get simplified away completely).
10438   if (i == e)
10439     return true;
10440 
10441   // Make sure all remaining elements are either undef or the same as the first
10442   // non-undef value.
10443   for (int Idx = Mask[i]; i != e; ++i)
10444     if (Mask[i] >= 0 && Mask[i] != Idx)
10445       return false;
10446   return true;
10447 }
10448 
10449 // Returns the SDNode if it is a constant integer BuildVector
10450 // or constant integer.
10451 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10452   if (isa<ConstantSDNode>(N))
10453     return N.getNode();
10454   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10455     return N.getNode();
10456   // Treat a GlobalAddress supporting constant offset folding as a
10457   // constant integer.
10458   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10459     if (GA->getOpcode() == ISD::GlobalAddress &&
10460         TLI->isOffsetFoldingLegal(GA))
10461       return GA;
10462   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10463       isa<ConstantSDNode>(N.getOperand(0)))
10464     return N.getNode();
10465   return nullptr;
10466 }
10467 
10468 // Returns the SDNode if it is a constant float BuildVector
10469 // or constant float.
10470 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10471   if (isa<ConstantFPSDNode>(N))
10472     return N.getNode();
10473 
10474   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10475     return N.getNode();
10476 
10477   return nullptr;
10478 }
10479 
10480 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10481   assert(!Node->OperandList && "Node already has operands");
10482   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10483          "too many operands to fit into SDNode");
10484   SDUse *Ops = OperandRecycler.allocate(
10485       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10486 
10487   bool IsDivergent = false;
10488   for (unsigned I = 0; I != Vals.size(); ++I) {
10489     Ops[I].setUser(Node);
10490     Ops[I].setInitial(Vals[I]);
10491     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10492       IsDivergent |= Ops[I].getNode()->isDivergent();
10493   }
10494   Node->NumOperands = Vals.size();
10495   Node->OperandList = Ops;
10496   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10497     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10498     Node->SDNodeBits.IsDivergent = IsDivergent;
10499   }
10500   checkForCycles(Node);
10501 }
10502 
10503 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10504                                      SmallVectorImpl<SDValue> &Vals) {
10505   size_t Limit = SDNode::getMaxNumOperands();
10506   while (Vals.size() > Limit) {
10507     unsigned SliceIdx = Vals.size() - Limit;
10508     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10509     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10510     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10511     Vals.emplace_back(NewTF);
10512   }
10513   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10514 }
10515 
10516 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10517                                         EVT VT, SDNodeFlags Flags) {
10518   switch (Opcode) {
10519   default:
10520     return SDValue();
10521   case ISD::ADD:
10522   case ISD::OR:
10523   case ISD::XOR:
10524   case ISD::UMAX:
10525     return getConstant(0, DL, VT);
10526   case ISD::MUL:
10527     return getConstant(1, DL, VT);
10528   case ISD::AND:
10529   case ISD::UMIN:
10530     return getAllOnesConstant(DL, VT);
10531   case ISD::SMAX:
10532     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10533   case ISD::SMIN:
10534     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10535   case ISD::FADD:
10536     return getConstantFP(-0.0, DL, VT);
10537   case ISD::FMUL:
10538     return getConstantFP(1.0, DL, VT);
10539   case ISD::FMINNUM:
10540   case ISD::FMAXNUM: {
10541     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10542     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10543     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10544                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10545                         APFloat::getLargest(Semantics);
10546     if (Opcode == ISD::FMAXNUM)
10547       NeutralAF.changeSign();
10548 
10549     return getConstantFP(NeutralAF, DL, VT);
10550   }
10551   }
10552 }
10553 
10554 #ifndef NDEBUG
10555 static void checkForCyclesHelper(const SDNode *N,
10556                                  SmallPtrSetImpl<const SDNode*> &Visited,
10557                                  SmallPtrSetImpl<const SDNode*> &Checked,
10558                                  const llvm::SelectionDAG *DAG) {
10559   // If this node has already been checked, don't check it again.
10560   if (Checked.count(N))
10561     return;
10562 
10563   // If a node has already been visited on this depth-first walk, reject it as
10564   // a cycle.
10565   if (!Visited.insert(N).second) {
10566     errs() << "Detected cycle in SelectionDAG\n";
10567     dbgs() << "Offending node:\n";
10568     N->dumprFull(DAG); dbgs() << "\n";
10569     abort();
10570   }
10571 
10572   for (const SDValue &Op : N->op_values())
10573     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10574 
10575   Checked.insert(N);
10576   Visited.erase(N);
10577 }
10578 #endif
10579 
10580 void llvm::checkForCycles(const llvm::SDNode *N,
10581                           const llvm::SelectionDAG *DAG,
10582                           bool force) {
10583 #ifndef NDEBUG
10584   bool check = force;
10585 #ifdef EXPENSIVE_CHECKS
10586   check = true;
10587 #endif  // EXPENSIVE_CHECKS
10588   if (check) {
10589     assert(N && "Checking nonexistent SDNode");
10590     SmallPtrSet<const SDNode*, 32> visited;
10591     SmallPtrSet<const SDNode*, 32> checked;
10592     checkForCyclesHelper(N, visited, checked, DAG);
10593   }
10594 #endif  // !NDEBUG
10595 }
10596 
10597 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10598   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10599 }
10600