1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 
89 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
90 
91 #define DEBUG_TYPE "selectiondag"
92 
93 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
94        cl::Hidden, cl::init(true),
95        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
96 
97 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
98        cl::desc("Number limit for gluing ld/st of memcpy."),
99        cl::Hidden, cl::init(0));
100 
101 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
102   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                              ConstantFPSDNode Class
107 //===----------------------------------------------------------------------===//
108 
109 /// isExactlyValue - We don't rely on operator== working on double values, as
110 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
111 /// As such, this method can be used to do an exact bit-for-bit comparison of
112 /// two floating point values.
113 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
114   return getValueAPF().bitwiseIsEqual(V);
115 }
116 
117 bool ConstantFPSDNode::isValueValidForType(EVT VT,
118                                            const APFloat& Val) {
119   assert(VT.isFloatingPoint() && "Can only convert between FP types");
120 
121   // convert modifies in place, so make a copy.
122   APFloat Val2 = APFloat(Val);
123   bool losesInfo;
124   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
125                       APFloat::rmNearestTiesToEven,
126                       &losesInfo);
127   return !losesInfo;
128 }
129 
130 //===----------------------------------------------------------------------===//
131 //                              ISD Namespace
132 //===----------------------------------------------------------------------===//
133 
134 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
135   auto *BV = dyn_cast<BuildVectorSDNode>(N);
136   if (!BV)
137     return false;
138 
139   APInt SplatUndef;
140   unsigned SplatBitSize;
141   bool HasUndefs;
142   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
143   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
144                              EltSize) &&
145          EltSize == SplatBitSize;
146 }
147 
148 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
149 // specializations of the more general isConstantSplatVector()?
150 
151 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
152   // Look through a bit convert.
153   while (N->getOpcode() == ISD::BITCAST)
154     N = N->getOperand(0).getNode();
155 
156   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157 
158   unsigned i = 0, e = N->getNumOperands();
159 
160   // Skip over all of the undef values.
161   while (i != e && N->getOperand(i).isUndef())
162     ++i;
163 
164   // Do not accept an all-undef vector.
165   if (i == e) return false;
166 
167   // Do not accept build_vectors that aren't all constants or which have non-~0
168   // elements. We have to be a bit careful here, as the type of the constant
169   // may not be the same as the type of the vector elements due to type
170   // legalization (the elements are promoted to a legal type for the target and
171   // a vector of a type may be legal when the base element type is not).
172   // We only want to check enough bits to cover the vector elements, because
173   // we care if the resultant vector is all ones, not whether the individual
174   // constants are.
175   SDValue NotZero = N->getOperand(i);
176   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
177   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
178     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
179       return false;
180   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
181     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
182       return false;
183   } else
184     return false;
185 
186   // Okay, we have at least one ~0 value, check to see if the rest match or are
187   // undefs. Even with the above element type twiddling, this should be OK, as
188   // the same type legalization should have applied to all the elements.
189   for (++i; i != e; ++i)
190     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
191       return false;
192   return true;
193 }
194 
195 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
196   // Look through a bit convert.
197   while (N->getOpcode() == ISD::BITCAST)
198     N = N->getOperand(0).getNode();
199 
200   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
201 
202   bool IsAllUndef = true;
203   for (const SDValue &Op : N->op_values()) {
204     if (Op.isUndef())
205       continue;
206     IsAllUndef = false;
207     // Do not accept build_vectors that aren't all constants or which have non-0
208     // elements. We have to be a bit careful here, as the type of the constant
209     // may not be the same as the type of the vector elements due to type
210     // legalization (the elements are promoted to a legal type for the target
211     // and a vector of a type may be legal when the base element type is not).
212     // We only want to check enough bits to cover the vector elements, because
213     // we care if the resultant vector is all zeros, not whether the individual
214     // constants are.
215     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
216     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
217       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
218         return false;
219     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
220       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
221         return false;
222     } else
223       return false;
224   }
225 
226   // Do not accept an all-undef vector.
227   if (IsAllUndef)
228     return false;
229   return true;
230 }
231 
232 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
233   if (N->getOpcode() != ISD::BUILD_VECTOR)
234     return false;
235 
236   for (const SDValue &Op : N->op_values()) {
237     if (Op.isUndef())
238       continue;
239     if (!isa<ConstantSDNode>(Op))
240       return false;
241   }
242   return true;
243 }
244 
245 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
246   if (N->getOpcode() != ISD::BUILD_VECTOR)
247     return false;
248 
249   for (const SDValue &Op : N->op_values()) {
250     if (Op.isUndef())
251       continue;
252     if (!isa<ConstantFPSDNode>(Op))
253       return false;
254   }
255   return true;
256 }
257 
258 bool ISD::allOperandsUndef(const SDNode *N) {
259   // Return false if the node has no operands.
260   // This is "logically inconsistent" with the definition of "all" but
261   // is probably the desired behavior.
262   if (N->getNumOperands() == 0)
263     return false;
264 
265   for (const SDValue &Op : N->op_values())
266     if (!Op.isUndef())
267       return false;
268 
269   return true;
270 }
271 
272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs) {
302   if (LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (LHSOp.getValueType() != SVT ||
326         LHSOp.getValueType() != RHSOp.getValueType())
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
359 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
360   unsigned Operation = Op;
361   if (isInteger)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
372 /// For an integer comparison, return 1 if the comparison is a signed operation
373 /// and 2 if the result is an unsigned comparison. Return zero if the operation
374 /// does not depend on the sign of the input (setne and seteq).
375 static int isSignedOp(ISD::CondCode Opcode) {
376   switch (Opcode) {
377   default: llvm_unreachable("Illegal integer setcc operation!");
378   case ISD::SETEQ:
379   case ISD::SETNE: return 0;
380   case ISD::SETLT:
381   case ISD::SETLE:
382   case ISD::SETGT:
383   case ISD::SETGE: return 1;
384   case ISD::SETULT:
385   case ISD::SETULE:
386   case ISD::SETUGT:
387   case ISD::SETUGE: return 2;
388   }
389 }
390 
391 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
392                                        bool IsInteger) {
393   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
394     // Cannot fold a signed integer setcc with an unsigned integer setcc.
395     return ISD::SETCC_INVALID;
396 
397   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
398 
399   // If the N and U bits get set, then the resultant comparison DOES suddenly
400   // care about orderedness, and it is true when ordered.
401   if (Op > ISD::SETTRUE2)
402     Op &= ~16;     // Clear the U bit if the N bit is set.
403 
404   // Canonicalize illegal integer setcc's.
405   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
406     Op = ISD::SETNE;
407 
408   return ISD::CondCode(Op);
409 }
410 
411 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
412                                         bool IsInteger) {
413   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
414     // Cannot fold a signed setcc with an unsigned setcc.
415     return ISD::SETCC_INVALID;
416 
417   // Combine all of the condition bits.
418   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
419 
420   // Canonicalize illegal integer setcc's.
421   if (IsInteger) {
422     switch (Result) {
423     default: break;
424     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
425     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
426     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
427     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
428     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
429     }
430   }
431 
432   return Result;
433 }
434 
435 //===----------------------------------------------------------------------===//
436 //                           SDNode Profile Support
437 //===----------------------------------------------------------------------===//
438 
439 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
440 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
441   ID.AddInteger(OpC);
442 }
443 
444 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
445 /// solely with their pointer.
446 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
447   ID.AddPointer(VTList.VTs);
448 }
449 
450 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
451 static void AddNodeIDOperands(FoldingSetNodeID &ID,
452                               ArrayRef<SDValue> Ops) {
453   for (auto& Op : Ops) {
454     ID.AddPointer(Op.getNode());
455     ID.AddInteger(Op.getResNo());
456   }
457 }
458 
459 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
460 static void AddNodeIDOperands(FoldingSetNodeID &ID,
461                               ArrayRef<SDUse> Ops) {
462   for (auto& Op : Ops) {
463     ID.AddPointer(Op.getNode());
464     ID.AddInteger(Op.getResNo());
465   }
466 }
467 
468 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
469                           SDVTList VTList, ArrayRef<SDValue> OpList) {
470   AddNodeIDOpcode(ID, OpC);
471   AddNodeIDValueTypes(ID, VTList);
472   AddNodeIDOperands(ID, OpList);
473 }
474 
475 /// If this is an SDNode with special info, add this info to the NodeID data.
476 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
477   switch (N->getOpcode()) {
478   case ISD::TargetExternalSymbol:
479   case ISD::ExternalSymbol:
480   case ISD::MCSymbol:
481     llvm_unreachable("Should only be used on nodes with operands");
482   default: break;  // Normal nodes don't need extra info.
483   case ISD::TargetConstant:
484   case ISD::Constant: {
485     const ConstantSDNode *C = cast<ConstantSDNode>(N);
486     ID.AddPointer(C->getConstantIntValue());
487     ID.AddBoolean(C->isOpaque());
488     break;
489   }
490   case ISD::TargetConstantFP:
491   case ISD::ConstantFP:
492     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
493     break;
494   case ISD::TargetGlobalAddress:
495   case ISD::GlobalAddress:
496   case ISD::TargetGlobalTLSAddress:
497   case ISD::GlobalTLSAddress: {
498     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
499     ID.AddPointer(GA->getGlobal());
500     ID.AddInteger(GA->getOffset());
501     ID.AddInteger(GA->getTargetFlags());
502     break;
503   }
504   case ISD::BasicBlock:
505     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
506     break;
507   case ISD::Register:
508     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
509     break;
510   case ISD::RegisterMask:
511     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
512     break;
513   case ISD::SRCVALUE:
514     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
515     break;
516   case ISD::FrameIndex:
517   case ISD::TargetFrameIndex:
518     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
519     break;
520   case ISD::JumpTable:
521   case ISD::TargetJumpTable:
522     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
523     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
524     break;
525   case ISD::ConstantPool:
526   case ISD::TargetConstantPool: {
527     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
528     ID.AddInteger(CP->getAlignment());
529     ID.AddInteger(CP->getOffset());
530     if (CP->isMachineConstantPoolEntry())
531       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
532     else
533       ID.AddPointer(CP->getConstVal());
534     ID.AddInteger(CP->getTargetFlags());
535     break;
536   }
537   case ISD::TargetIndex: {
538     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
539     ID.AddInteger(TI->getIndex());
540     ID.AddInteger(TI->getOffset());
541     ID.AddInteger(TI->getTargetFlags());
542     break;
543   }
544   case ISD::LOAD: {
545     const LoadSDNode *LD = cast<LoadSDNode>(N);
546     ID.AddInteger(LD->getMemoryVT().getRawBits());
547     ID.AddInteger(LD->getRawSubclassData());
548     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
549     break;
550   }
551   case ISD::STORE: {
552     const StoreSDNode *ST = cast<StoreSDNode>(N);
553     ID.AddInteger(ST->getMemoryVT().getRawBits());
554     ID.AddInteger(ST->getRawSubclassData());
555     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
556     break;
557   }
558   case ISD::MLOAD: {
559     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
560     ID.AddInteger(MLD->getMemoryVT().getRawBits());
561     ID.AddInteger(MLD->getRawSubclassData());
562     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
563     break;
564   }
565   case ISD::MSTORE: {
566     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
567     ID.AddInteger(MST->getMemoryVT().getRawBits());
568     ID.AddInteger(MST->getRawSubclassData());
569     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
570     break;
571   }
572   case ISD::MGATHER: {
573     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
574     ID.AddInteger(MG->getMemoryVT().getRawBits());
575     ID.AddInteger(MG->getRawSubclassData());
576     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
577     break;
578   }
579   case ISD::MSCATTER: {
580     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
581     ID.AddInteger(MS->getMemoryVT().getRawBits());
582     ID.AddInteger(MS->getRawSubclassData());
583     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
584     break;
585   }
586   case ISD::ATOMIC_CMP_SWAP:
587   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
588   case ISD::ATOMIC_SWAP:
589   case ISD::ATOMIC_LOAD_ADD:
590   case ISD::ATOMIC_LOAD_SUB:
591   case ISD::ATOMIC_LOAD_AND:
592   case ISD::ATOMIC_LOAD_CLR:
593   case ISD::ATOMIC_LOAD_OR:
594   case ISD::ATOMIC_LOAD_XOR:
595   case ISD::ATOMIC_LOAD_NAND:
596   case ISD::ATOMIC_LOAD_MIN:
597   case ISD::ATOMIC_LOAD_MAX:
598   case ISD::ATOMIC_LOAD_UMIN:
599   case ISD::ATOMIC_LOAD_UMAX:
600   case ISD::ATOMIC_LOAD:
601   case ISD::ATOMIC_STORE: {
602     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
603     ID.AddInteger(AT->getMemoryVT().getRawBits());
604     ID.AddInteger(AT->getRawSubclassData());
605     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
606     break;
607   }
608   case ISD::PREFETCH: {
609     const MemSDNode *PF = cast<MemSDNode>(N);
610     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
611     break;
612   }
613   case ISD::VECTOR_SHUFFLE: {
614     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
615     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
616          i != e; ++i)
617       ID.AddInteger(SVN->getMaskElt(i));
618     break;
619   }
620   case ISD::TargetBlockAddress:
621   case ISD::BlockAddress: {
622     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
623     ID.AddPointer(BA->getBlockAddress());
624     ID.AddInteger(BA->getOffset());
625     ID.AddInteger(BA->getTargetFlags());
626     break;
627   }
628   } // end switch (N->getOpcode())
629 
630   // Target specific memory nodes could also have address spaces to check.
631   if (N->isTargetMemoryOpcode())
632     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
633 }
634 
635 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
636 /// data.
637 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
638   AddNodeIDOpcode(ID, N->getOpcode());
639   // Add the return value info.
640   AddNodeIDValueTypes(ID, N->getVTList());
641   // Add the operand info.
642   AddNodeIDOperands(ID, N->ops());
643 
644   // Handle SDNode leafs with special info.
645   AddNodeIDCustom(ID, N);
646 }
647 
648 //===----------------------------------------------------------------------===//
649 //                              SelectionDAG Class
650 //===----------------------------------------------------------------------===//
651 
652 /// doNotCSE - Return true if CSE should not be performed for this node.
653 static bool doNotCSE(SDNode *N) {
654   if (N->getValueType(0) == MVT::Glue)
655     return true; // Never CSE anything that produces a flag.
656 
657   switch (N->getOpcode()) {
658   default: break;
659   case ISD::HANDLENODE:
660   case ISD::EH_LABEL:
661     return true;   // Never CSE these nodes.
662   }
663 
664   // Check that remaining values produced are not flags.
665   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
666     if (N->getValueType(i) == MVT::Glue)
667       return true; // Never CSE anything that produces a flag.
668 
669   return false;
670 }
671 
672 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
673 /// SelectionDAG.
674 void SelectionDAG::RemoveDeadNodes() {
675   // Create a dummy node (which is not added to allnodes), that adds a reference
676   // to the root node, preventing it from being deleted.
677   HandleSDNode Dummy(getRoot());
678 
679   SmallVector<SDNode*, 128> DeadNodes;
680 
681   // Add all obviously-dead nodes to the DeadNodes worklist.
682   for (SDNode &Node : allnodes())
683     if (Node.use_empty())
684       DeadNodes.push_back(&Node);
685 
686   RemoveDeadNodes(DeadNodes);
687 
688   // If the root changed (e.g. it was a dead load, update the root).
689   setRoot(Dummy.getValue());
690 }
691 
692 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
693 /// given list, and any nodes that become unreachable as a result.
694 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
695 
696   // Process the worklist, deleting the nodes and adding their uses to the
697   // worklist.
698   while (!DeadNodes.empty()) {
699     SDNode *N = DeadNodes.pop_back_val();
700     // Skip to next node if we've already managed to delete the node. This could
701     // happen if replacing a node causes a node previously added to the node to
702     // be deleted.
703     if (N->getOpcode() == ISD::DELETED_NODE)
704       continue;
705 
706     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
707       DUL->NodeDeleted(N, nullptr);
708 
709     // Take the node out of the appropriate CSE map.
710     RemoveNodeFromCSEMaps(N);
711 
712     // Next, brutally remove the operand list.  This is safe to do, as there are
713     // no cycles in the graph.
714     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
715       SDUse &Use = *I++;
716       SDNode *Operand = Use.getNode();
717       Use.set(SDValue());
718 
719       // Now that we removed this operand, see if there are no uses of it left.
720       if (Operand->use_empty())
721         DeadNodes.push_back(Operand);
722     }
723 
724     DeallocateNode(N);
725   }
726 }
727 
728 void SelectionDAG::RemoveDeadNode(SDNode *N){
729   SmallVector<SDNode*, 16> DeadNodes(1, N);
730 
731   // Create a dummy node that adds a reference to the root node, preventing
732   // it from being deleted.  (This matters if the root is an operand of the
733   // dead node.)
734   HandleSDNode Dummy(getRoot());
735 
736   RemoveDeadNodes(DeadNodes);
737 }
738 
739 void SelectionDAG::DeleteNode(SDNode *N) {
740   // First take this out of the appropriate CSE map.
741   RemoveNodeFromCSEMaps(N);
742 
743   // Finally, remove uses due to operands of this node, remove from the
744   // AllNodes list, and delete the node.
745   DeleteNodeNotInCSEMaps(N);
746 }
747 
748 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
749   assert(N->getIterator() != AllNodes.begin() &&
750          "Cannot delete the entry node!");
751   assert(N->use_empty() && "Cannot delete a node that is not dead!");
752 
753   // Drop all of the operands and decrement used node's use counts.
754   N->DropOperands();
755 
756   DeallocateNode(N);
757 }
758 
759 void SDDbgInfo::erase(const SDNode *Node) {
760   DbgValMapType::iterator I = DbgValMap.find(Node);
761   if (I == DbgValMap.end())
762     return;
763   for (auto &Val: I->second)
764     Val->setIsInvalidated();
765   DbgValMap.erase(I);
766 }
767 
768 void SelectionDAG::DeallocateNode(SDNode *N) {
769   // If we have operands, deallocate them.
770   removeOperands(N);
771 
772   NodeAllocator.Deallocate(AllNodes.remove(N));
773 
774   // Set the opcode to DELETED_NODE to help catch bugs when node
775   // memory is reallocated.
776   // FIXME: There are places in SDag that have grown a dependency on the opcode
777   // value in the released node.
778   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
779   N->NodeType = ISD::DELETED_NODE;
780 
781   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
782   // them and forget about that node.
783   DbgInfo->erase(N);
784 }
785 
786 #ifndef NDEBUG
787 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
788 static void VerifySDNode(SDNode *N) {
789   switch (N->getOpcode()) {
790   default:
791     break;
792   case ISD::BUILD_PAIR: {
793     EVT VT = N->getValueType(0);
794     assert(N->getNumValues() == 1 && "Too many results!");
795     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
796            "Wrong return type!");
797     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
798     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
799            "Mismatched operand types!");
800     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
801            "Wrong operand type!");
802     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
803            "Wrong return type size");
804     break;
805   }
806   case ISD::BUILD_VECTOR: {
807     assert(N->getNumValues() == 1 && "Too many results!");
808     assert(N->getValueType(0).isVector() && "Wrong return type!");
809     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
810            "Wrong number of operands!");
811     EVT EltVT = N->getValueType(0).getVectorElementType();
812     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
813       assert((I->getValueType() == EltVT ||
814              (EltVT.isInteger() && I->getValueType().isInteger() &&
815               EltVT.bitsLE(I->getValueType()))) &&
816             "Wrong operand type!");
817       assert(I->getValueType() == N->getOperand(0).getValueType() &&
818              "Operands must all have the same type");
819     }
820     break;
821   }
822   }
823 }
824 #endif // NDEBUG
825 
826 /// Insert a newly allocated node into the DAG.
827 ///
828 /// Handles insertion into the all nodes list and CSE map, as well as
829 /// verification and other common operations when a new node is allocated.
830 void SelectionDAG::InsertNode(SDNode *N) {
831   AllNodes.push_back(N);
832 #ifndef NDEBUG
833   N->PersistentId = NextPersistentId++;
834   VerifySDNode(N);
835 #endif
836 }
837 
838 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
839 /// correspond to it.  This is useful when we're about to delete or repurpose
840 /// the node.  We don't want future request for structurally identical nodes
841 /// to return N anymore.
842 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
843   bool Erased = false;
844   switch (N->getOpcode()) {
845   case ISD::HANDLENODE: return false;  // noop.
846   case ISD::CONDCODE:
847     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
848            "Cond code doesn't exist!");
849     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
850     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
851     break;
852   case ISD::ExternalSymbol:
853     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
854     break;
855   case ISD::TargetExternalSymbol: {
856     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
857     Erased = TargetExternalSymbols.erase(
858                std::pair<std::string,unsigned char>(ESN->getSymbol(),
859                                                     ESN->getTargetFlags()));
860     break;
861   }
862   case ISD::MCSymbol: {
863     auto *MCSN = cast<MCSymbolSDNode>(N);
864     Erased = MCSymbols.erase(MCSN->getMCSymbol());
865     break;
866   }
867   case ISD::VALUETYPE: {
868     EVT VT = cast<VTSDNode>(N)->getVT();
869     if (VT.isExtended()) {
870       Erased = ExtendedValueTypeNodes.erase(VT);
871     } else {
872       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
873       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
874     }
875     break;
876   }
877   default:
878     // Remove it from the CSE Map.
879     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
880     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
881     Erased = CSEMap.RemoveNode(N);
882     break;
883   }
884 #ifndef NDEBUG
885   // Verify that the node was actually in one of the CSE maps, unless it has a
886   // flag result (which cannot be CSE'd) or is one of the special cases that are
887   // not subject to CSE.
888   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
889       !N->isMachineOpcode() && !doNotCSE(N)) {
890     N->dump(this);
891     dbgs() << "\n";
892     llvm_unreachable("Node is not in map!");
893   }
894 #endif
895   return Erased;
896 }
897 
898 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
899 /// maps and modified in place. Add it back to the CSE maps, unless an identical
900 /// node already exists, in which case transfer all its users to the existing
901 /// node. This transfer can potentially trigger recursive merging.
902 void
903 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
904   // For node types that aren't CSE'd, just act as if no identical node
905   // already exists.
906   if (!doNotCSE(N)) {
907     SDNode *Existing = CSEMap.GetOrInsertNode(N);
908     if (Existing != N) {
909       // If there was already an existing matching node, use ReplaceAllUsesWith
910       // to replace the dead one with the existing one.  This can cause
911       // recursive merging of other unrelated nodes down the line.
912       ReplaceAllUsesWith(N, Existing);
913 
914       // N is now dead. Inform the listeners and delete it.
915       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
916         DUL->NodeDeleted(N, Existing);
917       DeleteNodeNotInCSEMaps(N);
918       return;
919     }
920   }
921 
922   // If the node doesn't already exist, we updated it.  Inform listeners.
923   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
924     DUL->NodeUpdated(N);
925 }
926 
927 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
928 /// were replaced with those specified.  If this node is never memoized,
929 /// return null, otherwise return a pointer to the slot it would take.  If a
930 /// node already exists with these operands, the slot will be non-null.
931 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
932                                            void *&InsertPos) {
933   if (doNotCSE(N))
934     return nullptr;
935 
936   SDValue Ops[] = { Op };
937   FoldingSetNodeID ID;
938   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
939   AddNodeIDCustom(ID, N);
940   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
941   if (Node)
942     Node->intersectFlagsWith(N->getFlags());
943   return Node;
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
951                                            SDValue Op1, SDValue Op2,
952                                            void *&InsertPos) {
953   if (doNotCSE(N))
954     return nullptr;
955 
956   SDValue Ops[] = { Op1, Op2 };
957   FoldingSetNodeID ID;
958   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
959   AddNodeIDCustom(ID, N);
960   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
961   if (Node)
962     Node->intersectFlagsWith(N->getFlags());
963   return Node;
964 }
965 
966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
967 /// were replaced with those specified.  If this node is never memoized,
968 /// return null, otherwise return a pointer to the slot it would take.  If a
969 /// node already exists with these operands, the slot will be non-null.
970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   FoldingSetNodeID ID;
976   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
977   AddNodeIDCustom(ID, N);
978   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
979   if (Node)
980     Node->intersectFlagsWith(N->getFlags());
981   return Node;
982 }
983 
984 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
985   Type *Ty = VT == MVT::iPTR ?
986                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
987                    VT.getTypeForEVT(*getContext());
988 
989   return getDataLayout().getABITypeAlignment(Ty);
990 }
991 
992 // EntryNode could meaningfully have debug info if we can find it...
993 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
994     : TM(tm), OptLevel(OL),
995       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
996       Root(getEntryNode()) {
997   InsertNode(&EntryNode);
998   DbgInfo = new SDDbgInfo();
999 }
1000 
1001 void SelectionDAG::init(MachineFunction &NewMF,
1002                         OptimizationRemarkEmitter &NewORE,
1003                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1004                         LegacyDivergenceAnalysis * Divergence) {
1005   MF = &NewMF;
1006   SDAGISelPass = PassPtr;
1007   ORE = &NewORE;
1008   TLI = getSubtarget().getTargetLowering();
1009   TSI = getSubtarget().getSelectionDAGInfo();
1010   LibInfo = LibraryInfo;
1011   Context = &MF->getFunction().getContext();
1012   DA = Divergence;
1013 }
1014 
1015 SelectionDAG::~SelectionDAG() {
1016   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1017   allnodes_clear();
1018   OperandRecycler.clear(OperandAllocator);
1019   delete DbgInfo;
1020 }
1021 
1022 void SelectionDAG::allnodes_clear() {
1023   assert(&*AllNodes.begin() == &EntryNode);
1024   AllNodes.remove(AllNodes.begin());
1025   while (!AllNodes.empty())
1026     DeallocateNode(&AllNodes.front());
1027 #ifndef NDEBUG
1028   NextPersistentId = 0;
1029 #endif
1030 }
1031 
1032 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1033                                           void *&InsertPos) {
1034   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1035   if (N) {
1036     switch (N->getOpcode()) {
1037     default: break;
1038     case ISD::Constant:
1039     case ISD::ConstantFP:
1040       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1041                        "debug location.  Use another overload.");
1042     }
1043   }
1044   return N;
1045 }
1046 
1047 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1048                                           const SDLoc &DL, void *&InsertPos) {
1049   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1050   if (N) {
1051     switch (N->getOpcode()) {
1052     case ISD::Constant:
1053     case ISD::ConstantFP:
1054       // Erase debug location from the node if the node is used at several
1055       // different places. Do not propagate one location to all uses as it
1056       // will cause a worse single stepping debugging experience.
1057       if (N->getDebugLoc() != DL.getDebugLoc())
1058         N->setDebugLoc(DebugLoc());
1059       break;
1060     default:
1061       // When the node's point of use is located earlier in the instruction
1062       // sequence than its prior point of use, update its debug info to the
1063       // earlier location.
1064       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1065         N->setDebugLoc(DL.getDebugLoc());
1066       break;
1067     }
1068   }
1069   return N;
1070 }
1071 
1072 void SelectionDAG::clear() {
1073   allnodes_clear();
1074   OperandRecycler.clear(OperandAllocator);
1075   OperandAllocator.Reset();
1076   CSEMap.clear();
1077 
1078   ExtendedValueTypeNodes.clear();
1079   ExternalSymbols.clear();
1080   TargetExternalSymbols.clear();
1081   MCSymbols.clear();
1082   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1083             static_cast<CondCodeSDNode*>(nullptr));
1084   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1085             static_cast<SDNode*>(nullptr));
1086 
1087   EntryNode.UseList = nullptr;
1088   InsertNode(&EntryNode);
1089   Root = getEntryNode();
1090   DbgInfo->clear();
1091 }
1092 
1093 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1094   return VT.bitsGT(Op.getValueType())
1095              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1096              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1097 }
1098 
1099 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1100   return VT.bitsGT(Op.getValueType()) ?
1101     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1102     getNode(ISD::TRUNCATE, DL, VT, Op);
1103 }
1104 
1105 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1106   return VT.bitsGT(Op.getValueType()) ?
1107     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1108     getNode(ISD::TRUNCATE, DL, VT, Op);
1109 }
1110 
1111 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1112   return VT.bitsGT(Op.getValueType()) ?
1113     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1114     getNode(ISD::TRUNCATE, DL, VT, Op);
1115 }
1116 
1117 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1118                                         EVT OpVT) {
1119   if (VT.bitsLE(Op.getValueType()))
1120     return getNode(ISD::TRUNCATE, SL, VT, Op);
1121 
1122   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1123   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1124 }
1125 
1126 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1127   assert(!VT.isVector() &&
1128          "getZeroExtendInReg should use the vector element type instead of "
1129          "the vector type!");
1130   if (Op.getValueType().getScalarType() == VT) return Op;
1131   unsigned BitWidth = Op.getScalarValueSizeInBits();
1132   APInt Imm = APInt::getLowBitsSet(BitWidth,
1133                                    VT.getSizeInBits());
1134   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1135                  getConstant(Imm, DL, Op.getValueType()));
1136 }
1137 
1138 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1139 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1140   EVT EltVT = VT.getScalarType();
1141   SDValue NegOne =
1142     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1143   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1144 }
1145 
1146 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1147   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1148   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1149 }
1150 
1151 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1152                                       EVT OpVT) {
1153   if (!V)
1154     return getConstant(0, DL, VT);
1155 
1156   switch (TLI->getBooleanContents(OpVT)) {
1157   case TargetLowering::ZeroOrOneBooleanContent:
1158   case TargetLowering::UndefinedBooleanContent:
1159     return getConstant(1, DL, VT);
1160   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1161     return getAllOnesConstant(DL, VT);
1162   }
1163   llvm_unreachable("Unexpected boolean content enum!");
1164 }
1165 
1166 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1167                                   bool isT, bool isO) {
1168   EVT EltVT = VT.getScalarType();
1169   assert((EltVT.getSizeInBits() >= 64 ||
1170          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1171          "getConstant with a uint64_t value that doesn't fit in the type!");
1172   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1173 }
1174 
1175 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1176                                   bool isT, bool isO) {
1177   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1178 }
1179 
1180 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1181                                   EVT VT, bool isT, bool isO) {
1182   assert(VT.isInteger() && "Cannot create FP integer constant!");
1183 
1184   EVT EltVT = VT.getScalarType();
1185   const ConstantInt *Elt = &Val;
1186 
1187   // In some cases the vector type is legal but the element type is illegal and
1188   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1189   // inserted value (the type does not need to match the vector element type).
1190   // Any extra bits introduced will be truncated away.
1191   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1192       TargetLowering::TypePromoteInteger) {
1193    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1194    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1195    Elt = ConstantInt::get(*getContext(), NewVal);
1196   }
1197   // In other cases the element type is illegal and needs to be expanded, for
1198   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1199   // the value into n parts and use a vector type with n-times the elements.
1200   // Then bitcast to the type requested.
1201   // Legalizing constants too early makes the DAGCombiner's job harder so we
1202   // only legalize if the DAG tells us we must produce legal types.
1203   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1204            TLI->getTypeAction(*getContext(), EltVT) ==
1205            TargetLowering::TypeExpandInteger) {
1206     const APInt &NewVal = Elt->getValue();
1207     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1208     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1209     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1210     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1211 
1212     // Check the temporary vector is the correct size. If this fails then
1213     // getTypeToTransformTo() probably returned a type whose size (in bits)
1214     // isn't a power-of-2 factor of the requested type size.
1215     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1216 
1217     SmallVector<SDValue, 2> EltParts;
1218     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1219       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1220                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1221                                      ViaEltVT, isT, isO));
1222     }
1223 
1224     // EltParts is currently in little endian order. If we actually want
1225     // big-endian order then reverse it now.
1226     if (getDataLayout().isBigEndian())
1227       std::reverse(EltParts.begin(), EltParts.end());
1228 
1229     // The elements must be reversed when the element order is different
1230     // to the endianness of the elements (because the BITCAST is itself a
1231     // vector shuffle in this situation). However, we do not need any code to
1232     // perform this reversal because getConstant() is producing a vector
1233     // splat.
1234     // This situation occurs in MIPS MSA.
1235 
1236     SmallVector<SDValue, 8> Ops;
1237     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1238       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1239 
1240     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1241     return V;
1242   }
1243 
1244   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1245          "APInt size does not match type size!");
1246   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1247   FoldingSetNodeID ID;
1248   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1249   ID.AddPointer(Elt);
1250   ID.AddBoolean(isO);
1251   void *IP = nullptr;
1252   SDNode *N = nullptr;
1253   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1254     if (!VT.isVector())
1255       return SDValue(N, 0);
1256 
1257   if (!N) {
1258     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1259     CSEMap.InsertNode(N, IP);
1260     InsertNode(N);
1261     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1262   }
1263 
1264   SDValue Result(N, 0);
1265   if (VT.isVector())
1266     Result = getSplatBuildVector(VT, DL, Result);
1267 
1268   return Result;
1269 }
1270 
1271 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1272                                         bool isTarget) {
1273   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1274 }
1275 
1276 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1277                                              const SDLoc &DL, bool LegalTypes) {
1278   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1279   return getConstant(Val, DL, ShiftVT);
1280 }
1281 
1282 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1283                                     bool isTarget) {
1284   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1285 }
1286 
1287 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1288                                     EVT VT, bool isTarget) {
1289   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1290 
1291   EVT EltVT = VT.getScalarType();
1292 
1293   // Do the map lookup using the actual bit pattern for the floating point
1294   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1295   // we don't have issues with SNANs.
1296   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1297   FoldingSetNodeID ID;
1298   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1299   ID.AddPointer(&V);
1300   void *IP = nullptr;
1301   SDNode *N = nullptr;
1302   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1303     if (!VT.isVector())
1304       return SDValue(N, 0);
1305 
1306   if (!N) {
1307     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1308     CSEMap.InsertNode(N, IP);
1309     InsertNode(N);
1310   }
1311 
1312   SDValue Result(N, 0);
1313   if (VT.isVector())
1314     Result = getSplatBuildVector(VT, DL, Result);
1315   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1316   return Result;
1317 }
1318 
1319 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1320                                     bool isTarget) {
1321   EVT EltVT = VT.getScalarType();
1322   if (EltVT == MVT::f32)
1323     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1324   else if (EltVT == MVT::f64)
1325     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1326   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1327            EltVT == MVT::f16) {
1328     bool Ignored;
1329     APFloat APF = APFloat(Val);
1330     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1331                 &Ignored);
1332     return getConstantFP(APF, DL, VT, isTarget);
1333   } else
1334     llvm_unreachable("Unsupported type in getConstantFP");
1335 }
1336 
1337 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1338                                        EVT VT, int64_t Offset, bool isTargetGA,
1339                                        unsigned char TargetFlags) {
1340   assert((TargetFlags == 0 || isTargetGA) &&
1341          "Cannot set target flags on target-independent globals");
1342 
1343   // Truncate (with sign-extension) the offset value to the pointer size.
1344   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1345   if (BitWidth < 64)
1346     Offset = SignExtend64(Offset, BitWidth);
1347 
1348   unsigned Opc;
1349   if (GV->isThreadLocal())
1350     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1351   else
1352     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1353 
1354   FoldingSetNodeID ID;
1355   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1356   ID.AddPointer(GV);
1357   ID.AddInteger(Offset);
1358   ID.AddInteger(TargetFlags);
1359   void *IP = nullptr;
1360   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1361     return SDValue(E, 0);
1362 
1363   auto *N = newSDNode<GlobalAddressSDNode>(
1364       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1365   CSEMap.InsertNode(N, IP);
1366     InsertNode(N);
1367   return SDValue(N, 0);
1368 }
1369 
1370 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1371   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1372   FoldingSetNodeID ID;
1373   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1374   ID.AddInteger(FI);
1375   void *IP = nullptr;
1376   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1377     return SDValue(E, 0);
1378 
1379   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1380   CSEMap.InsertNode(N, IP);
1381   InsertNode(N);
1382   return SDValue(N, 0);
1383 }
1384 
1385 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1386                                    unsigned char TargetFlags) {
1387   assert((TargetFlags == 0 || isTarget) &&
1388          "Cannot set target flags on target-independent jump tables");
1389   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1390   FoldingSetNodeID ID;
1391   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1392   ID.AddInteger(JTI);
1393   ID.AddInteger(TargetFlags);
1394   void *IP = nullptr;
1395   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1396     return SDValue(E, 0);
1397 
1398   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1399   CSEMap.InsertNode(N, IP);
1400   InsertNode(N);
1401   return SDValue(N, 0);
1402 }
1403 
1404 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1405                                       unsigned Alignment, int Offset,
1406                                       bool isTarget,
1407                                       unsigned char TargetFlags) {
1408   assert((TargetFlags == 0 || isTarget) &&
1409          "Cannot set target flags on target-independent globals");
1410   if (Alignment == 0)
1411     Alignment = MF->getFunction().optForSize()
1412                     ? getDataLayout().getABITypeAlignment(C->getType())
1413                     : getDataLayout().getPrefTypeAlignment(C->getType());
1414   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1415   FoldingSetNodeID ID;
1416   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1417   ID.AddInteger(Alignment);
1418   ID.AddInteger(Offset);
1419   ID.AddPointer(C);
1420   ID.AddInteger(TargetFlags);
1421   void *IP = nullptr;
1422   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1423     return SDValue(E, 0);
1424 
1425   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1426                                           TargetFlags);
1427   CSEMap.InsertNode(N, IP);
1428   InsertNode(N);
1429   return SDValue(N, 0);
1430 }
1431 
1432 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1433                                       unsigned Alignment, int Offset,
1434                                       bool isTarget,
1435                                       unsigned char TargetFlags) {
1436   assert((TargetFlags == 0 || isTarget) &&
1437          "Cannot set target flags on target-independent globals");
1438   if (Alignment == 0)
1439     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1440   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1441   FoldingSetNodeID ID;
1442   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1443   ID.AddInteger(Alignment);
1444   ID.AddInteger(Offset);
1445   C->addSelectionDAGCSEId(ID);
1446   ID.AddInteger(TargetFlags);
1447   void *IP = nullptr;
1448   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1449     return SDValue(E, 0);
1450 
1451   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1452                                           TargetFlags);
1453   CSEMap.InsertNode(N, IP);
1454   InsertNode(N);
1455   return SDValue(N, 0);
1456 }
1457 
1458 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1459                                      unsigned char TargetFlags) {
1460   FoldingSetNodeID ID;
1461   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1462   ID.AddInteger(Index);
1463   ID.AddInteger(Offset);
1464   ID.AddInteger(TargetFlags);
1465   void *IP = nullptr;
1466   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1467     return SDValue(E, 0);
1468 
1469   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1470   CSEMap.InsertNode(N, IP);
1471   InsertNode(N);
1472   return SDValue(N, 0);
1473 }
1474 
1475 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1476   FoldingSetNodeID ID;
1477   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1478   ID.AddPointer(MBB);
1479   void *IP = nullptr;
1480   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1481     return SDValue(E, 0);
1482 
1483   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1484   CSEMap.InsertNode(N, IP);
1485   InsertNode(N);
1486   return SDValue(N, 0);
1487 }
1488 
1489 SDValue SelectionDAG::getValueType(EVT VT) {
1490   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1491       ValueTypeNodes.size())
1492     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1493 
1494   SDNode *&N = VT.isExtended() ?
1495     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1496 
1497   if (N) return SDValue(N, 0);
1498   N = newSDNode<VTSDNode>(VT);
1499   InsertNode(N);
1500   return SDValue(N, 0);
1501 }
1502 
1503 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1504   SDNode *&N = ExternalSymbols[Sym];
1505   if (N) return SDValue(N, 0);
1506   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1507   InsertNode(N);
1508   return SDValue(N, 0);
1509 }
1510 
1511 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1512   SDNode *&N = MCSymbols[Sym];
1513   if (N)
1514     return SDValue(N, 0);
1515   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1516   InsertNode(N);
1517   return SDValue(N, 0);
1518 }
1519 
1520 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1521                                               unsigned char TargetFlags) {
1522   SDNode *&N =
1523     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1524                                                                TargetFlags)];
1525   if (N) return SDValue(N, 0);
1526   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1527   InsertNode(N);
1528   return SDValue(N, 0);
1529 }
1530 
1531 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1532   if ((unsigned)Cond >= CondCodeNodes.size())
1533     CondCodeNodes.resize(Cond+1);
1534 
1535   if (!CondCodeNodes[Cond]) {
1536     auto *N = newSDNode<CondCodeSDNode>(Cond);
1537     CondCodeNodes[Cond] = N;
1538     InsertNode(N);
1539   }
1540 
1541   return SDValue(CondCodeNodes[Cond], 0);
1542 }
1543 
1544 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1545 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1546 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1547   std::swap(N1, N2);
1548   ShuffleVectorSDNode::commuteMask(M);
1549 }
1550 
1551 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1552                                        SDValue N2, ArrayRef<int> Mask) {
1553   assert(VT.getVectorNumElements() == Mask.size() &&
1554            "Must have the same number of vector elements as mask elements!");
1555   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1556          "Invalid VECTOR_SHUFFLE");
1557 
1558   // Canonicalize shuffle undef, undef -> undef
1559   if (N1.isUndef() && N2.isUndef())
1560     return getUNDEF(VT);
1561 
1562   // Validate that all indices in Mask are within the range of the elements
1563   // input to the shuffle.
1564   int NElts = Mask.size();
1565   assert(llvm::all_of(Mask,
1566                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1567          "Index out of range");
1568 
1569   // Copy the mask so we can do any needed cleanup.
1570   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1571 
1572   // Canonicalize shuffle v, v -> v, undef
1573   if (N1 == N2) {
1574     N2 = getUNDEF(VT);
1575     for (int i = 0; i != NElts; ++i)
1576       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1577   }
1578 
1579   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1580   if (N1.isUndef())
1581     commuteShuffle(N1, N2, MaskVec);
1582 
1583   if (TLI->hasVectorBlend()) {
1584     // If shuffling a splat, try to blend the splat instead. We do this here so
1585     // that even when this arises during lowering we don't have to re-handle it.
1586     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1587       BitVector UndefElements;
1588       SDValue Splat = BV->getSplatValue(&UndefElements);
1589       if (!Splat)
1590         return;
1591 
1592       for (int i = 0; i < NElts; ++i) {
1593         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1594           continue;
1595 
1596         // If this input comes from undef, mark it as such.
1597         if (UndefElements[MaskVec[i] - Offset]) {
1598           MaskVec[i] = -1;
1599           continue;
1600         }
1601 
1602         // If we can blend a non-undef lane, use that instead.
1603         if (!UndefElements[i])
1604           MaskVec[i] = i + Offset;
1605       }
1606     };
1607     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1608       BlendSplat(N1BV, 0);
1609     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1610       BlendSplat(N2BV, NElts);
1611   }
1612 
1613   // Canonicalize all index into lhs, -> shuffle lhs, undef
1614   // Canonicalize all index into rhs, -> shuffle rhs, undef
1615   bool AllLHS = true, AllRHS = true;
1616   bool N2Undef = N2.isUndef();
1617   for (int i = 0; i != NElts; ++i) {
1618     if (MaskVec[i] >= NElts) {
1619       if (N2Undef)
1620         MaskVec[i] = -1;
1621       else
1622         AllLHS = false;
1623     } else if (MaskVec[i] >= 0) {
1624       AllRHS = false;
1625     }
1626   }
1627   if (AllLHS && AllRHS)
1628     return getUNDEF(VT);
1629   if (AllLHS && !N2Undef)
1630     N2 = getUNDEF(VT);
1631   if (AllRHS) {
1632     N1 = getUNDEF(VT);
1633     commuteShuffle(N1, N2, MaskVec);
1634   }
1635   // Reset our undef status after accounting for the mask.
1636   N2Undef = N2.isUndef();
1637   // Re-check whether both sides ended up undef.
1638   if (N1.isUndef() && N2Undef)
1639     return getUNDEF(VT);
1640 
1641   // If Identity shuffle return that node.
1642   bool Identity = true, AllSame = true;
1643   for (int i = 0; i != NElts; ++i) {
1644     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1645     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1646   }
1647   if (Identity && NElts)
1648     return N1;
1649 
1650   // Shuffling a constant splat doesn't change the result.
1651   if (N2Undef) {
1652     SDValue V = N1;
1653 
1654     // Look through any bitcasts. We check that these don't change the number
1655     // (and size) of elements and just changes their types.
1656     while (V.getOpcode() == ISD::BITCAST)
1657       V = V->getOperand(0);
1658 
1659     // A splat should always show up as a build vector node.
1660     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1661       BitVector UndefElements;
1662       SDValue Splat = BV->getSplatValue(&UndefElements);
1663       // If this is a splat of an undef, shuffling it is also undef.
1664       if (Splat && Splat.isUndef())
1665         return getUNDEF(VT);
1666 
1667       bool SameNumElts =
1668           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1669 
1670       // We only have a splat which can skip shuffles if there is a splatted
1671       // value and no undef lanes rearranged by the shuffle.
1672       if (Splat && UndefElements.none()) {
1673         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1674         // number of elements match or the value splatted is a zero constant.
1675         if (SameNumElts)
1676           return N1;
1677         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1678           if (C->isNullValue())
1679             return N1;
1680       }
1681 
1682       // If the shuffle itself creates a splat, build the vector directly.
1683       if (AllSame && SameNumElts) {
1684         EVT BuildVT = BV->getValueType(0);
1685         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1686         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1687 
1688         // We may have jumped through bitcasts, so the type of the
1689         // BUILD_VECTOR may not match the type of the shuffle.
1690         if (BuildVT != VT)
1691           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1692         return NewBV;
1693       }
1694     }
1695   }
1696 
1697   FoldingSetNodeID ID;
1698   SDValue Ops[2] = { N1, N2 };
1699   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1700   for (int i = 0; i != NElts; ++i)
1701     ID.AddInteger(MaskVec[i]);
1702 
1703   void* IP = nullptr;
1704   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1705     return SDValue(E, 0);
1706 
1707   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1708   // SDNode doesn't have access to it.  This memory will be "leaked" when
1709   // the node is deallocated, but recovered when the NodeAllocator is released.
1710   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1711   llvm::copy(MaskVec, MaskAlloc);
1712 
1713   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1714                                            dl.getDebugLoc(), MaskAlloc);
1715   createOperands(N, Ops);
1716 
1717   CSEMap.InsertNode(N, IP);
1718   InsertNode(N);
1719   SDValue V = SDValue(N, 0);
1720   NewSDValueDbgMsg(V, "Creating new node: ", this);
1721   return V;
1722 }
1723 
1724 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1725   EVT VT = SV.getValueType(0);
1726   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1727   ShuffleVectorSDNode::commuteMask(MaskVec);
1728 
1729   SDValue Op0 = SV.getOperand(0);
1730   SDValue Op1 = SV.getOperand(1);
1731   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1732 }
1733 
1734 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1735   FoldingSetNodeID ID;
1736   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1737   ID.AddInteger(RegNo);
1738   void *IP = nullptr;
1739   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1740     return SDValue(E, 0);
1741 
1742   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1743   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1744   CSEMap.InsertNode(N, IP);
1745   InsertNode(N);
1746   return SDValue(N, 0);
1747 }
1748 
1749 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1750   FoldingSetNodeID ID;
1751   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1752   ID.AddPointer(RegMask);
1753   void *IP = nullptr;
1754   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1755     return SDValue(E, 0);
1756 
1757   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1758   CSEMap.InsertNode(N, IP);
1759   InsertNode(N);
1760   return SDValue(N, 0);
1761 }
1762 
1763 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1764                                  MCSymbol *Label) {
1765   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1766 }
1767 
1768 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1769                                    SDValue Root, MCSymbol *Label) {
1770   FoldingSetNodeID ID;
1771   SDValue Ops[] = { Root };
1772   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1773   ID.AddPointer(Label);
1774   void *IP = nullptr;
1775   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1776     return SDValue(E, 0);
1777 
1778   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1779   createOperands(N, Ops);
1780 
1781   CSEMap.InsertNode(N, IP);
1782   InsertNode(N);
1783   return SDValue(N, 0);
1784 }
1785 
1786 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1787                                       int64_t Offset,
1788                                       bool isTarget,
1789                                       unsigned char TargetFlags) {
1790   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1791 
1792   FoldingSetNodeID ID;
1793   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1794   ID.AddPointer(BA);
1795   ID.AddInteger(Offset);
1796   ID.AddInteger(TargetFlags);
1797   void *IP = nullptr;
1798   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1799     return SDValue(E, 0);
1800 
1801   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1802   CSEMap.InsertNode(N, IP);
1803   InsertNode(N);
1804   return SDValue(N, 0);
1805 }
1806 
1807 SDValue SelectionDAG::getSrcValue(const Value *V) {
1808   assert((!V || V->getType()->isPointerTy()) &&
1809          "SrcValue is not a pointer?");
1810 
1811   FoldingSetNodeID ID;
1812   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1813   ID.AddPointer(V);
1814 
1815   void *IP = nullptr;
1816   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1817     return SDValue(E, 0);
1818 
1819   auto *N = newSDNode<SrcValueSDNode>(V);
1820   CSEMap.InsertNode(N, IP);
1821   InsertNode(N);
1822   return SDValue(N, 0);
1823 }
1824 
1825 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1826   FoldingSetNodeID ID;
1827   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1828   ID.AddPointer(MD);
1829 
1830   void *IP = nullptr;
1831   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1832     return SDValue(E, 0);
1833 
1834   auto *N = newSDNode<MDNodeSDNode>(MD);
1835   CSEMap.InsertNode(N, IP);
1836   InsertNode(N);
1837   return SDValue(N, 0);
1838 }
1839 
1840 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1841   if (VT == V.getValueType())
1842     return V;
1843 
1844   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1845 }
1846 
1847 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1848                                        unsigned SrcAS, unsigned DestAS) {
1849   SDValue Ops[] = {Ptr};
1850   FoldingSetNodeID ID;
1851   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1852   ID.AddInteger(SrcAS);
1853   ID.AddInteger(DestAS);
1854 
1855   void *IP = nullptr;
1856   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1857     return SDValue(E, 0);
1858 
1859   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1860                                            VT, SrcAS, DestAS);
1861   createOperands(N, Ops);
1862 
1863   CSEMap.InsertNode(N, IP);
1864   InsertNode(N);
1865   return SDValue(N, 0);
1866 }
1867 
1868 /// getShiftAmountOperand - Return the specified value casted to
1869 /// the target's desired shift amount type.
1870 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1871   EVT OpTy = Op.getValueType();
1872   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1873   if (OpTy == ShTy || OpTy.isVector()) return Op;
1874 
1875   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1876 }
1877 
1878 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1879   SDLoc dl(Node);
1880   const TargetLowering &TLI = getTargetLoweringInfo();
1881   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1882   EVT VT = Node->getValueType(0);
1883   SDValue Tmp1 = Node->getOperand(0);
1884   SDValue Tmp2 = Node->getOperand(1);
1885   unsigned Align = Node->getConstantOperandVal(3);
1886 
1887   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1888                                Tmp2, MachinePointerInfo(V));
1889   SDValue VAList = VAListLoad;
1890 
1891   if (Align > TLI.getMinStackArgumentAlignment()) {
1892     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1893 
1894     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1895                      getConstant(Align - 1, dl, VAList.getValueType()));
1896 
1897     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1898                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1899   }
1900 
1901   // Increment the pointer, VAList, to the next vaarg
1902   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1903                  getConstant(getDataLayout().getTypeAllocSize(
1904                                                VT.getTypeForEVT(*getContext())),
1905                              dl, VAList.getValueType()));
1906   // Store the incremented VAList to the legalized pointer
1907   Tmp1 =
1908       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1909   // Load the actual argument out of the pointer VAList
1910   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1911 }
1912 
1913 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1914   SDLoc dl(Node);
1915   const TargetLowering &TLI = getTargetLoweringInfo();
1916   // This defaults to loading a pointer from the input and storing it to the
1917   // output, returning the chain.
1918   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1919   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1920   SDValue Tmp1 =
1921       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1922               Node->getOperand(2), MachinePointerInfo(VS));
1923   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1924                   MachinePointerInfo(VD));
1925 }
1926 
1927 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1928   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1929   unsigned ByteSize = VT.getStoreSize();
1930   Type *Ty = VT.getTypeForEVT(*getContext());
1931   unsigned StackAlign =
1932       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1933 
1934   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1935   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1936 }
1937 
1938 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1939   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1940   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1941   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1942   const DataLayout &DL = getDataLayout();
1943   unsigned Align =
1944       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1945 
1946   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1947   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1948   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1949 }
1950 
1951 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1952                                 ISD::CondCode Cond, const SDLoc &dl) {
1953   EVT OpVT = N1.getValueType();
1954 
1955   // These setcc operations always fold.
1956   switch (Cond) {
1957   default: break;
1958   case ISD::SETFALSE:
1959   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1960   case ISD::SETTRUE:
1961   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1962 
1963   case ISD::SETOEQ:
1964   case ISD::SETOGT:
1965   case ISD::SETOGE:
1966   case ISD::SETOLT:
1967   case ISD::SETOLE:
1968   case ISD::SETONE:
1969   case ISD::SETO:
1970   case ISD::SETUO:
1971   case ISD::SETUEQ:
1972   case ISD::SETUNE:
1973     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1974     break;
1975   }
1976 
1977   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1978     const APInt &C2 = N2C->getAPIntValue();
1979     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1980       const APInt &C1 = N1C->getAPIntValue();
1981 
1982       switch (Cond) {
1983       default: llvm_unreachable("Unknown integer setcc!");
1984       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
1985       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
1986       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
1987       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
1988       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
1989       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
1990       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
1991       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
1992       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
1993       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
1994       }
1995     }
1996   }
1997   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1998     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1999       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
2000       switch (Cond) {
2001       default: break;
2002       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2003                           return getUNDEF(VT);
2004                         LLVM_FALLTHROUGH;
2005       case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2006                                                OpVT);
2007       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2008                           return getUNDEF(VT);
2009                         LLVM_FALLTHROUGH;
2010       case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2011                                                R==APFloat::cmpLessThan, dl, VT,
2012                                                OpVT);
2013       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2014                           return getUNDEF(VT);
2015                         LLVM_FALLTHROUGH;
2016       case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2017                                                OpVT);
2018       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2019                           return getUNDEF(VT);
2020                         LLVM_FALLTHROUGH;
2021       case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2022                                                VT, OpVT);
2023       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2024                           return getUNDEF(VT);
2025                         LLVM_FALLTHROUGH;
2026       case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2027                                                R==APFloat::cmpEqual, dl, VT,
2028                                                OpVT);
2029       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2030                           return getUNDEF(VT);
2031                         LLVM_FALLTHROUGH;
2032       case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2033                                            R==APFloat::cmpEqual, dl, VT, OpVT);
2034       case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2035                                                OpVT);
2036       case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2037                                                OpVT);
2038       case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2039                                                R==APFloat::cmpEqual, dl, VT,
2040                                                OpVT);
2041       case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2042                                                OpVT);
2043       case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2044                                                R==APFloat::cmpLessThan, dl, VT,
2045                                                OpVT);
2046       case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2047                                                R==APFloat::cmpUnordered, dl, VT,
2048                                                OpVT);
2049       case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2050                                                VT, OpVT);
2051       case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2052                                                OpVT);
2053       }
2054     } else {
2055       // Ensure that the constant occurs on the RHS.
2056       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2057       MVT CompVT = N1.getValueType().getSimpleVT();
2058       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
2059         return SDValue();
2060 
2061       return getSetCC(dl, VT, N2, N1, SwappedCond);
2062     }
2063   }
2064 
2065   // Could not fold it.
2066   return SDValue();
2067 }
2068 
2069 /// See if the specified operand can be simplified with the knowledge that only
2070 /// the bits specified by Mask are used.
2071 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
2072   switch (V.getOpcode()) {
2073   default:
2074     break;
2075   case ISD::Constant: {
2076     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
2077     assert(CV && "Const value should be ConstSDNode.");
2078     const APInt &CVal = CV->getAPIntValue();
2079     APInt NewVal = CVal & Mask;
2080     if (NewVal != CVal)
2081       return getConstant(NewVal, SDLoc(V), V.getValueType());
2082     break;
2083   }
2084   case ISD::OR:
2085   case ISD::XOR:
2086     // If the LHS or RHS don't contribute bits to the or, drop them.
2087     if (MaskedValueIsZero(V.getOperand(0), Mask))
2088       return V.getOperand(1);
2089     if (MaskedValueIsZero(V.getOperand(1), Mask))
2090       return V.getOperand(0);
2091     break;
2092   case ISD::SRL:
2093     // Only look at single-use SRLs.
2094     if (!V.getNode()->hasOneUse())
2095       break;
2096     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2097       // See if we can recursively simplify the LHS.
2098       unsigned Amt = RHSC->getZExtValue();
2099 
2100       // Watch out for shift count overflow though.
2101       if (Amt >= Mask.getBitWidth())
2102         break;
2103       APInt NewMask = Mask << Amt;
2104       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
2105         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2106                        V.getOperand(1));
2107     }
2108     break;
2109   case ISD::AND: {
2110     // X & -1 -> X (ignoring bits which aren't demanded).
2111     // Also handle the case where masked out bits in X are known to be zero.
2112     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2113       const APInt &AndVal = RHSC->getAPIntValue();
2114       if (Mask.isSubsetOf(AndVal) ||
2115           Mask.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | AndVal))
2116         return V.getOperand(0);
2117     }
2118     break;
2119   }
2120   case ISD::ANY_EXTEND: {
2121     SDValue Src = V.getOperand(0);
2122     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2123     // Being conservative here - only peek through if we only demand bits in the
2124     // non-extended source (even though the extended bits are technically undef).
2125     if (Mask.getActiveBits() > SrcBitWidth)
2126       break;
2127     APInt SrcMask = Mask.trunc(SrcBitWidth);
2128     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
2129       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2130     break;
2131   }
2132   case ISD::SIGN_EXTEND_INREG:
2133     EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT();
2134     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2135 
2136     // If none of the extended bits are demanded, eliminate the sextinreg.
2137     if (Mask.getActiveBits() <= ExVTBits)
2138       return V.getOperand(0);
2139 
2140     break;
2141   }
2142   return SDValue();
2143 }
2144 
2145 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2146 /// use this predicate to simplify operations downstream.
2147 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2148   unsigned BitWidth = Op.getScalarValueSizeInBits();
2149   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2150 }
2151 
2152 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2153 /// this predicate to simplify operations downstream.  Mask is known to be zero
2154 /// for bits that V cannot have.
2155 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2156                                      unsigned Depth) const {
2157   return Mask.isSubsetOf(computeKnownBits(Op, Depth).Zero);
2158 }
2159 
2160 /// isSplatValue - Return true if the vector V has the same value
2161 /// across all DemandedElts.
2162 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2163                                 APInt &UndefElts) {
2164   if (!DemandedElts)
2165     return false; // No demanded elts, better to assume we don't know anything.
2166 
2167   EVT VT = V.getValueType();
2168   assert(VT.isVector() && "Vector type expected");
2169 
2170   unsigned NumElts = VT.getVectorNumElements();
2171   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2172   UndefElts = APInt::getNullValue(NumElts);
2173 
2174   switch (V.getOpcode()) {
2175   case ISD::BUILD_VECTOR: {
2176     SDValue Scl;
2177     for (unsigned i = 0; i != NumElts; ++i) {
2178       SDValue Op = V.getOperand(i);
2179       if (Op.isUndef()) {
2180         UndefElts.setBit(i);
2181         continue;
2182       }
2183       if (!DemandedElts[i])
2184         continue;
2185       if (Scl && Scl != Op)
2186         return false;
2187       Scl = Op;
2188     }
2189     return true;
2190   }
2191   case ISD::VECTOR_SHUFFLE: {
2192     // Check if this is a shuffle node doing a splat.
2193     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2194     int SplatIndex = -1;
2195     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2196     for (int i = 0; i != (int)NumElts; ++i) {
2197       int M = Mask[i];
2198       if (M < 0) {
2199         UndefElts.setBit(i);
2200         continue;
2201       }
2202       if (!DemandedElts[i])
2203         continue;
2204       if (0 <= SplatIndex && SplatIndex != M)
2205         return false;
2206       SplatIndex = M;
2207     }
2208     return true;
2209   }
2210   case ISD::EXTRACT_SUBVECTOR: {
2211     SDValue Src = V.getOperand(0);
2212     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2213     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2214     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2215       // Offset the demanded elts by the subvector index.
2216       uint64_t Idx = SubIdx->getZExtValue();
2217       APInt UndefSrcElts;
2218       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2219       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2220         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2221         return true;
2222       }
2223     }
2224     break;
2225   }
2226   case ISD::ADD:
2227   case ISD::SUB:
2228   case ISD::AND: {
2229     APInt UndefLHS, UndefRHS;
2230     SDValue LHS = V.getOperand(0);
2231     SDValue RHS = V.getOperand(1);
2232     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2233         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2234       UndefElts = UndefLHS | UndefRHS;
2235       return true;
2236     }
2237     break;
2238   }
2239   }
2240 
2241   return false;
2242 }
2243 
2244 /// Helper wrapper to main isSplatValue function.
2245 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2246   EVT VT = V.getValueType();
2247   assert(VT.isVector() && "Vector type expected");
2248   unsigned NumElts = VT.getVectorNumElements();
2249 
2250   APInt UndefElts;
2251   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2252   return isSplatValue(V, DemandedElts, UndefElts) &&
2253          (AllowUndefs || !UndefElts);
2254 }
2255 
2256 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2257 /// is less than the element bit-width of the shift node, return it.
2258 static const APInt *getValidShiftAmountConstant(SDValue V) {
2259   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2260     // Shifting more than the bitwidth is not valid.
2261     const APInt &ShAmt = SA->getAPIntValue();
2262     if (ShAmt.ult(V.getScalarValueSizeInBits()))
2263       return &ShAmt;
2264   }
2265   return nullptr;
2266 }
2267 
2268 /// Determine which bits of Op are known to be either zero or one and return
2269 /// them in Known. For vectors, the known bits are those that are shared by
2270 /// every vector element.
2271 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2272   EVT VT = Op.getValueType();
2273   APInt DemandedElts = VT.isVector()
2274                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2275                            : APInt(1, 1);
2276   return computeKnownBits(Op, DemandedElts, Depth);
2277 }
2278 
2279 /// Determine which bits of Op are known to be either zero or one and return
2280 /// them in Known. The DemandedElts argument allows us to only collect the known
2281 /// bits that are shared by the requested vector elements.
2282 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2283                                          unsigned Depth) const {
2284   unsigned BitWidth = Op.getScalarValueSizeInBits();
2285 
2286   KnownBits Known(BitWidth);   // Don't know anything.
2287 
2288   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2289     // We know all of the bits for a constant!
2290     Known.One = C->getAPIntValue();
2291     Known.Zero = ~Known.One;
2292     return Known;
2293   }
2294   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2295     // We know all of the bits for a constant fp!
2296     Known.One = C->getValueAPF().bitcastToAPInt();
2297     Known.Zero = ~Known.One;
2298     return Known;
2299   }
2300 
2301   if (Depth == 6)
2302     return Known;  // Limit search depth.
2303 
2304   KnownBits Known2;
2305   unsigned NumElts = DemandedElts.getBitWidth();
2306   assert((!Op.getValueType().isVector() ||
2307           NumElts == Op.getValueType().getVectorNumElements()) &&
2308          "Unexpected vector size");
2309 
2310   if (!DemandedElts)
2311     return Known;  // No demanded elts, better to assume we don't know anything.
2312 
2313   unsigned Opcode = Op.getOpcode();
2314   switch (Opcode) {
2315   case ISD::BUILD_VECTOR:
2316     // Collect the known bits that are shared by every demanded vector element.
2317     Known.Zero.setAllBits(); Known.One.setAllBits();
2318     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2319       if (!DemandedElts[i])
2320         continue;
2321 
2322       SDValue SrcOp = Op.getOperand(i);
2323       Known2 = computeKnownBits(SrcOp, Depth + 1);
2324 
2325       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2326       if (SrcOp.getValueSizeInBits() != BitWidth) {
2327         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2328                "Expected BUILD_VECTOR implicit truncation");
2329         Known2 = Known2.trunc(BitWidth);
2330       }
2331 
2332       // Known bits are the values that are shared by every demanded element.
2333       Known.One &= Known2.One;
2334       Known.Zero &= Known2.Zero;
2335 
2336       // If we don't know any bits, early out.
2337       if (Known.isUnknown())
2338         break;
2339     }
2340     break;
2341   case ISD::VECTOR_SHUFFLE: {
2342     // Collect the known bits that are shared by every vector element referenced
2343     // by the shuffle.
2344     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2345     Known.Zero.setAllBits(); Known.One.setAllBits();
2346     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2347     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2348     for (unsigned i = 0; i != NumElts; ++i) {
2349       if (!DemandedElts[i])
2350         continue;
2351 
2352       int M = SVN->getMaskElt(i);
2353       if (M < 0) {
2354         // For UNDEF elements, we don't know anything about the common state of
2355         // the shuffle result.
2356         Known.resetAll();
2357         DemandedLHS.clearAllBits();
2358         DemandedRHS.clearAllBits();
2359         break;
2360       }
2361 
2362       if ((unsigned)M < NumElts)
2363         DemandedLHS.setBit((unsigned)M % NumElts);
2364       else
2365         DemandedRHS.setBit((unsigned)M % NumElts);
2366     }
2367     // Known bits are the values that are shared by every demanded element.
2368     if (!!DemandedLHS) {
2369       SDValue LHS = Op.getOperand(0);
2370       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2371       Known.One &= Known2.One;
2372       Known.Zero &= Known2.Zero;
2373     }
2374     // If we don't know any bits, early out.
2375     if (Known.isUnknown())
2376       break;
2377     if (!!DemandedRHS) {
2378       SDValue RHS = Op.getOperand(1);
2379       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2380       Known.One &= Known2.One;
2381       Known.Zero &= Known2.Zero;
2382     }
2383     break;
2384   }
2385   case ISD::CONCAT_VECTORS: {
2386     // Split DemandedElts and test each of the demanded subvectors.
2387     Known.Zero.setAllBits(); Known.One.setAllBits();
2388     EVT SubVectorVT = Op.getOperand(0).getValueType();
2389     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2390     unsigned NumSubVectors = Op.getNumOperands();
2391     for (unsigned i = 0; i != NumSubVectors; ++i) {
2392       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2393       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2394       if (!!DemandedSub) {
2395         SDValue Sub = Op.getOperand(i);
2396         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2397         Known.One &= Known2.One;
2398         Known.Zero &= Known2.Zero;
2399       }
2400       // If we don't know any bits, early out.
2401       if (Known.isUnknown())
2402         break;
2403     }
2404     break;
2405   }
2406   case ISD::INSERT_SUBVECTOR: {
2407     // If we know the element index, demand any elements from the subvector and
2408     // the remainder from the src its inserted into, otherwise demand them all.
2409     SDValue Src = Op.getOperand(0);
2410     SDValue Sub = Op.getOperand(1);
2411     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2412     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2413     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2414       Known.One.setAllBits();
2415       Known.Zero.setAllBits();
2416       uint64_t Idx = SubIdx->getZExtValue();
2417       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2418       if (!!DemandedSubElts) {
2419         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2420         if (Known.isUnknown())
2421           break; // early-out.
2422       }
2423       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2424       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2425       if (!!DemandedSrcElts) {
2426         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2427         Known.One &= Known2.One;
2428         Known.Zero &= Known2.Zero;
2429       }
2430     } else {
2431       Known = computeKnownBits(Sub, Depth + 1);
2432       if (Known.isUnknown())
2433         break; // early-out.
2434       Known2 = computeKnownBits(Src, Depth + 1);
2435       Known.One &= Known2.One;
2436       Known.Zero &= Known2.Zero;
2437     }
2438     break;
2439   }
2440   case ISD::EXTRACT_SUBVECTOR: {
2441     // If we know the element index, just demand that subvector elements,
2442     // otherwise demand them all.
2443     SDValue Src = Op.getOperand(0);
2444     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2445     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2446     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2447       // Offset the demanded elts by the subvector index.
2448       uint64_t Idx = SubIdx->getZExtValue();
2449       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2450       Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2451     } else {
2452       Known = computeKnownBits(Src, Depth + 1);
2453     }
2454     break;
2455   }
2456   case ISD::SCALAR_TO_VECTOR: {
2457     // We know about scalar_to_vector as much as we know about it source,
2458     // which becomes the first element of otherwise unknown vector.
2459     if (DemandedElts != 1)
2460       break;
2461 
2462     SDValue N0 = Op.getOperand(0);
2463     Known = computeKnownBits(N0, Depth + 1);
2464     if (N0.getValueSizeInBits() != BitWidth)
2465       Known = Known.trunc(BitWidth);
2466 
2467     break;
2468   }
2469   case ISD::BITCAST: {
2470     SDValue N0 = Op.getOperand(0);
2471     EVT SubVT = N0.getValueType();
2472     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2473 
2474     // Ignore bitcasts from unsupported types.
2475     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2476       break;
2477 
2478     // Fast handling of 'identity' bitcasts.
2479     if (BitWidth == SubBitWidth) {
2480       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2481       break;
2482     }
2483 
2484     bool IsLE = getDataLayout().isLittleEndian();
2485 
2486     // Bitcast 'small element' vector to 'large element' scalar/vector.
2487     if ((BitWidth % SubBitWidth) == 0) {
2488       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2489 
2490       // Collect known bits for the (larger) output by collecting the known
2491       // bits from each set of sub elements and shift these into place.
2492       // We need to separately call computeKnownBits for each set of
2493       // sub elements as the knownbits for each is likely to be different.
2494       unsigned SubScale = BitWidth / SubBitWidth;
2495       APInt SubDemandedElts(NumElts * SubScale, 0);
2496       for (unsigned i = 0; i != NumElts; ++i)
2497         if (DemandedElts[i])
2498           SubDemandedElts.setBit(i * SubScale);
2499 
2500       for (unsigned i = 0; i != SubScale; ++i) {
2501         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2502                          Depth + 1);
2503         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2504         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2505         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2506       }
2507     }
2508 
2509     // Bitcast 'large element' scalar/vector to 'small element' vector.
2510     if ((SubBitWidth % BitWidth) == 0) {
2511       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2512 
2513       // Collect known bits for the (smaller) output by collecting the known
2514       // bits from the overlapping larger input elements and extracting the
2515       // sub sections we actually care about.
2516       unsigned SubScale = SubBitWidth / BitWidth;
2517       APInt SubDemandedElts(NumElts / SubScale, 0);
2518       for (unsigned i = 0; i != NumElts; ++i)
2519         if (DemandedElts[i])
2520           SubDemandedElts.setBit(i / SubScale);
2521 
2522       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2523 
2524       Known.Zero.setAllBits(); Known.One.setAllBits();
2525       for (unsigned i = 0; i != NumElts; ++i)
2526         if (DemandedElts[i]) {
2527           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2528           unsigned Offset = (Shifts % SubScale) * BitWidth;
2529           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2530           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2531           // If we don't know any bits, early out.
2532           if (Known.isUnknown())
2533             break;
2534         }
2535     }
2536     break;
2537   }
2538   case ISD::AND:
2539     // If either the LHS or the RHS are Zero, the result is zero.
2540     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2541     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2542 
2543     // Output known-1 bits are only known if set in both the LHS & RHS.
2544     Known.One &= Known2.One;
2545     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2546     Known.Zero |= Known2.Zero;
2547     break;
2548   case ISD::OR:
2549     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2550     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2551 
2552     // Output known-0 bits are only known if clear in both the LHS & RHS.
2553     Known.Zero &= Known2.Zero;
2554     // Output known-1 are known to be set if set in either the LHS | RHS.
2555     Known.One |= Known2.One;
2556     break;
2557   case ISD::XOR: {
2558     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2559     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2560 
2561     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2562     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2563     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2564     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2565     Known.Zero = KnownZeroOut;
2566     break;
2567   }
2568   case ISD::MUL: {
2569     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2570     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2571 
2572     // If low bits are zero in either operand, output low known-0 bits.
2573     // Also compute a conservative estimate for high known-0 bits.
2574     // More trickiness is possible, but this is sufficient for the
2575     // interesting case of alignment computation.
2576     unsigned TrailZ = Known.countMinTrailingZeros() +
2577                       Known2.countMinTrailingZeros();
2578     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2579                                Known2.countMinLeadingZeros(),
2580                                BitWidth) - BitWidth;
2581 
2582     Known.resetAll();
2583     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2584     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2585     break;
2586   }
2587   case ISD::UDIV: {
2588     // For the purposes of computing leading zeros we can conservatively
2589     // treat a udiv as a logical right shift by the power of 2 known to
2590     // be less than the denominator.
2591     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2592     unsigned LeadZ = Known2.countMinLeadingZeros();
2593 
2594     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2595     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2596     if (RHSMaxLeadingZeros != BitWidth)
2597       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2598 
2599     Known.Zero.setHighBits(LeadZ);
2600     break;
2601   }
2602   case ISD::SELECT:
2603   case ISD::VSELECT:
2604     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2605     // If we don't know any bits, early out.
2606     if (Known.isUnknown())
2607       break;
2608     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2609 
2610     // Only known if known in both the LHS and RHS.
2611     Known.One &= Known2.One;
2612     Known.Zero &= Known2.Zero;
2613     break;
2614   case ISD::SELECT_CC:
2615     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2616     // If we don't know any bits, early out.
2617     if (Known.isUnknown())
2618       break;
2619     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2620 
2621     // Only known if known in both the LHS and RHS.
2622     Known.One &= Known2.One;
2623     Known.Zero &= Known2.Zero;
2624     break;
2625   case ISD::SMULO:
2626   case ISD::UMULO:
2627   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2628     if (Op.getResNo() != 1)
2629       break;
2630     // The boolean result conforms to getBooleanContents.
2631     // If we know the result of a setcc has the top bits zero, use this info.
2632     // We know that we have an integer-based boolean since these operations
2633     // are only available for integer.
2634     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2635             TargetLowering::ZeroOrOneBooleanContent &&
2636         BitWidth > 1)
2637       Known.Zero.setBitsFrom(1);
2638     break;
2639   case ISD::SETCC:
2640     // If we know the result of a setcc has the top bits zero, use this info.
2641     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2642             TargetLowering::ZeroOrOneBooleanContent &&
2643         BitWidth > 1)
2644       Known.Zero.setBitsFrom(1);
2645     break;
2646   case ISD::SHL:
2647     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2648       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2649       unsigned Shift = ShAmt->getZExtValue();
2650       Known.Zero <<= Shift;
2651       Known.One <<= Shift;
2652       // Low bits are known zero.
2653       Known.Zero.setLowBits(Shift);
2654     }
2655     break;
2656   case ISD::SRL:
2657     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2658       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2659       unsigned Shift = ShAmt->getZExtValue();
2660       Known.Zero.lshrInPlace(Shift);
2661       Known.One.lshrInPlace(Shift);
2662       // High bits are known zero.
2663       Known.Zero.setHighBits(Shift);
2664     } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) {
2665       // If the shift amount is a vector of constants see if we can bound
2666       // the number of upper zero bits.
2667       unsigned ShiftAmountMin = BitWidth;
2668       for (unsigned i = 0; i != BV->getNumOperands(); ++i) {
2669         if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) {
2670           const APInt &ShAmt = C->getAPIntValue();
2671           if (ShAmt.ult(BitWidth)) {
2672             ShiftAmountMin = std::min<unsigned>(ShiftAmountMin,
2673                                                 ShAmt.getZExtValue());
2674             continue;
2675           }
2676         }
2677         // Don't know anything.
2678         ShiftAmountMin = 0;
2679         break;
2680       }
2681 
2682       Known.Zero.setHighBits(ShiftAmountMin);
2683     }
2684     break;
2685   case ISD::SRA:
2686     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2687       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2688       unsigned Shift = ShAmt->getZExtValue();
2689       // Sign extend known zero/one bit (else is unknown).
2690       Known.Zero.ashrInPlace(Shift);
2691       Known.One.ashrInPlace(Shift);
2692     }
2693     break;
2694   case ISD::FSHL:
2695   case ISD::FSHR:
2696     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2697       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2698 
2699       // For fshl, 0-shift returns the 1st arg.
2700       // For fshr, 0-shift returns the 2nd arg.
2701       if (Amt == 0) {
2702         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2703                                  DemandedElts, Depth + 1);
2704         break;
2705       }
2706 
2707       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2708       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2709       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2710       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2711       if (Opcode == ISD::FSHL) {
2712         Known.One <<= Amt;
2713         Known.Zero <<= Amt;
2714         Known2.One.lshrInPlace(BitWidth - Amt);
2715         Known2.Zero.lshrInPlace(BitWidth - Amt);
2716       } else {
2717         Known.One <<= BitWidth - Amt;
2718         Known.Zero <<= BitWidth - Amt;
2719         Known2.One.lshrInPlace(Amt);
2720         Known2.Zero.lshrInPlace(Amt);
2721       }
2722       Known.One |= Known2.One;
2723       Known.Zero |= Known2.Zero;
2724     }
2725     break;
2726   case ISD::SIGN_EXTEND_INREG: {
2727     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2728     unsigned EBits = EVT.getScalarSizeInBits();
2729 
2730     // Sign extension.  Compute the demanded bits in the result that are not
2731     // present in the input.
2732     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2733 
2734     APInt InSignMask = APInt::getSignMask(EBits);
2735     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2736 
2737     // If the sign extended bits are demanded, we know that the sign
2738     // bit is demanded.
2739     InSignMask = InSignMask.zext(BitWidth);
2740     if (NewBits.getBoolValue())
2741       InputDemandedBits |= InSignMask;
2742 
2743     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2744     Known.One &= InputDemandedBits;
2745     Known.Zero &= InputDemandedBits;
2746 
2747     // If the sign bit of the input is known set or clear, then we know the
2748     // top bits of the result.
2749     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2750       Known.Zero |= NewBits;
2751       Known.One  &= ~NewBits;
2752     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2753       Known.One  |= NewBits;
2754       Known.Zero &= ~NewBits;
2755     } else {                              // Input sign bit unknown
2756       Known.Zero &= ~NewBits;
2757       Known.One  &= ~NewBits;
2758     }
2759     break;
2760   }
2761   case ISD::CTTZ:
2762   case ISD::CTTZ_ZERO_UNDEF: {
2763     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2764     // If we have a known 1, its position is our upper bound.
2765     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2766     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2767     Known.Zero.setBitsFrom(LowBits);
2768     break;
2769   }
2770   case ISD::CTLZ:
2771   case ISD::CTLZ_ZERO_UNDEF: {
2772     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2773     // If we have a known 1, its position is our upper bound.
2774     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2775     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2776     Known.Zero.setBitsFrom(LowBits);
2777     break;
2778   }
2779   case ISD::CTPOP: {
2780     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2781     // If we know some of the bits are zero, they can't be one.
2782     unsigned PossibleOnes = Known2.countMaxPopulation();
2783     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2784     break;
2785   }
2786   case ISD::LOAD: {
2787     LoadSDNode *LD = cast<LoadSDNode>(Op);
2788     // If this is a ZEXTLoad and we are looking at the loaded value.
2789     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2790       EVT VT = LD->getMemoryVT();
2791       unsigned MemBits = VT.getScalarSizeInBits();
2792       Known.Zero.setBitsFrom(MemBits);
2793     } else if (const MDNode *Ranges = LD->getRanges()) {
2794       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2795         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2796     }
2797     break;
2798   }
2799   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2800     EVT InVT = Op.getOperand(0).getValueType();
2801     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2802     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2803     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2804     break;
2805   }
2806   case ISD::ZERO_EXTEND: {
2807     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2808     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2809     break;
2810   }
2811   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2812     EVT InVT = Op.getOperand(0).getValueType();
2813     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2814     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2815     // If the sign bit is known to be zero or one, then sext will extend
2816     // it to the top bits, else it will just zext.
2817     Known = Known.sext(BitWidth);
2818     break;
2819   }
2820   case ISD::SIGN_EXTEND: {
2821     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2822     // If the sign bit is known to be zero or one, then sext will extend
2823     // it to the top bits, else it will just zext.
2824     Known = Known.sext(BitWidth);
2825     break;
2826   }
2827   case ISD::ANY_EXTEND: {
2828     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2829     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
2830     break;
2831   }
2832   case ISD::TRUNCATE: {
2833     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2834     Known = Known.trunc(BitWidth);
2835     break;
2836   }
2837   case ISD::AssertZext: {
2838     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2839     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2840     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2841     Known.Zero |= (~InMask);
2842     Known.One  &= (~Known.Zero);
2843     break;
2844   }
2845   case ISD::FGETSIGN:
2846     // All bits are zero except the low bit.
2847     Known.Zero.setBitsFrom(1);
2848     break;
2849   case ISD::USUBO:
2850   case ISD::SSUBO:
2851     if (Op.getResNo() == 1) {
2852       // If we know the result of a setcc has the top bits zero, use this info.
2853       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2854               TargetLowering::ZeroOrOneBooleanContent &&
2855           BitWidth > 1)
2856         Known.Zero.setBitsFrom(1);
2857       break;
2858     }
2859     LLVM_FALLTHROUGH;
2860   case ISD::SUB:
2861   case ISD::SUBC: {
2862     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2863       // We know that the top bits of C-X are clear if X contains less bits
2864       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2865       // positive if we can prove that X is >= 0 and < 16.
2866       if (CLHS->getAPIntValue().isNonNegative()) {
2867         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2868         // NLZ can't be BitWidth with no sign bit
2869         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2870         Known2 = computeKnownBits(Op.getOperand(1), DemandedElts,
2871                          Depth + 1);
2872 
2873         // If all of the MaskV bits are known to be zero, then we know the
2874         // output top bits are zero, because we now know that the output is
2875         // from [0-C].
2876         if ((Known2.Zero & MaskV) == MaskV) {
2877           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2878           // Top bits known zero.
2879           Known.Zero.setHighBits(NLZ2);
2880         }
2881       }
2882     }
2883 
2884     // If low bits are know to be zero in both operands, then we know they are
2885     // going to be 0 in the result. Both addition and complement operations
2886     // preserve the low zero bits.
2887     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2888     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2889     if (KnownZeroLow == 0)
2890       break;
2891 
2892     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2893     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2894     Known.Zero.setLowBits(KnownZeroLow);
2895     break;
2896   }
2897   case ISD::UADDO:
2898   case ISD::SADDO:
2899   case ISD::ADDCARRY:
2900     if (Op.getResNo() == 1) {
2901       // If we know the result of a setcc has the top bits zero, use this info.
2902       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2903               TargetLowering::ZeroOrOneBooleanContent &&
2904           BitWidth > 1)
2905         Known.Zero.setBitsFrom(1);
2906       break;
2907     }
2908     LLVM_FALLTHROUGH;
2909   case ISD::ADD:
2910   case ISD::ADDC:
2911   case ISD::ADDE: {
2912     // Output known-0 bits are known if clear or set in both the low clear bits
2913     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2914     // low 3 bits clear.
2915     // Output known-0 bits are also known if the top bits of each input are
2916     // known to be clear. For example, if one input has the top 10 bits clear
2917     // and the other has the top 8 bits clear, we know the top 7 bits of the
2918     // output must be clear.
2919     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2920     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
2921     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
2922 
2923     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2924     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
2925     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
2926 
2927     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
2928       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2929       // use this information if we know (at least) that the low two bits are
2930       // clear. We then return to the caller that the low bit is unknown but
2931       // that other bits are known zero.
2932       if (KnownZeroLow >= 2)
2933         Known.Zero.setBits(1, KnownZeroLow);
2934       break;
2935     }
2936 
2937     Known.Zero.setLowBits(KnownZeroLow);
2938     if (KnownZeroHigh > 1)
2939       Known.Zero.setHighBits(KnownZeroHigh - 1);
2940     break;
2941   }
2942   case ISD::SREM:
2943     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2944       const APInt &RA = Rem->getAPIntValue().abs();
2945       if (RA.isPowerOf2()) {
2946         APInt LowBits = RA - 1;
2947         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2948 
2949         // The low bits of the first operand are unchanged by the srem.
2950         Known.Zero = Known2.Zero & LowBits;
2951         Known.One = Known2.One & LowBits;
2952 
2953         // If the first operand is non-negative or has all low bits zero, then
2954         // the upper bits are all zero.
2955         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
2956           Known.Zero |= ~LowBits;
2957 
2958         // If the first operand is negative and not all low bits are zero, then
2959         // the upper bits are all one.
2960         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
2961           Known.One |= ~LowBits;
2962         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
2963       }
2964     }
2965     break;
2966   case ISD::UREM: {
2967     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2968       const APInt &RA = Rem->getAPIntValue();
2969       if (RA.isPowerOf2()) {
2970         APInt LowBits = (RA - 1);
2971         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2972 
2973         // The upper bits are all zero, the lower ones are unchanged.
2974         Known.Zero = Known2.Zero | ~LowBits;
2975         Known.One = Known2.One & LowBits;
2976         break;
2977       }
2978     }
2979 
2980     // Since the result is less than or equal to either operand, any leading
2981     // zero bits in either operand must also exist in the result.
2982     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2983     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2984 
2985     uint32_t Leaders =
2986         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
2987     Known.resetAll();
2988     Known.Zero.setHighBits(Leaders);
2989     break;
2990   }
2991   case ISD::EXTRACT_ELEMENT: {
2992     Known = computeKnownBits(Op.getOperand(0), Depth+1);
2993     const unsigned Index = Op.getConstantOperandVal(1);
2994     const unsigned BitWidth = Op.getValueSizeInBits();
2995 
2996     // Remove low part of known bits mask
2997     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
2998     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
2999 
3000     // Remove high part of known bit mask
3001     Known = Known.trunc(BitWidth);
3002     break;
3003   }
3004   case ISD::EXTRACT_VECTOR_ELT: {
3005     SDValue InVec = Op.getOperand(0);
3006     SDValue EltNo = Op.getOperand(1);
3007     EVT VecVT = InVec.getValueType();
3008     const unsigned BitWidth = Op.getValueSizeInBits();
3009     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3010     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3011     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3012     // anything about the extended bits.
3013     if (BitWidth > EltBitWidth)
3014       Known = Known.trunc(EltBitWidth);
3015     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3016     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3017       // If we know the element index, just demand that vector element.
3018       unsigned Idx = ConstEltNo->getZExtValue();
3019       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3020       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3021     } else {
3022       // Unknown element index, so ignore DemandedElts and demand them all.
3023       Known = computeKnownBits(InVec, Depth + 1);
3024     }
3025     if (BitWidth > EltBitWidth)
3026       Known = Known.zext(BitWidth, false /* => any extend */);
3027     break;
3028   }
3029   case ISD::INSERT_VECTOR_ELT: {
3030     SDValue InVec = Op.getOperand(0);
3031     SDValue InVal = Op.getOperand(1);
3032     SDValue EltNo = Op.getOperand(2);
3033 
3034     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3035     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3036       // If we know the element index, split the demand between the
3037       // source vector and the inserted element.
3038       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3039       unsigned EltIdx = CEltNo->getZExtValue();
3040 
3041       // If we demand the inserted element then add its common known bits.
3042       if (DemandedElts[EltIdx]) {
3043         Known2 = computeKnownBits(InVal, Depth + 1);
3044         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3045         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3046       }
3047 
3048       // If we demand the source vector then add its common known bits, ensuring
3049       // that we don't demand the inserted element.
3050       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3051       if (!!VectorElts) {
3052         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3053         Known.One &= Known2.One;
3054         Known.Zero &= Known2.Zero;
3055       }
3056     } else {
3057       // Unknown element index, so ignore DemandedElts and demand them all.
3058       Known = computeKnownBits(InVec, Depth + 1);
3059       Known2 = computeKnownBits(InVal, Depth + 1);
3060       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3061       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3062     }
3063     break;
3064   }
3065   case ISD::BITREVERSE: {
3066     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3067     Known.Zero = Known2.Zero.reverseBits();
3068     Known.One = Known2.One.reverseBits();
3069     break;
3070   }
3071   case ISD::BSWAP: {
3072     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3073     Known.Zero = Known2.Zero.byteSwap();
3074     Known.One = Known2.One.byteSwap();
3075     break;
3076   }
3077   case ISD::ABS: {
3078     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3079 
3080     // If the source's MSB is zero then we know the rest of the bits already.
3081     if (Known2.isNonNegative()) {
3082       Known.Zero = Known2.Zero;
3083       Known.One = Known2.One;
3084       break;
3085     }
3086 
3087     // We only know that the absolute values's MSB will be zero iff there is
3088     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3089     Known2.One.clearSignBit();
3090     if (Known2.One.getBoolValue()) {
3091       Known.Zero = APInt::getSignMask(BitWidth);
3092       break;
3093     }
3094     break;
3095   }
3096   case ISD::UMIN: {
3097     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3098     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3099 
3100     // UMIN - we know that the result will have the maximum of the
3101     // known zero leading bits of the inputs.
3102     unsigned LeadZero = Known.countMinLeadingZeros();
3103     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3104 
3105     Known.Zero &= Known2.Zero;
3106     Known.One &= Known2.One;
3107     Known.Zero.setHighBits(LeadZero);
3108     break;
3109   }
3110   case ISD::UMAX: {
3111     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3112     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3113 
3114     // UMAX - we know that the result will have the maximum of the
3115     // known one leading bits of the inputs.
3116     unsigned LeadOne = Known.countMinLeadingOnes();
3117     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3118 
3119     Known.Zero &= Known2.Zero;
3120     Known.One &= Known2.One;
3121     Known.One.setHighBits(LeadOne);
3122     break;
3123   }
3124   case ISD::SMIN:
3125   case ISD::SMAX: {
3126     // If we have a clamp pattern, we know that the number of sign bits will be
3127     // the minimum of the clamp min/max range.
3128     bool IsMax = (Opcode == ISD::SMAX);
3129     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3130     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3131       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3132         CstHigh =
3133             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3134     if (CstLow && CstHigh) {
3135       if (!IsMax)
3136         std::swap(CstLow, CstHigh);
3137 
3138       const APInt &ValueLow = CstLow->getAPIntValue();
3139       const APInt &ValueHigh = CstHigh->getAPIntValue();
3140       if (ValueLow.sle(ValueHigh)) {
3141         unsigned LowSignBits = ValueLow.getNumSignBits();
3142         unsigned HighSignBits = ValueHigh.getNumSignBits();
3143         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3144         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3145           Known.One.setHighBits(MinSignBits);
3146           break;
3147         }
3148         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3149           Known.Zero.setHighBits(MinSignBits);
3150           break;
3151         }
3152       }
3153     }
3154 
3155     // Fallback - just get the shared known bits of the operands.
3156     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3157     if (Known.isUnknown()) break; // Early-out
3158     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3159     Known.Zero &= Known2.Zero;
3160     Known.One &= Known2.One;
3161     break;
3162   }
3163   case ISD::FrameIndex:
3164   case ISD::TargetFrameIndex:
3165     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3166     break;
3167 
3168   default:
3169     if (Opcode < ISD::BUILTIN_OP_END)
3170       break;
3171     LLVM_FALLTHROUGH;
3172   case ISD::INTRINSIC_WO_CHAIN:
3173   case ISD::INTRINSIC_W_CHAIN:
3174   case ISD::INTRINSIC_VOID:
3175     // Allow the target to implement this method for its nodes.
3176     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3177     break;
3178   }
3179 
3180   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3181   return Known;
3182 }
3183 
3184 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3185                                                              SDValue N1) const {
3186   // X + 0 never overflow
3187   if (isNullConstant(N1))
3188     return OFK_Never;
3189 
3190   KnownBits N1Known = computeKnownBits(N1);
3191   if (N1Known.Zero.getBoolValue()) {
3192     KnownBits N0Known = computeKnownBits(N0);
3193 
3194     bool overflow;
3195     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3196     if (!overflow)
3197       return OFK_Never;
3198   }
3199 
3200   // mulhi + 1 never overflow
3201   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3202       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3203     return OFK_Never;
3204 
3205   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3206     KnownBits N0Known = computeKnownBits(N0);
3207 
3208     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3209       return OFK_Never;
3210   }
3211 
3212   return OFK_Sometime;
3213 }
3214 
3215 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3216   EVT OpVT = Val.getValueType();
3217   unsigned BitWidth = OpVT.getScalarSizeInBits();
3218 
3219   // Is the constant a known power of 2?
3220   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3221     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3222 
3223   // A left-shift of a constant one will have exactly one bit set because
3224   // shifting the bit off the end is undefined.
3225   if (Val.getOpcode() == ISD::SHL) {
3226     auto *C = isConstOrConstSplat(Val.getOperand(0));
3227     if (C && C->getAPIntValue() == 1)
3228       return true;
3229   }
3230 
3231   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3232   // one bit set.
3233   if (Val.getOpcode() == ISD::SRL) {
3234     auto *C = isConstOrConstSplat(Val.getOperand(0));
3235     if (C && C->getAPIntValue().isSignMask())
3236       return true;
3237   }
3238 
3239   // Are all operands of a build vector constant powers of two?
3240   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3241     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3242           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3243             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3244           return false;
3245         }))
3246       return true;
3247 
3248   // More could be done here, though the above checks are enough
3249   // to handle some common cases.
3250 
3251   // Fall back to computeKnownBits to catch other known cases.
3252   KnownBits Known = computeKnownBits(Val);
3253   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3254 }
3255 
3256 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3257   EVT VT = Op.getValueType();
3258   APInt DemandedElts = VT.isVector()
3259                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3260                            : APInt(1, 1);
3261   return ComputeNumSignBits(Op, DemandedElts, Depth);
3262 }
3263 
3264 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3265                                           unsigned Depth) const {
3266   EVT VT = Op.getValueType();
3267   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3268   unsigned VTBits = VT.getScalarSizeInBits();
3269   unsigned NumElts = DemandedElts.getBitWidth();
3270   unsigned Tmp, Tmp2;
3271   unsigned FirstAnswer = 1;
3272 
3273   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3274     const APInt &Val = C->getAPIntValue();
3275     return Val.getNumSignBits();
3276   }
3277 
3278   if (Depth == 6)
3279     return 1;  // Limit search depth.
3280 
3281   if (!DemandedElts)
3282     return 1;  // No demanded elts, better to assume we don't know anything.
3283 
3284   unsigned Opcode = Op.getOpcode();
3285   switch (Opcode) {
3286   default: break;
3287   case ISD::AssertSext:
3288     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3289     return VTBits-Tmp+1;
3290   case ISD::AssertZext:
3291     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3292     return VTBits-Tmp;
3293 
3294   case ISD::BUILD_VECTOR:
3295     Tmp = VTBits;
3296     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3297       if (!DemandedElts[i])
3298         continue;
3299 
3300       SDValue SrcOp = Op.getOperand(i);
3301       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3302 
3303       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3304       if (SrcOp.getValueSizeInBits() != VTBits) {
3305         assert(SrcOp.getValueSizeInBits() > VTBits &&
3306                "Expected BUILD_VECTOR implicit truncation");
3307         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3308         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3309       }
3310       Tmp = std::min(Tmp, Tmp2);
3311     }
3312     return Tmp;
3313 
3314   case ISD::VECTOR_SHUFFLE: {
3315     // Collect the minimum number of sign bits that are shared by every vector
3316     // element referenced by the shuffle.
3317     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3318     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3319     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3320     for (unsigned i = 0; i != NumElts; ++i) {
3321       int M = SVN->getMaskElt(i);
3322       if (!DemandedElts[i])
3323         continue;
3324       // For UNDEF elements, we don't know anything about the common state of
3325       // the shuffle result.
3326       if (M < 0)
3327         return 1;
3328       if ((unsigned)M < NumElts)
3329         DemandedLHS.setBit((unsigned)M % NumElts);
3330       else
3331         DemandedRHS.setBit((unsigned)M % NumElts);
3332     }
3333     Tmp = std::numeric_limits<unsigned>::max();
3334     if (!!DemandedLHS)
3335       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3336     if (!!DemandedRHS) {
3337       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3338       Tmp = std::min(Tmp, Tmp2);
3339     }
3340     // If we don't know anything, early out and try computeKnownBits fall-back.
3341     if (Tmp == 1)
3342       break;
3343     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3344     return Tmp;
3345   }
3346 
3347   case ISD::BITCAST: {
3348     SDValue N0 = Op.getOperand(0);
3349     EVT SrcVT = N0.getValueType();
3350     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3351 
3352     // Ignore bitcasts from unsupported types..
3353     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3354       break;
3355 
3356     // Fast handling of 'identity' bitcasts.
3357     if (VTBits == SrcBits)
3358       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3359 
3360     bool IsLE = getDataLayout().isLittleEndian();
3361 
3362     // Bitcast 'large element' scalar/vector to 'small element' vector.
3363     if ((SrcBits % VTBits) == 0) {
3364       assert(VT.isVector() && "Expected bitcast to vector");
3365 
3366       unsigned Scale = SrcBits / VTBits;
3367       APInt SrcDemandedElts(NumElts / Scale, 0);
3368       for (unsigned i = 0; i != NumElts; ++i)
3369         if (DemandedElts[i])
3370           SrcDemandedElts.setBit(i / Scale);
3371 
3372       // Fast case - sign splat can be simply split across the small elements.
3373       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3374       if (Tmp == SrcBits)
3375         return VTBits;
3376 
3377       // Slow case - determine how far the sign extends into each sub-element.
3378       Tmp2 = VTBits;
3379       for (unsigned i = 0; i != NumElts; ++i)
3380         if (DemandedElts[i]) {
3381           unsigned SubOffset = i % Scale;
3382           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3383           SubOffset = SubOffset * VTBits;
3384           if (Tmp <= SubOffset)
3385             return 1;
3386           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3387         }
3388       return Tmp2;
3389     }
3390     break;
3391   }
3392 
3393   case ISD::SIGN_EXTEND:
3394     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3395     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3396   case ISD::SIGN_EXTEND_INREG:
3397     // Max of the input and what this extends.
3398     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3399     Tmp = VTBits-Tmp+1;
3400     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3401     return std::max(Tmp, Tmp2);
3402   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3403     SDValue Src = Op.getOperand(0);
3404     EVT SrcVT = Src.getValueType();
3405     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3406     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3407     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3408   }
3409 
3410   case ISD::SRA:
3411     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3412     // SRA X, C   -> adds C sign bits.
3413     if (ConstantSDNode *C =
3414             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3415       APInt ShiftVal = C->getAPIntValue();
3416       ShiftVal += Tmp;
3417       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3418     }
3419     return Tmp;
3420   case ISD::SHL:
3421     if (ConstantSDNode *C =
3422             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3423       // shl destroys sign bits.
3424       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3425       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3426           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3427       return Tmp - C->getZExtValue();
3428     }
3429     break;
3430   case ISD::AND:
3431   case ISD::OR:
3432   case ISD::XOR:    // NOT is handled here.
3433     // Logical binary ops preserve the number of sign bits at the worst.
3434     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3435     if (Tmp != 1) {
3436       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3437       FirstAnswer = std::min(Tmp, Tmp2);
3438       // We computed what we know about the sign bits as our first
3439       // answer. Now proceed to the generic code that uses
3440       // computeKnownBits, and pick whichever answer is better.
3441     }
3442     break;
3443 
3444   case ISD::SELECT:
3445   case ISD::VSELECT:
3446     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3447     if (Tmp == 1) return 1;  // Early out.
3448     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3449     return std::min(Tmp, Tmp2);
3450   case ISD::SELECT_CC:
3451     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3452     if (Tmp == 1) return 1;  // Early out.
3453     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3454     return std::min(Tmp, Tmp2);
3455 
3456   case ISD::SMIN:
3457   case ISD::SMAX: {
3458     // If we have a clamp pattern, we know that the number of sign bits will be
3459     // the minimum of the clamp min/max range.
3460     bool IsMax = (Opcode == ISD::SMAX);
3461     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3462     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3463       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3464         CstHigh =
3465             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3466     if (CstLow && CstHigh) {
3467       if (!IsMax)
3468         std::swap(CstLow, CstHigh);
3469       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3470         Tmp = CstLow->getAPIntValue().getNumSignBits();
3471         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3472         return std::min(Tmp, Tmp2);
3473       }
3474     }
3475 
3476     // Fallback - just get the minimum number of sign bits of the operands.
3477     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3478     if (Tmp == 1)
3479       return 1;  // Early out.
3480     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3481     return std::min(Tmp, Tmp2);
3482   }
3483   case ISD::UMIN:
3484   case ISD::UMAX:
3485     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3486     if (Tmp == 1)
3487       return 1;  // Early out.
3488     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3489     return std::min(Tmp, Tmp2);
3490   case ISD::SADDO:
3491   case ISD::UADDO:
3492   case ISD::SSUBO:
3493   case ISD::USUBO:
3494   case ISD::SMULO:
3495   case ISD::UMULO:
3496     if (Op.getResNo() != 1)
3497       break;
3498     // The boolean result conforms to getBooleanContents.  Fall through.
3499     // If setcc returns 0/-1, all bits are sign bits.
3500     // We know that we have an integer-based boolean since these operations
3501     // are only available for integer.
3502     if (TLI->getBooleanContents(VT.isVector(), false) ==
3503         TargetLowering::ZeroOrNegativeOneBooleanContent)
3504       return VTBits;
3505     break;
3506   case ISD::SETCC:
3507     // If setcc returns 0/-1, all bits are sign bits.
3508     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3509         TargetLowering::ZeroOrNegativeOneBooleanContent)
3510       return VTBits;
3511     break;
3512   case ISD::ROTL:
3513   case ISD::ROTR:
3514     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3515       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3516 
3517       // Handle rotate right by N like a rotate left by 32-N.
3518       if (Opcode == ISD::ROTR)
3519         RotAmt = (VTBits - RotAmt) % VTBits;
3520 
3521       // If we aren't rotating out all of the known-in sign bits, return the
3522       // number that are left.  This handles rotl(sext(x), 1) for example.
3523       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3524       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3525     }
3526     break;
3527   case ISD::ADD:
3528   case ISD::ADDC:
3529     // Add can have at most one carry bit.  Thus we know that the output
3530     // is, at worst, one more bit than the inputs.
3531     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3532     if (Tmp == 1) return 1;  // Early out.
3533 
3534     // Special case decrementing a value (ADD X, -1):
3535     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3536       if (CRHS->isAllOnesValue()) {
3537         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3538 
3539         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3540         // sign bits set.
3541         if ((Known.Zero | 1).isAllOnesValue())
3542           return VTBits;
3543 
3544         // If we are subtracting one from a positive number, there is no carry
3545         // out of the result.
3546         if (Known.isNonNegative())
3547           return Tmp;
3548       }
3549 
3550     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3551     if (Tmp2 == 1) return 1;
3552     return std::min(Tmp, Tmp2)-1;
3553 
3554   case ISD::SUB:
3555     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3556     if (Tmp2 == 1) return 1;
3557 
3558     // Handle NEG.
3559     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3560       if (CLHS->isNullValue()) {
3561         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3562         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3563         // sign bits set.
3564         if ((Known.Zero | 1).isAllOnesValue())
3565           return VTBits;
3566 
3567         // If the input is known to be positive (the sign bit is known clear),
3568         // the output of the NEG has the same number of sign bits as the input.
3569         if (Known.isNonNegative())
3570           return Tmp2;
3571 
3572         // Otherwise, we treat this like a SUB.
3573       }
3574 
3575     // Sub can have at most one carry bit.  Thus we know that the output
3576     // is, at worst, one more bit than the inputs.
3577     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3578     if (Tmp == 1) return 1;  // Early out.
3579     return std::min(Tmp, Tmp2)-1;
3580   case ISD::TRUNCATE: {
3581     // Check if the sign bits of source go down as far as the truncated value.
3582     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3583     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3584     if (NumSrcSignBits > (NumSrcBits - VTBits))
3585       return NumSrcSignBits - (NumSrcBits - VTBits);
3586     break;
3587   }
3588   case ISD::EXTRACT_ELEMENT: {
3589     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3590     const int BitWidth = Op.getValueSizeInBits();
3591     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3592 
3593     // Get reverse index (starting from 1), Op1 value indexes elements from
3594     // little end. Sign starts at big end.
3595     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3596 
3597     // If the sign portion ends in our element the subtraction gives correct
3598     // result. Otherwise it gives either negative or > bitwidth result
3599     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3600   }
3601   case ISD::INSERT_VECTOR_ELT: {
3602     SDValue InVec = Op.getOperand(0);
3603     SDValue InVal = Op.getOperand(1);
3604     SDValue EltNo = Op.getOperand(2);
3605     unsigned NumElts = InVec.getValueType().getVectorNumElements();
3606 
3607     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3608     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3609       // If we know the element index, split the demand between the
3610       // source vector and the inserted element.
3611       unsigned EltIdx = CEltNo->getZExtValue();
3612 
3613       // If we demand the inserted element then get its sign bits.
3614       Tmp = std::numeric_limits<unsigned>::max();
3615       if (DemandedElts[EltIdx]) {
3616         // TODO - handle implicit truncation of inserted elements.
3617         if (InVal.getScalarValueSizeInBits() != VTBits)
3618           break;
3619         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3620       }
3621 
3622       // If we demand the source vector then get its sign bits, and determine
3623       // the minimum.
3624       APInt VectorElts = DemandedElts;
3625       VectorElts.clearBit(EltIdx);
3626       if (!!VectorElts) {
3627         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3628         Tmp = std::min(Tmp, Tmp2);
3629       }
3630     } else {
3631       // Unknown element index, so ignore DemandedElts and demand them all.
3632       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3633       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3634       Tmp = std::min(Tmp, Tmp2);
3635     }
3636     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3637     return Tmp;
3638   }
3639   case ISD::EXTRACT_VECTOR_ELT: {
3640     SDValue InVec = Op.getOperand(0);
3641     SDValue EltNo = Op.getOperand(1);
3642     EVT VecVT = InVec.getValueType();
3643     const unsigned BitWidth = Op.getValueSizeInBits();
3644     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3645     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3646 
3647     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3648     // anything about sign bits. But if the sizes match we can derive knowledge
3649     // about sign bits from the vector operand.
3650     if (BitWidth != EltBitWidth)
3651       break;
3652 
3653     // If we know the element index, just demand that vector element, else for
3654     // an unknown element index, ignore DemandedElts and demand them all.
3655     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3656     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3657     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3658       DemandedSrcElts =
3659           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3660 
3661     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3662   }
3663   case ISD::EXTRACT_SUBVECTOR: {
3664     // If we know the element index, just demand that subvector elements,
3665     // otherwise demand them all.
3666     SDValue Src = Op.getOperand(0);
3667     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3668     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3669     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3670       // Offset the demanded elts by the subvector index.
3671       uint64_t Idx = SubIdx->getZExtValue();
3672       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3673       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3674     }
3675     return ComputeNumSignBits(Src, Depth + 1);
3676   }
3677   case ISD::CONCAT_VECTORS: {
3678     // Determine the minimum number of sign bits across all demanded
3679     // elts of the input vectors. Early out if the result is already 1.
3680     Tmp = std::numeric_limits<unsigned>::max();
3681     EVT SubVectorVT = Op.getOperand(0).getValueType();
3682     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3683     unsigned NumSubVectors = Op.getNumOperands();
3684     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3685       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3686       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3687       if (!DemandedSub)
3688         continue;
3689       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3690       Tmp = std::min(Tmp, Tmp2);
3691     }
3692     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3693     return Tmp;
3694   }
3695   case ISD::INSERT_SUBVECTOR: {
3696     // If we know the element index, demand any elements from the subvector and
3697     // the remainder from the src its inserted into, otherwise demand them all.
3698     SDValue Src = Op.getOperand(0);
3699     SDValue Sub = Op.getOperand(1);
3700     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3701     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3702     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3703       Tmp = std::numeric_limits<unsigned>::max();
3704       uint64_t Idx = SubIdx->getZExtValue();
3705       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3706       if (!!DemandedSubElts) {
3707         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3708         if (Tmp == 1) return 1; // early-out
3709       }
3710       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3711       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3712       if (!!DemandedSrcElts) {
3713         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3714         Tmp = std::min(Tmp, Tmp2);
3715       }
3716       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3717       return Tmp;
3718     }
3719 
3720     // Not able to determine the index so just assume worst case.
3721     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3722     if (Tmp == 1) return 1; // early-out
3723     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3724     Tmp = std::min(Tmp, Tmp2);
3725     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3726     return Tmp;
3727   }
3728   }
3729 
3730   // If we are looking at the loaded value of the SDNode.
3731   if (Op.getResNo() == 0) {
3732     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3733     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3734       unsigned ExtType = LD->getExtensionType();
3735       switch (ExtType) {
3736         default: break;
3737         case ISD::SEXTLOAD:    // '17' bits known
3738           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3739           return VTBits-Tmp+1;
3740         case ISD::ZEXTLOAD:    // '16' bits known
3741           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3742           return VTBits-Tmp;
3743       }
3744     }
3745   }
3746 
3747   // Allow the target to implement this method for its nodes.
3748   if (Opcode >= ISD::BUILTIN_OP_END ||
3749       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3750       Opcode == ISD::INTRINSIC_W_CHAIN ||
3751       Opcode == ISD::INTRINSIC_VOID) {
3752     unsigned NumBits =
3753         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3754     if (NumBits > 1)
3755       FirstAnswer = std::max(FirstAnswer, NumBits);
3756   }
3757 
3758   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3759   // use this information.
3760   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3761 
3762   APInt Mask;
3763   if (Known.isNonNegative()) {        // sign bit is 0
3764     Mask = Known.Zero;
3765   } else if (Known.isNegative()) {  // sign bit is 1;
3766     Mask = Known.One;
3767   } else {
3768     // Nothing known.
3769     return FirstAnswer;
3770   }
3771 
3772   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3773   // the number of identical bits in the top of the input value.
3774   Mask = ~Mask;
3775   Mask <<= Mask.getBitWidth()-VTBits;
3776   // Return # leading zeros.  We use 'min' here in case Val was zero before
3777   // shifting.  We don't want to return '64' as for an i32 "0".
3778   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3779 }
3780 
3781 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3782   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3783       !isa<ConstantSDNode>(Op.getOperand(1)))
3784     return false;
3785 
3786   if (Op.getOpcode() == ISD::OR &&
3787       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3788     return false;
3789 
3790   return true;
3791 }
3792 
3793 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3794   // If we're told that NaNs won't happen, assume they won't.
3795   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3796     return true;
3797 
3798   if (Depth == 6)
3799     return false; // Limit search depth.
3800 
3801   // TODO: Handle vectors.
3802   // If the value is a constant, we can obviously see if it is a NaN or not.
3803   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3804     return !C->getValueAPF().isNaN() ||
3805            (SNaN && !C->getValueAPF().isSignaling());
3806   }
3807 
3808   unsigned Opcode = Op.getOpcode();
3809   switch (Opcode) {
3810   case ISD::FADD:
3811   case ISD::FSUB:
3812   case ISD::FMUL:
3813   case ISD::FDIV:
3814   case ISD::FREM:
3815   case ISD::FSIN:
3816   case ISD::FCOS: {
3817     if (SNaN)
3818       return true;
3819     // TODO: Need isKnownNeverInfinity
3820     return false;
3821   }
3822   case ISD::FCANONICALIZE:
3823   case ISD::FEXP:
3824   case ISD::FEXP2:
3825   case ISD::FTRUNC:
3826   case ISD::FFLOOR:
3827   case ISD::FCEIL:
3828   case ISD::FROUND:
3829   case ISD::FRINT:
3830   case ISD::FNEARBYINT: {
3831     if (SNaN)
3832       return true;
3833     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3834   }
3835   case ISD::FABS:
3836   case ISD::FNEG:
3837   case ISD::FCOPYSIGN: {
3838     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3839   }
3840   case ISD::SELECT:
3841     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3842            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3843   case ISD::FP_EXTEND:
3844   case ISD::FP_ROUND: {
3845     if (SNaN)
3846       return true;
3847     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3848   }
3849   case ISD::SINT_TO_FP:
3850   case ISD::UINT_TO_FP:
3851     return true;
3852   case ISD::FMA:
3853   case ISD::FMAD: {
3854     if (SNaN)
3855       return true;
3856     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3857            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
3858            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
3859   }
3860   case ISD::FSQRT: // Need is known positive
3861   case ISD::FLOG:
3862   case ISD::FLOG2:
3863   case ISD::FLOG10:
3864   case ISD::FPOWI:
3865   case ISD::FPOW: {
3866     if (SNaN)
3867       return true;
3868     // TODO: Refine on operand
3869     return false;
3870   }
3871   case ISD::FMINNUM:
3872   case ISD::FMAXNUM: {
3873     // Only one needs to be known not-nan, since it will be returned if the
3874     // other ends up being one.
3875     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
3876            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3877   }
3878   case ISD::FMINNUM_IEEE:
3879   case ISD::FMAXNUM_IEEE: {
3880     if (SNaN)
3881       return true;
3882     // This can return a NaN if either operand is an sNaN, or if both operands
3883     // are NaN.
3884     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
3885             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
3886            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
3887             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
3888   }
3889   case ISD::FMINIMUM:
3890   case ISD::FMAXIMUM: {
3891     // TODO: Does this quiet or return the origina NaN as-is?
3892     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
3893            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
3894   }
3895   case ISD::EXTRACT_VECTOR_ELT: {
3896     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
3897   }
3898   default:
3899     if (Opcode >= ISD::BUILTIN_OP_END ||
3900         Opcode == ISD::INTRINSIC_WO_CHAIN ||
3901         Opcode == ISD::INTRINSIC_W_CHAIN ||
3902         Opcode == ISD::INTRINSIC_VOID) {
3903       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
3904     }
3905 
3906     return false;
3907   }
3908 }
3909 
3910 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
3911   assert(Op.getValueType().isFloatingPoint() &&
3912          "Floating point type expected");
3913 
3914   // If the value is a constant, we can obviously see if it is a zero or not.
3915   // TODO: Add BuildVector support.
3916   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3917     return !C->isZero();
3918   return false;
3919 }
3920 
3921 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3922   assert(!Op.getValueType().isFloatingPoint() &&
3923          "Floating point types unsupported - use isKnownNeverZeroFloat");
3924 
3925   // If the value is a constant, we can obviously see if it is a zero or not.
3926   if (ISD::matchUnaryPredicate(
3927           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
3928     return true;
3929 
3930   // TODO: Recognize more cases here.
3931   switch (Op.getOpcode()) {
3932   default: break;
3933   case ISD::OR:
3934     if (isKnownNeverZero(Op.getOperand(1)) ||
3935         isKnownNeverZero(Op.getOperand(0)))
3936       return true;
3937     break;
3938   }
3939 
3940   return false;
3941 }
3942 
3943 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3944   // Check the obvious case.
3945   if (A == B) return true;
3946 
3947   // For for negative and positive zero.
3948   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3949     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3950       if (CA->isZero() && CB->isZero()) return true;
3951 
3952   // Otherwise they may not be equal.
3953   return false;
3954 }
3955 
3956 // FIXME: unify with llvm::haveNoCommonBitsSet.
3957 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3958 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3959   assert(A.getValueType() == B.getValueType() &&
3960          "Values must have the same type");
3961   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
3962 }
3963 
3964 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
3965                                 ArrayRef<SDValue> Ops,
3966                                 SelectionDAG &DAG) {
3967   int NumOps = Ops.size();
3968   assert(NumOps != 0 && "Can't build an empty vector!");
3969   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
3970          "Incorrect element count in BUILD_VECTOR!");
3971 
3972   // BUILD_VECTOR of UNDEFs is UNDEF.
3973   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3974     return DAG.getUNDEF(VT);
3975 
3976   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
3977   SDValue IdentitySrc;
3978   bool IsIdentity = true;
3979   for (int i = 0; i != NumOps; ++i) {
3980     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
3981         Ops[i].getOperand(0).getValueType() != VT ||
3982         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
3983         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
3984         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
3985       IsIdentity = false;
3986       break;
3987     }
3988     IdentitySrc = Ops[i].getOperand(0);
3989   }
3990   if (IsIdentity)
3991     return IdentitySrc;
3992 
3993   return SDValue();
3994 }
3995 
3996 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3997                                   ArrayRef<SDValue> Ops,
3998                                   SelectionDAG &DAG) {
3999   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4000   assert(llvm::all_of(Ops,
4001                       [Ops](SDValue Op) {
4002                         return Ops[0].getValueType() == Op.getValueType();
4003                       }) &&
4004          "Concatenation of vectors with inconsistent value types!");
4005   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4006              VT.getVectorNumElements() &&
4007          "Incorrect element count in vector concatenation!");
4008 
4009   if (Ops.size() == 1)
4010     return Ops[0];
4011 
4012   // Concat of UNDEFs is UNDEF.
4013   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4014     return DAG.getUNDEF(VT);
4015 
4016   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4017   // simplified to one big BUILD_VECTOR.
4018   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4019   EVT SVT = VT.getScalarType();
4020   SmallVector<SDValue, 16> Elts;
4021   for (SDValue Op : Ops) {
4022     EVT OpVT = Op.getValueType();
4023     if (Op.isUndef())
4024       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4025     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4026       Elts.append(Op->op_begin(), Op->op_end());
4027     else
4028       return SDValue();
4029   }
4030 
4031   // BUILD_VECTOR requires all inputs to be of the same type, find the
4032   // maximum type and extend them all.
4033   for (SDValue Op : Elts)
4034     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4035 
4036   if (SVT.bitsGT(VT.getScalarType()))
4037     for (SDValue &Op : Elts)
4038       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4039                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4040                : DAG.getSExtOrTrunc(Op, DL, SVT);
4041 
4042   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4043   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4044   return V;
4045 }
4046 
4047 /// Gets or creates the specified node.
4048 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4049   FoldingSetNodeID ID;
4050   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4051   void *IP = nullptr;
4052   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4053     return SDValue(E, 0);
4054 
4055   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4056                               getVTList(VT));
4057   CSEMap.InsertNode(N, IP);
4058 
4059   InsertNode(N);
4060   SDValue V = SDValue(N, 0);
4061   NewSDValueDbgMsg(V, "Creating new node: ", this);
4062   return V;
4063 }
4064 
4065 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4066                               SDValue Operand, const SDNodeFlags Flags) {
4067   // Constant fold unary operations with an integer constant operand. Even
4068   // opaque constant will be folded, because the folding of unary operations
4069   // doesn't create new constants with different values. Nevertheless, the
4070   // opaque flag is preserved during folding to prevent future folding with
4071   // other constants.
4072   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4073     const APInt &Val = C->getAPIntValue();
4074     switch (Opcode) {
4075     default: break;
4076     case ISD::SIGN_EXTEND:
4077       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4078                          C->isTargetOpcode(), C->isOpaque());
4079     case ISD::TRUNCATE:
4080       if (C->isOpaque())
4081         break;
4082       LLVM_FALLTHROUGH;
4083     case ISD::ANY_EXTEND:
4084     case ISD::ZERO_EXTEND:
4085       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4086                          C->isTargetOpcode(), C->isOpaque());
4087     case ISD::UINT_TO_FP:
4088     case ISD::SINT_TO_FP: {
4089       APFloat apf(EVTToAPFloatSemantics(VT),
4090                   APInt::getNullValue(VT.getSizeInBits()));
4091       (void)apf.convertFromAPInt(Val,
4092                                  Opcode==ISD::SINT_TO_FP,
4093                                  APFloat::rmNearestTiesToEven);
4094       return getConstantFP(apf, DL, VT);
4095     }
4096     case ISD::BITCAST:
4097       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4098         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4099       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4100         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4101       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4102         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4103       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4104         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4105       break;
4106     case ISD::ABS:
4107       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4108                          C->isOpaque());
4109     case ISD::BITREVERSE:
4110       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4111                          C->isOpaque());
4112     case ISD::BSWAP:
4113       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4114                          C->isOpaque());
4115     case ISD::CTPOP:
4116       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4117                          C->isOpaque());
4118     case ISD::CTLZ:
4119     case ISD::CTLZ_ZERO_UNDEF:
4120       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4121                          C->isOpaque());
4122     case ISD::CTTZ:
4123     case ISD::CTTZ_ZERO_UNDEF:
4124       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4125                          C->isOpaque());
4126     case ISD::FP16_TO_FP: {
4127       bool Ignored;
4128       APFloat FPV(APFloat::IEEEhalf(),
4129                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4130 
4131       // This can return overflow, underflow, or inexact; we don't care.
4132       // FIXME need to be more flexible about rounding mode.
4133       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4134                         APFloat::rmNearestTiesToEven, &Ignored);
4135       return getConstantFP(FPV, DL, VT);
4136     }
4137     }
4138   }
4139 
4140   // Constant fold unary operations with a floating point constant operand.
4141   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4142     APFloat V = C->getValueAPF();    // make copy
4143     switch (Opcode) {
4144     case ISD::FNEG:
4145       V.changeSign();
4146       return getConstantFP(V, DL, VT);
4147     case ISD::FABS:
4148       V.clearSign();
4149       return getConstantFP(V, DL, VT);
4150     case ISD::FCEIL: {
4151       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4152       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4153         return getConstantFP(V, DL, VT);
4154       break;
4155     }
4156     case ISD::FTRUNC: {
4157       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4158       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4159         return getConstantFP(V, DL, VT);
4160       break;
4161     }
4162     case ISD::FFLOOR: {
4163       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4164       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4165         return getConstantFP(V, DL, VT);
4166       break;
4167     }
4168     case ISD::FP_EXTEND: {
4169       bool ignored;
4170       // This can return overflow, underflow, or inexact; we don't care.
4171       // FIXME need to be more flexible about rounding mode.
4172       (void)V.convert(EVTToAPFloatSemantics(VT),
4173                       APFloat::rmNearestTiesToEven, &ignored);
4174       return getConstantFP(V, DL, VT);
4175     }
4176     case ISD::FP_TO_SINT:
4177     case ISD::FP_TO_UINT: {
4178       bool ignored;
4179       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4180       // FIXME need to be more flexible about rounding mode.
4181       APFloat::opStatus s =
4182           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4183       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4184         break;
4185       return getConstant(IntVal, DL, VT);
4186     }
4187     case ISD::BITCAST:
4188       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4189         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4190       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4191         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4192       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4193         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4194       break;
4195     case ISD::FP_TO_FP16: {
4196       bool Ignored;
4197       // This can return overflow, underflow, or inexact; we don't care.
4198       // FIXME need to be more flexible about rounding mode.
4199       (void)V.convert(APFloat::IEEEhalf(),
4200                       APFloat::rmNearestTiesToEven, &Ignored);
4201       return getConstant(V.bitcastToAPInt(), DL, VT);
4202     }
4203     }
4204   }
4205 
4206   // Constant fold unary operations with a vector integer or float operand.
4207   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4208     if (BV->isConstant()) {
4209       switch (Opcode) {
4210       default:
4211         // FIXME: Entirely reasonable to perform folding of other unary
4212         // operations here as the need arises.
4213         break;
4214       case ISD::FNEG:
4215       case ISD::FABS:
4216       case ISD::FCEIL:
4217       case ISD::FTRUNC:
4218       case ISD::FFLOOR:
4219       case ISD::FP_EXTEND:
4220       case ISD::FP_TO_SINT:
4221       case ISD::FP_TO_UINT:
4222       case ISD::TRUNCATE:
4223       case ISD::ANY_EXTEND:
4224       case ISD::ZERO_EXTEND:
4225       case ISD::SIGN_EXTEND:
4226       case ISD::UINT_TO_FP:
4227       case ISD::SINT_TO_FP:
4228       case ISD::ABS:
4229       case ISD::BITREVERSE:
4230       case ISD::BSWAP:
4231       case ISD::CTLZ:
4232       case ISD::CTLZ_ZERO_UNDEF:
4233       case ISD::CTTZ:
4234       case ISD::CTTZ_ZERO_UNDEF:
4235       case ISD::CTPOP: {
4236         SDValue Ops = { Operand };
4237         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4238           return Fold;
4239       }
4240       }
4241     }
4242   }
4243 
4244   unsigned OpOpcode = Operand.getNode()->getOpcode();
4245   switch (Opcode) {
4246   case ISD::TokenFactor:
4247   case ISD::MERGE_VALUES:
4248   case ISD::CONCAT_VECTORS:
4249     return Operand;         // Factor, merge or concat of one node?  No need.
4250   case ISD::BUILD_VECTOR: {
4251     // Attempt to simplify BUILD_VECTOR.
4252     SDValue Ops[] = {Operand};
4253     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4254       return V;
4255     break;
4256   }
4257   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4258   case ISD::FP_EXTEND:
4259     assert(VT.isFloatingPoint() &&
4260            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4261     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4262     assert((!VT.isVector() ||
4263             VT.getVectorNumElements() ==
4264             Operand.getValueType().getVectorNumElements()) &&
4265            "Vector element count mismatch!");
4266     assert(Operand.getValueType().bitsLT(VT) &&
4267            "Invalid fpext node, dst < src!");
4268     if (Operand.isUndef())
4269       return getUNDEF(VT);
4270     break;
4271   case ISD::SIGN_EXTEND:
4272     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4273            "Invalid SIGN_EXTEND!");
4274     if (Operand.getValueType() == VT) return Operand;   // noop extension
4275     assert((!VT.isVector() ||
4276             VT.getVectorNumElements() ==
4277             Operand.getValueType().getVectorNumElements()) &&
4278            "Vector element count mismatch!");
4279     assert(Operand.getValueType().bitsLT(VT) &&
4280            "Invalid sext node, dst < src!");
4281     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4282       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4283     else if (OpOpcode == ISD::UNDEF)
4284       // sext(undef) = 0, because the top bits will all be the same.
4285       return getConstant(0, DL, VT);
4286     break;
4287   case ISD::ZERO_EXTEND:
4288     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4289            "Invalid ZERO_EXTEND!");
4290     if (Operand.getValueType() == VT) return Operand;   // noop extension
4291     assert((!VT.isVector() ||
4292             VT.getVectorNumElements() ==
4293             Operand.getValueType().getVectorNumElements()) &&
4294            "Vector element count mismatch!");
4295     assert(Operand.getValueType().bitsLT(VT) &&
4296            "Invalid zext node, dst < src!");
4297     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4298       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4299     else if (OpOpcode == ISD::UNDEF)
4300       // zext(undef) = 0, because the top bits will be zero.
4301       return getConstant(0, DL, VT);
4302     break;
4303   case ISD::ANY_EXTEND:
4304     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4305            "Invalid ANY_EXTEND!");
4306     if (Operand.getValueType() == VT) return Operand;   // noop extension
4307     assert((!VT.isVector() ||
4308             VT.getVectorNumElements() ==
4309             Operand.getValueType().getVectorNumElements()) &&
4310            "Vector element count mismatch!");
4311     assert(Operand.getValueType().bitsLT(VT) &&
4312            "Invalid anyext node, dst < src!");
4313 
4314     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4315         OpOpcode == ISD::ANY_EXTEND)
4316       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4317       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4318     else if (OpOpcode == ISD::UNDEF)
4319       return getUNDEF(VT);
4320 
4321     // (ext (trunc x)) -> x
4322     if (OpOpcode == ISD::TRUNCATE) {
4323       SDValue OpOp = Operand.getOperand(0);
4324       if (OpOp.getValueType() == VT) {
4325         transferDbgValues(Operand, OpOp);
4326         return OpOp;
4327       }
4328     }
4329     break;
4330   case ISD::TRUNCATE:
4331     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4332            "Invalid TRUNCATE!");
4333     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4334     assert((!VT.isVector() ||
4335             VT.getVectorNumElements() ==
4336             Operand.getValueType().getVectorNumElements()) &&
4337            "Vector element count mismatch!");
4338     assert(Operand.getValueType().bitsGT(VT) &&
4339            "Invalid truncate node, src < dst!");
4340     if (OpOpcode == ISD::TRUNCATE)
4341       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4342     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4343         OpOpcode == ISD::ANY_EXTEND) {
4344       // If the source is smaller than the dest, we still need an extend.
4345       if (Operand.getOperand(0).getValueType().getScalarType()
4346             .bitsLT(VT.getScalarType()))
4347         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4348       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4349         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4350       return Operand.getOperand(0);
4351     }
4352     if (OpOpcode == ISD::UNDEF)
4353       return getUNDEF(VT);
4354     break;
4355   case ISD::ANY_EXTEND_VECTOR_INREG:
4356   case ISD::ZERO_EXTEND_VECTOR_INREG:
4357   case ISD::SIGN_EXTEND_VECTOR_INREG:
4358     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4359     assert(Operand.getValueType().bitsLE(VT) &&
4360            "The input must be the same size or smaller than the result.");
4361     assert(VT.getVectorNumElements() <
4362              Operand.getValueType().getVectorNumElements() &&
4363            "The destination vector type must have fewer lanes than the input.");
4364     break;
4365   case ISD::ABS:
4366     assert(VT.isInteger() && VT == Operand.getValueType() &&
4367            "Invalid ABS!");
4368     if (OpOpcode == ISD::UNDEF)
4369       return getUNDEF(VT);
4370     break;
4371   case ISD::BSWAP:
4372     assert(VT.isInteger() && VT == Operand.getValueType() &&
4373            "Invalid BSWAP!");
4374     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4375            "BSWAP types must be a multiple of 16 bits!");
4376     if (OpOpcode == ISD::UNDEF)
4377       return getUNDEF(VT);
4378     break;
4379   case ISD::BITREVERSE:
4380     assert(VT.isInteger() && VT == Operand.getValueType() &&
4381            "Invalid BITREVERSE!");
4382     if (OpOpcode == ISD::UNDEF)
4383       return getUNDEF(VT);
4384     break;
4385   case ISD::BITCAST:
4386     // Basic sanity checking.
4387     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4388            "Cannot BITCAST between types of different sizes!");
4389     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4390     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4391       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4392     if (OpOpcode == ISD::UNDEF)
4393       return getUNDEF(VT);
4394     break;
4395   case ISD::SCALAR_TO_VECTOR:
4396     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4397            (VT.getVectorElementType() == Operand.getValueType() ||
4398             (VT.getVectorElementType().isInteger() &&
4399              Operand.getValueType().isInteger() &&
4400              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4401            "Illegal SCALAR_TO_VECTOR node!");
4402     if (OpOpcode == ISD::UNDEF)
4403       return getUNDEF(VT);
4404     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4405     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4406         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4407         Operand.getConstantOperandVal(1) == 0 &&
4408         Operand.getOperand(0).getValueType() == VT)
4409       return Operand.getOperand(0);
4410     break;
4411   case ISD::FNEG:
4412     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4413     if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) &&
4414         OpOpcode == ISD::FSUB)
4415       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4416                      Operand.getOperand(0), Flags);
4417     if (OpOpcode == ISD::FNEG)  // --X -> X
4418       return Operand.getOperand(0);
4419     break;
4420   case ISD::FABS:
4421     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4422       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4423     break;
4424   }
4425 
4426   SDNode *N;
4427   SDVTList VTs = getVTList(VT);
4428   SDValue Ops[] = {Operand};
4429   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4430     FoldingSetNodeID ID;
4431     AddNodeIDNode(ID, Opcode, VTs, Ops);
4432     void *IP = nullptr;
4433     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4434       E->intersectFlagsWith(Flags);
4435       return SDValue(E, 0);
4436     }
4437 
4438     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4439     N->setFlags(Flags);
4440     createOperands(N, Ops);
4441     CSEMap.InsertNode(N, IP);
4442   } else {
4443     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4444     createOperands(N, Ops);
4445   }
4446 
4447   InsertNode(N);
4448   SDValue V = SDValue(N, 0);
4449   NewSDValueDbgMsg(V, "Creating new node: ", this);
4450   return V;
4451 }
4452 
4453 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4454                                         const APInt &C2) {
4455   switch (Opcode) {
4456   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4457   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4458   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4459   case ISD::AND:  return std::make_pair(C1 & C2, true);
4460   case ISD::OR:   return std::make_pair(C1 | C2, true);
4461   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4462   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4463   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4464   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4465   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4466   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4467   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4468   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4469   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4470   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4471   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4472   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4473   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4474   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4475   case ISD::UDIV:
4476     if (!C2.getBoolValue())
4477       break;
4478     return std::make_pair(C1.udiv(C2), true);
4479   case ISD::UREM:
4480     if (!C2.getBoolValue())
4481       break;
4482     return std::make_pair(C1.urem(C2), true);
4483   case ISD::SDIV:
4484     if (!C2.getBoolValue())
4485       break;
4486     return std::make_pair(C1.sdiv(C2), true);
4487   case ISD::SREM:
4488     if (!C2.getBoolValue())
4489       break;
4490     return std::make_pair(C1.srem(C2), true);
4491   }
4492   return std::make_pair(APInt(1, 0), false);
4493 }
4494 
4495 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4496                                              EVT VT, const ConstantSDNode *C1,
4497                                              const ConstantSDNode *C2) {
4498   if (C1->isOpaque() || C2->isOpaque())
4499     return SDValue();
4500 
4501   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4502                                             C2->getAPIntValue());
4503   if (!Folded.second)
4504     return SDValue();
4505   return getConstant(Folded.first, DL, VT);
4506 }
4507 
4508 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4509                                        const GlobalAddressSDNode *GA,
4510                                        const SDNode *N2) {
4511   if (GA->getOpcode() != ISD::GlobalAddress)
4512     return SDValue();
4513   if (!TLI->isOffsetFoldingLegal(GA))
4514     return SDValue();
4515   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4516   if (!C2)
4517     return SDValue();
4518   int64_t Offset = C2->getSExtValue();
4519   switch (Opcode) {
4520   case ISD::ADD: break;
4521   case ISD::SUB: Offset = -uint64_t(Offset); break;
4522   default: return SDValue();
4523   }
4524   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4525                           GA->getOffset() + uint64_t(Offset));
4526 }
4527 
4528 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4529   switch (Opcode) {
4530   case ISD::SDIV:
4531   case ISD::UDIV:
4532   case ISD::SREM:
4533   case ISD::UREM: {
4534     // If a divisor is zero/undef or any element of a divisor vector is
4535     // zero/undef, the whole op is undef.
4536     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4537     SDValue Divisor = Ops[1];
4538     if (Divisor.isUndef() || isNullConstant(Divisor))
4539       return true;
4540 
4541     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4542            llvm::any_of(Divisor->op_values(),
4543                         [](SDValue V) { return V.isUndef() ||
4544                                         isNullConstant(V); });
4545     // TODO: Handle signed overflow.
4546   }
4547   // TODO: Handle oversized shifts.
4548   default:
4549     return false;
4550   }
4551 }
4552 
4553 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4554                                              EVT VT, SDNode *N1, SDNode *N2) {
4555   // If the opcode is a target-specific ISD node, there's nothing we can
4556   // do here and the operand rules may not line up with the below, so
4557   // bail early.
4558   if (Opcode >= ISD::BUILTIN_OP_END)
4559     return SDValue();
4560 
4561   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4562     return getUNDEF(VT);
4563 
4564   // Handle the case of two scalars.
4565   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4566     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4567       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4568       assert((!Folded || !VT.isVector()) &&
4569              "Can't fold vectors ops with scalar operands");
4570       return Folded;
4571     }
4572   }
4573 
4574   // fold (add Sym, c) -> Sym+c
4575   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4576     return FoldSymbolOffset(Opcode, VT, GA, N2);
4577   if (TLI->isCommutativeBinOp(Opcode))
4578     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4579       return FoldSymbolOffset(Opcode, VT, GA, N1);
4580 
4581   // For vectors, extract each constant element and fold them individually.
4582   // Either input may be an undef value.
4583   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4584   if (!BV1 && !N1->isUndef())
4585     return SDValue();
4586   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4587   if (!BV2 && !N2->isUndef())
4588     return SDValue();
4589   // If both operands are undef, that's handled the same way as scalars.
4590   if (!BV1 && !BV2)
4591     return SDValue();
4592 
4593   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4594          "Vector binop with different number of elements in operands?");
4595 
4596   EVT SVT = VT.getScalarType();
4597   EVT LegalSVT = SVT;
4598   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4599     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4600     if (LegalSVT.bitsLT(SVT))
4601       return SDValue();
4602   }
4603   SmallVector<SDValue, 4> Outputs;
4604   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4605   for (unsigned I = 0; I != NumOps; ++I) {
4606     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4607     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4608     if (SVT.isInteger()) {
4609       if (V1->getValueType(0).bitsGT(SVT))
4610         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4611       if (V2->getValueType(0).bitsGT(SVT))
4612         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4613     }
4614 
4615     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4616       return SDValue();
4617 
4618     // Fold one vector element.
4619     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4620     if (LegalSVT != SVT)
4621       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4622 
4623     // Scalar folding only succeeded if the result is a constant or UNDEF.
4624     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4625         ScalarResult.getOpcode() != ISD::ConstantFP)
4626       return SDValue();
4627     Outputs.push_back(ScalarResult);
4628   }
4629 
4630   assert(VT.getVectorNumElements() == Outputs.size() &&
4631          "Vector size mismatch!");
4632 
4633   // We may have a vector type but a scalar result. Create a splat.
4634   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4635 
4636   // Build a big vector out of the scalar elements we generated.
4637   return getBuildVector(VT, SDLoc(), Outputs);
4638 }
4639 
4640 // TODO: Merge with FoldConstantArithmetic
4641 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4642                                                    const SDLoc &DL, EVT VT,
4643                                                    ArrayRef<SDValue> Ops,
4644                                                    const SDNodeFlags Flags) {
4645   // If the opcode is a target-specific ISD node, there's nothing we can
4646   // do here and the operand rules may not line up with the below, so
4647   // bail early.
4648   if (Opcode >= ISD::BUILTIN_OP_END)
4649     return SDValue();
4650 
4651   if (isUndef(Opcode, Ops))
4652     return getUNDEF(VT);
4653 
4654   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4655   if (!VT.isVector())
4656     return SDValue();
4657 
4658   unsigned NumElts = VT.getVectorNumElements();
4659 
4660   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4661     return !Op.getValueType().isVector() ||
4662            Op.getValueType().getVectorNumElements() == NumElts;
4663   };
4664 
4665   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4666     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4667     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4668            (BV && BV->isConstant());
4669   };
4670 
4671   // All operands must be vector types with the same number of elements as
4672   // the result type and must be either UNDEF or a build vector of constant
4673   // or UNDEF scalars.
4674   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4675       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4676     return SDValue();
4677 
4678   // If we are comparing vectors, then the result needs to be a i1 boolean
4679   // that is then sign-extended back to the legal result type.
4680   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4681 
4682   // Find legal integer scalar type for constant promotion and
4683   // ensure that its scalar size is at least as large as source.
4684   EVT LegalSVT = VT.getScalarType();
4685   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4686     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4687     if (LegalSVT.bitsLT(VT.getScalarType()))
4688       return SDValue();
4689   }
4690 
4691   // Constant fold each scalar lane separately.
4692   SmallVector<SDValue, 4> ScalarResults;
4693   for (unsigned i = 0; i != NumElts; i++) {
4694     SmallVector<SDValue, 4> ScalarOps;
4695     for (SDValue Op : Ops) {
4696       EVT InSVT = Op.getValueType().getScalarType();
4697       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4698       if (!InBV) {
4699         // We've checked that this is UNDEF or a constant of some kind.
4700         if (Op.isUndef())
4701           ScalarOps.push_back(getUNDEF(InSVT));
4702         else
4703           ScalarOps.push_back(Op);
4704         continue;
4705       }
4706 
4707       SDValue ScalarOp = InBV->getOperand(i);
4708       EVT ScalarVT = ScalarOp.getValueType();
4709 
4710       // Build vector (integer) scalar operands may need implicit
4711       // truncation - do this before constant folding.
4712       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4713         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4714 
4715       ScalarOps.push_back(ScalarOp);
4716     }
4717 
4718     // Constant fold the scalar operands.
4719     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4720 
4721     // Legalize the (integer) scalar constant if necessary.
4722     if (LegalSVT != SVT)
4723       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4724 
4725     // Scalar folding only succeeded if the result is a constant or UNDEF.
4726     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4727         ScalarResult.getOpcode() != ISD::ConstantFP)
4728       return SDValue();
4729     ScalarResults.push_back(ScalarResult);
4730   }
4731 
4732   SDValue V = getBuildVector(VT, DL, ScalarResults);
4733   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4734   return V;
4735 }
4736 
4737 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4738                                          EVT VT, SDValue N1, SDValue N2) {
4739   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4740   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4741   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4742   if (N1CFP && N2CFP) {
4743     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4744     APFloat::opStatus Status;
4745     switch (Opcode) {
4746     case ISD::FADD:
4747       Status = C1.add(C2, APFloat::rmNearestTiesToEven);
4748       if (!HasFPExceptions || Status != APFloat::opInvalidOp)
4749         return getConstantFP(C1, DL, VT);
4750       break;
4751     case ISD::FSUB:
4752       Status = C1.subtract(C2, APFloat::rmNearestTiesToEven);
4753       if (!HasFPExceptions || Status != APFloat::opInvalidOp)
4754         return getConstantFP(C1, DL, VT);
4755       break;
4756     case ISD::FMUL:
4757       Status = C1.multiply(C2, APFloat::rmNearestTiesToEven);
4758       if (!HasFPExceptions || Status != APFloat::opInvalidOp)
4759         return getConstantFP(C1, DL, VT);
4760       break;
4761     case ISD::FDIV:
4762       Status = C1.divide(C2, APFloat::rmNearestTiesToEven);
4763       if (!HasFPExceptions || (Status != APFloat::opInvalidOp &&
4764                                Status != APFloat::opDivByZero)) {
4765         return getConstantFP(C1, DL, VT);
4766       }
4767       break;
4768     case ISD::FREM:
4769       Status = C1.mod(C2);
4770       if (!HasFPExceptions || (Status != APFloat::opInvalidOp &&
4771                                Status != APFloat::opDivByZero)) {
4772         return getConstantFP(C1, DL, VT);
4773       }
4774       break;
4775     case ISD::FCOPYSIGN:
4776       C1.copySign(C2);
4777       return getConstantFP(C1, DL, VT);
4778     default: break;
4779     }
4780   }
4781   if (N1CFP && Opcode == ISD::FP_ROUND) {
4782     APFloat C1 = N1CFP->getValueAPF();    // make copy
4783     bool Unused;
4784     // This can return overflow, underflow, or inexact; we don't care.
4785     // FIXME need to be more flexible about rounding mode.
4786     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
4787                      &Unused);
4788     return getConstantFP(C1, DL, VT);
4789   }
4790 
4791   switch (Opcode) {
4792   case ISD::FADD:
4793   case ISD::FSUB:
4794   case ISD::FMUL:
4795   case ISD::FDIV:
4796   case ISD::FREM:
4797     // If both operands are undef, the result is undef. If 1 operand is undef,
4798     // the result is NaN. This should match the behavior of the IR optimizer.
4799     if (N1.isUndef() && N2.isUndef())
4800       return getUNDEF(VT);
4801     if (N1.isUndef() || N2.isUndef())
4802       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
4803   }
4804   return SDValue();
4805 }
4806 
4807 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4808                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
4809   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4810   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4811   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4812   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4813 
4814   // Canonicalize constant to RHS if commutative.
4815   if (TLI->isCommutativeBinOp(Opcode)) {
4816     if (N1C && !N2C) {
4817       std::swap(N1C, N2C);
4818       std::swap(N1, N2);
4819     } else if (N1CFP && !N2CFP) {
4820       std::swap(N1CFP, N2CFP);
4821       std::swap(N1, N2);
4822     }
4823   }
4824 
4825   switch (Opcode) {
4826   default: break;
4827   case ISD::TokenFactor:
4828     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
4829            N2.getValueType() == MVT::Other && "Invalid token factor!");
4830     // Fold trivial token factors.
4831     if (N1.getOpcode() == ISD::EntryToken) return N2;
4832     if (N2.getOpcode() == ISD::EntryToken) return N1;
4833     if (N1 == N2) return N1;
4834     break;
4835   case ISD::BUILD_VECTOR: {
4836     // Attempt to simplify BUILD_VECTOR.
4837     SDValue Ops[] = {N1, N2};
4838     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4839       return V;
4840     break;
4841   }
4842   case ISD::CONCAT_VECTORS: {
4843     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4844     SDValue Ops[] = {N1, N2};
4845     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4846       return V;
4847     break;
4848   }
4849   case ISD::AND:
4850     assert(VT.isInteger() && "This operator does not apply to FP types!");
4851     assert(N1.getValueType() == N2.getValueType() &&
4852            N1.getValueType() == VT && "Binary operator types must match!");
4853     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
4854     // worth handling here.
4855     if (N2C && N2C->isNullValue())
4856       return N2;
4857     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
4858       return N1;
4859     break;
4860   case ISD::OR:
4861   case ISD::XOR:
4862   case ISD::ADD:
4863   case ISD::SUB:
4864     assert(VT.isInteger() && "This operator does not apply to FP types!");
4865     assert(N1.getValueType() == N2.getValueType() &&
4866            N1.getValueType() == VT && "Binary operator types must match!");
4867     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
4868     // it's worth handling here.
4869     if (N2C && N2C->isNullValue())
4870       return N1;
4871     break;
4872   case ISD::UDIV:
4873   case ISD::UREM:
4874   case ISD::MULHU:
4875   case ISD::MULHS:
4876   case ISD::MUL:
4877   case ISD::SDIV:
4878   case ISD::SREM:
4879   case ISD::SMIN:
4880   case ISD::SMAX:
4881   case ISD::UMIN:
4882   case ISD::UMAX:
4883   case ISD::SADDSAT:
4884   case ISD::SSUBSAT:
4885   case ISD::UADDSAT:
4886   case ISD::USUBSAT:
4887     assert(VT.isInteger() && "This operator does not apply to FP types!");
4888     assert(N1.getValueType() == N2.getValueType() &&
4889            N1.getValueType() == VT && "Binary operator types must match!");
4890     break;
4891   case ISD::FADD:
4892   case ISD::FSUB:
4893   case ISD::FMUL:
4894   case ISD::FDIV:
4895   case ISD::FREM:
4896     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
4897     assert(N1.getValueType() == N2.getValueType() &&
4898            N1.getValueType() == VT && "Binary operator types must match!");
4899     break;
4900   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
4901     assert(N1.getValueType() == VT &&
4902            N1.getValueType().isFloatingPoint() &&
4903            N2.getValueType().isFloatingPoint() &&
4904            "Invalid FCOPYSIGN!");
4905     break;
4906   case ISD::SHL:
4907   case ISD::SRA:
4908   case ISD::SRL:
4909     if (SDValue V = simplifyShift(N1, N2))
4910       return V;
4911     LLVM_FALLTHROUGH;
4912   case ISD::ROTL:
4913   case ISD::ROTR:
4914     assert(VT == N1.getValueType() &&
4915            "Shift operators return type must be the same as their first arg");
4916     assert(VT.isInteger() && N2.getValueType().isInteger() &&
4917            "Shifts only work on integers");
4918     assert((!VT.isVector() || VT == N2.getValueType()) &&
4919            "Vector shift amounts must be in the same as their first arg");
4920     // Verify that the shift amount VT is big enough to hold valid shift
4921     // amounts.  This catches things like trying to shift an i1024 value by an
4922     // i8, which is easy to fall into in generic code that uses
4923     // TLI.getShiftAmount().
4924     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
4925            "Invalid use of small shift amount with oversized value!");
4926 
4927     // Always fold shifts of i1 values so the code generator doesn't need to
4928     // handle them.  Since we know the size of the shift has to be less than the
4929     // size of the value, the shift/rotate count is guaranteed to be zero.
4930     if (VT == MVT::i1)
4931       return N1;
4932     if (N2C && N2C->isNullValue())
4933       return N1;
4934     break;
4935   case ISD::FP_ROUND_INREG: {
4936     EVT EVT = cast<VTSDNode>(N2)->getVT();
4937     assert(VT == N1.getValueType() && "Not an inreg round!");
4938     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
4939            "Cannot FP_ROUND_INREG integer types");
4940     assert(EVT.isVector() == VT.isVector() &&
4941            "FP_ROUND_INREG type should be vector iff the operand "
4942            "type is vector!");
4943     assert((!EVT.isVector() ||
4944             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4945            "Vector element counts must match in FP_ROUND_INREG");
4946     assert(EVT.bitsLE(VT) && "Not rounding down!");
4947     (void)EVT;
4948     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
4949     break;
4950   }
4951   case ISD::FP_ROUND:
4952     assert(VT.isFloatingPoint() &&
4953            N1.getValueType().isFloatingPoint() &&
4954            VT.bitsLE(N1.getValueType()) &&
4955            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
4956            "Invalid FP_ROUND!");
4957     if (N1.getValueType() == VT) return N1;  // noop conversion.
4958     break;
4959   case ISD::AssertSext:
4960   case ISD::AssertZext: {
4961     EVT EVT = cast<VTSDNode>(N2)->getVT();
4962     assert(VT == N1.getValueType() && "Not an inreg extend!");
4963     assert(VT.isInteger() && EVT.isInteger() &&
4964            "Cannot *_EXTEND_INREG FP types");
4965     assert(!EVT.isVector() &&
4966            "AssertSExt/AssertZExt type should be the vector element type "
4967            "rather than the vector type!");
4968     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
4969     if (VT.getScalarType() == EVT) return N1; // noop assertion.
4970     break;
4971   }
4972   case ISD::SIGN_EXTEND_INREG: {
4973     EVT EVT = cast<VTSDNode>(N2)->getVT();
4974     assert(VT == N1.getValueType() && "Not an inreg extend!");
4975     assert(VT.isInteger() && EVT.isInteger() &&
4976            "Cannot *_EXTEND_INREG FP types");
4977     assert(EVT.isVector() == VT.isVector() &&
4978            "SIGN_EXTEND_INREG type should be vector iff the operand "
4979            "type is vector!");
4980     assert((!EVT.isVector() ||
4981             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
4982            "Vector element counts must match in SIGN_EXTEND_INREG");
4983     assert(EVT.bitsLE(VT) && "Not extending!");
4984     if (EVT == VT) return N1;  // Not actually extending
4985 
4986     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
4987       unsigned FromBits = EVT.getScalarSizeInBits();
4988       Val <<= Val.getBitWidth() - FromBits;
4989       Val.ashrInPlace(Val.getBitWidth() - FromBits);
4990       return getConstant(Val, DL, ConstantVT);
4991     };
4992 
4993     if (N1C) {
4994       const APInt &Val = N1C->getAPIntValue();
4995       return SignExtendInReg(Val, VT);
4996     }
4997     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4998       SmallVector<SDValue, 8> Ops;
4999       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5000       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5001         SDValue Op = N1.getOperand(i);
5002         if (Op.isUndef()) {
5003           Ops.push_back(getUNDEF(OpVT));
5004           continue;
5005         }
5006         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5007         APInt Val = C->getAPIntValue();
5008         Ops.push_back(SignExtendInReg(Val, OpVT));
5009       }
5010       return getBuildVector(VT, DL, Ops);
5011     }
5012     break;
5013   }
5014   case ISD::EXTRACT_VECTOR_ELT:
5015     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5016            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5017              element type of the vector.");
5018 
5019     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5020     if (N1.isUndef())
5021       return getUNDEF(VT);
5022 
5023     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5024     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5025       return getUNDEF(VT);
5026 
5027     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5028     // expanding copies of large vectors from registers.
5029     if (N2C &&
5030         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5031         N1.getNumOperands() > 0) {
5032       unsigned Factor =
5033         N1.getOperand(0).getValueType().getVectorNumElements();
5034       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5035                      N1.getOperand(N2C->getZExtValue() / Factor),
5036                      getConstant(N2C->getZExtValue() % Factor, DL,
5037                                  N2.getValueType()));
5038     }
5039 
5040     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5041     // expanding large vector constants.
5042     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5043       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5044 
5045       if (VT != Elt.getValueType())
5046         // If the vector element type is not legal, the BUILD_VECTOR operands
5047         // are promoted and implicitly truncated, and the result implicitly
5048         // extended. Make that explicit here.
5049         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5050 
5051       return Elt;
5052     }
5053 
5054     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5055     // operations are lowered to scalars.
5056     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5057       // If the indices are the same, return the inserted element else
5058       // if the indices are known different, extract the element from
5059       // the original vector.
5060       SDValue N1Op2 = N1.getOperand(2);
5061       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5062 
5063       if (N1Op2C && N2C) {
5064         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5065           if (VT == N1.getOperand(1).getValueType())
5066             return N1.getOperand(1);
5067           else
5068             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5069         }
5070 
5071         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5072       }
5073     }
5074 
5075     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5076     // when vector types are scalarized and v1iX is legal.
5077     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5078     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5079         N1.getValueType().getVectorNumElements() == 1) {
5080       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5081                      N1.getOperand(1));
5082     }
5083     break;
5084   case ISD::EXTRACT_ELEMENT:
5085     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5086     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5087            (N1.getValueType().isInteger() == VT.isInteger()) &&
5088            N1.getValueType() != VT &&
5089            "Wrong types for EXTRACT_ELEMENT!");
5090 
5091     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5092     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5093     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5094     if (N1.getOpcode() == ISD::BUILD_PAIR)
5095       return N1.getOperand(N2C->getZExtValue());
5096 
5097     // EXTRACT_ELEMENT of a constant int is also very common.
5098     if (N1C) {
5099       unsigned ElementSize = VT.getSizeInBits();
5100       unsigned Shift = ElementSize * N2C->getZExtValue();
5101       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5102       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5103     }
5104     break;
5105   case ISD::EXTRACT_SUBVECTOR:
5106     if (VT.isSimple() && N1.getValueType().isSimple()) {
5107       assert(VT.isVector() && N1.getValueType().isVector() &&
5108              "Extract subvector VTs must be a vectors!");
5109       assert(VT.getVectorElementType() ==
5110              N1.getValueType().getVectorElementType() &&
5111              "Extract subvector VTs must have the same element type!");
5112       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5113              "Extract subvector must be from larger vector to smaller vector!");
5114 
5115       if (N2C) {
5116         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5117                 <= N1.getValueType().getVectorNumElements())
5118                && "Extract subvector overflow!");
5119       }
5120 
5121       // Trivial extraction.
5122       if (VT.getSimpleVT() == N1.getSimpleValueType())
5123         return N1;
5124 
5125       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5126       if (N1.isUndef())
5127         return getUNDEF(VT);
5128 
5129       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5130       // the concat have the same type as the extract.
5131       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5132           N1.getNumOperands() > 0 &&
5133           VT == N1.getOperand(0).getValueType()) {
5134         unsigned Factor = VT.getVectorNumElements();
5135         return N1.getOperand(N2C->getZExtValue() / Factor);
5136       }
5137 
5138       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5139       // during shuffle legalization.
5140       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5141           VT == N1.getOperand(1).getValueType())
5142         return N1.getOperand(1);
5143     }
5144     break;
5145   }
5146 
5147   // Perform trivial constant folding.
5148   if (SDValue SV =
5149           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5150     return SV;
5151 
5152   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5153     return V;
5154 
5155   // Canonicalize an UNDEF to the RHS, even over a constant.
5156   if (N1.isUndef()) {
5157     if (TLI->isCommutativeBinOp(Opcode)) {
5158       std::swap(N1, N2);
5159     } else {
5160       switch (Opcode) {
5161       case ISD::FP_ROUND_INREG:
5162       case ISD::SIGN_EXTEND_INREG:
5163       case ISD::SUB:
5164         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5165       case ISD::UDIV:
5166       case ISD::SDIV:
5167       case ISD::UREM:
5168       case ISD::SREM:
5169       case ISD::SSUBSAT:
5170       case ISD::USUBSAT:
5171         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5172       }
5173     }
5174   }
5175 
5176   // Fold a bunch of operators when the RHS is undef.
5177   if (N2.isUndef()) {
5178     switch (Opcode) {
5179     case ISD::XOR:
5180       if (N1.isUndef())
5181         // Handle undef ^ undef -> 0 special case. This is a common
5182         // idiom (misuse).
5183         return getConstant(0, DL, VT);
5184       LLVM_FALLTHROUGH;
5185     case ISD::ADD:
5186     case ISD::SUB:
5187     case ISD::UDIV:
5188     case ISD::SDIV:
5189     case ISD::UREM:
5190     case ISD::SREM:
5191       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5192     case ISD::MUL:
5193     case ISD::AND:
5194     case ISD::SSUBSAT:
5195     case ISD::USUBSAT:
5196       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5197     case ISD::OR:
5198     case ISD::SADDSAT:
5199     case ISD::UADDSAT:
5200       return getAllOnesConstant(DL, VT);
5201     }
5202   }
5203 
5204   // Memoize this node if possible.
5205   SDNode *N;
5206   SDVTList VTs = getVTList(VT);
5207   SDValue Ops[] = {N1, N2};
5208   if (VT != MVT::Glue) {
5209     FoldingSetNodeID ID;
5210     AddNodeIDNode(ID, Opcode, VTs, Ops);
5211     void *IP = nullptr;
5212     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5213       E->intersectFlagsWith(Flags);
5214       return SDValue(E, 0);
5215     }
5216 
5217     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5218     N->setFlags(Flags);
5219     createOperands(N, Ops);
5220     CSEMap.InsertNode(N, IP);
5221   } else {
5222     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5223     createOperands(N, Ops);
5224   }
5225 
5226   InsertNode(N);
5227   SDValue V = SDValue(N, 0);
5228   NewSDValueDbgMsg(V, "Creating new node: ", this);
5229   return V;
5230 }
5231 
5232 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5233                               SDValue N1, SDValue N2, SDValue N3,
5234                               const SDNodeFlags Flags) {
5235   // Perform various simplifications.
5236   switch (Opcode) {
5237   case ISD::FMA: {
5238     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5239     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5240            N3.getValueType() == VT && "FMA types must match!");
5241     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5242     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5243     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5244     if (N1CFP && N2CFP && N3CFP) {
5245       APFloat  V1 = N1CFP->getValueAPF();
5246       const APFloat &V2 = N2CFP->getValueAPF();
5247       const APFloat &V3 = N3CFP->getValueAPF();
5248       APFloat::opStatus s =
5249         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5250       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
5251         return getConstantFP(V1, DL, VT);
5252     }
5253     break;
5254   }
5255   case ISD::BUILD_VECTOR: {
5256     // Attempt to simplify BUILD_VECTOR.
5257     SDValue Ops[] = {N1, N2, N3};
5258     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5259       return V;
5260     break;
5261   }
5262   case ISD::CONCAT_VECTORS: {
5263     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5264     SDValue Ops[] = {N1, N2, N3};
5265     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5266       return V;
5267     break;
5268   }
5269   case ISD::SETCC: {
5270     assert(VT.isInteger() && "SETCC result type must be an integer!");
5271     assert(N1.getValueType() == N2.getValueType() &&
5272            "SETCC operands must have the same type!");
5273     assert(VT.isVector() == N1.getValueType().isVector() &&
5274            "SETCC type should be vector iff the operand type is vector!");
5275     assert((!VT.isVector() ||
5276             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5277            "SETCC vector element counts must match!");
5278     // Use FoldSetCC to simplify SETCC's.
5279     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5280       return V;
5281     // Vector constant folding.
5282     SDValue Ops[] = {N1, N2, N3};
5283     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5284       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5285       return V;
5286     }
5287     break;
5288   }
5289   case ISD::SELECT:
5290   case ISD::VSELECT:
5291     if (SDValue V = simplifySelect(N1, N2, N3))
5292       return V;
5293     break;
5294   case ISD::VECTOR_SHUFFLE:
5295     llvm_unreachable("should use getVectorShuffle constructor!");
5296   case ISD::INSERT_VECTOR_ELT: {
5297     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5298     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5299     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5300       return getUNDEF(VT);
5301     break;
5302   }
5303   case ISD::INSERT_SUBVECTOR: {
5304     SDValue Index = N3;
5305     if (VT.isSimple() && N1.getValueType().isSimple()
5306         && N2.getValueType().isSimple()) {
5307       assert(VT.isVector() && N1.getValueType().isVector() &&
5308              N2.getValueType().isVector() &&
5309              "Insert subvector VTs must be a vectors");
5310       assert(VT == N1.getValueType() &&
5311              "Dest and insert subvector source types must match!");
5312       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5313              "Insert subvector must be from smaller vector to larger vector!");
5314       if (isa<ConstantSDNode>(Index)) {
5315         assert((N2.getValueType().getVectorNumElements() +
5316                 cast<ConstantSDNode>(Index)->getZExtValue()
5317                 <= VT.getVectorNumElements())
5318                && "Insert subvector overflow!");
5319       }
5320 
5321       // Trivial insertion.
5322       if (VT.getSimpleVT() == N2.getSimpleValueType())
5323         return N2;
5324     }
5325     break;
5326   }
5327   case ISD::BITCAST:
5328     // Fold bit_convert nodes from a type to themselves.
5329     if (N1.getValueType() == VT)
5330       return N1;
5331     break;
5332   }
5333 
5334   // Memoize node if it doesn't produce a flag.
5335   SDNode *N;
5336   SDVTList VTs = getVTList(VT);
5337   SDValue Ops[] = {N1, N2, N3};
5338   if (VT != MVT::Glue) {
5339     FoldingSetNodeID ID;
5340     AddNodeIDNode(ID, Opcode, VTs, Ops);
5341     void *IP = nullptr;
5342     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5343       E->intersectFlagsWith(Flags);
5344       return SDValue(E, 0);
5345     }
5346 
5347     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5348     N->setFlags(Flags);
5349     createOperands(N, Ops);
5350     CSEMap.InsertNode(N, IP);
5351   } else {
5352     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5353     createOperands(N, Ops);
5354   }
5355 
5356   InsertNode(N);
5357   SDValue V = SDValue(N, 0);
5358   NewSDValueDbgMsg(V, "Creating new node: ", this);
5359   return V;
5360 }
5361 
5362 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5363                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5364   SDValue Ops[] = { N1, N2, N3, N4 };
5365   return getNode(Opcode, DL, VT, Ops);
5366 }
5367 
5368 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5369                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5370                               SDValue N5) {
5371   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5372   return getNode(Opcode, DL, VT, Ops);
5373 }
5374 
5375 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5376 /// the incoming stack arguments to be loaded from the stack.
5377 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5378   SmallVector<SDValue, 8> ArgChains;
5379 
5380   // Include the original chain at the beginning of the list. When this is
5381   // used by target LowerCall hooks, this helps legalize find the
5382   // CALLSEQ_BEGIN node.
5383   ArgChains.push_back(Chain);
5384 
5385   // Add a chain value for each stack argument.
5386   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5387        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5388     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5389       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5390         if (FI->getIndex() < 0)
5391           ArgChains.push_back(SDValue(L, 1));
5392 
5393   // Build a tokenfactor for all the chains.
5394   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5395 }
5396 
5397 /// getMemsetValue - Vectorized representation of the memset value
5398 /// operand.
5399 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5400                               const SDLoc &dl) {
5401   assert(!Value.isUndef());
5402 
5403   unsigned NumBits = VT.getScalarSizeInBits();
5404   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5405     assert(C->getAPIntValue().getBitWidth() == 8);
5406     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5407     if (VT.isInteger()) {
5408       bool IsOpaque = VT.getSizeInBits() > 64 ||
5409           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5410       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5411     }
5412     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5413                              VT);
5414   }
5415 
5416   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5417   EVT IntVT = VT.getScalarType();
5418   if (!IntVT.isInteger())
5419     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5420 
5421   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5422   if (NumBits > 8) {
5423     // Use a multiplication with 0x010101... to extend the input to the
5424     // required length.
5425     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5426     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5427                         DAG.getConstant(Magic, dl, IntVT));
5428   }
5429 
5430   if (VT != Value.getValueType() && !VT.isInteger())
5431     Value = DAG.getBitcast(VT.getScalarType(), Value);
5432   if (VT != Value.getValueType())
5433     Value = DAG.getSplatBuildVector(VT, dl, Value);
5434 
5435   return Value;
5436 }
5437 
5438 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5439 /// used when a memcpy is turned into a memset when the source is a constant
5440 /// string ptr.
5441 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5442                                   const TargetLowering &TLI,
5443                                   const ConstantDataArraySlice &Slice) {
5444   // Handle vector with all elements zero.
5445   if (Slice.Array == nullptr) {
5446     if (VT.isInteger())
5447       return DAG.getConstant(0, dl, VT);
5448     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5449       return DAG.getConstantFP(0.0, dl, VT);
5450     else if (VT.isVector()) {
5451       unsigned NumElts = VT.getVectorNumElements();
5452       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5453       return DAG.getNode(ISD::BITCAST, dl, VT,
5454                          DAG.getConstant(0, dl,
5455                                          EVT::getVectorVT(*DAG.getContext(),
5456                                                           EltVT, NumElts)));
5457     } else
5458       llvm_unreachable("Expected type!");
5459   }
5460 
5461   assert(!VT.isVector() && "Can't handle vector type here!");
5462   unsigned NumVTBits = VT.getSizeInBits();
5463   unsigned NumVTBytes = NumVTBits / 8;
5464   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5465 
5466   APInt Val(NumVTBits, 0);
5467   if (DAG.getDataLayout().isLittleEndian()) {
5468     for (unsigned i = 0; i != NumBytes; ++i)
5469       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5470   } else {
5471     for (unsigned i = 0; i != NumBytes; ++i)
5472       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5473   }
5474 
5475   // If the "cost" of materializing the integer immediate is less than the cost
5476   // of a load, then it is cost effective to turn the load into the immediate.
5477   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5478   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5479     return DAG.getConstant(Val, dl, VT);
5480   return SDValue(nullptr, 0);
5481 }
5482 
5483 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5484                                            const SDLoc &DL) {
5485   EVT VT = Base.getValueType();
5486   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5487 }
5488 
5489 /// Returns true if memcpy source is constant data.
5490 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5491   uint64_t SrcDelta = 0;
5492   GlobalAddressSDNode *G = nullptr;
5493   if (Src.getOpcode() == ISD::GlobalAddress)
5494     G = cast<GlobalAddressSDNode>(Src);
5495   else if (Src.getOpcode() == ISD::ADD &&
5496            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5497            Src.getOperand(1).getOpcode() == ISD::Constant) {
5498     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5499     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5500   }
5501   if (!G)
5502     return false;
5503 
5504   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5505                                   SrcDelta + G->getOffset());
5506 }
5507 
5508 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5509 /// Return true if the number of memory ops is below the threshold (Limit).
5510 /// It returns the types of the sequence of memory ops to perform
5511 /// memset / memcpy by reference.
5512 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
5513                                      unsigned Limit, uint64_t Size,
5514                                      unsigned DstAlign, unsigned SrcAlign,
5515                                      bool IsMemset,
5516                                      bool ZeroMemset,
5517                                      bool MemcpyStrSrc,
5518                                      bool AllowOverlap,
5519                                      unsigned DstAS, unsigned SrcAS,
5520                                      SelectionDAG &DAG,
5521                                      const TargetLowering &TLI) {
5522   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
5523          "Expecting memcpy / memset source to meet alignment requirement!");
5524   // If 'SrcAlign' is zero, that means the memory operation does not need to
5525   // load the value, i.e. memset or memcpy from constant string. Otherwise,
5526   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5527   // is the specified alignment of the memory operation. If it is zero, that
5528   // means it's possible to change the alignment of the destination.
5529   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5530   // not need to be loaded.
5531   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
5532                                    IsMemset, ZeroMemset, MemcpyStrSrc,
5533                                    DAG.getMachineFunction());
5534 
5535   if (VT == MVT::Other) {
5536     // Use the largest integer type whose alignment constraints are satisfied.
5537     // We only need to check DstAlign here as SrcAlign is always greater or
5538     // equal to DstAlign (or zero).
5539     VT = MVT::i64;
5540     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
5541            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
5542       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
5543     assert(VT.isInteger());
5544 
5545     // Find the largest legal integer type.
5546     MVT LVT = MVT::i64;
5547     while (!TLI.isTypeLegal(LVT))
5548       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
5549     assert(LVT.isInteger());
5550 
5551     // If the type we've chosen is larger than the largest legal integer type
5552     // then use that instead.
5553     if (VT.bitsGT(LVT))
5554       VT = LVT;
5555   }
5556 
5557   unsigned NumMemOps = 0;
5558   while (Size != 0) {
5559     unsigned VTSize = VT.getSizeInBits() / 8;
5560     while (VTSize > Size) {
5561       // For now, only use non-vector load / store's for the left-over pieces.
5562       EVT NewVT = VT;
5563       unsigned NewVTSize;
5564 
5565       bool Found = false;
5566       if (VT.isVector() || VT.isFloatingPoint()) {
5567         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
5568         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
5569             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
5570           Found = true;
5571         else if (NewVT == MVT::i64 &&
5572                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
5573                  TLI.isSafeMemOpType(MVT::f64)) {
5574           // i64 is usually not legal on 32-bit targets, but f64 may be.
5575           NewVT = MVT::f64;
5576           Found = true;
5577         }
5578       }
5579 
5580       if (!Found) {
5581         do {
5582           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
5583           if (NewVT == MVT::i8)
5584             break;
5585         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
5586       }
5587       NewVTSize = NewVT.getSizeInBits() / 8;
5588 
5589       // If the new VT cannot cover all of the remaining bits, then consider
5590       // issuing a (or a pair of) unaligned and overlapping load / store.
5591       bool Fast;
5592       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
5593           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) &&
5594           Fast)
5595         VTSize = Size;
5596       else {
5597         VT = NewVT;
5598         VTSize = NewVTSize;
5599       }
5600     }
5601 
5602     if (++NumMemOps > Limit)
5603       return false;
5604 
5605     MemOps.push_back(VT);
5606     Size -= VTSize;
5607   }
5608 
5609   return true;
5610 }
5611 
5612 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5613   // On Darwin, -Os means optimize for size without hurting performance, so
5614   // only really optimize for size when -Oz (MinSize) is used.
5615   if (MF.getTarget().getTargetTriple().isOSDarwin())
5616     return MF.getFunction().optForMinSize();
5617   return MF.getFunction().optForSize();
5618 }
5619 
5620 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5621                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5622                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5623                           SmallVector<SDValue, 16> &OutStoreChains) {
5624   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5625   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5626   SmallVector<SDValue, 16> GluedLoadChains;
5627   for (unsigned i = From; i < To; ++i) {
5628     OutChains.push_back(OutLoadChains[i]);
5629     GluedLoadChains.push_back(OutLoadChains[i]);
5630   }
5631 
5632   // Chain for all loads.
5633   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5634                                   GluedLoadChains);
5635 
5636   for (unsigned i = From; i < To; ++i) {
5637     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5638     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5639                                   ST->getBasePtr(), ST->getMemoryVT(),
5640                                   ST->getMemOperand());
5641     OutChains.push_back(NewStore);
5642   }
5643 }
5644 
5645 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5646                                        SDValue Chain, SDValue Dst, SDValue Src,
5647                                        uint64_t Size, unsigned Align,
5648                                        bool isVol, bool AlwaysInline,
5649                                        MachinePointerInfo DstPtrInfo,
5650                                        MachinePointerInfo SrcPtrInfo) {
5651   // Turn a memcpy of undef to nop.
5652   if (Src.isUndef())
5653     return Chain;
5654 
5655   // Expand memcpy to a series of load and store ops if the size operand falls
5656   // below a certain threshold.
5657   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5658   // rather than maybe a humongous number of loads and stores.
5659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5660   const DataLayout &DL = DAG.getDataLayout();
5661   LLVMContext &C = *DAG.getContext();
5662   std::vector<EVT> MemOps;
5663   bool DstAlignCanChange = false;
5664   MachineFunction &MF = DAG.getMachineFunction();
5665   MachineFrameInfo &MFI = MF.getFrameInfo();
5666   bool OptSize = shouldLowerMemFuncForSize(MF);
5667   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5668   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5669     DstAlignCanChange = true;
5670   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5671   if (Align > SrcAlign)
5672     SrcAlign = Align;
5673   ConstantDataArraySlice Slice;
5674   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5675   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5676   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5677 
5678   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5679                                 (DstAlignCanChange ? 0 : Align),
5680                                 (isZeroConstant ? 0 : SrcAlign),
5681                                 false, false, CopyFromConstant, true,
5682                                 DstPtrInfo.getAddrSpace(),
5683                                 SrcPtrInfo.getAddrSpace(),
5684                                 DAG, TLI))
5685     return SDValue();
5686 
5687   if (DstAlignCanChange) {
5688     Type *Ty = MemOps[0].getTypeForEVT(C);
5689     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5690 
5691     // Don't promote to an alignment that would require dynamic stack
5692     // realignment.
5693     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5694     if (!TRI->needsStackRealignment(MF))
5695       while (NewAlign > Align &&
5696              DL.exceedsNaturalStackAlignment(NewAlign))
5697           NewAlign /= 2;
5698 
5699     if (NewAlign > Align) {
5700       // Give the stack frame object a larger alignment if needed.
5701       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5702         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5703       Align = NewAlign;
5704     }
5705   }
5706 
5707   MachineMemOperand::Flags MMOFlags =
5708       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5709   SmallVector<SDValue, 16> OutLoadChains;
5710   SmallVector<SDValue, 16> OutStoreChains;
5711   SmallVector<SDValue, 32> OutChains;
5712   unsigned NumMemOps = MemOps.size();
5713   uint64_t SrcOff = 0, DstOff = 0;
5714   for (unsigned i = 0; i != NumMemOps; ++i) {
5715     EVT VT = MemOps[i];
5716     unsigned VTSize = VT.getSizeInBits() / 8;
5717     SDValue Value, Store;
5718 
5719     if (VTSize > Size) {
5720       // Issuing an unaligned load / store pair  that overlaps with the previous
5721       // pair. Adjust the offset accordingly.
5722       assert(i == NumMemOps-1 && i != 0);
5723       SrcOff -= VTSize - Size;
5724       DstOff -= VTSize - Size;
5725     }
5726 
5727     if (CopyFromConstant &&
5728         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5729       // It's unlikely a store of a vector immediate can be done in a single
5730       // instruction. It would require a load from a constantpool first.
5731       // We only handle zero vectors here.
5732       // FIXME: Handle other cases where store of vector immediate is done in
5733       // a single instruction.
5734       ConstantDataArraySlice SubSlice;
5735       if (SrcOff < Slice.Length) {
5736         SubSlice = Slice;
5737         SubSlice.move(SrcOff);
5738       } else {
5739         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5740         SubSlice.Array = nullptr;
5741         SubSlice.Offset = 0;
5742         SubSlice.Length = VTSize;
5743       }
5744       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5745       if (Value.getNode()) {
5746         Store = DAG.getStore(Chain, dl, Value,
5747                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5748                              DstPtrInfo.getWithOffset(DstOff), Align,
5749                              MMOFlags);
5750         OutChains.push_back(Store);
5751       }
5752     }
5753 
5754     if (!Store.getNode()) {
5755       // The type might not be legal for the target.  This should only happen
5756       // if the type is smaller than a legal type, as on PPC, so the right
5757       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5758       // to Load/Store if NVT==VT.
5759       // FIXME does the case above also need this?
5760       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5761       assert(NVT.bitsGE(VT));
5762 
5763       bool isDereferenceable =
5764         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5765       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5766       if (isDereferenceable)
5767         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5768 
5769       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5770                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5771                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5772                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5773       OutLoadChains.push_back(Value.getValue(1));
5774 
5775       Store = DAG.getTruncStore(
5776           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5777           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
5778       OutStoreChains.push_back(Store);
5779     }
5780     SrcOff += VTSize;
5781     DstOff += VTSize;
5782     Size -= VTSize;
5783   }
5784 
5785   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5786                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5787   unsigned NumLdStInMemcpy = OutStoreChains.size();
5788 
5789   if (NumLdStInMemcpy) {
5790     // It may be that memcpy might be converted to memset if it's memcpy
5791     // of constants. In such a case, we won't have loads and stores, but
5792     // just stores. In the absence of loads, there is nothing to gang up.
5793     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5794       // If target does not care, just leave as it.
5795       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5796         OutChains.push_back(OutLoadChains[i]);
5797         OutChains.push_back(OutStoreChains[i]);
5798       }
5799     } else {
5800       // Ld/St less than/equal limit set by target.
5801       if (NumLdStInMemcpy <= GluedLdStLimit) {
5802           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5803                                         NumLdStInMemcpy, OutLoadChains,
5804                                         OutStoreChains);
5805       } else {
5806         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5807         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5808         unsigned GlueIter = 0;
5809 
5810         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5811           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5812           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5813 
5814           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5815                                        OutLoadChains, OutStoreChains);
5816           GlueIter += GluedLdStLimit;
5817         }
5818 
5819         // Residual ld/st.
5820         if (RemainingLdStInMemcpy) {
5821           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5822                                         RemainingLdStInMemcpy, OutLoadChains,
5823                                         OutStoreChains);
5824         }
5825       }
5826     }
5827   }
5828   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5829 }
5830 
5831 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5832                                         SDValue Chain, SDValue Dst, SDValue Src,
5833                                         uint64_t Size, unsigned Align,
5834                                         bool isVol, bool AlwaysInline,
5835                                         MachinePointerInfo DstPtrInfo,
5836                                         MachinePointerInfo SrcPtrInfo) {
5837   // Turn a memmove of undef to nop.
5838   if (Src.isUndef())
5839     return Chain;
5840 
5841   // Expand memmove to a series of load and store ops if the size operand falls
5842   // below a certain threshold.
5843   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5844   const DataLayout &DL = DAG.getDataLayout();
5845   LLVMContext &C = *DAG.getContext();
5846   std::vector<EVT> MemOps;
5847   bool DstAlignCanChange = false;
5848   MachineFunction &MF = DAG.getMachineFunction();
5849   MachineFrameInfo &MFI = MF.getFrameInfo();
5850   bool OptSize = shouldLowerMemFuncForSize(MF);
5851   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5852   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5853     DstAlignCanChange = true;
5854   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5855   if (Align > SrcAlign)
5856     SrcAlign = Align;
5857   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5858 
5859   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
5860                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
5861                                 false, false, false, false,
5862                                 DstPtrInfo.getAddrSpace(),
5863                                 SrcPtrInfo.getAddrSpace(),
5864                                 DAG, TLI))
5865     return SDValue();
5866 
5867   if (DstAlignCanChange) {
5868     Type *Ty = MemOps[0].getTypeForEVT(C);
5869     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5870     if (NewAlign > Align) {
5871       // Give the stack frame object a larger alignment if needed.
5872       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5873         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5874       Align = NewAlign;
5875     }
5876   }
5877 
5878   MachineMemOperand::Flags MMOFlags =
5879       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5880   uint64_t SrcOff = 0, DstOff = 0;
5881   SmallVector<SDValue, 8> LoadValues;
5882   SmallVector<SDValue, 8> LoadChains;
5883   SmallVector<SDValue, 8> OutChains;
5884   unsigned NumMemOps = MemOps.size();
5885   for (unsigned i = 0; i < NumMemOps; i++) {
5886     EVT VT = MemOps[i];
5887     unsigned VTSize = VT.getSizeInBits() / 8;
5888     SDValue Value;
5889 
5890     bool isDereferenceable =
5891       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5892     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5893     if (isDereferenceable)
5894       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5895 
5896     Value =
5897         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5898                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
5899     LoadValues.push_back(Value);
5900     LoadChains.push_back(Value.getValue(1));
5901     SrcOff += VTSize;
5902   }
5903   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
5904   OutChains.clear();
5905   for (unsigned i = 0; i < NumMemOps; i++) {
5906     EVT VT = MemOps[i];
5907     unsigned VTSize = VT.getSizeInBits() / 8;
5908     SDValue Store;
5909 
5910     Store = DAG.getStore(Chain, dl, LoadValues[i],
5911                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5912                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
5913     OutChains.push_back(Store);
5914     DstOff += VTSize;
5915   }
5916 
5917   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5918 }
5919 
5920 /// Lower the call to 'memset' intrinsic function into a series of store
5921 /// operations.
5922 ///
5923 /// \param DAG Selection DAG where lowered code is placed.
5924 /// \param dl Link to corresponding IR location.
5925 /// \param Chain Control flow dependency.
5926 /// \param Dst Pointer to destination memory location.
5927 /// \param Src Value of byte to write into the memory.
5928 /// \param Size Number of bytes to write.
5929 /// \param Align Alignment of the destination in bytes.
5930 /// \param isVol True if destination is volatile.
5931 /// \param DstPtrInfo IR information on the memory pointer.
5932 /// \returns New head in the control flow, if lowering was successful, empty
5933 /// SDValue otherwise.
5934 ///
5935 /// The function tries to replace 'llvm.memset' intrinsic with several store
5936 /// operations and value calculation code. This is usually profitable for small
5937 /// memory size.
5938 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
5939                                SDValue Chain, SDValue Dst, SDValue Src,
5940                                uint64_t Size, unsigned Align, bool isVol,
5941                                MachinePointerInfo DstPtrInfo) {
5942   // Turn a memset of undef to nop.
5943   if (Src.isUndef())
5944     return Chain;
5945 
5946   // Expand memset to a series of load/store ops if the size operand
5947   // falls below a certain threshold.
5948   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5949   std::vector<EVT> MemOps;
5950   bool DstAlignCanChange = false;
5951   MachineFunction &MF = DAG.getMachineFunction();
5952   MachineFrameInfo &MFI = MF.getFrameInfo();
5953   bool OptSize = shouldLowerMemFuncForSize(MF);
5954   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5955   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5956     DstAlignCanChange = true;
5957   bool IsZeroVal =
5958     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
5959   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
5960                                 Size, (DstAlignCanChange ? 0 : Align), 0,
5961                                 true, IsZeroVal, false, true,
5962                                 DstPtrInfo.getAddrSpace(), ~0u,
5963                                 DAG, TLI))
5964     return SDValue();
5965 
5966   if (DstAlignCanChange) {
5967     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
5968     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
5969     if (NewAlign > Align) {
5970       // Give the stack frame object a larger alignment if needed.
5971       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5972         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5973       Align = NewAlign;
5974     }
5975   }
5976 
5977   SmallVector<SDValue, 8> OutChains;
5978   uint64_t DstOff = 0;
5979   unsigned NumMemOps = MemOps.size();
5980 
5981   // Find the largest store and generate the bit pattern for it.
5982   EVT LargestVT = MemOps[0];
5983   for (unsigned i = 1; i < NumMemOps; i++)
5984     if (MemOps[i].bitsGT(LargestVT))
5985       LargestVT = MemOps[i];
5986   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
5987 
5988   for (unsigned i = 0; i < NumMemOps; i++) {
5989     EVT VT = MemOps[i];
5990     unsigned VTSize = VT.getSizeInBits() / 8;
5991     if (VTSize > Size) {
5992       // Issuing an unaligned load / store pair  that overlaps with the previous
5993       // pair. Adjust the offset accordingly.
5994       assert(i == NumMemOps-1 && i != 0);
5995       DstOff -= VTSize - Size;
5996     }
5997 
5998     // If this store is smaller than the largest store see whether we can get
5999     // the smaller value for free with a truncate.
6000     SDValue Value = MemSetValue;
6001     if (VT.bitsLT(LargestVT)) {
6002       if (!LargestVT.isVector() && !VT.isVector() &&
6003           TLI.isTruncateFree(LargestVT, VT))
6004         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6005       else
6006         Value = getMemsetValue(Src, VT, DAG, dl);
6007     }
6008     assert(Value.getValueType() == VT && "Value with wrong type.");
6009     SDValue Store = DAG.getStore(
6010         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6011         DstPtrInfo.getWithOffset(DstOff), Align,
6012         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6013     OutChains.push_back(Store);
6014     DstOff += VT.getSizeInBits() / 8;
6015     Size -= VTSize;
6016   }
6017 
6018   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6019 }
6020 
6021 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6022                                             unsigned AS) {
6023   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6024   // pointer operands can be losslessly bitcasted to pointers of address space 0
6025   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6026     report_fatal_error("cannot lower memory intrinsic in address space " +
6027                        Twine(AS));
6028   }
6029 }
6030 
6031 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6032                                 SDValue Src, SDValue Size, unsigned Align,
6033                                 bool isVol, bool AlwaysInline, bool isTailCall,
6034                                 MachinePointerInfo DstPtrInfo,
6035                                 MachinePointerInfo SrcPtrInfo) {
6036   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6037 
6038   // Check to see if we should lower the memcpy to loads and stores first.
6039   // For cases within the target-specified limits, this is the best choice.
6040   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6041   if (ConstantSize) {
6042     // Memcpy with size zero? Just return the original chain.
6043     if (ConstantSize->isNullValue())
6044       return Chain;
6045 
6046     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6047                                              ConstantSize->getZExtValue(),Align,
6048                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6049     if (Result.getNode())
6050       return Result;
6051   }
6052 
6053   // Then check to see if we should lower the memcpy with target-specific
6054   // code. If the target chooses to do this, this is the next best.
6055   if (TSI) {
6056     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6057         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6058         DstPtrInfo, SrcPtrInfo);
6059     if (Result.getNode())
6060       return Result;
6061   }
6062 
6063   // If we really need inline code and the target declined to provide it,
6064   // use a (potentially long) sequence of loads and stores.
6065   if (AlwaysInline) {
6066     assert(ConstantSize && "AlwaysInline requires a constant size!");
6067     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6068                                    ConstantSize->getZExtValue(), Align, isVol,
6069                                    true, DstPtrInfo, SrcPtrInfo);
6070   }
6071 
6072   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6073   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6074 
6075   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6076   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6077   // respect volatile, so they may do things like read or write memory
6078   // beyond the given memory regions. But fixing this isn't easy, and most
6079   // people don't care.
6080 
6081   // Emit a library call.
6082   TargetLowering::ArgListTy Args;
6083   TargetLowering::ArgListEntry Entry;
6084   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6085   Entry.Node = Dst; Args.push_back(Entry);
6086   Entry.Node = Src; Args.push_back(Entry);
6087   Entry.Node = Size; Args.push_back(Entry);
6088   // FIXME: pass in SDLoc
6089   TargetLowering::CallLoweringInfo CLI(*this);
6090   CLI.setDebugLoc(dl)
6091       .setChain(Chain)
6092       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6093                     Dst.getValueType().getTypeForEVT(*getContext()),
6094                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6095                                       TLI->getPointerTy(getDataLayout())),
6096                     std::move(Args))
6097       .setDiscardResult()
6098       .setTailCall(isTailCall);
6099 
6100   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6101   return CallResult.second;
6102 }
6103 
6104 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6105                                       SDValue Dst, unsigned DstAlign,
6106                                       SDValue Src, unsigned SrcAlign,
6107                                       SDValue Size, Type *SizeTy,
6108                                       unsigned ElemSz, bool isTailCall,
6109                                       MachinePointerInfo DstPtrInfo,
6110                                       MachinePointerInfo SrcPtrInfo) {
6111   // Emit a library call.
6112   TargetLowering::ArgListTy Args;
6113   TargetLowering::ArgListEntry Entry;
6114   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6115   Entry.Node = Dst;
6116   Args.push_back(Entry);
6117 
6118   Entry.Node = Src;
6119   Args.push_back(Entry);
6120 
6121   Entry.Ty = SizeTy;
6122   Entry.Node = Size;
6123   Args.push_back(Entry);
6124 
6125   RTLIB::Libcall LibraryCall =
6126       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6127   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6128     report_fatal_error("Unsupported element size");
6129 
6130   TargetLowering::CallLoweringInfo CLI(*this);
6131   CLI.setDebugLoc(dl)
6132       .setChain(Chain)
6133       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6134                     Type::getVoidTy(*getContext()),
6135                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6136                                       TLI->getPointerTy(getDataLayout())),
6137                     std::move(Args))
6138       .setDiscardResult()
6139       .setTailCall(isTailCall);
6140 
6141   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6142   return CallResult.second;
6143 }
6144 
6145 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6146                                  SDValue Src, SDValue Size, unsigned Align,
6147                                  bool isVol, bool isTailCall,
6148                                  MachinePointerInfo DstPtrInfo,
6149                                  MachinePointerInfo SrcPtrInfo) {
6150   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6151 
6152   // Check to see if we should lower the memmove to loads and stores first.
6153   // For cases within the target-specified limits, this is the best choice.
6154   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6155   if (ConstantSize) {
6156     // Memmove with size zero? Just return the original chain.
6157     if (ConstantSize->isNullValue())
6158       return Chain;
6159 
6160     SDValue Result =
6161       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6162                                ConstantSize->getZExtValue(), Align, isVol,
6163                                false, DstPtrInfo, SrcPtrInfo);
6164     if (Result.getNode())
6165       return Result;
6166   }
6167 
6168   // Then check to see if we should lower the memmove with target-specific
6169   // code. If the target chooses to do this, this is the next best.
6170   if (TSI) {
6171     SDValue Result = TSI->EmitTargetCodeForMemmove(
6172         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6173     if (Result.getNode())
6174       return Result;
6175   }
6176 
6177   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6178   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6179 
6180   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6181   // not be safe.  See memcpy above for more details.
6182 
6183   // Emit a library call.
6184   TargetLowering::ArgListTy Args;
6185   TargetLowering::ArgListEntry Entry;
6186   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6187   Entry.Node = Dst; Args.push_back(Entry);
6188   Entry.Node = Src; Args.push_back(Entry);
6189   Entry.Node = Size; Args.push_back(Entry);
6190   // FIXME:  pass in SDLoc
6191   TargetLowering::CallLoweringInfo CLI(*this);
6192   CLI.setDebugLoc(dl)
6193       .setChain(Chain)
6194       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6195                     Dst.getValueType().getTypeForEVT(*getContext()),
6196                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6197                                       TLI->getPointerTy(getDataLayout())),
6198                     std::move(Args))
6199       .setDiscardResult()
6200       .setTailCall(isTailCall);
6201 
6202   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6203   return CallResult.second;
6204 }
6205 
6206 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6207                                        SDValue Dst, unsigned DstAlign,
6208                                        SDValue Src, unsigned SrcAlign,
6209                                        SDValue Size, Type *SizeTy,
6210                                        unsigned ElemSz, bool isTailCall,
6211                                        MachinePointerInfo DstPtrInfo,
6212                                        MachinePointerInfo SrcPtrInfo) {
6213   // Emit a library call.
6214   TargetLowering::ArgListTy Args;
6215   TargetLowering::ArgListEntry Entry;
6216   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6217   Entry.Node = Dst;
6218   Args.push_back(Entry);
6219 
6220   Entry.Node = Src;
6221   Args.push_back(Entry);
6222 
6223   Entry.Ty = SizeTy;
6224   Entry.Node = Size;
6225   Args.push_back(Entry);
6226 
6227   RTLIB::Libcall LibraryCall =
6228       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6229   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6230     report_fatal_error("Unsupported element size");
6231 
6232   TargetLowering::CallLoweringInfo CLI(*this);
6233   CLI.setDebugLoc(dl)
6234       .setChain(Chain)
6235       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6236                     Type::getVoidTy(*getContext()),
6237                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6238                                       TLI->getPointerTy(getDataLayout())),
6239                     std::move(Args))
6240       .setDiscardResult()
6241       .setTailCall(isTailCall);
6242 
6243   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6244   return CallResult.second;
6245 }
6246 
6247 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6248                                 SDValue Src, SDValue Size, unsigned Align,
6249                                 bool isVol, bool isTailCall,
6250                                 MachinePointerInfo DstPtrInfo) {
6251   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6252 
6253   // Check to see if we should lower the memset to stores first.
6254   // For cases within the target-specified limits, this is the best choice.
6255   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6256   if (ConstantSize) {
6257     // Memset with size zero? Just return the original chain.
6258     if (ConstantSize->isNullValue())
6259       return Chain;
6260 
6261     SDValue Result =
6262       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6263                       Align, isVol, DstPtrInfo);
6264 
6265     if (Result.getNode())
6266       return Result;
6267   }
6268 
6269   // Then check to see if we should lower the memset with target-specific
6270   // code. If the target chooses to do this, this is the next best.
6271   if (TSI) {
6272     SDValue Result = TSI->EmitTargetCodeForMemset(
6273         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6274     if (Result.getNode())
6275       return Result;
6276   }
6277 
6278   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6279 
6280   // Emit a library call.
6281   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
6282   TargetLowering::ArgListTy Args;
6283   TargetLowering::ArgListEntry Entry;
6284   Entry.Node = Dst; Entry.Ty = IntPtrTy;
6285   Args.push_back(Entry);
6286   Entry.Node = Src;
6287   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6288   Args.push_back(Entry);
6289   Entry.Node = Size;
6290   Entry.Ty = IntPtrTy;
6291   Args.push_back(Entry);
6292 
6293   // FIXME: pass in SDLoc
6294   TargetLowering::CallLoweringInfo CLI(*this);
6295   CLI.setDebugLoc(dl)
6296       .setChain(Chain)
6297       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6298                     Dst.getValueType().getTypeForEVT(*getContext()),
6299                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6300                                       TLI->getPointerTy(getDataLayout())),
6301                     std::move(Args))
6302       .setDiscardResult()
6303       .setTailCall(isTailCall);
6304 
6305   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6306   return CallResult.second;
6307 }
6308 
6309 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6310                                       SDValue Dst, unsigned DstAlign,
6311                                       SDValue Value, SDValue Size, Type *SizeTy,
6312                                       unsigned ElemSz, bool isTailCall,
6313                                       MachinePointerInfo DstPtrInfo) {
6314   // Emit a library call.
6315   TargetLowering::ArgListTy Args;
6316   TargetLowering::ArgListEntry Entry;
6317   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6318   Entry.Node = Dst;
6319   Args.push_back(Entry);
6320 
6321   Entry.Ty = Type::getInt8Ty(*getContext());
6322   Entry.Node = Value;
6323   Args.push_back(Entry);
6324 
6325   Entry.Ty = SizeTy;
6326   Entry.Node = Size;
6327   Args.push_back(Entry);
6328 
6329   RTLIB::Libcall LibraryCall =
6330       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6331   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6332     report_fatal_error("Unsupported element size");
6333 
6334   TargetLowering::CallLoweringInfo CLI(*this);
6335   CLI.setDebugLoc(dl)
6336       .setChain(Chain)
6337       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6338                     Type::getVoidTy(*getContext()),
6339                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6340                                       TLI->getPointerTy(getDataLayout())),
6341                     std::move(Args))
6342       .setDiscardResult()
6343       .setTailCall(isTailCall);
6344 
6345   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6346   return CallResult.second;
6347 }
6348 
6349 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6350                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6351                                 MachineMemOperand *MMO) {
6352   FoldingSetNodeID ID;
6353   ID.AddInteger(MemVT.getRawBits());
6354   AddNodeIDNode(ID, Opcode, VTList, Ops);
6355   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6356   void* IP = nullptr;
6357   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6358     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6359     return SDValue(E, 0);
6360   }
6361 
6362   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6363                                     VTList, MemVT, MMO);
6364   createOperands(N, Ops);
6365 
6366   CSEMap.InsertNode(N, IP);
6367   InsertNode(N);
6368   return SDValue(N, 0);
6369 }
6370 
6371 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6372                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6373                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6374                                        MachineMemOperand *MMO) {
6375   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6376          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6377   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6378 
6379   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6380   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6381 }
6382 
6383 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6384                                 SDValue Chain, SDValue Ptr, SDValue Val,
6385                                 MachineMemOperand *MMO) {
6386   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6387           Opcode == ISD::ATOMIC_LOAD_SUB ||
6388           Opcode == ISD::ATOMIC_LOAD_AND ||
6389           Opcode == ISD::ATOMIC_LOAD_CLR ||
6390           Opcode == ISD::ATOMIC_LOAD_OR ||
6391           Opcode == ISD::ATOMIC_LOAD_XOR ||
6392           Opcode == ISD::ATOMIC_LOAD_NAND ||
6393           Opcode == ISD::ATOMIC_LOAD_MIN ||
6394           Opcode == ISD::ATOMIC_LOAD_MAX ||
6395           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6396           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6397           Opcode == ISD::ATOMIC_LOAD_FADD ||
6398           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6399           Opcode == ISD::ATOMIC_SWAP ||
6400           Opcode == ISD::ATOMIC_STORE) &&
6401          "Invalid Atomic Op");
6402 
6403   EVT VT = Val.getValueType();
6404 
6405   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6406                                                getVTList(VT, MVT::Other);
6407   SDValue Ops[] = {Chain, Ptr, Val};
6408   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6409 }
6410 
6411 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6412                                 EVT VT, SDValue Chain, SDValue Ptr,
6413                                 MachineMemOperand *MMO) {
6414   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6415 
6416   SDVTList VTs = getVTList(VT, MVT::Other);
6417   SDValue Ops[] = {Chain, Ptr};
6418   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6419 }
6420 
6421 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6422 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6423   if (Ops.size() == 1)
6424     return Ops[0];
6425 
6426   SmallVector<EVT, 4> VTs;
6427   VTs.reserve(Ops.size());
6428   for (unsigned i = 0; i < Ops.size(); ++i)
6429     VTs.push_back(Ops[i].getValueType());
6430   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6431 }
6432 
6433 SDValue SelectionDAG::getMemIntrinsicNode(
6434     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6435     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6436     MachineMemOperand::Flags Flags, unsigned Size) {
6437   if (Align == 0)  // Ensure that codegen never sees alignment 0
6438     Align = getEVTAlignment(MemVT);
6439 
6440   if (!Size)
6441     Size = MemVT.getStoreSize();
6442 
6443   MachineFunction &MF = getMachineFunction();
6444   MachineMemOperand *MMO =
6445     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
6446 
6447   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6448 }
6449 
6450 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6451                                           SDVTList VTList,
6452                                           ArrayRef<SDValue> Ops, EVT MemVT,
6453                                           MachineMemOperand *MMO) {
6454   assert((Opcode == ISD::INTRINSIC_VOID ||
6455           Opcode == ISD::INTRINSIC_W_CHAIN ||
6456           Opcode == ISD::PREFETCH ||
6457           Opcode == ISD::LIFETIME_START ||
6458           Opcode == ISD::LIFETIME_END ||
6459           ((int)Opcode <= std::numeric_limits<int>::max() &&
6460            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6461          "Opcode is not a memory-accessing opcode!");
6462 
6463   // Memoize the node unless it returns a flag.
6464   MemIntrinsicSDNode *N;
6465   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6466     FoldingSetNodeID ID;
6467     AddNodeIDNode(ID, Opcode, VTList, Ops);
6468     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6469         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6470     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6471     void *IP = nullptr;
6472     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6473       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6474       return SDValue(E, 0);
6475     }
6476 
6477     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6478                                       VTList, MemVT, MMO);
6479     createOperands(N, Ops);
6480 
6481   CSEMap.InsertNode(N, IP);
6482   } else {
6483     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6484                                       VTList, MemVT, MMO);
6485     createOperands(N, Ops);
6486   }
6487   InsertNode(N);
6488   return SDValue(N, 0);
6489 }
6490 
6491 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6492                                       SDValue Chain, int FrameIndex,
6493                                       int64_t Size, int64_t Offset) {
6494   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6495   const auto VTs = getVTList(MVT::Other);
6496   SDValue Ops[2] = {
6497       Chain,
6498       getFrameIndex(FrameIndex,
6499                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6500                     true)};
6501 
6502   FoldingSetNodeID ID;
6503   AddNodeIDNode(ID, Opcode, VTs, Ops);
6504   ID.AddInteger(FrameIndex);
6505   ID.AddInteger(Size);
6506   ID.AddInteger(Offset);
6507   void *IP = nullptr;
6508   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6509     return SDValue(E, 0);
6510 
6511   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6512       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6513   createOperands(N, Ops);
6514   CSEMap.InsertNode(N, IP);
6515   InsertNode(N);
6516   SDValue V(N, 0);
6517   NewSDValueDbgMsg(V, "Creating new node: ", this);
6518   return V;
6519 }
6520 
6521 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6522 /// MachinePointerInfo record from it.  This is particularly useful because the
6523 /// code generator has many cases where it doesn't bother passing in a
6524 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6525 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6526                                            SelectionDAG &DAG, SDValue Ptr,
6527                                            int64_t Offset = 0) {
6528   // If this is FI+Offset, we can model it.
6529   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6530     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6531                                              FI->getIndex(), Offset);
6532 
6533   // If this is (FI+Offset1)+Offset2, we can model it.
6534   if (Ptr.getOpcode() != ISD::ADD ||
6535       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6536       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6537     return Info;
6538 
6539   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6540   return MachinePointerInfo::getFixedStack(
6541       DAG.getMachineFunction(), FI,
6542       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6543 }
6544 
6545 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6546 /// MachinePointerInfo record from it.  This is particularly useful because the
6547 /// code generator has many cases where it doesn't bother passing in a
6548 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6549 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6550                                            SelectionDAG &DAG, SDValue Ptr,
6551                                            SDValue OffsetOp) {
6552   // If the 'Offset' value isn't a constant, we can't handle this.
6553   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6554     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6555   if (OffsetOp.isUndef())
6556     return InferPointerInfo(Info, DAG, Ptr);
6557   return Info;
6558 }
6559 
6560 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6561                               EVT VT, const SDLoc &dl, SDValue Chain,
6562                               SDValue Ptr, SDValue Offset,
6563                               MachinePointerInfo PtrInfo, EVT MemVT,
6564                               unsigned Alignment,
6565                               MachineMemOperand::Flags MMOFlags,
6566                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6567   assert(Chain.getValueType() == MVT::Other &&
6568         "Invalid chain type");
6569   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6570     Alignment = getEVTAlignment(MemVT);
6571 
6572   MMOFlags |= MachineMemOperand::MOLoad;
6573   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6574   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6575   // clients.
6576   if (PtrInfo.V.isNull())
6577     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6578 
6579   MachineFunction &MF = getMachineFunction();
6580   MachineMemOperand *MMO = MF.getMachineMemOperand(
6581       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6582   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6583 }
6584 
6585 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6586                               EVT VT, const SDLoc &dl, SDValue Chain,
6587                               SDValue Ptr, SDValue Offset, EVT MemVT,
6588                               MachineMemOperand *MMO) {
6589   if (VT == MemVT) {
6590     ExtType = ISD::NON_EXTLOAD;
6591   } else if (ExtType == ISD::NON_EXTLOAD) {
6592     assert(VT == MemVT && "Non-extending load from different memory type!");
6593   } else {
6594     // Extending load.
6595     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6596            "Should only be an extending load, not truncating!");
6597     assert(VT.isInteger() == MemVT.isInteger() &&
6598            "Cannot convert from FP to Int or Int -> FP!");
6599     assert(VT.isVector() == MemVT.isVector() &&
6600            "Cannot use an ext load to convert to or from a vector!");
6601     assert((!VT.isVector() ||
6602             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6603            "Cannot use an ext load to change the number of vector elements!");
6604   }
6605 
6606   bool Indexed = AM != ISD::UNINDEXED;
6607   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6608 
6609   SDVTList VTs = Indexed ?
6610     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6611   SDValue Ops[] = { Chain, Ptr, Offset };
6612   FoldingSetNodeID ID;
6613   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6614   ID.AddInteger(MemVT.getRawBits());
6615   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6616       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6617   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6618   void *IP = nullptr;
6619   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6620     cast<LoadSDNode>(E)->refineAlignment(MMO);
6621     return SDValue(E, 0);
6622   }
6623   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6624                                   ExtType, MemVT, MMO);
6625   createOperands(N, Ops);
6626 
6627   CSEMap.InsertNode(N, IP);
6628   InsertNode(N);
6629   SDValue V(N, 0);
6630   NewSDValueDbgMsg(V, "Creating new node: ", this);
6631   return V;
6632 }
6633 
6634 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6635                               SDValue Ptr, MachinePointerInfo PtrInfo,
6636                               unsigned Alignment,
6637                               MachineMemOperand::Flags MMOFlags,
6638                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6639   SDValue Undef = getUNDEF(Ptr.getValueType());
6640   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6641                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6642 }
6643 
6644 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6645                               SDValue Ptr, MachineMemOperand *MMO) {
6646   SDValue Undef = getUNDEF(Ptr.getValueType());
6647   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6648                  VT, MMO);
6649 }
6650 
6651 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6652                                  EVT VT, SDValue Chain, SDValue Ptr,
6653                                  MachinePointerInfo PtrInfo, EVT MemVT,
6654                                  unsigned Alignment,
6655                                  MachineMemOperand::Flags MMOFlags,
6656                                  const AAMDNodes &AAInfo) {
6657   SDValue Undef = getUNDEF(Ptr.getValueType());
6658   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6659                  MemVT, Alignment, MMOFlags, AAInfo);
6660 }
6661 
6662 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6663                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6664                                  MachineMemOperand *MMO) {
6665   SDValue Undef = getUNDEF(Ptr.getValueType());
6666   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6667                  MemVT, MMO);
6668 }
6669 
6670 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6671                                      SDValue Base, SDValue Offset,
6672                                      ISD::MemIndexedMode AM) {
6673   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6674   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6675   // Don't propagate the invariant or dereferenceable flags.
6676   auto MMOFlags =
6677       LD->getMemOperand()->getFlags() &
6678       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6679   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6680                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6681                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6682                  LD->getAAInfo());
6683 }
6684 
6685 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6686                                SDValue Ptr, MachinePointerInfo PtrInfo,
6687                                unsigned Alignment,
6688                                MachineMemOperand::Flags MMOFlags,
6689                                const AAMDNodes &AAInfo) {
6690   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6691   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6692     Alignment = getEVTAlignment(Val.getValueType());
6693 
6694   MMOFlags |= MachineMemOperand::MOStore;
6695   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6696 
6697   if (PtrInfo.V.isNull())
6698     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6699 
6700   MachineFunction &MF = getMachineFunction();
6701   MachineMemOperand *MMO = MF.getMachineMemOperand(
6702       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6703   return getStore(Chain, dl, Val, Ptr, MMO);
6704 }
6705 
6706 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6707                                SDValue Ptr, MachineMemOperand *MMO) {
6708   assert(Chain.getValueType() == MVT::Other &&
6709         "Invalid chain type");
6710   EVT VT = Val.getValueType();
6711   SDVTList VTs = getVTList(MVT::Other);
6712   SDValue Undef = getUNDEF(Ptr.getValueType());
6713   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6714   FoldingSetNodeID ID;
6715   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6716   ID.AddInteger(VT.getRawBits());
6717   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6718       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6719   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6720   void *IP = nullptr;
6721   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6722     cast<StoreSDNode>(E)->refineAlignment(MMO);
6723     return SDValue(E, 0);
6724   }
6725   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6726                                    ISD::UNINDEXED, false, VT, MMO);
6727   createOperands(N, Ops);
6728 
6729   CSEMap.InsertNode(N, IP);
6730   InsertNode(N);
6731   SDValue V(N, 0);
6732   NewSDValueDbgMsg(V, "Creating new node: ", this);
6733   return V;
6734 }
6735 
6736 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6737                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6738                                     EVT SVT, unsigned Alignment,
6739                                     MachineMemOperand::Flags MMOFlags,
6740                                     const AAMDNodes &AAInfo) {
6741   assert(Chain.getValueType() == MVT::Other &&
6742         "Invalid chain type");
6743   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6744     Alignment = getEVTAlignment(SVT);
6745 
6746   MMOFlags |= MachineMemOperand::MOStore;
6747   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6748 
6749   if (PtrInfo.V.isNull())
6750     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6751 
6752   MachineFunction &MF = getMachineFunction();
6753   MachineMemOperand *MMO = MF.getMachineMemOperand(
6754       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6755   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6756 }
6757 
6758 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6759                                     SDValue Ptr, EVT SVT,
6760                                     MachineMemOperand *MMO) {
6761   EVT VT = Val.getValueType();
6762 
6763   assert(Chain.getValueType() == MVT::Other &&
6764         "Invalid chain type");
6765   if (VT == SVT)
6766     return getStore(Chain, dl, Val, Ptr, MMO);
6767 
6768   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6769          "Should only be a truncating store, not extending!");
6770   assert(VT.isInteger() == SVT.isInteger() &&
6771          "Can't do FP-INT conversion!");
6772   assert(VT.isVector() == SVT.isVector() &&
6773          "Cannot use trunc store to convert to or from a vector!");
6774   assert((!VT.isVector() ||
6775           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6776          "Cannot use trunc store to change the number of vector elements!");
6777 
6778   SDVTList VTs = getVTList(MVT::Other);
6779   SDValue Undef = getUNDEF(Ptr.getValueType());
6780   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6781   FoldingSetNodeID ID;
6782   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6783   ID.AddInteger(SVT.getRawBits());
6784   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6785       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6786   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6787   void *IP = nullptr;
6788   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6789     cast<StoreSDNode>(E)->refineAlignment(MMO);
6790     return SDValue(E, 0);
6791   }
6792   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6793                                    ISD::UNINDEXED, true, SVT, MMO);
6794   createOperands(N, Ops);
6795 
6796   CSEMap.InsertNode(N, IP);
6797   InsertNode(N);
6798   SDValue V(N, 0);
6799   NewSDValueDbgMsg(V, "Creating new node: ", this);
6800   return V;
6801 }
6802 
6803 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6804                                       SDValue Base, SDValue Offset,
6805                                       ISD::MemIndexedMode AM) {
6806   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6807   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6808   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6809   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6810   FoldingSetNodeID ID;
6811   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6812   ID.AddInteger(ST->getMemoryVT().getRawBits());
6813   ID.AddInteger(ST->getRawSubclassData());
6814   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6815   void *IP = nullptr;
6816   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6817     return SDValue(E, 0);
6818 
6819   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6820                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6821                                    ST->getMemOperand());
6822   createOperands(N, Ops);
6823 
6824   CSEMap.InsertNode(N, IP);
6825   InsertNode(N);
6826   SDValue V(N, 0);
6827   NewSDValueDbgMsg(V, "Creating new node: ", this);
6828   return V;
6829 }
6830 
6831 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6832                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6833                                     EVT MemVT, MachineMemOperand *MMO,
6834                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6835   SDVTList VTs = getVTList(VT, MVT::Other);
6836   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6837   FoldingSetNodeID ID;
6838   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6839   ID.AddInteger(VT.getRawBits());
6840   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6841       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6842   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6843   void *IP = nullptr;
6844   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6845     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6846     return SDValue(E, 0);
6847   }
6848   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6849                                         ExtTy, isExpanding, MemVT, MMO);
6850   createOperands(N, Ops);
6851 
6852   CSEMap.InsertNode(N, IP);
6853   InsertNode(N);
6854   SDValue V(N, 0);
6855   NewSDValueDbgMsg(V, "Creating new node: ", this);
6856   return V;
6857 }
6858 
6859 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6860                                      SDValue Val, SDValue Ptr, SDValue Mask,
6861                                      EVT MemVT, MachineMemOperand *MMO,
6862                                      bool IsTruncating, bool IsCompressing) {
6863   assert(Chain.getValueType() == MVT::Other &&
6864         "Invalid chain type");
6865   EVT VT = Val.getValueType();
6866   SDVTList VTs = getVTList(MVT::Other);
6867   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6868   FoldingSetNodeID ID;
6869   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6870   ID.AddInteger(VT.getRawBits());
6871   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6872       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6873   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6874   void *IP = nullptr;
6875   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6876     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6877     return SDValue(E, 0);
6878   }
6879   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6880                                          IsTruncating, IsCompressing, MemVT, MMO);
6881   createOperands(N, Ops);
6882 
6883   CSEMap.InsertNode(N, IP);
6884   InsertNode(N);
6885   SDValue V(N, 0);
6886   NewSDValueDbgMsg(V, "Creating new node: ", this);
6887   return V;
6888 }
6889 
6890 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
6891                                       ArrayRef<SDValue> Ops,
6892                                       MachineMemOperand *MMO) {
6893   assert(Ops.size() == 6 && "Incompatible number of operands");
6894 
6895   FoldingSetNodeID ID;
6896   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
6897   ID.AddInteger(VT.getRawBits());
6898   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
6899       dl.getIROrder(), VTs, VT, MMO));
6900   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6901   void *IP = nullptr;
6902   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6903     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
6904     return SDValue(E, 0);
6905   }
6906 
6907   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6908                                           VTs, VT, MMO);
6909   createOperands(N, Ops);
6910 
6911   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
6912          "Incompatible type of the PassThru value in MaskedGatherSDNode");
6913   assert(N->getMask().getValueType().getVectorNumElements() ==
6914              N->getValueType(0).getVectorNumElements() &&
6915          "Vector width mismatch between mask and data");
6916   assert(N->getIndex().getValueType().getVectorNumElements() >=
6917              N->getValueType(0).getVectorNumElements() &&
6918          "Vector width mismatch between index and data");
6919   assert(isa<ConstantSDNode>(N->getScale()) &&
6920          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6921          "Scale should be a constant power of 2");
6922 
6923   CSEMap.InsertNode(N, IP);
6924   InsertNode(N);
6925   SDValue V(N, 0);
6926   NewSDValueDbgMsg(V, "Creating new node: ", this);
6927   return V;
6928 }
6929 
6930 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
6931                                        ArrayRef<SDValue> Ops,
6932                                        MachineMemOperand *MMO) {
6933   assert(Ops.size() == 6 && "Incompatible number of operands");
6934 
6935   FoldingSetNodeID ID;
6936   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
6937   ID.AddInteger(VT.getRawBits());
6938   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
6939       dl.getIROrder(), VTs, VT, MMO));
6940   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6941   void *IP = nullptr;
6942   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6943     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
6944     return SDValue(E, 0);
6945   }
6946   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
6947                                            VTs, VT, MMO);
6948   createOperands(N, Ops);
6949 
6950   assert(N->getMask().getValueType().getVectorNumElements() ==
6951              N->getValue().getValueType().getVectorNumElements() &&
6952          "Vector width mismatch between mask and data");
6953   assert(N->getIndex().getValueType().getVectorNumElements() >=
6954              N->getValue().getValueType().getVectorNumElements() &&
6955          "Vector width mismatch between index and data");
6956   assert(isa<ConstantSDNode>(N->getScale()) &&
6957          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
6958          "Scale should be a constant power of 2");
6959 
6960   CSEMap.InsertNode(N, IP);
6961   InsertNode(N);
6962   SDValue V(N, 0);
6963   NewSDValueDbgMsg(V, "Creating new node: ", this);
6964   return V;
6965 }
6966 
6967 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
6968   // select undef, T, F --> T (if T is a constant), otherwise F
6969   // select, ?, undef, F --> F
6970   // select, ?, T, undef --> T
6971   if (Cond.isUndef())
6972     return isConstantValueOfAnyType(T) ? T : F;
6973   if (T.isUndef())
6974     return F;
6975   if (F.isUndef())
6976     return T;
6977 
6978   // select true, T, F --> T
6979   // select false, T, F --> F
6980   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
6981     return CondC->isNullValue() ? F : T;
6982 
6983   // TODO: This should simplify VSELECT with constant condition using something
6984   // like this (but check boolean contents to be complete?):
6985   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
6986   //    return T;
6987   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
6988   //    return F;
6989 
6990   // select ?, T, T --> T
6991   if (T == F)
6992     return T;
6993 
6994   return SDValue();
6995 }
6996 
6997 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
6998   // shift undef, Y --> 0 (can always assume that the undef value is 0)
6999   if (X.isUndef())
7000     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7001   // shift X, undef --> undef (because it may shift by the bitwidth)
7002   if (Y.isUndef())
7003     return getUNDEF(X.getValueType());
7004 
7005   // shift 0, Y --> 0
7006   // shift X, 0 --> X
7007   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7008     return X;
7009 
7010   // shift X, C >= bitwidth(X) --> undef
7011   // All vector elements must be too big (or undef) to avoid partial undefs.
7012   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7013     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7014   };
7015   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7016     return getUNDEF(X.getValueType());
7017 
7018   return SDValue();
7019 }
7020 
7021 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7022                                SDValue Ptr, SDValue SV, unsigned Align) {
7023   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7024   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7025 }
7026 
7027 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7028                               ArrayRef<SDUse> Ops) {
7029   switch (Ops.size()) {
7030   case 0: return getNode(Opcode, DL, VT);
7031   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7032   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7033   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7034   default: break;
7035   }
7036 
7037   // Copy from an SDUse array into an SDValue array for use with
7038   // the regular getNode logic.
7039   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7040   return getNode(Opcode, DL, VT, NewOps);
7041 }
7042 
7043 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7044                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7045   unsigned NumOps = Ops.size();
7046   switch (NumOps) {
7047   case 0: return getNode(Opcode, DL, VT);
7048   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7049   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7050   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7051   default: break;
7052   }
7053 
7054   switch (Opcode) {
7055   default: break;
7056   case ISD::BUILD_VECTOR:
7057     // Attempt to simplify BUILD_VECTOR.
7058     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7059       return V;
7060     break;
7061   case ISD::CONCAT_VECTORS:
7062     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
7063     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
7064       return V;
7065     break;
7066   case ISD::SELECT_CC:
7067     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7068     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7069            "LHS and RHS of condition must have same type!");
7070     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7071            "True and False arms of SelectCC must have same type!");
7072     assert(Ops[2].getValueType() == VT &&
7073            "select_cc node must be of same type as true and false value!");
7074     break;
7075   case ISD::BR_CC:
7076     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7077     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7078            "LHS/RHS of comparison should match types!");
7079     break;
7080   }
7081 
7082   // Memoize nodes.
7083   SDNode *N;
7084   SDVTList VTs = getVTList(VT);
7085 
7086   if (VT != MVT::Glue) {
7087     FoldingSetNodeID ID;
7088     AddNodeIDNode(ID, Opcode, VTs, Ops);
7089     void *IP = nullptr;
7090 
7091     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7092       return SDValue(E, 0);
7093 
7094     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7095     createOperands(N, Ops);
7096 
7097     CSEMap.InsertNode(N, IP);
7098   } else {
7099     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7100     createOperands(N, Ops);
7101   }
7102 
7103   InsertNode(N);
7104   SDValue V(N, 0);
7105   NewSDValueDbgMsg(V, "Creating new node: ", this);
7106   return V;
7107 }
7108 
7109 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7110                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7111   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7112 }
7113 
7114 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7115                               ArrayRef<SDValue> Ops) {
7116   if (VTList.NumVTs == 1)
7117     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7118 
7119 #if 0
7120   switch (Opcode) {
7121   // FIXME: figure out how to safely handle things like
7122   // int foo(int x) { return 1 << (x & 255); }
7123   // int bar() { return foo(256); }
7124   case ISD::SRA_PARTS:
7125   case ISD::SRL_PARTS:
7126   case ISD::SHL_PARTS:
7127     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7128         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7129       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7130     else if (N3.getOpcode() == ISD::AND)
7131       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7132         // If the and is only masking out bits that cannot effect the shift,
7133         // eliminate the and.
7134         unsigned NumBits = VT.getScalarSizeInBits()*2;
7135         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7136           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7137       }
7138     break;
7139   }
7140 #endif
7141 
7142   // Memoize the node unless it returns a flag.
7143   SDNode *N;
7144   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7145     FoldingSetNodeID ID;
7146     AddNodeIDNode(ID, Opcode, VTList, Ops);
7147     void *IP = nullptr;
7148     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7149       return SDValue(E, 0);
7150 
7151     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7152     createOperands(N, Ops);
7153     CSEMap.InsertNode(N, IP);
7154   } else {
7155     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7156     createOperands(N, Ops);
7157   }
7158   InsertNode(N);
7159   SDValue V(N, 0);
7160   NewSDValueDbgMsg(V, "Creating new node: ", this);
7161   return V;
7162 }
7163 
7164 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7165                               SDVTList VTList) {
7166   return getNode(Opcode, DL, VTList, None);
7167 }
7168 
7169 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7170                               SDValue N1) {
7171   SDValue Ops[] = { N1 };
7172   return getNode(Opcode, DL, VTList, Ops);
7173 }
7174 
7175 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7176                               SDValue N1, SDValue N2) {
7177   SDValue Ops[] = { N1, N2 };
7178   return getNode(Opcode, DL, VTList, Ops);
7179 }
7180 
7181 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7182                               SDValue N1, SDValue N2, SDValue N3) {
7183   SDValue Ops[] = { N1, N2, N3 };
7184   return getNode(Opcode, DL, VTList, Ops);
7185 }
7186 
7187 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7188                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7189   SDValue Ops[] = { N1, N2, N3, N4 };
7190   return getNode(Opcode, DL, VTList, Ops);
7191 }
7192 
7193 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7194                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7195                               SDValue N5) {
7196   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7197   return getNode(Opcode, DL, VTList, Ops);
7198 }
7199 
7200 SDVTList SelectionDAG::getVTList(EVT VT) {
7201   return makeVTList(SDNode::getValueTypeList(VT), 1);
7202 }
7203 
7204 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7205   FoldingSetNodeID ID;
7206   ID.AddInteger(2U);
7207   ID.AddInteger(VT1.getRawBits());
7208   ID.AddInteger(VT2.getRawBits());
7209 
7210   void *IP = nullptr;
7211   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7212   if (!Result) {
7213     EVT *Array = Allocator.Allocate<EVT>(2);
7214     Array[0] = VT1;
7215     Array[1] = VT2;
7216     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7217     VTListMap.InsertNode(Result, IP);
7218   }
7219   return Result->getSDVTList();
7220 }
7221 
7222 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7223   FoldingSetNodeID ID;
7224   ID.AddInteger(3U);
7225   ID.AddInteger(VT1.getRawBits());
7226   ID.AddInteger(VT2.getRawBits());
7227   ID.AddInteger(VT3.getRawBits());
7228 
7229   void *IP = nullptr;
7230   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7231   if (!Result) {
7232     EVT *Array = Allocator.Allocate<EVT>(3);
7233     Array[0] = VT1;
7234     Array[1] = VT2;
7235     Array[2] = VT3;
7236     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7237     VTListMap.InsertNode(Result, IP);
7238   }
7239   return Result->getSDVTList();
7240 }
7241 
7242 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7243   FoldingSetNodeID ID;
7244   ID.AddInteger(4U);
7245   ID.AddInteger(VT1.getRawBits());
7246   ID.AddInteger(VT2.getRawBits());
7247   ID.AddInteger(VT3.getRawBits());
7248   ID.AddInteger(VT4.getRawBits());
7249 
7250   void *IP = nullptr;
7251   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7252   if (!Result) {
7253     EVT *Array = Allocator.Allocate<EVT>(4);
7254     Array[0] = VT1;
7255     Array[1] = VT2;
7256     Array[2] = VT3;
7257     Array[3] = VT4;
7258     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7259     VTListMap.InsertNode(Result, IP);
7260   }
7261   return Result->getSDVTList();
7262 }
7263 
7264 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7265   unsigned NumVTs = VTs.size();
7266   FoldingSetNodeID ID;
7267   ID.AddInteger(NumVTs);
7268   for (unsigned index = 0; index < NumVTs; index++) {
7269     ID.AddInteger(VTs[index].getRawBits());
7270   }
7271 
7272   void *IP = nullptr;
7273   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7274   if (!Result) {
7275     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7276     llvm::copy(VTs, Array);
7277     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7278     VTListMap.InsertNode(Result, IP);
7279   }
7280   return Result->getSDVTList();
7281 }
7282 
7283 
7284 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7285 /// specified operands.  If the resultant node already exists in the DAG,
7286 /// this does not modify the specified node, instead it returns the node that
7287 /// already exists.  If the resultant node does not exist in the DAG, the
7288 /// input node is returned.  As a degenerate case, if you specify the same
7289 /// input operands as the node already has, the input node is returned.
7290 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7291   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7292 
7293   // Check to see if there is no change.
7294   if (Op == N->getOperand(0)) return N;
7295 
7296   // See if the modified node already exists.
7297   void *InsertPos = nullptr;
7298   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7299     return Existing;
7300 
7301   // Nope it doesn't.  Remove the node from its current place in the maps.
7302   if (InsertPos)
7303     if (!RemoveNodeFromCSEMaps(N))
7304       InsertPos = nullptr;
7305 
7306   // Now we update the operands.
7307   N->OperandList[0].set(Op);
7308 
7309   updateDivergence(N);
7310   // If this gets put into a CSE map, add it.
7311   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7312   return N;
7313 }
7314 
7315 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7316   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7317 
7318   // Check to see if there is no change.
7319   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7320     return N;   // No operands changed, just return the input node.
7321 
7322   // See if the modified node already exists.
7323   void *InsertPos = nullptr;
7324   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7325     return Existing;
7326 
7327   // Nope it doesn't.  Remove the node from its current place in the maps.
7328   if (InsertPos)
7329     if (!RemoveNodeFromCSEMaps(N))
7330       InsertPos = nullptr;
7331 
7332   // Now we update the operands.
7333   if (N->OperandList[0] != Op1)
7334     N->OperandList[0].set(Op1);
7335   if (N->OperandList[1] != Op2)
7336     N->OperandList[1].set(Op2);
7337 
7338   updateDivergence(N);
7339   // If this gets put into a CSE map, add it.
7340   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7341   return N;
7342 }
7343 
7344 SDNode *SelectionDAG::
7345 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7346   SDValue Ops[] = { Op1, Op2, Op3 };
7347   return UpdateNodeOperands(N, Ops);
7348 }
7349 
7350 SDNode *SelectionDAG::
7351 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7352                    SDValue Op3, SDValue Op4) {
7353   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7354   return UpdateNodeOperands(N, Ops);
7355 }
7356 
7357 SDNode *SelectionDAG::
7358 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7359                    SDValue Op3, SDValue Op4, SDValue Op5) {
7360   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7361   return UpdateNodeOperands(N, Ops);
7362 }
7363 
7364 SDNode *SelectionDAG::
7365 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7366   unsigned NumOps = Ops.size();
7367   assert(N->getNumOperands() == NumOps &&
7368          "Update with wrong number of operands");
7369 
7370   // If no operands changed just return the input node.
7371   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7372     return N;
7373 
7374   // See if the modified node already exists.
7375   void *InsertPos = nullptr;
7376   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7377     return Existing;
7378 
7379   // Nope it doesn't.  Remove the node from its current place in the maps.
7380   if (InsertPos)
7381     if (!RemoveNodeFromCSEMaps(N))
7382       InsertPos = nullptr;
7383 
7384   // Now we update the operands.
7385   for (unsigned i = 0; i != NumOps; ++i)
7386     if (N->OperandList[i] != Ops[i])
7387       N->OperandList[i].set(Ops[i]);
7388 
7389   updateDivergence(N);
7390   // If this gets put into a CSE map, add it.
7391   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7392   return N;
7393 }
7394 
7395 /// DropOperands - Release the operands and set this node to have
7396 /// zero operands.
7397 void SDNode::DropOperands() {
7398   // Unlike the code in MorphNodeTo that does this, we don't need to
7399   // watch for dead nodes here.
7400   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7401     SDUse &Use = *I++;
7402     Use.set(SDValue());
7403   }
7404 }
7405 
7406 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7407                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7408   if (NewMemRefs.empty()) {
7409     N->clearMemRefs();
7410     return;
7411   }
7412 
7413   // Check if we can avoid allocating by storing a single reference directly.
7414   if (NewMemRefs.size() == 1) {
7415     N->MemRefs = NewMemRefs[0];
7416     N->NumMemRefs = 1;
7417     return;
7418   }
7419 
7420   MachineMemOperand **MemRefsBuffer =
7421       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7422   llvm::copy(NewMemRefs, MemRefsBuffer);
7423   N->MemRefs = MemRefsBuffer;
7424   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7425 }
7426 
7427 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7428 /// machine opcode.
7429 ///
7430 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7431                                    EVT VT) {
7432   SDVTList VTs = getVTList(VT);
7433   return SelectNodeTo(N, MachineOpc, VTs, None);
7434 }
7435 
7436 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7437                                    EVT VT, SDValue Op1) {
7438   SDVTList VTs = getVTList(VT);
7439   SDValue Ops[] = { Op1 };
7440   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7441 }
7442 
7443 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7444                                    EVT VT, SDValue Op1,
7445                                    SDValue Op2) {
7446   SDVTList VTs = getVTList(VT);
7447   SDValue Ops[] = { Op1, Op2 };
7448   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7449 }
7450 
7451 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7452                                    EVT VT, SDValue Op1,
7453                                    SDValue Op2, SDValue Op3) {
7454   SDVTList VTs = getVTList(VT);
7455   SDValue Ops[] = { Op1, Op2, Op3 };
7456   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7457 }
7458 
7459 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7460                                    EVT VT, ArrayRef<SDValue> Ops) {
7461   SDVTList VTs = getVTList(VT);
7462   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7463 }
7464 
7465 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7466                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7467   SDVTList VTs = getVTList(VT1, VT2);
7468   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7469 }
7470 
7471 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7472                                    EVT VT1, EVT VT2) {
7473   SDVTList VTs = getVTList(VT1, VT2);
7474   return SelectNodeTo(N, MachineOpc, VTs, None);
7475 }
7476 
7477 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7478                                    EVT VT1, EVT VT2, EVT VT3,
7479                                    ArrayRef<SDValue> Ops) {
7480   SDVTList VTs = getVTList(VT1, VT2, VT3);
7481   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7482 }
7483 
7484 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7485                                    EVT VT1, EVT VT2,
7486                                    SDValue Op1, SDValue Op2) {
7487   SDVTList VTs = getVTList(VT1, VT2);
7488   SDValue Ops[] = { Op1, Op2 };
7489   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7490 }
7491 
7492 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7493                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7494   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7495   // Reset the NodeID to -1.
7496   New->setNodeId(-1);
7497   if (New != N) {
7498     ReplaceAllUsesWith(N, New);
7499     RemoveDeadNode(N);
7500   }
7501   return New;
7502 }
7503 
7504 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7505 /// the line number information on the merged node since it is not possible to
7506 /// preserve the information that operation is associated with multiple lines.
7507 /// This will make the debugger working better at -O0, were there is a higher
7508 /// probability having other instructions associated with that line.
7509 ///
7510 /// For IROrder, we keep the smaller of the two
7511 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7512   DebugLoc NLoc = N->getDebugLoc();
7513   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7514     N->setDebugLoc(DebugLoc());
7515   }
7516   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7517   N->setIROrder(Order);
7518   return N;
7519 }
7520 
7521 /// MorphNodeTo - This *mutates* the specified node to have the specified
7522 /// return type, opcode, and operands.
7523 ///
7524 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7525 /// node of the specified opcode and operands, it returns that node instead of
7526 /// the current one.  Note that the SDLoc need not be the same.
7527 ///
7528 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7529 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7530 /// node, and because it doesn't require CSE recalculation for any of
7531 /// the node's users.
7532 ///
7533 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7534 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7535 /// the legalizer which maintain worklists that would need to be updated when
7536 /// deleting things.
7537 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7538                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7539   // If an identical node already exists, use it.
7540   void *IP = nullptr;
7541   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7542     FoldingSetNodeID ID;
7543     AddNodeIDNode(ID, Opc, VTs, Ops);
7544     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7545       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7546   }
7547 
7548   if (!RemoveNodeFromCSEMaps(N))
7549     IP = nullptr;
7550 
7551   // Start the morphing.
7552   N->NodeType = Opc;
7553   N->ValueList = VTs.VTs;
7554   N->NumValues = VTs.NumVTs;
7555 
7556   // Clear the operands list, updating used nodes to remove this from their
7557   // use list.  Keep track of any operands that become dead as a result.
7558   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7559   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7560     SDUse &Use = *I++;
7561     SDNode *Used = Use.getNode();
7562     Use.set(SDValue());
7563     if (Used->use_empty())
7564       DeadNodeSet.insert(Used);
7565   }
7566 
7567   // For MachineNode, initialize the memory references information.
7568   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7569     MN->clearMemRefs();
7570 
7571   // Swap for an appropriately sized array from the recycler.
7572   removeOperands(N);
7573   createOperands(N, Ops);
7574 
7575   // Delete any nodes that are still dead after adding the uses for the
7576   // new operands.
7577   if (!DeadNodeSet.empty()) {
7578     SmallVector<SDNode *, 16> DeadNodes;
7579     for (SDNode *N : DeadNodeSet)
7580       if (N->use_empty())
7581         DeadNodes.push_back(N);
7582     RemoveDeadNodes(DeadNodes);
7583   }
7584 
7585   if (IP)
7586     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7587   return N;
7588 }
7589 
7590 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7591   unsigned OrigOpc = Node->getOpcode();
7592   unsigned NewOpc;
7593   bool IsUnary = false;
7594   bool IsTernary = false;
7595   switch (OrigOpc) {
7596   default:
7597     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7598   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
7599   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
7600   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
7601   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
7602   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
7603   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
7604   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
7605   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
7606   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
7607   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
7608   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
7609   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
7610   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
7611   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
7612   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
7613   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
7614   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
7615   case ISD::STRICT_FNEARBYINT:
7616     NewOpc = ISD::FNEARBYINT;
7617     IsUnary = true;
7618     break;
7619   case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break;
7620   case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break;
7621   case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; IsUnary = true; break;
7622   case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; IsUnary = true; break;
7623   case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; IsUnary = true; break;
7624   case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; IsUnary = true; break;
7625   }
7626 
7627   // We're taking this node out of the chain, so we need to re-link things.
7628   SDValue InputChain = Node->getOperand(0);
7629   SDValue OutputChain = SDValue(Node, 1);
7630   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7631 
7632   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
7633   SDNode *Res = nullptr;
7634   if (IsUnary)
7635     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
7636   else if (IsTernary)
7637     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7638                                            Node->getOperand(2),
7639                                            Node->getOperand(3)});
7640   else
7641     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
7642                                            Node->getOperand(2) });
7643 
7644   // MorphNodeTo can operate in two ways: if an existing node with the
7645   // specified operands exists, it can just return it.  Otherwise, it
7646   // updates the node in place to have the requested operands.
7647   if (Res == Node) {
7648     // If we updated the node in place, reset the node ID.  To the isel,
7649     // this should be just like a newly allocated machine node.
7650     Res->setNodeId(-1);
7651   } else {
7652     ReplaceAllUsesWith(Node, Res);
7653     RemoveDeadNode(Node);
7654   }
7655 
7656   return Res;
7657 }
7658 
7659 /// getMachineNode - These are used for target selectors to create a new node
7660 /// with specified return type(s), MachineInstr opcode, and operands.
7661 ///
7662 /// Note that getMachineNode returns the resultant node.  If there is already a
7663 /// node of the specified opcode and operands, it returns that node instead of
7664 /// the current one.
7665 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7666                                             EVT VT) {
7667   SDVTList VTs = getVTList(VT);
7668   return getMachineNode(Opcode, dl, VTs, None);
7669 }
7670 
7671 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7672                                             EVT VT, SDValue Op1) {
7673   SDVTList VTs = getVTList(VT);
7674   SDValue Ops[] = { Op1 };
7675   return getMachineNode(Opcode, dl, VTs, Ops);
7676 }
7677 
7678 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7679                                             EVT VT, SDValue Op1, SDValue Op2) {
7680   SDVTList VTs = getVTList(VT);
7681   SDValue Ops[] = { Op1, Op2 };
7682   return getMachineNode(Opcode, dl, VTs, Ops);
7683 }
7684 
7685 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7686                                             EVT VT, SDValue Op1, SDValue Op2,
7687                                             SDValue Op3) {
7688   SDVTList VTs = getVTList(VT);
7689   SDValue Ops[] = { Op1, Op2, Op3 };
7690   return getMachineNode(Opcode, dl, VTs, Ops);
7691 }
7692 
7693 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7694                                             EVT VT, ArrayRef<SDValue> Ops) {
7695   SDVTList VTs = getVTList(VT);
7696   return getMachineNode(Opcode, dl, VTs, Ops);
7697 }
7698 
7699 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7700                                             EVT VT1, EVT VT2, SDValue Op1,
7701                                             SDValue Op2) {
7702   SDVTList VTs = getVTList(VT1, VT2);
7703   SDValue Ops[] = { Op1, Op2 };
7704   return getMachineNode(Opcode, dl, VTs, Ops);
7705 }
7706 
7707 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7708                                             EVT VT1, EVT VT2, SDValue Op1,
7709                                             SDValue Op2, SDValue Op3) {
7710   SDVTList VTs = getVTList(VT1, VT2);
7711   SDValue Ops[] = { Op1, Op2, Op3 };
7712   return getMachineNode(Opcode, dl, VTs, Ops);
7713 }
7714 
7715 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7716                                             EVT VT1, EVT VT2,
7717                                             ArrayRef<SDValue> Ops) {
7718   SDVTList VTs = getVTList(VT1, VT2);
7719   return getMachineNode(Opcode, dl, VTs, Ops);
7720 }
7721 
7722 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7723                                             EVT VT1, EVT VT2, EVT VT3,
7724                                             SDValue Op1, SDValue Op2) {
7725   SDVTList VTs = getVTList(VT1, VT2, VT3);
7726   SDValue Ops[] = { Op1, Op2 };
7727   return getMachineNode(Opcode, dl, VTs, Ops);
7728 }
7729 
7730 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7731                                             EVT VT1, EVT VT2, EVT VT3,
7732                                             SDValue Op1, SDValue Op2,
7733                                             SDValue Op3) {
7734   SDVTList VTs = getVTList(VT1, VT2, VT3);
7735   SDValue Ops[] = { Op1, Op2, Op3 };
7736   return getMachineNode(Opcode, dl, VTs, Ops);
7737 }
7738 
7739 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7740                                             EVT VT1, EVT VT2, EVT VT3,
7741                                             ArrayRef<SDValue> Ops) {
7742   SDVTList VTs = getVTList(VT1, VT2, VT3);
7743   return getMachineNode(Opcode, dl, VTs, Ops);
7744 }
7745 
7746 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7747                                             ArrayRef<EVT> ResultTys,
7748                                             ArrayRef<SDValue> Ops) {
7749   SDVTList VTs = getVTList(ResultTys);
7750   return getMachineNode(Opcode, dl, VTs, Ops);
7751 }
7752 
7753 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7754                                             SDVTList VTs,
7755                                             ArrayRef<SDValue> Ops) {
7756   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7757   MachineSDNode *N;
7758   void *IP = nullptr;
7759 
7760   if (DoCSE) {
7761     FoldingSetNodeID ID;
7762     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7763     IP = nullptr;
7764     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7765       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7766     }
7767   }
7768 
7769   // Allocate a new MachineSDNode.
7770   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7771   createOperands(N, Ops);
7772 
7773   if (DoCSE)
7774     CSEMap.InsertNode(N, IP);
7775 
7776   InsertNode(N);
7777   return N;
7778 }
7779 
7780 /// getTargetExtractSubreg - A convenience function for creating
7781 /// TargetOpcode::EXTRACT_SUBREG nodes.
7782 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7783                                              SDValue Operand) {
7784   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7785   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7786                                   VT, Operand, SRIdxVal);
7787   return SDValue(Subreg, 0);
7788 }
7789 
7790 /// getTargetInsertSubreg - A convenience function for creating
7791 /// TargetOpcode::INSERT_SUBREG nodes.
7792 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7793                                             SDValue Operand, SDValue Subreg) {
7794   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7795   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7796                                   VT, Operand, Subreg, SRIdxVal);
7797   return SDValue(Result, 0);
7798 }
7799 
7800 /// getNodeIfExists - Get the specified node if it's already available, or
7801 /// else return NULL.
7802 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7803                                       ArrayRef<SDValue> Ops,
7804                                       const SDNodeFlags Flags) {
7805   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7806     FoldingSetNodeID ID;
7807     AddNodeIDNode(ID, Opcode, VTList, Ops);
7808     void *IP = nullptr;
7809     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7810       E->intersectFlagsWith(Flags);
7811       return E;
7812     }
7813   }
7814   return nullptr;
7815 }
7816 
7817 /// getDbgValue - Creates a SDDbgValue node.
7818 ///
7819 /// SDNode
7820 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7821                                       SDNode *N, unsigned R, bool IsIndirect,
7822                                       const DebugLoc &DL, unsigned O) {
7823   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7824          "Expected inlined-at fields to agree");
7825   return new (DbgInfo->getAlloc())
7826       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7827 }
7828 
7829 /// Constant
7830 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7831                                               DIExpression *Expr,
7832                                               const Value *C,
7833                                               const DebugLoc &DL, unsigned O) {
7834   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7835          "Expected inlined-at fields to agree");
7836   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7837 }
7838 
7839 /// FrameIndex
7840 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7841                                                 DIExpression *Expr, unsigned FI,
7842                                                 bool IsIndirect,
7843                                                 const DebugLoc &DL,
7844                                                 unsigned O) {
7845   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7846          "Expected inlined-at fields to agree");
7847   return new (DbgInfo->getAlloc())
7848       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7849 }
7850 
7851 /// VReg
7852 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
7853                                           DIExpression *Expr,
7854                                           unsigned VReg, bool IsIndirect,
7855                                           const DebugLoc &DL, unsigned O) {
7856   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7857          "Expected inlined-at fields to agree");
7858   return new (DbgInfo->getAlloc())
7859       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
7860 }
7861 
7862 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
7863                                      unsigned OffsetInBits, unsigned SizeInBits,
7864                                      bool InvalidateDbg) {
7865   SDNode *FromNode = From.getNode();
7866   SDNode *ToNode = To.getNode();
7867   assert(FromNode && ToNode && "Can't modify dbg values");
7868 
7869   // PR35338
7870   // TODO: assert(From != To && "Redundant dbg value transfer");
7871   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7872   if (From == To || FromNode == ToNode)
7873     return;
7874 
7875   if (!FromNode->getHasDebugValue())
7876     return;
7877 
7878   SmallVector<SDDbgValue *, 2> ClonedDVs;
7879   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
7880     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
7881       continue;
7882 
7883     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7884 
7885     // Just transfer the dbg value attached to From.
7886     if (Dbg->getResNo() != From.getResNo())
7887       continue;
7888 
7889     DIVariable *Var = Dbg->getVariable();
7890     auto *Expr = Dbg->getExpression();
7891     // If a fragment is requested, update the expression.
7892     if (SizeInBits) {
7893       // When splitting a larger (e.g., sign-extended) value whose
7894       // lower bits are described with an SDDbgValue, do not attempt
7895       // to transfer the SDDbgValue to the upper bits.
7896       if (auto FI = Expr->getFragmentInfo())
7897         if (OffsetInBits + SizeInBits > FI->SizeInBits)
7898           continue;
7899       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
7900                                                              SizeInBits);
7901       if (!Fragment)
7902         continue;
7903       Expr = *Fragment;
7904     }
7905     // Clone the SDDbgValue and move it to To.
7906     SDDbgValue *Clone =
7907         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
7908                     Dbg->getDebugLoc(), Dbg->getOrder());
7909     ClonedDVs.push_back(Clone);
7910 
7911     if (InvalidateDbg) {
7912       // Invalidate value and indicate the SDDbgValue should not be emitted.
7913       Dbg->setIsInvalidated();
7914       Dbg->setIsEmitted();
7915     }
7916   }
7917 
7918   for (SDDbgValue *Dbg : ClonedDVs)
7919     AddDbgValue(Dbg, ToNode, false);
7920 }
7921 
7922 void SelectionDAG::salvageDebugInfo(SDNode &N) {
7923   if (!N.getHasDebugValue())
7924     return;
7925 
7926   SmallVector<SDDbgValue *, 2> ClonedDVs;
7927   for (auto DV : GetDbgValues(&N)) {
7928     if (DV->isInvalidated())
7929       continue;
7930     switch (N.getOpcode()) {
7931     default:
7932       break;
7933     case ISD::ADD:
7934       SDValue N0 = N.getOperand(0);
7935       SDValue N1 = N.getOperand(1);
7936       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
7937           isConstantIntBuildVectorOrConstantInt(N1)) {
7938         uint64_t Offset = N.getConstantOperandVal(1);
7939         // Rewrite an ADD constant node into a DIExpression. Since we are
7940         // performing arithmetic to compute the variable's *value* in the
7941         // DIExpression, we need to mark the expression with a
7942         // DW_OP_stack_value.
7943         auto *DIExpr = DV->getExpression();
7944         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
7945                                        DIExpression::NoDeref,
7946                                        DIExpression::WithStackValue);
7947         SDDbgValue *Clone =
7948             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
7949                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
7950         ClonedDVs.push_back(Clone);
7951         DV->setIsInvalidated();
7952         DV->setIsEmitted();
7953         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7954                    N0.getNode()->dumprFull(this);
7955                    dbgs() << " into " << *DIExpr << '\n');
7956       }
7957     }
7958   }
7959 
7960   for (SDDbgValue *Dbg : ClonedDVs)
7961     AddDbgValue(Dbg, Dbg->getSDNode(), false);
7962 }
7963 
7964 /// Creates a SDDbgLabel node.
7965 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
7966                                       const DebugLoc &DL, unsigned O) {
7967   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
7968          "Expected inlined-at fields to agree");
7969   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
7970 }
7971 
7972 namespace {
7973 
7974 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7975 /// pointed to by a use iterator is deleted, increment the use iterator
7976 /// so that it doesn't dangle.
7977 ///
7978 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
7979   SDNode::use_iterator &UI;
7980   SDNode::use_iterator &UE;
7981 
7982   void NodeDeleted(SDNode *N, SDNode *E) override {
7983     // Increment the iterator as needed.
7984     while (UI != UE && N == *UI)
7985       ++UI;
7986   }
7987 
7988 public:
7989   RAUWUpdateListener(SelectionDAG &d,
7990                      SDNode::use_iterator &ui,
7991                      SDNode::use_iterator &ue)
7992     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
7993 };
7994 
7995 } // end anonymous namespace
7996 
7997 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
7998 /// This can cause recursive merging of nodes in the DAG.
7999 ///
8000 /// This version assumes From has a single result value.
8001 ///
8002 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8003   SDNode *From = FromN.getNode();
8004   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8005          "Cannot replace with this method!");
8006   assert(From != To.getNode() && "Cannot replace uses of with self");
8007 
8008   // Preserve Debug Values
8009   transferDbgValues(FromN, To);
8010 
8011   // Iterate over all the existing uses of From. New uses will be added
8012   // to the beginning of the use list, which we avoid visiting.
8013   // This specifically avoids visiting uses of From that arise while the
8014   // replacement is happening, because any such uses would be the result
8015   // of CSE: If an existing node looks like From after one of its operands
8016   // is replaced by To, we don't want to replace of all its users with To
8017   // too. See PR3018 for more info.
8018   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8019   RAUWUpdateListener Listener(*this, UI, UE);
8020   while (UI != UE) {
8021     SDNode *User = *UI;
8022 
8023     // This node is about to morph, remove its old self from the CSE maps.
8024     RemoveNodeFromCSEMaps(User);
8025 
8026     // A user can appear in a use list multiple times, and when this
8027     // happens the uses are usually next to each other in the list.
8028     // To help reduce the number of CSE recomputations, process all
8029     // the uses of this user that we can find this way.
8030     do {
8031       SDUse &Use = UI.getUse();
8032       ++UI;
8033       Use.set(To);
8034       if (To->isDivergent() != From->isDivergent())
8035         updateDivergence(User);
8036     } while (UI != UE && *UI == User);
8037     // Now that we have modified User, add it back to the CSE maps.  If it
8038     // already exists there, recursively merge the results together.
8039     AddModifiedNodeToCSEMaps(User);
8040   }
8041 
8042   // If we just RAUW'd the root, take note.
8043   if (FromN == getRoot())
8044     setRoot(To);
8045 }
8046 
8047 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8048 /// This can cause recursive merging of nodes in the DAG.
8049 ///
8050 /// This version assumes that for each value of From, there is a
8051 /// corresponding value in To in the same position with the same type.
8052 ///
8053 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8054 #ifndef NDEBUG
8055   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8056     assert((!From->hasAnyUseOfValue(i) ||
8057             From->getValueType(i) == To->getValueType(i)) &&
8058            "Cannot use this version of ReplaceAllUsesWith!");
8059 #endif
8060 
8061   // Handle the trivial case.
8062   if (From == To)
8063     return;
8064 
8065   // Preserve Debug Info. Only do this if there's a use.
8066   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8067     if (From->hasAnyUseOfValue(i)) {
8068       assert((i < To->getNumValues()) && "Invalid To location");
8069       transferDbgValues(SDValue(From, i), SDValue(To, i));
8070     }
8071 
8072   // Iterate over just the existing users of From. See the comments in
8073   // the ReplaceAllUsesWith above.
8074   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8075   RAUWUpdateListener Listener(*this, UI, UE);
8076   while (UI != UE) {
8077     SDNode *User = *UI;
8078 
8079     // This node is about to morph, remove its old self from the CSE maps.
8080     RemoveNodeFromCSEMaps(User);
8081 
8082     // A user can appear in a use list multiple times, and when this
8083     // happens the uses are usually next to each other in the list.
8084     // To help reduce the number of CSE recomputations, process all
8085     // the uses of this user that we can find this way.
8086     do {
8087       SDUse &Use = UI.getUse();
8088       ++UI;
8089       Use.setNode(To);
8090       if (To->isDivergent() != From->isDivergent())
8091         updateDivergence(User);
8092     } while (UI != UE && *UI == User);
8093 
8094     // Now that we have modified User, add it back to the CSE maps.  If it
8095     // already exists there, recursively merge the results together.
8096     AddModifiedNodeToCSEMaps(User);
8097   }
8098 
8099   // If we just RAUW'd the root, take note.
8100   if (From == getRoot().getNode())
8101     setRoot(SDValue(To, getRoot().getResNo()));
8102 }
8103 
8104 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8105 /// This can cause recursive merging of nodes in the DAG.
8106 ///
8107 /// This version can replace From with any result values.  To must match the
8108 /// number and types of values returned by From.
8109 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8110   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8111     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8112 
8113   // Preserve Debug Info.
8114   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8115     transferDbgValues(SDValue(From, i), To[i]);
8116 
8117   // Iterate over just the existing users of From. See the comments in
8118   // the ReplaceAllUsesWith above.
8119   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8120   RAUWUpdateListener Listener(*this, UI, UE);
8121   while (UI != UE) {
8122     SDNode *User = *UI;
8123 
8124     // This node is about to morph, remove its old self from the CSE maps.
8125     RemoveNodeFromCSEMaps(User);
8126 
8127     // A user can appear in a use list multiple times, and when this happens the
8128     // uses are usually next to each other in the list.  To help reduce the
8129     // number of CSE and divergence recomputations, process all the uses of this
8130     // user that we can find this way.
8131     bool To_IsDivergent = false;
8132     do {
8133       SDUse &Use = UI.getUse();
8134       const SDValue &ToOp = To[Use.getResNo()];
8135       ++UI;
8136       Use.set(ToOp);
8137       To_IsDivergent |= ToOp->isDivergent();
8138     } while (UI != UE && *UI == User);
8139 
8140     if (To_IsDivergent != From->isDivergent())
8141       updateDivergence(User);
8142 
8143     // Now that we have modified User, add it back to the CSE maps.  If it
8144     // already exists there, recursively merge the results together.
8145     AddModifiedNodeToCSEMaps(User);
8146   }
8147 
8148   // If we just RAUW'd the root, take note.
8149   if (From == getRoot().getNode())
8150     setRoot(SDValue(To[getRoot().getResNo()]));
8151 }
8152 
8153 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8154 /// uses of other values produced by From.getNode() alone.  The Deleted
8155 /// vector is handled the same way as for ReplaceAllUsesWith.
8156 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8157   // Handle the really simple, really trivial case efficiently.
8158   if (From == To) return;
8159 
8160   // Handle the simple, trivial, case efficiently.
8161   if (From.getNode()->getNumValues() == 1) {
8162     ReplaceAllUsesWith(From, To);
8163     return;
8164   }
8165 
8166   // Preserve Debug Info.
8167   transferDbgValues(From, To);
8168 
8169   // Iterate over just the existing users of From. See the comments in
8170   // the ReplaceAllUsesWith above.
8171   SDNode::use_iterator UI = From.getNode()->use_begin(),
8172                        UE = From.getNode()->use_end();
8173   RAUWUpdateListener Listener(*this, UI, UE);
8174   while (UI != UE) {
8175     SDNode *User = *UI;
8176     bool UserRemovedFromCSEMaps = false;
8177 
8178     // A user can appear in a use list multiple times, and when this
8179     // happens the uses are usually next to each other in the list.
8180     // To help reduce the number of CSE recomputations, process all
8181     // the uses of this user that we can find this way.
8182     do {
8183       SDUse &Use = UI.getUse();
8184 
8185       // Skip uses of different values from the same node.
8186       if (Use.getResNo() != From.getResNo()) {
8187         ++UI;
8188         continue;
8189       }
8190 
8191       // If this node hasn't been modified yet, it's still in the CSE maps,
8192       // so remove its old self from the CSE maps.
8193       if (!UserRemovedFromCSEMaps) {
8194         RemoveNodeFromCSEMaps(User);
8195         UserRemovedFromCSEMaps = true;
8196       }
8197 
8198       ++UI;
8199       Use.set(To);
8200       if (To->isDivergent() != From->isDivergent())
8201         updateDivergence(User);
8202     } while (UI != UE && *UI == User);
8203     // We are iterating over all uses of the From node, so if a use
8204     // doesn't use the specific value, no changes are made.
8205     if (!UserRemovedFromCSEMaps)
8206       continue;
8207 
8208     // Now that we have modified User, add it back to the CSE maps.  If it
8209     // already exists there, recursively merge the results together.
8210     AddModifiedNodeToCSEMaps(User);
8211   }
8212 
8213   // If we just RAUW'd the root, take note.
8214   if (From == getRoot())
8215     setRoot(To);
8216 }
8217 
8218 namespace {
8219 
8220   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8221   /// to record information about a use.
8222   struct UseMemo {
8223     SDNode *User;
8224     unsigned Index;
8225     SDUse *Use;
8226   };
8227 
8228   /// operator< - Sort Memos by User.
8229   bool operator<(const UseMemo &L, const UseMemo &R) {
8230     return (intptr_t)L.User < (intptr_t)R.User;
8231   }
8232 
8233 } // end anonymous namespace
8234 
8235 void SelectionDAG::updateDivergence(SDNode * N)
8236 {
8237   if (TLI->isSDNodeAlwaysUniform(N))
8238     return;
8239   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8240   for (auto &Op : N->ops()) {
8241     if (Op.Val.getValueType() != MVT::Other)
8242       IsDivergent |= Op.getNode()->isDivergent();
8243   }
8244   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8245     N->SDNodeBits.IsDivergent = IsDivergent;
8246     for (auto U : N->uses()) {
8247       updateDivergence(U);
8248     }
8249   }
8250 }
8251 
8252 
8253 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode*>& Order) {
8254   DenseMap<SDNode *, unsigned> Degree;
8255   Order.reserve(AllNodes.size());
8256   for (auto & N : allnodes()) {
8257     unsigned NOps = N.getNumOperands();
8258     Degree[&N] = NOps;
8259     if (0 == NOps)
8260       Order.push_back(&N);
8261   }
8262   for (std::vector<SDNode *>::iterator I = Order.begin();
8263   I!=Order.end();++I) {
8264     SDNode * N = *I;
8265     for (auto U : N->uses()) {
8266       unsigned &UnsortedOps = Degree[U];
8267       if (0 == --UnsortedOps)
8268         Order.push_back(U);
8269     }
8270   }
8271 }
8272 
8273 #ifndef NDEBUG
8274 void SelectionDAG::VerifyDAGDiverence()
8275 {
8276   std::vector<SDNode*> TopoOrder;
8277   CreateTopologicalOrder(TopoOrder);
8278   const TargetLowering &TLI = getTargetLoweringInfo();
8279   DenseMap<const SDNode *, bool> DivergenceMap;
8280   for (auto &N : allnodes()) {
8281     DivergenceMap[&N] = false;
8282   }
8283   for (auto N : TopoOrder) {
8284     bool IsDivergent = DivergenceMap[N];
8285     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8286     for (auto &Op : N->ops()) {
8287       if (Op.Val.getValueType() != MVT::Other)
8288         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8289     }
8290     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8291       DivergenceMap[N] = true;
8292     }
8293   }
8294   for (auto &N : allnodes()) {
8295     (void)N;
8296     assert(DivergenceMap[&N] == N.isDivergent() &&
8297            "Divergence bit inconsistency detected\n");
8298   }
8299 }
8300 #endif
8301 
8302 
8303 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8304 /// uses of other values produced by From.getNode() alone.  The same value
8305 /// may appear in both the From and To list.  The Deleted vector is
8306 /// handled the same way as for ReplaceAllUsesWith.
8307 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8308                                               const SDValue *To,
8309                                               unsigned Num){
8310   // Handle the simple, trivial case efficiently.
8311   if (Num == 1)
8312     return ReplaceAllUsesOfValueWith(*From, *To);
8313 
8314   transferDbgValues(*From, *To);
8315 
8316   // Read up all the uses and make records of them. This helps
8317   // processing new uses that are introduced during the
8318   // replacement process.
8319   SmallVector<UseMemo, 4> Uses;
8320   for (unsigned i = 0; i != Num; ++i) {
8321     unsigned FromResNo = From[i].getResNo();
8322     SDNode *FromNode = From[i].getNode();
8323     for (SDNode::use_iterator UI = FromNode->use_begin(),
8324          E = FromNode->use_end(); UI != E; ++UI) {
8325       SDUse &Use = UI.getUse();
8326       if (Use.getResNo() == FromResNo) {
8327         UseMemo Memo = { *UI, i, &Use };
8328         Uses.push_back(Memo);
8329       }
8330     }
8331   }
8332 
8333   // Sort the uses, so that all the uses from a given User are together.
8334   llvm::sort(Uses);
8335 
8336   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8337        UseIndex != UseIndexEnd; ) {
8338     // We know that this user uses some value of From.  If it is the right
8339     // value, update it.
8340     SDNode *User = Uses[UseIndex].User;
8341 
8342     // This node is about to morph, remove its old self from the CSE maps.
8343     RemoveNodeFromCSEMaps(User);
8344 
8345     // The Uses array is sorted, so all the uses for a given User
8346     // are next to each other in the list.
8347     // To help reduce the number of CSE recomputations, process all
8348     // the uses of this user that we can find this way.
8349     do {
8350       unsigned i = Uses[UseIndex].Index;
8351       SDUse &Use = *Uses[UseIndex].Use;
8352       ++UseIndex;
8353 
8354       Use.set(To[i]);
8355     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8356 
8357     // Now that we have modified User, add it back to the CSE maps.  If it
8358     // already exists there, recursively merge the results together.
8359     AddModifiedNodeToCSEMaps(User);
8360   }
8361 }
8362 
8363 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8364 /// based on their topological order. It returns the maximum id and a vector
8365 /// of the SDNodes* in assigned order by reference.
8366 unsigned SelectionDAG::AssignTopologicalOrder() {
8367   unsigned DAGSize = 0;
8368 
8369   // SortedPos tracks the progress of the algorithm. Nodes before it are
8370   // sorted, nodes after it are unsorted. When the algorithm completes
8371   // it is at the end of the list.
8372   allnodes_iterator SortedPos = allnodes_begin();
8373 
8374   // Visit all the nodes. Move nodes with no operands to the front of
8375   // the list immediately. Annotate nodes that do have operands with their
8376   // operand count. Before we do this, the Node Id fields of the nodes
8377   // may contain arbitrary values. After, the Node Id fields for nodes
8378   // before SortedPos will contain the topological sort index, and the
8379   // Node Id fields for nodes At SortedPos and after will contain the
8380   // count of outstanding operands.
8381   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8382     SDNode *N = &*I++;
8383     checkForCycles(N, this);
8384     unsigned Degree = N->getNumOperands();
8385     if (Degree == 0) {
8386       // A node with no uses, add it to the result array immediately.
8387       N->setNodeId(DAGSize++);
8388       allnodes_iterator Q(N);
8389       if (Q != SortedPos)
8390         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8391       assert(SortedPos != AllNodes.end() && "Overran node list");
8392       ++SortedPos;
8393     } else {
8394       // Temporarily use the Node Id as scratch space for the degree count.
8395       N->setNodeId(Degree);
8396     }
8397   }
8398 
8399   // Visit all the nodes. As we iterate, move nodes into sorted order,
8400   // such that by the time the end is reached all nodes will be sorted.
8401   for (SDNode &Node : allnodes()) {
8402     SDNode *N = &Node;
8403     checkForCycles(N, this);
8404     // N is in sorted position, so all its uses have one less operand
8405     // that needs to be sorted.
8406     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8407          UI != UE; ++UI) {
8408       SDNode *P = *UI;
8409       unsigned Degree = P->getNodeId();
8410       assert(Degree != 0 && "Invalid node degree");
8411       --Degree;
8412       if (Degree == 0) {
8413         // All of P's operands are sorted, so P may sorted now.
8414         P->setNodeId(DAGSize++);
8415         if (P->getIterator() != SortedPos)
8416           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8417         assert(SortedPos != AllNodes.end() && "Overran node list");
8418         ++SortedPos;
8419       } else {
8420         // Update P's outstanding operand count.
8421         P->setNodeId(Degree);
8422       }
8423     }
8424     if (Node.getIterator() == SortedPos) {
8425 #ifndef NDEBUG
8426       allnodes_iterator I(N);
8427       SDNode *S = &*++I;
8428       dbgs() << "Overran sorted position:\n";
8429       S->dumprFull(this); dbgs() << "\n";
8430       dbgs() << "Checking if this is due to cycles\n";
8431       checkForCycles(this, true);
8432 #endif
8433       llvm_unreachable(nullptr);
8434     }
8435   }
8436 
8437   assert(SortedPos == AllNodes.end() &&
8438          "Topological sort incomplete!");
8439   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8440          "First node in topological sort is not the entry token!");
8441   assert(AllNodes.front().getNodeId() == 0 &&
8442          "First node in topological sort has non-zero id!");
8443   assert(AllNodes.front().getNumOperands() == 0 &&
8444          "First node in topological sort has operands!");
8445   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8446          "Last node in topologic sort has unexpected id!");
8447   assert(AllNodes.back().use_empty() &&
8448          "Last node in topologic sort has users!");
8449   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8450   return DAGSize;
8451 }
8452 
8453 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8454 /// value is produced by SD.
8455 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8456   if (SD) {
8457     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8458     SD->setHasDebugValue(true);
8459   }
8460   DbgInfo->add(DB, SD, isParameter);
8461 }
8462 
8463 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8464   DbgInfo->add(DB);
8465 }
8466 
8467 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8468                                                    SDValue NewMemOp) {
8469   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8470   // The new memory operation must have the same position as the old load in
8471   // terms of memory dependency. Create a TokenFactor for the old load and new
8472   // memory operation and update uses of the old load's output chain to use that
8473   // TokenFactor.
8474   SDValue OldChain = SDValue(OldLoad, 1);
8475   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8476   if (!OldLoad->hasAnyUseOfValue(1))
8477     return NewChain;
8478 
8479   SDValue TokenFactor =
8480       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8481   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8482   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8483   return TokenFactor;
8484 }
8485 
8486 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8487                                                      Function **OutFunction) {
8488   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8489 
8490   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8491   auto *Module = MF->getFunction().getParent();
8492   auto *Function = Module->getFunction(Symbol);
8493 
8494   if (OutFunction != nullptr)
8495       *OutFunction = Function;
8496 
8497   if (Function != nullptr) {
8498     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8499     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8500   }
8501 
8502   std::string ErrorStr;
8503   raw_string_ostream ErrorFormatter(ErrorStr);
8504 
8505   ErrorFormatter << "Undefined external symbol ";
8506   ErrorFormatter << '"' << Symbol << '"';
8507   ErrorFormatter.flush();
8508 
8509   report_fatal_error(ErrorStr);
8510 }
8511 
8512 //===----------------------------------------------------------------------===//
8513 //                              SDNode Class
8514 //===----------------------------------------------------------------------===//
8515 
8516 bool llvm::isNullConstant(SDValue V) {
8517   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8518   return Const != nullptr && Const->isNullValue();
8519 }
8520 
8521 bool llvm::isNullFPConstant(SDValue V) {
8522   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8523   return Const != nullptr && Const->isZero() && !Const->isNegative();
8524 }
8525 
8526 bool llvm::isAllOnesConstant(SDValue V) {
8527   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8528   return Const != nullptr && Const->isAllOnesValue();
8529 }
8530 
8531 bool llvm::isOneConstant(SDValue V) {
8532   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8533   return Const != nullptr && Const->isOne();
8534 }
8535 
8536 SDValue llvm::peekThroughBitcasts(SDValue V) {
8537   while (V.getOpcode() == ISD::BITCAST)
8538     V = V.getOperand(0);
8539   return V;
8540 }
8541 
8542 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8543   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8544     V = V.getOperand(0);
8545   return V;
8546 }
8547 
8548 bool llvm::isBitwiseNot(SDValue V) {
8549   if (V.getOpcode() != ISD::XOR)
8550     return false;
8551   ConstantSDNode *C = isConstOrConstSplat(peekThroughBitcasts(V.getOperand(1)));
8552   return C && C->isAllOnesValue();
8553 }
8554 
8555 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs) {
8556   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8557     return CN;
8558 
8559   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8560     BitVector UndefElements;
8561     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8562 
8563     // BuildVectors can truncate their operands. Ignore that case here.
8564     if (CN && (UndefElements.none() || AllowUndefs) &&
8565         CN->getValueType(0) == N.getValueType().getScalarType())
8566       return CN;
8567   }
8568 
8569   return nullptr;
8570 }
8571 
8572 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8573                                           bool AllowUndefs) {
8574   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8575     return CN;
8576 
8577   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8578     BitVector UndefElements;
8579     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8580 
8581     // BuildVectors can truncate their operands. Ignore that case here.
8582     if (CN && (UndefElements.none() || AllowUndefs) &&
8583         CN->getValueType(0) == N.getValueType().getScalarType())
8584       return CN;
8585   }
8586 
8587   return nullptr;
8588 }
8589 
8590 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8591   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8592     return CN;
8593 
8594   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8595     BitVector UndefElements;
8596     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8597     if (CN && (UndefElements.none() || AllowUndefs))
8598       return CN;
8599   }
8600 
8601   return nullptr;
8602 }
8603 
8604 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8605                                               const APInt &DemandedElts,
8606                                               bool AllowUndefs) {
8607   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8608     return CN;
8609 
8610   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8611     BitVector UndefElements;
8612     ConstantFPSDNode *CN =
8613         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8614     if (CN && (UndefElements.none() || AllowUndefs))
8615       return CN;
8616   }
8617 
8618   return nullptr;
8619 }
8620 
8621 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8622   // TODO: may want to use peekThroughBitcast() here.
8623   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8624   return C && C->isNullValue();
8625 }
8626 
8627 bool llvm::isOneOrOneSplat(SDValue N) {
8628   // TODO: may want to use peekThroughBitcast() here.
8629   unsigned BitWidth = N.getScalarValueSizeInBits();
8630   ConstantSDNode *C = isConstOrConstSplat(N);
8631   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8632 }
8633 
8634 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8635   N = peekThroughBitcasts(N);
8636   unsigned BitWidth = N.getScalarValueSizeInBits();
8637   ConstantSDNode *C = isConstOrConstSplat(N);
8638   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8639 }
8640 
8641 HandleSDNode::~HandleSDNode() {
8642   DropOperands();
8643 }
8644 
8645 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8646                                          const DebugLoc &DL,
8647                                          const GlobalValue *GA, EVT VT,
8648                                          int64_t o, unsigned char TF)
8649     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8650   TheGlobal = GA;
8651 }
8652 
8653 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8654                                          EVT VT, unsigned SrcAS,
8655                                          unsigned DestAS)
8656     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8657       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8658 
8659 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8660                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8661     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8662   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8663   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8664   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8665   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8666 
8667   // We check here that the size of the memory operand fits within the size of
8668   // the MMO. This is because the MMO might indicate only a possible address
8669   // range instead of specifying the affected memory addresses precisely.
8670   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8671 }
8672 
8673 /// Profile - Gather unique data for the node.
8674 ///
8675 void SDNode::Profile(FoldingSetNodeID &ID) const {
8676   AddNodeIDNode(ID, this);
8677 }
8678 
8679 namespace {
8680 
8681   struct EVTArray {
8682     std::vector<EVT> VTs;
8683 
8684     EVTArray() {
8685       VTs.reserve(MVT::LAST_VALUETYPE);
8686       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8687         VTs.push_back(MVT((MVT::SimpleValueType)i));
8688     }
8689   };
8690 
8691 } // end anonymous namespace
8692 
8693 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8694 static ManagedStatic<EVTArray> SimpleVTArray;
8695 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8696 
8697 /// getValueTypeList - Return a pointer to the specified value type.
8698 ///
8699 const EVT *SDNode::getValueTypeList(EVT VT) {
8700   if (VT.isExtended()) {
8701     sys::SmartScopedLock<true> Lock(*VTMutex);
8702     return &(*EVTs->insert(VT).first);
8703   } else {
8704     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8705            "Value type out of range!");
8706     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8707   }
8708 }
8709 
8710 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8711 /// indicated value.  This method ignores uses of other values defined by this
8712 /// operation.
8713 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8714   assert(Value < getNumValues() && "Bad value!");
8715 
8716   // TODO: Only iterate over uses of a given value of the node
8717   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8718     if (UI.getUse().getResNo() == Value) {
8719       if (NUses == 0)
8720         return false;
8721       --NUses;
8722     }
8723   }
8724 
8725   // Found exactly the right number of uses?
8726   return NUses == 0;
8727 }
8728 
8729 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8730 /// value. This method ignores uses of other values defined by this operation.
8731 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8732   assert(Value < getNumValues() && "Bad value!");
8733 
8734   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8735     if (UI.getUse().getResNo() == Value)
8736       return true;
8737 
8738   return false;
8739 }
8740 
8741 /// isOnlyUserOf - Return true if this node is the only use of N.
8742 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8743   bool Seen = false;
8744   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8745     SDNode *User = *I;
8746     if (User == this)
8747       Seen = true;
8748     else
8749       return false;
8750   }
8751 
8752   return Seen;
8753 }
8754 
8755 /// Return true if the only users of N are contained in Nodes.
8756 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8757   bool Seen = false;
8758   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8759     SDNode *User = *I;
8760     if (llvm::any_of(Nodes,
8761                      [&User](const SDNode *Node) { return User == Node; }))
8762       Seen = true;
8763     else
8764       return false;
8765   }
8766 
8767   return Seen;
8768 }
8769 
8770 /// isOperand - Return true if this node is an operand of N.
8771 bool SDValue::isOperandOf(const SDNode *N) const {
8772   for (const SDValue &Op : N->op_values())
8773     if (*this == Op)
8774       return true;
8775   return false;
8776 }
8777 
8778 bool SDNode::isOperandOf(const SDNode *N) const {
8779   for (const SDValue &Op : N->op_values())
8780     if (this == Op.getNode())
8781       return true;
8782   return false;
8783 }
8784 
8785 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8786 /// be a chain) reaches the specified operand without crossing any
8787 /// side-effecting instructions on any chain path.  In practice, this looks
8788 /// through token factors and non-volatile loads.  In order to remain efficient,
8789 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8790 ///
8791 /// Note that we only need to examine chains when we're searching for
8792 /// side-effects; SelectionDAG requires that all side-effects are represented
8793 /// by chains, even if another operand would force a specific ordering. This
8794 /// constraint is necessary to allow transformations like splitting loads.
8795 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8796                                              unsigned Depth) const {
8797   if (*this == Dest) return true;
8798 
8799   // Don't search too deeply, we just want to be able to see through
8800   // TokenFactor's etc.
8801   if (Depth == 0) return false;
8802 
8803   // If this is a token factor, all inputs to the TF happen in parallel.
8804   if (getOpcode() == ISD::TokenFactor) {
8805     // First, try a shallow search.
8806     if (is_contained((*this)->ops(), Dest)) {
8807       // We found the chain we want as an operand of this TokenFactor.
8808       // Essentially, we reach the chain without side-effects if we could
8809       // serialize the TokenFactor into a simple chain of operations with
8810       // Dest as the last operation. This is automatically true if the
8811       // chain has one use: there are no other ordering constraints.
8812       // If the chain has more than one use, we give up: some other
8813       // use of Dest might force a side-effect between Dest and the current
8814       // node.
8815       if (Dest.hasOneUse())
8816         return true;
8817     }
8818     // Next, try a deep search: check whether every operand of the TokenFactor
8819     // reaches Dest.
8820     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8821       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8822     });
8823   }
8824 
8825   // Loads don't have side effects, look through them.
8826   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8827     if (!Ld->isVolatile())
8828       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8829   }
8830   return false;
8831 }
8832 
8833 bool SDNode::hasPredecessor(const SDNode *N) const {
8834   SmallPtrSet<const SDNode *, 32> Visited;
8835   SmallVector<const SDNode *, 16> Worklist;
8836   Worklist.push_back(this);
8837   return hasPredecessorHelper(N, Visited, Worklist);
8838 }
8839 
8840 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
8841   this->Flags.intersectWith(Flags);
8842 }
8843 
8844 SDValue
8845 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
8846                                   ArrayRef<ISD::NodeType> CandidateBinOps) {
8847   // The pattern must end in an extract from index 0.
8848   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8849       !isNullConstant(Extract->getOperand(1)))
8850     return SDValue();
8851 
8852   SDValue Op = Extract->getOperand(0);
8853   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
8854 
8855   // Match against one of the candidate binary ops.
8856   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
8857         return Op.getOpcode() == unsigned(BinOp);
8858       }))
8859     return SDValue();
8860 
8861   // At each stage, we're looking for something that looks like:
8862   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8863   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8864   //                               i32 undef, i32 undef, i32 undef, i32 undef>
8865   // %a = binop <8 x i32> %op, %s
8866   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8867   // we expect something like:
8868   // <4,5,6,7,u,u,u,u>
8869   // <2,3,u,u,u,u,u,u>
8870   // <1,u,u,u,u,u,u,u>
8871   unsigned CandidateBinOp = Op.getOpcode();
8872   for (unsigned i = 0; i < Stages; ++i) {
8873     if (Op.getOpcode() != CandidateBinOp)
8874       return SDValue();
8875 
8876     SDValue Op0 = Op.getOperand(0);
8877     SDValue Op1 = Op.getOperand(1);
8878 
8879     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
8880     if (Shuffle) {
8881       Op = Op1;
8882     } else {
8883       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
8884       Op = Op0;
8885     }
8886 
8887     // The first operand of the shuffle should be the same as the other operand
8888     // of the binop.
8889     if (!Shuffle || Shuffle->getOperand(0) != Op)
8890       return SDValue();
8891 
8892     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8893     for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
8894       if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
8895         return SDValue();
8896   }
8897 
8898   BinOp = (ISD::NodeType)CandidateBinOp;
8899   return Op;
8900 }
8901 
8902 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
8903   assert(N->getNumValues() == 1 &&
8904          "Can't unroll a vector with multiple results!");
8905 
8906   EVT VT = N->getValueType(0);
8907   unsigned NE = VT.getVectorNumElements();
8908   EVT EltVT = VT.getVectorElementType();
8909   SDLoc dl(N);
8910 
8911   SmallVector<SDValue, 8> Scalars;
8912   SmallVector<SDValue, 4> Operands(N->getNumOperands());
8913 
8914   // If ResNE is 0, fully unroll the vector op.
8915   if (ResNE == 0)
8916     ResNE = NE;
8917   else if (NE > ResNE)
8918     NE = ResNE;
8919 
8920   unsigned i;
8921   for (i= 0; i != NE; ++i) {
8922     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
8923       SDValue Operand = N->getOperand(j);
8924       EVT OperandVT = Operand.getValueType();
8925       if (OperandVT.isVector()) {
8926         // A vector operand; extract a single element.
8927         EVT OperandEltVT = OperandVT.getVectorElementType();
8928         Operands[j] =
8929             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
8930                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
8931       } else {
8932         // A scalar operand; just use it as is.
8933         Operands[j] = Operand;
8934       }
8935     }
8936 
8937     switch (N->getOpcode()) {
8938     default: {
8939       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
8940                                 N->getFlags()));
8941       break;
8942     }
8943     case ISD::VSELECT:
8944       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
8945       break;
8946     case ISD::SHL:
8947     case ISD::SRA:
8948     case ISD::SRL:
8949     case ISD::ROTL:
8950     case ISD::ROTR:
8951       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
8952                                getShiftAmountOperand(Operands[0].getValueType(),
8953                                                      Operands[1])));
8954       break;
8955     case ISD::SIGN_EXTEND_INREG:
8956     case ISD::FP_ROUND_INREG: {
8957       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
8958       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
8959                                 Operands[0],
8960                                 getValueType(ExtVT)));
8961     }
8962     }
8963   }
8964 
8965   for (; i < ResNE; ++i)
8966     Scalars.push_back(getUNDEF(EltVT));
8967 
8968   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
8969   return getBuildVector(VecVT, dl, Scalars);
8970 }
8971 
8972 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
8973     SDNode *N, unsigned ResNE) {
8974   unsigned Opcode = N->getOpcode();
8975   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
8976           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
8977           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
8978          "Expected an overflow opcode");
8979 
8980   EVT ResVT = N->getValueType(0);
8981   EVT OvVT = N->getValueType(1);
8982   EVT ResEltVT = ResVT.getVectorElementType();
8983   EVT OvEltVT = OvVT.getVectorElementType();
8984   SDLoc dl(N);
8985 
8986   // If ResNE is 0, fully unroll the vector op.
8987   unsigned NE = ResVT.getVectorNumElements();
8988   if (ResNE == 0)
8989     ResNE = NE;
8990   else if (NE > ResNE)
8991     NE = ResNE;
8992 
8993   SmallVector<SDValue, 8> LHSScalars;
8994   SmallVector<SDValue, 8> RHSScalars;
8995   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
8996   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
8997 
8998   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
8999   SDVTList VTs = getVTList(ResEltVT, SVT);
9000   SmallVector<SDValue, 8> ResScalars;
9001   SmallVector<SDValue, 8> OvScalars;
9002   for (unsigned i = 0; i < NE; ++i) {
9003     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9004     SDValue Ov =
9005         getSelect(dl, OvEltVT, Res.getValue(1),
9006                   getBoolConstant(true, dl, OvEltVT, ResVT),
9007                   getConstant(0, dl, OvEltVT));
9008 
9009     ResScalars.push_back(Res);
9010     OvScalars.push_back(Ov);
9011   }
9012 
9013   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9014   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9015 
9016   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9017   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9018   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9019                         getBuildVector(NewOvVT, dl, OvScalars));
9020 }
9021 
9022 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9023                                                   LoadSDNode *Base,
9024                                                   unsigned Bytes,
9025                                                   int Dist) const {
9026   if (LD->isVolatile() || Base->isVolatile())
9027     return false;
9028   if (LD->isIndexed() || Base->isIndexed())
9029     return false;
9030   if (LD->getChain() != Base->getChain())
9031     return false;
9032   EVT VT = LD->getValueType(0);
9033   if (VT.getSizeInBits() / 8 != Bytes)
9034     return false;
9035 
9036   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9037   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9038 
9039   int64_t Offset = 0;
9040   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9041     return (Dist * Bytes == Offset);
9042   return false;
9043 }
9044 
9045 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9046 /// it cannot be inferred.
9047 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9048   // If this is a GlobalAddress + cst, return the alignment.
9049   const GlobalValue *GV;
9050   int64_t GVOffset = 0;
9051   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9052     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9053     KnownBits Known(IdxWidth);
9054     llvm::computeKnownBits(GV, Known, getDataLayout());
9055     unsigned AlignBits = Known.countMinTrailingZeros();
9056     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9057     if (Align)
9058       return MinAlign(Align, GVOffset);
9059   }
9060 
9061   // If this is a direct reference to a stack slot, use information about the
9062   // stack slot's alignment.
9063   int FrameIdx = 1 << 31;
9064   int64_t FrameOffset = 0;
9065   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9066     FrameIdx = FI->getIndex();
9067   } else if (isBaseWithConstantOffset(Ptr) &&
9068              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9069     // Handle FI+Cst
9070     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9071     FrameOffset = Ptr.getConstantOperandVal(1);
9072   }
9073 
9074   if (FrameIdx != (1 << 31)) {
9075     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9076     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9077                                     FrameOffset);
9078     return FIInfoAlign;
9079   }
9080 
9081   return 0;
9082 }
9083 
9084 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9085 /// which is split (or expanded) into two not necessarily identical pieces.
9086 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9087   // Currently all types are split in half.
9088   EVT LoVT, HiVT;
9089   if (!VT.isVector())
9090     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9091   else
9092     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9093 
9094   return std::make_pair(LoVT, HiVT);
9095 }
9096 
9097 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9098 /// low/high part.
9099 std::pair<SDValue, SDValue>
9100 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9101                           const EVT &HiVT) {
9102   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9103          N.getValueType().getVectorNumElements() &&
9104          "More vector elements requested than available!");
9105   SDValue Lo, Hi;
9106   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9107                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9108   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9109                getConstant(LoVT.getVectorNumElements(), DL,
9110                            TLI->getVectorIdxTy(getDataLayout())));
9111   return std::make_pair(Lo, Hi);
9112 }
9113 
9114 void SelectionDAG::ExtractVectorElements(SDValue Op,
9115                                          SmallVectorImpl<SDValue> &Args,
9116                                          unsigned Start, unsigned Count) {
9117   EVT VT = Op.getValueType();
9118   if (Count == 0)
9119     Count = VT.getVectorNumElements();
9120 
9121   EVT EltVT = VT.getVectorElementType();
9122   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9123   SDLoc SL(Op);
9124   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9125     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9126                            Op, getConstant(i, SL, IdxTy)));
9127   }
9128 }
9129 
9130 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9131 unsigned GlobalAddressSDNode::getAddressSpace() const {
9132   return getGlobal()->getType()->getAddressSpace();
9133 }
9134 
9135 Type *ConstantPoolSDNode::getType() const {
9136   if (isMachineConstantPoolEntry())
9137     return Val.MachineCPVal->getType();
9138   return Val.ConstVal->getType();
9139 }
9140 
9141 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9142                                         unsigned &SplatBitSize,
9143                                         bool &HasAnyUndefs,
9144                                         unsigned MinSplatBits,
9145                                         bool IsBigEndian) const {
9146   EVT VT = getValueType(0);
9147   assert(VT.isVector() && "Expected a vector type");
9148   unsigned VecWidth = VT.getSizeInBits();
9149   if (MinSplatBits > VecWidth)
9150     return false;
9151 
9152   // FIXME: The widths are based on this node's type, but build vectors can
9153   // truncate their operands.
9154   SplatValue = APInt(VecWidth, 0);
9155   SplatUndef = APInt(VecWidth, 0);
9156 
9157   // Get the bits. Bits with undefined values (when the corresponding element
9158   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9159   // in SplatValue. If any of the values are not constant, give up and return
9160   // false.
9161   unsigned int NumOps = getNumOperands();
9162   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9163   unsigned EltWidth = VT.getScalarSizeInBits();
9164 
9165   for (unsigned j = 0; j < NumOps; ++j) {
9166     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9167     SDValue OpVal = getOperand(i);
9168     unsigned BitPos = j * EltWidth;
9169 
9170     if (OpVal.isUndef())
9171       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9172     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9173       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9174     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9175       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9176     else
9177       return false;
9178   }
9179 
9180   // The build_vector is all constants or undefs. Find the smallest element
9181   // size that splats the vector.
9182   HasAnyUndefs = (SplatUndef != 0);
9183 
9184   // FIXME: This does not work for vectors with elements less than 8 bits.
9185   while (VecWidth > 8) {
9186     unsigned HalfSize = VecWidth / 2;
9187     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9188     APInt LowValue = SplatValue.trunc(HalfSize);
9189     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9190     APInt LowUndef = SplatUndef.trunc(HalfSize);
9191 
9192     // If the two halves do not match (ignoring undef bits), stop here.
9193     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9194         MinSplatBits > HalfSize)
9195       break;
9196 
9197     SplatValue = HighValue | LowValue;
9198     SplatUndef = HighUndef & LowUndef;
9199 
9200     VecWidth = HalfSize;
9201   }
9202 
9203   SplatBitSize = VecWidth;
9204   return true;
9205 }
9206 
9207 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9208                                          BitVector *UndefElements) const {
9209   if (UndefElements) {
9210     UndefElements->clear();
9211     UndefElements->resize(getNumOperands());
9212   }
9213   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9214          "Unexpected vector size");
9215   if (!DemandedElts)
9216     return SDValue();
9217   SDValue Splatted;
9218   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9219     if (!DemandedElts[i])
9220       continue;
9221     SDValue Op = getOperand(i);
9222     if (Op.isUndef()) {
9223       if (UndefElements)
9224         (*UndefElements)[i] = true;
9225     } else if (!Splatted) {
9226       Splatted = Op;
9227     } else if (Splatted != Op) {
9228       return SDValue();
9229     }
9230   }
9231 
9232   if (!Splatted) {
9233     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9234     assert(getOperand(FirstDemandedIdx).isUndef() &&
9235            "Can only have a splat without a constant for all undefs.");
9236     return getOperand(FirstDemandedIdx);
9237   }
9238 
9239   return Splatted;
9240 }
9241 
9242 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9243   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9244   return getSplatValue(DemandedElts, UndefElements);
9245 }
9246 
9247 ConstantSDNode *
9248 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9249                                         BitVector *UndefElements) const {
9250   return dyn_cast_or_null<ConstantSDNode>(
9251       getSplatValue(DemandedElts, UndefElements));
9252 }
9253 
9254 ConstantSDNode *
9255 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9256   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9257 }
9258 
9259 ConstantFPSDNode *
9260 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9261                                           BitVector *UndefElements) const {
9262   return dyn_cast_or_null<ConstantFPSDNode>(
9263       getSplatValue(DemandedElts, UndefElements));
9264 }
9265 
9266 ConstantFPSDNode *
9267 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9268   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9269 }
9270 
9271 int32_t
9272 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9273                                                    uint32_t BitWidth) const {
9274   if (ConstantFPSDNode *CN =
9275           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9276     bool IsExact;
9277     APSInt IntVal(BitWidth);
9278     const APFloat &APF = CN->getValueAPF();
9279     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9280             APFloat::opOK ||
9281         !IsExact)
9282       return -1;
9283 
9284     return IntVal.exactLogBase2();
9285   }
9286   return -1;
9287 }
9288 
9289 bool BuildVectorSDNode::isConstant() const {
9290   for (const SDValue &Op : op_values()) {
9291     unsigned Opc = Op.getOpcode();
9292     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9293       return false;
9294   }
9295   return true;
9296 }
9297 
9298 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9299   // Find the first non-undef value in the shuffle mask.
9300   unsigned i, e;
9301   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9302     /* search */;
9303 
9304   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
9305 
9306   // Make sure all remaining elements are either undef or the same as the first
9307   // non-undef value.
9308   for (int Idx = Mask[i]; i != e; ++i)
9309     if (Mask[i] >= 0 && Mask[i] != Idx)
9310       return false;
9311   return true;
9312 }
9313 
9314 // Returns the SDNode if it is a constant integer BuildVector
9315 // or constant integer.
9316 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9317   if (isa<ConstantSDNode>(N))
9318     return N.getNode();
9319   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9320     return N.getNode();
9321   // Treat a GlobalAddress supporting constant offset folding as a
9322   // constant integer.
9323   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9324     if (GA->getOpcode() == ISD::GlobalAddress &&
9325         TLI->isOffsetFoldingLegal(GA))
9326       return GA;
9327   return nullptr;
9328 }
9329 
9330 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9331   if (isa<ConstantFPSDNode>(N))
9332     return N.getNode();
9333 
9334   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9335     return N.getNode();
9336 
9337   return nullptr;
9338 }
9339 
9340 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9341   assert(!Node->OperandList && "Node already has operands");
9342   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9343          "too many operands to fit into SDNode");
9344   SDUse *Ops = OperandRecycler.allocate(
9345       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9346 
9347   bool IsDivergent = false;
9348   for (unsigned I = 0; I != Vals.size(); ++I) {
9349     Ops[I].setUser(Node);
9350     Ops[I].setInitial(Vals[I]);
9351     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9352       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9353   }
9354   Node->NumOperands = Vals.size();
9355   Node->OperandList = Ops;
9356   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9357   if (!TLI->isSDNodeAlwaysUniform(Node))
9358     Node->SDNodeBits.IsDivergent = IsDivergent;
9359   checkForCycles(Node);
9360 }
9361 
9362 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9363                                      SmallVectorImpl<SDValue> &Vals) {
9364   size_t Limit = SDNode::getMaxNumOperands();
9365   while (Vals.size() > Limit) {
9366     unsigned SliceIdx = Vals.size() - Limit;
9367     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9368     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9369     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9370     Vals.emplace_back(NewTF);
9371   }
9372   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9373 }
9374 
9375 #ifndef NDEBUG
9376 static void checkForCyclesHelper(const SDNode *N,
9377                                  SmallPtrSetImpl<const SDNode*> &Visited,
9378                                  SmallPtrSetImpl<const SDNode*> &Checked,
9379                                  const llvm::SelectionDAG *DAG) {
9380   // If this node has already been checked, don't check it again.
9381   if (Checked.count(N))
9382     return;
9383 
9384   // If a node has already been visited on this depth-first walk, reject it as
9385   // a cycle.
9386   if (!Visited.insert(N).second) {
9387     errs() << "Detected cycle in SelectionDAG\n";
9388     dbgs() << "Offending node:\n";
9389     N->dumprFull(DAG); dbgs() << "\n";
9390     abort();
9391   }
9392 
9393   for (const SDValue &Op : N->op_values())
9394     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9395 
9396   Checked.insert(N);
9397   Visited.erase(N);
9398 }
9399 #endif
9400 
9401 void llvm::checkForCycles(const llvm::SDNode *N,
9402                           const llvm::SelectionDAG *DAG,
9403                           bool force) {
9404 #ifndef NDEBUG
9405   bool check = force;
9406 #ifdef EXPENSIVE_CHECKS
9407   check = true;
9408 #endif  // EXPENSIVE_CHECKS
9409   if (check) {
9410     assert(N && "Checking nonexistent SDNode");
9411     SmallPtrSet<const SDNode*, 32> visited;
9412     SmallPtrSet<const SDNode*, 32> checked;
9413     checkForCyclesHelper(N, visited, checked, DAG);
9414   }
9415 #endif  // !NDEBUG
9416 }
9417 
9418 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9419   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9420 }
9421