1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 150 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 151 return true; 152 } 153 } 154 155 auto *BV = dyn_cast<BuildVectorSDNode>(N); 156 if (!BV) 157 return false; 158 159 APInt SplatUndef; 160 unsigned SplatBitSize; 161 bool HasUndefs; 162 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 163 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 164 EltSize) && 165 EltSize == SplatBitSize; 166 } 167 168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 169 // specializations of the more general isConstantSplatVector()? 170 171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 172 // Look through a bit convert. 173 while (N->getOpcode() == ISD::BITCAST) 174 N = N->getOperand(0).getNode(); 175 176 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 177 APInt SplatVal; 178 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 179 } 180 181 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 182 183 unsigned i = 0, e = N->getNumOperands(); 184 185 // Skip over all of the undef values. 186 while (i != e && N->getOperand(i).isUndef()) 187 ++i; 188 189 // Do not accept an all-undef vector. 190 if (i == e) return false; 191 192 // Do not accept build_vectors that aren't all constants or which have non-~0 193 // elements. We have to be a bit careful here, as the type of the constant 194 // may not be the same as the type of the vector elements due to type 195 // legalization (the elements are promoted to a legal type for the target and 196 // a vector of a type may be legal when the base element type is not). 197 // We only want to check enough bits to cover the vector elements, because 198 // we care if the resultant vector is all ones, not whether the individual 199 // constants are. 200 SDValue NotZero = N->getOperand(i); 201 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 202 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 203 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 204 return false; 205 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 206 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 207 return false; 208 } else 209 return false; 210 211 // Okay, we have at least one ~0 value, check to see if the rest match or are 212 // undefs. Even with the above element type twiddling, this should be OK, as 213 // the same type legalization should have applied to all the elements. 214 for (++i; i != e; ++i) 215 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 216 return false; 217 return true; 218 } 219 220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 221 // Look through a bit convert. 222 while (N->getOpcode() == ISD::BITCAST) 223 N = N->getOperand(0).getNode(); 224 225 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 226 APInt SplatVal; 227 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 228 } 229 230 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 231 232 bool IsAllUndef = true; 233 for (const SDValue &Op : N->op_values()) { 234 if (Op.isUndef()) 235 continue; 236 IsAllUndef = false; 237 // Do not accept build_vectors that aren't all constants or which have non-0 238 // elements. We have to be a bit careful here, as the type of the constant 239 // may not be the same as the type of the vector elements due to type 240 // legalization (the elements are promoted to a legal type for the target 241 // and a vector of a type may be legal when the base element type is not). 242 // We only want to check enough bits to cover the vector elements, because 243 // we care if the resultant vector is all zeros, not whether the individual 244 // constants are. 245 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 246 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 247 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 248 return false; 249 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 250 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 251 return false; 252 } else 253 return false; 254 } 255 256 // Do not accept an all-undef vector. 257 if (IsAllUndef) 258 return false; 259 return true; 260 } 261 262 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 263 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 267 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 268 } 269 270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 271 if (N->getOpcode() != ISD::BUILD_VECTOR) 272 return false; 273 274 for (const SDValue &Op : N->op_values()) { 275 if (Op.isUndef()) 276 continue; 277 if (!isa<ConstantSDNode>(Op)) 278 return false; 279 } 280 return true; 281 } 282 283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 284 if (N->getOpcode() != ISD::BUILD_VECTOR) 285 return false; 286 287 for (const SDValue &Op : N->op_values()) { 288 if (Op.isUndef()) 289 continue; 290 if (!isa<ConstantFPSDNode>(Op)) 291 return false; 292 } 293 return true; 294 } 295 296 bool ISD::allOperandsUndef(const SDNode *N) { 297 // Return false if the node has no operands. 298 // This is "logically inconsistent" with the definition of "all" but 299 // is probably the desired behavior. 300 if (N->getNumOperands() == 0) 301 return false; 302 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 303 } 304 305 bool ISD::matchUnaryPredicate(SDValue Op, 306 std::function<bool(ConstantSDNode *)> Match, 307 bool AllowUndefs) { 308 // FIXME: Add support for scalar UNDEF cases? 309 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 310 return Match(Cst); 311 312 // FIXME: Add support for vector UNDEF cases? 313 if (ISD::BUILD_VECTOR != Op.getOpcode() && 314 ISD::SPLAT_VECTOR != Op.getOpcode()) 315 return false; 316 317 EVT SVT = Op.getValueType().getScalarType(); 318 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 319 if (AllowUndefs && Op.getOperand(i).isUndef()) { 320 if (!Match(nullptr)) 321 return false; 322 continue; 323 } 324 325 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 326 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 327 return false; 328 } 329 return true; 330 } 331 332 bool ISD::matchBinaryPredicate( 333 SDValue LHS, SDValue RHS, 334 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 335 bool AllowUndefs, bool AllowTypeMismatch) { 336 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 337 return false; 338 339 // TODO: Add support for scalar UNDEF cases? 340 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 341 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 342 return Match(LHSCst, RHSCst); 343 344 // TODO: Add support for vector UNDEF cases? 345 if (LHS.getOpcode() != RHS.getOpcode() || 346 (LHS.getOpcode() != ISD::BUILD_VECTOR && 347 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 348 return false; 349 350 EVT SVT = LHS.getValueType().getScalarType(); 351 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 352 SDValue LHSOp = LHS.getOperand(i); 353 SDValue RHSOp = RHS.getOperand(i); 354 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 355 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 356 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 357 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 358 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 359 return false; 360 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 361 LHSOp.getValueType() != RHSOp.getValueType())) 362 return false; 363 if (!Match(LHSCst, RHSCst)) 364 return false; 365 } 366 return true; 367 } 368 369 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 370 switch (VecReduceOpcode) { 371 default: 372 llvm_unreachable("Expected VECREDUCE opcode"); 373 case ISD::VECREDUCE_FADD: 374 case ISD::VECREDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 return ISD::FMUL; 379 case ISD::VECREDUCE_ADD: 380 return ISD::ADD; 381 case ISD::VECREDUCE_MUL: 382 return ISD::MUL; 383 case ISD::VECREDUCE_AND: 384 return ISD::AND; 385 case ISD::VECREDUCE_OR: 386 return ISD::OR; 387 case ISD::VECREDUCE_XOR: 388 return ISD::XOR; 389 case ISD::VECREDUCE_SMAX: 390 return ISD::SMAX; 391 case ISD::VECREDUCE_SMIN: 392 return ISD::SMIN; 393 case ISD::VECREDUCE_UMAX: 394 return ISD::UMAX; 395 case ISD::VECREDUCE_UMIN: 396 return ISD::UMIN; 397 case ISD::VECREDUCE_FMAX: 398 return ISD::FMAXNUM; 399 case ISD::VECREDUCE_FMIN: 400 return ISD::FMINNUM; 401 } 402 } 403 404 bool ISD::isVPOpcode(unsigned Opcode) { 405 switch (Opcode) { 406 default: 407 return false; 408 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 409 case ISD::SDOPC: \ 410 return true; 411 #include "llvm/IR/VPIntrinsics.def" 412 } 413 } 414 415 /// The operand position of the vector mask. 416 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 return None; 420 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 421 case ISD::SDOPC: \ 422 return MASKPOS; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 } 426 427 /// The operand position of the explicit vector length parameter. 428 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 return None; 432 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 433 case ISD::SDOPC: \ 434 return EVLPOS; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 } 438 439 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 440 switch (ExtType) { 441 case ISD::EXTLOAD: 442 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 443 case ISD::SEXTLOAD: 444 return ISD::SIGN_EXTEND; 445 case ISD::ZEXTLOAD: 446 return ISD::ZERO_EXTEND; 447 default: 448 break; 449 } 450 451 llvm_unreachable("Invalid LoadExtType"); 452 } 453 454 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 455 // To perform this operation, we just need to swap the L and G bits of the 456 // operation. 457 unsigned OldL = (Operation >> 2) & 1; 458 unsigned OldG = (Operation >> 1) & 1; 459 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 460 (OldL << 1) | // New G bit 461 (OldG << 2)); // New L bit. 462 } 463 464 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 465 unsigned Operation = Op; 466 if (isIntegerLike) 467 Operation ^= 7; // Flip L, G, E bits, but not U. 468 else 469 Operation ^= 15; // Flip all of the condition bits. 470 471 if (Operation > ISD::SETTRUE2) 472 Operation &= ~8; // Don't let N and U bits get set. 473 474 return ISD::CondCode(Operation); 475 } 476 477 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 478 return getSetCCInverseImpl(Op, Type.isInteger()); 479 } 480 481 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 482 bool isIntegerLike) { 483 return getSetCCInverseImpl(Op, isIntegerLike); 484 } 485 486 /// For an integer comparison, return 1 if the comparison is a signed operation 487 /// and 2 if the result is an unsigned comparison. Return zero if the operation 488 /// does not depend on the sign of the input (setne and seteq). 489 static int isSignedOp(ISD::CondCode Opcode) { 490 switch (Opcode) { 491 default: llvm_unreachable("Illegal integer setcc operation!"); 492 case ISD::SETEQ: 493 case ISD::SETNE: return 0; 494 case ISD::SETLT: 495 case ISD::SETLE: 496 case ISD::SETGT: 497 case ISD::SETGE: return 1; 498 case ISD::SETULT: 499 case ISD::SETULE: 500 case ISD::SETUGT: 501 case ISD::SETUGE: return 2; 502 } 503 } 504 505 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 506 EVT Type) { 507 bool IsInteger = Type.isInteger(); 508 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 509 // Cannot fold a signed integer setcc with an unsigned integer setcc. 510 return ISD::SETCC_INVALID; 511 512 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 513 514 // If the N and U bits get set, then the resultant comparison DOES suddenly 515 // care about orderedness, and it is true when ordered. 516 if (Op > ISD::SETTRUE2) 517 Op &= ~16; // Clear the U bit if the N bit is set. 518 519 // Canonicalize illegal integer setcc's. 520 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 521 Op = ISD::SETNE; 522 523 return ISD::CondCode(Op); 524 } 525 526 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 527 EVT Type) { 528 bool IsInteger = Type.isInteger(); 529 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 530 // Cannot fold a signed setcc with an unsigned setcc. 531 return ISD::SETCC_INVALID; 532 533 // Combine all of the condition bits. 534 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 535 536 // Canonicalize illegal integer setcc's. 537 if (IsInteger) { 538 switch (Result) { 539 default: break; 540 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 541 case ISD::SETOEQ: // SETEQ & SETU[LG]E 542 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 543 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 544 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 545 } 546 } 547 548 return Result; 549 } 550 551 //===----------------------------------------------------------------------===// 552 // SDNode Profile Support 553 //===----------------------------------------------------------------------===// 554 555 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 556 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 557 ID.AddInteger(OpC); 558 } 559 560 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 561 /// solely with their pointer. 562 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 563 ID.AddPointer(VTList.VTs); 564 } 565 566 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 567 static void AddNodeIDOperands(FoldingSetNodeID &ID, 568 ArrayRef<SDValue> Ops) { 569 for (auto& Op : Ops) { 570 ID.AddPointer(Op.getNode()); 571 ID.AddInteger(Op.getResNo()); 572 } 573 } 574 575 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 576 static void AddNodeIDOperands(FoldingSetNodeID &ID, 577 ArrayRef<SDUse> Ops) { 578 for (auto& Op : Ops) { 579 ID.AddPointer(Op.getNode()); 580 ID.AddInteger(Op.getResNo()); 581 } 582 } 583 584 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 585 SDVTList VTList, ArrayRef<SDValue> OpList) { 586 AddNodeIDOpcode(ID, OpC); 587 AddNodeIDValueTypes(ID, VTList); 588 AddNodeIDOperands(ID, OpList); 589 } 590 591 /// If this is an SDNode with special info, add this info to the NodeID data. 592 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 593 switch (N->getOpcode()) { 594 case ISD::TargetExternalSymbol: 595 case ISD::ExternalSymbol: 596 case ISD::MCSymbol: 597 llvm_unreachable("Should only be used on nodes with operands"); 598 default: break; // Normal nodes don't need extra info. 599 case ISD::TargetConstant: 600 case ISD::Constant: { 601 const ConstantSDNode *C = cast<ConstantSDNode>(N); 602 ID.AddPointer(C->getConstantIntValue()); 603 ID.AddBoolean(C->isOpaque()); 604 break; 605 } 606 case ISD::TargetConstantFP: 607 case ISD::ConstantFP: 608 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 609 break; 610 case ISD::TargetGlobalAddress: 611 case ISD::GlobalAddress: 612 case ISD::TargetGlobalTLSAddress: 613 case ISD::GlobalTLSAddress: { 614 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 615 ID.AddPointer(GA->getGlobal()); 616 ID.AddInteger(GA->getOffset()); 617 ID.AddInteger(GA->getTargetFlags()); 618 break; 619 } 620 case ISD::BasicBlock: 621 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 622 break; 623 case ISD::Register: 624 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 625 break; 626 case ISD::RegisterMask: 627 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 628 break; 629 case ISD::SRCVALUE: 630 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 631 break; 632 case ISD::FrameIndex: 633 case ISD::TargetFrameIndex: 634 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 635 break; 636 case ISD::LIFETIME_START: 637 case ISD::LIFETIME_END: 638 if (cast<LifetimeSDNode>(N)->hasOffset()) { 639 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 640 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 641 } 642 break; 643 case ISD::PSEUDO_PROBE: 644 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 645 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 646 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 647 break; 648 case ISD::JumpTable: 649 case ISD::TargetJumpTable: 650 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 651 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 652 break; 653 case ISD::ConstantPool: 654 case ISD::TargetConstantPool: { 655 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 656 ID.AddInteger(CP->getAlign().value()); 657 ID.AddInteger(CP->getOffset()); 658 if (CP->isMachineConstantPoolEntry()) 659 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 660 else 661 ID.AddPointer(CP->getConstVal()); 662 ID.AddInteger(CP->getTargetFlags()); 663 break; 664 } 665 case ISD::TargetIndex: { 666 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 667 ID.AddInteger(TI->getIndex()); 668 ID.AddInteger(TI->getOffset()); 669 ID.AddInteger(TI->getTargetFlags()); 670 break; 671 } 672 case ISD::LOAD: { 673 const LoadSDNode *LD = cast<LoadSDNode>(N); 674 ID.AddInteger(LD->getMemoryVT().getRawBits()); 675 ID.AddInteger(LD->getRawSubclassData()); 676 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 677 break; 678 } 679 case ISD::STORE: { 680 const StoreSDNode *ST = cast<StoreSDNode>(N); 681 ID.AddInteger(ST->getMemoryVT().getRawBits()); 682 ID.AddInteger(ST->getRawSubclassData()); 683 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 684 break; 685 } 686 case ISD::VP_LOAD: { 687 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 688 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 689 ID.AddInteger(ELD->getRawSubclassData()); 690 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 691 break; 692 } 693 case ISD::VP_STORE: { 694 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 695 ID.AddInteger(EST->getMemoryVT().getRawBits()); 696 ID.AddInteger(EST->getRawSubclassData()); 697 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 698 break; 699 } 700 case ISD::VP_GATHER: { 701 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 702 ID.AddInteger(EG->getMemoryVT().getRawBits()); 703 ID.AddInteger(EG->getRawSubclassData()); 704 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 705 break; 706 } 707 case ISD::VP_SCATTER: { 708 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 709 ID.AddInteger(ES->getMemoryVT().getRawBits()); 710 ID.AddInteger(ES->getRawSubclassData()); 711 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 712 break; 713 } 714 case ISD::MLOAD: { 715 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 716 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 717 ID.AddInteger(MLD->getRawSubclassData()); 718 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 719 break; 720 } 721 case ISD::MSTORE: { 722 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 723 ID.AddInteger(MST->getMemoryVT().getRawBits()); 724 ID.AddInteger(MST->getRawSubclassData()); 725 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 726 break; 727 } 728 case ISD::MGATHER: { 729 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 730 ID.AddInteger(MG->getMemoryVT().getRawBits()); 731 ID.AddInteger(MG->getRawSubclassData()); 732 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 733 break; 734 } 735 case ISD::MSCATTER: { 736 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 737 ID.AddInteger(MS->getMemoryVT().getRawBits()); 738 ID.AddInteger(MS->getRawSubclassData()); 739 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 740 break; 741 } 742 case ISD::ATOMIC_CMP_SWAP: 743 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 744 case ISD::ATOMIC_SWAP: 745 case ISD::ATOMIC_LOAD_ADD: 746 case ISD::ATOMIC_LOAD_SUB: 747 case ISD::ATOMIC_LOAD_AND: 748 case ISD::ATOMIC_LOAD_CLR: 749 case ISD::ATOMIC_LOAD_OR: 750 case ISD::ATOMIC_LOAD_XOR: 751 case ISD::ATOMIC_LOAD_NAND: 752 case ISD::ATOMIC_LOAD_MIN: 753 case ISD::ATOMIC_LOAD_MAX: 754 case ISD::ATOMIC_LOAD_UMIN: 755 case ISD::ATOMIC_LOAD_UMAX: 756 case ISD::ATOMIC_LOAD: 757 case ISD::ATOMIC_STORE: { 758 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 759 ID.AddInteger(AT->getMemoryVT().getRawBits()); 760 ID.AddInteger(AT->getRawSubclassData()); 761 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 762 break; 763 } 764 case ISD::PREFETCH: { 765 const MemSDNode *PF = cast<MemSDNode>(N); 766 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 767 break; 768 } 769 case ISD::VECTOR_SHUFFLE: { 770 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 771 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 772 i != e; ++i) 773 ID.AddInteger(SVN->getMaskElt(i)); 774 break; 775 } 776 case ISD::TargetBlockAddress: 777 case ISD::BlockAddress: { 778 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 779 ID.AddPointer(BA->getBlockAddress()); 780 ID.AddInteger(BA->getOffset()); 781 ID.AddInteger(BA->getTargetFlags()); 782 break; 783 } 784 } // end switch (N->getOpcode()) 785 786 // Target specific memory nodes could also have address spaces to check. 787 if (N->isTargetMemoryOpcode()) 788 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 789 } 790 791 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 792 /// data. 793 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 794 AddNodeIDOpcode(ID, N->getOpcode()); 795 // Add the return value info. 796 AddNodeIDValueTypes(ID, N->getVTList()); 797 // Add the operand info. 798 AddNodeIDOperands(ID, N->ops()); 799 800 // Handle SDNode leafs with special info. 801 AddNodeIDCustom(ID, N); 802 } 803 804 //===----------------------------------------------------------------------===// 805 // SelectionDAG Class 806 //===----------------------------------------------------------------------===// 807 808 /// doNotCSE - Return true if CSE should not be performed for this node. 809 static bool doNotCSE(SDNode *N) { 810 if (N->getValueType(0) == MVT::Glue) 811 return true; // Never CSE anything that produces a flag. 812 813 switch (N->getOpcode()) { 814 default: break; 815 case ISD::HANDLENODE: 816 case ISD::EH_LABEL: 817 return true; // Never CSE these nodes. 818 } 819 820 // Check that remaining values produced are not flags. 821 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 822 if (N->getValueType(i) == MVT::Glue) 823 return true; // Never CSE anything that produces a flag. 824 825 return false; 826 } 827 828 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 829 /// SelectionDAG. 830 void SelectionDAG::RemoveDeadNodes() { 831 // Create a dummy node (which is not added to allnodes), that adds a reference 832 // to the root node, preventing it from being deleted. 833 HandleSDNode Dummy(getRoot()); 834 835 SmallVector<SDNode*, 128> DeadNodes; 836 837 // Add all obviously-dead nodes to the DeadNodes worklist. 838 for (SDNode &Node : allnodes()) 839 if (Node.use_empty()) 840 DeadNodes.push_back(&Node); 841 842 RemoveDeadNodes(DeadNodes); 843 844 // If the root changed (e.g. it was a dead load, update the root). 845 setRoot(Dummy.getValue()); 846 } 847 848 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 849 /// given list, and any nodes that become unreachable as a result. 850 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 851 852 // Process the worklist, deleting the nodes and adding their uses to the 853 // worklist. 854 while (!DeadNodes.empty()) { 855 SDNode *N = DeadNodes.pop_back_val(); 856 // Skip to next node if we've already managed to delete the node. This could 857 // happen if replacing a node causes a node previously added to the node to 858 // be deleted. 859 if (N->getOpcode() == ISD::DELETED_NODE) 860 continue; 861 862 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 863 DUL->NodeDeleted(N, nullptr); 864 865 // Take the node out of the appropriate CSE map. 866 RemoveNodeFromCSEMaps(N); 867 868 // Next, brutally remove the operand list. This is safe to do, as there are 869 // no cycles in the graph. 870 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 871 SDUse &Use = *I++; 872 SDNode *Operand = Use.getNode(); 873 Use.set(SDValue()); 874 875 // Now that we removed this operand, see if there are no uses of it left. 876 if (Operand->use_empty()) 877 DeadNodes.push_back(Operand); 878 } 879 880 DeallocateNode(N); 881 } 882 } 883 884 void SelectionDAG::RemoveDeadNode(SDNode *N){ 885 SmallVector<SDNode*, 16> DeadNodes(1, N); 886 887 // Create a dummy node that adds a reference to the root node, preventing 888 // it from being deleted. (This matters if the root is an operand of the 889 // dead node.) 890 HandleSDNode Dummy(getRoot()); 891 892 RemoveDeadNodes(DeadNodes); 893 } 894 895 void SelectionDAG::DeleteNode(SDNode *N) { 896 // First take this out of the appropriate CSE map. 897 RemoveNodeFromCSEMaps(N); 898 899 // Finally, remove uses due to operands of this node, remove from the 900 // AllNodes list, and delete the node. 901 DeleteNodeNotInCSEMaps(N); 902 } 903 904 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 905 assert(N->getIterator() != AllNodes.begin() && 906 "Cannot delete the entry node!"); 907 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 908 909 // Drop all of the operands and decrement used node's use counts. 910 N->DropOperands(); 911 912 DeallocateNode(N); 913 } 914 915 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 916 assert(!(V->isVariadic() && isParameter)); 917 if (isParameter) 918 ByvalParmDbgValues.push_back(V); 919 else 920 DbgValues.push_back(V); 921 for (const SDNode *Node : V->getSDNodes()) 922 if (Node) 923 DbgValMap[Node].push_back(V); 924 } 925 926 void SDDbgInfo::erase(const SDNode *Node) { 927 DbgValMapType::iterator I = DbgValMap.find(Node); 928 if (I == DbgValMap.end()) 929 return; 930 for (auto &Val: I->second) 931 Val->setIsInvalidated(); 932 DbgValMap.erase(I); 933 } 934 935 void SelectionDAG::DeallocateNode(SDNode *N) { 936 // If we have operands, deallocate them. 937 removeOperands(N); 938 939 NodeAllocator.Deallocate(AllNodes.remove(N)); 940 941 // Set the opcode to DELETED_NODE to help catch bugs when node 942 // memory is reallocated. 943 // FIXME: There are places in SDag that have grown a dependency on the opcode 944 // value in the released node. 945 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 946 N->NodeType = ISD::DELETED_NODE; 947 948 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 949 // them and forget about that node. 950 DbgInfo->erase(N); 951 } 952 953 #ifndef NDEBUG 954 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 955 static void VerifySDNode(SDNode *N) { 956 switch (N->getOpcode()) { 957 default: 958 break; 959 case ISD::BUILD_PAIR: { 960 EVT VT = N->getValueType(0); 961 assert(N->getNumValues() == 1 && "Too many results!"); 962 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 963 "Wrong return type!"); 964 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 965 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 966 "Mismatched operand types!"); 967 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 968 "Wrong operand type!"); 969 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 970 "Wrong return type size"); 971 break; 972 } 973 case ISD::BUILD_VECTOR: { 974 assert(N->getNumValues() == 1 && "Too many results!"); 975 assert(N->getValueType(0).isVector() && "Wrong return type!"); 976 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 977 "Wrong number of operands!"); 978 EVT EltVT = N->getValueType(0).getVectorElementType(); 979 for (const SDUse &Op : N->ops()) { 980 assert((Op.getValueType() == EltVT || 981 (EltVT.isInteger() && Op.getValueType().isInteger() && 982 EltVT.bitsLE(Op.getValueType()))) && 983 "Wrong operand type!"); 984 assert(Op.getValueType() == N->getOperand(0).getValueType() && 985 "Operands must all have the same type"); 986 } 987 break; 988 } 989 } 990 } 991 #endif // NDEBUG 992 993 /// Insert a newly allocated node into the DAG. 994 /// 995 /// Handles insertion into the all nodes list and CSE map, as well as 996 /// verification and other common operations when a new node is allocated. 997 void SelectionDAG::InsertNode(SDNode *N) { 998 AllNodes.push_back(N); 999 #ifndef NDEBUG 1000 N->PersistentId = NextPersistentId++; 1001 VerifySDNode(N); 1002 #endif 1003 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1004 DUL->NodeInserted(N); 1005 } 1006 1007 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1008 /// correspond to it. This is useful when we're about to delete or repurpose 1009 /// the node. We don't want future request for structurally identical nodes 1010 /// to return N anymore. 1011 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1012 bool Erased = false; 1013 switch (N->getOpcode()) { 1014 case ISD::HANDLENODE: return false; // noop. 1015 case ISD::CONDCODE: 1016 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1017 "Cond code doesn't exist!"); 1018 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1019 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1020 break; 1021 case ISD::ExternalSymbol: 1022 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1023 break; 1024 case ISD::TargetExternalSymbol: { 1025 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1026 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1027 ESN->getSymbol(), ESN->getTargetFlags())); 1028 break; 1029 } 1030 case ISD::MCSymbol: { 1031 auto *MCSN = cast<MCSymbolSDNode>(N); 1032 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1033 break; 1034 } 1035 case ISD::VALUETYPE: { 1036 EVT VT = cast<VTSDNode>(N)->getVT(); 1037 if (VT.isExtended()) { 1038 Erased = ExtendedValueTypeNodes.erase(VT); 1039 } else { 1040 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1041 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1042 } 1043 break; 1044 } 1045 default: 1046 // Remove it from the CSE Map. 1047 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1048 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1049 Erased = CSEMap.RemoveNode(N); 1050 break; 1051 } 1052 #ifndef NDEBUG 1053 // Verify that the node was actually in one of the CSE maps, unless it has a 1054 // flag result (which cannot be CSE'd) or is one of the special cases that are 1055 // not subject to CSE. 1056 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1057 !N->isMachineOpcode() && !doNotCSE(N)) { 1058 N->dump(this); 1059 dbgs() << "\n"; 1060 llvm_unreachable("Node is not in map!"); 1061 } 1062 #endif 1063 return Erased; 1064 } 1065 1066 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1067 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1068 /// node already exists, in which case transfer all its users to the existing 1069 /// node. This transfer can potentially trigger recursive merging. 1070 void 1071 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1072 // For node types that aren't CSE'd, just act as if no identical node 1073 // already exists. 1074 if (!doNotCSE(N)) { 1075 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1076 if (Existing != N) { 1077 // If there was already an existing matching node, use ReplaceAllUsesWith 1078 // to replace the dead one with the existing one. This can cause 1079 // recursive merging of other unrelated nodes down the line. 1080 ReplaceAllUsesWith(N, Existing); 1081 1082 // N is now dead. Inform the listeners and delete it. 1083 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1084 DUL->NodeDeleted(N, Existing); 1085 DeleteNodeNotInCSEMaps(N); 1086 return; 1087 } 1088 } 1089 1090 // If the node doesn't already exist, we updated it. Inform listeners. 1091 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1092 DUL->NodeUpdated(N); 1093 } 1094 1095 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1096 /// were replaced with those specified. If this node is never memoized, 1097 /// return null, otherwise return a pointer to the slot it would take. If a 1098 /// node already exists with these operands, the slot will be non-null. 1099 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1100 void *&InsertPos) { 1101 if (doNotCSE(N)) 1102 return nullptr; 1103 1104 SDValue Ops[] = { Op }; 1105 FoldingSetNodeID ID; 1106 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1107 AddNodeIDCustom(ID, N); 1108 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1109 if (Node) 1110 Node->intersectFlagsWith(N->getFlags()); 1111 return Node; 1112 } 1113 1114 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1115 /// were replaced with those specified. If this node is never memoized, 1116 /// return null, otherwise return a pointer to the slot it would take. If a 1117 /// node already exists with these operands, the slot will be non-null. 1118 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1119 SDValue Op1, SDValue Op2, 1120 void *&InsertPos) { 1121 if (doNotCSE(N)) 1122 return nullptr; 1123 1124 SDValue Ops[] = { Op1, Op2 }; 1125 FoldingSetNodeID ID; 1126 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1127 AddNodeIDCustom(ID, N); 1128 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1129 if (Node) 1130 Node->intersectFlagsWith(N->getFlags()); 1131 return Node; 1132 } 1133 1134 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1135 /// were replaced with those specified. If this node is never memoized, 1136 /// return null, otherwise return a pointer to the slot it would take. If a 1137 /// node already exists with these operands, the slot will be non-null. 1138 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1139 void *&InsertPos) { 1140 if (doNotCSE(N)) 1141 return nullptr; 1142 1143 FoldingSetNodeID ID; 1144 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1145 AddNodeIDCustom(ID, N); 1146 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1147 if (Node) 1148 Node->intersectFlagsWith(N->getFlags()); 1149 return Node; 1150 } 1151 1152 Align SelectionDAG::getEVTAlign(EVT VT) const { 1153 Type *Ty = VT == MVT::iPTR ? 1154 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1155 VT.getTypeForEVT(*getContext()); 1156 1157 return getDataLayout().getABITypeAlign(Ty); 1158 } 1159 1160 // EntryNode could meaningfully have debug info if we can find it... 1161 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1162 : TM(tm), OptLevel(OL), 1163 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1164 Root(getEntryNode()) { 1165 InsertNode(&EntryNode); 1166 DbgInfo = new SDDbgInfo(); 1167 } 1168 1169 void SelectionDAG::init(MachineFunction &NewMF, 1170 OptimizationRemarkEmitter &NewORE, 1171 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1172 LegacyDivergenceAnalysis * Divergence, 1173 ProfileSummaryInfo *PSIin, 1174 BlockFrequencyInfo *BFIin) { 1175 MF = &NewMF; 1176 SDAGISelPass = PassPtr; 1177 ORE = &NewORE; 1178 TLI = getSubtarget().getTargetLowering(); 1179 TSI = getSubtarget().getSelectionDAGInfo(); 1180 LibInfo = LibraryInfo; 1181 Context = &MF->getFunction().getContext(); 1182 DA = Divergence; 1183 PSI = PSIin; 1184 BFI = BFIin; 1185 } 1186 1187 SelectionDAG::~SelectionDAG() { 1188 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1189 allnodes_clear(); 1190 OperandRecycler.clear(OperandAllocator); 1191 delete DbgInfo; 1192 } 1193 1194 bool SelectionDAG::shouldOptForSize() const { 1195 return MF->getFunction().hasOptSize() || 1196 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1197 } 1198 1199 void SelectionDAG::allnodes_clear() { 1200 assert(&*AllNodes.begin() == &EntryNode); 1201 AllNodes.remove(AllNodes.begin()); 1202 while (!AllNodes.empty()) 1203 DeallocateNode(&AllNodes.front()); 1204 #ifndef NDEBUG 1205 NextPersistentId = 0; 1206 #endif 1207 } 1208 1209 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1210 void *&InsertPos) { 1211 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1212 if (N) { 1213 switch (N->getOpcode()) { 1214 default: break; 1215 case ISD::Constant: 1216 case ISD::ConstantFP: 1217 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1218 "debug location. Use another overload."); 1219 } 1220 } 1221 return N; 1222 } 1223 1224 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1225 const SDLoc &DL, void *&InsertPos) { 1226 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1227 if (N) { 1228 switch (N->getOpcode()) { 1229 case ISD::Constant: 1230 case ISD::ConstantFP: 1231 // Erase debug location from the node if the node is used at several 1232 // different places. Do not propagate one location to all uses as it 1233 // will cause a worse single stepping debugging experience. 1234 if (N->getDebugLoc() != DL.getDebugLoc()) 1235 N->setDebugLoc(DebugLoc()); 1236 break; 1237 default: 1238 // When the node's point of use is located earlier in the instruction 1239 // sequence than its prior point of use, update its debug info to the 1240 // earlier location. 1241 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1242 N->setDebugLoc(DL.getDebugLoc()); 1243 break; 1244 } 1245 } 1246 return N; 1247 } 1248 1249 void SelectionDAG::clear() { 1250 allnodes_clear(); 1251 OperandRecycler.clear(OperandAllocator); 1252 OperandAllocator.Reset(); 1253 CSEMap.clear(); 1254 1255 ExtendedValueTypeNodes.clear(); 1256 ExternalSymbols.clear(); 1257 TargetExternalSymbols.clear(); 1258 MCSymbols.clear(); 1259 SDCallSiteDbgInfo.clear(); 1260 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1261 static_cast<CondCodeSDNode*>(nullptr)); 1262 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1263 static_cast<SDNode*>(nullptr)); 1264 1265 EntryNode.UseList = nullptr; 1266 InsertNode(&EntryNode); 1267 Root = getEntryNode(); 1268 DbgInfo->clear(); 1269 } 1270 1271 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1272 return VT.bitsGT(Op.getValueType()) 1273 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1274 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1275 } 1276 1277 std::pair<SDValue, SDValue> 1278 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1279 const SDLoc &DL, EVT VT) { 1280 assert(!VT.bitsEq(Op.getValueType()) && 1281 "Strict no-op FP extend/round not allowed."); 1282 SDValue Res = 1283 VT.bitsGT(Op.getValueType()) 1284 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1285 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1286 {Chain, Op, getIntPtrConstant(0, DL)}); 1287 1288 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1289 } 1290 1291 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1292 return VT.bitsGT(Op.getValueType()) ? 1293 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1294 getNode(ISD::TRUNCATE, DL, VT, Op); 1295 } 1296 1297 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1298 return VT.bitsGT(Op.getValueType()) ? 1299 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1300 getNode(ISD::TRUNCATE, DL, VT, Op); 1301 } 1302 1303 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1304 return VT.bitsGT(Op.getValueType()) ? 1305 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1306 getNode(ISD::TRUNCATE, DL, VT, Op); 1307 } 1308 1309 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1310 EVT OpVT) { 1311 if (VT.bitsLE(Op.getValueType())) 1312 return getNode(ISD::TRUNCATE, SL, VT, Op); 1313 1314 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1315 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1316 } 1317 1318 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1319 EVT OpVT = Op.getValueType(); 1320 assert(VT.isInteger() && OpVT.isInteger() && 1321 "Cannot getZeroExtendInReg FP types"); 1322 assert(VT.isVector() == OpVT.isVector() && 1323 "getZeroExtendInReg type should be vector iff the operand " 1324 "type is vector!"); 1325 assert((!VT.isVector() || 1326 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1327 "Vector element counts must match in getZeroExtendInReg"); 1328 assert(VT.bitsLE(OpVT) && "Not extending!"); 1329 if (OpVT == VT) 1330 return Op; 1331 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1332 VT.getScalarSizeInBits()); 1333 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1334 } 1335 1336 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1337 // Only unsigned pointer semantics are supported right now. In the future this 1338 // might delegate to TLI to check pointer signedness. 1339 return getZExtOrTrunc(Op, DL, VT); 1340 } 1341 1342 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1343 // Only unsigned pointer semantics are supported right now. In the future this 1344 // might delegate to TLI to check pointer signedness. 1345 return getZeroExtendInReg(Op, DL, VT); 1346 } 1347 1348 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1349 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1350 EVT EltVT = VT.getScalarType(); 1351 SDValue NegOne = 1352 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1353 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1354 } 1355 1356 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1357 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1358 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1359 } 1360 1361 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1362 EVT OpVT) { 1363 if (!V) 1364 return getConstant(0, DL, VT); 1365 1366 switch (TLI->getBooleanContents(OpVT)) { 1367 case TargetLowering::ZeroOrOneBooleanContent: 1368 case TargetLowering::UndefinedBooleanContent: 1369 return getConstant(1, DL, VT); 1370 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1371 return getAllOnesConstant(DL, VT); 1372 } 1373 llvm_unreachable("Unexpected boolean content enum!"); 1374 } 1375 1376 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1377 bool isT, bool isO) { 1378 EVT EltVT = VT.getScalarType(); 1379 assert((EltVT.getSizeInBits() >= 64 || 1380 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1381 "getConstant with a uint64_t value that doesn't fit in the type!"); 1382 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1383 } 1384 1385 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1386 bool isT, bool isO) { 1387 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1388 } 1389 1390 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1391 EVT VT, bool isT, bool isO) { 1392 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1393 1394 EVT EltVT = VT.getScalarType(); 1395 const ConstantInt *Elt = &Val; 1396 1397 // In some cases the vector type is legal but the element type is illegal and 1398 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1399 // inserted value (the type does not need to match the vector element type). 1400 // Any extra bits introduced will be truncated away. 1401 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1402 TargetLowering::TypePromoteInteger) { 1403 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1404 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1405 Elt = ConstantInt::get(*getContext(), NewVal); 1406 } 1407 // In other cases the element type is illegal and needs to be expanded, for 1408 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1409 // the value into n parts and use a vector type with n-times the elements. 1410 // Then bitcast to the type requested. 1411 // Legalizing constants too early makes the DAGCombiner's job harder so we 1412 // only legalize if the DAG tells us we must produce legal types. 1413 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1414 TLI->getTypeAction(*getContext(), EltVT) == 1415 TargetLowering::TypeExpandInteger) { 1416 const APInt &NewVal = Elt->getValue(); 1417 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1418 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1419 1420 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1421 if (VT.isScalableVector()) { 1422 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1423 "Can only handle an even split!"); 1424 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1425 1426 SmallVector<SDValue, 2> ScalarParts; 1427 for (unsigned i = 0; i != Parts; ++i) 1428 ScalarParts.push_back(getConstant( 1429 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1430 ViaEltVT, isT, isO)); 1431 1432 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1433 } 1434 1435 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1436 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1437 1438 // Check the temporary vector is the correct size. If this fails then 1439 // getTypeToTransformTo() probably returned a type whose size (in bits) 1440 // isn't a power-of-2 factor of the requested type size. 1441 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1442 1443 SmallVector<SDValue, 2> EltParts; 1444 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1445 EltParts.push_back(getConstant( 1446 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1447 ViaEltVT, isT, isO)); 1448 1449 // EltParts is currently in little endian order. If we actually want 1450 // big-endian order then reverse it now. 1451 if (getDataLayout().isBigEndian()) 1452 std::reverse(EltParts.begin(), EltParts.end()); 1453 1454 // The elements must be reversed when the element order is different 1455 // to the endianness of the elements (because the BITCAST is itself a 1456 // vector shuffle in this situation). However, we do not need any code to 1457 // perform this reversal because getConstant() is producing a vector 1458 // splat. 1459 // This situation occurs in MIPS MSA. 1460 1461 SmallVector<SDValue, 8> Ops; 1462 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1463 llvm::append_range(Ops, EltParts); 1464 1465 SDValue V = 1466 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1467 return V; 1468 } 1469 1470 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1471 "APInt size does not match type size!"); 1472 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1473 FoldingSetNodeID ID; 1474 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1475 ID.AddPointer(Elt); 1476 ID.AddBoolean(isO); 1477 void *IP = nullptr; 1478 SDNode *N = nullptr; 1479 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1480 if (!VT.isVector()) 1481 return SDValue(N, 0); 1482 1483 if (!N) { 1484 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1485 CSEMap.InsertNode(N, IP); 1486 InsertNode(N); 1487 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1488 } 1489 1490 SDValue Result(N, 0); 1491 if (VT.isScalableVector()) 1492 Result = getSplatVector(VT, DL, Result); 1493 else if (VT.isVector()) 1494 Result = getSplatBuildVector(VT, DL, Result); 1495 1496 return Result; 1497 } 1498 1499 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1500 bool isTarget) { 1501 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1502 } 1503 1504 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1505 const SDLoc &DL, bool LegalTypes) { 1506 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1507 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1508 return getConstant(Val, DL, ShiftVT); 1509 } 1510 1511 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1512 bool isTarget) { 1513 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1514 } 1515 1516 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1517 bool isTarget) { 1518 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1519 } 1520 1521 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1522 EVT VT, bool isTarget) { 1523 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1524 1525 EVT EltVT = VT.getScalarType(); 1526 1527 // Do the map lookup using the actual bit pattern for the floating point 1528 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1529 // we don't have issues with SNANs. 1530 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1531 FoldingSetNodeID ID; 1532 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1533 ID.AddPointer(&V); 1534 void *IP = nullptr; 1535 SDNode *N = nullptr; 1536 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1537 if (!VT.isVector()) 1538 return SDValue(N, 0); 1539 1540 if (!N) { 1541 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1542 CSEMap.InsertNode(N, IP); 1543 InsertNode(N); 1544 } 1545 1546 SDValue Result(N, 0); 1547 if (VT.isScalableVector()) 1548 Result = getSplatVector(VT, DL, Result); 1549 else if (VT.isVector()) 1550 Result = getSplatBuildVector(VT, DL, Result); 1551 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1552 return Result; 1553 } 1554 1555 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1556 bool isTarget) { 1557 EVT EltVT = VT.getScalarType(); 1558 if (EltVT == MVT::f32) 1559 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1560 if (EltVT == MVT::f64) 1561 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1562 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1563 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1564 bool Ignored; 1565 APFloat APF = APFloat(Val); 1566 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1567 &Ignored); 1568 return getConstantFP(APF, DL, VT, isTarget); 1569 } 1570 llvm_unreachable("Unsupported type in getConstantFP"); 1571 } 1572 1573 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1574 EVT VT, int64_t Offset, bool isTargetGA, 1575 unsigned TargetFlags) { 1576 assert((TargetFlags == 0 || isTargetGA) && 1577 "Cannot set target flags on target-independent globals"); 1578 1579 // Truncate (with sign-extension) the offset value to the pointer size. 1580 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1581 if (BitWidth < 64) 1582 Offset = SignExtend64(Offset, BitWidth); 1583 1584 unsigned Opc; 1585 if (GV->isThreadLocal()) 1586 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1587 else 1588 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1589 1590 FoldingSetNodeID ID; 1591 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1592 ID.AddPointer(GV); 1593 ID.AddInteger(Offset); 1594 ID.AddInteger(TargetFlags); 1595 void *IP = nullptr; 1596 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1597 return SDValue(E, 0); 1598 1599 auto *N = newSDNode<GlobalAddressSDNode>( 1600 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1601 CSEMap.InsertNode(N, IP); 1602 InsertNode(N); 1603 return SDValue(N, 0); 1604 } 1605 1606 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1607 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1608 FoldingSetNodeID ID; 1609 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1610 ID.AddInteger(FI); 1611 void *IP = nullptr; 1612 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1613 return SDValue(E, 0); 1614 1615 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1616 CSEMap.InsertNode(N, IP); 1617 InsertNode(N); 1618 return SDValue(N, 0); 1619 } 1620 1621 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1622 unsigned TargetFlags) { 1623 assert((TargetFlags == 0 || isTarget) && 1624 "Cannot set target flags on target-independent jump tables"); 1625 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1626 FoldingSetNodeID ID; 1627 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1628 ID.AddInteger(JTI); 1629 ID.AddInteger(TargetFlags); 1630 void *IP = nullptr; 1631 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1632 return SDValue(E, 0); 1633 1634 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1635 CSEMap.InsertNode(N, IP); 1636 InsertNode(N); 1637 return SDValue(N, 0); 1638 } 1639 1640 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1641 MaybeAlign Alignment, int Offset, 1642 bool isTarget, unsigned TargetFlags) { 1643 assert((TargetFlags == 0 || isTarget) && 1644 "Cannot set target flags on target-independent globals"); 1645 if (!Alignment) 1646 Alignment = shouldOptForSize() 1647 ? getDataLayout().getABITypeAlign(C->getType()) 1648 : getDataLayout().getPrefTypeAlign(C->getType()); 1649 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1650 FoldingSetNodeID ID; 1651 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1652 ID.AddInteger(Alignment->value()); 1653 ID.AddInteger(Offset); 1654 ID.AddPointer(C); 1655 ID.AddInteger(TargetFlags); 1656 void *IP = nullptr; 1657 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1658 return SDValue(E, 0); 1659 1660 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1661 TargetFlags); 1662 CSEMap.InsertNode(N, IP); 1663 InsertNode(N); 1664 SDValue V = SDValue(N, 0); 1665 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1666 return V; 1667 } 1668 1669 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1670 MaybeAlign Alignment, int Offset, 1671 bool isTarget, unsigned TargetFlags) { 1672 assert((TargetFlags == 0 || isTarget) && 1673 "Cannot set target flags on target-independent globals"); 1674 if (!Alignment) 1675 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1676 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1677 FoldingSetNodeID ID; 1678 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1679 ID.AddInteger(Alignment->value()); 1680 ID.AddInteger(Offset); 1681 C->addSelectionDAGCSEId(ID); 1682 ID.AddInteger(TargetFlags); 1683 void *IP = nullptr; 1684 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1685 return SDValue(E, 0); 1686 1687 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1688 TargetFlags); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1695 unsigned TargetFlags) { 1696 FoldingSetNodeID ID; 1697 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1698 ID.AddInteger(Index); 1699 ID.AddInteger(Offset); 1700 ID.AddInteger(TargetFlags); 1701 void *IP = nullptr; 1702 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1703 return SDValue(E, 0); 1704 1705 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1706 CSEMap.InsertNode(N, IP); 1707 InsertNode(N); 1708 return SDValue(N, 0); 1709 } 1710 1711 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1712 FoldingSetNodeID ID; 1713 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1714 ID.AddPointer(MBB); 1715 void *IP = nullptr; 1716 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1717 return SDValue(E, 0); 1718 1719 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1720 CSEMap.InsertNode(N, IP); 1721 InsertNode(N); 1722 return SDValue(N, 0); 1723 } 1724 1725 SDValue SelectionDAG::getValueType(EVT VT) { 1726 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1727 ValueTypeNodes.size()) 1728 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1729 1730 SDNode *&N = VT.isExtended() ? 1731 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1732 1733 if (N) return SDValue(N, 0); 1734 N = newSDNode<VTSDNode>(VT); 1735 InsertNode(N); 1736 return SDValue(N, 0); 1737 } 1738 1739 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1740 SDNode *&N = ExternalSymbols[Sym]; 1741 if (N) return SDValue(N, 0); 1742 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1743 InsertNode(N); 1744 return SDValue(N, 0); 1745 } 1746 1747 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1748 SDNode *&N = MCSymbols[Sym]; 1749 if (N) 1750 return SDValue(N, 0); 1751 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1752 InsertNode(N); 1753 return SDValue(N, 0); 1754 } 1755 1756 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1757 unsigned TargetFlags) { 1758 SDNode *&N = 1759 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1760 if (N) return SDValue(N, 0); 1761 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1762 InsertNode(N); 1763 return SDValue(N, 0); 1764 } 1765 1766 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1767 if ((unsigned)Cond >= CondCodeNodes.size()) 1768 CondCodeNodes.resize(Cond+1); 1769 1770 if (!CondCodeNodes[Cond]) { 1771 auto *N = newSDNode<CondCodeSDNode>(Cond); 1772 CondCodeNodes[Cond] = N; 1773 InsertNode(N); 1774 } 1775 1776 return SDValue(CondCodeNodes[Cond], 0); 1777 } 1778 1779 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1780 APInt One(ResVT.getScalarSizeInBits(), 1); 1781 return getStepVector(DL, ResVT, One); 1782 } 1783 1784 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1785 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1786 if (ResVT.isScalableVector()) 1787 return getNode( 1788 ISD::STEP_VECTOR, DL, ResVT, 1789 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1790 1791 SmallVector<SDValue, 16> OpsStepConstants; 1792 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1793 OpsStepConstants.push_back( 1794 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1795 return getBuildVector(ResVT, DL, OpsStepConstants); 1796 } 1797 1798 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1799 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1800 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1801 std::swap(N1, N2); 1802 ShuffleVectorSDNode::commuteMask(M); 1803 } 1804 1805 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1806 SDValue N2, ArrayRef<int> Mask) { 1807 assert(VT.getVectorNumElements() == Mask.size() && 1808 "Must have the same number of vector elements as mask elements!"); 1809 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1810 "Invalid VECTOR_SHUFFLE"); 1811 1812 // Canonicalize shuffle undef, undef -> undef 1813 if (N1.isUndef() && N2.isUndef()) 1814 return getUNDEF(VT); 1815 1816 // Validate that all indices in Mask are within the range of the elements 1817 // input to the shuffle. 1818 int NElts = Mask.size(); 1819 assert(llvm::all_of(Mask, 1820 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1821 "Index out of range"); 1822 1823 // Copy the mask so we can do any needed cleanup. 1824 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1825 1826 // Canonicalize shuffle v, v -> v, undef 1827 if (N1 == N2) { 1828 N2 = getUNDEF(VT); 1829 for (int i = 0; i != NElts; ++i) 1830 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1831 } 1832 1833 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1834 if (N1.isUndef()) 1835 commuteShuffle(N1, N2, MaskVec); 1836 1837 if (TLI->hasVectorBlend()) { 1838 // If shuffling a splat, try to blend the splat instead. We do this here so 1839 // that even when this arises during lowering we don't have to re-handle it. 1840 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1841 BitVector UndefElements; 1842 SDValue Splat = BV->getSplatValue(&UndefElements); 1843 if (!Splat) 1844 return; 1845 1846 for (int i = 0; i < NElts; ++i) { 1847 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1848 continue; 1849 1850 // If this input comes from undef, mark it as such. 1851 if (UndefElements[MaskVec[i] - Offset]) { 1852 MaskVec[i] = -1; 1853 continue; 1854 } 1855 1856 // If we can blend a non-undef lane, use that instead. 1857 if (!UndefElements[i]) 1858 MaskVec[i] = i + Offset; 1859 } 1860 }; 1861 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1862 BlendSplat(N1BV, 0); 1863 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1864 BlendSplat(N2BV, NElts); 1865 } 1866 1867 // Canonicalize all index into lhs, -> shuffle lhs, undef 1868 // Canonicalize all index into rhs, -> shuffle rhs, undef 1869 bool AllLHS = true, AllRHS = true; 1870 bool N2Undef = N2.isUndef(); 1871 for (int i = 0; i != NElts; ++i) { 1872 if (MaskVec[i] >= NElts) { 1873 if (N2Undef) 1874 MaskVec[i] = -1; 1875 else 1876 AllLHS = false; 1877 } else if (MaskVec[i] >= 0) { 1878 AllRHS = false; 1879 } 1880 } 1881 if (AllLHS && AllRHS) 1882 return getUNDEF(VT); 1883 if (AllLHS && !N2Undef) 1884 N2 = getUNDEF(VT); 1885 if (AllRHS) { 1886 N1 = getUNDEF(VT); 1887 commuteShuffle(N1, N2, MaskVec); 1888 } 1889 // Reset our undef status after accounting for the mask. 1890 N2Undef = N2.isUndef(); 1891 // Re-check whether both sides ended up undef. 1892 if (N1.isUndef() && N2Undef) 1893 return getUNDEF(VT); 1894 1895 // If Identity shuffle return that node. 1896 bool Identity = true, AllSame = true; 1897 for (int i = 0; i != NElts; ++i) { 1898 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1899 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1900 } 1901 if (Identity && NElts) 1902 return N1; 1903 1904 // Shuffling a constant splat doesn't change the result. 1905 if (N2Undef) { 1906 SDValue V = N1; 1907 1908 // Look through any bitcasts. We check that these don't change the number 1909 // (and size) of elements and just changes their types. 1910 while (V.getOpcode() == ISD::BITCAST) 1911 V = V->getOperand(0); 1912 1913 // A splat should always show up as a build vector node. 1914 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1915 BitVector UndefElements; 1916 SDValue Splat = BV->getSplatValue(&UndefElements); 1917 // If this is a splat of an undef, shuffling it is also undef. 1918 if (Splat && Splat.isUndef()) 1919 return getUNDEF(VT); 1920 1921 bool SameNumElts = 1922 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1923 1924 // We only have a splat which can skip shuffles if there is a splatted 1925 // value and no undef lanes rearranged by the shuffle. 1926 if (Splat && UndefElements.none()) { 1927 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1928 // number of elements match or the value splatted is a zero constant. 1929 if (SameNumElts) 1930 return N1; 1931 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1932 if (C->isNullValue()) 1933 return N1; 1934 } 1935 1936 // If the shuffle itself creates a splat, build the vector directly. 1937 if (AllSame && SameNumElts) { 1938 EVT BuildVT = BV->getValueType(0); 1939 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1940 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1941 1942 // We may have jumped through bitcasts, so the type of the 1943 // BUILD_VECTOR may not match the type of the shuffle. 1944 if (BuildVT != VT) 1945 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1946 return NewBV; 1947 } 1948 } 1949 } 1950 1951 FoldingSetNodeID ID; 1952 SDValue Ops[2] = { N1, N2 }; 1953 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1954 for (int i = 0; i != NElts; ++i) 1955 ID.AddInteger(MaskVec[i]); 1956 1957 void* IP = nullptr; 1958 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1959 return SDValue(E, 0); 1960 1961 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1962 // SDNode doesn't have access to it. This memory will be "leaked" when 1963 // the node is deallocated, but recovered when the NodeAllocator is released. 1964 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1965 llvm::copy(MaskVec, MaskAlloc); 1966 1967 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1968 dl.getDebugLoc(), MaskAlloc); 1969 createOperands(N, Ops); 1970 1971 CSEMap.InsertNode(N, IP); 1972 InsertNode(N); 1973 SDValue V = SDValue(N, 0); 1974 NewSDValueDbgMsg(V, "Creating new node: ", this); 1975 return V; 1976 } 1977 1978 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1979 EVT VT = SV.getValueType(0); 1980 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1981 ShuffleVectorSDNode::commuteMask(MaskVec); 1982 1983 SDValue Op0 = SV.getOperand(0); 1984 SDValue Op1 = SV.getOperand(1); 1985 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1986 } 1987 1988 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1989 FoldingSetNodeID ID; 1990 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1991 ID.AddInteger(RegNo); 1992 void *IP = nullptr; 1993 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1994 return SDValue(E, 0); 1995 1996 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1997 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1998 CSEMap.InsertNode(N, IP); 1999 InsertNode(N); 2000 return SDValue(N, 0); 2001 } 2002 2003 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2004 FoldingSetNodeID ID; 2005 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2006 ID.AddPointer(RegMask); 2007 void *IP = nullptr; 2008 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2009 return SDValue(E, 0); 2010 2011 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2012 CSEMap.InsertNode(N, IP); 2013 InsertNode(N); 2014 return SDValue(N, 0); 2015 } 2016 2017 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2018 MCSymbol *Label) { 2019 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2020 } 2021 2022 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2023 SDValue Root, MCSymbol *Label) { 2024 FoldingSetNodeID ID; 2025 SDValue Ops[] = { Root }; 2026 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2027 ID.AddPointer(Label); 2028 void *IP = nullptr; 2029 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2030 return SDValue(E, 0); 2031 2032 auto *N = 2033 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2034 createOperands(N, Ops); 2035 2036 CSEMap.InsertNode(N, IP); 2037 InsertNode(N); 2038 return SDValue(N, 0); 2039 } 2040 2041 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2042 int64_t Offset, bool isTarget, 2043 unsigned TargetFlags) { 2044 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2045 2046 FoldingSetNodeID ID; 2047 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2048 ID.AddPointer(BA); 2049 ID.AddInteger(Offset); 2050 ID.AddInteger(TargetFlags); 2051 void *IP = nullptr; 2052 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2053 return SDValue(E, 0); 2054 2055 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2056 CSEMap.InsertNode(N, IP); 2057 InsertNode(N); 2058 return SDValue(N, 0); 2059 } 2060 2061 SDValue SelectionDAG::getSrcValue(const Value *V) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2064 ID.AddPointer(V); 2065 2066 void *IP = nullptr; 2067 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2068 return SDValue(E, 0); 2069 2070 auto *N = newSDNode<SrcValueSDNode>(V); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2079 ID.AddPointer(MD); 2080 2081 void *IP = nullptr; 2082 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2083 return SDValue(E, 0); 2084 2085 auto *N = newSDNode<MDNodeSDNode>(MD); 2086 CSEMap.InsertNode(N, IP); 2087 InsertNode(N); 2088 return SDValue(N, 0); 2089 } 2090 2091 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2092 if (VT == V.getValueType()) 2093 return V; 2094 2095 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2096 } 2097 2098 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2099 unsigned SrcAS, unsigned DestAS) { 2100 SDValue Ops[] = {Ptr}; 2101 FoldingSetNodeID ID; 2102 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2103 ID.AddInteger(SrcAS); 2104 ID.AddInteger(DestAS); 2105 2106 void *IP = nullptr; 2107 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2108 return SDValue(E, 0); 2109 2110 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2111 VT, SrcAS, DestAS); 2112 createOperands(N, Ops); 2113 2114 CSEMap.InsertNode(N, IP); 2115 InsertNode(N); 2116 return SDValue(N, 0); 2117 } 2118 2119 SDValue SelectionDAG::getFreeze(SDValue V) { 2120 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2121 } 2122 2123 /// getShiftAmountOperand - Return the specified value casted to 2124 /// the target's desired shift amount type. 2125 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2126 EVT OpTy = Op.getValueType(); 2127 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2128 if (OpTy == ShTy || OpTy.isVector()) return Op; 2129 2130 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2131 } 2132 2133 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2134 SDLoc dl(Node); 2135 const TargetLowering &TLI = getTargetLoweringInfo(); 2136 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2137 EVT VT = Node->getValueType(0); 2138 SDValue Tmp1 = Node->getOperand(0); 2139 SDValue Tmp2 = Node->getOperand(1); 2140 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2141 2142 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2143 Tmp2, MachinePointerInfo(V)); 2144 SDValue VAList = VAListLoad; 2145 2146 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2147 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2148 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2149 2150 VAList = 2151 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2152 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2153 } 2154 2155 // Increment the pointer, VAList, to the next vaarg 2156 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2157 getConstant(getDataLayout().getTypeAllocSize( 2158 VT.getTypeForEVT(*getContext())), 2159 dl, VAList.getValueType())); 2160 // Store the incremented VAList to the legalized pointer 2161 Tmp1 = 2162 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2163 // Load the actual argument out of the pointer VAList 2164 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2165 } 2166 2167 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2168 SDLoc dl(Node); 2169 const TargetLowering &TLI = getTargetLoweringInfo(); 2170 // This defaults to loading a pointer from the input and storing it to the 2171 // output, returning the chain. 2172 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2173 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2174 SDValue Tmp1 = 2175 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2176 Node->getOperand(2), MachinePointerInfo(VS)); 2177 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2178 MachinePointerInfo(VD)); 2179 } 2180 2181 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2182 const DataLayout &DL = getDataLayout(); 2183 Type *Ty = VT.getTypeForEVT(*getContext()); 2184 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2185 2186 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2187 return RedAlign; 2188 2189 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2190 const Align StackAlign = TFI->getStackAlign(); 2191 2192 // See if we can choose a smaller ABI alignment in cases where it's an 2193 // illegal vector type that will get broken down. 2194 if (RedAlign > StackAlign) { 2195 EVT IntermediateVT; 2196 MVT RegisterVT; 2197 unsigned NumIntermediates; 2198 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2199 NumIntermediates, RegisterVT); 2200 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2201 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2202 if (RedAlign2 < RedAlign) 2203 RedAlign = RedAlign2; 2204 } 2205 2206 return RedAlign; 2207 } 2208 2209 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2210 MachineFrameInfo &MFI = MF->getFrameInfo(); 2211 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2212 int StackID = 0; 2213 if (Bytes.isScalable()) 2214 StackID = TFI->getStackIDForScalableVectors(); 2215 // The stack id gives an indication of whether the object is scalable or 2216 // not, so it's safe to pass in the minimum size here. 2217 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2218 false, nullptr, StackID); 2219 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2220 } 2221 2222 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2223 Type *Ty = VT.getTypeForEVT(*getContext()); 2224 Align StackAlign = 2225 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2226 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2227 } 2228 2229 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2230 TypeSize VT1Size = VT1.getStoreSize(); 2231 TypeSize VT2Size = VT2.getStoreSize(); 2232 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2233 "Don't know how to choose the maximum size when creating a stack " 2234 "temporary"); 2235 TypeSize Bytes = 2236 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2237 2238 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2239 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2240 const DataLayout &DL = getDataLayout(); 2241 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2242 return CreateStackTemporary(Bytes, Align); 2243 } 2244 2245 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2246 ISD::CondCode Cond, const SDLoc &dl) { 2247 EVT OpVT = N1.getValueType(); 2248 2249 // These setcc operations always fold. 2250 switch (Cond) { 2251 default: break; 2252 case ISD::SETFALSE: 2253 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2254 case ISD::SETTRUE: 2255 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2256 2257 case ISD::SETOEQ: 2258 case ISD::SETOGT: 2259 case ISD::SETOGE: 2260 case ISD::SETOLT: 2261 case ISD::SETOLE: 2262 case ISD::SETONE: 2263 case ISD::SETO: 2264 case ISD::SETUO: 2265 case ISD::SETUEQ: 2266 case ISD::SETUNE: 2267 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2268 break; 2269 } 2270 2271 if (OpVT.isInteger()) { 2272 // For EQ and NE, we can always pick a value for the undef to make the 2273 // predicate pass or fail, so we can return undef. 2274 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2275 // icmp eq/ne X, undef -> undef. 2276 if ((N1.isUndef() || N2.isUndef()) && 2277 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2278 return getUNDEF(VT); 2279 2280 // If both operands are undef, we can return undef for int comparison. 2281 // icmp undef, undef -> undef. 2282 if (N1.isUndef() && N2.isUndef()) 2283 return getUNDEF(VT); 2284 2285 // icmp X, X -> true/false 2286 // icmp X, undef -> true/false because undef could be X. 2287 if (N1 == N2) 2288 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2289 } 2290 2291 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2292 const APInt &C2 = N2C->getAPIntValue(); 2293 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2294 const APInt &C1 = N1C->getAPIntValue(); 2295 2296 switch (Cond) { 2297 default: llvm_unreachable("Unknown integer setcc!"); 2298 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2299 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2300 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2301 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2302 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2303 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2304 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2305 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2306 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2307 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2308 } 2309 } 2310 } 2311 2312 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2313 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2314 2315 if (N1CFP && N2CFP) { 2316 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2317 switch (Cond) { 2318 default: break; 2319 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2320 return getUNDEF(VT); 2321 LLVM_FALLTHROUGH; 2322 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2323 OpVT); 2324 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2325 return getUNDEF(VT); 2326 LLVM_FALLTHROUGH; 2327 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2328 R==APFloat::cmpLessThan, dl, VT, 2329 OpVT); 2330 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2331 return getUNDEF(VT); 2332 LLVM_FALLTHROUGH; 2333 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2334 OpVT); 2335 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2336 return getUNDEF(VT); 2337 LLVM_FALLTHROUGH; 2338 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2339 VT, OpVT); 2340 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2341 return getUNDEF(VT); 2342 LLVM_FALLTHROUGH; 2343 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2344 R==APFloat::cmpEqual, dl, VT, 2345 OpVT); 2346 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2347 return getUNDEF(VT); 2348 LLVM_FALLTHROUGH; 2349 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2350 R==APFloat::cmpEqual, dl, VT, OpVT); 2351 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2352 OpVT); 2353 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2354 OpVT); 2355 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2356 R==APFloat::cmpEqual, dl, VT, 2357 OpVT); 2358 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2359 OpVT); 2360 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2361 R==APFloat::cmpLessThan, dl, VT, 2362 OpVT); 2363 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2364 R==APFloat::cmpUnordered, dl, VT, 2365 OpVT); 2366 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2367 VT, OpVT); 2368 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2369 OpVT); 2370 } 2371 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2372 // Ensure that the constant occurs on the RHS. 2373 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2374 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2375 return SDValue(); 2376 return getSetCC(dl, VT, N2, N1, SwappedCond); 2377 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2378 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2379 // If an operand is known to be a nan (or undef that could be a nan), we can 2380 // fold it. 2381 // Choosing NaN for the undef will always make unordered comparison succeed 2382 // and ordered comparison fails. 2383 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2384 switch (ISD::getUnorderedFlavor(Cond)) { 2385 default: 2386 llvm_unreachable("Unknown flavor!"); 2387 case 0: // Known false. 2388 return getBoolConstant(false, dl, VT, OpVT); 2389 case 1: // Known true. 2390 return getBoolConstant(true, dl, VT, OpVT); 2391 case 2: // Undefined. 2392 return getUNDEF(VT); 2393 } 2394 } 2395 2396 // Could not fold it. 2397 return SDValue(); 2398 } 2399 2400 /// See if the specified operand can be simplified with the knowledge that only 2401 /// the bits specified by DemandedBits are used. 2402 /// TODO: really we should be making this into the DAG equivalent of 2403 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2404 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2405 EVT VT = V.getValueType(); 2406 2407 if (VT.isScalableVector()) 2408 return SDValue(); 2409 2410 APInt DemandedElts = VT.isVector() 2411 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2412 : APInt(1, 1); 2413 return GetDemandedBits(V, DemandedBits, DemandedElts); 2414 } 2415 2416 /// See if the specified operand can be simplified with the knowledge that only 2417 /// the bits specified by DemandedBits are used in the elements specified by 2418 /// DemandedElts. 2419 /// TODO: really we should be making this into the DAG equivalent of 2420 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2421 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2422 const APInt &DemandedElts) { 2423 switch (V.getOpcode()) { 2424 default: 2425 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2426 *this, 0); 2427 case ISD::Constant: { 2428 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2429 APInt NewVal = CVal & DemandedBits; 2430 if (NewVal != CVal) 2431 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2432 break; 2433 } 2434 case ISD::SRL: 2435 // Only look at single-use SRLs. 2436 if (!V.getNode()->hasOneUse()) 2437 break; 2438 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2439 // See if we can recursively simplify the LHS. 2440 unsigned Amt = RHSC->getZExtValue(); 2441 2442 // Watch out for shift count overflow though. 2443 if (Amt >= DemandedBits.getBitWidth()) 2444 break; 2445 APInt SrcDemandedBits = DemandedBits << Amt; 2446 if (SDValue SimplifyLHS = 2447 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2448 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2449 V.getOperand(1)); 2450 } 2451 break; 2452 } 2453 return SDValue(); 2454 } 2455 2456 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2457 /// use this predicate to simplify operations downstream. 2458 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2459 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2460 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2461 } 2462 2463 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2464 /// this predicate to simplify operations downstream. Mask is known to be zero 2465 /// for bits that V cannot have. 2466 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2467 unsigned Depth) const { 2468 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2469 } 2470 2471 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2472 /// DemandedElts. We use this predicate to simplify operations downstream. 2473 /// Mask is known to be zero for bits that V cannot have. 2474 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2475 const APInt &DemandedElts, 2476 unsigned Depth) const { 2477 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2478 } 2479 2480 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2481 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2482 unsigned Depth) const { 2483 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2484 } 2485 2486 /// isSplatValue - Return true if the vector V has the same value 2487 /// across all DemandedElts. For scalable vectors it does not make 2488 /// sense to specify which elements are demanded or undefined, therefore 2489 /// they are simply ignored. 2490 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2491 APInt &UndefElts, unsigned Depth) { 2492 EVT VT = V.getValueType(); 2493 assert(VT.isVector() && "Vector type expected"); 2494 2495 if (!VT.isScalableVector() && !DemandedElts) 2496 return false; // No demanded elts, better to assume we don't know anything. 2497 2498 if (Depth >= MaxRecursionDepth) 2499 return false; // Limit search depth. 2500 2501 // Deal with some common cases here that work for both fixed and scalable 2502 // vector types. 2503 switch (V.getOpcode()) { 2504 case ISD::SPLAT_VECTOR: 2505 UndefElts = V.getOperand(0).isUndef() 2506 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2507 : APInt(DemandedElts.getBitWidth(), 0); 2508 return true; 2509 case ISD::ADD: 2510 case ISD::SUB: 2511 case ISD::AND: 2512 case ISD::XOR: 2513 case ISD::OR: { 2514 APInt UndefLHS, UndefRHS; 2515 SDValue LHS = V.getOperand(0); 2516 SDValue RHS = V.getOperand(1); 2517 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2518 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2519 UndefElts = UndefLHS | UndefRHS; 2520 return true; 2521 } 2522 return false; 2523 } 2524 case ISD::ABS: 2525 case ISD::TRUNCATE: 2526 case ISD::SIGN_EXTEND: 2527 case ISD::ZERO_EXTEND: 2528 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2529 } 2530 2531 // We don't support other cases than those above for scalable vectors at 2532 // the moment. 2533 if (VT.isScalableVector()) 2534 return false; 2535 2536 unsigned NumElts = VT.getVectorNumElements(); 2537 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2538 UndefElts = APInt::getNullValue(NumElts); 2539 2540 switch (V.getOpcode()) { 2541 case ISD::BUILD_VECTOR: { 2542 SDValue Scl; 2543 for (unsigned i = 0; i != NumElts; ++i) { 2544 SDValue Op = V.getOperand(i); 2545 if (Op.isUndef()) { 2546 UndefElts.setBit(i); 2547 continue; 2548 } 2549 if (!DemandedElts[i]) 2550 continue; 2551 if (Scl && Scl != Op) 2552 return false; 2553 Scl = Op; 2554 } 2555 return true; 2556 } 2557 case ISD::VECTOR_SHUFFLE: { 2558 // Check if this is a shuffle node doing a splat. 2559 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2560 int SplatIndex = -1; 2561 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2562 for (int i = 0; i != (int)NumElts; ++i) { 2563 int M = Mask[i]; 2564 if (M < 0) { 2565 UndefElts.setBit(i); 2566 continue; 2567 } 2568 if (!DemandedElts[i]) 2569 continue; 2570 if (0 <= SplatIndex && SplatIndex != M) 2571 return false; 2572 SplatIndex = M; 2573 } 2574 return true; 2575 } 2576 case ISD::EXTRACT_SUBVECTOR: { 2577 // Offset the demanded elts by the subvector index. 2578 SDValue Src = V.getOperand(0); 2579 // We don't support scalable vectors at the moment. 2580 if (Src.getValueType().isScalableVector()) 2581 return false; 2582 uint64_t Idx = V.getConstantOperandVal(1); 2583 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2584 APInt UndefSrcElts; 2585 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2586 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2587 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2588 return true; 2589 } 2590 break; 2591 } 2592 } 2593 2594 return false; 2595 } 2596 2597 /// Helper wrapper to main isSplatValue function. 2598 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2599 EVT VT = V.getValueType(); 2600 assert(VT.isVector() && "Vector type expected"); 2601 2602 APInt UndefElts; 2603 APInt DemandedElts; 2604 2605 // For now we don't support this with scalable vectors. 2606 if (!VT.isScalableVector()) 2607 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2608 return isSplatValue(V, DemandedElts, UndefElts) && 2609 (AllowUndefs || !UndefElts); 2610 } 2611 2612 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2613 V = peekThroughExtractSubvectors(V); 2614 2615 EVT VT = V.getValueType(); 2616 unsigned Opcode = V.getOpcode(); 2617 switch (Opcode) { 2618 default: { 2619 APInt UndefElts; 2620 APInt DemandedElts; 2621 2622 if (!VT.isScalableVector()) 2623 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2624 2625 if (isSplatValue(V, DemandedElts, UndefElts)) { 2626 if (VT.isScalableVector()) { 2627 // DemandedElts and UndefElts are ignored for scalable vectors, since 2628 // the only supported cases are SPLAT_VECTOR nodes. 2629 SplatIdx = 0; 2630 } else { 2631 // Handle case where all demanded elements are UNDEF. 2632 if (DemandedElts.isSubsetOf(UndefElts)) { 2633 SplatIdx = 0; 2634 return getUNDEF(VT); 2635 } 2636 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2637 } 2638 return V; 2639 } 2640 break; 2641 } 2642 case ISD::SPLAT_VECTOR: 2643 SplatIdx = 0; 2644 return V; 2645 case ISD::VECTOR_SHUFFLE: { 2646 if (VT.isScalableVector()) 2647 return SDValue(); 2648 2649 // Check if this is a shuffle node doing a splat. 2650 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2651 // getTargetVShiftNode currently struggles without the splat source. 2652 auto *SVN = cast<ShuffleVectorSDNode>(V); 2653 if (!SVN->isSplat()) 2654 break; 2655 int Idx = SVN->getSplatIndex(); 2656 int NumElts = V.getValueType().getVectorNumElements(); 2657 SplatIdx = Idx % NumElts; 2658 return V.getOperand(Idx / NumElts); 2659 } 2660 } 2661 2662 return SDValue(); 2663 } 2664 2665 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2666 int SplatIdx; 2667 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2668 EVT SVT = SrcVector.getValueType().getScalarType(); 2669 EVT LegalSVT = SVT; 2670 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2671 if (!SVT.isInteger()) 2672 return SDValue(); 2673 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2674 if (LegalSVT.bitsLT(SVT)) 2675 return SDValue(); 2676 } 2677 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2678 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2679 } 2680 return SDValue(); 2681 } 2682 2683 const APInt * 2684 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2685 const APInt &DemandedElts) const { 2686 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2687 V.getOpcode() == ISD::SRA) && 2688 "Unknown shift node"); 2689 unsigned BitWidth = V.getScalarValueSizeInBits(); 2690 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2691 // Shifting more than the bitwidth is not valid. 2692 const APInt &ShAmt = SA->getAPIntValue(); 2693 if (ShAmt.ult(BitWidth)) 2694 return &ShAmt; 2695 } 2696 return nullptr; 2697 } 2698 2699 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2700 SDValue V, const APInt &DemandedElts) const { 2701 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2702 V.getOpcode() == ISD::SRA) && 2703 "Unknown shift node"); 2704 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2705 return ValidAmt; 2706 unsigned BitWidth = V.getScalarValueSizeInBits(); 2707 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2708 if (!BV) 2709 return nullptr; 2710 const APInt *MinShAmt = nullptr; 2711 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2712 if (!DemandedElts[i]) 2713 continue; 2714 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2715 if (!SA) 2716 return nullptr; 2717 // Shifting more than the bitwidth is not valid. 2718 const APInt &ShAmt = SA->getAPIntValue(); 2719 if (ShAmt.uge(BitWidth)) 2720 return nullptr; 2721 if (MinShAmt && MinShAmt->ule(ShAmt)) 2722 continue; 2723 MinShAmt = &ShAmt; 2724 } 2725 return MinShAmt; 2726 } 2727 2728 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2729 SDValue V, const APInt &DemandedElts) const { 2730 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2731 V.getOpcode() == ISD::SRA) && 2732 "Unknown shift node"); 2733 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2734 return ValidAmt; 2735 unsigned BitWidth = V.getScalarValueSizeInBits(); 2736 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2737 if (!BV) 2738 return nullptr; 2739 const APInt *MaxShAmt = nullptr; 2740 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2741 if (!DemandedElts[i]) 2742 continue; 2743 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2744 if (!SA) 2745 return nullptr; 2746 // Shifting more than the bitwidth is not valid. 2747 const APInt &ShAmt = SA->getAPIntValue(); 2748 if (ShAmt.uge(BitWidth)) 2749 return nullptr; 2750 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2751 continue; 2752 MaxShAmt = &ShAmt; 2753 } 2754 return MaxShAmt; 2755 } 2756 2757 /// Determine which bits of Op are known to be either zero or one and return 2758 /// them in Known. For vectors, the known bits are those that are shared by 2759 /// every vector element. 2760 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2761 EVT VT = Op.getValueType(); 2762 2763 // TOOD: Until we have a plan for how to represent demanded elements for 2764 // scalable vectors, we can just bail out for now. 2765 if (Op.getValueType().isScalableVector()) { 2766 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2767 return KnownBits(BitWidth); 2768 } 2769 2770 APInt DemandedElts = VT.isVector() 2771 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2772 : APInt(1, 1); 2773 return computeKnownBits(Op, DemandedElts, Depth); 2774 } 2775 2776 /// Determine which bits of Op are known to be either zero or one and return 2777 /// them in Known. The DemandedElts argument allows us to only collect the known 2778 /// bits that are shared by the requested vector elements. 2779 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2780 unsigned Depth) const { 2781 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2782 2783 KnownBits Known(BitWidth); // Don't know anything. 2784 2785 // TOOD: Until we have a plan for how to represent demanded elements for 2786 // scalable vectors, we can just bail out for now. 2787 if (Op.getValueType().isScalableVector()) 2788 return Known; 2789 2790 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2791 // We know all of the bits for a constant! 2792 return KnownBits::makeConstant(C->getAPIntValue()); 2793 } 2794 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2795 // We know all of the bits for a constant fp! 2796 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2797 } 2798 2799 if (Depth >= MaxRecursionDepth) 2800 return Known; // Limit search depth. 2801 2802 KnownBits Known2; 2803 unsigned NumElts = DemandedElts.getBitWidth(); 2804 assert((!Op.getValueType().isVector() || 2805 NumElts == Op.getValueType().getVectorNumElements()) && 2806 "Unexpected vector size"); 2807 2808 if (!DemandedElts) 2809 return Known; // No demanded elts, better to assume we don't know anything. 2810 2811 unsigned Opcode = Op.getOpcode(); 2812 switch (Opcode) { 2813 case ISD::BUILD_VECTOR: 2814 // Collect the known bits that are shared by every demanded vector element. 2815 Known.Zero.setAllBits(); Known.One.setAllBits(); 2816 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2817 if (!DemandedElts[i]) 2818 continue; 2819 2820 SDValue SrcOp = Op.getOperand(i); 2821 Known2 = computeKnownBits(SrcOp, Depth + 1); 2822 2823 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2824 if (SrcOp.getValueSizeInBits() != BitWidth) { 2825 assert(SrcOp.getValueSizeInBits() > BitWidth && 2826 "Expected BUILD_VECTOR implicit truncation"); 2827 Known2 = Known2.trunc(BitWidth); 2828 } 2829 2830 // Known bits are the values that are shared by every demanded element. 2831 Known = KnownBits::commonBits(Known, Known2); 2832 2833 // If we don't know any bits, early out. 2834 if (Known.isUnknown()) 2835 break; 2836 } 2837 break; 2838 case ISD::VECTOR_SHUFFLE: { 2839 // Collect the known bits that are shared by every vector element referenced 2840 // by the shuffle. 2841 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2842 Known.Zero.setAllBits(); Known.One.setAllBits(); 2843 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2844 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2845 for (unsigned i = 0; i != NumElts; ++i) { 2846 if (!DemandedElts[i]) 2847 continue; 2848 2849 int M = SVN->getMaskElt(i); 2850 if (M < 0) { 2851 // For UNDEF elements, we don't know anything about the common state of 2852 // the shuffle result. 2853 Known.resetAll(); 2854 DemandedLHS.clearAllBits(); 2855 DemandedRHS.clearAllBits(); 2856 break; 2857 } 2858 2859 if ((unsigned)M < NumElts) 2860 DemandedLHS.setBit((unsigned)M % NumElts); 2861 else 2862 DemandedRHS.setBit((unsigned)M % NumElts); 2863 } 2864 // Known bits are the values that are shared by every demanded element. 2865 if (!!DemandedLHS) { 2866 SDValue LHS = Op.getOperand(0); 2867 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2868 Known = KnownBits::commonBits(Known, Known2); 2869 } 2870 // If we don't know any bits, early out. 2871 if (Known.isUnknown()) 2872 break; 2873 if (!!DemandedRHS) { 2874 SDValue RHS = Op.getOperand(1); 2875 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2876 Known = KnownBits::commonBits(Known, Known2); 2877 } 2878 break; 2879 } 2880 case ISD::CONCAT_VECTORS: { 2881 // Split DemandedElts and test each of the demanded subvectors. 2882 Known.Zero.setAllBits(); Known.One.setAllBits(); 2883 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2884 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2885 unsigned NumSubVectors = Op.getNumOperands(); 2886 for (unsigned i = 0; i != NumSubVectors; ++i) { 2887 APInt DemandedSub = 2888 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2889 if (!!DemandedSub) { 2890 SDValue Sub = Op.getOperand(i); 2891 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2892 Known = KnownBits::commonBits(Known, Known2); 2893 } 2894 // If we don't know any bits, early out. 2895 if (Known.isUnknown()) 2896 break; 2897 } 2898 break; 2899 } 2900 case ISD::INSERT_SUBVECTOR: { 2901 // Demand any elements from the subvector and the remainder from the src its 2902 // inserted into. 2903 SDValue Src = Op.getOperand(0); 2904 SDValue Sub = Op.getOperand(1); 2905 uint64_t Idx = Op.getConstantOperandVal(2); 2906 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2907 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2908 APInt DemandedSrcElts = DemandedElts; 2909 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2910 2911 Known.One.setAllBits(); 2912 Known.Zero.setAllBits(); 2913 if (!!DemandedSubElts) { 2914 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2915 if (Known.isUnknown()) 2916 break; // early-out. 2917 } 2918 if (!!DemandedSrcElts) { 2919 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2920 Known = KnownBits::commonBits(Known, Known2); 2921 } 2922 break; 2923 } 2924 case ISD::EXTRACT_SUBVECTOR: { 2925 // Offset the demanded elts by the subvector index. 2926 SDValue Src = Op.getOperand(0); 2927 // Bail until we can represent demanded elements for scalable vectors. 2928 if (Src.getValueType().isScalableVector()) 2929 break; 2930 uint64_t Idx = Op.getConstantOperandVal(1); 2931 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2932 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2933 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2934 break; 2935 } 2936 case ISD::SCALAR_TO_VECTOR: { 2937 // We know about scalar_to_vector as much as we know about it source, 2938 // which becomes the first element of otherwise unknown vector. 2939 if (DemandedElts != 1) 2940 break; 2941 2942 SDValue N0 = Op.getOperand(0); 2943 Known = computeKnownBits(N0, Depth + 1); 2944 if (N0.getValueSizeInBits() != BitWidth) 2945 Known = Known.trunc(BitWidth); 2946 2947 break; 2948 } 2949 case ISD::BITCAST: { 2950 SDValue N0 = Op.getOperand(0); 2951 EVT SubVT = N0.getValueType(); 2952 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2953 2954 // Ignore bitcasts from unsupported types. 2955 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2956 break; 2957 2958 // Fast handling of 'identity' bitcasts. 2959 if (BitWidth == SubBitWidth) { 2960 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2961 break; 2962 } 2963 2964 bool IsLE = getDataLayout().isLittleEndian(); 2965 2966 // Bitcast 'small element' vector to 'large element' scalar/vector. 2967 if ((BitWidth % SubBitWidth) == 0) { 2968 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2969 2970 // Collect known bits for the (larger) output by collecting the known 2971 // bits from each set of sub elements and shift these into place. 2972 // We need to separately call computeKnownBits for each set of 2973 // sub elements as the knownbits for each is likely to be different. 2974 unsigned SubScale = BitWidth / SubBitWidth; 2975 APInt SubDemandedElts(NumElts * SubScale, 0); 2976 for (unsigned i = 0; i != NumElts; ++i) 2977 if (DemandedElts[i]) 2978 SubDemandedElts.setBit(i * SubScale); 2979 2980 for (unsigned i = 0; i != SubScale; ++i) { 2981 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2982 Depth + 1); 2983 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2984 Known.insertBits(Known2, SubBitWidth * Shifts); 2985 } 2986 } 2987 2988 // Bitcast 'large element' scalar/vector to 'small element' vector. 2989 if ((SubBitWidth % BitWidth) == 0) { 2990 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2991 2992 // Collect known bits for the (smaller) output by collecting the known 2993 // bits from the overlapping larger input elements and extracting the 2994 // sub sections we actually care about. 2995 unsigned SubScale = SubBitWidth / BitWidth; 2996 APInt SubDemandedElts(NumElts / SubScale, 0); 2997 for (unsigned i = 0; i != NumElts; ++i) 2998 if (DemandedElts[i]) 2999 SubDemandedElts.setBit(i / SubScale); 3000 3001 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3002 3003 Known.Zero.setAllBits(); Known.One.setAllBits(); 3004 for (unsigned i = 0; i != NumElts; ++i) 3005 if (DemandedElts[i]) { 3006 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3007 unsigned Offset = (Shifts % SubScale) * BitWidth; 3008 Known = KnownBits::commonBits(Known, 3009 Known2.extractBits(BitWidth, Offset)); 3010 // If we don't know any bits, early out. 3011 if (Known.isUnknown()) 3012 break; 3013 } 3014 } 3015 break; 3016 } 3017 case ISD::AND: 3018 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3019 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3020 3021 Known &= Known2; 3022 break; 3023 case ISD::OR: 3024 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3025 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3026 3027 Known |= Known2; 3028 break; 3029 case ISD::XOR: 3030 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3031 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3032 3033 Known ^= Known2; 3034 break; 3035 case ISD::MUL: { 3036 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3037 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3038 Known = KnownBits::mul(Known, Known2); 3039 break; 3040 } 3041 case ISD::MULHU: { 3042 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3043 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3044 Known = KnownBits::mulhu(Known, Known2); 3045 break; 3046 } 3047 case ISD::MULHS: { 3048 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3049 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3050 Known = KnownBits::mulhs(Known, Known2); 3051 break; 3052 } 3053 case ISD::UMUL_LOHI: { 3054 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3055 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3056 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3057 if (Op.getResNo() == 0) 3058 Known = KnownBits::mul(Known, Known2); 3059 else 3060 Known = KnownBits::mulhu(Known, Known2); 3061 break; 3062 } 3063 case ISD::SMUL_LOHI: { 3064 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3065 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3066 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3067 if (Op.getResNo() == 0) 3068 Known = KnownBits::mul(Known, Known2); 3069 else 3070 Known = KnownBits::mulhs(Known, Known2); 3071 break; 3072 } 3073 case ISD::UDIV: { 3074 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3075 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3076 Known = KnownBits::udiv(Known, Known2); 3077 break; 3078 } 3079 case ISD::SELECT: 3080 case ISD::VSELECT: 3081 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3082 // If we don't know any bits, early out. 3083 if (Known.isUnknown()) 3084 break; 3085 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3086 3087 // Only known if known in both the LHS and RHS. 3088 Known = KnownBits::commonBits(Known, Known2); 3089 break; 3090 case ISD::SELECT_CC: 3091 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3092 // If we don't know any bits, early out. 3093 if (Known.isUnknown()) 3094 break; 3095 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3096 3097 // Only known if known in both the LHS and RHS. 3098 Known = KnownBits::commonBits(Known, Known2); 3099 break; 3100 case ISD::SMULO: 3101 case ISD::UMULO: 3102 if (Op.getResNo() != 1) 3103 break; 3104 // The boolean result conforms to getBooleanContents. 3105 // If we know the result of a setcc has the top bits zero, use this info. 3106 // We know that we have an integer-based boolean since these operations 3107 // are only available for integer. 3108 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3109 TargetLowering::ZeroOrOneBooleanContent && 3110 BitWidth > 1) 3111 Known.Zero.setBitsFrom(1); 3112 break; 3113 case ISD::SETCC: 3114 case ISD::STRICT_FSETCC: 3115 case ISD::STRICT_FSETCCS: { 3116 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3117 // If we know the result of a setcc has the top bits zero, use this info. 3118 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3119 TargetLowering::ZeroOrOneBooleanContent && 3120 BitWidth > 1) 3121 Known.Zero.setBitsFrom(1); 3122 break; 3123 } 3124 case ISD::SHL: 3125 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3126 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3127 Known = KnownBits::shl(Known, Known2); 3128 3129 // Minimum shift low bits are known zero. 3130 if (const APInt *ShMinAmt = 3131 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3132 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3133 break; 3134 case ISD::SRL: 3135 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3136 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3137 Known = KnownBits::lshr(Known, Known2); 3138 3139 // Minimum shift high bits are known zero. 3140 if (const APInt *ShMinAmt = 3141 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3142 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3143 break; 3144 case ISD::SRA: 3145 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3146 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3147 Known = KnownBits::ashr(Known, Known2); 3148 // TODO: Add minimum shift high known sign bits. 3149 break; 3150 case ISD::FSHL: 3151 case ISD::FSHR: 3152 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3153 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3154 3155 // For fshl, 0-shift returns the 1st arg. 3156 // For fshr, 0-shift returns the 2nd arg. 3157 if (Amt == 0) { 3158 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3159 DemandedElts, Depth + 1); 3160 break; 3161 } 3162 3163 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3164 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3165 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3166 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3167 if (Opcode == ISD::FSHL) { 3168 Known.One <<= Amt; 3169 Known.Zero <<= Amt; 3170 Known2.One.lshrInPlace(BitWidth - Amt); 3171 Known2.Zero.lshrInPlace(BitWidth - Amt); 3172 } else { 3173 Known.One <<= BitWidth - Amt; 3174 Known.Zero <<= BitWidth - Amt; 3175 Known2.One.lshrInPlace(Amt); 3176 Known2.Zero.lshrInPlace(Amt); 3177 } 3178 Known.One |= Known2.One; 3179 Known.Zero |= Known2.Zero; 3180 } 3181 break; 3182 case ISD::SIGN_EXTEND_INREG: { 3183 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3184 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3185 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3186 break; 3187 } 3188 case ISD::CTTZ: 3189 case ISD::CTTZ_ZERO_UNDEF: { 3190 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3191 // If we have a known 1, its position is our upper bound. 3192 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3193 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3194 Known.Zero.setBitsFrom(LowBits); 3195 break; 3196 } 3197 case ISD::CTLZ: 3198 case ISD::CTLZ_ZERO_UNDEF: { 3199 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3200 // If we have a known 1, its position is our upper bound. 3201 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3202 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3203 Known.Zero.setBitsFrom(LowBits); 3204 break; 3205 } 3206 case ISD::CTPOP: { 3207 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3208 // If we know some of the bits are zero, they can't be one. 3209 unsigned PossibleOnes = Known2.countMaxPopulation(); 3210 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3211 break; 3212 } 3213 case ISD::PARITY: { 3214 // Parity returns 0 everywhere but the LSB. 3215 Known.Zero.setBitsFrom(1); 3216 break; 3217 } 3218 case ISD::LOAD: { 3219 LoadSDNode *LD = cast<LoadSDNode>(Op); 3220 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3221 if (ISD::isNON_EXTLoad(LD) && Cst) { 3222 // Determine any common known bits from the loaded constant pool value. 3223 Type *CstTy = Cst->getType(); 3224 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3225 // If its a vector splat, then we can (quickly) reuse the scalar path. 3226 // NOTE: We assume all elements match and none are UNDEF. 3227 if (CstTy->isVectorTy()) { 3228 if (const Constant *Splat = Cst->getSplatValue()) { 3229 Cst = Splat; 3230 CstTy = Cst->getType(); 3231 } 3232 } 3233 // TODO - do we need to handle different bitwidths? 3234 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3235 // Iterate across all vector elements finding common known bits. 3236 Known.One.setAllBits(); 3237 Known.Zero.setAllBits(); 3238 for (unsigned i = 0; i != NumElts; ++i) { 3239 if (!DemandedElts[i]) 3240 continue; 3241 if (Constant *Elt = Cst->getAggregateElement(i)) { 3242 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3243 const APInt &Value = CInt->getValue(); 3244 Known.One &= Value; 3245 Known.Zero &= ~Value; 3246 continue; 3247 } 3248 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3249 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3250 Known.One &= Value; 3251 Known.Zero &= ~Value; 3252 continue; 3253 } 3254 } 3255 Known.One.clearAllBits(); 3256 Known.Zero.clearAllBits(); 3257 break; 3258 } 3259 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3260 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3261 Known = KnownBits::makeConstant(CInt->getValue()); 3262 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3263 Known = 3264 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3265 } 3266 } 3267 } 3268 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3269 // If this is a ZEXTLoad and we are looking at the loaded value. 3270 EVT VT = LD->getMemoryVT(); 3271 unsigned MemBits = VT.getScalarSizeInBits(); 3272 Known.Zero.setBitsFrom(MemBits); 3273 } else if (const MDNode *Ranges = LD->getRanges()) { 3274 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3275 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3276 } 3277 break; 3278 } 3279 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3280 EVT InVT = Op.getOperand(0).getValueType(); 3281 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3282 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3283 Known = Known.zext(BitWidth); 3284 break; 3285 } 3286 case ISD::ZERO_EXTEND: { 3287 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3288 Known = Known.zext(BitWidth); 3289 break; 3290 } 3291 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3292 EVT InVT = Op.getOperand(0).getValueType(); 3293 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3294 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3295 // If the sign bit is known to be zero or one, then sext will extend 3296 // it to the top bits, else it will just zext. 3297 Known = Known.sext(BitWidth); 3298 break; 3299 } 3300 case ISD::SIGN_EXTEND: { 3301 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3302 // If the sign bit is known to be zero or one, then sext will extend 3303 // it to the top bits, else it will just zext. 3304 Known = Known.sext(BitWidth); 3305 break; 3306 } 3307 case ISD::ANY_EXTEND_VECTOR_INREG: { 3308 EVT InVT = Op.getOperand(0).getValueType(); 3309 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3310 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3311 Known = Known.anyext(BitWidth); 3312 break; 3313 } 3314 case ISD::ANY_EXTEND: { 3315 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3316 Known = Known.anyext(BitWidth); 3317 break; 3318 } 3319 case ISD::TRUNCATE: { 3320 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3321 Known = Known.trunc(BitWidth); 3322 break; 3323 } 3324 case ISD::AssertZext: { 3325 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3326 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3327 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3328 Known.Zero |= (~InMask); 3329 Known.One &= (~Known.Zero); 3330 break; 3331 } 3332 case ISD::AssertAlign: { 3333 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3334 assert(LogOfAlign != 0); 3335 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3336 // well as clearing one bits. 3337 Known.Zero.setLowBits(LogOfAlign); 3338 Known.One.clearLowBits(LogOfAlign); 3339 break; 3340 } 3341 case ISD::FGETSIGN: 3342 // All bits are zero except the low bit. 3343 Known.Zero.setBitsFrom(1); 3344 break; 3345 case ISD::USUBO: 3346 case ISD::SSUBO: 3347 if (Op.getResNo() == 1) { 3348 // If we know the result of a setcc has the top bits zero, use this info. 3349 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3350 TargetLowering::ZeroOrOneBooleanContent && 3351 BitWidth > 1) 3352 Known.Zero.setBitsFrom(1); 3353 break; 3354 } 3355 LLVM_FALLTHROUGH; 3356 case ISD::SUB: 3357 case ISD::SUBC: { 3358 assert(Op.getResNo() == 0 && 3359 "We only compute knownbits for the difference here."); 3360 3361 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3362 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3363 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3364 Known, Known2); 3365 break; 3366 } 3367 case ISD::UADDO: 3368 case ISD::SADDO: 3369 case ISD::ADDCARRY: 3370 if (Op.getResNo() == 1) { 3371 // If we know the result of a setcc has the top bits zero, use this info. 3372 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3373 TargetLowering::ZeroOrOneBooleanContent && 3374 BitWidth > 1) 3375 Known.Zero.setBitsFrom(1); 3376 break; 3377 } 3378 LLVM_FALLTHROUGH; 3379 case ISD::ADD: 3380 case ISD::ADDC: 3381 case ISD::ADDE: { 3382 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3383 3384 // With ADDE and ADDCARRY, a carry bit may be added in. 3385 KnownBits Carry(1); 3386 if (Opcode == ISD::ADDE) 3387 // Can't track carry from glue, set carry to unknown. 3388 Carry.resetAll(); 3389 else if (Opcode == ISD::ADDCARRY) 3390 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3391 // the trouble (how often will we find a known carry bit). And I haven't 3392 // tested this very much yet, but something like this might work: 3393 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3394 // Carry = Carry.zextOrTrunc(1, false); 3395 Carry.resetAll(); 3396 else 3397 Carry.setAllZero(); 3398 3399 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3400 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3401 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3402 break; 3403 } 3404 case ISD::SREM: { 3405 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3406 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3407 Known = KnownBits::srem(Known, Known2); 3408 break; 3409 } 3410 case ISD::UREM: { 3411 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3412 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3413 Known = KnownBits::urem(Known, Known2); 3414 break; 3415 } 3416 case ISD::EXTRACT_ELEMENT: { 3417 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3418 const unsigned Index = Op.getConstantOperandVal(1); 3419 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3420 3421 // Remove low part of known bits mask 3422 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3423 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3424 3425 // Remove high part of known bit mask 3426 Known = Known.trunc(EltBitWidth); 3427 break; 3428 } 3429 case ISD::EXTRACT_VECTOR_ELT: { 3430 SDValue InVec = Op.getOperand(0); 3431 SDValue EltNo = Op.getOperand(1); 3432 EVT VecVT = InVec.getValueType(); 3433 // computeKnownBits not yet implemented for scalable vectors. 3434 if (VecVT.isScalableVector()) 3435 break; 3436 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3437 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3438 3439 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3440 // anything about the extended bits. 3441 if (BitWidth > EltBitWidth) 3442 Known = Known.trunc(EltBitWidth); 3443 3444 // If we know the element index, just demand that vector element, else for 3445 // an unknown element index, ignore DemandedElts and demand them all. 3446 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3447 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3448 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3449 DemandedSrcElts = 3450 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3451 3452 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3453 if (BitWidth > EltBitWidth) 3454 Known = Known.anyext(BitWidth); 3455 break; 3456 } 3457 case ISD::INSERT_VECTOR_ELT: { 3458 // If we know the element index, split the demand between the 3459 // source vector and the inserted element, otherwise assume we need 3460 // the original demanded vector elements and the value. 3461 SDValue InVec = Op.getOperand(0); 3462 SDValue InVal = Op.getOperand(1); 3463 SDValue EltNo = Op.getOperand(2); 3464 bool DemandedVal = true; 3465 APInt DemandedVecElts = DemandedElts; 3466 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3467 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3468 unsigned EltIdx = CEltNo->getZExtValue(); 3469 DemandedVal = !!DemandedElts[EltIdx]; 3470 DemandedVecElts.clearBit(EltIdx); 3471 } 3472 Known.One.setAllBits(); 3473 Known.Zero.setAllBits(); 3474 if (DemandedVal) { 3475 Known2 = computeKnownBits(InVal, Depth + 1); 3476 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3477 } 3478 if (!!DemandedVecElts) { 3479 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3480 Known = KnownBits::commonBits(Known, Known2); 3481 } 3482 break; 3483 } 3484 case ISD::BITREVERSE: { 3485 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3486 Known = Known2.reverseBits(); 3487 break; 3488 } 3489 case ISD::BSWAP: { 3490 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3491 Known = Known2.byteSwap(); 3492 break; 3493 } 3494 case ISD::ABS: { 3495 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3496 Known = Known2.abs(); 3497 break; 3498 } 3499 case ISD::USUBSAT: { 3500 // The result of usubsat will never be larger than the LHS. 3501 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3502 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3503 break; 3504 } 3505 case ISD::UMIN: { 3506 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3507 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3508 Known = KnownBits::umin(Known, Known2); 3509 break; 3510 } 3511 case ISD::UMAX: { 3512 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3513 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3514 Known = KnownBits::umax(Known, Known2); 3515 break; 3516 } 3517 case ISD::SMIN: 3518 case ISD::SMAX: { 3519 // If we have a clamp pattern, we know that the number of sign bits will be 3520 // the minimum of the clamp min/max range. 3521 bool IsMax = (Opcode == ISD::SMAX); 3522 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3523 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3524 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3525 CstHigh = 3526 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3527 if (CstLow && CstHigh) { 3528 if (!IsMax) 3529 std::swap(CstLow, CstHigh); 3530 3531 const APInt &ValueLow = CstLow->getAPIntValue(); 3532 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3533 if (ValueLow.sle(ValueHigh)) { 3534 unsigned LowSignBits = ValueLow.getNumSignBits(); 3535 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3536 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3537 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3538 Known.One.setHighBits(MinSignBits); 3539 break; 3540 } 3541 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3542 Known.Zero.setHighBits(MinSignBits); 3543 break; 3544 } 3545 } 3546 } 3547 3548 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3549 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3550 if (IsMax) 3551 Known = KnownBits::smax(Known, Known2); 3552 else 3553 Known = KnownBits::smin(Known, Known2); 3554 break; 3555 } 3556 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3557 if (Op.getResNo() == 1) { 3558 // The boolean result conforms to getBooleanContents. 3559 // If we know the result of a setcc has the top bits zero, use this info. 3560 // We know that we have an integer-based boolean since these operations 3561 // are only available for integer. 3562 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3563 TargetLowering::ZeroOrOneBooleanContent && 3564 BitWidth > 1) 3565 Known.Zero.setBitsFrom(1); 3566 break; 3567 } 3568 LLVM_FALLTHROUGH; 3569 case ISD::ATOMIC_CMP_SWAP: 3570 case ISD::ATOMIC_SWAP: 3571 case ISD::ATOMIC_LOAD_ADD: 3572 case ISD::ATOMIC_LOAD_SUB: 3573 case ISD::ATOMIC_LOAD_AND: 3574 case ISD::ATOMIC_LOAD_CLR: 3575 case ISD::ATOMIC_LOAD_OR: 3576 case ISD::ATOMIC_LOAD_XOR: 3577 case ISD::ATOMIC_LOAD_NAND: 3578 case ISD::ATOMIC_LOAD_MIN: 3579 case ISD::ATOMIC_LOAD_MAX: 3580 case ISD::ATOMIC_LOAD_UMIN: 3581 case ISD::ATOMIC_LOAD_UMAX: 3582 case ISD::ATOMIC_LOAD: { 3583 unsigned MemBits = 3584 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3585 // If we are looking at the loaded value. 3586 if (Op.getResNo() == 0) { 3587 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3588 Known.Zero.setBitsFrom(MemBits); 3589 } 3590 break; 3591 } 3592 case ISD::FrameIndex: 3593 case ISD::TargetFrameIndex: 3594 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3595 Known, getMachineFunction()); 3596 break; 3597 3598 default: 3599 if (Opcode < ISD::BUILTIN_OP_END) 3600 break; 3601 LLVM_FALLTHROUGH; 3602 case ISD::INTRINSIC_WO_CHAIN: 3603 case ISD::INTRINSIC_W_CHAIN: 3604 case ISD::INTRINSIC_VOID: 3605 // Allow the target to implement this method for its nodes. 3606 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3607 break; 3608 } 3609 3610 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3611 return Known; 3612 } 3613 3614 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3615 SDValue N1) const { 3616 // X + 0 never overflow 3617 if (isNullConstant(N1)) 3618 return OFK_Never; 3619 3620 KnownBits N1Known = computeKnownBits(N1); 3621 if (N1Known.Zero.getBoolValue()) { 3622 KnownBits N0Known = computeKnownBits(N0); 3623 3624 bool overflow; 3625 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3626 if (!overflow) 3627 return OFK_Never; 3628 } 3629 3630 // mulhi + 1 never overflow 3631 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3632 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3633 return OFK_Never; 3634 3635 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3636 KnownBits N0Known = computeKnownBits(N0); 3637 3638 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3639 return OFK_Never; 3640 } 3641 3642 return OFK_Sometime; 3643 } 3644 3645 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3646 EVT OpVT = Val.getValueType(); 3647 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3648 3649 // Is the constant a known power of 2? 3650 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3651 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3652 3653 // A left-shift of a constant one will have exactly one bit set because 3654 // shifting the bit off the end is undefined. 3655 if (Val.getOpcode() == ISD::SHL) { 3656 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3657 if (C && C->getAPIntValue() == 1) 3658 return true; 3659 } 3660 3661 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3662 // one bit set. 3663 if (Val.getOpcode() == ISD::SRL) { 3664 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3665 if (C && C->getAPIntValue().isSignMask()) 3666 return true; 3667 } 3668 3669 // Are all operands of a build vector constant powers of two? 3670 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3671 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3672 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3673 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3674 return false; 3675 })) 3676 return true; 3677 3678 // Is the operand of a splat vector a constant power of two? 3679 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3680 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3681 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3682 return true; 3683 3684 // More could be done here, though the above checks are enough 3685 // to handle some common cases. 3686 3687 // Fall back to computeKnownBits to catch other known cases. 3688 KnownBits Known = computeKnownBits(Val); 3689 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3690 } 3691 3692 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3693 EVT VT = Op.getValueType(); 3694 3695 // TODO: Assume we don't know anything for now. 3696 if (VT.isScalableVector()) 3697 return 1; 3698 3699 APInt DemandedElts = VT.isVector() 3700 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3701 : APInt(1, 1); 3702 return ComputeNumSignBits(Op, DemandedElts, Depth); 3703 } 3704 3705 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3706 unsigned Depth) const { 3707 EVT VT = Op.getValueType(); 3708 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3709 unsigned VTBits = VT.getScalarSizeInBits(); 3710 unsigned NumElts = DemandedElts.getBitWidth(); 3711 unsigned Tmp, Tmp2; 3712 unsigned FirstAnswer = 1; 3713 3714 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3715 const APInt &Val = C->getAPIntValue(); 3716 return Val.getNumSignBits(); 3717 } 3718 3719 if (Depth >= MaxRecursionDepth) 3720 return 1; // Limit search depth. 3721 3722 if (!DemandedElts || VT.isScalableVector()) 3723 return 1; // No demanded elts, better to assume we don't know anything. 3724 3725 unsigned Opcode = Op.getOpcode(); 3726 switch (Opcode) { 3727 default: break; 3728 case ISD::AssertSext: 3729 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3730 return VTBits-Tmp+1; 3731 case ISD::AssertZext: 3732 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3733 return VTBits-Tmp; 3734 3735 case ISD::BUILD_VECTOR: 3736 Tmp = VTBits; 3737 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3738 if (!DemandedElts[i]) 3739 continue; 3740 3741 SDValue SrcOp = Op.getOperand(i); 3742 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3743 3744 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3745 if (SrcOp.getValueSizeInBits() != VTBits) { 3746 assert(SrcOp.getValueSizeInBits() > VTBits && 3747 "Expected BUILD_VECTOR implicit truncation"); 3748 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3749 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3750 } 3751 Tmp = std::min(Tmp, Tmp2); 3752 } 3753 return Tmp; 3754 3755 case ISD::VECTOR_SHUFFLE: { 3756 // Collect the minimum number of sign bits that are shared by every vector 3757 // element referenced by the shuffle. 3758 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3759 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3760 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3761 for (unsigned i = 0; i != NumElts; ++i) { 3762 int M = SVN->getMaskElt(i); 3763 if (!DemandedElts[i]) 3764 continue; 3765 // For UNDEF elements, we don't know anything about the common state of 3766 // the shuffle result. 3767 if (M < 0) 3768 return 1; 3769 if ((unsigned)M < NumElts) 3770 DemandedLHS.setBit((unsigned)M % NumElts); 3771 else 3772 DemandedRHS.setBit((unsigned)M % NumElts); 3773 } 3774 Tmp = std::numeric_limits<unsigned>::max(); 3775 if (!!DemandedLHS) 3776 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3777 if (!!DemandedRHS) { 3778 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3779 Tmp = std::min(Tmp, Tmp2); 3780 } 3781 // If we don't know anything, early out and try computeKnownBits fall-back. 3782 if (Tmp == 1) 3783 break; 3784 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3785 return Tmp; 3786 } 3787 3788 case ISD::BITCAST: { 3789 SDValue N0 = Op.getOperand(0); 3790 EVT SrcVT = N0.getValueType(); 3791 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3792 3793 // Ignore bitcasts from unsupported types.. 3794 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3795 break; 3796 3797 // Fast handling of 'identity' bitcasts. 3798 if (VTBits == SrcBits) 3799 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3800 3801 bool IsLE = getDataLayout().isLittleEndian(); 3802 3803 // Bitcast 'large element' scalar/vector to 'small element' vector. 3804 if ((SrcBits % VTBits) == 0) { 3805 assert(VT.isVector() && "Expected bitcast to vector"); 3806 3807 unsigned Scale = SrcBits / VTBits; 3808 APInt SrcDemandedElts(NumElts / Scale, 0); 3809 for (unsigned i = 0; i != NumElts; ++i) 3810 if (DemandedElts[i]) 3811 SrcDemandedElts.setBit(i / Scale); 3812 3813 // Fast case - sign splat can be simply split across the small elements. 3814 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3815 if (Tmp == SrcBits) 3816 return VTBits; 3817 3818 // Slow case - determine how far the sign extends into each sub-element. 3819 Tmp2 = VTBits; 3820 for (unsigned i = 0; i != NumElts; ++i) 3821 if (DemandedElts[i]) { 3822 unsigned SubOffset = i % Scale; 3823 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3824 SubOffset = SubOffset * VTBits; 3825 if (Tmp <= SubOffset) 3826 return 1; 3827 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3828 } 3829 return Tmp2; 3830 } 3831 break; 3832 } 3833 3834 case ISD::SIGN_EXTEND: 3835 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3836 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3837 case ISD::SIGN_EXTEND_INREG: 3838 // Max of the input and what this extends. 3839 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3840 Tmp = VTBits-Tmp+1; 3841 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3842 return std::max(Tmp, Tmp2); 3843 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3844 SDValue Src = Op.getOperand(0); 3845 EVT SrcVT = Src.getValueType(); 3846 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3847 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3848 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3849 } 3850 case ISD::SRA: 3851 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3852 // SRA X, C -> adds C sign bits. 3853 if (const APInt *ShAmt = 3854 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3855 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3856 return Tmp; 3857 case ISD::SHL: 3858 if (const APInt *ShAmt = 3859 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3860 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3861 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3862 if (ShAmt->ult(Tmp)) 3863 return Tmp - ShAmt->getZExtValue(); 3864 } 3865 break; 3866 case ISD::AND: 3867 case ISD::OR: 3868 case ISD::XOR: // NOT is handled here. 3869 // Logical binary ops preserve the number of sign bits at the worst. 3870 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3871 if (Tmp != 1) { 3872 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3873 FirstAnswer = std::min(Tmp, Tmp2); 3874 // We computed what we know about the sign bits as our first 3875 // answer. Now proceed to the generic code that uses 3876 // computeKnownBits, and pick whichever answer is better. 3877 } 3878 break; 3879 3880 case ISD::SELECT: 3881 case ISD::VSELECT: 3882 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3883 if (Tmp == 1) return 1; // Early out. 3884 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3885 return std::min(Tmp, Tmp2); 3886 case ISD::SELECT_CC: 3887 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3888 if (Tmp == 1) return 1; // Early out. 3889 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3890 return std::min(Tmp, Tmp2); 3891 3892 case ISD::SMIN: 3893 case ISD::SMAX: { 3894 // If we have a clamp pattern, we know that the number of sign bits will be 3895 // the minimum of the clamp min/max range. 3896 bool IsMax = (Opcode == ISD::SMAX); 3897 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3898 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3899 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3900 CstHigh = 3901 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3902 if (CstLow && CstHigh) { 3903 if (!IsMax) 3904 std::swap(CstLow, CstHigh); 3905 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3906 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3907 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3908 return std::min(Tmp, Tmp2); 3909 } 3910 } 3911 3912 // Fallback - just get the minimum number of sign bits of the operands. 3913 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3914 if (Tmp == 1) 3915 return 1; // Early out. 3916 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3917 return std::min(Tmp, Tmp2); 3918 } 3919 case ISD::UMIN: 3920 case ISD::UMAX: 3921 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3922 if (Tmp == 1) 3923 return 1; // Early out. 3924 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3925 return std::min(Tmp, Tmp2); 3926 case ISD::SADDO: 3927 case ISD::UADDO: 3928 case ISD::SSUBO: 3929 case ISD::USUBO: 3930 case ISD::SMULO: 3931 case ISD::UMULO: 3932 if (Op.getResNo() != 1) 3933 break; 3934 // The boolean result conforms to getBooleanContents. Fall through. 3935 // If setcc returns 0/-1, all bits are sign bits. 3936 // We know that we have an integer-based boolean since these operations 3937 // are only available for integer. 3938 if (TLI->getBooleanContents(VT.isVector(), false) == 3939 TargetLowering::ZeroOrNegativeOneBooleanContent) 3940 return VTBits; 3941 break; 3942 case ISD::SETCC: 3943 case ISD::STRICT_FSETCC: 3944 case ISD::STRICT_FSETCCS: { 3945 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3946 // If setcc returns 0/-1, all bits are sign bits. 3947 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3948 TargetLowering::ZeroOrNegativeOneBooleanContent) 3949 return VTBits; 3950 break; 3951 } 3952 case ISD::ROTL: 3953 case ISD::ROTR: 3954 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3955 3956 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3957 if (Tmp == VTBits) 3958 return VTBits; 3959 3960 if (ConstantSDNode *C = 3961 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3962 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3963 3964 // Handle rotate right by N like a rotate left by 32-N. 3965 if (Opcode == ISD::ROTR) 3966 RotAmt = (VTBits - RotAmt) % VTBits; 3967 3968 // If we aren't rotating out all of the known-in sign bits, return the 3969 // number that are left. This handles rotl(sext(x), 1) for example. 3970 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3971 } 3972 break; 3973 case ISD::ADD: 3974 case ISD::ADDC: 3975 // Add can have at most one carry bit. Thus we know that the output 3976 // is, at worst, one more bit than the inputs. 3977 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3978 if (Tmp == 1) return 1; // Early out. 3979 3980 // Special case decrementing a value (ADD X, -1): 3981 if (ConstantSDNode *CRHS = 3982 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3983 if (CRHS->isAllOnesValue()) { 3984 KnownBits Known = 3985 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3986 3987 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3988 // sign bits set. 3989 if ((Known.Zero | 1).isAllOnesValue()) 3990 return VTBits; 3991 3992 // If we are subtracting one from a positive number, there is no carry 3993 // out of the result. 3994 if (Known.isNonNegative()) 3995 return Tmp; 3996 } 3997 3998 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3999 if (Tmp2 == 1) return 1; // Early out. 4000 return std::min(Tmp, Tmp2) - 1; 4001 case ISD::SUB: 4002 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4003 if (Tmp2 == 1) return 1; // Early out. 4004 4005 // Handle NEG. 4006 if (ConstantSDNode *CLHS = 4007 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4008 if (CLHS->isNullValue()) { 4009 KnownBits Known = 4010 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4011 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4012 // sign bits set. 4013 if ((Known.Zero | 1).isAllOnesValue()) 4014 return VTBits; 4015 4016 // If the input is known to be positive (the sign bit is known clear), 4017 // the output of the NEG has the same number of sign bits as the input. 4018 if (Known.isNonNegative()) 4019 return Tmp2; 4020 4021 // Otherwise, we treat this like a SUB. 4022 } 4023 4024 // Sub can have at most one carry bit. Thus we know that the output 4025 // is, at worst, one more bit than the inputs. 4026 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4027 if (Tmp == 1) return 1; // Early out. 4028 return std::min(Tmp, Tmp2) - 1; 4029 case ISD::MUL: { 4030 // The output of the Mul can be at most twice the valid bits in the inputs. 4031 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4032 if (SignBitsOp0 == 1) 4033 break; 4034 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4035 if (SignBitsOp1 == 1) 4036 break; 4037 unsigned OutValidBits = 4038 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4039 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4040 } 4041 case ISD::SREM: 4042 // The sign bit is the LHS's sign bit, except when the result of the 4043 // remainder is zero. The magnitude of the result should be less than or 4044 // equal to the magnitude of the LHS. Therefore, the result should have 4045 // at least as many sign bits as the left hand side. 4046 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4047 case ISD::TRUNCATE: { 4048 // Check if the sign bits of source go down as far as the truncated value. 4049 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4050 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4051 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4052 return NumSrcSignBits - (NumSrcBits - VTBits); 4053 break; 4054 } 4055 case ISD::EXTRACT_ELEMENT: { 4056 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4057 const int BitWidth = Op.getValueSizeInBits(); 4058 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4059 4060 // Get reverse index (starting from 1), Op1 value indexes elements from 4061 // little end. Sign starts at big end. 4062 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4063 4064 // If the sign portion ends in our element the subtraction gives correct 4065 // result. Otherwise it gives either negative or > bitwidth result 4066 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4067 } 4068 case ISD::INSERT_VECTOR_ELT: { 4069 // If we know the element index, split the demand between the 4070 // source vector and the inserted element, otherwise assume we need 4071 // the original demanded vector elements and the value. 4072 SDValue InVec = Op.getOperand(0); 4073 SDValue InVal = Op.getOperand(1); 4074 SDValue EltNo = Op.getOperand(2); 4075 bool DemandedVal = true; 4076 APInt DemandedVecElts = DemandedElts; 4077 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4078 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4079 unsigned EltIdx = CEltNo->getZExtValue(); 4080 DemandedVal = !!DemandedElts[EltIdx]; 4081 DemandedVecElts.clearBit(EltIdx); 4082 } 4083 Tmp = std::numeric_limits<unsigned>::max(); 4084 if (DemandedVal) { 4085 // TODO - handle implicit truncation of inserted elements. 4086 if (InVal.getScalarValueSizeInBits() != VTBits) 4087 break; 4088 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4089 Tmp = std::min(Tmp, Tmp2); 4090 } 4091 if (!!DemandedVecElts) { 4092 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4093 Tmp = std::min(Tmp, Tmp2); 4094 } 4095 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4096 return Tmp; 4097 } 4098 case ISD::EXTRACT_VECTOR_ELT: { 4099 SDValue InVec = Op.getOperand(0); 4100 SDValue EltNo = Op.getOperand(1); 4101 EVT VecVT = InVec.getValueType(); 4102 // ComputeNumSignBits not yet implemented for scalable vectors. 4103 if (VecVT.isScalableVector()) 4104 break; 4105 const unsigned BitWidth = Op.getValueSizeInBits(); 4106 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4107 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4108 4109 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4110 // anything about sign bits. But if the sizes match we can derive knowledge 4111 // about sign bits from the vector operand. 4112 if (BitWidth != EltBitWidth) 4113 break; 4114 4115 // If we know the element index, just demand that vector element, else for 4116 // an unknown element index, ignore DemandedElts and demand them all. 4117 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 4118 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4119 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4120 DemandedSrcElts = 4121 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4122 4123 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4124 } 4125 case ISD::EXTRACT_SUBVECTOR: { 4126 // Offset the demanded elts by the subvector index. 4127 SDValue Src = Op.getOperand(0); 4128 // Bail until we can represent demanded elements for scalable vectors. 4129 if (Src.getValueType().isScalableVector()) 4130 break; 4131 uint64_t Idx = Op.getConstantOperandVal(1); 4132 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4133 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4134 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4135 } 4136 case ISD::CONCAT_VECTORS: { 4137 // Determine the minimum number of sign bits across all demanded 4138 // elts of the input vectors. Early out if the result is already 1. 4139 Tmp = std::numeric_limits<unsigned>::max(); 4140 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4141 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4142 unsigned NumSubVectors = Op.getNumOperands(); 4143 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4144 APInt DemandedSub = 4145 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4146 if (!DemandedSub) 4147 continue; 4148 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4149 Tmp = std::min(Tmp, Tmp2); 4150 } 4151 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4152 return Tmp; 4153 } 4154 case ISD::INSERT_SUBVECTOR: { 4155 // Demand any elements from the subvector and the remainder from the src its 4156 // inserted into. 4157 SDValue Src = Op.getOperand(0); 4158 SDValue Sub = Op.getOperand(1); 4159 uint64_t Idx = Op.getConstantOperandVal(2); 4160 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4161 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4162 APInt DemandedSrcElts = DemandedElts; 4163 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 4164 4165 Tmp = std::numeric_limits<unsigned>::max(); 4166 if (!!DemandedSubElts) { 4167 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4168 if (Tmp == 1) 4169 return 1; // early-out 4170 } 4171 if (!!DemandedSrcElts) { 4172 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4173 Tmp = std::min(Tmp, Tmp2); 4174 } 4175 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4176 return Tmp; 4177 } 4178 case ISD::ATOMIC_CMP_SWAP: 4179 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4180 case ISD::ATOMIC_SWAP: 4181 case ISD::ATOMIC_LOAD_ADD: 4182 case ISD::ATOMIC_LOAD_SUB: 4183 case ISD::ATOMIC_LOAD_AND: 4184 case ISD::ATOMIC_LOAD_CLR: 4185 case ISD::ATOMIC_LOAD_OR: 4186 case ISD::ATOMIC_LOAD_XOR: 4187 case ISD::ATOMIC_LOAD_NAND: 4188 case ISD::ATOMIC_LOAD_MIN: 4189 case ISD::ATOMIC_LOAD_MAX: 4190 case ISD::ATOMIC_LOAD_UMIN: 4191 case ISD::ATOMIC_LOAD_UMAX: 4192 case ISD::ATOMIC_LOAD: { 4193 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4194 // If we are looking at the loaded value. 4195 if (Op.getResNo() == 0) { 4196 if (Tmp == VTBits) 4197 return 1; // early-out 4198 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4199 return VTBits - Tmp + 1; 4200 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4201 return VTBits - Tmp; 4202 } 4203 break; 4204 } 4205 } 4206 4207 // If we are looking at the loaded value of the SDNode. 4208 if (Op.getResNo() == 0) { 4209 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4210 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4211 unsigned ExtType = LD->getExtensionType(); 4212 switch (ExtType) { 4213 default: break; 4214 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4215 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4216 return VTBits - Tmp + 1; 4217 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4218 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4219 return VTBits - Tmp; 4220 case ISD::NON_EXTLOAD: 4221 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4222 // We only need to handle vectors - computeKnownBits should handle 4223 // scalar cases. 4224 Type *CstTy = Cst->getType(); 4225 if (CstTy->isVectorTy() && 4226 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4227 Tmp = VTBits; 4228 for (unsigned i = 0; i != NumElts; ++i) { 4229 if (!DemandedElts[i]) 4230 continue; 4231 if (Constant *Elt = Cst->getAggregateElement(i)) { 4232 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4233 const APInt &Value = CInt->getValue(); 4234 Tmp = std::min(Tmp, Value.getNumSignBits()); 4235 continue; 4236 } 4237 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4238 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4239 Tmp = std::min(Tmp, Value.getNumSignBits()); 4240 continue; 4241 } 4242 } 4243 // Unknown type. Conservatively assume no bits match sign bit. 4244 return 1; 4245 } 4246 return Tmp; 4247 } 4248 } 4249 break; 4250 } 4251 } 4252 } 4253 4254 // Allow the target to implement this method for its nodes. 4255 if (Opcode >= ISD::BUILTIN_OP_END || 4256 Opcode == ISD::INTRINSIC_WO_CHAIN || 4257 Opcode == ISD::INTRINSIC_W_CHAIN || 4258 Opcode == ISD::INTRINSIC_VOID) { 4259 unsigned NumBits = 4260 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4261 if (NumBits > 1) 4262 FirstAnswer = std::max(FirstAnswer, NumBits); 4263 } 4264 4265 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4266 // use this information. 4267 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4268 4269 APInt Mask; 4270 if (Known.isNonNegative()) { // sign bit is 0 4271 Mask = Known.Zero; 4272 } else if (Known.isNegative()) { // sign bit is 1; 4273 Mask = Known.One; 4274 } else { 4275 // Nothing known. 4276 return FirstAnswer; 4277 } 4278 4279 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4280 // the number of identical bits in the top of the input value. 4281 Mask <<= Mask.getBitWidth()-VTBits; 4282 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4283 } 4284 4285 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4286 unsigned Depth) const { 4287 // Early out for FREEZE. 4288 if (Op.getOpcode() == ISD::FREEZE) 4289 return true; 4290 4291 // TODO: Assume we don't know anything for now. 4292 EVT VT = Op.getValueType(); 4293 if (VT.isScalableVector()) 4294 return false; 4295 4296 APInt DemandedElts = VT.isVector() 4297 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 4298 : APInt(1, 1); 4299 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4300 } 4301 4302 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4303 const APInt &DemandedElts, 4304 bool PoisonOnly, 4305 unsigned Depth) const { 4306 unsigned Opcode = Op.getOpcode(); 4307 4308 // Early out for FREEZE. 4309 if (Opcode == ISD::FREEZE) 4310 return true; 4311 4312 if (Depth >= MaxRecursionDepth) 4313 return false; // Limit search depth. 4314 4315 if (isIntOrFPConstant(Op)) 4316 return true; 4317 4318 switch (Opcode) { 4319 case ISD::UNDEF: 4320 return PoisonOnly; 4321 4322 case ISD::BUILD_VECTOR: 4323 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4324 // this shouldn't affect the result. 4325 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4326 if (!DemandedElts[i]) 4327 continue; 4328 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4329 Depth + 1)) 4330 return false; 4331 } 4332 return true; 4333 4334 // TODO: Search for noundef attributes from library functions. 4335 4336 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4337 4338 default: 4339 // Allow the target to implement this method for its nodes. 4340 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4341 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4342 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4343 Op, DemandedElts, *this, PoisonOnly, Depth); 4344 break; 4345 } 4346 4347 return false; 4348 } 4349 4350 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4351 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4352 !isa<ConstantSDNode>(Op.getOperand(1))) 4353 return false; 4354 4355 if (Op.getOpcode() == ISD::OR && 4356 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4357 return false; 4358 4359 return true; 4360 } 4361 4362 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4363 // If we're told that NaNs won't happen, assume they won't. 4364 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4365 return true; 4366 4367 if (Depth >= MaxRecursionDepth) 4368 return false; // Limit search depth. 4369 4370 // TODO: Handle vectors. 4371 // If the value is a constant, we can obviously see if it is a NaN or not. 4372 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4373 return !C->getValueAPF().isNaN() || 4374 (SNaN && !C->getValueAPF().isSignaling()); 4375 } 4376 4377 unsigned Opcode = Op.getOpcode(); 4378 switch (Opcode) { 4379 case ISD::FADD: 4380 case ISD::FSUB: 4381 case ISD::FMUL: 4382 case ISD::FDIV: 4383 case ISD::FREM: 4384 case ISD::FSIN: 4385 case ISD::FCOS: { 4386 if (SNaN) 4387 return true; 4388 // TODO: Need isKnownNeverInfinity 4389 return false; 4390 } 4391 case ISD::FCANONICALIZE: 4392 case ISD::FEXP: 4393 case ISD::FEXP2: 4394 case ISD::FTRUNC: 4395 case ISD::FFLOOR: 4396 case ISD::FCEIL: 4397 case ISD::FROUND: 4398 case ISD::FROUNDEVEN: 4399 case ISD::FRINT: 4400 case ISD::FNEARBYINT: { 4401 if (SNaN) 4402 return true; 4403 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4404 } 4405 case ISD::FABS: 4406 case ISD::FNEG: 4407 case ISD::FCOPYSIGN: { 4408 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4409 } 4410 case ISD::SELECT: 4411 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4412 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4413 case ISD::FP_EXTEND: 4414 case ISD::FP_ROUND: { 4415 if (SNaN) 4416 return true; 4417 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4418 } 4419 case ISD::SINT_TO_FP: 4420 case ISD::UINT_TO_FP: 4421 return true; 4422 case ISD::FMA: 4423 case ISD::FMAD: { 4424 if (SNaN) 4425 return true; 4426 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4427 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4428 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4429 } 4430 case ISD::FSQRT: // Need is known positive 4431 case ISD::FLOG: 4432 case ISD::FLOG2: 4433 case ISD::FLOG10: 4434 case ISD::FPOWI: 4435 case ISD::FPOW: { 4436 if (SNaN) 4437 return true; 4438 // TODO: Refine on operand 4439 return false; 4440 } 4441 case ISD::FMINNUM: 4442 case ISD::FMAXNUM: { 4443 // Only one needs to be known not-nan, since it will be returned if the 4444 // other ends up being one. 4445 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4446 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4447 } 4448 case ISD::FMINNUM_IEEE: 4449 case ISD::FMAXNUM_IEEE: { 4450 if (SNaN) 4451 return true; 4452 // This can return a NaN if either operand is an sNaN, or if both operands 4453 // are NaN. 4454 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4455 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4456 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4457 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4458 } 4459 case ISD::FMINIMUM: 4460 case ISD::FMAXIMUM: { 4461 // TODO: Does this quiet or return the origina NaN as-is? 4462 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4463 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4464 } 4465 case ISD::EXTRACT_VECTOR_ELT: { 4466 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4467 } 4468 default: 4469 if (Opcode >= ISD::BUILTIN_OP_END || 4470 Opcode == ISD::INTRINSIC_WO_CHAIN || 4471 Opcode == ISD::INTRINSIC_W_CHAIN || 4472 Opcode == ISD::INTRINSIC_VOID) { 4473 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4474 } 4475 4476 return false; 4477 } 4478 } 4479 4480 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4481 assert(Op.getValueType().isFloatingPoint() && 4482 "Floating point type expected"); 4483 4484 // If the value is a constant, we can obviously see if it is a zero or not. 4485 // TODO: Add BuildVector support. 4486 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4487 return !C->isZero(); 4488 return false; 4489 } 4490 4491 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4492 assert(!Op.getValueType().isFloatingPoint() && 4493 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4494 4495 // If the value is a constant, we can obviously see if it is a zero or not. 4496 if (ISD::matchUnaryPredicate( 4497 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4498 return true; 4499 4500 // TODO: Recognize more cases here. 4501 switch (Op.getOpcode()) { 4502 default: break; 4503 case ISD::OR: 4504 if (isKnownNeverZero(Op.getOperand(1)) || 4505 isKnownNeverZero(Op.getOperand(0))) 4506 return true; 4507 break; 4508 } 4509 4510 return false; 4511 } 4512 4513 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4514 // Check the obvious case. 4515 if (A == B) return true; 4516 4517 // For for negative and positive zero. 4518 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4519 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4520 if (CA->isZero() && CB->isZero()) return true; 4521 4522 // Otherwise they may not be equal. 4523 return false; 4524 } 4525 4526 // FIXME: unify with llvm::haveNoCommonBitsSet. 4527 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4528 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4529 assert(A.getValueType() == B.getValueType() && 4530 "Values must have the same type"); 4531 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4532 computeKnownBits(B)); 4533 } 4534 4535 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4536 SelectionDAG &DAG) { 4537 if (cast<ConstantSDNode>(Step)->isNullValue()) 4538 return DAG.getConstant(0, DL, VT); 4539 4540 return SDValue(); 4541 } 4542 4543 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4544 ArrayRef<SDValue> Ops, 4545 SelectionDAG &DAG) { 4546 int NumOps = Ops.size(); 4547 assert(NumOps != 0 && "Can't build an empty vector!"); 4548 assert(!VT.isScalableVector() && 4549 "BUILD_VECTOR cannot be used with scalable types"); 4550 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4551 "Incorrect element count in BUILD_VECTOR!"); 4552 4553 // BUILD_VECTOR of UNDEFs is UNDEF. 4554 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4555 return DAG.getUNDEF(VT); 4556 4557 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4558 SDValue IdentitySrc; 4559 bool IsIdentity = true; 4560 for (int i = 0; i != NumOps; ++i) { 4561 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4562 Ops[i].getOperand(0).getValueType() != VT || 4563 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4564 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4565 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4566 IsIdentity = false; 4567 break; 4568 } 4569 IdentitySrc = Ops[i].getOperand(0); 4570 } 4571 if (IsIdentity) 4572 return IdentitySrc; 4573 4574 return SDValue(); 4575 } 4576 4577 /// Try to simplify vector concatenation to an input value, undef, or build 4578 /// vector. 4579 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4580 ArrayRef<SDValue> Ops, 4581 SelectionDAG &DAG) { 4582 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4583 assert(llvm::all_of(Ops, 4584 [Ops](SDValue Op) { 4585 return Ops[0].getValueType() == Op.getValueType(); 4586 }) && 4587 "Concatenation of vectors with inconsistent value types!"); 4588 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4589 VT.getVectorElementCount() && 4590 "Incorrect element count in vector concatenation!"); 4591 4592 if (Ops.size() == 1) 4593 return Ops[0]; 4594 4595 // Concat of UNDEFs is UNDEF. 4596 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4597 return DAG.getUNDEF(VT); 4598 4599 // Scan the operands and look for extract operations from a single source 4600 // that correspond to insertion at the same location via this concatenation: 4601 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4602 SDValue IdentitySrc; 4603 bool IsIdentity = true; 4604 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4605 SDValue Op = Ops[i]; 4606 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4607 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4608 Op.getOperand(0).getValueType() != VT || 4609 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4610 Op.getConstantOperandVal(1) != IdentityIndex) { 4611 IsIdentity = false; 4612 break; 4613 } 4614 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4615 "Unexpected identity source vector for concat of extracts"); 4616 IdentitySrc = Op.getOperand(0); 4617 } 4618 if (IsIdentity) { 4619 assert(IdentitySrc && "Failed to set source vector of extracts"); 4620 return IdentitySrc; 4621 } 4622 4623 // The code below this point is only designed to work for fixed width 4624 // vectors, so we bail out for now. 4625 if (VT.isScalableVector()) 4626 return SDValue(); 4627 4628 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4629 // simplified to one big BUILD_VECTOR. 4630 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4631 EVT SVT = VT.getScalarType(); 4632 SmallVector<SDValue, 16> Elts; 4633 for (SDValue Op : Ops) { 4634 EVT OpVT = Op.getValueType(); 4635 if (Op.isUndef()) 4636 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4637 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4638 Elts.append(Op->op_begin(), Op->op_end()); 4639 else 4640 return SDValue(); 4641 } 4642 4643 // BUILD_VECTOR requires all inputs to be of the same type, find the 4644 // maximum type and extend them all. 4645 for (SDValue Op : Elts) 4646 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4647 4648 if (SVT.bitsGT(VT.getScalarType())) { 4649 for (SDValue &Op : Elts) { 4650 if (Op.isUndef()) 4651 Op = DAG.getUNDEF(SVT); 4652 else 4653 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4654 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4655 : DAG.getSExtOrTrunc(Op, DL, SVT); 4656 } 4657 } 4658 4659 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4660 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4661 return V; 4662 } 4663 4664 /// Gets or creates the specified node. 4665 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4666 FoldingSetNodeID ID; 4667 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4668 void *IP = nullptr; 4669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4670 return SDValue(E, 0); 4671 4672 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4673 getVTList(VT)); 4674 CSEMap.InsertNode(N, IP); 4675 4676 InsertNode(N); 4677 SDValue V = SDValue(N, 0); 4678 NewSDValueDbgMsg(V, "Creating new node: ", this); 4679 return V; 4680 } 4681 4682 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4683 SDValue Operand) { 4684 SDNodeFlags Flags; 4685 if (Inserter) 4686 Flags = Inserter->getFlags(); 4687 return getNode(Opcode, DL, VT, Operand, Flags); 4688 } 4689 4690 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4691 SDValue Operand, const SDNodeFlags Flags) { 4692 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4693 "Operand is DELETED_NODE!"); 4694 // Constant fold unary operations with an integer constant operand. Even 4695 // opaque constant will be folded, because the folding of unary operations 4696 // doesn't create new constants with different values. Nevertheless, the 4697 // opaque flag is preserved during folding to prevent future folding with 4698 // other constants. 4699 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4700 const APInt &Val = C->getAPIntValue(); 4701 switch (Opcode) { 4702 default: break; 4703 case ISD::SIGN_EXTEND: 4704 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4705 C->isTargetOpcode(), C->isOpaque()); 4706 case ISD::TRUNCATE: 4707 if (C->isOpaque()) 4708 break; 4709 LLVM_FALLTHROUGH; 4710 case ISD::ZERO_EXTEND: 4711 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4712 C->isTargetOpcode(), C->isOpaque()); 4713 case ISD::ANY_EXTEND: 4714 // Some targets like RISCV prefer to sign extend some types. 4715 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4716 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4717 C->isTargetOpcode(), C->isOpaque()); 4718 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4719 C->isTargetOpcode(), C->isOpaque()); 4720 case ISD::UINT_TO_FP: 4721 case ISD::SINT_TO_FP: { 4722 APFloat apf(EVTToAPFloatSemantics(VT), 4723 APInt::getNullValue(VT.getSizeInBits())); 4724 (void)apf.convertFromAPInt(Val, 4725 Opcode==ISD::SINT_TO_FP, 4726 APFloat::rmNearestTiesToEven); 4727 return getConstantFP(apf, DL, VT); 4728 } 4729 case ISD::BITCAST: 4730 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4731 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4732 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4733 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4734 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4735 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4736 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4737 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4738 break; 4739 case ISD::ABS: 4740 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4741 C->isOpaque()); 4742 case ISD::BITREVERSE: 4743 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4744 C->isOpaque()); 4745 case ISD::BSWAP: 4746 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4747 C->isOpaque()); 4748 case ISD::CTPOP: 4749 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4750 C->isOpaque()); 4751 case ISD::CTLZ: 4752 case ISD::CTLZ_ZERO_UNDEF: 4753 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4754 C->isOpaque()); 4755 case ISD::CTTZ: 4756 case ISD::CTTZ_ZERO_UNDEF: 4757 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4758 C->isOpaque()); 4759 case ISD::FP16_TO_FP: { 4760 bool Ignored; 4761 APFloat FPV(APFloat::IEEEhalf(), 4762 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4763 4764 // This can return overflow, underflow, or inexact; we don't care. 4765 // FIXME need to be more flexible about rounding mode. 4766 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4767 APFloat::rmNearestTiesToEven, &Ignored); 4768 return getConstantFP(FPV, DL, VT); 4769 } 4770 case ISD::STEP_VECTOR: { 4771 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4772 return V; 4773 break; 4774 } 4775 } 4776 } 4777 4778 // Constant fold unary operations with a floating point constant operand. 4779 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4780 APFloat V = C->getValueAPF(); // make copy 4781 switch (Opcode) { 4782 case ISD::FNEG: 4783 V.changeSign(); 4784 return getConstantFP(V, DL, VT); 4785 case ISD::FABS: 4786 V.clearSign(); 4787 return getConstantFP(V, DL, VT); 4788 case ISD::FCEIL: { 4789 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4790 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4791 return getConstantFP(V, DL, VT); 4792 break; 4793 } 4794 case ISD::FTRUNC: { 4795 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4796 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4797 return getConstantFP(V, DL, VT); 4798 break; 4799 } 4800 case ISD::FFLOOR: { 4801 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4802 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4803 return getConstantFP(V, DL, VT); 4804 break; 4805 } 4806 case ISD::FP_EXTEND: { 4807 bool ignored; 4808 // This can return overflow, underflow, or inexact; we don't care. 4809 // FIXME need to be more flexible about rounding mode. 4810 (void)V.convert(EVTToAPFloatSemantics(VT), 4811 APFloat::rmNearestTiesToEven, &ignored); 4812 return getConstantFP(V, DL, VT); 4813 } 4814 case ISD::FP_TO_SINT: 4815 case ISD::FP_TO_UINT: { 4816 bool ignored; 4817 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4818 // FIXME need to be more flexible about rounding mode. 4819 APFloat::opStatus s = 4820 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4821 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4822 break; 4823 return getConstant(IntVal, DL, VT); 4824 } 4825 case ISD::BITCAST: 4826 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4827 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4828 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4829 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4830 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4831 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4832 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4833 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4834 break; 4835 case ISD::FP_TO_FP16: { 4836 bool Ignored; 4837 // This can return overflow, underflow, or inexact; we don't care. 4838 // FIXME need to be more flexible about rounding mode. 4839 (void)V.convert(APFloat::IEEEhalf(), 4840 APFloat::rmNearestTiesToEven, &Ignored); 4841 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4842 } 4843 } 4844 } 4845 4846 // Constant fold unary operations with a vector integer or float operand. 4847 switch (Opcode) { 4848 default: 4849 // FIXME: Entirely reasonable to perform folding of other unary 4850 // operations here as the need arises. 4851 break; 4852 case ISD::FNEG: 4853 case ISD::FABS: 4854 case ISD::FCEIL: 4855 case ISD::FTRUNC: 4856 case ISD::FFLOOR: 4857 case ISD::FP_EXTEND: 4858 case ISD::FP_TO_SINT: 4859 case ISD::FP_TO_UINT: 4860 case ISD::TRUNCATE: 4861 case ISD::ANY_EXTEND: 4862 case ISD::ZERO_EXTEND: 4863 case ISD::SIGN_EXTEND: 4864 case ISD::UINT_TO_FP: 4865 case ISD::SINT_TO_FP: 4866 case ISD::ABS: 4867 case ISD::BITREVERSE: 4868 case ISD::BSWAP: 4869 case ISD::CTLZ: 4870 case ISD::CTLZ_ZERO_UNDEF: 4871 case ISD::CTTZ: 4872 case ISD::CTTZ_ZERO_UNDEF: 4873 case ISD::CTPOP: { 4874 SDValue Ops = {Operand}; 4875 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4876 return Fold; 4877 } 4878 } 4879 4880 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4881 switch (Opcode) { 4882 case ISD::STEP_VECTOR: 4883 assert(VT.isScalableVector() && 4884 "STEP_VECTOR can only be used with scalable types"); 4885 assert(OpOpcode == ISD::TargetConstant && 4886 VT.getVectorElementType() == Operand.getValueType() && 4887 "Unexpected step operand"); 4888 break; 4889 case ISD::FREEZE: 4890 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4891 break; 4892 case ISD::TokenFactor: 4893 case ISD::MERGE_VALUES: 4894 case ISD::CONCAT_VECTORS: 4895 return Operand; // Factor, merge or concat of one node? No need. 4896 case ISD::BUILD_VECTOR: { 4897 // Attempt to simplify BUILD_VECTOR. 4898 SDValue Ops[] = {Operand}; 4899 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4900 return V; 4901 break; 4902 } 4903 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4904 case ISD::FP_EXTEND: 4905 assert(VT.isFloatingPoint() && 4906 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4907 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4908 assert((!VT.isVector() || 4909 VT.getVectorElementCount() == 4910 Operand.getValueType().getVectorElementCount()) && 4911 "Vector element count mismatch!"); 4912 assert(Operand.getValueType().bitsLT(VT) && 4913 "Invalid fpext node, dst < src!"); 4914 if (Operand.isUndef()) 4915 return getUNDEF(VT); 4916 break; 4917 case ISD::FP_TO_SINT: 4918 case ISD::FP_TO_UINT: 4919 if (Operand.isUndef()) 4920 return getUNDEF(VT); 4921 break; 4922 case ISD::SINT_TO_FP: 4923 case ISD::UINT_TO_FP: 4924 // [us]itofp(undef) = 0, because the result value is bounded. 4925 if (Operand.isUndef()) 4926 return getConstantFP(0.0, DL, VT); 4927 break; 4928 case ISD::SIGN_EXTEND: 4929 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4930 "Invalid SIGN_EXTEND!"); 4931 assert(VT.isVector() == Operand.getValueType().isVector() && 4932 "SIGN_EXTEND result type type should be vector iff the operand " 4933 "type is vector!"); 4934 if (Operand.getValueType() == VT) return Operand; // noop extension 4935 assert((!VT.isVector() || 4936 VT.getVectorElementCount() == 4937 Operand.getValueType().getVectorElementCount()) && 4938 "Vector element count mismatch!"); 4939 assert(Operand.getValueType().bitsLT(VT) && 4940 "Invalid sext node, dst < src!"); 4941 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4942 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4943 if (OpOpcode == ISD::UNDEF) 4944 // sext(undef) = 0, because the top bits will all be the same. 4945 return getConstant(0, DL, VT); 4946 break; 4947 case ISD::ZERO_EXTEND: 4948 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4949 "Invalid ZERO_EXTEND!"); 4950 assert(VT.isVector() == Operand.getValueType().isVector() && 4951 "ZERO_EXTEND result type type should be vector iff the operand " 4952 "type is vector!"); 4953 if (Operand.getValueType() == VT) return Operand; // noop extension 4954 assert((!VT.isVector() || 4955 VT.getVectorElementCount() == 4956 Operand.getValueType().getVectorElementCount()) && 4957 "Vector element count mismatch!"); 4958 assert(Operand.getValueType().bitsLT(VT) && 4959 "Invalid zext node, dst < src!"); 4960 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4961 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4962 if (OpOpcode == ISD::UNDEF) 4963 // zext(undef) = 0, because the top bits will be zero. 4964 return getConstant(0, DL, VT); 4965 break; 4966 case ISD::ANY_EXTEND: 4967 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4968 "Invalid ANY_EXTEND!"); 4969 assert(VT.isVector() == Operand.getValueType().isVector() && 4970 "ANY_EXTEND result type type should be vector iff the operand " 4971 "type is vector!"); 4972 if (Operand.getValueType() == VT) return Operand; // noop extension 4973 assert((!VT.isVector() || 4974 VT.getVectorElementCount() == 4975 Operand.getValueType().getVectorElementCount()) && 4976 "Vector element count mismatch!"); 4977 assert(Operand.getValueType().bitsLT(VT) && 4978 "Invalid anyext node, dst < src!"); 4979 4980 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4981 OpOpcode == ISD::ANY_EXTEND) 4982 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4983 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4984 if (OpOpcode == ISD::UNDEF) 4985 return getUNDEF(VT); 4986 4987 // (ext (trunc x)) -> x 4988 if (OpOpcode == ISD::TRUNCATE) { 4989 SDValue OpOp = Operand.getOperand(0); 4990 if (OpOp.getValueType() == VT) { 4991 transferDbgValues(Operand, OpOp); 4992 return OpOp; 4993 } 4994 } 4995 break; 4996 case ISD::TRUNCATE: 4997 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4998 "Invalid TRUNCATE!"); 4999 assert(VT.isVector() == Operand.getValueType().isVector() && 5000 "TRUNCATE result type type should be vector iff the operand " 5001 "type is vector!"); 5002 if (Operand.getValueType() == VT) return Operand; // noop truncate 5003 assert((!VT.isVector() || 5004 VT.getVectorElementCount() == 5005 Operand.getValueType().getVectorElementCount()) && 5006 "Vector element count mismatch!"); 5007 assert(Operand.getValueType().bitsGT(VT) && 5008 "Invalid truncate node, src < dst!"); 5009 if (OpOpcode == ISD::TRUNCATE) 5010 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5011 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5012 OpOpcode == ISD::ANY_EXTEND) { 5013 // If the source is smaller than the dest, we still need an extend. 5014 if (Operand.getOperand(0).getValueType().getScalarType() 5015 .bitsLT(VT.getScalarType())) 5016 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5017 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5018 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5019 return Operand.getOperand(0); 5020 } 5021 if (OpOpcode == ISD::UNDEF) 5022 return getUNDEF(VT); 5023 break; 5024 case ISD::ANY_EXTEND_VECTOR_INREG: 5025 case ISD::ZERO_EXTEND_VECTOR_INREG: 5026 case ISD::SIGN_EXTEND_VECTOR_INREG: 5027 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5028 assert(Operand.getValueType().bitsLE(VT) && 5029 "The input must be the same size or smaller than the result."); 5030 assert(VT.getVectorMinNumElements() < 5031 Operand.getValueType().getVectorMinNumElements() && 5032 "The destination vector type must have fewer lanes than the input."); 5033 break; 5034 case ISD::ABS: 5035 assert(VT.isInteger() && VT == Operand.getValueType() && 5036 "Invalid ABS!"); 5037 if (OpOpcode == ISD::UNDEF) 5038 return getUNDEF(VT); 5039 break; 5040 case ISD::BSWAP: 5041 assert(VT.isInteger() && VT == Operand.getValueType() && 5042 "Invalid BSWAP!"); 5043 assert((VT.getScalarSizeInBits() % 16 == 0) && 5044 "BSWAP types must be a multiple of 16 bits!"); 5045 if (OpOpcode == ISD::UNDEF) 5046 return getUNDEF(VT); 5047 break; 5048 case ISD::BITREVERSE: 5049 assert(VT.isInteger() && VT == Operand.getValueType() && 5050 "Invalid BITREVERSE!"); 5051 if (OpOpcode == ISD::UNDEF) 5052 return getUNDEF(VT); 5053 break; 5054 case ISD::BITCAST: 5055 // Basic sanity checking. 5056 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5057 "Cannot BITCAST between types of different sizes!"); 5058 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5059 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5060 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5061 if (OpOpcode == ISD::UNDEF) 5062 return getUNDEF(VT); 5063 break; 5064 case ISD::SCALAR_TO_VECTOR: 5065 assert(VT.isVector() && !Operand.getValueType().isVector() && 5066 (VT.getVectorElementType() == Operand.getValueType() || 5067 (VT.getVectorElementType().isInteger() && 5068 Operand.getValueType().isInteger() && 5069 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5070 "Illegal SCALAR_TO_VECTOR node!"); 5071 if (OpOpcode == ISD::UNDEF) 5072 return getUNDEF(VT); 5073 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5074 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5075 isa<ConstantSDNode>(Operand.getOperand(1)) && 5076 Operand.getConstantOperandVal(1) == 0 && 5077 Operand.getOperand(0).getValueType() == VT) 5078 return Operand.getOperand(0); 5079 break; 5080 case ISD::FNEG: 5081 // Negation of an unknown bag of bits is still completely undefined. 5082 if (OpOpcode == ISD::UNDEF) 5083 return getUNDEF(VT); 5084 5085 if (OpOpcode == ISD::FNEG) // --X -> X 5086 return Operand.getOperand(0); 5087 break; 5088 case ISD::FABS: 5089 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5090 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5091 break; 5092 case ISD::VSCALE: 5093 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5094 break; 5095 case ISD::CTPOP: 5096 if (Operand.getValueType().getScalarType() == MVT::i1) 5097 return Operand; 5098 break; 5099 case ISD::CTLZ: 5100 case ISD::CTTZ: 5101 if (Operand.getValueType().getScalarType() == MVT::i1) 5102 return getNOT(DL, Operand, Operand.getValueType()); 5103 break; 5104 case ISD::VECREDUCE_SMIN: 5105 case ISD::VECREDUCE_UMAX: 5106 if (Operand.getValueType().getScalarType() == MVT::i1) 5107 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5108 break; 5109 case ISD::VECREDUCE_SMAX: 5110 case ISD::VECREDUCE_UMIN: 5111 if (Operand.getValueType().getScalarType() == MVT::i1) 5112 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5113 break; 5114 } 5115 5116 SDNode *N; 5117 SDVTList VTs = getVTList(VT); 5118 SDValue Ops[] = {Operand}; 5119 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5120 FoldingSetNodeID ID; 5121 AddNodeIDNode(ID, Opcode, VTs, Ops); 5122 void *IP = nullptr; 5123 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5124 E->intersectFlagsWith(Flags); 5125 return SDValue(E, 0); 5126 } 5127 5128 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5129 N->setFlags(Flags); 5130 createOperands(N, Ops); 5131 CSEMap.InsertNode(N, IP); 5132 } else { 5133 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5134 createOperands(N, Ops); 5135 } 5136 5137 InsertNode(N); 5138 SDValue V = SDValue(N, 0); 5139 NewSDValueDbgMsg(V, "Creating new node: ", this); 5140 return V; 5141 } 5142 5143 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5144 const APInt &C2) { 5145 switch (Opcode) { 5146 case ISD::ADD: return C1 + C2; 5147 case ISD::SUB: return C1 - C2; 5148 case ISD::MUL: return C1 * C2; 5149 case ISD::AND: return C1 & C2; 5150 case ISD::OR: return C1 | C2; 5151 case ISD::XOR: return C1 ^ C2; 5152 case ISD::SHL: return C1 << C2; 5153 case ISD::SRL: return C1.lshr(C2); 5154 case ISD::SRA: return C1.ashr(C2); 5155 case ISD::ROTL: return C1.rotl(C2); 5156 case ISD::ROTR: return C1.rotr(C2); 5157 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5158 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5159 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5160 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5161 case ISD::SADDSAT: return C1.sadd_sat(C2); 5162 case ISD::UADDSAT: return C1.uadd_sat(C2); 5163 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5164 case ISD::USUBSAT: return C1.usub_sat(C2); 5165 case ISD::UDIV: 5166 if (!C2.getBoolValue()) 5167 break; 5168 return C1.udiv(C2); 5169 case ISD::UREM: 5170 if (!C2.getBoolValue()) 5171 break; 5172 return C1.urem(C2); 5173 case ISD::SDIV: 5174 if (!C2.getBoolValue()) 5175 break; 5176 return C1.sdiv(C2); 5177 case ISD::SREM: 5178 if (!C2.getBoolValue()) 5179 break; 5180 return C1.srem(C2); 5181 case ISD::MULHS: { 5182 unsigned FullWidth = C1.getBitWidth() * 2; 5183 APInt C1Ext = C1.sext(FullWidth); 5184 APInt C2Ext = C2.sext(FullWidth); 5185 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5186 } 5187 case ISD::MULHU: { 5188 unsigned FullWidth = C1.getBitWidth() * 2; 5189 APInt C1Ext = C1.zext(FullWidth); 5190 APInt C2Ext = C2.zext(FullWidth); 5191 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5192 } 5193 } 5194 return llvm::None; 5195 } 5196 5197 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5198 const GlobalAddressSDNode *GA, 5199 const SDNode *N2) { 5200 if (GA->getOpcode() != ISD::GlobalAddress) 5201 return SDValue(); 5202 if (!TLI->isOffsetFoldingLegal(GA)) 5203 return SDValue(); 5204 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5205 if (!C2) 5206 return SDValue(); 5207 int64_t Offset = C2->getSExtValue(); 5208 switch (Opcode) { 5209 case ISD::ADD: break; 5210 case ISD::SUB: Offset = -uint64_t(Offset); break; 5211 default: return SDValue(); 5212 } 5213 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5214 GA->getOffset() + uint64_t(Offset)); 5215 } 5216 5217 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5218 switch (Opcode) { 5219 case ISD::SDIV: 5220 case ISD::UDIV: 5221 case ISD::SREM: 5222 case ISD::UREM: { 5223 // If a divisor is zero/undef or any element of a divisor vector is 5224 // zero/undef, the whole op is undef. 5225 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5226 SDValue Divisor = Ops[1]; 5227 if (Divisor.isUndef() || isNullConstant(Divisor)) 5228 return true; 5229 5230 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5231 llvm::any_of(Divisor->op_values(), 5232 [](SDValue V) { return V.isUndef() || 5233 isNullConstant(V); }); 5234 // TODO: Handle signed overflow. 5235 } 5236 // TODO: Handle oversized shifts. 5237 default: 5238 return false; 5239 } 5240 } 5241 5242 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5243 EVT VT, ArrayRef<SDValue> Ops) { 5244 // If the opcode is a target-specific ISD node, there's nothing we can 5245 // do here and the operand rules may not line up with the below, so 5246 // bail early. 5247 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5248 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5249 // foldCONCAT_VECTORS in getNode before this is called. 5250 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5251 return SDValue(); 5252 5253 // For now, the array Ops should only contain two values. 5254 // This enforcement will be removed once this function is merged with 5255 // FoldConstantVectorArithmetic 5256 if (Ops.size() != 2) 5257 return SDValue(); 5258 5259 if (isUndef(Opcode, Ops)) 5260 return getUNDEF(VT); 5261 5262 SDNode *N1 = Ops[0].getNode(); 5263 SDNode *N2 = Ops[1].getNode(); 5264 5265 // Handle the case of two scalars. 5266 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 5267 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 5268 if (C1->isOpaque() || C2->isOpaque()) 5269 return SDValue(); 5270 5271 Optional<APInt> FoldAttempt = 5272 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5273 if (!FoldAttempt) 5274 return SDValue(); 5275 5276 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5277 assert((!Folded || !VT.isVector()) && 5278 "Can't fold vectors ops with scalar operands"); 5279 return Folded; 5280 } 5281 } 5282 5283 // fold (add Sym, c) -> Sym+c 5284 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 5285 return FoldSymbolOffset(Opcode, VT, GA, N2); 5286 if (TLI->isCommutativeBinOp(Opcode)) 5287 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 5288 return FoldSymbolOffset(Opcode, VT, GA, N1); 5289 5290 // For fixed width vectors, extract each constant element and fold them 5291 // individually. Either input may be an undef value. 5292 bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR || 5293 N1->getOpcode() == ISD::SPLAT_VECTOR; 5294 if (!IsBVOrSV1 && !N1->isUndef()) 5295 return SDValue(); 5296 bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR || 5297 N2->getOpcode() == ISD::SPLAT_VECTOR; 5298 if (!IsBVOrSV2 && !N2->isUndef()) 5299 return SDValue(); 5300 // If both operands are undef, that's handled the same way as scalars. 5301 if (!IsBVOrSV1 && !IsBVOrSV2) 5302 return SDValue(); 5303 5304 EVT SVT = VT.getScalarType(); 5305 EVT LegalSVT = SVT; 5306 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5307 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5308 if (LegalSVT.bitsLT(SVT)) 5309 return SDValue(); 5310 } 5311 5312 SmallVector<SDValue, 4> Outputs; 5313 unsigned NumOps = 0; 5314 if (IsBVOrSV1) 5315 NumOps = std::max(NumOps, N1->getNumOperands()); 5316 if (IsBVOrSV2) 5317 NumOps = std::max(NumOps, N2->getNumOperands()); 5318 assert(NumOps != 0 && "Expected non-zero operands"); 5319 // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need 5320 // one iteration for that. 5321 assert((!VT.isScalableVector() || NumOps == 1) && 5322 "Scalable vector should only have one scalar"); 5323 5324 for (unsigned I = 0; I != NumOps; ++I) { 5325 // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need 5326 // to use operand 0 of the SPLAT_VECTOR for each fixed element. 5327 SDValue V1; 5328 if (N1->getOpcode() == ISD::BUILD_VECTOR) 5329 V1 = N1->getOperand(I); 5330 else if (N1->getOpcode() == ISD::SPLAT_VECTOR) 5331 V1 = N1->getOperand(0); 5332 else 5333 V1 = getUNDEF(SVT); 5334 5335 SDValue V2; 5336 if (N2->getOpcode() == ISD::BUILD_VECTOR) 5337 V2 = N2->getOperand(I); 5338 else if (N2->getOpcode() == ISD::SPLAT_VECTOR) 5339 V2 = N2->getOperand(0); 5340 else 5341 V2 = getUNDEF(SVT); 5342 5343 if (SVT.isInteger()) { 5344 if (V1.getValueType().bitsGT(SVT)) 5345 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5346 if (V2.getValueType().bitsGT(SVT)) 5347 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5348 } 5349 5350 if (V1.getValueType() != SVT || V2.getValueType() != SVT) 5351 return SDValue(); 5352 5353 // Fold one vector element. 5354 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5355 if (LegalSVT != SVT) 5356 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5357 5358 // Scalar folding only succeeded if the result is a constant or UNDEF. 5359 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5360 ScalarResult.getOpcode() != ISD::ConstantFP) 5361 return SDValue(); 5362 Outputs.push_back(ScalarResult); 5363 } 5364 5365 if (N1->getOpcode() == ISD::BUILD_VECTOR || 5366 N2->getOpcode() == ISD::BUILD_VECTOR) { 5367 assert(VT.getVectorNumElements() == Outputs.size() && 5368 "Vector size mismatch!"); 5369 5370 // Build a big vector out of the scalar elements we generated. 5371 return getBuildVector(VT, SDLoc(), Outputs); 5372 } 5373 5374 assert((N1->getOpcode() == ISD::SPLAT_VECTOR || 5375 N2->getOpcode() == ISD::SPLAT_VECTOR) && 5376 "One operand should be a splat vector"); 5377 5378 assert(Outputs.size() == 1 && "Vector size mismatch!"); 5379 return getSplatVector(VT, SDLoc(), Outputs[0]); 5380 } 5381 5382 // TODO: Merge with FoldConstantArithmetic 5383 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5384 const SDLoc &DL, EVT VT, 5385 ArrayRef<SDValue> Ops, 5386 const SDNodeFlags Flags) { 5387 // If the opcode is a target-specific ISD node, there's nothing we can 5388 // do here and the operand rules may not line up with the below, so 5389 // bail early. 5390 if (Opcode >= ISD::BUILTIN_OP_END) 5391 return SDValue(); 5392 5393 if (isUndef(Opcode, Ops)) 5394 return getUNDEF(VT); 5395 5396 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5397 if (!VT.isVector()) 5398 return SDValue(); 5399 5400 ElementCount NumElts = VT.getVectorElementCount(); 5401 5402 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5403 return !Op.getValueType().isVector() || 5404 Op.getValueType().getVectorElementCount() == NumElts; 5405 }; 5406 5407 auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5408 APInt SplatVal; 5409 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5410 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5411 (BV && BV->isConstant()) || 5412 (Op.getOpcode() == ISD::SPLAT_VECTOR && 5413 ISD::isConstantSplatVector(Op.getNode(), SplatVal)); 5414 }; 5415 5416 // All operands must be vector types with the same number of elements as 5417 // the result type and must be either UNDEF or a build vector of constant 5418 // or UNDEF scalars. 5419 if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) || 5420 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5421 return SDValue(); 5422 5423 // If we are comparing vectors, then the result needs to be a i1 boolean 5424 // that is then sign-extended back to the legal result type. 5425 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5426 5427 // Find legal integer scalar type for constant promotion and 5428 // ensure that its scalar size is at least as large as source. 5429 EVT LegalSVT = VT.getScalarType(); 5430 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5431 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5432 if (LegalSVT.bitsLT(VT.getScalarType())) 5433 return SDValue(); 5434 } 5435 5436 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5437 // only have one operand to check. For fixed-length vector types we may have 5438 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5439 unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5440 5441 // Constant fold each scalar lane separately. 5442 SmallVector<SDValue, 4> ScalarResults; 5443 for (unsigned I = 0; I != NumOperands; I++) { 5444 SmallVector<SDValue, 4> ScalarOps; 5445 for (SDValue Op : Ops) { 5446 EVT InSVT = Op.getValueType().getScalarType(); 5447 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5448 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5449 // We've checked that this is UNDEF or a constant of some kind. 5450 if (Op.isUndef()) 5451 ScalarOps.push_back(getUNDEF(InSVT)); 5452 else 5453 ScalarOps.push_back(Op); 5454 continue; 5455 } 5456 5457 SDValue ScalarOp = 5458 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5459 EVT ScalarVT = ScalarOp.getValueType(); 5460 5461 // Build vector (integer) scalar operands may need implicit 5462 // truncation - do this before constant folding. 5463 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5464 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5465 5466 ScalarOps.push_back(ScalarOp); 5467 } 5468 5469 // Constant fold the scalar operands. 5470 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5471 5472 // Legalize the (integer) scalar constant if necessary. 5473 if (LegalSVT != SVT) 5474 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5475 5476 // Scalar folding only succeeded if the result is a constant or UNDEF. 5477 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5478 ScalarResult.getOpcode() != ISD::ConstantFP) 5479 return SDValue(); 5480 ScalarResults.push_back(ScalarResult); 5481 } 5482 5483 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5484 : getBuildVector(VT, DL, ScalarResults); 5485 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5486 return V; 5487 } 5488 5489 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5490 EVT VT, SDValue N1, SDValue N2) { 5491 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5492 // should. That will require dealing with a potentially non-default 5493 // rounding mode, checking the "opStatus" return value from the APFloat 5494 // math calculations, and possibly other variations. 5495 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5496 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5497 if (N1CFP && N2CFP) { 5498 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5499 switch (Opcode) { 5500 case ISD::FADD: 5501 C1.add(C2, APFloat::rmNearestTiesToEven); 5502 return getConstantFP(C1, DL, VT); 5503 case ISD::FSUB: 5504 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5505 return getConstantFP(C1, DL, VT); 5506 case ISD::FMUL: 5507 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5508 return getConstantFP(C1, DL, VT); 5509 case ISD::FDIV: 5510 C1.divide(C2, APFloat::rmNearestTiesToEven); 5511 return getConstantFP(C1, DL, VT); 5512 case ISD::FREM: 5513 C1.mod(C2); 5514 return getConstantFP(C1, DL, VT); 5515 case ISD::FCOPYSIGN: 5516 C1.copySign(C2); 5517 return getConstantFP(C1, DL, VT); 5518 default: break; 5519 } 5520 } 5521 if (N1CFP && Opcode == ISD::FP_ROUND) { 5522 APFloat C1 = N1CFP->getValueAPF(); // make copy 5523 bool Unused; 5524 // This can return overflow, underflow, or inexact; we don't care. 5525 // FIXME need to be more flexible about rounding mode. 5526 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5527 &Unused); 5528 return getConstantFP(C1, DL, VT); 5529 } 5530 5531 switch (Opcode) { 5532 case ISD::FSUB: 5533 // -0.0 - undef --> undef (consistent with "fneg undef") 5534 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5535 return getUNDEF(VT); 5536 LLVM_FALLTHROUGH; 5537 5538 case ISD::FADD: 5539 case ISD::FMUL: 5540 case ISD::FDIV: 5541 case ISD::FREM: 5542 // If both operands are undef, the result is undef. If 1 operand is undef, 5543 // the result is NaN. This should match the behavior of the IR optimizer. 5544 if (N1.isUndef() && N2.isUndef()) 5545 return getUNDEF(VT); 5546 if (N1.isUndef() || N2.isUndef()) 5547 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5548 } 5549 return SDValue(); 5550 } 5551 5552 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5553 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5554 5555 // There's no need to assert on a byte-aligned pointer. All pointers are at 5556 // least byte aligned. 5557 if (A == Align(1)) 5558 return Val; 5559 5560 FoldingSetNodeID ID; 5561 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5562 ID.AddInteger(A.value()); 5563 5564 void *IP = nullptr; 5565 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5566 return SDValue(E, 0); 5567 5568 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5569 Val.getValueType(), A); 5570 createOperands(N, {Val}); 5571 5572 CSEMap.InsertNode(N, IP); 5573 InsertNode(N); 5574 5575 SDValue V(N, 0); 5576 NewSDValueDbgMsg(V, "Creating new node: ", this); 5577 return V; 5578 } 5579 5580 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5581 SDValue N1, SDValue N2) { 5582 SDNodeFlags Flags; 5583 if (Inserter) 5584 Flags = Inserter->getFlags(); 5585 return getNode(Opcode, DL, VT, N1, N2, Flags); 5586 } 5587 5588 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5589 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5590 assert(N1.getOpcode() != ISD::DELETED_NODE && 5591 N2.getOpcode() != ISD::DELETED_NODE && 5592 "Operand is DELETED_NODE!"); 5593 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5594 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5595 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5596 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5597 5598 // Canonicalize constant to RHS if commutative. 5599 if (TLI->isCommutativeBinOp(Opcode)) { 5600 if (N1C && !N2C) { 5601 std::swap(N1C, N2C); 5602 std::swap(N1, N2); 5603 } else if (N1CFP && !N2CFP) { 5604 std::swap(N1CFP, N2CFP); 5605 std::swap(N1, N2); 5606 } 5607 } 5608 5609 switch (Opcode) { 5610 default: break; 5611 case ISD::TokenFactor: 5612 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5613 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5614 // Fold trivial token factors. 5615 if (N1.getOpcode() == ISD::EntryToken) return N2; 5616 if (N2.getOpcode() == ISD::EntryToken) return N1; 5617 if (N1 == N2) return N1; 5618 break; 5619 case ISD::BUILD_VECTOR: { 5620 // Attempt to simplify BUILD_VECTOR. 5621 SDValue Ops[] = {N1, N2}; 5622 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5623 return V; 5624 break; 5625 } 5626 case ISD::CONCAT_VECTORS: { 5627 SDValue Ops[] = {N1, N2}; 5628 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5629 return V; 5630 break; 5631 } 5632 case ISD::AND: 5633 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5634 assert(N1.getValueType() == N2.getValueType() && 5635 N1.getValueType() == VT && "Binary operator types must match!"); 5636 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5637 // worth handling here. 5638 if (N2C && N2C->isNullValue()) 5639 return N2; 5640 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5641 return N1; 5642 break; 5643 case ISD::OR: 5644 case ISD::XOR: 5645 case ISD::ADD: 5646 case ISD::SUB: 5647 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5648 assert(N1.getValueType() == N2.getValueType() && 5649 N1.getValueType() == VT && "Binary operator types must match!"); 5650 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5651 // it's worth handling here. 5652 if (N2C && N2C->isNullValue()) 5653 return N1; 5654 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5655 VT.getVectorElementType() == MVT::i1) 5656 return getNode(ISD::XOR, DL, VT, N1, N2); 5657 break; 5658 case ISD::MUL: 5659 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5660 assert(N1.getValueType() == N2.getValueType() && 5661 N1.getValueType() == VT && "Binary operator types must match!"); 5662 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5663 return getNode(ISD::AND, DL, VT, N1, N2); 5664 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5665 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5666 const APInt &N2CImm = N2C->getAPIntValue(); 5667 return getVScale(DL, VT, MulImm * N2CImm); 5668 } 5669 break; 5670 case ISD::UDIV: 5671 case ISD::UREM: 5672 case ISD::MULHU: 5673 case ISD::MULHS: 5674 case ISD::SDIV: 5675 case ISD::SREM: 5676 case ISD::SADDSAT: 5677 case ISD::SSUBSAT: 5678 case ISD::UADDSAT: 5679 case ISD::USUBSAT: 5680 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5681 assert(N1.getValueType() == N2.getValueType() && 5682 N1.getValueType() == VT && "Binary operator types must match!"); 5683 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5684 // fold (add_sat x, y) -> (or x, y) for bool types. 5685 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5686 return getNode(ISD::OR, DL, VT, N1, N2); 5687 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5688 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5689 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5690 } 5691 break; 5692 case ISD::SMIN: 5693 case ISD::UMAX: 5694 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5695 assert(N1.getValueType() == N2.getValueType() && 5696 N1.getValueType() == VT && "Binary operator types must match!"); 5697 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5698 return getNode(ISD::OR, DL, VT, N1, N2); 5699 break; 5700 case ISD::SMAX: 5701 case ISD::UMIN: 5702 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5703 assert(N1.getValueType() == N2.getValueType() && 5704 N1.getValueType() == VT && "Binary operator types must match!"); 5705 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5706 return getNode(ISD::AND, DL, VT, N1, N2); 5707 break; 5708 case ISD::FADD: 5709 case ISD::FSUB: 5710 case ISD::FMUL: 5711 case ISD::FDIV: 5712 case ISD::FREM: 5713 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5714 assert(N1.getValueType() == N2.getValueType() && 5715 N1.getValueType() == VT && "Binary operator types must match!"); 5716 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5717 return V; 5718 break; 5719 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5720 assert(N1.getValueType() == VT && 5721 N1.getValueType().isFloatingPoint() && 5722 N2.getValueType().isFloatingPoint() && 5723 "Invalid FCOPYSIGN!"); 5724 break; 5725 case ISD::SHL: 5726 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5727 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5728 const APInt &ShiftImm = N2C->getAPIntValue(); 5729 return getVScale(DL, VT, MulImm << ShiftImm); 5730 } 5731 LLVM_FALLTHROUGH; 5732 case ISD::SRA: 5733 case ISD::SRL: 5734 if (SDValue V = simplifyShift(N1, N2)) 5735 return V; 5736 LLVM_FALLTHROUGH; 5737 case ISD::ROTL: 5738 case ISD::ROTR: 5739 assert(VT == N1.getValueType() && 5740 "Shift operators return type must be the same as their first arg"); 5741 assert(VT.isInteger() && N2.getValueType().isInteger() && 5742 "Shifts only work on integers"); 5743 assert((!VT.isVector() || VT == N2.getValueType()) && 5744 "Vector shift amounts must be in the same as their first arg"); 5745 // Verify that the shift amount VT is big enough to hold valid shift 5746 // amounts. This catches things like trying to shift an i1024 value by an 5747 // i8, which is easy to fall into in generic code that uses 5748 // TLI.getShiftAmount(). 5749 assert(N2.getValueType().getScalarSizeInBits() >= 5750 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5751 "Invalid use of small shift amount with oversized value!"); 5752 5753 // Always fold shifts of i1 values so the code generator doesn't need to 5754 // handle them. Since we know the size of the shift has to be less than the 5755 // size of the value, the shift/rotate count is guaranteed to be zero. 5756 if (VT == MVT::i1) 5757 return N1; 5758 if (N2C && N2C->isNullValue()) 5759 return N1; 5760 break; 5761 case ISD::FP_ROUND: 5762 assert(VT.isFloatingPoint() && 5763 N1.getValueType().isFloatingPoint() && 5764 VT.bitsLE(N1.getValueType()) && 5765 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5766 "Invalid FP_ROUND!"); 5767 if (N1.getValueType() == VT) return N1; // noop conversion. 5768 break; 5769 case ISD::AssertSext: 5770 case ISD::AssertZext: { 5771 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5772 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5773 assert(VT.isInteger() && EVT.isInteger() && 5774 "Cannot *_EXTEND_INREG FP types"); 5775 assert(!EVT.isVector() && 5776 "AssertSExt/AssertZExt type should be the vector element type " 5777 "rather than the vector type!"); 5778 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5779 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5780 break; 5781 } 5782 case ISD::SIGN_EXTEND_INREG: { 5783 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5784 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5785 assert(VT.isInteger() && EVT.isInteger() && 5786 "Cannot *_EXTEND_INREG FP types"); 5787 assert(EVT.isVector() == VT.isVector() && 5788 "SIGN_EXTEND_INREG type should be vector iff the operand " 5789 "type is vector!"); 5790 assert((!EVT.isVector() || 5791 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5792 "Vector element counts must match in SIGN_EXTEND_INREG"); 5793 assert(EVT.bitsLE(VT) && "Not extending!"); 5794 if (EVT == VT) return N1; // Not actually extending 5795 5796 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5797 unsigned FromBits = EVT.getScalarSizeInBits(); 5798 Val <<= Val.getBitWidth() - FromBits; 5799 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5800 return getConstant(Val, DL, ConstantVT); 5801 }; 5802 5803 if (N1C) { 5804 const APInt &Val = N1C->getAPIntValue(); 5805 return SignExtendInReg(Val, VT); 5806 } 5807 5808 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5809 SmallVector<SDValue, 8> Ops; 5810 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5811 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5812 SDValue Op = N1.getOperand(i); 5813 if (Op.isUndef()) { 5814 Ops.push_back(getUNDEF(OpVT)); 5815 continue; 5816 } 5817 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5818 APInt Val = C->getAPIntValue(); 5819 Ops.push_back(SignExtendInReg(Val, OpVT)); 5820 } 5821 return getBuildVector(VT, DL, Ops); 5822 } 5823 break; 5824 } 5825 case ISD::FP_TO_SINT_SAT: 5826 case ISD::FP_TO_UINT_SAT: { 5827 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5828 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5829 assert(N1.getValueType().isVector() == VT.isVector() && 5830 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5831 "vector!"); 5832 assert((!VT.isVector() || VT.getVectorNumElements() == 5833 N1.getValueType().getVectorNumElements()) && 5834 "Vector element counts must match in FP_TO_*INT_SAT"); 5835 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5836 "Type to saturate to must be a scalar."); 5837 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5838 "Not extending!"); 5839 break; 5840 } 5841 case ISD::EXTRACT_VECTOR_ELT: 5842 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5843 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5844 element type of the vector."); 5845 5846 // Extract from an undefined value or using an undefined index is undefined. 5847 if (N1.isUndef() || N2.isUndef()) 5848 return getUNDEF(VT); 5849 5850 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5851 // vectors. For scalable vectors we will provide appropriate support for 5852 // dealing with arbitrary indices. 5853 if (N2C && N1.getValueType().isFixedLengthVector() && 5854 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5855 return getUNDEF(VT); 5856 5857 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5858 // expanding copies of large vectors from registers. This only works for 5859 // fixed length vectors, since we need to know the exact number of 5860 // elements. 5861 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5862 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5863 unsigned Factor = 5864 N1.getOperand(0).getValueType().getVectorNumElements(); 5865 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5866 N1.getOperand(N2C->getZExtValue() / Factor), 5867 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5868 } 5869 5870 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5871 // lowering is expanding large vector constants. 5872 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5873 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5874 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5875 N1.getValueType().isFixedLengthVector()) && 5876 "BUILD_VECTOR used for scalable vectors"); 5877 unsigned Index = 5878 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5879 SDValue Elt = N1.getOperand(Index); 5880 5881 if (VT != Elt.getValueType()) 5882 // If the vector element type is not legal, the BUILD_VECTOR operands 5883 // are promoted and implicitly truncated, and the result implicitly 5884 // extended. Make that explicit here. 5885 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5886 5887 return Elt; 5888 } 5889 5890 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5891 // operations are lowered to scalars. 5892 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5893 // If the indices are the same, return the inserted element else 5894 // if the indices are known different, extract the element from 5895 // the original vector. 5896 SDValue N1Op2 = N1.getOperand(2); 5897 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5898 5899 if (N1Op2C && N2C) { 5900 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5901 if (VT == N1.getOperand(1).getValueType()) 5902 return N1.getOperand(1); 5903 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5904 } 5905 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5906 } 5907 } 5908 5909 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5910 // when vector types are scalarized and v1iX is legal. 5911 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5912 // Here we are completely ignoring the extract element index (N2), 5913 // which is fine for fixed width vectors, since any index other than 0 5914 // is undefined anyway. However, this cannot be ignored for scalable 5915 // vectors - in theory we could support this, but we don't want to do this 5916 // without a profitability check. 5917 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5918 N1.getValueType().isFixedLengthVector() && 5919 N1.getValueType().getVectorNumElements() == 1) { 5920 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5921 N1.getOperand(1)); 5922 } 5923 break; 5924 case ISD::EXTRACT_ELEMENT: 5925 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5926 assert(!N1.getValueType().isVector() && !VT.isVector() && 5927 (N1.getValueType().isInteger() == VT.isInteger()) && 5928 N1.getValueType() != VT && 5929 "Wrong types for EXTRACT_ELEMENT!"); 5930 5931 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5932 // 64-bit integers into 32-bit parts. Instead of building the extract of 5933 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5934 if (N1.getOpcode() == ISD::BUILD_PAIR) 5935 return N1.getOperand(N2C->getZExtValue()); 5936 5937 // EXTRACT_ELEMENT of a constant int is also very common. 5938 if (N1C) { 5939 unsigned ElementSize = VT.getSizeInBits(); 5940 unsigned Shift = ElementSize * N2C->getZExtValue(); 5941 const APInt &Val = N1C->getAPIntValue(); 5942 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5943 } 5944 break; 5945 case ISD::EXTRACT_SUBVECTOR: { 5946 EVT N1VT = N1.getValueType(); 5947 assert(VT.isVector() && N1VT.isVector() && 5948 "Extract subvector VTs must be vectors!"); 5949 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5950 "Extract subvector VTs must have the same element type!"); 5951 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5952 "Cannot extract a scalable vector from a fixed length vector!"); 5953 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5954 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5955 "Extract subvector must be from larger vector to smaller vector!"); 5956 assert(N2C && "Extract subvector index must be a constant"); 5957 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5958 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5959 N1VT.getVectorMinNumElements()) && 5960 "Extract subvector overflow!"); 5961 assert(N2C->getAPIntValue().getBitWidth() == 5962 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5963 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5964 5965 // Trivial extraction. 5966 if (VT == N1VT) 5967 return N1; 5968 5969 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5970 if (N1.isUndef()) 5971 return getUNDEF(VT); 5972 5973 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5974 // the concat have the same type as the extract. 5975 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5976 VT == N1.getOperand(0).getValueType()) { 5977 unsigned Factor = VT.getVectorMinNumElements(); 5978 return N1.getOperand(N2C->getZExtValue() / Factor); 5979 } 5980 5981 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5982 // during shuffle legalization. 5983 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5984 VT == N1.getOperand(1).getValueType()) 5985 return N1.getOperand(1); 5986 break; 5987 } 5988 } 5989 5990 // Perform trivial constant folding. 5991 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5992 return SV; 5993 5994 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5995 return V; 5996 5997 // Canonicalize an UNDEF to the RHS, even over a constant. 5998 if (N1.isUndef()) { 5999 if (TLI->isCommutativeBinOp(Opcode)) { 6000 std::swap(N1, N2); 6001 } else { 6002 switch (Opcode) { 6003 case ISD::SIGN_EXTEND_INREG: 6004 case ISD::SUB: 6005 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6006 case ISD::UDIV: 6007 case ISD::SDIV: 6008 case ISD::UREM: 6009 case ISD::SREM: 6010 case ISD::SSUBSAT: 6011 case ISD::USUBSAT: 6012 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6013 } 6014 } 6015 } 6016 6017 // Fold a bunch of operators when the RHS is undef. 6018 if (N2.isUndef()) { 6019 switch (Opcode) { 6020 case ISD::XOR: 6021 if (N1.isUndef()) 6022 // Handle undef ^ undef -> 0 special case. This is a common 6023 // idiom (misuse). 6024 return getConstant(0, DL, VT); 6025 LLVM_FALLTHROUGH; 6026 case ISD::ADD: 6027 case ISD::SUB: 6028 case ISD::UDIV: 6029 case ISD::SDIV: 6030 case ISD::UREM: 6031 case ISD::SREM: 6032 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6033 case ISD::MUL: 6034 case ISD::AND: 6035 case ISD::SSUBSAT: 6036 case ISD::USUBSAT: 6037 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6038 case ISD::OR: 6039 case ISD::SADDSAT: 6040 case ISD::UADDSAT: 6041 return getAllOnesConstant(DL, VT); 6042 } 6043 } 6044 6045 // Memoize this node if possible. 6046 SDNode *N; 6047 SDVTList VTs = getVTList(VT); 6048 SDValue Ops[] = {N1, N2}; 6049 if (VT != MVT::Glue) { 6050 FoldingSetNodeID ID; 6051 AddNodeIDNode(ID, Opcode, VTs, Ops); 6052 void *IP = nullptr; 6053 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6054 E->intersectFlagsWith(Flags); 6055 return SDValue(E, 0); 6056 } 6057 6058 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6059 N->setFlags(Flags); 6060 createOperands(N, Ops); 6061 CSEMap.InsertNode(N, IP); 6062 } else { 6063 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6064 createOperands(N, Ops); 6065 } 6066 6067 InsertNode(N); 6068 SDValue V = SDValue(N, 0); 6069 NewSDValueDbgMsg(V, "Creating new node: ", this); 6070 return V; 6071 } 6072 6073 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6074 SDValue N1, SDValue N2, SDValue N3) { 6075 SDNodeFlags Flags; 6076 if (Inserter) 6077 Flags = Inserter->getFlags(); 6078 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6079 } 6080 6081 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6082 SDValue N1, SDValue N2, SDValue N3, 6083 const SDNodeFlags Flags) { 6084 assert(N1.getOpcode() != ISD::DELETED_NODE && 6085 N2.getOpcode() != ISD::DELETED_NODE && 6086 N3.getOpcode() != ISD::DELETED_NODE && 6087 "Operand is DELETED_NODE!"); 6088 // Perform various simplifications. 6089 switch (Opcode) { 6090 case ISD::FMA: { 6091 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6092 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6093 N3.getValueType() == VT && "FMA types must match!"); 6094 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6095 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6096 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6097 if (N1CFP && N2CFP && N3CFP) { 6098 APFloat V1 = N1CFP->getValueAPF(); 6099 const APFloat &V2 = N2CFP->getValueAPF(); 6100 const APFloat &V3 = N3CFP->getValueAPF(); 6101 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6102 return getConstantFP(V1, DL, VT); 6103 } 6104 break; 6105 } 6106 case ISD::BUILD_VECTOR: { 6107 // Attempt to simplify BUILD_VECTOR. 6108 SDValue Ops[] = {N1, N2, N3}; 6109 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6110 return V; 6111 break; 6112 } 6113 case ISD::CONCAT_VECTORS: { 6114 SDValue Ops[] = {N1, N2, N3}; 6115 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6116 return V; 6117 break; 6118 } 6119 case ISD::SETCC: { 6120 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6121 assert(N1.getValueType() == N2.getValueType() && 6122 "SETCC operands must have the same type!"); 6123 assert(VT.isVector() == N1.getValueType().isVector() && 6124 "SETCC type should be vector iff the operand type is vector!"); 6125 assert((!VT.isVector() || VT.getVectorElementCount() == 6126 N1.getValueType().getVectorElementCount()) && 6127 "SETCC vector element counts must match!"); 6128 // Use FoldSetCC to simplify SETCC's. 6129 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6130 return V; 6131 // Vector constant folding. 6132 SDValue Ops[] = {N1, N2, N3}; 6133 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 6134 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6135 return V; 6136 } 6137 break; 6138 } 6139 case ISD::SELECT: 6140 case ISD::VSELECT: 6141 if (SDValue V = simplifySelect(N1, N2, N3)) 6142 return V; 6143 break; 6144 case ISD::VECTOR_SHUFFLE: 6145 llvm_unreachable("should use getVectorShuffle constructor!"); 6146 case ISD::INSERT_VECTOR_ELT: { 6147 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6148 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6149 // for scalable vectors where we will generate appropriate code to 6150 // deal with out-of-bounds cases correctly. 6151 if (N3C && N1.getValueType().isFixedLengthVector() && 6152 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6153 return getUNDEF(VT); 6154 6155 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6156 if (N3.isUndef()) 6157 return getUNDEF(VT); 6158 6159 // If the inserted element is an UNDEF, just use the input vector. 6160 if (N2.isUndef()) 6161 return N1; 6162 6163 break; 6164 } 6165 case ISD::INSERT_SUBVECTOR: { 6166 // Inserting undef into undef is still undef. 6167 if (N1.isUndef() && N2.isUndef()) 6168 return getUNDEF(VT); 6169 6170 EVT N2VT = N2.getValueType(); 6171 assert(VT == N1.getValueType() && 6172 "Dest and insert subvector source types must match!"); 6173 assert(VT.isVector() && N2VT.isVector() && 6174 "Insert subvector VTs must be vectors!"); 6175 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6176 "Cannot insert a scalable vector into a fixed length vector!"); 6177 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6178 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6179 "Insert subvector must be from smaller vector to larger vector!"); 6180 assert(isa<ConstantSDNode>(N3) && 6181 "Insert subvector index must be constant"); 6182 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6183 (N2VT.getVectorMinNumElements() + 6184 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6185 VT.getVectorMinNumElements()) && 6186 "Insert subvector overflow!"); 6187 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6188 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6189 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6190 6191 // Trivial insertion. 6192 if (VT == N2VT) 6193 return N2; 6194 6195 // If this is an insert of an extracted vector into an undef vector, we 6196 // can just use the input to the extract. 6197 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6198 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6199 return N2.getOperand(0); 6200 break; 6201 } 6202 case ISD::BITCAST: 6203 // Fold bit_convert nodes from a type to themselves. 6204 if (N1.getValueType() == VT) 6205 return N1; 6206 break; 6207 } 6208 6209 // Memoize node if it doesn't produce a flag. 6210 SDNode *N; 6211 SDVTList VTs = getVTList(VT); 6212 SDValue Ops[] = {N1, N2, N3}; 6213 if (VT != MVT::Glue) { 6214 FoldingSetNodeID ID; 6215 AddNodeIDNode(ID, Opcode, VTs, Ops); 6216 void *IP = nullptr; 6217 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6218 E->intersectFlagsWith(Flags); 6219 return SDValue(E, 0); 6220 } 6221 6222 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6223 N->setFlags(Flags); 6224 createOperands(N, Ops); 6225 CSEMap.InsertNode(N, IP); 6226 } else { 6227 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6228 createOperands(N, Ops); 6229 } 6230 6231 InsertNode(N); 6232 SDValue V = SDValue(N, 0); 6233 NewSDValueDbgMsg(V, "Creating new node: ", this); 6234 return V; 6235 } 6236 6237 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6238 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6239 SDValue Ops[] = { N1, N2, N3, N4 }; 6240 return getNode(Opcode, DL, VT, Ops); 6241 } 6242 6243 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6244 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6245 SDValue N5) { 6246 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6247 return getNode(Opcode, DL, VT, Ops); 6248 } 6249 6250 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6251 /// the incoming stack arguments to be loaded from the stack. 6252 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6253 SmallVector<SDValue, 8> ArgChains; 6254 6255 // Include the original chain at the beginning of the list. When this is 6256 // used by target LowerCall hooks, this helps legalize find the 6257 // CALLSEQ_BEGIN node. 6258 ArgChains.push_back(Chain); 6259 6260 // Add a chain value for each stack argument. 6261 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 6262 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 6263 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 6264 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6265 if (FI->getIndex() < 0) 6266 ArgChains.push_back(SDValue(L, 1)); 6267 6268 // Build a tokenfactor for all the chains. 6269 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6270 } 6271 6272 /// getMemsetValue - Vectorized representation of the memset value 6273 /// operand. 6274 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6275 const SDLoc &dl) { 6276 assert(!Value.isUndef()); 6277 6278 unsigned NumBits = VT.getScalarSizeInBits(); 6279 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6280 assert(C->getAPIntValue().getBitWidth() == 8); 6281 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6282 if (VT.isInteger()) { 6283 bool IsOpaque = VT.getSizeInBits() > 64 || 6284 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6285 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6286 } 6287 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6288 VT); 6289 } 6290 6291 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6292 EVT IntVT = VT.getScalarType(); 6293 if (!IntVT.isInteger()) 6294 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6295 6296 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6297 if (NumBits > 8) { 6298 // Use a multiplication with 0x010101... to extend the input to the 6299 // required length. 6300 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6301 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6302 DAG.getConstant(Magic, dl, IntVT)); 6303 } 6304 6305 if (VT != Value.getValueType() && !VT.isInteger()) 6306 Value = DAG.getBitcast(VT.getScalarType(), Value); 6307 if (VT != Value.getValueType()) 6308 Value = DAG.getSplatBuildVector(VT, dl, Value); 6309 6310 return Value; 6311 } 6312 6313 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6314 /// used when a memcpy is turned into a memset when the source is a constant 6315 /// string ptr. 6316 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6317 const TargetLowering &TLI, 6318 const ConstantDataArraySlice &Slice) { 6319 // Handle vector with all elements zero. 6320 if (Slice.Array == nullptr) { 6321 if (VT.isInteger()) 6322 return DAG.getConstant(0, dl, VT); 6323 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6324 return DAG.getConstantFP(0.0, dl, VT); 6325 if (VT.isVector()) { 6326 unsigned NumElts = VT.getVectorNumElements(); 6327 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6328 return DAG.getNode(ISD::BITCAST, dl, VT, 6329 DAG.getConstant(0, dl, 6330 EVT::getVectorVT(*DAG.getContext(), 6331 EltVT, NumElts))); 6332 } 6333 llvm_unreachable("Expected type!"); 6334 } 6335 6336 assert(!VT.isVector() && "Can't handle vector type here!"); 6337 unsigned NumVTBits = VT.getSizeInBits(); 6338 unsigned NumVTBytes = NumVTBits / 8; 6339 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6340 6341 APInt Val(NumVTBits, 0); 6342 if (DAG.getDataLayout().isLittleEndian()) { 6343 for (unsigned i = 0; i != NumBytes; ++i) 6344 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6345 } else { 6346 for (unsigned i = 0; i != NumBytes; ++i) 6347 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6348 } 6349 6350 // If the "cost" of materializing the integer immediate is less than the cost 6351 // of a load, then it is cost effective to turn the load into the immediate. 6352 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6353 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6354 return DAG.getConstant(Val, dl, VT); 6355 return SDValue(nullptr, 0); 6356 } 6357 6358 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6359 const SDLoc &DL, 6360 const SDNodeFlags Flags) { 6361 EVT VT = Base.getValueType(); 6362 SDValue Index; 6363 6364 if (Offset.isScalable()) 6365 Index = getVScale(DL, Base.getValueType(), 6366 APInt(Base.getValueSizeInBits().getFixedSize(), 6367 Offset.getKnownMinSize())); 6368 else 6369 Index = getConstant(Offset.getFixedSize(), DL, VT); 6370 6371 return getMemBasePlusOffset(Base, Index, DL, Flags); 6372 } 6373 6374 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6375 const SDLoc &DL, 6376 const SDNodeFlags Flags) { 6377 assert(Offset.getValueType().isInteger()); 6378 EVT BasePtrVT = Ptr.getValueType(); 6379 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6380 } 6381 6382 /// Returns true if memcpy source is constant data. 6383 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6384 uint64_t SrcDelta = 0; 6385 GlobalAddressSDNode *G = nullptr; 6386 if (Src.getOpcode() == ISD::GlobalAddress) 6387 G = cast<GlobalAddressSDNode>(Src); 6388 else if (Src.getOpcode() == ISD::ADD && 6389 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6390 Src.getOperand(1).getOpcode() == ISD::Constant) { 6391 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6392 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6393 } 6394 if (!G) 6395 return false; 6396 6397 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6398 SrcDelta + G->getOffset()); 6399 } 6400 6401 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6402 SelectionDAG &DAG) { 6403 // On Darwin, -Os means optimize for size without hurting performance, so 6404 // only really optimize for size when -Oz (MinSize) is used. 6405 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6406 return MF.getFunction().hasMinSize(); 6407 return DAG.shouldOptForSize(); 6408 } 6409 6410 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6411 SmallVector<SDValue, 32> &OutChains, unsigned From, 6412 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6413 SmallVector<SDValue, 16> &OutStoreChains) { 6414 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6415 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6416 SmallVector<SDValue, 16> GluedLoadChains; 6417 for (unsigned i = From; i < To; ++i) { 6418 OutChains.push_back(OutLoadChains[i]); 6419 GluedLoadChains.push_back(OutLoadChains[i]); 6420 } 6421 6422 // Chain for all loads. 6423 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6424 GluedLoadChains); 6425 6426 for (unsigned i = From; i < To; ++i) { 6427 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6428 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6429 ST->getBasePtr(), ST->getMemoryVT(), 6430 ST->getMemOperand()); 6431 OutChains.push_back(NewStore); 6432 } 6433 } 6434 6435 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6436 SDValue Chain, SDValue Dst, SDValue Src, 6437 uint64_t Size, Align Alignment, 6438 bool isVol, bool AlwaysInline, 6439 MachinePointerInfo DstPtrInfo, 6440 MachinePointerInfo SrcPtrInfo, 6441 const AAMDNodes &AAInfo) { 6442 // Turn a memcpy of undef to nop. 6443 // FIXME: We need to honor volatile even is Src is undef. 6444 if (Src.isUndef()) 6445 return Chain; 6446 6447 // Expand memcpy to a series of load and store ops if the size operand falls 6448 // below a certain threshold. 6449 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6450 // rather than maybe a humongous number of loads and stores. 6451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6452 const DataLayout &DL = DAG.getDataLayout(); 6453 LLVMContext &C = *DAG.getContext(); 6454 std::vector<EVT> MemOps; 6455 bool DstAlignCanChange = false; 6456 MachineFunction &MF = DAG.getMachineFunction(); 6457 MachineFrameInfo &MFI = MF.getFrameInfo(); 6458 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6459 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6460 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6461 DstAlignCanChange = true; 6462 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6463 if (!SrcAlign || Alignment > *SrcAlign) 6464 SrcAlign = Alignment; 6465 assert(SrcAlign && "SrcAlign must be set"); 6466 ConstantDataArraySlice Slice; 6467 // If marked as volatile, perform a copy even when marked as constant. 6468 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6469 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6470 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6471 const MemOp Op = isZeroConstant 6472 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6473 /*IsZeroMemset*/ true, isVol) 6474 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6475 *SrcAlign, isVol, CopyFromConstant); 6476 if (!TLI.findOptimalMemOpLowering( 6477 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6478 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6479 return SDValue(); 6480 6481 if (DstAlignCanChange) { 6482 Type *Ty = MemOps[0].getTypeForEVT(C); 6483 Align NewAlign = DL.getABITypeAlign(Ty); 6484 6485 // Don't promote to an alignment that would require dynamic stack 6486 // realignment. 6487 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6488 if (!TRI->hasStackRealignment(MF)) 6489 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6490 NewAlign = NewAlign / 2; 6491 6492 if (NewAlign > Alignment) { 6493 // Give the stack frame object a larger alignment if needed. 6494 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6495 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6496 Alignment = NewAlign; 6497 } 6498 } 6499 6500 // Prepare AAInfo for loads/stores after lowering this memcpy. 6501 AAMDNodes NewAAInfo = AAInfo; 6502 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6503 6504 MachineMemOperand::Flags MMOFlags = 6505 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6506 SmallVector<SDValue, 16> OutLoadChains; 6507 SmallVector<SDValue, 16> OutStoreChains; 6508 SmallVector<SDValue, 32> OutChains; 6509 unsigned NumMemOps = MemOps.size(); 6510 uint64_t SrcOff = 0, DstOff = 0; 6511 for (unsigned i = 0; i != NumMemOps; ++i) { 6512 EVT VT = MemOps[i]; 6513 unsigned VTSize = VT.getSizeInBits() / 8; 6514 SDValue Value, Store; 6515 6516 if (VTSize > Size) { 6517 // Issuing an unaligned load / store pair that overlaps with the previous 6518 // pair. Adjust the offset accordingly. 6519 assert(i == NumMemOps-1 && i != 0); 6520 SrcOff -= VTSize - Size; 6521 DstOff -= VTSize - Size; 6522 } 6523 6524 if (CopyFromConstant && 6525 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6526 // It's unlikely a store of a vector immediate can be done in a single 6527 // instruction. It would require a load from a constantpool first. 6528 // We only handle zero vectors here. 6529 // FIXME: Handle other cases where store of vector immediate is done in 6530 // a single instruction. 6531 ConstantDataArraySlice SubSlice; 6532 if (SrcOff < Slice.Length) { 6533 SubSlice = Slice; 6534 SubSlice.move(SrcOff); 6535 } else { 6536 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6537 SubSlice.Array = nullptr; 6538 SubSlice.Offset = 0; 6539 SubSlice.Length = VTSize; 6540 } 6541 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6542 if (Value.getNode()) { 6543 Store = DAG.getStore( 6544 Chain, dl, Value, 6545 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6546 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6547 OutChains.push_back(Store); 6548 } 6549 } 6550 6551 if (!Store.getNode()) { 6552 // The type might not be legal for the target. This should only happen 6553 // if the type is smaller than a legal type, as on PPC, so the right 6554 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6555 // to Load/Store if NVT==VT. 6556 // FIXME does the case above also need this? 6557 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6558 assert(NVT.bitsGE(VT)); 6559 6560 bool isDereferenceable = 6561 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6562 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6563 if (isDereferenceable) 6564 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6565 6566 Value = DAG.getExtLoad( 6567 ISD::EXTLOAD, dl, NVT, Chain, 6568 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6569 SrcPtrInfo.getWithOffset(SrcOff), VT, 6570 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6571 OutLoadChains.push_back(Value.getValue(1)); 6572 6573 Store = DAG.getTruncStore( 6574 Chain, dl, Value, 6575 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6576 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6577 OutStoreChains.push_back(Store); 6578 } 6579 SrcOff += VTSize; 6580 DstOff += VTSize; 6581 Size -= VTSize; 6582 } 6583 6584 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6585 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6586 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6587 6588 if (NumLdStInMemcpy) { 6589 // It may be that memcpy might be converted to memset if it's memcpy 6590 // of constants. In such a case, we won't have loads and stores, but 6591 // just stores. In the absence of loads, there is nothing to gang up. 6592 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6593 // If target does not care, just leave as it. 6594 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6595 OutChains.push_back(OutLoadChains[i]); 6596 OutChains.push_back(OutStoreChains[i]); 6597 } 6598 } else { 6599 // Ld/St less than/equal limit set by target. 6600 if (NumLdStInMemcpy <= GluedLdStLimit) { 6601 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6602 NumLdStInMemcpy, OutLoadChains, 6603 OutStoreChains); 6604 } else { 6605 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6606 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6607 unsigned GlueIter = 0; 6608 6609 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6610 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6611 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6612 6613 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6614 OutLoadChains, OutStoreChains); 6615 GlueIter += GluedLdStLimit; 6616 } 6617 6618 // Residual ld/st. 6619 if (RemainingLdStInMemcpy) { 6620 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6621 RemainingLdStInMemcpy, OutLoadChains, 6622 OutStoreChains); 6623 } 6624 } 6625 } 6626 } 6627 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6628 } 6629 6630 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6631 SDValue Chain, SDValue Dst, SDValue Src, 6632 uint64_t Size, Align Alignment, 6633 bool isVol, bool AlwaysInline, 6634 MachinePointerInfo DstPtrInfo, 6635 MachinePointerInfo SrcPtrInfo, 6636 const AAMDNodes &AAInfo) { 6637 // Turn a memmove of undef to nop. 6638 // FIXME: We need to honor volatile even is Src is undef. 6639 if (Src.isUndef()) 6640 return Chain; 6641 6642 // Expand memmove to a series of load and store ops if the size operand falls 6643 // below a certain threshold. 6644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6645 const DataLayout &DL = DAG.getDataLayout(); 6646 LLVMContext &C = *DAG.getContext(); 6647 std::vector<EVT> MemOps; 6648 bool DstAlignCanChange = false; 6649 MachineFunction &MF = DAG.getMachineFunction(); 6650 MachineFrameInfo &MFI = MF.getFrameInfo(); 6651 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6652 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6653 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6654 DstAlignCanChange = true; 6655 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6656 if (!SrcAlign || Alignment > *SrcAlign) 6657 SrcAlign = Alignment; 6658 assert(SrcAlign && "SrcAlign must be set"); 6659 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6660 if (!TLI.findOptimalMemOpLowering( 6661 MemOps, Limit, 6662 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6663 /*IsVolatile*/ true), 6664 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6665 MF.getFunction().getAttributes())) 6666 return SDValue(); 6667 6668 if (DstAlignCanChange) { 6669 Type *Ty = MemOps[0].getTypeForEVT(C); 6670 Align NewAlign = DL.getABITypeAlign(Ty); 6671 if (NewAlign > Alignment) { 6672 // Give the stack frame object a larger alignment if needed. 6673 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6674 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6675 Alignment = NewAlign; 6676 } 6677 } 6678 6679 // Prepare AAInfo for loads/stores after lowering this memmove. 6680 AAMDNodes NewAAInfo = AAInfo; 6681 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6682 6683 MachineMemOperand::Flags MMOFlags = 6684 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6685 uint64_t SrcOff = 0, DstOff = 0; 6686 SmallVector<SDValue, 8> LoadValues; 6687 SmallVector<SDValue, 8> LoadChains; 6688 SmallVector<SDValue, 8> OutChains; 6689 unsigned NumMemOps = MemOps.size(); 6690 for (unsigned i = 0; i < NumMemOps; i++) { 6691 EVT VT = MemOps[i]; 6692 unsigned VTSize = VT.getSizeInBits() / 8; 6693 SDValue Value; 6694 6695 bool isDereferenceable = 6696 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6697 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6698 if (isDereferenceable) 6699 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6700 6701 Value = DAG.getLoad( 6702 VT, dl, Chain, 6703 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6704 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6705 LoadValues.push_back(Value); 6706 LoadChains.push_back(Value.getValue(1)); 6707 SrcOff += VTSize; 6708 } 6709 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6710 OutChains.clear(); 6711 for (unsigned i = 0; i < NumMemOps; i++) { 6712 EVT VT = MemOps[i]; 6713 unsigned VTSize = VT.getSizeInBits() / 8; 6714 SDValue Store; 6715 6716 Store = DAG.getStore( 6717 Chain, dl, LoadValues[i], 6718 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6719 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6720 OutChains.push_back(Store); 6721 DstOff += VTSize; 6722 } 6723 6724 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6725 } 6726 6727 /// Lower the call to 'memset' intrinsic function into a series of store 6728 /// operations. 6729 /// 6730 /// \param DAG Selection DAG where lowered code is placed. 6731 /// \param dl Link to corresponding IR location. 6732 /// \param Chain Control flow dependency. 6733 /// \param Dst Pointer to destination memory location. 6734 /// \param Src Value of byte to write into the memory. 6735 /// \param Size Number of bytes to write. 6736 /// \param Alignment Alignment of the destination in bytes. 6737 /// \param isVol True if destination is volatile. 6738 /// \param DstPtrInfo IR information on the memory pointer. 6739 /// \returns New head in the control flow, if lowering was successful, empty 6740 /// SDValue otherwise. 6741 /// 6742 /// The function tries to replace 'llvm.memset' intrinsic with several store 6743 /// operations and value calculation code. This is usually profitable for small 6744 /// memory size. 6745 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6746 SDValue Chain, SDValue Dst, SDValue Src, 6747 uint64_t Size, Align Alignment, bool isVol, 6748 MachinePointerInfo DstPtrInfo, 6749 const AAMDNodes &AAInfo) { 6750 // Turn a memset of undef to nop. 6751 // FIXME: We need to honor volatile even is Src is undef. 6752 if (Src.isUndef()) 6753 return Chain; 6754 6755 // Expand memset to a series of load/store ops if the size operand 6756 // falls below a certain threshold. 6757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6758 std::vector<EVT> MemOps; 6759 bool DstAlignCanChange = false; 6760 MachineFunction &MF = DAG.getMachineFunction(); 6761 MachineFrameInfo &MFI = MF.getFrameInfo(); 6762 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6763 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6764 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6765 DstAlignCanChange = true; 6766 bool IsZeroVal = 6767 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6768 if (!TLI.findOptimalMemOpLowering( 6769 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6770 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6771 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6772 return SDValue(); 6773 6774 if (DstAlignCanChange) { 6775 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6776 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6777 if (NewAlign > Alignment) { 6778 // Give the stack frame object a larger alignment if needed. 6779 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6780 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6781 Alignment = NewAlign; 6782 } 6783 } 6784 6785 SmallVector<SDValue, 8> OutChains; 6786 uint64_t DstOff = 0; 6787 unsigned NumMemOps = MemOps.size(); 6788 6789 // Find the largest store and generate the bit pattern for it. 6790 EVT LargestVT = MemOps[0]; 6791 for (unsigned i = 1; i < NumMemOps; i++) 6792 if (MemOps[i].bitsGT(LargestVT)) 6793 LargestVT = MemOps[i]; 6794 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6795 6796 // Prepare AAInfo for loads/stores after lowering this memset. 6797 AAMDNodes NewAAInfo = AAInfo; 6798 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6799 6800 for (unsigned i = 0; i < NumMemOps; i++) { 6801 EVT VT = MemOps[i]; 6802 unsigned VTSize = VT.getSizeInBits() / 8; 6803 if (VTSize > Size) { 6804 // Issuing an unaligned load / store pair that overlaps with the previous 6805 // pair. Adjust the offset accordingly. 6806 assert(i == NumMemOps-1 && i != 0); 6807 DstOff -= VTSize - Size; 6808 } 6809 6810 // If this store is smaller than the largest store see whether we can get 6811 // the smaller value for free with a truncate. 6812 SDValue Value = MemSetValue; 6813 if (VT.bitsLT(LargestVT)) { 6814 if (!LargestVT.isVector() && !VT.isVector() && 6815 TLI.isTruncateFree(LargestVT, VT)) 6816 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6817 else 6818 Value = getMemsetValue(Src, VT, DAG, dl); 6819 } 6820 assert(Value.getValueType() == VT && "Value with wrong type."); 6821 SDValue Store = DAG.getStore( 6822 Chain, dl, Value, 6823 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6824 DstPtrInfo.getWithOffset(DstOff), Alignment, 6825 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6826 NewAAInfo); 6827 OutChains.push_back(Store); 6828 DstOff += VT.getSizeInBits() / 8; 6829 Size -= VTSize; 6830 } 6831 6832 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6833 } 6834 6835 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6836 unsigned AS) { 6837 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6838 // pointer operands can be losslessly bitcasted to pointers of address space 0 6839 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6840 report_fatal_error("cannot lower memory intrinsic in address space " + 6841 Twine(AS)); 6842 } 6843 } 6844 6845 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6846 SDValue Src, SDValue Size, Align Alignment, 6847 bool isVol, bool AlwaysInline, bool isTailCall, 6848 MachinePointerInfo DstPtrInfo, 6849 MachinePointerInfo SrcPtrInfo, 6850 const AAMDNodes &AAInfo) { 6851 // Check to see if we should lower the memcpy to loads and stores first. 6852 // For cases within the target-specified limits, this is the best choice. 6853 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6854 if (ConstantSize) { 6855 // Memcpy with size zero? Just return the original chain. 6856 if (ConstantSize->isNullValue()) 6857 return Chain; 6858 6859 SDValue Result = getMemcpyLoadsAndStores( 6860 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6861 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6862 if (Result.getNode()) 6863 return Result; 6864 } 6865 6866 // Then check to see if we should lower the memcpy with target-specific 6867 // code. If the target chooses to do this, this is the next best. 6868 if (TSI) { 6869 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6870 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6871 DstPtrInfo, SrcPtrInfo); 6872 if (Result.getNode()) 6873 return Result; 6874 } 6875 6876 // If we really need inline code and the target declined to provide it, 6877 // use a (potentially long) sequence of loads and stores. 6878 if (AlwaysInline) { 6879 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6880 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6881 ConstantSize->getZExtValue(), Alignment, 6882 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6883 } 6884 6885 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6886 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6887 6888 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6889 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6890 // respect volatile, so they may do things like read or write memory 6891 // beyond the given memory regions. But fixing this isn't easy, and most 6892 // people don't care. 6893 6894 // Emit a library call. 6895 TargetLowering::ArgListTy Args; 6896 TargetLowering::ArgListEntry Entry; 6897 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6898 Entry.Node = Dst; Args.push_back(Entry); 6899 Entry.Node = Src; Args.push_back(Entry); 6900 6901 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6902 Entry.Node = Size; Args.push_back(Entry); 6903 // FIXME: pass in SDLoc 6904 TargetLowering::CallLoweringInfo CLI(*this); 6905 CLI.setDebugLoc(dl) 6906 .setChain(Chain) 6907 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6908 Dst.getValueType().getTypeForEVT(*getContext()), 6909 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6910 TLI->getPointerTy(getDataLayout())), 6911 std::move(Args)) 6912 .setDiscardResult() 6913 .setTailCall(isTailCall); 6914 6915 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6916 return CallResult.second; 6917 } 6918 6919 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6920 SDValue Dst, unsigned DstAlign, 6921 SDValue Src, unsigned SrcAlign, 6922 SDValue Size, Type *SizeTy, 6923 unsigned ElemSz, bool isTailCall, 6924 MachinePointerInfo DstPtrInfo, 6925 MachinePointerInfo SrcPtrInfo) { 6926 // Emit a library call. 6927 TargetLowering::ArgListTy Args; 6928 TargetLowering::ArgListEntry Entry; 6929 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6930 Entry.Node = Dst; 6931 Args.push_back(Entry); 6932 6933 Entry.Node = Src; 6934 Args.push_back(Entry); 6935 6936 Entry.Ty = SizeTy; 6937 Entry.Node = Size; 6938 Args.push_back(Entry); 6939 6940 RTLIB::Libcall LibraryCall = 6941 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6942 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6943 report_fatal_error("Unsupported element size"); 6944 6945 TargetLowering::CallLoweringInfo CLI(*this); 6946 CLI.setDebugLoc(dl) 6947 .setChain(Chain) 6948 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6949 Type::getVoidTy(*getContext()), 6950 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6951 TLI->getPointerTy(getDataLayout())), 6952 std::move(Args)) 6953 .setDiscardResult() 6954 .setTailCall(isTailCall); 6955 6956 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6957 return CallResult.second; 6958 } 6959 6960 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6961 SDValue Src, SDValue Size, Align Alignment, 6962 bool isVol, bool isTailCall, 6963 MachinePointerInfo DstPtrInfo, 6964 MachinePointerInfo SrcPtrInfo, 6965 const AAMDNodes &AAInfo) { 6966 // Check to see if we should lower the memmove to loads and stores first. 6967 // For cases within the target-specified limits, this is the best choice. 6968 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6969 if (ConstantSize) { 6970 // Memmove with size zero? Just return the original chain. 6971 if (ConstantSize->isNullValue()) 6972 return Chain; 6973 6974 SDValue Result = getMemmoveLoadsAndStores( 6975 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6976 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6977 if (Result.getNode()) 6978 return Result; 6979 } 6980 6981 // Then check to see if we should lower the memmove with target-specific 6982 // code. If the target chooses to do this, this is the next best. 6983 if (TSI) { 6984 SDValue Result = 6985 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6986 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6987 if (Result.getNode()) 6988 return Result; 6989 } 6990 6991 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6992 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6993 6994 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6995 // not be safe. See memcpy above for more details. 6996 6997 // Emit a library call. 6998 TargetLowering::ArgListTy Args; 6999 TargetLowering::ArgListEntry Entry; 7000 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7001 Entry.Node = Dst; Args.push_back(Entry); 7002 Entry.Node = Src; Args.push_back(Entry); 7003 7004 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7005 Entry.Node = Size; Args.push_back(Entry); 7006 // FIXME: pass in SDLoc 7007 TargetLowering::CallLoweringInfo CLI(*this); 7008 CLI.setDebugLoc(dl) 7009 .setChain(Chain) 7010 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7011 Dst.getValueType().getTypeForEVT(*getContext()), 7012 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7013 TLI->getPointerTy(getDataLayout())), 7014 std::move(Args)) 7015 .setDiscardResult() 7016 .setTailCall(isTailCall); 7017 7018 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7019 return CallResult.second; 7020 } 7021 7022 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7023 SDValue Dst, unsigned DstAlign, 7024 SDValue Src, unsigned SrcAlign, 7025 SDValue Size, Type *SizeTy, 7026 unsigned ElemSz, bool isTailCall, 7027 MachinePointerInfo DstPtrInfo, 7028 MachinePointerInfo SrcPtrInfo) { 7029 // Emit a library call. 7030 TargetLowering::ArgListTy Args; 7031 TargetLowering::ArgListEntry Entry; 7032 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7033 Entry.Node = Dst; 7034 Args.push_back(Entry); 7035 7036 Entry.Node = Src; 7037 Args.push_back(Entry); 7038 7039 Entry.Ty = SizeTy; 7040 Entry.Node = Size; 7041 Args.push_back(Entry); 7042 7043 RTLIB::Libcall LibraryCall = 7044 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7045 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7046 report_fatal_error("Unsupported element size"); 7047 7048 TargetLowering::CallLoweringInfo CLI(*this); 7049 CLI.setDebugLoc(dl) 7050 .setChain(Chain) 7051 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7052 Type::getVoidTy(*getContext()), 7053 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7054 TLI->getPointerTy(getDataLayout())), 7055 std::move(Args)) 7056 .setDiscardResult() 7057 .setTailCall(isTailCall); 7058 7059 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7060 return CallResult.second; 7061 } 7062 7063 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7064 SDValue Src, SDValue Size, Align Alignment, 7065 bool isVol, bool isTailCall, 7066 MachinePointerInfo DstPtrInfo, 7067 const AAMDNodes &AAInfo) { 7068 // Check to see if we should lower the memset to stores first. 7069 // For cases within the target-specified limits, this is the best choice. 7070 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7071 if (ConstantSize) { 7072 // Memset with size zero? Just return the original chain. 7073 if (ConstantSize->isNullValue()) 7074 return Chain; 7075 7076 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7077 ConstantSize->getZExtValue(), Alignment, 7078 isVol, DstPtrInfo, AAInfo); 7079 7080 if (Result.getNode()) 7081 return Result; 7082 } 7083 7084 // Then check to see if we should lower the memset with target-specific 7085 // code. If the target chooses to do this, this is the next best. 7086 if (TSI) { 7087 SDValue Result = TSI->EmitTargetCodeForMemset( 7088 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7089 if (Result.getNode()) 7090 return Result; 7091 } 7092 7093 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7094 7095 // Emit a library call. 7096 TargetLowering::ArgListTy Args; 7097 TargetLowering::ArgListEntry Entry; 7098 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7099 Args.push_back(Entry); 7100 Entry.Node = Src; 7101 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7102 Args.push_back(Entry); 7103 Entry.Node = Size; 7104 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7105 Args.push_back(Entry); 7106 7107 // FIXME: pass in SDLoc 7108 TargetLowering::CallLoweringInfo CLI(*this); 7109 CLI.setDebugLoc(dl) 7110 .setChain(Chain) 7111 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7112 Dst.getValueType().getTypeForEVT(*getContext()), 7113 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7114 TLI->getPointerTy(getDataLayout())), 7115 std::move(Args)) 7116 .setDiscardResult() 7117 .setTailCall(isTailCall); 7118 7119 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7120 return CallResult.second; 7121 } 7122 7123 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7124 SDValue Dst, unsigned DstAlign, 7125 SDValue Value, SDValue Size, Type *SizeTy, 7126 unsigned ElemSz, bool isTailCall, 7127 MachinePointerInfo DstPtrInfo) { 7128 // Emit a library call. 7129 TargetLowering::ArgListTy Args; 7130 TargetLowering::ArgListEntry Entry; 7131 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7132 Entry.Node = Dst; 7133 Args.push_back(Entry); 7134 7135 Entry.Ty = Type::getInt8Ty(*getContext()); 7136 Entry.Node = Value; 7137 Args.push_back(Entry); 7138 7139 Entry.Ty = SizeTy; 7140 Entry.Node = Size; 7141 Args.push_back(Entry); 7142 7143 RTLIB::Libcall LibraryCall = 7144 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7145 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7146 report_fatal_error("Unsupported element size"); 7147 7148 TargetLowering::CallLoweringInfo CLI(*this); 7149 CLI.setDebugLoc(dl) 7150 .setChain(Chain) 7151 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7152 Type::getVoidTy(*getContext()), 7153 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7154 TLI->getPointerTy(getDataLayout())), 7155 std::move(Args)) 7156 .setDiscardResult() 7157 .setTailCall(isTailCall); 7158 7159 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7160 return CallResult.second; 7161 } 7162 7163 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7164 SDVTList VTList, ArrayRef<SDValue> Ops, 7165 MachineMemOperand *MMO) { 7166 FoldingSetNodeID ID; 7167 ID.AddInteger(MemVT.getRawBits()); 7168 AddNodeIDNode(ID, Opcode, VTList, Ops); 7169 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7170 void* IP = nullptr; 7171 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7172 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7173 return SDValue(E, 0); 7174 } 7175 7176 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7177 VTList, MemVT, MMO); 7178 createOperands(N, Ops); 7179 7180 CSEMap.InsertNode(N, IP); 7181 InsertNode(N); 7182 return SDValue(N, 0); 7183 } 7184 7185 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7186 EVT MemVT, SDVTList VTs, SDValue Chain, 7187 SDValue Ptr, SDValue Cmp, SDValue Swp, 7188 MachineMemOperand *MMO) { 7189 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7190 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7191 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7192 7193 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7194 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7195 } 7196 7197 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7198 SDValue Chain, SDValue Ptr, SDValue Val, 7199 MachineMemOperand *MMO) { 7200 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7201 Opcode == ISD::ATOMIC_LOAD_SUB || 7202 Opcode == ISD::ATOMIC_LOAD_AND || 7203 Opcode == ISD::ATOMIC_LOAD_CLR || 7204 Opcode == ISD::ATOMIC_LOAD_OR || 7205 Opcode == ISD::ATOMIC_LOAD_XOR || 7206 Opcode == ISD::ATOMIC_LOAD_NAND || 7207 Opcode == ISD::ATOMIC_LOAD_MIN || 7208 Opcode == ISD::ATOMIC_LOAD_MAX || 7209 Opcode == ISD::ATOMIC_LOAD_UMIN || 7210 Opcode == ISD::ATOMIC_LOAD_UMAX || 7211 Opcode == ISD::ATOMIC_LOAD_FADD || 7212 Opcode == ISD::ATOMIC_LOAD_FSUB || 7213 Opcode == ISD::ATOMIC_SWAP || 7214 Opcode == ISD::ATOMIC_STORE) && 7215 "Invalid Atomic Op"); 7216 7217 EVT VT = Val.getValueType(); 7218 7219 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7220 getVTList(VT, MVT::Other); 7221 SDValue Ops[] = {Chain, Ptr, Val}; 7222 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7223 } 7224 7225 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7226 EVT VT, SDValue Chain, SDValue Ptr, 7227 MachineMemOperand *MMO) { 7228 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7229 7230 SDVTList VTs = getVTList(VT, MVT::Other); 7231 SDValue Ops[] = {Chain, Ptr}; 7232 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7233 } 7234 7235 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7236 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7237 if (Ops.size() == 1) 7238 return Ops[0]; 7239 7240 SmallVector<EVT, 4> VTs; 7241 VTs.reserve(Ops.size()); 7242 for (const SDValue &Op : Ops) 7243 VTs.push_back(Op.getValueType()); 7244 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7245 } 7246 7247 SDValue SelectionDAG::getMemIntrinsicNode( 7248 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7249 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7250 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7251 if (!Size && MemVT.isScalableVector()) 7252 Size = MemoryLocation::UnknownSize; 7253 else if (!Size) 7254 Size = MemVT.getStoreSize(); 7255 7256 MachineFunction &MF = getMachineFunction(); 7257 MachineMemOperand *MMO = 7258 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7259 7260 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7261 } 7262 7263 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7264 SDVTList VTList, 7265 ArrayRef<SDValue> Ops, EVT MemVT, 7266 MachineMemOperand *MMO) { 7267 assert((Opcode == ISD::INTRINSIC_VOID || 7268 Opcode == ISD::INTRINSIC_W_CHAIN || 7269 Opcode == ISD::PREFETCH || 7270 ((int)Opcode <= std::numeric_limits<int>::max() && 7271 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7272 "Opcode is not a memory-accessing opcode!"); 7273 7274 // Memoize the node unless it returns a flag. 7275 MemIntrinsicSDNode *N; 7276 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7277 FoldingSetNodeID ID; 7278 AddNodeIDNode(ID, Opcode, VTList, Ops); 7279 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7280 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7281 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7282 void *IP = nullptr; 7283 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7284 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7285 return SDValue(E, 0); 7286 } 7287 7288 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7289 VTList, MemVT, MMO); 7290 createOperands(N, Ops); 7291 7292 CSEMap.InsertNode(N, IP); 7293 } else { 7294 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7295 VTList, MemVT, MMO); 7296 createOperands(N, Ops); 7297 } 7298 InsertNode(N); 7299 SDValue V(N, 0); 7300 NewSDValueDbgMsg(V, "Creating new node: ", this); 7301 return V; 7302 } 7303 7304 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7305 SDValue Chain, int FrameIndex, 7306 int64_t Size, int64_t Offset) { 7307 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7308 const auto VTs = getVTList(MVT::Other); 7309 SDValue Ops[2] = { 7310 Chain, 7311 getFrameIndex(FrameIndex, 7312 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7313 true)}; 7314 7315 FoldingSetNodeID ID; 7316 AddNodeIDNode(ID, Opcode, VTs, Ops); 7317 ID.AddInteger(FrameIndex); 7318 ID.AddInteger(Size); 7319 ID.AddInteger(Offset); 7320 void *IP = nullptr; 7321 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7322 return SDValue(E, 0); 7323 7324 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7325 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7326 createOperands(N, Ops); 7327 CSEMap.InsertNode(N, IP); 7328 InsertNode(N); 7329 SDValue V(N, 0); 7330 NewSDValueDbgMsg(V, "Creating new node: ", this); 7331 return V; 7332 } 7333 7334 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7335 uint64_t Guid, uint64_t Index, 7336 uint32_t Attr) { 7337 const unsigned Opcode = ISD::PSEUDO_PROBE; 7338 const auto VTs = getVTList(MVT::Other); 7339 SDValue Ops[] = {Chain}; 7340 FoldingSetNodeID ID; 7341 AddNodeIDNode(ID, Opcode, VTs, Ops); 7342 ID.AddInteger(Guid); 7343 ID.AddInteger(Index); 7344 void *IP = nullptr; 7345 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7346 return SDValue(E, 0); 7347 7348 auto *N = newSDNode<PseudoProbeSDNode>( 7349 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7350 createOperands(N, Ops); 7351 CSEMap.InsertNode(N, IP); 7352 InsertNode(N); 7353 SDValue V(N, 0); 7354 NewSDValueDbgMsg(V, "Creating new node: ", this); 7355 return V; 7356 } 7357 7358 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7359 /// MachinePointerInfo record from it. This is particularly useful because the 7360 /// code generator has many cases where it doesn't bother passing in a 7361 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7362 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7363 SelectionDAG &DAG, SDValue Ptr, 7364 int64_t Offset = 0) { 7365 // If this is FI+Offset, we can model it. 7366 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7367 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7368 FI->getIndex(), Offset); 7369 7370 // If this is (FI+Offset1)+Offset2, we can model it. 7371 if (Ptr.getOpcode() != ISD::ADD || 7372 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7373 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7374 return Info; 7375 7376 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7377 return MachinePointerInfo::getFixedStack( 7378 DAG.getMachineFunction(), FI, 7379 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7380 } 7381 7382 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7383 /// MachinePointerInfo record from it. This is particularly useful because the 7384 /// code generator has many cases where it doesn't bother passing in a 7385 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7386 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7387 SelectionDAG &DAG, SDValue Ptr, 7388 SDValue OffsetOp) { 7389 // If the 'Offset' value isn't a constant, we can't handle this. 7390 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7391 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7392 if (OffsetOp.isUndef()) 7393 return InferPointerInfo(Info, DAG, Ptr); 7394 return Info; 7395 } 7396 7397 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7398 EVT VT, const SDLoc &dl, SDValue Chain, 7399 SDValue Ptr, SDValue Offset, 7400 MachinePointerInfo PtrInfo, EVT MemVT, 7401 Align Alignment, 7402 MachineMemOperand::Flags MMOFlags, 7403 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7404 assert(Chain.getValueType() == MVT::Other && 7405 "Invalid chain type"); 7406 7407 MMOFlags |= MachineMemOperand::MOLoad; 7408 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7409 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7410 // clients. 7411 if (PtrInfo.V.isNull()) 7412 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7413 7414 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7415 MachineFunction &MF = getMachineFunction(); 7416 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7417 Alignment, AAInfo, Ranges); 7418 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7419 } 7420 7421 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7422 EVT VT, const SDLoc &dl, SDValue Chain, 7423 SDValue Ptr, SDValue Offset, EVT MemVT, 7424 MachineMemOperand *MMO) { 7425 if (VT == MemVT) { 7426 ExtType = ISD::NON_EXTLOAD; 7427 } else if (ExtType == ISD::NON_EXTLOAD) { 7428 assert(VT == MemVT && "Non-extending load from different memory type!"); 7429 } else { 7430 // Extending load. 7431 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7432 "Should only be an extending load, not truncating!"); 7433 assert(VT.isInteger() == MemVT.isInteger() && 7434 "Cannot convert from FP to Int or Int -> FP!"); 7435 assert(VT.isVector() == MemVT.isVector() && 7436 "Cannot use an ext load to convert to or from a vector!"); 7437 assert((!VT.isVector() || 7438 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7439 "Cannot use an ext load to change the number of vector elements!"); 7440 } 7441 7442 bool Indexed = AM != ISD::UNINDEXED; 7443 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7444 7445 SDVTList VTs = Indexed ? 7446 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7447 SDValue Ops[] = { Chain, Ptr, Offset }; 7448 FoldingSetNodeID ID; 7449 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7450 ID.AddInteger(MemVT.getRawBits()); 7451 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7452 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7453 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7454 void *IP = nullptr; 7455 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7456 cast<LoadSDNode>(E)->refineAlignment(MMO); 7457 return SDValue(E, 0); 7458 } 7459 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7460 ExtType, MemVT, MMO); 7461 createOperands(N, Ops); 7462 7463 CSEMap.InsertNode(N, IP); 7464 InsertNode(N); 7465 SDValue V(N, 0); 7466 NewSDValueDbgMsg(V, "Creating new node: ", this); 7467 return V; 7468 } 7469 7470 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7471 SDValue Ptr, MachinePointerInfo PtrInfo, 7472 MaybeAlign Alignment, 7473 MachineMemOperand::Flags MMOFlags, 7474 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7475 SDValue Undef = getUNDEF(Ptr.getValueType()); 7476 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7477 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7478 } 7479 7480 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7481 SDValue Ptr, MachineMemOperand *MMO) { 7482 SDValue Undef = getUNDEF(Ptr.getValueType()); 7483 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7484 VT, MMO); 7485 } 7486 7487 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7488 EVT VT, SDValue Chain, SDValue Ptr, 7489 MachinePointerInfo PtrInfo, EVT MemVT, 7490 MaybeAlign Alignment, 7491 MachineMemOperand::Flags MMOFlags, 7492 const AAMDNodes &AAInfo) { 7493 SDValue Undef = getUNDEF(Ptr.getValueType()); 7494 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7495 MemVT, Alignment, MMOFlags, AAInfo); 7496 } 7497 7498 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7499 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7500 MachineMemOperand *MMO) { 7501 SDValue Undef = getUNDEF(Ptr.getValueType()); 7502 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7503 MemVT, MMO); 7504 } 7505 7506 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7507 SDValue Base, SDValue Offset, 7508 ISD::MemIndexedMode AM) { 7509 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7510 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7511 // Don't propagate the invariant or dereferenceable flags. 7512 auto MMOFlags = 7513 LD->getMemOperand()->getFlags() & 7514 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7515 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7516 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7517 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7518 } 7519 7520 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7521 SDValue Ptr, MachinePointerInfo PtrInfo, 7522 Align Alignment, 7523 MachineMemOperand::Flags MMOFlags, 7524 const AAMDNodes &AAInfo) { 7525 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7526 7527 MMOFlags |= MachineMemOperand::MOStore; 7528 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7529 7530 if (PtrInfo.V.isNull()) 7531 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7532 7533 MachineFunction &MF = getMachineFunction(); 7534 uint64_t Size = 7535 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7536 MachineMemOperand *MMO = 7537 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7538 return getStore(Chain, dl, Val, Ptr, MMO); 7539 } 7540 7541 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7542 SDValue Ptr, MachineMemOperand *MMO) { 7543 assert(Chain.getValueType() == MVT::Other && 7544 "Invalid chain type"); 7545 EVT VT = Val.getValueType(); 7546 SDVTList VTs = getVTList(MVT::Other); 7547 SDValue Undef = getUNDEF(Ptr.getValueType()); 7548 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7549 FoldingSetNodeID ID; 7550 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7551 ID.AddInteger(VT.getRawBits()); 7552 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7553 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7554 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7555 void *IP = nullptr; 7556 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7557 cast<StoreSDNode>(E)->refineAlignment(MMO); 7558 return SDValue(E, 0); 7559 } 7560 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7561 ISD::UNINDEXED, false, VT, MMO); 7562 createOperands(N, Ops); 7563 7564 CSEMap.InsertNode(N, IP); 7565 InsertNode(N); 7566 SDValue V(N, 0); 7567 NewSDValueDbgMsg(V, "Creating new node: ", this); 7568 return V; 7569 } 7570 7571 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7572 SDValue Ptr, MachinePointerInfo PtrInfo, 7573 EVT SVT, Align Alignment, 7574 MachineMemOperand::Flags MMOFlags, 7575 const AAMDNodes &AAInfo) { 7576 assert(Chain.getValueType() == MVT::Other && 7577 "Invalid chain type"); 7578 7579 MMOFlags |= MachineMemOperand::MOStore; 7580 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7581 7582 if (PtrInfo.V.isNull()) 7583 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7584 7585 MachineFunction &MF = getMachineFunction(); 7586 MachineMemOperand *MMO = MF.getMachineMemOperand( 7587 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7588 Alignment, AAInfo); 7589 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7590 } 7591 7592 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7593 SDValue Ptr, EVT SVT, 7594 MachineMemOperand *MMO) { 7595 EVT VT = Val.getValueType(); 7596 7597 assert(Chain.getValueType() == MVT::Other && 7598 "Invalid chain type"); 7599 if (VT == SVT) 7600 return getStore(Chain, dl, Val, Ptr, MMO); 7601 7602 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7603 "Should only be a truncating store, not extending!"); 7604 assert(VT.isInteger() == SVT.isInteger() && 7605 "Can't do FP-INT conversion!"); 7606 assert(VT.isVector() == SVT.isVector() && 7607 "Cannot use trunc store to convert to or from a vector!"); 7608 assert((!VT.isVector() || 7609 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7610 "Cannot use trunc store to change the number of vector elements!"); 7611 7612 SDVTList VTs = getVTList(MVT::Other); 7613 SDValue Undef = getUNDEF(Ptr.getValueType()); 7614 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7615 FoldingSetNodeID ID; 7616 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7617 ID.AddInteger(SVT.getRawBits()); 7618 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7619 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7620 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7621 void *IP = nullptr; 7622 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7623 cast<StoreSDNode>(E)->refineAlignment(MMO); 7624 return SDValue(E, 0); 7625 } 7626 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7627 ISD::UNINDEXED, true, SVT, MMO); 7628 createOperands(N, Ops); 7629 7630 CSEMap.InsertNode(N, IP); 7631 InsertNode(N); 7632 SDValue V(N, 0); 7633 NewSDValueDbgMsg(V, "Creating new node: ", this); 7634 return V; 7635 } 7636 7637 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7638 SDValue Base, SDValue Offset, 7639 ISD::MemIndexedMode AM) { 7640 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7641 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7642 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7643 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7644 FoldingSetNodeID ID; 7645 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7646 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7647 ID.AddInteger(ST->getRawSubclassData()); 7648 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7649 void *IP = nullptr; 7650 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7651 return SDValue(E, 0); 7652 7653 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7654 ST->isTruncatingStore(), ST->getMemoryVT(), 7655 ST->getMemOperand()); 7656 createOperands(N, Ops); 7657 7658 CSEMap.InsertNode(N, IP); 7659 InsertNode(N); 7660 SDValue V(N, 0); 7661 NewSDValueDbgMsg(V, "Creating new node: ", this); 7662 return V; 7663 } 7664 7665 SDValue SelectionDAG::getLoadVP( 7666 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7667 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7668 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7669 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7670 const MDNode *Ranges, bool IsExpanding) { 7671 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7672 7673 MMOFlags |= MachineMemOperand::MOLoad; 7674 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7675 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7676 // clients. 7677 if (PtrInfo.V.isNull()) 7678 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7679 7680 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7681 MachineFunction &MF = getMachineFunction(); 7682 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7683 Alignment, AAInfo, Ranges); 7684 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7685 MMO, IsExpanding); 7686 } 7687 7688 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7689 ISD::LoadExtType ExtType, EVT VT, 7690 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7691 SDValue Offset, SDValue Mask, SDValue EVL, 7692 EVT MemVT, MachineMemOperand *MMO, 7693 bool IsExpanding) { 7694 if (VT == MemVT) { 7695 ExtType = ISD::NON_EXTLOAD; 7696 } else if (ExtType == ISD::NON_EXTLOAD) { 7697 assert(VT == MemVT && "Non-extending load from different memory type!"); 7698 } else { 7699 // Extending load. 7700 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7701 "Should only be an extending load, not truncating!"); 7702 assert(VT.isInteger() == MemVT.isInteger() && 7703 "Cannot convert from FP to Int or Int -> FP!"); 7704 assert(VT.isVector() == MemVT.isVector() && 7705 "Cannot use an ext load to convert to or from a vector!"); 7706 assert((!VT.isVector() || 7707 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7708 "Cannot use an ext load to change the number of vector elements!"); 7709 } 7710 7711 bool Indexed = AM != ISD::UNINDEXED; 7712 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7713 7714 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7715 : getVTList(VT, MVT::Other); 7716 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7717 FoldingSetNodeID ID; 7718 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7719 ID.AddInteger(VT.getRawBits()); 7720 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7721 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7722 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7723 void *IP = nullptr; 7724 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7725 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7726 return SDValue(E, 0); 7727 } 7728 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7729 ExtType, IsExpanding, MemVT, MMO); 7730 createOperands(N, Ops); 7731 7732 CSEMap.InsertNode(N, IP); 7733 InsertNode(N); 7734 SDValue V(N, 0); 7735 NewSDValueDbgMsg(V, "Creating new node: ", this); 7736 return V; 7737 } 7738 7739 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7740 SDValue Ptr, SDValue Mask, SDValue EVL, 7741 MachinePointerInfo PtrInfo, 7742 MaybeAlign Alignment, 7743 MachineMemOperand::Flags MMOFlags, 7744 const AAMDNodes &AAInfo, const MDNode *Ranges, 7745 bool IsExpanding) { 7746 SDValue Undef = getUNDEF(Ptr.getValueType()); 7747 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7748 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7749 IsExpanding); 7750 } 7751 7752 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7753 SDValue Ptr, SDValue Mask, SDValue EVL, 7754 MachineMemOperand *MMO, bool IsExpanding) { 7755 SDValue Undef = getUNDEF(Ptr.getValueType()); 7756 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7757 Mask, EVL, VT, MMO, IsExpanding); 7758 } 7759 7760 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7761 EVT VT, SDValue Chain, SDValue Ptr, 7762 SDValue Mask, SDValue EVL, 7763 MachinePointerInfo PtrInfo, EVT MemVT, 7764 MaybeAlign Alignment, 7765 MachineMemOperand::Flags MMOFlags, 7766 const AAMDNodes &AAInfo, bool IsExpanding) { 7767 SDValue Undef = getUNDEF(Ptr.getValueType()); 7768 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7769 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7770 IsExpanding); 7771 } 7772 7773 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7774 EVT VT, SDValue Chain, SDValue Ptr, 7775 SDValue Mask, SDValue EVL, EVT MemVT, 7776 MachineMemOperand *MMO, bool IsExpanding) { 7777 SDValue Undef = getUNDEF(Ptr.getValueType()); 7778 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7779 EVL, MemVT, MMO, IsExpanding); 7780 } 7781 7782 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7783 SDValue Base, SDValue Offset, 7784 ISD::MemIndexedMode AM) { 7785 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7786 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7787 // Don't propagate the invariant or dereferenceable flags. 7788 auto MMOFlags = 7789 LD->getMemOperand()->getFlags() & 7790 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7791 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7792 LD->getChain(), Base, Offset, LD->getMask(), 7793 LD->getVectorLength(), LD->getPointerInfo(), 7794 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7795 nullptr, LD->isExpandingLoad()); 7796 } 7797 7798 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7799 SDValue Ptr, SDValue Mask, SDValue EVL, 7800 MachinePointerInfo PtrInfo, Align Alignment, 7801 MachineMemOperand::Flags MMOFlags, 7802 const AAMDNodes &AAInfo, bool IsCompressing) { 7803 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7804 7805 MMOFlags |= MachineMemOperand::MOStore; 7806 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7807 7808 if (PtrInfo.V.isNull()) 7809 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7810 7811 MachineFunction &MF = getMachineFunction(); 7812 uint64_t Size = 7813 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7814 MachineMemOperand *MMO = 7815 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7816 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7817 } 7818 7819 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7820 SDValue Ptr, SDValue Mask, SDValue EVL, 7821 MachineMemOperand *MMO, bool IsCompressing) { 7822 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7823 EVT VT = Val.getValueType(); 7824 SDVTList VTs = getVTList(MVT::Other); 7825 SDValue Undef = getUNDEF(Ptr.getValueType()); 7826 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7827 FoldingSetNodeID ID; 7828 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7829 ID.AddInteger(VT.getRawBits()); 7830 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7831 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7832 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7833 void *IP = nullptr; 7834 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7835 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7836 return SDValue(E, 0); 7837 } 7838 auto *N = 7839 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7840 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7841 createOperands(N, Ops); 7842 7843 CSEMap.InsertNode(N, IP); 7844 InsertNode(N); 7845 SDValue V(N, 0); 7846 NewSDValueDbgMsg(V, "Creating new node: ", this); 7847 return V; 7848 } 7849 7850 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7851 SDValue Val, SDValue Ptr, SDValue Mask, 7852 SDValue EVL, MachinePointerInfo PtrInfo, 7853 EVT SVT, Align Alignment, 7854 MachineMemOperand::Flags MMOFlags, 7855 const AAMDNodes &AAInfo, 7856 bool IsCompressing) { 7857 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7858 7859 MMOFlags |= MachineMemOperand::MOStore; 7860 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7861 7862 if (PtrInfo.V.isNull()) 7863 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7864 7865 MachineFunction &MF = getMachineFunction(); 7866 MachineMemOperand *MMO = MF.getMachineMemOperand( 7867 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7868 Alignment, AAInfo); 7869 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7870 IsCompressing); 7871 } 7872 7873 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7874 SDValue Val, SDValue Ptr, SDValue Mask, 7875 SDValue EVL, EVT SVT, 7876 MachineMemOperand *MMO, 7877 bool IsCompressing) { 7878 EVT VT = Val.getValueType(); 7879 7880 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7881 if (VT == SVT) 7882 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7883 7884 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7885 "Should only be a truncating store, not extending!"); 7886 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7887 assert(VT.isVector() == SVT.isVector() && 7888 "Cannot use trunc store to convert to or from a vector!"); 7889 assert((!VT.isVector() || 7890 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7891 "Cannot use trunc store to change the number of vector elements!"); 7892 7893 SDVTList VTs = getVTList(MVT::Other); 7894 SDValue Undef = getUNDEF(Ptr.getValueType()); 7895 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7896 FoldingSetNodeID ID; 7897 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7898 ID.AddInteger(SVT.getRawBits()); 7899 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7900 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7901 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7902 void *IP = nullptr; 7903 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7904 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7905 return SDValue(E, 0); 7906 } 7907 auto *N = 7908 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7909 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7910 createOperands(N, Ops); 7911 7912 CSEMap.InsertNode(N, IP); 7913 InsertNode(N); 7914 SDValue V(N, 0); 7915 NewSDValueDbgMsg(V, "Creating new node: ", this); 7916 return V; 7917 } 7918 7919 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7920 SDValue Base, SDValue Offset, 7921 ISD::MemIndexedMode AM) { 7922 auto *ST = cast<VPStoreSDNode>(OrigStore); 7923 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7924 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7925 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7926 Offset, ST->getMask(), ST->getVectorLength()}; 7927 FoldingSetNodeID ID; 7928 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7929 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7930 ID.AddInteger(ST->getRawSubclassData()); 7931 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7932 void *IP = nullptr; 7933 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7934 return SDValue(E, 0); 7935 7936 auto *N = newSDNode<VPStoreSDNode>( 7937 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7938 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7939 createOperands(N, Ops); 7940 7941 CSEMap.InsertNode(N, IP); 7942 InsertNode(N); 7943 SDValue V(N, 0); 7944 NewSDValueDbgMsg(V, "Creating new node: ", this); 7945 return V; 7946 } 7947 7948 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7949 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7950 ISD::MemIndexType IndexType) { 7951 assert(Ops.size() == 6 && "Incompatible number of operands"); 7952 7953 FoldingSetNodeID ID; 7954 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7955 ID.AddInteger(VT.getRawBits()); 7956 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7957 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7958 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7959 void *IP = nullptr; 7960 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7961 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7962 return SDValue(E, 0); 7963 } 7964 7965 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7966 VT, MMO, IndexType); 7967 createOperands(N, Ops); 7968 7969 assert(N->getMask().getValueType().getVectorElementCount() == 7970 N->getValueType(0).getVectorElementCount() && 7971 "Vector width mismatch between mask and data"); 7972 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7973 N->getValueType(0).getVectorElementCount().isScalable() && 7974 "Scalable flags of index and data do not match"); 7975 assert(ElementCount::isKnownGE( 7976 N->getIndex().getValueType().getVectorElementCount(), 7977 N->getValueType(0).getVectorElementCount()) && 7978 "Vector width mismatch between index and data"); 7979 assert(isa<ConstantSDNode>(N->getScale()) && 7980 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7981 "Scale should be a constant power of 2"); 7982 7983 CSEMap.InsertNode(N, IP); 7984 InsertNode(N); 7985 SDValue V(N, 0); 7986 NewSDValueDbgMsg(V, "Creating new node: ", this); 7987 return V; 7988 } 7989 7990 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7991 ArrayRef<SDValue> Ops, 7992 MachineMemOperand *MMO, 7993 ISD::MemIndexType IndexType) { 7994 assert(Ops.size() == 7 && "Incompatible number of operands"); 7995 7996 FoldingSetNodeID ID; 7997 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7998 ID.AddInteger(VT.getRawBits()); 7999 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8000 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8001 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8002 void *IP = nullptr; 8003 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8004 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8005 return SDValue(E, 0); 8006 } 8007 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8008 VT, MMO, IndexType); 8009 createOperands(N, Ops); 8010 8011 assert(N->getMask().getValueType().getVectorElementCount() == 8012 N->getValue().getValueType().getVectorElementCount() && 8013 "Vector width mismatch between mask and data"); 8014 assert( 8015 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8016 N->getValue().getValueType().getVectorElementCount().isScalable() && 8017 "Scalable flags of index and data do not match"); 8018 assert(ElementCount::isKnownGE( 8019 N->getIndex().getValueType().getVectorElementCount(), 8020 N->getValue().getValueType().getVectorElementCount()) && 8021 "Vector width mismatch between index and data"); 8022 assert(isa<ConstantSDNode>(N->getScale()) && 8023 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8024 "Scale should be a constant power of 2"); 8025 8026 CSEMap.InsertNode(N, IP); 8027 InsertNode(N); 8028 SDValue V(N, 0); 8029 NewSDValueDbgMsg(V, "Creating new node: ", this); 8030 return V; 8031 } 8032 8033 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8034 SDValue Base, SDValue Offset, SDValue Mask, 8035 SDValue PassThru, EVT MemVT, 8036 MachineMemOperand *MMO, 8037 ISD::MemIndexedMode AM, 8038 ISD::LoadExtType ExtTy, bool isExpanding) { 8039 bool Indexed = AM != ISD::UNINDEXED; 8040 assert((Indexed || Offset.isUndef()) && 8041 "Unindexed masked load with an offset!"); 8042 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8043 : getVTList(VT, MVT::Other); 8044 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8045 FoldingSetNodeID ID; 8046 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8047 ID.AddInteger(MemVT.getRawBits()); 8048 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8049 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8050 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8051 void *IP = nullptr; 8052 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8053 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8054 return SDValue(E, 0); 8055 } 8056 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8057 AM, ExtTy, isExpanding, MemVT, MMO); 8058 createOperands(N, Ops); 8059 8060 CSEMap.InsertNode(N, IP); 8061 InsertNode(N); 8062 SDValue V(N, 0); 8063 NewSDValueDbgMsg(V, "Creating new node: ", this); 8064 return V; 8065 } 8066 8067 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8068 SDValue Base, SDValue Offset, 8069 ISD::MemIndexedMode AM) { 8070 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8071 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8072 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8073 Offset, LD->getMask(), LD->getPassThru(), 8074 LD->getMemoryVT(), LD->getMemOperand(), AM, 8075 LD->getExtensionType(), LD->isExpandingLoad()); 8076 } 8077 8078 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8079 SDValue Val, SDValue Base, SDValue Offset, 8080 SDValue Mask, EVT MemVT, 8081 MachineMemOperand *MMO, 8082 ISD::MemIndexedMode AM, bool IsTruncating, 8083 bool IsCompressing) { 8084 assert(Chain.getValueType() == MVT::Other && 8085 "Invalid chain type"); 8086 bool Indexed = AM != ISD::UNINDEXED; 8087 assert((Indexed || Offset.isUndef()) && 8088 "Unindexed masked store with an offset!"); 8089 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8090 : getVTList(MVT::Other); 8091 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8092 FoldingSetNodeID ID; 8093 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8094 ID.AddInteger(MemVT.getRawBits()); 8095 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8096 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8097 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8098 void *IP = nullptr; 8099 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8100 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8101 return SDValue(E, 0); 8102 } 8103 auto *N = 8104 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8105 IsTruncating, IsCompressing, MemVT, MMO); 8106 createOperands(N, Ops); 8107 8108 CSEMap.InsertNode(N, IP); 8109 InsertNode(N); 8110 SDValue V(N, 0); 8111 NewSDValueDbgMsg(V, "Creating new node: ", this); 8112 return V; 8113 } 8114 8115 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8116 SDValue Base, SDValue Offset, 8117 ISD::MemIndexedMode AM) { 8118 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8119 assert(ST->getOffset().isUndef() && 8120 "Masked store is already a indexed store!"); 8121 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8122 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8123 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8124 } 8125 8126 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8127 ArrayRef<SDValue> Ops, 8128 MachineMemOperand *MMO, 8129 ISD::MemIndexType IndexType, 8130 ISD::LoadExtType ExtTy) { 8131 assert(Ops.size() == 6 && "Incompatible number of operands"); 8132 8133 FoldingSetNodeID ID; 8134 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8135 ID.AddInteger(MemVT.getRawBits()); 8136 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8137 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8138 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8139 void *IP = nullptr; 8140 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8141 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8142 return SDValue(E, 0); 8143 } 8144 8145 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8146 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8147 VTs, MemVT, MMO, IndexType, ExtTy); 8148 createOperands(N, Ops); 8149 8150 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8151 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8152 assert(N->getMask().getValueType().getVectorElementCount() == 8153 N->getValueType(0).getVectorElementCount() && 8154 "Vector width mismatch between mask and data"); 8155 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8156 N->getValueType(0).getVectorElementCount().isScalable() && 8157 "Scalable flags of index and data do not match"); 8158 assert(ElementCount::isKnownGE( 8159 N->getIndex().getValueType().getVectorElementCount(), 8160 N->getValueType(0).getVectorElementCount()) && 8161 "Vector width mismatch between index and data"); 8162 assert(isa<ConstantSDNode>(N->getScale()) && 8163 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8164 "Scale should be a constant power of 2"); 8165 8166 CSEMap.InsertNode(N, IP); 8167 InsertNode(N); 8168 SDValue V(N, 0); 8169 NewSDValueDbgMsg(V, "Creating new node: ", this); 8170 return V; 8171 } 8172 8173 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8174 ArrayRef<SDValue> Ops, 8175 MachineMemOperand *MMO, 8176 ISD::MemIndexType IndexType, 8177 bool IsTrunc) { 8178 assert(Ops.size() == 6 && "Incompatible number of operands"); 8179 8180 FoldingSetNodeID ID; 8181 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8182 ID.AddInteger(MemVT.getRawBits()); 8183 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8184 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8185 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8186 void *IP = nullptr; 8187 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8188 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8189 return SDValue(E, 0); 8190 } 8191 8192 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8193 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8194 VTs, MemVT, MMO, IndexType, IsTrunc); 8195 createOperands(N, Ops); 8196 8197 assert(N->getMask().getValueType().getVectorElementCount() == 8198 N->getValue().getValueType().getVectorElementCount() && 8199 "Vector width mismatch between mask and data"); 8200 assert( 8201 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8202 N->getValue().getValueType().getVectorElementCount().isScalable() && 8203 "Scalable flags of index and data do not match"); 8204 assert(ElementCount::isKnownGE( 8205 N->getIndex().getValueType().getVectorElementCount(), 8206 N->getValue().getValueType().getVectorElementCount()) && 8207 "Vector width mismatch between index and data"); 8208 assert(isa<ConstantSDNode>(N->getScale()) && 8209 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8210 "Scale should be a constant power of 2"); 8211 8212 CSEMap.InsertNode(N, IP); 8213 InsertNode(N); 8214 SDValue V(N, 0); 8215 NewSDValueDbgMsg(V, "Creating new node: ", this); 8216 return V; 8217 } 8218 8219 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8220 // select undef, T, F --> T (if T is a constant), otherwise F 8221 // select, ?, undef, F --> F 8222 // select, ?, T, undef --> T 8223 if (Cond.isUndef()) 8224 return isConstantValueOfAnyType(T) ? T : F; 8225 if (T.isUndef()) 8226 return F; 8227 if (F.isUndef()) 8228 return T; 8229 8230 // select true, T, F --> T 8231 // select false, T, F --> F 8232 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8233 return CondC->isNullValue() ? F : T; 8234 8235 // TODO: This should simplify VSELECT with constant condition using something 8236 // like this (but check boolean contents to be complete?): 8237 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8238 // return T; 8239 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8240 // return F; 8241 8242 // select ?, T, T --> T 8243 if (T == F) 8244 return T; 8245 8246 return SDValue(); 8247 } 8248 8249 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8250 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8251 if (X.isUndef()) 8252 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8253 // shift X, undef --> undef (because it may shift by the bitwidth) 8254 if (Y.isUndef()) 8255 return getUNDEF(X.getValueType()); 8256 8257 // shift 0, Y --> 0 8258 // shift X, 0 --> X 8259 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8260 return X; 8261 8262 // shift X, C >= bitwidth(X) --> undef 8263 // All vector elements must be too big (or undef) to avoid partial undefs. 8264 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8265 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8266 }; 8267 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8268 return getUNDEF(X.getValueType()); 8269 8270 return SDValue(); 8271 } 8272 8273 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8274 SDNodeFlags Flags) { 8275 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8276 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8277 // operation is poison. That result can be relaxed to undef. 8278 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8279 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8280 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8281 (YC && YC->getValueAPF().isNaN()); 8282 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8283 (YC && YC->getValueAPF().isInfinity()); 8284 8285 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8286 return getUNDEF(X.getValueType()); 8287 8288 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8289 return getUNDEF(X.getValueType()); 8290 8291 if (!YC) 8292 return SDValue(); 8293 8294 // X + -0.0 --> X 8295 if (Opcode == ISD::FADD) 8296 if (YC->getValueAPF().isNegZero()) 8297 return X; 8298 8299 // X - +0.0 --> X 8300 if (Opcode == ISD::FSUB) 8301 if (YC->getValueAPF().isPosZero()) 8302 return X; 8303 8304 // X * 1.0 --> X 8305 // X / 1.0 --> X 8306 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8307 if (YC->getValueAPF().isExactlyValue(1.0)) 8308 return X; 8309 8310 // X * 0.0 --> 0.0 8311 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8312 if (YC->getValueAPF().isZero()) 8313 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8314 8315 return SDValue(); 8316 } 8317 8318 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8319 SDValue Ptr, SDValue SV, unsigned Align) { 8320 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8321 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8322 } 8323 8324 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8325 ArrayRef<SDUse> Ops) { 8326 switch (Ops.size()) { 8327 case 0: return getNode(Opcode, DL, VT); 8328 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8329 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8330 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8331 default: break; 8332 } 8333 8334 // Copy from an SDUse array into an SDValue array for use with 8335 // the regular getNode logic. 8336 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8337 return getNode(Opcode, DL, VT, NewOps); 8338 } 8339 8340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8341 ArrayRef<SDValue> Ops) { 8342 SDNodeFlags Flags; 8343 if (Inserter) 8344 Flags = Inserter->getFlags(); 8345 return getNode(Opcode, DL, VT, Ops, Flags); 8346 } 8347 8348 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8349 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8350 unsigned NumOps = Ops.size(); 8351 switch (NumOps) { 8352 case 0: return getNode(Opcode, DL, VT); 8353 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8354 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8355 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8356 default: break; 8357 } 8358 8359 #ifndef NDEBUG 8360 for (auto &Op : Ops) 8361 assert(Op.getOpcode() != ISD::DELETED_NODE && 8362 "Operand is DELETED_NODE!"); 8363 #endif 8364 8365 switch (Opcode) { 8366 default: break; 8367 case ISD::BUILD_VECTOR: 8368 // Attempt to simplify BUILD_VECTOR. 8369 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8370 return V; 8371 break; 8372 case ISD::CONCAT_VECTORS: 8373 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8374 return V; 8375 break; 8376 case ISD::SELECT_CC: 8377 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8378 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8379 "LHS and RHS of condition must have same type!"); 8380 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8381 "True and False arms of SelectCC must have same type!"); 8382 assert(Ops[2].getValueType() == VT && 8383 "select_cc node must be of same type as true and false value!"); 8384 break; 8385 case ISD::BR_CC: 8386 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8387 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8388 "LHS/RHS of comparison should match types!"); 8389 break; 8390 } 8391 8392 // Memoize nodes. 8393 SDNode *N; 8394 SDVTList VTs = getVTList(VT); 8395 8396 if (VT != MVT::Glue) { 8397 FoldingSetNodeID ID; 8398 AddNodeIDNode(ID, Opcode, VTs, Ops); 8399 void *IP = nullptr; 8400 8401 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8402 return SDValue(E, 0); 8403 8404 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8405 createOperands(N, Ops); 8406 8407 CSEMap.InsertNode(N, IP); 8408 } else { 8409 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8410 createOperands(N, Ops); 8411 } 8412 8413 N->setFlags(Flags); 8414 InsertNode(N); 8415 SDValue V(N, 0); 8416 NewSDValueDbgMsg(V, "Creating new node: ", this); 8417 return V; 8418 } 8419 8420 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8421 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8422 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8423 } 8424 8425 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8426 ArrayRef<SDValue> Ops) { 8427 SDNodeFlags Flags; 8428 if (Inserter) 8429 Flags = Inserter->getFlags(); 8430 return getNode(Opcode, DL, VTList, Ops, Flags); 8431 } 8432 8433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8434 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8435 if (VTList.NumVTs == 1) 8436 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8437 8438 #ifndef NDEBUG 8439 for (auto &Op : Ops) 8440 assert(Op.getOpcode() != ISD::DELETED_NODE && 8441 "Operand is DELETED_NODE!"); 8442 #endif 8443 8444 switch (Opcode) { 8445 case ISD::STRICT_FP_EXTEND: 8446 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8447 "Invalid STRICT_FP_EXTEND!"); 8448 assert(VTList.VTs[0].isFloatingPoint() && 8449 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8450 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8451 "STRICT_FP_EXTEND result type should be vector iff the operand " 8452 "type is vector!"); 8453 assert((!VTList.VTs[0].isVector() || 8454 VTList.VTs[0].getVectorNumElements() == 8455 Ops[1].getValueType().getVectorNumElements()) && 8456 "Vector element count mismatch!"); 8457 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8458 "Invalid fpext node, dst <= src!"); 8459 break; 8460 case ISD::STRICT_FP_ROUND: 8461 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8462 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8463 "STRICT_FP_ROUND result type should be vector iff the operand " 8464 "type is vector!"); 8465 assert((!VTList.VTs[0].isVector() || 8466 VTList.VTs[0].getVectorNumElements() == 8467 Ops[1].getValueType().getVectorNumElements()) && 8468 "Vector element count mismatch!"); 8469 assert(VTList.VTs[0].isFloatingPoint() && 8470 Ops[1].getValueType().isFloatingPoint() && 8471 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8472 isa<ConstantSDNode>(Ops[2]) && 8473 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8474 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8475 "Invalid STRICT_FP_ROUND!"); 8476 break; 8477 #if 0 8478 // FIXME: figure out how to safely handle things like 8479 // int foo(int x) { return 1 << (x & 255); } 8480 // int bar() { return foo(256); } 8481 case ISD::SRA_PARTS: 8482 case ISD::SRL_PARTS: 8483 case ISD::SHL_PARTS: 8484 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8485 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8486 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8487 else if (N3.getOpcode() == ISD::AND) 8488 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8489 // If the and is only masking out bits that cannot effect the shift, 8490 // eliminate the and. 8491 unsigned NumBits = VT.getScalarSizeInBits()*2; 8492 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8493 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8494 } 8495 break; 8496 #endif 8497 } 8498 8499 // Memoize the node unless it returns a flag. 8500 SDNode *N; 8501 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8502 FoldingSetNodeID ID; 8503 AddNodeIDNode(ID, Opcode, VTList, Ops); 8504 void *IP = nullptr; 8505 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8506 return SDValue(E, 0); 8507 8508 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8509 createOperands(N, Ops); 8510 CSEMap.InsertNode(N, IP); 8511 } else { 8512 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8513 createOperands(N, Ops); 8514 } 8515 8516 N->setFlags(Flags); 8517 InsertNode(N); 8518 SDValue V(N, 0); 8519 NewSDValueDbgMsg(V, "Creating new node: ", this); 8520 return V; 8521 } 8522 8523 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8524 SDVTList VTList) { 8525 return getNode(Opcode, DL, VTList, None); 8526 } 8527 8528 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8529 SDValue N1) { 8530 SDValue Ops[] = { N1 }; 8531 return getNode(Opcode, DL, VTList, Ops); 8532 } 8533 8534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8535 SDValue N1, SDValue N2) { 8536 SDValue Ops[] = { N1, N2 }; 8537 return getNode(Opcode, DL, VTList, Ops); 8538 } 8539 8540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8541 SDValue N1, SDValue N2, SDValue N3) { 8542 SDValue Ops[] = { N1, N2, N3 }; 8543 return getNode(Opcode, DL, VTList, Ops); 8544 } 8545 8546 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8547 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8548 SDValue Ops[] = { N1, N2, N3, N4 }; 8549 return getNode(Opcode, DL, VTList, Ops); 8550 } 8551 8552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8553 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8554 SDValue N5) { 8555 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8556 return getNode(Opcode, DL, VTList, Ops); 8557 } 8558 8559 SDVTList SelectionDAG::getVTList(EVT VT) { 8560 return makeVTList(SDNode::getValueTypeList(VT), 1); 8561 } 8562 8563 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8564 FoldingSetNodeID ID; 8565 ID.AddInteger(2U); 8566 ID.AddInteger(VT1.getRawBits()); 8567 ID.AddInteger(VT2.getRawBits()); 8568 8569 void *IP = nullptr; 8570 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8571 if (!Result) { 8572 EVT *Array = Allocator.Allocate<EVT>(2); 8573 Array[0] = VT1; 8574 Array[1] = VT2; 8575 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8576 VTListMap.InsertNode(Result, IP); 8577 } 8578 return Result->getSDVTList(); 8579 } 8580 8581 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8582 FoldingSetNodeID ID; 8583 ID.AddInteger(3U); 8584 ID.AddInteger(VT1.getRawBits()); 8585 ID.AddInteger(VT2.getRawBits()); 8586 ID.AddInteger(VT3.getRawBits()); 8587 8588 void *IP = nullptr; 8589 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8590 if (!Result) { 8591 EVT *Array = Allocator.Allocate<EVT>(3); 8592 Array[0] = VT1; 8593 Array[1] = VT2; 8594 Array[2] = VT3; 8595 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8596 VTListMap.InsertNode(Result, IP); 8597 } 8598 return Result->getSDVTList(); 8599 } 8600 8601 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8602 FoldingSetNodeID ID; 8603 ID.AddInteger(4U); 8604 ID.AddInteger(VT1.getRawBits()); 8605 ID.AddInteger(VT2.getRawBits()); 8606 ID.AddInteger(VT3.getRawBits()); 8607 ID.AddInteger(VT4.getRawBits()); 8608 8609 void *IP = nullptr; 8610 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8611 if (!Result) { 8612 EVT *Array = Allocator.Allocate<EVT>(4); 8613 Array[0] = VT1; 8614 Array[1] = VT2; 8615 Array[2] = VT3; 8616 Array[3] = VT4; 8617 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8618 VTListMap.InsertNode(Result, IP); 8619 } 8620 return Result->getSDVTList(); 8621 } 8622 8623 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8624 unsigned NumVTs = VTs.size(); 8625 FoldingSetNodeID ID; 8626 ID.AddInteger(NumVTs); 8627 for (unsigned index = 0; index < NumVTs; index++) { 8628 ID.AddInteger(VTs[index].getRawBits()); 8629 } 8630 8631 void *IP = nullptr; 8632 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8633 if (!Result) { 8634 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8635 llvm::copy(VTs, Array); 8636 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8637 VTListMap.InsertNode(Result, IP); 8638 } 8639 return Result->getSDVTList(); 8640 } 8641 8642 8643 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8644 /// specified operands. If the resultant node already exists in the DAG, 8645 /// this does not modify the specified node, instead it returns the node that 8646 /// already exists. If the resultant node does not exist in the DAG, the 8647 /// input node is returned. As a degenerate case, if you specify the same 8648 /// input operands as the node already has, the input node is returned. 8649 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8650 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8651 8652 // Check to see if there is no change. 8653 if (Op == N->getOperand(0)) return N; 8654 8655 // See if the modified node already exists. 8656 void *InsertPos = nullptr; 8657 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8658 return Existing; 8659 8660 // Nope it doesn't. Remove the node from its current place in the maps. 8661 if (InsertPos) 8662 if (!RemoveNodeFromCSEMaps(N)) 8663 InsertPos = nullptr; 8664 8665 // Now we update the operands. 8666 N->OperandList[0].set(Op); 8667 8668 updateDivergence(N); 8669 // If this gets put into a CSE map, add it. 8670 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8671 return N; 8672 } 8673 8674 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8675 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8676 8677 // Check to see if there is no change. 8678 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8679 return N; // No operands changed, just return the input node. 8680 8681 // See if the modified node already exists. 8682 void *InsertPos = nullptr; 8683 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8684 return Existing; 8685 8686 // Nope it doesn't. Remove the node from its current place in the maps. 8687 if (InsertPos) 8688 if (!RemoveNodeFromCSEMaps(N)) 8689 InsertPos = nullptr; 8690 8691 // Now we update the operands. 8692 if (N->OperandList[0] != Op1) 8693 N->OperandList[0].set(Op1); 8694 if (N->OperandList[1] != Op2) 8695 N->OperandList[1].set(Op2); 8696 8697 updateDivergence(N); 8698 // If this gets put into a CSE map, add it. 8699 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8700 return N; 8701 } 8702 8703 SDNode *SelectionDAG:: 8704 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8705 SDValue Ops[] = { Op1, Op2, Op3 }; 8706 return UpdateNodeOperands(N, Ops); 8707 } 8708 8709 SDNode *SelectionDAG:: 8710 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8711 SDValue Op3, SDValue Op4) { 8712 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8713 return UpdateNodeOperands(N, Ops); 8714 } 8715 8716 SDNode *SelectionDAG:: 8717 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8718 SDValue Op3, SDValue Op4, SDValue Op5) { 8719 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8720 return UpdateNodeOperands(N, Ops); 8721 } 8722 8723 SDNode *SelectionDAG:: 8724 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8725 unsigned NumOps = Ops.size(); 8726 assert(N->getNumOperands() == NumOps && 8727 "Update with wrong number of operands"); 8728 8729 // If no operands changed just return the input node. 8730 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8731 return N; 8732 8733 // See if the modified node already exists. 8734 void *InsertPos = nullptr; 8735 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8736 return Existing; 8737 8738 // Nope it doesn't. Remove the node from its current place in the maps. 8739 if (InsertPos) 8740 if (!RemoveNodeFromCSEMaps(N)) 8741 InsertPos = nullptr; 8742 8743 // Now we update the operands. 8744 for (unsigned i = 0; i != NumOps; ++i) 8745 if (N->OperandList[i] != Ops[i]) 8746 N->OperandList[i].set(Ops[i]); 8747 8748 updateDivergence(N); 8749 // If this gets put into a CSE map, add it. 8750 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8751 return N; 8752 } 8753 8754 /// DropOperands - Release the operands and set this node to have 8755 /// zero operands. 8756 void SDNode::DropOperands() { 8757 // Unlike the code in MorphNodeTo that does this, we don't need to 8758 // watch for dead nodes here. 8759 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8760 SDUse &Use = *I++; 8761 Use.set(SDValue()); 8762 } 8763 } 8764 8765 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8766 ArrayRef<MachineMemOperand *> NewMemRefs) { 8767 if (NewMemRefs.empty()) { 8768 N->clearMemRefs(); 8769 return; 8770 } 8771 8772 // Check if we can avoid allocating by storing a single reference directly. 8773 if (NewMemRefs.size() == 1) { 8774 N->MemRefs = NewMemRefs[0]; 8775 N->NumMemRefs = 1; 8776 return; 8777 } 8778 8779 MachineMemOperand **MemRefsBuffer = 8780 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8781 llvm::copy(NewMemRefs, MemRefsBuffer); 8782 N->MemRefs = MemRefsBuffer; 8783 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8784 } 8785 8786 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8787 /// machine opcode. 8788 /// 8789 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8790 EVT VT) { 8791 SDVTList VTs = getVTList(VT); 8792 return SelectNodeTo(N, MachineOpc, VTs, None); 8793 } 8794 8795 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8796 EVT VT, SDValue Op1) { 8797 SDVTList VTs = getVTList(VT); 8798 SDValue Ops[] = { Op1 }; 8799 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8800 } 8801 8802 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8803 EVT VT, SDValue Op1, 8804 SDValue Op2) { 8805 SDVTList VTs = getVTList(VT); 8806 SDValue Ops[] = { Op1, Op2 }; 8807 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8808 } 8809 8810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8811 EVT VT, SDValue Op1, 8812 SDValue Op2, SDValue Op3) { 8813 SDVTList VTs = getVTList(VT); 8814 SDValue Ops[] = { Op1, Op2, Op3 }; 8815 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8816 } 8817 8818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8819 EVT VT, ArrayRef<SDValue> Ops) { 8820 SDVTList VTs = getVTList(VT); 8821 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8822 } 8823 8824 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8825 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8826 SDVTList VTs = getVTList(VT1, VT2); 8827 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8828 } 8829 8830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8831 EVT VT1, EVT VT2) { 8832 SDVTList VTs = getVTList(VT1, VT2); 8833 return SelectNodeTo(N, MachineOpc, VTs, None); 8834 } 8835 8836 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8837 EVT VT1, EVT VT2, EVT VT3, 8838 ArrayRef<SDValue> Ops) { 8839 SDVTList VTs = getVTList(VT1, VT2, VT3); 8840 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8841 } 8842 8843 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8844 EVT VT1, EVT VT2, 8845 SDValue Op1, SDValue Op2) { 8846 SDVTList VTs = getVTList(VT1, VT2); 8847 SDValue Ops[] = { Op1, Op2 }; 8848 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8849 } 8850 8851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8852 SDVTList VTs,ArrayRef<SDValue> Ops) { 8853 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8854 // Reset the NodeID to -1. 8855 New->setNodeId(-1); 8856 if (New != N) { 8857 ReplaceAllUsesWith(N, New); 8858 RemoveDeadNode(N); 8859 } 8860 return New; 8861 } 8862 8863 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8864 /// the line number information on the merged node since it is not possible to 8865 /// preserve the information that operation is associated with multiple lines. 8866 /// This will make the debugger working better at -O0, were there is a higher 8867 /// probability having other instructions associated with that line. 8868 /// 8869 /// For IROrder, we keep the smaller of the two 8870 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8871 DebugLoc NLoc = N->getDebugLoc(); 8872 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8873 N->setDebugLoc(DebugLoc()); 8874 } 8875 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8876 N->setIROrder(Order); 8877 return N; 8878 } 8879 8880 /// MorphNodeTo - This *mutates* the specified node to have the specified 8881 /// return type, opcode, and operands. 8882 /// 8883 /// Note that MorphNodeTo returns the resultant node. If there is already a 8884 /// node of the specified opcode and operands, it returns that node instead of 8885 /// the current one. Note that the SDLoc need not be the same. 8886 /// 8887 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8888 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8889 /// node, and because it doesn't require CSE recalculation for any of 8890 /// the node's users. 8891 /// 8892 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8893 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8894 /// the legalizer which maintain worklists that would need to be updated when 8895 /// deleting things. 8896 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8897 SDVTList VTs, ArrayRef<SDValue> Ops) { 8898 // If an identical node already exists, use it. 8899 void *IP = nullptr; 8900 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8901 FoldingSetNodeID ID; 8902 AddNodeIDNode(ID, Opc, VTs, Ops); 8903 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8904 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8905 } 8906 8907 if (!RemoveNodeFromCSEMaps(N)) 8908 IP = nullptr; 8909 8910 // Start the morphing. 8911 N->NodeType = Opc; 8912 N->ValueList = VTs.VTs; 8913 N->NumValues = VTs.NumVTs; 8914 8915 // Clear the operands list, updating used nodes to remove this from their 8916 // use list. Keep track of any operands that become dead as a result. 8917 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8918 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8919 SDUse &Use = *I++; 8920 SDNode *Used = Use.getNode(); 8921 Use.set(SDValue()); 8922 if (Used->use_empty()) 8923 DeadNodeSet.insert(Used); 8924 } 8925 8926 // For MachineNode, initialize the memory references information. 8927 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8928 MN->clearMemRefs(); 8929 8930 // Swap for an appropriately sized array from the recycler. 8931 removeOperands(N); 8932 createOperands(N, Ops); 8933 8934 // Delete any nodes that are still dead after adding the uses for the 8935 // new operands. 8936 if (!DeadNodeSet.empty()) { 8937 SmallVector<SDNode *, 16> DeadNodes; 8938 for (SDNode *N : DeadNodeSet) 8939 if (N->use_empty()) 8940 DeadNodes.push_back(N); 8941 RemoveDeadNodes(DeadNodes); 8942 } 8943 8944 if (IP) 8945 CSEMap.InsertNode(N, IP); // Memoize the new node. 8946 return N; 8947 } 8948 8949 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8950 unsigned OrigOpc = Node->getOpcode(); 8951 unsigned NewOpc; 8952 switch (OrigOpc) { 8953 default: 8954 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8955 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8956 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8957 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8958 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8959 #include "llvm/IR/ConstrainedOps.def" 8960 } 8961 8962 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8963 8964 // We're taking this node out of the chain, so we need to re-link things. 8965 SDValue InputChain = Node->getOperand(0); 8966 SDValue OutputChain = SDValue(Node, 1); 8967 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8968 8969 SmallVector<SDValue, 3> Ops; 8970 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8971 Ops.push_back(Node->getOperand(i)); 8972 8973 SDVTList VTs = getVTList(Node->getValueType(0)); 8974 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8975 8976 // MorphNodeTo can operate in two ways: if an existing node with the 8977 // specified operands exists, it can just return it. Otherwise, it 8978 // updates the node in place to have the requested operands. 8979 if (Res == Node) { 8980 // If we updated the node in place, reset the node ID. To the isel, 8981 // this should be just like a newly allocated machine node. 8982 Res->setNodeId(-1); 8983 } else { 8984 ReplaceAllUsesWith(Node, Res); 8985 RemoveDeadNode(Node); 8986 } 8987 8988 return Res; 8989 } 8990 8991 /// getMachineNode - These are used for target selectors to create a new node 8992 /// with specified return type(s), MachineInstr opcode, and operands. 8993 /// 8994 /// Note that getMachineNode returns the resultant node. If there is already a 8995 /// node of the specified opcode and operands, it returns that node instead of 8996 /// the current one. 8997 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8998 EVT VT) { 8999 SDVTList VTs = getVTList(VT); 9000 return getMachineNode(Opcode, dl, VTs, None); 9001 } 9002 9003 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9004 EVT VT, SDValue Op1) { 9005 SDVTList VTs = getVTList(VT); 9006 SDValue Ops[] = { Op1 }; 9007 return getMachineNode(Opcode, dl, VTs, Ops); 9008 } 9009 9010 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9011 EVT VT, SDValue Op1, SDValue Op2) { 9012 SDVTList VTs = getVTList(VT); 9013 SDValue Ops[] = { Op1, Op2 }; 9014 return getMachineNode(Opcode, dl, VTs, Ops); 9015 } 9016 9017 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9018 EVT VT, SDValue Op1, SDValue Op2, 9019 SDValue Op3) { 9020 SDVTList VTs = getVTList(VT); 9021 SDValue Ops[] = { Op1, Op2, Op3 }; 9022 return getMachineNode(Opcode, dl, VTs, Ops); 9023 } 9024 9025 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9026 EVT VT, ArrayRef<SDValue> Ops) { 9027 SDVTList VTs = getVTList(VT); 9028 return getMachineNode(Opcode, dl, VTs, Ops); 9029 } 9030 9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9032 EVT VT1, EVT VT2, SDValue Op1, 9033 SDValue Op2) { 9034 SDVTList VTs = getVTList(VT1, VT2); 9035 SDValue Ops[] = { Op1, Op2 }; 9036 return getMachineNode(Opcode, dl, VTs, Ops); 9037 } 9038 9039 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9040 EVT VT1, EVT VT2, SDValue Op1, 9041 SDValue Op2, SDValue Op3) { 9042 SDVTList VTs = getVTList(VT1, VT2); 9043 SDValue Ops[] = { Op1, Op2, Op3 }; 9044 return getMachineNode(Opcode, dl, VTs, Ops); 9045 } 9046 9047 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9048 EVT VT1, EVT VT2, 9049 ArrayRef<SDValue> Ops) { 9050 SDVTList VTs = getVTList(VT1, VT2); 9051 return getMachineNode(Opcode, dl, VTs, Ops); 9052 } 9053 9054 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9055 EVT VT1, EVT VT2, EVT VT3, 9056 SDValue Op1, SDValue Op2) { 9057 SDVTList VTs = getVTList(VT1, VT2, VT3); 9058 SDValue Ops[] = { Op1, Op2 }; 9059 return getMachineNode(Opcode, dl, VTs, Ops); 9060 } 9061 9062 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9063 EVT VT1, EVT VT2, EVT VT3, 9064 SDValue Op1, SDValue Op2, 9065 SDValue Op3) { 9066 SDVTList VTs = getVTList(VT1, VT2, VT3); 9067 SDValue Ops[] = { Op1, Op2, Op3 }; 9068 return getMachineNode(Opcode, dl, VTs, Ops); 9069 } 9070 9071 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9072 EVT VT1, EVT VT2, EVT VT3, 9073 ArrayRef<SDValue> Ops) { 9074 SDVTList VTs = getVTList(VT1, VT2, VT3); 9075 return getMachineNode(Opcode, dl, VTs, Ops); 9076 } 9077 9078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9079 ArrayRef<EVT> ResultTys, 9080 ArrayRef<SDValue> Ops) { 9081 SDVTList VTs = getVTList(ResultTys); 9082 return getMachineNode(Opcode, dl, VTs, Ops); 9083 } 9084 9085 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9086 SDVTList VTs, 9087 ArrayRef<SDValue> Ops) { 9088 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9089 MachineSDNode *N; 9090 void *IP = nullptr; 9091 9092 if (DoCSE) { 9093 FoldingSetNodeID ID; 9094 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9095 IP = nullptr; 9096 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9097 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9098 } 9099 } 9100 9101 // Allocate a new MachineSDNode. 9102 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9103 createOperands(N, Ops); 9104 9105 if (DoCSE) 9106 CSEMap.InsertNode(N, IP); 9107 9108 InsertNode(N); 9109 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9110 return N; 9111 } 9112 9113 /// getTargetExtractSubreg - A convenience function for creating 9114 /// TargetOpcode::EXTRACT_SUBREG nodes. 9115 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9116 SDValue Operand) { 9117 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9118 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9119 VT, Operand, SRIdxVal); 9120 return SDValue(Subreg, 0); 9121 } 9122 9123 /// getTargetInsertSubreg - A convenience function for creating 9124 /// TargetOpcode::INSERT_SUBREG nodes. 9125 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9126 SDValue Operand, SDValue Subreg) { 9127 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9128 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9129 VT, Operand, Subreg, SRIdxVal); 9130 return SDValue(Result, 0); 9131 } 9132 9133 /// getNodeIfExists - Get the specified node if it's already available, or 9134 /// else return NULL. 9135 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9136 ArrayRef<SDValue> Ops) { 9137 SDNodeFlags Flags; 9138 if (Inserter) 9139 Flags = Inserter->getFlags(); 9140 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9141 } 9142 9143 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9144 ArrayRef<SDValue> Ops, 9145 const SDNodeFlags Flags) { 9146 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9147 FoldingSetNodeID ID; 9148 AddNodeIDNode(ID, Opcode, VTList, Ops); 9149 void *IP = nullptr; 9150 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9151 E->intersectFlagsWith(Flags); 9152 return E; 9153 } 9154 } 9155 return nullptr; 9156 } 9157 9158 /// doesNodeExist - Check if a node exists without modifying its flags. 9159 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9160 ArrayRef<SDValue> Ops) { 9161 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9162 FoldingSetNodeID ID; 9163 AddNodeIDNode(ID, Opcode, VTList, Ops); 9164 void *IP = nullptr; 9165 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9166 return true; 9167 } 9168 return false; 9169 } 9170 9171 /// getDbgValue - Creates a SDDbgValue node. 9172 /// 9173 /// SDNode 9174 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9175 SDNode *N, unsigned R, bool IsIndirect, 9176 const DebugLoc &DL, unsigned O) { 9177 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9178 "Expected inlined-at fields to agree"); 9179 return new (DbgInfo->getAlloc()) 9180 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9181 {}, IsIndirect, DL, O, 9182 /*IsVariadic=*/false); 9183 } 9184 9185 /// Constant 9186 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9187 DIExpression *Expr, 9188 const Value *C, 9189 const DebugLoc &DL, unsigned O) { 9190 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9191 "Expected inlined-at fields to agree"); 9192 return new (DbgInfo->getAlloc()) 9193 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9194 /*IsIndirect=*/false, DL, O, 9195 /*IsVariadic=*/false); 9196 } 9197 9198 /// FrameIndex 9199 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9200 DIExpression *Expr, unsigned FI, 9201 bool IsIndirect, 9202 const DebugLoc &DL, 9203 unsigned O) { 9204 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9205 "Expected inlined-at fields to agree"); 9206 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9207 } 9208 9209 /// FrameIndex with dependencies 9210 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9211 DIExpression *Expr, unsigned FI, 9212 ArrayRef<SDNode *> Dependencies, 9213 bool IsIndirect, 9214 const DebugLoc &DL, 9215 unsigned O) { 9216 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9217 "Expected inlined-at fields to agree"); 9218 return new (DbgInfo->getAlloc()) 9219 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9220 Dependencies, IsIndirect, DL, O, 9221 /*IsVariadic=*/false); 9222 } 9223 9224 /// VReg 9225 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9226 unsigned VReg, bool IsIndirect, 9227 const DebugLoc &DL, unsigned O) { 9228 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9229 "Expected inlined-at fields to agree"); 9230 return new (DbgInfo->getAlloc()) 9231 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9232 {}, IsIndirect, DL, O, 9233 /*IsVariadic=*/false); 9234 } 9235 9236 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9237 ArrayRef<SDDbgOperand> Locs, 9238 ArrayRef<SDNode *> Dependencies, 9239 bool IsIndirect, const DebugLoc &DL, 9240 unsigned O, bool IsVariadic) { 9241 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9242 "Expected inlined-at fields to agree"); 9243 return new (DbgInfo->getAlloc()) 9244 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9245 DL, O, IsVariadic); 9246 } 9247 9248 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9249 unsigned OffsetInBits, unsigned SizeInBits, 9250 bool InvalidateDbg) { 9251 SDNode *FromNode = From.getNode(); 9252 SDNode *ToNode = To.getNode(); 9253 assert(FromNode && ToNode && "Can't modify dbg values"); 9254 9255 // PR35338 9256 // TODO: assert(From != To && "Redundant dbg value transfer"); 9257 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9258 if (From == To || FromNode == ToNode) 9259 return; 9260 9261 if (!FromNode->getHasDebugValue()) 9262 return; 9263 9264 SDDbgOperand FromLocOp = 9265 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9266 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9267 9268 SmallVector<SDDbgValue *, 2> ClonedDVs; 9269 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9270 if (Dbg->isInvalidated()) 9271 continue; 9272 9273 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9274 9275 // Create a new location ops vector that is equal to the old vector, but 9276 // with each instance of FromLocOp replaced with ToLocOp. 9277 bool Changed = false; 9278 auto NewLocOps = Dbg->copyLocationOps(); 9279 std::replace_if( 9280 NewLocOps.begin(), NewLocOps.end(), 9281 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9282 bool Match = Op == FromLocOp; 9283 Changed |= Match; 9284 return Match; 9285 }, 9286 ToLocOp); 9287 // Ignore this SDDbgValue if we didn't find a matching location. 9288 if (!Changed) 9289 continue; 9290 9291 DIVariable *Var = Dbg->getVariable(); 9292 auto *Expr = Dbg->getExpression(); 9293 // If a fragment is requested, update the expression. 9294 if (SizeInBits) { 9295 // When splitting a larger (e.g., sign-extended) value whose 9296 // lower bits are described with an SDDbgValue, do not attempt 9297 // to transfer the SDDbgValue to the upper bits. 9298 if (auto FI = Expr->getFragmentInfo()) 9299 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9300 continue; 9301 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9302 SizeInBits); 9303 if (!Fragment) 9304 continue; 9305 Expr = *Fragment; 9306 } 9307 9308 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9309 // Clone the SDDbgValue and move it to To. 9310 SDDbgValue *Clone = getDbgValueList( 9311 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9312 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9313 Dbg->isVariadic()); 9314 ClonedDVs.push_back(Clone); 9315 9316 if (InvalidateDbg) { 9317 // Invalidate value and indicate the SDDbgValue should not be emitted. 9318 Dbg->setIsInvalidated(); 9319 Dbg->setIsEmitted(); 9320 } 9321 } 9322 9323 for (SDDbgValue *Dbg : ClonedDVs) { 9324 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9325 "Transferred DbgValues should depend on the new SDNode"); 9326 AddDbgValue(Dbg, false); 9327 } 9328 } 9329 9330 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9331 if (!N.getHasDebugValue()) 9332 return; 9333 9334 SmallVector<SDDbgValue *, 2> ClonedDVs; 9335 for (auto DV : GetDbgValues(&N)) { 9336 if (DV->isInvalidated()) 9337 continue; 9338 switch (N.getOpcode()) { 9339 default: 9340 break; 9341 case ISD::ADD: 9342 SDValue N0 = N.getOperand(0); 9343 SDValue N1 = N.getOperand(1); 9344 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9345 isConstantIntBuildVectorOrConstantInt(N1)) { 9346 uint64_t Offset = N.getConstantOperandVal(1); 9347 9348 // Rewrite an ADD constant node into a DIExpression. Since we are 9349 // performing arithmetic to compute the variable's *value* in the 9350 // DIExpression, we need to mark the expression with a 9351 // DW_OP_stack_value. 9352 auto *DIExpr = DV->getExpression(); 9353 auto NewLocOps = DV->copyLocationOps(); 9354 bool Changed = false; 9355 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9356 // We're not given a ResNo to compare against because the whole 9357 // node is going away. We know that any ISD::ADD only has one 9358 // result, so we can assume any node match is using the result. 9359 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9360 NewLocOps[i].getSDNode() != &N) 9361 continue; 9362 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9363 SmallVector<uint64_t, 3> ExprOps; 9364 DIExpression::appendOffset(ExprOps, Offset); 9365 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9366 Changed = true; 9367 } 9368 (void)Changed; 9369 assert(Changed && "Salvage target doesn't use N"); 9370 9371 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9372 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9373 NewLocOps, AdditionalDependencies, 9374 DV->isIndirect(), DV->getDebugLoc(), 9375 DV->getOrder(), DV->isVariadic()); 9376 ClonedDVs.push_back(Clone); 9377 DV->setIsInvalidated(); 9378 DV->setIsEmitted(); 9379 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9380 N0.getNode()->dumprFull(this); 9381 dbgs() << " into " << *DIExpr << '\n'); 9382 } 9383 } 9384 } 9385 9386 for (SDDbgValue *Dbg : ClonedDVs) { 9387 assert(!Dbg->getSDNodes().empty() && 9388 "Salvaged DbgValue should depend on a new SDNode"); 9389 AddDbgValue(Dbg, false); 9390 } 9391 } 9392 9393 /// Creates a SDDbgLabel node. 9394 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9395 const DebugLoc &DL, unsigned O) { 9396 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9397 "Expected inlined-at fields to agree"); 9398 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9399 } 9400 9401 namespace { 9402 9403 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9404 /// pointed to by a use iterator is deleted, increment the use iterator 9405 /// so that it doesn't dangle. 9406 /// 9407 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9408 SDNode::use_iterator &UI; 9409 SDNode::use_iterator &UE; 9410 9411 void NodeDeleted(SDNode *N, SDNode *E) override { 9412 // Increment the iterator as needed. 9413 while (UI != UE && N == *UI) 9414 ++UI; 9415 } 9416 9417 public: 9418 RAUWUpdateListener(SelectionDAG &d, 9419 SDNode::use_iterator &ui, 9420 SDNode::use_iterator &ue) 9421 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9422 }; 9423 9424 } // end anonymous namespace 9425 9426 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9427 /// This can cause recursive merging of nodes in the DAG. 9428 /// 9429 /// This version assumes From has a single result value. 9430 /// 9431 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9432 SDNode *From = FromN.getNode(); 9433 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9434 "Cannot replace with this method!"); 9435 assert(From != To.getNode() && "Cannot replace uses of with self"); 9436 9437 // Preserve Debug Values 9438 transferDbgValues(FromN, To); 9439 9440 // Iterate over all the existing uses of From. New uses will be added 9441 // to the beginning of the use list, which we avoid visiting. 9442 // This specifically avoids visiting uses of From that arise while the 9443 // replacement is happening, because any such uses would be the result 9444 // of CSE: If an existing node looks like From after one of its operands 9445 // is replaced by To, we don't want to replace of all its users with To 9446 // too. See PR3018 for more info. 9447 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9448 RAUWUpdateListener Listener(*this, UI, UE); 9449 while (UI != UE) { 9450 SDNode *User = *UI; 9451 9452 // This node is about to morph, remove its old self from the CSE maps. 9453 RemoveNodeFromCSEMaps(User); 9454 9455 // A user can appear in a use list multiple times, and when this 9456 // happens the uses are usually next to each other in the list. 9457 // To help reduce the number of CSE recomputations, process all 9458 // the uses of this user that we can find this way. 9459 do { 9460 SDUse &Use = UI.getUse(); 9461 ++UI; 9462 Use.set(To); 9463 if (To->isDivergent() != From->isDivergent()) 9464 updateDivergence(User); 9465 } while (UI != UE && *UI == User); 9466 // Now that we have modified User, add it back to the CSE maps. If it 9467 // already exists there, recursively merge the results together. 9468 AddModifiedNodeToCSEMaps(User); 9469 } 9470 9471 // If we just RAUW'd the root, take note. 9472 if (FromN == getRoot()) 9473 setRoot(To); 9474 } 9475 9476 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9477 /// This can cause recursive merging of nodes in the DAG. 9478 /// 9479 /// This version assumes that for each value of From, there is a 9480 /// corresponding value in To in the same position with the same type. 9481 /// 9482 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9483 #ifndef NDEBUG 9484 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9485 assert((!From->hasAnyUseOfValue(i) || 9486 From->getValueType(i) == To->getValueType(i)) && 9487 "Cannot use this version of ReplaceAllUsesWith!"); 9488 #endif 9489 9490 // Handle the trivial case. 9491 if (From == To) 9492 return; 9493 9494 // Preserve Debug Info. Only do this if there's a use. 9495 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9496 if (From->hasAnyUseOfValue(i)) { 9497 assert((i < To->getNumValues()) && "Invalid To location"); 9498 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9499 } 9500 9501 // Iterate over just the existing users of From. See the comments in 9502 // the ReplaceAllUsesWith above. 9503 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9504 RAUWUpdateListener Listener(*this, UI, UE); 9505 while (UI != UE) { 9506 SDNode *User = *UI; 9507 9508 // This node is about to morph, remove its old self from the CSE maps. 9509 RemoveNodeFromCSEMaps(User); 9510 9511 // A user can appear in a use list multiple times, and when this 9512 // happens the uses are usually next to each other in the list. 9513 // To help reduce the number of CSE recomputations, process all 9514 // the uses of this user that we can find this way. 9515 do { 9516 SDUse &Use = UI.getUse(); 9517 ++UI; 9518 Use.setNode(To); 9519 if (To->isDivergent() != From->isDivergent()) 9520 updateDivergence(User); 9521 } while (UI != UE && *UI == User); 9522 9523 // Now that we have modified User, add it back to the CSE maps. If it 9524 // already exists there, recursively merge the results together. 9525 AddModifiedNodeToCSEMaps(User); 9526 } 9527 9528 // If we just RAUW'd the root, take note. 9529 if (From == getRoot().getNode()) 9530 setRoot(SDValue(To, getRoot().getResNo())); 9531 } 9532 9533 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9534 /// This can cause recursive merging of nodes in the DAG. 9535 /// 9536 /// This version can replace From with any result values. To must match the 9537 /// number and types of values returned by From. 9538 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9539 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9540 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9541 9542 // Preserve Debug Info. 9543 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9544 transferDbgValues(SDValue(From, i), To[i]); 9545 9546 // Iterate over just the existing users of From. See the comments in 9547 // the ReplaceAllUsesWith above. 9548 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9549 RAUWUpdateListener Listener(*this, UI, UE); 9550 while (UI != UE) { 9551 SDNode *User = *UI; 9552 9553 // This node is about to morph, remove its old self from the CSE maps. 9554 RemoveNodeFromCSEMaps(User); 9555 9556 // A user can appear in a use list multiple times, and when this happens the 9557 // uses are usually next to each other in the list. To help reduce the 9558 // number of CSE and divergence recomputations, process all the uses of this 9559 // user that we can find this way. 9560 bool To_IsDivergent = false; 9561 do { 9562 SDUse &Use = UI.getUse(); 9563 const SDValue &ToOp = To[Use.getResNo()]; 9564 ++UI; 9565 Use.set(ToOp); 9566 To_IsDivergent |= ToOp->isDivergent(); 9567 } while (UI != UE && *UI == User); 9568 9569 if (To_IsDivergent != From->isDivergent()) 9570 updateDivergence(User); 9571 9572 // Now that we have modified User, add it back to the CSE maps. If it 9573 // already exists there, recursively merge the results together. 9574 AddModifiedNodeToCSEMaps(User); 9575 } 9576 9577 // If we just RAUW'd the root, take note. 9578 if (From == getRoot().getNode()) 9579 setRoot(SDValue(To[getRoot().getResNo()])); 9580 } 9581 9582 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9583 /// uses of other values produced by From.getNode() alone. The Deleted 9584 /// vector is handled the same way as for ReplaceAllUsesWith. 9585 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9586 // Handle the really simple, really trivial case efficiently. 9587 if (From == To) return; 9588 9589 // Handle the simple, trivial, case efficiently. 9590 if (From.getNode()->getNumValues() == 1) { 9591 ReplaceAllUsesWith(From, To); 9592 return; 9593 } 9594 9595 // Preserve Debug Info. 9596 transferDbgValues(From, To); 9597 9598 // Iterate over just the existing users of From. See the comments in 9599 // the ReplaceAllUsesWith above. 9600 SDNode::use_iterator UI = From.getNode()->use_begin(), 9601 UE = From.getNode()->use_end(); 9602 RAUWUpdateListener Listener(*this, UI, UE); 9603 while (UI != UE) { 9604 SDNode *User = *UI; 9605 bool UserRemovedFromCSEMaps = false; 9606 9607 // A user can appear in a use list multiple times, and when this 9608 // happens the uses are usually next to each other in the list. 9609 // To help reduce the number of CSE recomputations, process all 9610 // the uses of this user that we can find this way. 9611 do { 9612 SDUse &Use = UI.getUse(); 9613 9614 // Skip uses of different values from the same node. 9615 if (Use.getResNo() != From.getResNo()) { 9616 ++UI; 9617 continue; 9618 } 9619 9620 // If this node hasn't been modified yet, it's still in the CSE maps, 9621 // so remove its old self from the CSE maps. 9622 if (!UserRemovedFromCSEMaps) { 9623 RemoveNodeFromCSEMaps(User); 9624 UserRemovedFromCSEMaps = true; 9625 } 9626 9627 ++UI; 9628 Use.set(To); 9629 if (To->isDivergent() != From->isDivergent()) 9630 updateDivergence(User); 9631 } while (UI != UE && *UI == User); 9632 // We are iterating over all uses of the From node, so if a use 9633 // doesn't use the specific value, no changes are made. 9634 if (!UserRemovedFromCSEMaps) 9635 continue; 9636 9637 // Now that we have modified User, add it back to the CSE maps. If it 9638 // already exists there, recursively merge the results together. 9639 AddModifiedNodeToCSEMaps(User); 9640 } 9641 9642 // If we just RAUW'd the root, take note. 9643 if (From == getRoot()) 9644 setRoot(To); 9645 } 9646 9647 namespace { 9648 9649 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9650 /// to record information about a use. 9651 struct UseMemo { 9652 SDNode *User; 9653 unsigned Index; 9654 SDUse *Use; 9655 }; 9656 9657 /// operator< - Sort Memos by User. 9658 bool operator<(const UseMemo &L, const UseMemo &R) { 9659 return (intptr_t)L.User < (intptr_t)R.User; 9660 } 9661 9662 } // end anonymous namespace 9663 9664 bool SelectionDAG::calculateDivergence(SDNode *N) { 9665 if (TLI->isSDNodeAlwaysUniform(N)) { 9666 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9667 "Conflicting divergence information!"); 9668 return false; 9669 } 9670 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9671 return true; 9672 for (auto &Op : N->ops()) { 9673 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9674 return true; 9675 } 9676 return false; 9677 } 9678 9679 void SelectionDAG::updateDivergence(SDNode *N) { 9680 SmallVector<SDNode *, 16> Worklist(1, N); 9681 do { 9682 N = Worklist.pop_back_val(); 9683 bool IsDivergent = calculateDivergence(N); 9684 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9685 N->SDNodeBits.IsDivergent = IsDivergent; 9686 llvm::append_range(Worklist, N->uses()); 9687 } 9688 } while (!Worklist.empty()); 9689 } 9690 9691 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9692 DenseMap<SDNode *, unsigned> Degree; 9693 Order.reserve(AllNodes.size()); 9694 for (auto &N : allnodes()) { 9695 unsigned NOps = N.getNumOperands(); 9696 Degree[&N] = NOps; 9697 if (0 == NOps) 9698 Order.push_back(&N); 9699 } 9700 for (size_t I = 0; I != Order.size(); ++I) { 9701 SDNode *N = Order[I]; 9702 for (auto U : N->uses()) { 9703 unsigned &UnsortedOps = Degree[U]; 9704 if (0 == --UnsortedOps) 9705 Order.push_back(U); 9706 } 9707 } 9708 } 9709 9710 #ifndef NDEBUG 9711 void SelectionDAG::VerifyDAGDiverence() { 9712 std::vector<SDNode *> TopoOrder; 9713 CreateTopologicalOrder(TopoOrder); 9714 for (auto *N : TopoOrder) { 9715 assert(calculateDivergence(N) == N->isDivergent() && 9716 "Divergence bit inconsistency detected"); 9717 } 9718 } 9719 #endif 9720 9721 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9722 /// uses of other values produced by From.getNode() alone. The same value 9723 /// may appear in both the From and To list. The Deleted vector is 9724 /// handled the same way as for ReplaceAllUsesWith. 9725 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9726 const SDValue *To, 9727 unsigned Num){ 9728 // Handle the simple, trivial case efficiently. 9729 if (Num == 1) 9730 return ReplaceAllUsesOfValueWith(*From, *To); 9731 9732 transferDbgValues(*From, *To); 9733 9734 // Read up all the uses and make records of them. This helps 9735 // processing new uses that are introduced during the 9736 // replacement process. 9737 SmallVector<UseMemo, 4> Uses; 9738 for (unsigned i = 0; i != Num; ++i) { 9739 unsigned FromResNo = From[i].getResNo(); 9740 SDNode *FromNode = From[i].getNode(); 9741 for (SDNode::use_iterator UI = FromNode->use_begin(), 9742 E = FromNode->use_end(); UI != E; ++UI) { 9743 SDUse &Use = UI.getUse(); 9744 if (Use.getResNo() == FromResNo) { 9745 UseMemo Memo = { *UI, i, &Use }; 9746 Uses.push_back(Memo); 9747 } 9748 } 9749 } 9750 9751 // Sort the uses, so that all the uses from a given User are together. 9752 llvm::sort(Uses); 9753 9754 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9755 UseIndex != UseIndexEnd; ) { 9756 // We know that this user uses some value of From. If it is the right 9757 // value, update it. 9758 SDNode *User = Uses[UseIndex].User; 9759 9760 // This node is about to morph, remove its old self from the CSE maps. 9761 RemoveNodeFromCSEMaps(User); 9762 9763 // The Uses array is sorted, so all the uses for a given User 9764 // are next to each other in the list. 9765 // To help reduce the number of CSE recomputations, process all 9766 // the uses of this user that we can find this way. 9767 do { 9768 unsigned i = Uses[UseIndex].Index; 9769 SDUse &Use = *Uses[UseIndex].Use; 9770 ++UseIndex; 9771 9772 Use.set(To[i]); 9773 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9774 9775 // Now that we have modified User, add it back to the CSE maps. If it 9776 // already exists there, recursively merge the results together. 9777 AddModifiedNodeToCSEMaps(User); 9778 } 9779 } 9780 9781 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9782 /// based on their topological order. It returns the maximum id and a vector 9783 /// of the SDNodes* in assigned order by reference. 9784 unsigned SelectionDAG::AssignTopologicalOrder() { 9785 unsigned DAGSize = 0; 9786 9787 // SortedPos tracks the progress of the algorithm. Nodes before it are 9788 // sorted, nodes after it are unsorted. When the algorithm completes 9789 // it is at the end of the list. 9790 allnodes_iterator SortedPos = allnodes_begin(); 9791 9792 // Visit all the nodes. Move nodes with no operands to the front of 9793 // the list immediately. Annotate nodes that do have operands with their 9794 // operand count. Before we do this, the Node Id fields of the nodes 9795 // may contain arbitrary values. After, the Node Id fields for nodes 9796 // before SortedPos will contain the topological sort index, and the 9797 // Node Id fields for nodes At SortedPos and after will contain the 9798 // count of outstanding operands. 9799 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 9800 SDNode *N = &*I++; 9801 checkForCycles(N, this); 9802 unsigned Degree = N->getNumOperands(); 9803 if (Degree == 0) { 9804 // A node with no uses, add it to the result array immediately. 9805 N->setNodeId(DAGSize++); 9806 allnodes_iterator Q(N); 9807 if (Q != SortedPos) 9808 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9809 assert(SortedPos != AllNodes.end() && "Overran node list"); 9810 ++SortedPos; 9811 } else { 9812 // Temporarily use the Node Id as scratch space for the degree count. 9813 N->setNodeId(Degree); 9814 } 9815 } 9816 9817 // Visit all the nodes. As we iterate, move nodes into sorted order, 9818 // such that by the time the end is reached all nodes will be sorted. 9819 for (SDNode &Node : allnodes()) { 9820 SDNode *N = &Node; 9821 checkForCycles(N, this); 9822 // N is in sorted position, so all its uses have one less operand 9823 // that needs to be sorted. 9824 for (SDNode *P : N->uses()) { 9825 unsigned Degree = P->getNodeId(); 9826 assert(Degree != 0 && "Invalid node degree"); 9827 --Degree; 9828 if (Degree == 0) { 9829 // All of P's operands are sorted, so P may sorted now. 9830 P->setNodeId(DAGSize++); 9831 if (P->getIterator() != SortedPos) 9832 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9833 assert(SortedPos != AllNodes.end() && "Overran node list"); 9834 ++SortedPos; 9835 } else { 9836 // Update P's outstanding operand count. 9837 P->setNodeId(Degree); 9838 } 9839 } 9840 if (Node.getIterator() == SortedPos) { 9841 #ifndef NDEBUG 9842 allnodes_iterator I(N); 9843 SDNode *S = &*++I; 9844 dbgs() << "Overran sorted position:\n"; 9845 S->dumprFull(this); dbgs() << "\n"; 9846 dbgs() << "Checking if this is due to cycles\n"; 9847 checkForCycles(this, true); 9848 #endif 9849 llvm_unreachable(nullptr); 9850 } 9851 } 9852 9853 assert(SortedPos == AllNodes.end() && 9854 "Topological sort incomplete!"); 9855 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9856 "First node in topological sort is not the entry token!"); 9857 assert(AllNodes.front().getNodeId() == 0 && 9858 "First node in topological sort has non-zero id!"); 9859 assert(AllNodes.front().getNumOperands() == 0 && 9860 "First node in topological sort has operands!"); 9861 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9862 "Last node in topologic sort has unexpected id!"); 9863 assert(AllNodes.back().use_empty() && 9864 "Last node in topologic sort has users!"); 9865 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9866 return DAGSize; 9867 } 9868 9869 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9870 /// value is produced by SD. 9871 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9872 for (SDNode *SD : DB->getSDNodes()) { 9873 if (!SD) 9874 continue; 9875 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9876 SD->setHasDebugValue(true); 9877 } 9878 DbgInfo->add(DB, isParameter); 9879 } 9880 9881 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9882 9883 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9884 SDValue NewMemOpChain) { 9885 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9886 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9887 // The new memory operation must have the same position as the old load in 9888 // terms of memory dependency. Create a TokenFactor for the old load and new 9889 // memory operation and update uses of the old load's output chain to use that 9890 // TokenFactor. 9891 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9892 return NewMemOpChain; 9893 9894 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9895 OldChain, NewMemOpChain); 9896 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9897 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9898 return TokenFactor; 9899 } 9900 9901 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9902 SDValue NewMemOp) { 9903 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9904 SDValue OldChain = SDValue(OldLoad, 1); 9905 SDValue NewMemOpChain = NewMemOp.getValue(1); 9906 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9907 } 9908 9909 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9910 Function **OutFunction) { 9911 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9912 9913 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9914 auto *Module = MF->getFunction().getParent(); 9915 auto *Function = Module->getFunction(Symbol); 9916 9917 if (OutFunction != nullptr) 9918 *OutFunction = Function; 9919 9920 if (Function != nullptr) { 9921 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9922 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9923 } 9924 9925 std::string ErrorStr; 9926 raw_string_ostream ErrorFormatter(ErrorStr); 9927 9928 ErrorFormatter << "Undefined external symbol "; 9929 ErrorFormatter << '"' << Symbol << '"'; 9930 ErrorFormatter.flush(); 9931 9932 report_fatal_error(ErrorStr); 9933 } 9934 9935 //===----------------------------------------------------------------------===// 9936 // SDNode Class 9937 //===----------------------------------------------------------------------===// 9938 9939 bool llvm::isNullConstant(SDValue V) { 9940 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9941 return Const != nullptr && Const->isNullValue(); 9942 } 9943 9944 bool llvm::isNullFPConstant(SDValue V) { 9945 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9946 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9947 } 9948 9949 bool llvm::isAllOnesConstant(SDValue V) { 9950 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9951 return Const != nullptr && Const->isAllOnesValue(); 9952 } 9953 9954 bool llvm::isOneConstant(SDValue V) { 9955 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9956 return Const != nullptr && Const->isOne(); 9957 } 9958 9959 SDValue llvm::peekThroughBitcasts(SDValue V) { 9960 while (V.getOpcode() == ISD::BITCAST) 9961 V = V.getOperand(0); 9962 return V; 9963 } 9964 9965 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9966 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9967 V = V.getOperand(0); 9968 return V; 9969 } 9970 9971 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9972 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9973 V = V.getOperand(0); 9974 return V; 9975 } 9976 9977 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9978 if (V.getOpcode() != ISD::XOR) 9979 return false; 9980 V = peekThroughBitcasts(V.getOperand(1)); 9981 unsigned NumBits = V.getScalarValueSizeInBits(); 9982 ConstantSDNode *C = 9983 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9984 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9985 } 9986 9987 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9988 bool AllowTruncation) { 9989 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9990 return CN; 9991 9992 // SplatVectors can truncate their operands. Ignore that case here unless 9993 // AllowTruncation is set. 9994 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9995 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9996 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9997 EVT CVT = CN->getValueType(0); 9998 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9999 if (AllowTruncation || CVT == VecEltVT) 10000 return CN; 10001 } 10002 } 10003 10004 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10005 BitVector UndefElements; 10006 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10007 10008 // BuildVectors can truncate their operands. Ignore that case here unless 10009 // AllowTruncation is set. 10010 if (CN && (UndefElements.none() || AllowUndefs)) { 10011 EVT CVT = CN->getValueType(0); 10012 EVT NSVT = N.getValueType().getScalarType(); 10013 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10014 if (AllowTruncation || (CVT == NSVT)) 10015 return CN; 10016 } 10017 } 10018 10019 return nullptr; 10020 } 10021 10022 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10023 bool AllowUndefs, 10024 bool AllowTruncation) { 10025 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10026 return CN; 10027 10028 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10029 BitVector UndefElements; 10030 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10031 10032 // BuildVectors can truncate their operands. Ignore that case here unless 10033 // AllowTruncation is set. 10034 if (CN && (UndefElements.none() || AllowUndefs)) { 10035 EVT CVT = CN->getValueType(0); 10036 EVT NSVT = N.getValueType().getScalarType(); 10037 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10038 if (AllowTruncation || (CVT == NSVT)) 10039 return CN; 10040 } 10041 } 10042 10043 return nullptr; 10044 } 10045 10046 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10047 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10048 return CN; 10049 10050 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10051 BitVector UndefElements; 10052 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10053 if (CN && (UndefElements.none() || AllowUndefs)) 10054 return CN; 10055 } 10056 10057 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10058 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10059 return CN; 10060 10061 return nullptr; 10062 } 10063 10064 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10065 const APInt &DemandedElts, 10066 bool AllowUndefs) { 10067 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10068 return CN; 10069 10070 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10071 BitVector UndefElements; 10072 ConstantFPSDNode *CN = 10073 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10074 if (CN && (UndefElements.none() || AllowUndefs)) 10075 return CN; 10076 } 10077 10078 return nullptr; 10079 } 10080 10081 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10082 // TODO: may want to use peekThroughBitcast() here. 10083 ConstantSDNode *C = 10084 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10085 return C && C->isNullValue(); 10086 } 10087 10088 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10089 // TODO: may want to use peekThroughBitcast() here. 10090 unsigned BitWidth = N.getScalarValueSizeInBits(); 10091 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10092 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10093 } 10094 10095 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10096 N = peekThroughBitcasts(N); 10097 unsigned BitWidth = N.getScalarValueSizeInBits(); 10098 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10099 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 10100 } 10101 10102 HandleSDNode::~HandleSDNode() { 10103 DropOperands(); 10104 } 10105 10106 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10107 const DebugLoc &DL, 10108 const GlobalValue *GA, EVT VT, 10109 int64_t o, unsigned TF) 10110 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10111 TheGlobal = GA; 10112 } 10113 10114 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10115 EVT VT, unsigned SrcAS, 10116 unsigned DestAS) 10117 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10118 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10119 10120 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10121 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10122 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10123 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10124 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10125 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10126 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10127 10128 // We check here that the size of the memory operand fits within the size of 10129 // the MMO. This is because the MMO might indicate only a possible address 10130 // range instead of specifying the affected memory addresses precisely. 10131 // TODO: Make MachineMemOperands aware of scalable vectors. 10132 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10133 "Size mismatch!"); 10134 } 10135 10136 /// Profile - Gather unique data for the node. 10137 /// 10138 void SDNode::Profile(FoldingSetNodeID &ID) const { 10139 AddNodeIDNode(ID, this); 10140 } 10141 10142 namespace { 10143 10144 struct EVTArray { 10145 std::vector<EVT> VTs; 10146 10147 EVTArray() { 10148 VTs.reserve(MVT::VALUETYPE_SIZE); 10149 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10150 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10151 } 10152 }; 10153 10154 } // end anonymous namespace 10155 10156 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10157 static ManagedStatic<EVTArray> SimpleVTArray; 10158 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10159 10160 /// getValueTypeList - Return a pointer to the specified value type. 10161 /// 10162 const EVT *SDNode::getValueTypeList(EVT VT) { 10163 if (VT.isExtended()) { 10164 sys::SmartScopedLock<true> Lock(*VTMutex); 10165 return &(*EVTs->insert(VT).first); 10166 } 10167 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10168 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10169 } 10170 10171 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10172 /// indicated value. This method ignores uses of other values defined by this 10173 /// operation. 10174 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10175 assert(Value < getNumValues() && "Bad value!"); 10176 10177 // TODO: Only iterate over uses of a given value of the node 10178 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10179 if (UI.getUse().getResNo() == Value) { 10180 if (NUses == 0) 10181 return false; 10182 --NUses; 10183 } 10184 } 10185 10186 // Found exactly the right number of uses? 10187 return NUses == 0; 10188 } 10189 10190 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10191 /// value. This method ignores uses of other values defined by this operation. 10192 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10193 assert(Value < getNumValues() && "Bad value!"); 10194 10195 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10196 if (UI.getUse().getResNo() == Value) 10197 return true; 10198 10199 return false; 10200 } 10201 10202 /// isOnlyUserOf - Return true if this node is the only use of N. 10203 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10204 bool Seen = false; 10205 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 10206 SDNode *User = *I; 10207 if (User == this) 10208 Seen = true; 10209 else 10210 return false; 10211 } 10212 10213 return Seen; 10214 } 10215 10216 /// Return true if the only users of N are contained in Nodes. 10217 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10218 bool Seen = false; 10219 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 10220 SDNode *User = *I; 10221 if (llvm::is_contained(Nodes, User)) 10222 Seen = true; 10223 else 10224 return false; 10225 } 10226 10227 return Seen; 10228 } 10229 10230 /// isOperand - Return true if this node is an operand of N. 10231 bool SDValue::isOperandOf(const SDNode *N) const { 10232 return is_contained(N->op_values(), *this); 10233 } 10234 10235 bool SDNode::isOperandOf(const SDNode *N) const { 10236 return any_of(N->op_values(), 10237 [this](SDValue Op) { return this == Op.getNode(); }); 10238 } 10239 10240 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10241 /// be a chain) reaches the specified operand without crossing any 10242 /// side-effecting instructions on any chain path. In practice, this looks 10243 /// through token factors and non-volatile loads. In order to remain efficient, 10244 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10245 /// 10246 /// Note that we only need to examine chains when we're searching for 10247 /// side-effects; SelectionDAG requires that all side-effects are represented 10248 /// by chains, even if another operand would force a specific ordering. This 10249 /// constraint is necessary to allow transformations like splitting loads. 10250 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10251 unsigned Depth) const { 10252 if (*this == Dest) return true; 10253 10254 // Don't search too deeply, we just want to be able to see through 10255 // TokenFactor's etc. 10256 if (Depth == 0) return false; 10257 10258 // If this is a token factor, all inputs to the TF happen in parallel. 10259 if (getOpcode() == ISD::TokenFactor) { 10260 // First, try a shallow search. 10261 if (is_contained((*this)->ops(), Dest)) { 10262 // We found the chain we want as an operand of this TokenFactor. 10263 // Essentially, we reach the chain without side-effects if we could 10264 // serialize the TokenFactor into a simple chain of operations with 10265 // Dest as the last operation. This is automatically true if the 10266 // chain has one use: there are no other ordering constraints. 10267 // If the chain has more than one use, we give up: some other 10268 // use of Dest might force a side-effect between Dest and the current 10269 // node. 10270 if (Dest.hasOneUse()) 10271 return true; 10272 } 10273 // Next, try a deep search: check whether every operand of the TokenFactor 10274 // reaches Dest. 10275 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10276 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10277 }); 10278 } 10279 10280 // Loads don't have side effects, look through them. 10281 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10282 if (Ld->isUnordered()) 10283 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10284 } 10285 return false; 10286 } 10287 10288 bool SDNode::hasPredecessor(const SDNode *N) const { 10289 SmallPtrSet<const SDNode *, 32> Visited; 10290 SmallVector<const SDNode *, 16> Worklist; 10291 Worklist.push_back(this); 10292 return hasPredecessorHelper(N, Visited, Worklist); 10293 } 10294 10295 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10296 this->Flags.intersectWith(Flags); 10297 } 10298 10299 SDValue 10300 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10301 ArrayRef<ISD::NodeType> CandidateBinOps, 10302 bool AllowPartials) { 10303 // The pattern must end in an extract from index 0. 10304 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10305 !isNullConstant(Extract->getOperand(1))) 10306 return SDValue(); 10307 10308 // Match against one of the candidate binary ops. 10309 SDValue Op = Extract->getOperand(0); 10310 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10311 return Op.getOpcode() == unsigned(BinOp); 10312 })) 10313 return SDValue(); 10314 10315 // Floating-point reductions may require relaxed constraints on the final step 10316 // of the reduction because they may reorder intermediate operations. 10317 unsigned CandidateBinOp = Op.getOpcode(); 10318 if (Op.getValueType().isFloatingPoint()) { 10319 SDNodeFlags Flags = Op->getFlags(); 10320 switch (CandidateBinOp) { 10321 case ISD::FADD: 10322 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10323 return SDValue(); 10324 break; 10325 default: 10326 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10327 } 10328 } 10329 10330 // Matching failed - attempt to see if we did enough stages that a partial 10331 // reduction from a subvector is possible. 10332 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10333 if (!AllowPartials || !Op) 10334 return SDValue(); 10335 EVT OpVT = Op.getValueType(); 10336 EVT OpSVT = OpVT.getScalarType(); 10337 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10338 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10339 return SDValue(); 10340 BinOp = (ISD::NodeType)CandidateBinOp; 10341 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10342 getVectorIdxConstant(0, SDLoc(Op))); 10343 }; 10344 10345 // At each stage, we're looking for something that looks like: 10346 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10347 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10348 // i32 undef, i32 undef, i32 undef, i32 undef> 10349 // %a = binop <8 x i32> %op, %s 10350 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10351 // we expect something like: 10352 // <4,5,6,7,u,u,u,u> 10353 // <2,3,u,u,u,u,u,u> 10354 // <1,u,u,u,u,u,u,u> 10355 // While a partial reduction match would be: 10356 // <2,3,u,u,u,u,u,u> 10357 // <1,u,u,u,u,u,u,u> 10358 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10359 SDValue PrevOp; 10360 for (unsigned i = 0; i < Stages; ++i) { 10361 unsigned MaskEnd = (1 << i); 10362 10363 if (Op.getOpcode() != CandidateBinOp) 10364 return PartialReduction(PrevOp, MaskEnd); 10365 10366 SDValue Op0 = Op.getOperand(0); 10367 SDValue Op1 = Op.getOperand(1); 10368 10369 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10370 if (Shuffle) { 10371 Op = Op1; 10372 } else { 10373 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10374 Op = Op0; 10375 } 10376 10377 // The first operand of the shuffle should be the same as the other operand 10378 // of the binop. 10379 if (!Shuffle || Shuffle->getOperand(0) != Op) 10380 return PartialReduction(PrevOp, MaskEnd); 10381 10382 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10383 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10384 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10385 return PartialReduction(PrevOp, MaskEnd); 10386 10387 PrevOp = Op; 10388 } 10389 10390 // Handle subvector reductions, which tend to appear after the shuffle 10391 // reduction stages. 10392 while (Op.getOpcode() == CandidateBinOp) { 10393 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10394 SDValue Op0 = Op.getOperand(0); 10395 SDValue Op1 = Op.getOperand(1); 10396 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10397 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10398 Op0.getOperand(0) != Op1.getOperand(0)) 10399 break; 10400 SDValue Src = Op0.getOperand(0); 10401 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10402 if (NumSrcElts != (2 * NumElts)) 10403 break; 10404 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10405 Op1.getConstantOperandAPInt(1) == NumElts) && 10406 !(Op1.getConstantOperandAPInt(1) == 0 && 10407 Op0.getConstantOperandAPInt(1) == NumElts)) 10408 break; 10409 Op = Src; 10410 } 10411 10412 BinOp = (ISD::NodeType)CandidateBinOp; 10413 return Op; 10414 } 10415 10416 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10417 assert(N->getNumValues() == 1 && 10418 "Can't unroll a vector with multiple results!"); 10419 10420 EVT VT = N->getValueType(0); 10421 unsigned NE = VT.getVectorNumElements(); 10422 EVT EltVT = VT.getVectorElementType(); 10423 SDLoc dl(N); 10424 10425 SmallVector<SDValue, 8> Scalars; 10426 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10427 10428 // If ResNE is 0, fully unroll the vector op. 10429 if (ResNE == 0) 10430 ResNE = NE; 10431 else if (NE > ResNE) 10432 NE = ResNE; 10433 10434 unsigned i; 10435 for (i= 0; i != NE; ++i) { 10436 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10437 SDValue Operand = N->getOperand(j); 10438 EVT OperandVT = Operand.getValueType(); 10439 if (OperandVT.isVector()) { 10440 // A vector operand; extract a single element. 10441 EVT OperandEltVT = OperandVT.getVectorElementType(); 10442 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10443 Operand, getVectorIdxConstant(i, dl)); 10444 } else { 10445 // A scalar operand; just use it as is. 10446 Operands[j] = Operand; 10447 } 10448 } 10449 10450 switch (N->getOpcode()) { 10451 default: { 10452 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10453 N->getFlags())); 10454 break; 10455 } 10456 case ISD::VSELECT: 10457 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10458 break; 10459 case ISD::SHL: 10460 case ISD::SRA: 10461 case ISD::SRL: 10462 case ISD::ROTL: 10463 case ISD::ROTR: 10464 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10465 getShiftAmountOperand(Operands[0].getValueType(), 10466 Operands[1]))); 10467 break; 10468 case ISD::SIGN_EXTEND_INREG: { 10469 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10470 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10471 Operands[0], 10472 getValueType(ExtVT))); 10473 } 10474 } 10475 } 10476 10477 for (; i < ResNE; ++i) 10478 Scalars.push_back(getUNDEF(EltVT)); 10479 10480 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10481 return getBuildVector(VecVT, dl, Scalars); 10482 } 10483 10484 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10485 SDNode *N, unsigned ResNE) { 10486 unsigned Opcode = N->getOpcode(); 10487 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10488 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10489 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10490 "Expected an overflow opcode"); 10491 10492 EVT ResVT = N->getValueType(0); 10493 EVT OvVT = N->getValueType(1); 10494 EVT ResEltVT = ResVT.getVectorElementType(); 10495 EVT OvEltVT = OvVT.getVectorElementType(); 10496 SDLoc dl(N); 10497 10498 // If ResNE is 0, fully unroll the vector op. 10499 unsigned NE = ResVT.getVectorNumElements(); 10500 if (ResNE == 0) 10501 ResNE = NE; 10502 else if (NE > ResNE) 10503 NE = ResNE; 10504 10505 SmallVector<SDValue, 8> LHSScalars; 10506 SmallVector<SDValue, 8> RHSScalars; 10507 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10508 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10509 10510 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10511 SDVTList VTs = getVTList(ResEltVT, SVT); 10512 SmallVector<SDValue, 8> ResScalars; 10513 SmallVector<SDValue, 8> OvScalars; 10514 for (unsigned i = 0; i < NE; ++i) { 10515 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10516 SDValue Ov = 10517 getSelect(dl, OvEltVT, Res.getValue(1), 10518 getBoolConstant(true, dl, OvEltVT, ResVT), 10519 getConstant(0, dl, OvEltVT)); 10520 10521 ResScalars.push_back(Res); 10522 OvScalars.push_back(Ov); 10523 } 10524 10525 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10526 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10527 10528 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10529 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10530 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10531 getBuildVector(NewOvVT, dl, OvScalars)); 10532 } 10533 10534 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10535 LoadSDNode *Base, 10536 unsigned Bytes, 10537 int Dist) const { 10538 if (LD->isVolatile() || Base->isVolatile()) 10539 return false; 10540 // TODO: probably too restrictive for atomics, revisit 10541 if (!LD->isSimple()) 10542 return false; 10543 if (LD->isIndexed() || Base->isIndexed()) 10544 return false; 10545 if (LD->getChain() != Base->getChain()) 10546 return false; 10547 EVT VT = LD->getValueType(0); 10548 if (VT.getSizeInBits() / 8 != Bytes) 10549 return false; 10550 10551 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10552 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10553 10554 int64_t Offset = 0; 10555 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10556 return (Dist * Bytes == Offset); 10557 return false; 10558 } 10559 10560 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10561 /// if it cannot be inferred. 10562 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10563 // If this is a GlobalAddress + cst, return the alignment. 10564 const GlobalValue *GV = nullptr; 10565 int64_t GVOffset = 0; 10566 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10567 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10568 KnownBits Known(PtrWidth); 10569 llvm::computeKnownBits(GV, Known, getDataLayout()); 10570 unsigned AlignBits = Known.countMinTrailingZeros(); 10571 if (AlignBits) 10572 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10573 } 10574 10575 // If this is a direct reference to a stack slot, use information about the 10576 // stack slot's alignment. 10577 int FrameIdx = INT_MIN; 10578 int64_t FrameOffset = 0; 10579 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10580 FrameIdx = FI->getIndex(); 10581 } else if (isBaseWithConstantOffset(Ptr) && 10582 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10583 // Handle FI+Cst 10584 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10585 FrameOffset = Ptr.getConstantOperandVal(1); 10586 } 10587 10588 if (FrameIdx != INT_MIN) { 10589 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10590 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10591 } 10592 10593 return None; 10594 } 10595 10596 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10597 /// which is split (or expanded) into two not necessarily identical pieces. 10598 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10599 // Currently all types are split in half. 10600 EVT LoVT, HiVT; 10601 if (!VT.isVector()) 10602 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10603 else 10604 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10605 10606 return std::make_pair(LoVT, HiVT); 10607 } 10608 10609 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10610 /// type, dependent on an enveloping VT that has been split into two identical 10611 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10612 std::pair<EVT, EVT> 10613 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10614 bool *HiIsEmpty) const { 10615 EVT EltTp = VT.getVectorElementType(); 10616 // Examples: 10617 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10618 // custom VL=9 with enveloping VL=8/8 yields 8/1 10619 // custom VL=10 with enveloping VL=8/8 yields 8/2 10620 // etc. 10621 ElementCount VTNumElts = VT.getVectorElementCount(); 10622 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10623 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10624 "Mixing fixed width and scalable vectors when enveloping a type"); 10625 EVT LoVT, HiVT; 10626 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10627 LoVT = EnvVT; 10628 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10629 *HiIsEmpty = false; 10630 } else { 10631 // Flag that hi type has zero storage size, but return split envelop type 10632 // (this would be easier if vector types with zero elements were allowed). 10633 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10634 HiVT = EnvVT; 10635 *HiIsEmpty = true; 10636 } 10637 return std::make_pair(LoVT, HiVT); 10638 } 10639 10640 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10641 /// low/high part. 10642 std::pair<SDValue, SDValue> 10643 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10644 const EVT &HiVT) { 10645 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10646 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10647 "Splitting vector with an invalid mixture of fixed and scalable " 10648 "vector types"); 10649 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10650 N.getValueType().getVectorMinNumElements() && 10651 "More vector elements requested than available!"); 10652 SDValue Lo, Hi; 10653 Lo = 10654 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10655 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10656 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10657 // IDX with the runtime scaling factor of the result vector type. For 10658 // fixed-width result vectors, that runtime scaling factor is 1. 10659 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10660 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10661 return std::make_pair(Lo, Hi); 10662 } 10663 10664 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10665 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10666 EVT VT = N.getValueType(); 10667 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10668 NextPowerOf2(VT.getVectorNumElements())); 10669 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10670 getVectorIdxConstant(0, DL)); 10671 } 10672 10673 void SelectionDAG::ExtractVectorElements(SDValue Op, 10674 SmallVectorImpl<SDValue> &Args, 10675 unsigned Start, unsigned Count, 10676 EVT EltVT) { 10677 EVT VT = Op.getValueType(); 10678 if (Count == 0) 10679 Count = VT.getVectorNumElements(); 10680 if (EltVT == EVT()) 10681 EltVT = VT.getVectorElementType(); 10682 SDLoc SL(Op); 10683 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10684 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10685 getVectorIdxConstant(i, SL))); 10686 } 10687 } 10688 10689 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10690 unsigned GlobalAddressSDNode::getAddressSpace() const { 10691 return getGlobal()->getType()->getAddressSpace(); 10692 } 10693 10694 Type *ConstantPoolSDNode::getType() const { 10695 if (isMachineConstantPoolEntry()) 10696 return Val.MachineCPVal->getType(); 10697 return Val.ConstVal->getType(); 10698 } 10699 10700 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10701 unsigned &SplatBitSize, 10702 bool &HasAnyUndefs, 10703 unsigned MinSplatBits, 10704 bool IsBigEndian) const { 10705 EVT VT = getValueType(0); 10706 assert(VT.isVector() && "Expected a vector type"); 10707 unsigned VecWidth = VT.getSizeInBits(); 10708 if (MinSplatBits > VecWidth) 10709 return false; 10710 10711 // FIXME: The widths are based on this node's type, but build vectors can 10712 // truncate their operands. 10713 SplatValue = APInt(VecWidth, 0); 10714 SplatUndef = APInt(VecWidth, 0); 10715 10716 // Get the bits. Bits with undefined values (when the corresponding element 10717 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10718 // in SplatValue. If any of the values are not constant, give up and return 10719 // false. 10720 unsigned int NumOps = getNumOperands(); 10721 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10722 unsigned EltWidth = VT.getScalarSizeInBits(); 10723 10724 for (unsigned j = 0; j < NumOps; ++j) { 10725 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10726 SDValue OpVal = getOperand(i); 10727 unsigned BitPos = j * EltWidth; 10728 10729 if (OpVal.isUndef()) 10730 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10731 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10732 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10733 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10734 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10735 else 10736 return false; 10737 } 10738 10739 // The build_vector is all constants or undefs. Find the smallest element 10740 // size that splats the vector. 10741 HasAnyUndefs = (SplatUndef != 0); 10742 10743 // FIXME: This does not work for vectors with elements less than 8 bits. 10744 while (VecWidth > 8) { 10745 unsigned HalfSize = VecWidth / 2; 10746 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10747 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10748 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10749 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10750 10751 // If the two halves do not match (ignoring undef bits), stop here. 10752 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10753 MinSplatBits > HalfSize) 10754 break; 10755 10756 SplatValue = HighValue | LowValue; 10757 SplatUndef = HighUndef & LowUndef; 10758 10759 VecWidth = HalfSize; 10760 } 10761 10762 SplatBitSize = VecWidth; 10763 return true; 10764 } 10765 10766 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10767 BitVector *UndefElements) const { 10768 unsigned NumOps = getNumOperands(); 10769 if (UndefElements) { 10770 UndefElements->clear(); 10771 UndefElements->resize(NumOps); 10772 } 10773 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10774 if (!DemandedElts) 10775 return SDValue(); 10776 SDValue Splatted; 10777 for (unsigned i = 0; i != NumOps; ++i) { 10778 if (!DemandedElts[i]) 10779 continue; 10780 SDValue Op = getOperand(i); 10781 if (Op.isUndef()) { 10782 if (UndefElements) 10783 (*UndefElements)[i] = true; 10784 } else if (!Splatted) { 10785 Splatted = Op; 10786 } else if (Splatted != Op) { 10787 return SDValue(); 10788 } 10789 } 10790 10791 if (!Splatted) { 10792 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10793 assert(getOperand(FirstDemandedIdx).isUndef() && 10794 "Can only have a splat without a constant for all undefs."); 10795 return getOperand(FirstDemandedIdx); 10796 } 10797 10798 return Splatted; 10799 } 10800 10801 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10802 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10803 return getSplatValue(DemandedElts, UndefElements); 10804 } 10805 10806 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10807 SmallVectorImpl<SDValue> &Sequence, 10808 BitVector *UndefElements) const { 10809 unsigned NumOps = getNumOperands(); 10810 Sequence.clear(); 10811 if (UndefElements) { 10812 UndefElements->clear(); 10813 UndefElements->resize(NumOps); 10814 } 10815 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10816 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10817 return false; 10818 10819 // Set the undefs even if we don't find a sequence (like getSplatValue). 10820 if (UndefElements) 10821 for (unsigned I = 0; I != NumOps; ++I) 10822 if (DemandedElts[I] && getOperand(I).isUndef()) 10823 (*UndefElements)[I] = true; 10824 10825 // Iteratively widen the sequence length looking for repetitions. 10826 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10827 Sequence.append(SeqLen, SDValue()); 10828 for (unsigned I = 0; I != NumOps; ++I) { 10829 if (!DemandedElts[I]) 10830 continue; 10831 SDValue &SeqOp = Sequence[I % SeqLen]; 10832 SDValue Op = getOperand(I); 10833 if (Op.isUndef()) { 10834 if (!SeqOp) 10835 SeqOp = Op; 10836 continue; 10837 } 10838 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10839 Sequence.clear(); 10840 break; 10841 } 10842 SeqOp = Op; 10843 } 10844 if (!Sequence.empty()) 10845 return true; 10846 } 10847 10848 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10849 return false; 10850 } 10851 10852 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10853 BitVector *UndefElements) const { 10854 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10855 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10856 } 10857 10858 ConstantSDNode * 10859 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10860 BitVector *UndefElements) const { 10861 return dyn_cast_or_null<ConstantSDNode>( 10862 getSplatValue(DemandedElts, UndefElements)); 10863 } 10864 10865 ConstantSDNode * 10866 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10867 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10868 } 10869 10870 ConstantFPSDNode * 10871 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10872 BitVector *UndefElements) const { 10873 return dyn_cast_or_null<ConstantFPSDNode>( 10874 getSplatValue(DemandedElts, UndefElements)); 10875 } 10876 10877 ConstantFPSDNode * 10878 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10879 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10880 } 10881 10882 int32_t 10883 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10884 uint32_t BitWidth) const { 10885 if (ConstantFPSDNode *CN = 10886 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10887 bool IsExact; 10888 APSInt IntVal(BitWidth); 10889 const APFloat &APF = CN->getValueAPF(); 10890 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10891 APFloat::opOK || 10892 !IsExact) 10893 return -1; 10894 10895 return IntVal.exactLogBase2(); 10896 } 10897 return -1; 10898 } 10899 10900 bool BuildVectorSDNode::isConstant() const { 10901 for (const SDValue &Op : op_values()) { 10902 unsigned Opc = Op.getOpcode(); 10903 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10904 return false; 10905 } 10906 return true; 10907 } 10908 10909 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10910 // Find the first non-undef value in the shuffle mask. 10911 unsigned i, e; 10912 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10913 /* search */; 10914 10915 // If all elements are undefined, this shuffle can be considered a splat 10916 // (although it should eventually get simplified away completely). 10917 if (i == e) 10918 return true; 10919 10920 // Make sure all remaining elements are either undef or the same as the first 10921 // non-undef value. 10922 for (int Idx = Mask[i]; i != e; ++i) 10923 if (Mask[i] >= 0 && Mask[i] != Idx) 10924 return false; 10925 return true; 10926 } 10927 10928 // Returns the SDNode if it is a constant integer BuildVector 10929 // or constant integer. 10930 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10931 if (isa<ConstantSDNode>(N)) 10932 return N.getNode(); 10933 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10934 return N.getNode(); 10935 // Treat a GlobalAddress supporting constant offset folding as a 10936 // constant integer. 10937 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10938 if (GA->getOpcode() == ISD::GlobalAddress && 10939 TLI->isOffsetFoldingLegal(GA)) 10940 return GA; 10941 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10942 isa<ConstantSDNode>(N.getOperand(0))) 10943 return N.getNode(); 10944 return nullptr; 10945 } 10946 10947 // Returns the SDNode if it is a constant float BuildVector 10948 // or constant float. 10949 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10950 if (isa<ConstantFPSDNode>(N)) 10951 return N.getNode(); 10952 10953 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10954 return N.getNode(); 10955 10956 return nullptr; 10957 } 10958 10959 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10960 assert(!Node->OperandList && "Node already has operands"); 10961 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10962 "too many operands to fit into SDNode"); 10963 SDUse *Ops = OperandRecycler.allocate( 10964 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10965 10966 bool IsDivergent = false; 10967 for (unsigned I = 0; I != Vals.size(); ++I) { 10968 Ops[I].setUser(Node); 10969 Ops[I].setInitial(Vals[I]); 10970 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10971 IsDivergent |= Ops[I].getNode()->isDivergent(); 10972 } 10973 Node->NumOperands = Vals.size(); 10974 Node->OperandList = Ops; 10975 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10976 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10977 Node->SDNodeBits.IsDivergent = IsDivergent; 10978 } 10979 checkForCycles(Node); 10980 } 10981 10982 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10983 SmallVectorImpl<SDValue> &Vals) { 10984 size_t Limit = SDNode::getMaxNumOperands(); 10985 while (Vals.size() > Limit) { 10986 unsigned SliceIdx = Vals.size() - Limit; 10987 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10988 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10989 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10990 Vals.emplace_back(NewTF); 10991 } 10992 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10993 } 10994 10995 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10996 EVT VT, SDNodeFlags Flags) { 10997 switch (Opcode) { 10998 default: 10999 return SDValue(); 11000 case ISD::ADD: 11001 case ISD::OR: 11002 case ISD::XOR: 11003 case ISD::UMAX: 11004 return getConstant(0, DL, VT); 11005 case ISD::MUL: 11006 return getConstant(1, DL, VT); 11007 case ISD::AND: 11008 case ISD::UMIN: 11009 return getAllOnesConstant(DL, VT); 11010 case ISD::SMAX: 11011 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11012 case ISD::SMIN: 11013 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11014 case ISD::FADD: 11015 return getConstantFP(-0.0, DL, VT); 11016 case ISD::FMUL: 11017 return getConstantFP(1.0, DL, VT); 11018 case ISD::FMINNUM: 11019 case ISD::FMAXNUM: { 11020 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11021 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11022 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11023 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11024 APFloat::getLargest(Semantics); 11025 if (Opcode == ISD::FMAXNUM) 11026 NeutralAF.changeSign(); 11027 11028 return getConstantFP(NeutralAF, DL, VT); 11029 } 11030 } 11031 } 11032 11033 #ifndef NDEBUG 11034 static void checkForCyclesHelper(const SDNode *N, 11035 SmallPtrSetImpl<const SDNode*> &Visited, 11036 SmallPtrSetImpl<const SDNode*> &Checked, 11037 const llvm::SelectionDAG *DAG) { 11038 // If this node has already been checked, don't check it again. 11039 if (Checked.count(N)) 11040 return; 11041 11042 // If a node has already been visited on this depth-first walk, reject it as 11043 // a cycle. 11044 if (!Visited.insert(N).second) { 11045 errs() << "Detected cycle in SelectionDAG\n"; 11046 dbgs() << "Offending node:\n"; 11047 N->dumprFull(DAG); dbgs() << "\n"; 11048 abort(); 11049 } 11050 11051 for (const SDValue &Op : N->op_values()) 11052 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11053 11054 Checked.insert(N); 11055 Visited.erase(N); 11056 } 11057 #endif 11058 11059 void llvm::checkForCycles(const llvm::SDNode *N, 11060 const llvm::SelectionDAG *DAG, 11061 bool force) { 11062 #ifndef NDEBUG 11063 bool check = force; 11064 #ifdef EXPENSIVE_CHECKS 11065 check = true; 11066 #endif // EXPENSIVE_CHECKS 11067 if (check) { 11068 assert(N && "Checking nonexistent SDNode"); 11069 SmallPtrSet<const SDNode*, 32> visited; 11070 SmallPtrSet<const SDNode*, 32> checked; 11071 checkForCyclesHelper(N, visited, checked, DAG); 11072 } 11073 #endif // !NDEBUG 11074 } 11075 11076 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11077 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11078 } 11079