1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (LHS.getOpcode() != RHS.getOpcode() ||
346       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
347        LHS.getOpcode() != ISD::SPLAT_VECTOR))
348     return false;
349 
350   EVT SVT = LHS.getValueType().getScalarType();
351   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
352     SDValue LHSOp = LHS.getOperand(i);
353     SDValue RHSOp = RHS.getOperand(i);
354     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
355     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
356     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
357     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
358     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
359       return false;
360     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
361                                LHSOp.getValueType() != RHSOp.getValueType()))
362       return false;
363     if (!Match(LHSCst, RHSCst))
364       return false;
365   }
366   return true;
367 }
368 
369 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
370   switch (VecReduceOpcode) {
371   default:
372     llvm_unreachable("Expected VECREDUCE opcode");
373   case ISD::VECREDUCE_FADD:
374   case ISD::VECREDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378     return ISD::FMUL;
379   case ISD::VECREDUCE_ADD:
380     return ISD::ADD;
381   case ISD::VECREDUCE_MUL:
382     return ISD::MUL;
383   case ISD::VECREDUCE_AND:
384     return ISD::AND;
385   case ISD::VECREDUCE_OR:
386     return ISD::OR;
387   case ISD::VECREDUCE_XOR:
388     return ISD::XOR;
389   case ISD::VECREDUCE_SMAX:
390     return ISD::SMAX;
391   case ISD::VECREDUCE_SMIN:
392     return ISD::SMIN;
393   case ISD::VECREDUCE_UMAX:
394     return ISD::UMAX;
395   case ISD::VECREDUCE_UMIN:
396     return ISD::UMIN;
397   case ISD::VECREDUCE_FMAX:
398     return ISD::FMAXNUM;
399   case ISD::VECREDUCE_FMIN:
400     return ISD::FMINNUM;
401   }
402 }
403 
404 bool ISD::isVPOpcode(unsigned Opcode) {
405   switch (Opcode) {
406   default:
407     return false;
408 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
409   case ISD::SDOPC:                                                             \
410     return true;
411 #include "llvm/IR/VPIntrinsics.def"
412   }
413 }
414 
415 /// The operand position of the vector mask.
416 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
417   switch (Opcode) {
418   default:
419     return None;
420 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
421   case ISD::SDOPC:                                                             \
422     return MASKPOS;
423 #include "llvm/IR/VPIntrinsics.def"
424   }
425 }
426 
427 /// The operand position of the explicit vector length parameter.
428 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     return None;
432 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
433   case ISD::SDOPC:                                                             \
434     return EVLPOS;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437 }
438 
439 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
440   switch (ExtType) {
441   case ISD::EXTLOAD:
442     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
443   case ISD::SEXTLOAD:
444     return ISD::SIGN_EXTEND;
445   case ISD::ZEXTLOAD:
446     return ISD::ZERO_EXTEND;
447   default:
448     break;
449   }
450 
451   llvm_unreachable("Invalid LoadExtType");
452 }
453 
454 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
455   // To perform this operation, we just need to swap the L and G bits of the
456   // operation.
457   unsigned OldL = (Operation >> 2) & 1;
458   unsigned OldG = (Operation >> 1) & 1;
459   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
460                        (OldL << 1) |       // New G bit
461                        (OldG << 2));       // New L bit.
462 }
463 
464 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
465   unsigned Operation = Op;
466   if (isIntegerLike)
467     Operation ^= 7;   // Flip L, G, E bits, but not U.
468   else
469     Operation ^= 15;  // Flip all of the condition bits.
470 
471   if (Operation > ISD::SETTRUE2)
472     Operation &= ~8;  // Don't let N and U bits get set.
473 
474   return ISD::CondCode(Operation);
475 }
476 
477 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
478   return getSetCCInverseImpl(Op, Type.isInteger());
479 }
480 
481 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
482                                                bool isIntegerLike) {
483   return getSetCCInverseImpl(Op, isIntegerLike);
484 }
485 
486 /// For an integer comparison, return 1 if the comparison is a signed operation
487 /// and 2 if the result is an unsigned comparison. Return zero if the operation
488 /// does not depend on the sign of the input (setne and seteq).
489 static int isSignedOp(ISD::CondCode Opcode) {
490   switch (Opcode) {
491   default: llvm_unreachable("Illegal integer setcc operation!");
492   case ISD::SETEQ:
493   case ISD::SETNE: return 0;
494   case ISD::SETLT:
495   case ISD::SETLE:
496   case ISD::SETGT:
497   case ISD::SETGE: return 1;
498   case ISD::SETULT:
499   case ISD::SETULE:
500   case ISD::SETUGT:
501   case ISD::SETUGE: return 2;
502   }
503 }
504 
505 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
506                                        EVT Type) {
507   bool IsInteger = Type.isInteger();
508   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
509     // Cannot fold a signed integer setcc with an unsigned integer setcc.
510     return ISD::SETCC_INVALID;
511 
512   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
513 
514   // If the N and U bits get set, then the resultant comparison DOES suddenly
515   // care about orderedness, and it is true when ordered.
516   if (Op > ISD::SETTRUE2)
517     Op &= ~16;     // Clear the U bit if the N bit is set.
518 
519   // Canonicalize illegal integer setcc's.
520   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
521     Op = ISD::SETNE;
522 
523   return ISD::CondCode(Op);
524 }
525 
526 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
527                                         EVT Type) {
528   bool IsInteger = Type.isInteger();
529   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
530     // Cannot fold a signed setcc with an unsigned setcc.
531     return ISD::SETCC_INVALID;
532 
533   // Combine all of the condition bits.
534   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
535 
536   // Canonicalize illegal integer setcc's.
537   if (IsInteger) {
538     switch (Result) {
539     default: break;
540     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
541     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
542     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
543     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
544     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
545     }
546   }
547 
548   return Result;
549 }
550 
551 //===----------------------------------------------------------------------===//
552 //                           SDNode Profile Support
553 //===----------------------------------------------------------------------===//
554 
555 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
556 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
557   ID.AddInteger(OpC);
558 }
559 
560 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
561 /// solely with their pointer.
562 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
563   ID.AddPointer(VTList.VTs);
564 }
565 
566 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
567 static void AddNodeIDOperands(FoldingSetNodeID &ID,
568                               ArrayRef<SDValue> Ops) {
569   for (auto& Op : Ops) {
570     ID.AddPointer(Op.getNode());
571     ID.AddInteger(Op.getResNo());
572   }
573 }
574 
575 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
576 static void AddNodeIDOperands(FoldingSetNodeID &ID,
577                               ArrayRef<SDUse> Ops) {
578   for (auto& Op : Ops) {
579     ID.AddPointer(Op.getNode());
580     ID.AddInteger(Op.getResNo());
581   }
582 }
583 
584 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
585                           SDVTList VTList, ArrayRef<SDValue> OpList) {
586   AddNodeIDOpcode(ID, OpC);
587   AddNodeIDValueTypes(ID, VTList);
588   AddNodeIDOperands(ID, OpList);
589 }
590 
591 /// If this is an SDNode with special info, add this info to the NodeID data.
592 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
593   switch (N->getOpcode()) {
594   case ISD::TargetExternalSymbol:
595   case ISD::ExternalSymbol:
596   case ISD::MCSymbol:
597     llvm_unreachable("Should only be used on nodes with operands");
598   default: break;  // Normal nodes don't need extra info.
599   case ISD::TargetConstant:
600   case ISD::Constant: {
601     const ConstantSDNode *C = cast<ConstantSDNode>(N);
602     ID.AddPointer(C->getConstantIntValue());
603     ID.AddBoolean(C->isOpaque());
604     break;
605   }
606   case ISD::TargetConstantFP:
607   case ISD::ConstantFP:
608     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
609     break;
610   case ISD::TargetGlobalAddress:
611   case ISD::GlobalAddress:
612   case ISD::TargetGlobalTLSAddress:
613   case ISD::GlobalTLSAddress: {
614     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
615     ID.AddPointer(GA->getGlobal());
616     ID.AddInteger(GA->getOffset());
617     ID.AddInteger(GA->getTargetFlags());
618     break;
619   }
620   case ISD::BasicBlock:
621     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
622     break;
623   case ISD::Register:
624     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
625     break;
626   case ISD::RegisterMask:
627     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
628     break;
629   case ISD::SRCVALUE:
630     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
631     break;
632   case ISD::FrameIndex:
633   case ISD::TargetFrameIndex:
634     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
635     break;
636   case ISD::LIFETIME_START:
637   case ISD::LIFETIME_END:
638     if (cast<LifetimeSDNode>(N)->hasOffset()) {
639       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
640       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
641     }
642     break;
643   case ISD::PSEUDO_PROBE:
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
645     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
646     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
647     break;
648   case ISD::JumpTable:
649   case ISD::TargetJumpTable:
650     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
651     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
652     break;
653   case ISD::ConstantPool:
654   case ISD::TargetConstantPool: {
655     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
656     ID.AddInteger(CP->getAlign().value());
657     ID.AddInteger(CP->getOffset());
658     if (CP->isMachineConstantPoolEntry())
659       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
660     else
661       ID.AddPointer(CP->getConstVal());
662     ID.AddInteger(CP->getTargetFlags());
663     break;
664   }
665   case ISD::TargetIndex: {
666     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
667     ID.AddInteger(TI->getIndex());
668     ID.AddInteger(TI->getOffset());
669     ID.AddInteger(TI->getTargetFlags());
670     break;
671   }
672   case ISD::LOAD: {
673     const LoadSDNode *LD = cast<LoadSDNode>(N);
674     ID.AddInteger(LD->getMemoryVT().getRawBits());
675     ID.AddInteger(LD->getRawSubclassData());
676     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
677     break;
678   }
679   case ISD::STORE: {
680     const StoreSDNode *ST = cast<StoreSDNode>(N);
681     ID.AddInteger(ST->getMemoryVT().getRawBits());
682     ID.AddInteger(ST->getRawSubclassData());
683     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
684     break;
685   }
686   case ISD::VP_LOAD: {
687     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
688     ID.AddInteger(ELD->getMemoryVT().getRawBits());
689     ID.AddInteger(ELD->getRawSubclassData());
690     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
691     break;
692   }
693   case ISD::VP_STORE: {
694     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
695     ID.AddInteger(EST->getMemoryVT().getRawBits());
696     ID.AddInteger(EST->getRawSubclassData());
697     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
698     break;
699   }
700   case ISD::VP_GATHER: {
701     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
702     ID.AddInteger(EG->getMemoryVT().getRawBits());
703     ID.AddInteger(EG->getRawSubclassData());
704     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
705     break;
706   }
707   case ISD::VP_SCATTER: {
708     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
709     ID.AddInteger(ES->getMemoryVT().getRawBits());
710     ID.AddInteger(ES->getRawSubclassData());
711     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
712     break;
713   }
714   case ISD::MLOAD: {
715     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
716     ID.AddInteger(MLD->getMemoryVT().getRawBits());
717     ID.AddInteger(MLD->getRawSubclassData());
718     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
719     break;
720   }
721   case ISD::MSTORE: {
722     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
723     ID.AddInteger(MST->getMemoryVT().getRawBits());
724     ID.AddInteger(MST->getRawSubclassData());
725     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
726     break;
727   }
728   case ISD::MGATHER: {
729     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
730     ID.AddInteger(MG->getMemoryVT().getRawBits());
731     ID.AddInteger(MG->getRawSubclassData());
732     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
733     break;
734   }
735   case ISD::MSCATTER: {
736     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
737     ID.AddInteger(MS->getMemoryVT().getRawBits());
738     ID.AddInteger(MS->getRawSubclassData());
739     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
740     break;
741   }
742   case ISD::ATOMIC_CMP_SWAP:
743   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
744   case ISD::ATOMIC_SWAP:
745   case ISD::ATOMIC_LOAD_ADD:
746   case ISD::ATOMIC_LOAD_SUB:
747   case ISD::ATOMIC_LOAD_AND:
748   case ISD::ATOMIC_LOAD_CLR:
749   case ISD::ATOMIC_LOAD_OR:
750   case ISD::ATOMIC_LOAD_XOR:
751   case ISD::ATOMIC_LOAD_NAND:
752   case ISD::ATOMIC_LOAD_MIN:
753   case ISD::ATOMIC_LOAD_MAX:
754   case ISD::ATOMIC_LOAD_UMIN:
755   case ISD::ATOMIC_LOAD_UMAX:
756   case ISD::ATOMIC_LOAD:
757   case ISD::ATOMIC_STORE: {
758     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
759     ID.AddInteger(AT->getMemoryVT().getRawBits());
760     ID.AddInteger(AT->getRawSubclassData());
761     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
762     break;
763   }
764   case ISD::PREFETCH: {
765     const MemSDNode *PF = cast<MemSDNode>(N);
766     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
767     break;
768   }
769   case ISD::VECTOR_SHUFFLE: {
770     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
771     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
772          i != e; ++i)
773       ID.AddInteger(SVN->getMaskElt(i));
774     break;
775   }
776   case ISD::TargetBlockAddress:
777   case ISD::BlockAddress: {
778     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
779     ID.AddPointer(BA->getBlockAddress());
780     ID.AddInteger(BA->getOffset());
781     ID.AddInteger(BA->getTargetFlags());
782     break;
783   }
784   } // end switch (N->getOpcode())
785 
786   // Target specific memory nodes could also have address spaces to check.
787   if (N->isTargetMemoryOpcode())
788     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
789 }
790 
791 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
792 /// data.
793 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
794   AddNodeIDOpcode(ID, N->getOpcode());
795   // Add the return value info.
796   AddNodeIDValueTypes(ID, N->getVTList());
797   // Add the operand info.
798   AddNodeIDOperands(ID, N->ops());
799 
800   // Handle SDNode leafs with special info.
801   AddNodeIDCustom(ID, N);
802 }
803 
804 //===----------------------------------------------------------------------===//
805 //                              SelectionDAG Class
806 //===----------------------------------------------------------------------===//
807 
808 /// doNotCSE - Return true if CSE should not be performed for this node.
809 static bool doNotCSE(SDNode *N) {
810   if (N->getValueType(0) == MVT::Glue)
811     return true; // Never CSE anything that produces a flag.
812 
813   switch (N->getOpcode()) {
814   default: break;
815   case ISD::HANDLENODE:
816   case ISD::EH_LABEL:
817     return true;   // Never CSE these nodes.
818   }
819 
820   // Check that remaining values produced are not flags.
821   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
822     if (N->getValueType(i) == MVT::Glue)
823       return true; // Never CSE anything that produces a flag.
824 
825   return false;
826 }
827 
828 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
829 /// SelectionDAG.
830 void SelectionDAG::RemoveDeadNodes() {
831   // Create a dummy node (which is not added to allnodes), that adds a reference
832   // to the root node, preventing it from being deleted.
833   HandleSDNode Dummy(getRoot());
834 
835   SmallVector<SDNode*, 128> DeadNodes;
836 
837   // Add all obviously-dead nodes to the DeadNodes worklist.
838   for (SDNode &Node : allnodes())
839     if (Node.use_empty())
840       DeadNodes.push_back(&Node);
841 
842   RemoveDeadNodes(DeadNodes);
843 
844   // If the root changed (e.g. it was a dead load, update the root).
845   setRoot(Dummy.getValue());
846 }
847 
848 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
849 /// given list, and any nodes that become unreachable as a result.
850 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
851 
852   // Process the worklist, deleting the nodes and adding their uses to the
853   // worklist.
854   while (!DeadNodes.empty()) {
855     SDNode *N = DeadNodes.pop_back_val();
856     // Skip to next node if we've already managed to delete the node. This could
857     // happen if replacing a node causes a node previously added to the node to
858     // be deleted.
859     if (N->getOpcode() == ISD::DELETED_NODE)
860       continue;
861 
862     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
863       DUL->NodeDeleted(N, nullptr);
864 
865     // Take the node out of the appropriate CSE map.
866     RemoveNodeFromCSEMaps(N);
867 
868     // Next, brutally remove the operand list.  This is safe to do, as there are
869     // no cycles in the graph.
870     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
871       SDUse &Use = *I++;
872       SDNode *Operand = Use.getNode();
873       Use.set(SDValue());
874 
875       // Now that we removed this operand, see if there are no uses of it left.
876       if (Operand->use_empty())
877         DeadNodes.push_back(Operand);
878     }
879 
880     DeallocateNode(N);
881   }
882 }
883 
884 void SelectionDAG::RemoveDeadNode(SDNode *N){
885   SmallVector<SDNode*, 16> DeadNodes(1, N);
886 
887   // Create a dummy node that adds a reference to the root node, preventing
888   // it from being deleted.  (This matters if the root is an operand of the
889   // dead node.)
890   HandleSDNode Dummy(getRoot());
891 
892   RemoveDeadNodes(DeadNodes);
893 }
894 
895 void SelectionDAG::DeleteNode(SDNode *N) {
896   // First take this out of the appropriate CSE map.
897   RemoveNodeFromCSEMaps(N);
898 
899   // Finally, remove uses due to operands of this node, remove from the
900   // AllNodes list, and delete the node.
901   DeleteNodeNotInCSEMaps(N);
902 }
903 
904 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
905   assert(N->getIterator() != AllNodes.begin() &&
906          "Cannot delete the entry node!");
907   assert(N->use_empty() && "Cannot delete a node that is not dead!");
908 
909   // Drop all of the operands and decrement used node's use counts.
910   N->DropOperands();
911 
912   DeallocateNode(N);
913 }
914 
915 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
916   assert(!(V->isVariadic() && isParameter));
917   if (isParameter)
918     ByvalParmDbgValues.push_back(V);
919   else
920     DbgValues.push_back(V);
921   for (const SDNode *Node : V->getSDNodes())
922     if (Node)
923       DbgValMap[Node].push_back(V);
924 }
925 
926 void SDDbgInfo::erase(const SDNode *Node) {
927   DbgValMapType::iterator I = DbgValMap.find(Node);
928   if (I == DbgValMap.end())
929     return;
930   for (auto &Val: I->second)
931     Val->setIsInvalidated();
932   DbgValMap.erase(I);
933 }
934 
935 void SelectionDAG::DeallocateNode(SDNode *N) {
936   // If we have operands, deallocate them.
937   removeOperands(N);
938 
939   NodeAllocator.Deallocate(AllNodes.remove(N));
940 
941   // Set the opcode to DELETED_NODE to help catch bugs when node
942   // memory is reallocated.
943   // FIXME: There are places in SDag that have grown a dependency on the opcode
944   // value in the released node.
945   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
946   N->NodeType = ISD::DELETED_NODE;
947 
948   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
949   // them and forget about that node.
950   DbgInfo->erase(N);
951 }
952 
953 #ifndef NDEBUG
954 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
955 static void VerifySDNode(SDNode *N) {
956   switch (N->getOpcode()) {
957   default:
958     break;
959   case ISD::BUILD_PAIR: {
960     EVT VT = N->getValueType(0);
961     assert(N->getNumValues() == 1 && "Too many results!");
962     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
963            "Wrong return type!");
964     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
965     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
966            "Mismatched operand types!");
967     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
968            "Wrong operand type!");
969     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
970            "Wrong return type size");
971     break;
972   }
973   case ISD::BUILD_VECTOR: {
974     assert(N->getNumValues() == 1 && "Too many results!");
975     assert(N->getValueType(0).isVector() && "Wrong return type!");
976     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
977            "Wrong number of operands!");
978     EVT EltVT = N->getValueType(0).getVectorElementType();
979     for (const SDUse &Op : N->ops()) {
980       assert((Op.getValueType() == EltVT ||
981               (EltVT.isInteger() && Op.getValueType().isInteger() &&
982                EltVT.bitsLE(Op.getValueType()))) &&
983              "Wrong operand type!");
984       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
985              "Operands must all have the same type");
986     }
987     break;
988   }
989   }
990 }
991 #endif // NDEBUG
992 
993 /// Insert a newly allocated node into the DAG.
994 ///
995 /// Handles insertion into the all nodes list and CSE map, as well as
996 /// verification and other common operations when a new node is allocated.
997 void SelectionDAG::InsertNode(SDNode *N) {
998   AllNodes.push_back(N);
999 #ifndef NDEBUG
1000   N->PersistentId = NextPersistentId++;
1001   VerifySDNode(N);
1002 #endif
1003   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1004     DUL->NodeInserted(N);
1005 }
1006 
1007 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1008 /// correspond to it.  This is useful when we're about to delete or repurpose
1009 /// the node.  We don't want future request for structurally identical nodes
1010 /// to return N anymore.
1011 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1012   bool Erased = false;
1013   switch (N->getOpcode()) {
1014   case ISD::HANDLENODE: return false;  // noop.
1015   case ISD::CONDCODE:
1016     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1017            "Cond code doesn't exist!");
1018     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1019     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1020     break;
1021   case ISD::ExternalSymbol:
1022     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1023     break;
1024   case ISD::TargetExternalSymbol: {
1025     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1026     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1027         ESN->getSymbol(), ESN->getTargetFlags()));
1028     break;
1029   }
1030   case ISD::MCSymbol: {
1031     auto *MCSN = cast<MCSymbolSDNode>(N);
1032     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1033     break;
1034   }
1035   case ISD::VALUETYPE: {
1036     EVT VT = cast<VTSDNode>(N)->getVT();
1037     if (VT.isExtended()) {
1038       Erased = ExtendedValueTypeNodes.erase(VT);
1039     } else {
1040       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1041       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1042     }
1043     break;
1044   }
1045   default:
1046     // Remove it from the CSE Map.
1047     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1048     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1049     Erased = CSEMap.RemoveNode(N);
1050     break;
1051   }
1052 #ifndef NDEBUG
1053   // Verify that the node was actually in one of the CSE maps, unless it has a
1054   // flag result (which cannot be CSE'd) or is one of the special cases that are
1055   // not subject to CSE.
1056   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1057       !N->isMachineOpcode() && !doNotCSE(N)) {
1058     N->dump(this);
1059     dbgs() << "\n";
1060     llvm_unreachable("Node is not in map!");
1061   }
1062 #endif
1063   return Erased;
1064 }
1065 
1066 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1067 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1068 /// node already exists, in which case transfer all its users to the existing
1069 /// node. This transfer can potentially trigger recursive merging.
1070 void
1071 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1072   // For node types that aren't CSE'd, just act as if no identical node
1073   // already exists.
1074   if (!doNotCSE(N)) {
1075     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1076     if (Existing != N) {
1077       // If there was already an existing matching node, use ReplaceAllUsesWith
1078       // to replace the dead one with the existing one.  This can cause
1079       // recursive merging of other unrelated nodes down the line.
1080       ReplaceAllUsesWith(N, Existing);
1081 
1082       // N is now dead. Inform the listeners and delete it.
1083       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1084         DUL->NodeDeleted(N, Existing);
1085       DeleteNodeNotInCSEMaps(N);
1086       return;
1087     }
1088   }
1089 
1090   // If the node doesn't already exist, we updated it.  Inform listeners.
1091   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1092     DUL->NodeUpdated(N);
1093 }
1094 
1095 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1096 /// were replaced with those specified.  If this node is never memoized,
1097 /// return null, otherwise return a pointer to the slot it would take.  If a
1098 /// node already exists with these operands, the slot will be non-null.
1099 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1100                                            void *&InsertPos) {
1101   if (doNotCSE(N))
1102     return nullptr;
1103 
1104   SDValue Ops[] = { Op };
1105   FoldingSetNodeID ID;
1106   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1107   AddNodeIDCustom(ID, N);
1108   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1109   if (Node)
1110     Node->intersectFlagsWith(N->getFlags());
1111   return Node;
1112 }
1113 
1114 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1115 /// were replaced with those specified.  If this node is never memoized,
1116 /// return null, otherwise return a pointer to the slot it would take.  If a
1117 /// node already exists with these operands, the slot will be non-null.
1118 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1119                                            SDValue Op1, SDValue Op2,
1120                                            void *&InsertPos) {
1121   if (doNotCSE(N))
1122     return nullptr;
1123 
1124   SDValue Ops[] = { Op1, Op2 };
1125   FoldingSetNodeID ID;
1126   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1127   AddNodeIDCustom(ID, N);
1128   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1129   if (Node)
1130     Node->intersectFlagsWith(N->getFlags());
1131   return Node;
1132 }
1133 
1134 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1135 /// were replaced with those specified.  If this node is never memoized,
1136 /// return null, otherwise return a pointer to the slot it would take.  If a
1137 /// node already exists with these operands, the slot will be non-null.
1138 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1139                                            void *&InsertPos) {
1140   if (doNotCSE(N))
1141     return nullptr;
1142 
1143   FoldingSetNodeID ID;
1144   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1145   AddNodeIDCustom(ID, N);
1146   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1147   if (Node)
1148     Node->intersectFlagsWith(N->getFlags());
1149   return Node;
1150 }
1151 
1152 Align SelectionDAG::getEVTAlign(EVT VT) const {
1153   Type *Ty = VT == MVT::iPTR ?
1154                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1155                    VT.getTypeForEVT(*getContext());
1156 
1157   return getDataLayout().getABITypeAlign(Ty);
1158 }
1159 
1160 // EntryNode could meaningfully have debug info if we can find it...
1161 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1162     : TM(tm), OptLevel(OL),
1163       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1164       Root(getEntryNode()) {
1165   InsertNode(&EntryNode);
1166   DbgInfo = new SDDbgInfo();
1167 }
1168 
1169 void SelectionDAG::init(MachineFunction &NewMF,
1170                         OptimizationRemarkEmitter &NewORE,
1171                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1172                         LegacyDivergenceAnalysis * Divergence,
1173                         ProfileSummaryInfo *PSIin,
1174                         BlockFrequencyInfo *BFIin) {
1175   MF = &NewMF;
1176   SDAGISelPass = PassPtr;
1177   ORE = &NewORE;
1178   TLI = getSubtarget().getTargetLowering();
1179   TSI = getSubtarget().getSelectionDAGInfo();
1180   LibInfo = LibraryInfo;
1181   Context = &MF->getFunction().getContext();
1182   DA = Divergence;
1183   PSI = PSIin;
1184   BFI = BFIin;
1185 }
1186 
1187 SelectionDAG::~SelectionDAG() {
1188   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1189   allnodes_clear();
1190   OperandRecycler.clear(OperandAllocator);
1191   delete DbgInfo;
1192 }
1193 
1194 bool SelectionDAG::shouldOptForSize() const {
1195   return MF->getFunction().hasOptSize() ||
1196       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1197 }
1198 
1199 void SelectionDAG::allnodes_clear() {
1200   assert(&*AllNodes.begin() == &EntryNode);
1201   AllNodes.remove(AllNodes.begin());
1202   while (!AllNodes.empty())
1203     DeallocateNode(&AllNodes.front());
1204 #ifndef NDEBUG
1205   NextPersistentId = 0;
1206 #endif
1207 }
1208 
1209 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1210                                           void *&InsertPos) {
1211   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1212   if (N) {
1213     switch (N->getOpcode()) {
1214     default: break;
1215     case ISD::Constant:
1216     case ISD::ConstantFP:
1217       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1218                        "debug location.  Use another overload.");
1219     }
1220   }
1221   return N;
1222 }
1223 
1224 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1225                                           const SDLoc &DL, void *&InsertPos) {
1226   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1227   if (N) {
1228     switch (N->getOpcode()) {
1229     case ISD::Constant:
1230     case ISD::ConstantFP:
1231       // Erase debug location from the node if the node is used at several
1232       // different places. Do not propagate one location to all uses as it
1233       // will cause a worse single stepping debugging experience.
1234       if (N->getDebugLoc() != DL.getDebugLoc())
1235         N->setDebugLoc(DebugLoc());
1236       break;
1237     default:
1238       // When the node's point of use is located earlier in the instruction
1239       // sequence than its prior point of use, update its debug info to the
1240       // earlier location.
1241       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1242         N->setDebugLoc(DL.getDebugLoc());
1243       break;
1244     }
1245   }
1246   return N;
1247 }
1248 
1249 void SelectionDAG::clear() {
1250   allnodes_clear();
1251   OperandRecycler.clear(OperandAllocator);
1252   OperandAllocator.Reset();
1253   CSEMap.clear();
1254 
1255   ExtendedValueTypeNodes.clear();
1256   ExternalSymbols.clear();
1257   TargetExternalSymbols.clear();
1258   MCSymbols.clear();
1259   SDCallSiteDbgInfo.clear();
1260   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1261             static_cast<CondCodeSDNode*>(nullptr));
1262   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1263             static_cast<SDNode*>(nullptr));
1264 
1265   EntryNode.UseList = nullptr;
1266   InsertNode(&EntryNode);
1267   Root = getEntryNode();
1268   DbgInfo->clear();
1269 }
1270 
1271 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1272   return VT.bitsGT(Op.getValueType())
1273              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1274              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1275 }
1276 
1277 std::pair<SDValue, SDValue>
1278 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1279                                        const SDLoc &DL, EVT VT) {
1280   assert(!VT.bitsEq(Op.getValueType()) &&
1281          "Strict no-op FP extend/round not allowed.");
1282   SDValue Res =
1283       VT.bitsGT(Op.getValueType())
1284           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1285           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1286                     {Chain, Op, getIntPtrConstant(0, DL)});
1287 
1288   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1289 }
1290 
1291 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1292   return VT.bitsGT(Op.getValueType()) ?
1293     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1294     getNode(ISD::TRUNCATE, DL, VT, Op);
1295 }
1296 
1297 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1298   return VT.bitsGT(Op.getValueType()) ?
1299     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1300     getNode(ISD::TRUNCATE, DL, VT, Op);
1301 }
1302 
1303 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1304   return VT.bitsGT(Op.getValueType()) ?
1305     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1306     getNode(ISD::TRUNCATE, DL, VT, Op);
1307 }
1308 
1309 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1310                                         EVT OpVT) {
1311   if (VT.bitsLE(Op.getValueType()))
1312     return getNode(ISD::TRUNCATE, SL, VT, Op);
1313 
1314   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1315   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1316 }
1317 
1318 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1319   EVT OpVT = Op.getValueType();
1320   assert(VT.isInteger() && OpVT.isInteger() &&
1321          "Cannot getZeroExtendInReg FP types");
1322   assert(VT.isVector() == OpVT.isVector() &&
1323          "getZeroExtendInReg type should be vector iff the operand "
1324          "type is vector!");
1325   assert((!VT.isVector() ||
1326           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1327          "Vector element counts must match in getZeroExtendInReg");
1328   assert(VT.bitsLE(OpVT) && "Not extending!");
1329   if (OpVT == VT)
1330     return Op;
1331   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1332                                    VT.getScalarSizeInBits());
1333   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1334 }
1335 
1336 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1337   // Only unsigned pointer semantics are supported right now. In the future this
1338   // might delegate to TLI to check pointer signedness.
1339   return getZExtOrTrunc(Op, DL, VT);
1340 }
1341 
1342 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1343   // Only unsigned pointer semantics are supported right now. In the future this
1344   // might delegate to TLI to check pointer signedness.
1345   return getZeroExtendInReg(Op, DL, VT);
1346 }
1347 
1348 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1349 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1350   EVT EltVT = VT.getScalarType();
1351   SDValue NegOne =
1352     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1353   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1354 }
1355 
1356 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1357   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1358   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1359 }
1360 
1361 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1362                                       EVT OpVT) {
1363   if (!V)
1364     return getConstant(0, DL, VT);
1365 
1366   switch (TLI->getBooleanContents(OpVT)) {
1367   case TargetLowering::ZeroOrOneBooleanContent:
1368   case TargetLowering::UndefinedBooleanContent:
1369     return getConstant(1, DL, VT);
1370   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1371     return getAllOnesConstant(DL, VT);
1372   }
1373   llvm_unreachable("Unexpected boolean content enum!");
1374 }
1375 
1376 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1377                                   bool isT, bool isO) {
1378   EVT EltVT = VT.getScalarType();
1379   assert((EltVT.getSizeInBits() >= 64 ||
1380           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1381          "getConstant with a uint64_t value that doesn't fit in the type!");
1382   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1383 }
1384 
1385 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1386                                   bool isT, bool isO) {
1387   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1388 }
1389 
1390 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1391                                   EVT VT, bool isT, bool isO) {
1392   assert(VT.isInteger() && "Cannot create FP integer constant!");
1393 
1394   EVT EltVT = VT.getScalarType();
1395   const ConstantInt *Elt = &Val;
1396 
1397   // In some cases the vector type is legal but the element type is illegal and
1398   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1399   // inserted value (the type does not need to match the vector element type).
1400   // Any extra bits introduced will be truncated away.
1401   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1402                            TargetLowering::TypePromoteInteger) {
1403     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1404     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1405     Elt = ConstantInt::get(*getContext(), NewVal);
1406   }
1407   // In other cases the element type is illegal and needs to be expanded, for
1408   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1409   // the value into n parts and use a vector type with n-times the elements.
1410   // Then bitcast to the type requested.
1411   // Legalizing constants too early makes the DAGCombiner's job harder so we
1412   // only legalize if the DAG tells us we must produce legal types.
1413   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1414            TLI->getTypeAction(*getContext(), EltVT) ==
1415                TargetLowering::TypeExpandInteger) {
1416     const APInt &NewVal = Elt->getValue();
1417     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1418     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1419 
1420     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1421     if (VT.isScalableVector()) {
1422       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1423              "Can only handle an even split!");
1424       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1425 
1426       SmallVector<SDValue, 2> ScalarParts;
1427       for (unsigned i = 0; i != Parts; ++i)
1428         ScalarParts.push_back(getConstant(
1429             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1430             ViaEltVT, isT, isO));
1431 
1432       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1433     }
1434 
1435     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1436     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1437 
1438     // Check the temporary vector is the correct size. If this fails then
1439     // getTypeToTransformTo() probably returned a type whose size (in bits)
1440     // isn't a power-of-2 factor of the requested type size.
1441     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1442 
1443     SmallVector<SDValue, 2> EltParts;
1444     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1445       EltParts.push_back(getConstant(
1446           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1447           ViaEltVT, isT, isO));
1448 
1449     // EltParts is currently in little endian order. If we actually want
1450     // big-endian order then reverse it now.
1451     if (getDataLayout().isBigEndian())
1452       std::reverse(EltParts.begin(), EltParts.end());
1453 
1454     // The elements must be reversed when the element order is different
1455     // to the endianness of the elements (because the BITCAST is itself a
1456     // vector shuffle in this situation). However, we do not need any code to
1457     // perform this reversal because getConstant() is producing a vector
1458     // splat.
1459     // This situation occurs in MIPS MSA.
1460 
1461     SmallVector<SDValue, 8> Ops;
1462     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1463       llvm::append_range(Ops, EltParts);
1464 
1465     SDValue V =
1466         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1467     return V;
1468   }
1469 
1470   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1471          "APInt size does not match type size!");
1472   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1473   FoldingSetNodeID ID;
1474   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1475   ID.AddPointer(Elt);
1476   ID.AddBoolean(isO);
1477   void *IP = nullptr;
1478   SDNode *N = nullptr;
1479   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1480     if (!VT.isVector())
1481       return SDValue(N, 0);
1482 
1483   if (!N) {
1484     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1485     CSEMap.InsertNode(N, IP);
1486     InsertNode(N);
1487     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1488   }
1489 
1490   SDValue Result(N, 0);
1491   if (VT.isScalableVector())
1492     Result = getSplatVector(VT, DL, Result);
1493   else if (VT.isVector())
1494     Result = getSplatBuildVector(VT, DL, Result);
1495 
1496   return Result;
1497 }
1498 
1499 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1500                                         bool isTarget) {
1501   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1502 }
1503 
1504 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1505                                              const SDLoc &DL, bool LegalTypes) {
1506   assert(VT.isInteger() && "Shift amount is not an integer type!");
1507   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1508   return getConstant(Val, DL, ShiftVT);
1509 }
1510 
1511 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1512                                            bool isTarget) {
1513   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1514 }
1515 
1516 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1517                                     bool isTarget) {
1518   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1519 }
1520 
1521 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1522                                     EVT VT, bool isTarget) {
1523   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1524 
1525   EVT EltVT = VT.getScalarType();
1526 
1527   // Do the map lookup using the actual bit pattern for the floating point
1528   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1529   // we don't have issues with SNANs.
1530   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1531   FoldingSetNodeID ID;
1532   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1533   ID.AddPointer(&V);
1534   void *IP = nullptr;
1535   SDNode *N = nullptr;
1536   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1537     if (!VT.isVector())
1538       return SDValue(N, 0);
1539 
1540   if (!N) {
1541     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1542     CSEMap.InsertNode(N, IP);
1543     InsertNode(N);
1544   }
1545 
1546   SDValue Result(N, 0);
1547   if (VT.isScalableVector())
1548     Result = getSplatVector(VT, DL, Result);
1549   else if (VT.isVector())
1550     Result = getSplatBuildVector(VT, DL, Result);
1551   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1552   return Result;
1553 }
1554 
1555 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1556                                     bool isTarget) {
1557   EVT EltVT = VT.getScalarType();
1558   if (EltVT == MVT::f32)
1559     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1560   if (EltVT == MVT::f64)
1561     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1562   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1563       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1564     bool Ignored;
1565     APFloat APF = APFloat(Val);
1566     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1567                 &Ignored);
1568     return getConstantFP(APF, DL, VT, isTarget);
1569   }
1570   llvm_unreachable("Unsupported type in getConstantFP");
1571 }
1572 
1573 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1574                                        EVT VT, int64_t Offset, bool isTargetGA,
1575                                        unsigned TargetFlags) {
1576   assert((TargetFlags == 0 || isTargetGA) &&
1577          "Cannot set target flags on target-independent globals");
1578 
1579   // Truncate (with sign-extension) the offset value to the pointer size.
1580   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1581   if (BitWidth < 64)
1582     Offset = SignExtend64(Offset, BitWidth);
1583 
1584   unsigned Opc;
1585   if (GV->isThreadLocal())
1586     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1587   else
1588     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1589 
1590   FoldingSetNodeID ID;
1591   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1592   ID.AddPointer(GV);
1593   ID.AddInteger(Offset);
1594   ID.AddInteger(TargetFlags);
1595   void *IP = nullptr;
1596   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1597     return SDValue(E, 0);
1598 
1599   auto *N = newSDNode<GlobalAddressSDNode>(
1600       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1601   CSEMap.InsertNode(N, IP);
1602     InsertNode(N);
1603   return SDValue(N, 0);
1604 }
1605 
1606 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1607   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1608   FoldingSetNodeID ID;
1609   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1610   ID.AddInteger(FI);
1611   void *IP = nullptr;
1612   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1613     return SDValue(E, 0);
1614 
1615   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1616   CSEMap.InsertNode(N, IP);
1617   InsertNode(N);
1618   return SDValue(N, 0);
1619 }
1620 
1621 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1622                                    unsigned TargetFlags) {
1623   assert((TargetFlags == 0 || isTarget) &&
1624          "Cannot set target flags on target-independent jump tables");
1625   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1626   FoldingSetNodeID ID;
1627   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1628   ID.AddInteger(JTI);
1629   ID.AddInteger(TargetFlags);
1630   void *IP = nullptr;
1631   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1632     return SDValue(E, 0);
1633 
1634   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1635   CSEMap.InsertNode(N, IP);
1636   InsertNode(N);
1637   return SDValue(N, 0);
1638 }
1639 
1640 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1641                                       MaybeAlign Alignment, int Offset,
1642                                       bool isTarget, unsigned TargetFlags) {
1643   assert((TargetFlags == 0 || isTarget) &&
1644          "Cannot set target flags on target-independent globals");
1645   if (!Alignment)
1646     Alignment = shouldOptForSize()
1647                     ? getDataLayout().getABITypeAlign(C->getType())
1648                     : getDataLayout().getPrefTypeAlign(C->getType());
1649   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1650   FoldingSetNodeID ID;
1651   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1652   ID.AddInteger(Alignment->value());
1653   ID.AddInteger(Offset);
1654   ID.AddPointer(C);
1655   ID.AddInteger(TargetFlags);
1656   void *IP = nullptr;
1657   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1658     return SDValue(E, 0);
1659 
1660   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1661                                           TargetFlags);
1662   CSEMap.InsertNode(N, IP);
1663   InsertNode(N);
1664   SDValue V = SDValue(N, 0);
1665   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1666   return V;
1667 }
1668 
1669 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1670                                       MaybeAlign Alignment, int Offset,
1671                                       bool isTarget, unsigned TargetFlags) {
1672   assert((TargetFlags == 0 || isTarget) &&
1673          "Cannot set target flags on target-independent globals");
1674   if (!Alignment)
1675     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1676   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1677   FoldingSetNodeID ID;
1678   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1679   ID.AddInteger(Alignment->value());
1680   ID.AddInteger(Offset);
1681   C->addSelectionDAGCSEId(ID);
1682   ID.AddInteger(TargetFlags);
1683   void *IP = nullptr;
1684   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1685     return SDValue(E, 0);
1686 
1687   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1688                                           TargetFlags);
1689   CSEMap.InsertNode(N, IP);
1690   InsertNode(N);
1691   return SDValue(N, 0);
1692 }
1693 
1694 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1695                                      unsigned TargetFlags) {
1696   FoldingSetNodeID ID;
1697   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1698   ID.AddInteger(Index);
1699   ID.AddInteger(Offset);
1700   ID.AddInteger(TargetFlags);
1701   void *IP = nullptr;
1702   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1703     return SDValue(E, 0);
1704 
1705   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1706   CSEMap.InsertNode(N, IP);
1707   InsertNode(N);
1708   return SDValue(N, 0);
1709 }
1710 
1711 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1712   FoldingSetNodeID ID;
1713   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1714   ID.AddPointer(MBB);
1715   void *IP = nullptr;
1716   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1717     return SDValue(E, 0);
1718 
1719   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1720   CSEMap.InsertNode(N, IP);
1721   InsertNode(N);
1722   return SDValue(N, 0);
1723 }
1724 
1725 SDValue SelectionDAG::getValueType(EVT VT) {
1726   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1727       ValueTypeNodes.size())
1728     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1729 
1730   SDNode *&N = VT.isExtended() ?
1731     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1732 
1733   if (N) return SDValue(N, 0);
1734   N = newSDNode<VTSDNode>(VT);
1735   InsertNode(N);
1736   return SDValue(N, 0);
1737 }
1738 
1739 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1740   SDNode *&N = ExternalSymbols[Sym];
1741   if (N) return SDValue(N, 0);
1742   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1743   InsertNode(N);
1744   return SDValue(N, 0);
1745 }
1746 
1747 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1748   SDNode *&N = MCSymbols[Sym];
1749   if (N)
1750     return SDValue(N, 0);
1751   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1752   InsertNode(N);
1753   return SDValue(N, 0);
1754 }
1755 
1756 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1757                                               unsigned TargetFlags) {
1758   SDNode *&N =
1759       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1760   if (N) return SDValue(N, 0);
1761   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1762   InsertNode(N);
1763   return SDValue(N, 0);
1764 }
1765 
1766 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1767   if ((unsigned)Cond >= CondCodeNodes.size())
1768     CondCodeNodes.resize(Cond+1);
1769 
1770   if (!CondCodeNodes[Cond]) {
1771     auto *N = newSDNode<CondCodeSDNode>(Cond);
1772     CondCodeNodes[Cond] = N;
1773     InsertNode(N);
1774   }
1775 
1776   return SDValue(CondCodeNodes[Cond], 0);
1777 }
1778 
1779 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1780   APInt One(ResVT.getScalarSizeInBits(), 1);
1781   return getStepVector(DL, ResVT, One);
1782 }
1783 
1784 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1785   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1786   if (ResVT.isScalableVector())
1787     return getNode(
1788         ISD::STEP_VECTOR, DL, ResVT,
1789         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1790 
1791   SmallVector<SDValue, 16> OpsStepConstants;
1792   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1793     OpsStepConstants.push_back(
1794         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1795   return getBuildVector(ResVT, DL, OpsStepConstants);
1796 }
1797 
1798 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1799 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1800 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1801   std::swap(N1, N2);
1802   ShuffleVectorSDNode::commuteMask(M);
1803 }
1804 
1805 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1806                                        SDValue N2, ArrayRef<int> Mask) {
1807   assert(VT.getVectorNumElements() == Mask.size() &&
1808          "Must have the same number of vector elements as mask elements!");
1809   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1810          "Invalid VECTOR_SHUFFLE");
1811 
1812   // Canonicalize shuffle undef, undef -> undef
1813   if (N1.isUndef() && N2.isUndef())
1814     return getUNDEF(VT);
1815 
1816   // Validate that all indices in Mask are within the range of the elements
1817   // input to the shuffle.
1818   int NElts = Mask.size();
1819   assert(llvm::all_of(Mask,
1820                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1821          "Index out of range");
1822 
1823   // Copy the mask so we can do any needed cleanup.
1824   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1825 
1826   // Canonicalize shuffle v, v -> v, undef
1827   if (N1 == N2) {
1828     N2 = getUNDEF(VT);
1829     for (int i = 0; i != NElts; ++i)
1830       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1831   }
1832 
1833   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1834   if (N1.isUndef())
1835     commuteShuffle(N1, N2, MaskVec);
1836 
1837   if (TLI->hasVectorBlend()) {
1838     // If shuffling a splat, try to blend the splat instead. We do this here so
1839     // that even when this arises during lowering we don't have to re-handle it.
1840     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1841       BitVector UndefElements;
1842       SDValue Splat = BV->getSplatValue(&UndefElements);
1843       if (!Splat)
1844         return;
1845 
1846       for (int i = 0; i < NElts; ++i) {
1847         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1848           continue;
1849 
1850         // If this input comes from undef, mark it as such.
1851         if (UndefElements[MaskVec[i] - Offset]) {
1852           MaskVec[i] = -1;
1853           continue;
1854         }
1855 
1856         // If we can blend a non-undef lane, use that instead.
1857         if (!UndefElements[i])
1858           MaskVec[i] = i + Offset;
1859       }
1860     };
1861     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1862       BlendSplat(N1BV, 0);
1863     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1864       BlendSplat(N2BV, NElts);
1865   }
1866 
1867   // Canonicalize all index into lhs, -> shuffle lhs, undef
1868   // Canonicalize all index into rhs, -> shuffle rhs, undef
1869   bool AllLHS = true, AllRHS = true;
1870   bool N2Undef = N2.isUndef();
1871   for (int i = 0; i != NElts; ++i) {
1872     if (MaskVec[i] >= NElts) {
1873       if (N2Undef)
1874         MaskVec[i] = -1;
1875       else
1876         AllLHS = false;
1877     } else if (MaskVec[i] >= 0) {
1878       AllRHS = false;
1879     }
1880   }
1881   if (AllLHS && AllRHS)
1882     return getUNDEF(VT);
1883   if (AllLHS && !N2Undef)
1884     N2 = getUNDEF(VT);
1885   if (AllRHS) {
1886     N1 = getUNDEF(VT);
1887     commuteShuffle(N1, N2, MaskVec);
1888   }
1889   // Reset our undef status after accounting for the mask.
1890   N2Undef = N2.isUndef();
1891   // Re-check whether both sides ended up undef.
1892   if (N1.isUndef() && N2Undef)
1893     return getUNDEF(VT);
1894 
1895   // If Identity shuffle return that node.
1896   bool Identity = true, AllSame = true;
1897   for (int i = 0; i != NElts; ++i) {
1898     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1899     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1900   }
1901   if (Identity && NElts)
1902     return N1;
1903 
1904   // Shuffling a constant splat doesn't change the result.
1905   if (N2Undef) {
1906     SDValue V = N1;
1907 
1908     // Look through any bitcasts. We check that these don't change the number
1909     // (and size) of elements and just changes their types.
1910     while (V.getOpcode() == ISD::BITCAST)
1911       V = V->getOperand(0);
1912 
1913     // A splat should always show up as a build vector node.
1914     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1915       BitVector UndefElements;
1916       SDValue Splat = BV->getSplatValue(&UndefElements);
1917       // If this is a splat of an undef, shuffling it is also undef.
1918       if (Splat && Splat.isUndef())
1919         return getUNDEF(VT);
1920 
1921       bool SameNumElts =
1922           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1923 
1924       // We only have a splat which can skip shuffles if there is a splatted
1925       // value and no undef lanes rearranged by the shuffle.
1926       if (Splat && UndefElements.none()) {
1927         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1928         // number of elements match or the value splatted is a zero constant.
1929         if (SameNumElts)
1930           return N1;
1931         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1932           if (C->isNullValue())
1933             return N1;
1934       }
1935 
1936       // If the shuffle itself creates a splat, build the vector directly.
1937       if (AllSame && SameNumElts) {
1938         EVT BuildVT = BV->getValueType(0);
1939         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1940         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1941 
1942         // We may have jumped through bitcasts, so the type of the
1943         // BUILD_VECTOR may not match the type of the shuffle.
1944         if (BuildVT != VT)
1945           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1946         return NewBV;
1947       }
1948     }
1949   }
1950 
1951   FoldingSetNodeID ID;
1952   SDValue Ops[2] = { N1, N2 };
1953   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1954   for (int i = 0; i != NElts; ++i)
1955     ID.AddInteger(MaskVec[i]);
1956 
1957   void* IP = nullptr;
1958   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1959     return SDValue(E, 0);
1960 
1961   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1962   // SDNode doesn't have access to it.  This memory will be "leaked" when
1963   // the node is deallocated, but recovered when the NodeAllocator is released.
1964   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1965   llvm::copy(MaskVec, MaskAlloc);
1966 
1967   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1968                                            dl.getDebugLoc(), MaskAlloc);
1969   createOperands(N, Ops);
1970 
1971   CSEMap.InsertNode(N, IP);
1972   InsertNode(N);
1973   SDValue V = SDValue(N, 0);
1974   NewSDValueDbgMsg(V, "Creating new node: ", this);
1975   return V;
1976 }
1977 
1978 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1979   EVT VT = SV.getValueType(0);
1980   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1981   ShuffleVectorSDNode::commuteMask(MaskVec);
1982 
1983   SDValue Op0 = SV.getOperand(0);
1984   SDValue Op1 = SV.getOperand(1);
1985   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1986 }
1987 
1988 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1989   FoldingSetNodeID ID;
1990   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1991   ID.AddInteger(RegNo);
1992   void *IP = nullptr;
1993   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1994     return SDValue(E, 0);
1995 
1996   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1997   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1998   CSEMap.InsertNode(N, IP);
1999   InsertNode(N);
2000   return SDValue(N, 0);
2001 }
2002 
2003 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2004   FoldingSetNodeID ID;
2005   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2006   ID.AddPointer(RegMask);
2007   void *IP = nullptr;
2008   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2009     return SDValue(E, 0);
2010 
2011   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2012   CSEMap.InsertNode(N, IP);
2013   InsertNode(N);
2014   return SDValue(N, 0);
2015 }
2016 
2017 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2018                                  MCSymbol *Label) {
2019   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2020 }
2021 
2022 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2023                                    SDValue Root, MCSymbol *Label) {
2024   FoldingSetNodeID ID;
2025   SDValue Ops[] = { Root };
2026   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2027   ID.AddPointer(Label);
2028   void *IP = nullptr;
2029   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2030     return SDValue(E, 0);
2031 
2032   auto *N =
2033       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2034   createOperands(N, Ops);
2035 
2036   CSEMap.InsertNode(N, IP);
2037   InsertNode(N);
2038   return SDValue(N, 0);
2039 }
2040 
2041 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2042                                       int64_t Offset, bool isTarget,
2043                                       unsigned TargetFlags) {
2044   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2045 
2046   FoldingSetNodeID ID;
2047   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2048   ID.AddPointer(BA);
2049   ID.AddInteger(Offset);
2050   ID.AddInteger(TargetFlags);
2051   void *IP = nullptr;
2052   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2053     return SDValue(E, 0);
2054 
2055   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2056   CSEMap.InsertNode(N, IP);
2057   InsertNode(N);
2058   return SDValue(N, 0);
2059 }
2060 
2061 SDValue SelectionDAG::getSrcValue(const Value *V) {
2062   FoldingSetNodeID ID;
2063   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2064   ID.AddPointer(V);
2065 
2066   void *IP = nullptr;
2067   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2068     return SDValue(E, 0);
2069 
2070   auto *N = newSDNode<SrcValueSDNode>(V);
2071   CSEMap.InsertNode(N, IP);
2072   InsertNode(N);
2073   return SDValue(N, 0);
2074 }
2075 
2076 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2077   FoldingSetNodeID ID;
2078   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2079   ID.AddPointer(MD);
2080 
2081   void *IP = nullptr;
2082   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2083     return SDValue(E, 0);
2084 
2085   auto *N = newSDNode<MDNodeSDNode>(MD);
2086   CSEMap.InsertNode(N, IP);
2087   InsertNode(N);
2088   return SDValue(N, 0);
2089 }
2090 
2091 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2092   if (VT == V.getValueType())
2093     return V;
2094 
2095   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2096 }
2097 
2098 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2099                                        unsigned SrcAS, unsigned DestAS) {
2100   SDValue Ops[] = {Ptr};
2101   FoldingSetNodeID ID;
2102   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2103   ID.AddInteger(SrcAS);
2104   ID.AddInteger(DestAS);
2105 
2106   void *IP = nullptr;
2107   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2108     return SDValue(E, 0);
2109 
2110   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2111                                            VT, SrcAS, DestAS);
2112   createOperands(N, Ops);
2113 
2114   CSEMap.InsertNode(N, IP);
2115   InsertNode(N);
2116   return SDValue(N, 0);
2117 }
2118 
2119 SDValue SelectionDAG::getFreeze(SDValue V) {
2120   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2121 }
2122 
2123 /// getShiftAmountOperand - Return the specified value casted to
2124 /// the target's desired shift amount type.
2125 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2126   EVT OpTy = Op.getValueType();
2127   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2128   if (OpTy == ShTy || OpTy.isVector()) return Op;
2129 
2130   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2131 }
2132 
2133 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2134   SDLoc dl(Node);
2135   const TargetLowering &TLI = getTargetLoweringInfo();
2136   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2137   EVT VT = Node->getValueType(0);
2138   SDValue Tmp1 = Node->getOperand(0);
2139   SDValue Tmp2 = Node->getOperand(1);
2140   const MaybeAlign MA(Node->getConstantOperandVal(3));
2141 
2142   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2143                                Tmp2, MachinePointerInfo(V));
2144   SDValue VAList = VAListLoad;
2145 
2146   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2147     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2148                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2149 
2150     VAList =
2151         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2152                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2153   }
2154 
2155   // Increment the pointer, VAList, to the next vaarg
2156   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2157                  getConstant(getDataLayout().getTypeAllocSize(
2158                                                VT.getTypeForEVT(*getContext())),
2159                              dl, VAList.getValueType()));
2160   // Store the incremented VAList to the legalized pointer
2161   Tmp1 =
2162       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2163   // Load the actual argument out of the pointer VAList
2164   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2165 }
2166 
2167 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2168   SDLoc dl(Node);
2169   const TargetLowering &TLI = getTargetLoweringInfo();
2170   // This defaults to loading a pointer from the input and storing it to the
2171   // output, returning the chain.
2172   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2173   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2174   SDValue Tmp1 =
2175       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2176               Node->getOperand(2), MachinePointerInfo(VS));
2177   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2178                   MachinePointerInfo(VD));
2179 }
2180 
2181 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2182   const DataLayout &DL = getDataLayout();
2183   Type *Ty = VT.getTypeForEVT(*getContext());
2184   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2185 
2186   if (TLI->isTypeLegal(VT) || !VT.isVector())
2187     return RedAlign;
2188 
2189   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2190   const Align StackAlign = TFI->getStackAlign();
2191 
2192   // See if we can choose a smaller ABI alignment in cases where it's an
2193   // illegal vector type that will get broken down.
2194   if (RedAlign > StackAlign) {
2195     EVT IntermediateVT;
2196     MVT RegisterVT;
2197     unsigned NumIntermediates;
2198     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2199                                 NumIntermediates, RegisterVT);
2200     Ty = IntermediateVT.getTypeForEVT(*getContext());
2201     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2202     if (RedAlign2 < RedAlign)
2203       RedAlign = RedAlign2;
2204   }
2205 
2206   return RedAlign;
2207 }
2208 
2209 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2210   MachineFrameInfo &MFI = MF->getFrameInfo();
2211   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2212   int StackID = 0;
2213   if (Bytes.isScalable())
2214     StackID = TFI->getStackIDForScalableVectors();
2215   // The stack id gives an indication of whether the object is scalable or
2216   // not, so it's safe to pass in the minimum size here.
2217   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2218                                        false, nullptr, StackID);
2219   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2220 }
2221 
2222 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2223   Type *Ty = VT.getTypeForEVT(*getContext());
2224   Align StackAlign =
2225       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2226   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2227 }
2228 
2229 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2230   TypeSize VT1Size = VT1.getStoreSize();
2231   TypeSize VT2Size = VT2.getStoreSize();
2232   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2233          "Don't know how to choose the maximum size when creating a stack "
2234          "temporary");
2235   TypeSize Bytes =
2236       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2237 
2238   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2239   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2240   const DataLayout &DL = getDataLayout();
2241   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2242   return CreateStackTemporary(Bytes, Align);
2243 }
2244 
2245 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2246                                 ISD::CondCode Cond, const SDLoc &dl) {
2247   EVT OpVT = N1.getValueType();
2248 
2249   // These setcc operations always fold.
2250   switch (Cond) {
2251   default: break;
2252   case ISD::SETFALSE:
2253   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2254   case ISD::SETTRUE:
2255   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2256 
2257   case ISD::SETOEQ:
2258   case ISD::SETOGT:
2259   case ISD::SETOGE:
2260   case ISD::SETOLT:
2261   case ISD::SETOLE:
2262   case ISD::SETONE:
2263   case ISD::SETO:
2264   case ISD::SETUO:
2265   case ISD::SETUEQ:
2266   case ISD::SETUNE:
2267     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2268     break;
2269   }
2270 
2271   if (OpVT.isInteger()) {
2272     // For EQ and NE, we can always pick a value for the undef to make the
2273     // predicate pass or fail, so we can return undef.
2274     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2275     // icmp eq/ne X, undef -> undef.
2276     if ((N1.isUndef() || N2.isUndef()) &&
2277         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2278       return getUNDEF(VT);
2279 
2280     // If both operands are undef, we can return undef for int comparison.
2281     // icmp undef, undef -> undef.
2282     if (N1.isUndef() && N2.isUndef())
2283       return getUNDEF(VT);
2284 
2285     // icmp X, X -> true/false
2286     // icmp X, undef -> true/false because undef could be X.
2287     if (N1 == N2)
2288       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2289   }
2290 
2291   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2292     const APInt &C2 = N2C->getAPIntValue();
2293     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2294       const APInt &C1 = N1C->getAPIntValue();
2295 
2296       switch (Cond) {
2297       default: llvm_unreachable("Unknown integer setcc!");
2298       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2299       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2300       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2301       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2302       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2303       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2304       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2305       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2306       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2307       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2308       }
2309     }
2310   }
2311 
2312   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2313   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2314 
2315   if (N1CFP && N2CFP) {
2316     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2317     switch (Cond) {
2318     default: break;
2319     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2320                         return getUNDEF(VT);
2321                       LLVM_FALLTHROUGH;
2322     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2323                                              OpVT);
2324     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2325                         return getUNDEF(VT);
2326                       LLVM_FALLTHROUGH;
2327     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2328                                              R==APFloat::cmpLessThan, dl, VT,
2329                                              OpVT);
2330     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2331                         return getUNDEF(VT);
2332                       LLVM_FALLTHROUGH;
2333     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2334                                              OpVT);
2335     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2336                         return getUNDEF(VT);
2337                       LLVM_FALLTHROUGH;
2338     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2339                                              VT, OpVT);
2340     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2341                         return getUNDEF(VT);
2342                       LLVM_FALLTHROUGH;
2343     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2344                                              R==APFloat::cmpEqual, dl, VT,
2345                                              OpVT);
2346     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2347                         return getUNDEF(VT);
2348                       LLVM_FALLTHROUGH;
2349     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2350                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2351     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2352                                              OpVT);
2353     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2354                                              OpVT);
2355     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2356                                              R==APFloat::cmpEqual, dl, VT,
2357                                              OpVT);
2358     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2359                                              OpVT);
2360     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2361                                              R==APFloat::cmpLessThan, dl, VT,
2362                                              OpVT);
2363     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2364                                              R==APFloat::cmpUnordered, dl, VT,
2365                                              OpVT);
2366     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2367                                              VT, OpVT);
2368     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2369                                              OpVT);
2370     }
2371   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2372     // Ensure that the constant occurs on the RHS.
2373     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2374     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2375       return SDValue();
2376     return getSetCC(dl, VT, N2, N1, SwappedCond);
2377   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2378              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2379     // If an operand is known to be a nan (or undef that could be a nan), we can
2380     // fold it.
2381     // Choosing NaN for the undef will always make unordered comparison succeed
2382     // and ordered comparison fails.
2383     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2384     switch (ISD::getUnorderedFlavor(Cond)) {
2385     default:
2386       llvm_unreachable("Unknown flavor!");
2387     case 0: // Known false.
2388       return getBoolConstant(false, dl, VT, OpVT);
2389     case 1: // Known true.
2390       return getBoolConstant(true, dl, VT, OpVT);
2391     case 2: // Undefined.
2392       return getUNDEF(VT);
2393     }
2394   }
2395 
2396   // Could not fold it.
2397   return SDValue();
2398 }
2399 
2400 /// See if the specified operand can be simplified with the knowledge that only
2401 /// the bits specified by DemandedBits are used.
2402 /// TODO: really we should be making this into the DAG equivalent of
2403 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2404 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2405   EVT VT = V.getValueType();
2406 
2407   if (VT.isScalableVector())
2408     return SDValue();
2409 
2410   APInt DemandedElts = VT.isVector()
2411                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2412                            : APInt(1, 1);
2413   return GetDemandedBits(V, DemandedBits, DemandedElts);
2414 }
2415 
2416 /// See if the specified operand can be simplified with the knowledge that only
2417 /// the bits specified by DemandedBits are used in the elements specified by
2418 /// DemandedElts.
2419 /// TODO: really we should be making this into the DAG equivalent of
2420 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2421 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2422                                       const APInt &DemandedElts) {
2423   switch (V.getOpcode()) {
2424   default:
2425     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2426                                                 *this, 0);
2427   case ISD::Constant: {
2428     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2429     APInt NewVal = CVal & DemandedBits;
2430     if (NewVal != CVal)
2431       return getConstant(NewVal, SDLoc(V), V.getValueType());
2432     break;
2433   }
2434   case ISD::SRL:
2435     // Only look at single-use SRLs.
2436     if (!V.getNode()->hasOneUse())
2437       break;
2438     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2439       // See if we can recursively simplify the LHS.
2440       unsigned Amt = RHSC->getZExtValue();
2441 
2442       // Watch out for shift count overflow though.
2443       if (Amt >= DemandedBits.getBitWidth())
2444         break;
2445       APInt SrcDemandedBits = DemandedBits << Amt;
2446       if (SDValue SimplifyLHS =
2447               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2448         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2449                        V.getOperand(1));
2450     }
2451     break;
2452   }
2453   return SDValue();
2454 }
2455 
2456 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2457 /// use this predicate to simplify operations downstream.
2458 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2459   unsigned BitWidth = Op.getScalarValueSizeInBits();
2460   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2461 }
2462 
2463 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2464 /// this predicate to simplify operations downstream.  Mask is known to be zero
2465 /// for bits that V cannot have.
2466 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2467                                      unsigned Depth) const {
2468   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2469 }
2470 
2471 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2472 /// DemandedElts.  We use this predicate to simplify operations downstream.
2473 /// Mask is known to be zero for bits that V cannot have.
2474 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2475                                      const APInt &DemandedElts,
2476                                      unsigned Depth) const {
2477   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2478 }
2479 
2480 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2481 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2482                                         unsigned Depth) const {
2483   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2484 }
2485 
2486 /// isSplatValue - Return true if the vector V has the same value
2487 /// across all DemandedElts. For scalable vectors it does not make
2488 /// sense to specify which elements are demanded or undefined, therefore
2489 /// they are simply ignored.
2490 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2491                                 APInt &UndefElts, unsigned Depth) {
2492   EVT VT = V.getValueType();
2493   assert(VT.isVector() && "Vector type expected");
2494 
2495   if (!VT.isScalableVector() && !DemandedElts)
2496     return false; // No demanded elts, better to assume we don't know anything.
2497 
2498   if (Depth >= MaxRecursionDepth)
2499     return false; // Limit search depth.
2500 
2501   // Deal with some common cases here that work for both fixed and scalable
2502   // vector types.
2503   switch (V.getOpcode()) {
2504   case ISD::SPLAT_VECTOR:
2505     UndefElts = V.getOperand(0).isUndef()
2506                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2507                     : APInt(DemandedElts.getBitWidth(), 0);
2508     return true;
2509   case ISD::ADD:
2510   case ISD::SUB:
2511   case ISD::AND:
2512   case ISD::XOR:
2513   case ISD::OR: {
2514     APInt UndefLHS, UndefRHS;
2515     SDValue LHS = V.getOperand(0);
2516     SDValue RHS = V.getOperand(1);
2517     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2518         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2519       UndefElts = UndefLHS | UndefRHS;
2520       return true;
2521     }
2522     return false;
2523   }
2524   case ISD::ABS:
2525   case ISD::TRUNCATE:
2526   case ISD::SIGN_EXTEND:
2527   case ISD::ZERO_EXTEND:
2528     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2529   }
2530 
2531   // We don't support other cases than those above for scalable vectors at
2532   // the moment.
2533   if (VT.isScalableVector())
2534     return false;
2535 
2536   unsigned NumElts = VT.getVectorNumElements();
2537   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2538   UndefElts = APInt::getNullValue(NumElts);
2539 
2540   switch (V.getOpcode()) {
2541   case ISD::BUILD_VECTOR: {
2542     SDValue Scl;
2543     for (unsigned i = 0; i != NumElts; ++i) {
2544       SDValue Op = V.getOperand(i);
2545       if (Op.isUndef()) {
2546         UndefElts.setBit(i);
2547         continue;
2548       }
2549       if (!DemandedElts[i])
2550         continue;
2551       if (Scl && Scl != Op)
2552         return false;
2553       Scl = Op;
2554     }
2555     return true;
2556   }
2557   case ISD::VECTOR_SHUFFLE: {
2558     // Check if this is a shuffle node doing a splat.
2559     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2560     int SplatIndex = -1;
2561     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2562     for (int i = 0; i != (int)NumElts; ++i) {
2563       int M = Mask[i];
2564       if (M < 0) {
2565         UndefElts.setBit(i);
2566         continue;
2567       }
2568       if (!DemandedElts[i])
2569         continue;
2570       if (0 <= SplatIndex && SplatIndex != M)
2571         return false;
2572       SplatIndex = M;
2573     }
2574     return true;
2575   }
2576   case ISD::EXTRACT_SUBVECTOR: {
2577     // Offset the demanded elts by the subvector index.
2578     SDValue Src = V.getOperand(0);
2579     // We don't support scalable vectors at the moment.
2580     if (Src.getValueType().isScalableVector())
2581       return false;
2582     uint64_t Idx = V.getConstantOperandVal(1);
2583     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2584     APInt UndefSrcElts;
2585     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2586     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2587       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2588       return true;
2589     }
2590     break;
2591   }
2592   }
2593 
2594   return false;
2595 }
2596 
2597 /// Helper wrapper to main isSplatValue function.
2598 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2599   EVT VT = V.getValueType();
2600   assert(VT.isVector() && "Vector type expected");
2601 
2602   APInt UndefElts;
2603   APInt DemandedElts;
2604 
2605   // For now we don't support this with scalable vectors.
2606   if (!VT.isScalableVector())
2607     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2608   return isSplatValue(V, DemandedElts, UndefElts) &&
2609          (AllowUndefs || !UndefElts);
2610 }
2611 
2612 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2613   V = peekThroughExtractSubvectors(V);
2614 
2615   EVT VT = V.getValueType();
2616   unsigned Opcode = V.getOpcode();
2617   switch (Opcode) {
2618   default: {
2619     APInt UndefElts;
2620     APInt DemandedElts;
2621 
2622     if (!VT.isScalableVector())
2623       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2624 
2625     if (isSplatValue(V, DemandedElts, UndefElts)) {
2626       if (VT.isScalableVector()) {
2627         // DemandedElts and UndefElts are ignored for scalable vectors, since
2628         // the only supported cases are SPLAT_VECTOR nodes.
2629         SplatIdx = 0;
2630       } else {
2631         // Handle case where all demanded elements are UNDEF.
2632         if (DemandedElts.isSubsetOf(UndefElts)) {
2633           SplatIdx = 0;
2634           return getUNDEF(VT);
2635         }
2636         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2637       }
2638       return V;
2639     }
2640     break;
2641   }
2642   case ISD::SPLAT_VECTOR:
2643     SplatIdx = 0;
2644     return V;
2645   case ISD::VECTOR_SHUFFLE: {
2646     if (VT.isScalableVector())
2647       return SDValue();
2648 
2649     // Check if this is a shuffle node doing a splat.
2650     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2651     // getTargetVShiftNode currently struggles without the splat source.
2652     auto *SVN = cast<ShuffleVectorSDNode>(V);
2653     if (!SVN->isSplat())
2654       break;
2655     int Idx = SVN->getSplatIndex();
2656     int NumElts = V.getValueType().getVectorNumElements();
2657     SplatIdx = Idx % NumElts;
2658     return V.getOperand(Idx / NumElts);
2659   }
2660   }
2661 
2662   return SDValue();
2663 }
2664 
2665 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2666   int SplatIdx;
2667   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2668     EVT SVT = SrcVector.getValueType().getScalarType();
2669     EVT LegalSVT = SVT;
2670     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2671       if (!SVT.isInteger())
2672         return SDValue();
2673       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2674       if (LegalSVT.bitsLT(SVT))
2675         return SDValue();
2676     }
2677     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2678                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2679   }
2680   return SDValue();
2681 }
2682 
2683 const APInt *
2684 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2685                                           const APInt &DemandedElts) const {
2686   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2687           V.getOpcode() == ISD::SRA) &&
2688          "Unknown shift node");
2689   unsigned BitWidth = V.getScalarValueSizeInBits();
2690   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2691     // Shifting more than the bitwidth is not valid.
2692     const APInt &ShAmt = SA->getAPIntValue();
2693     if (ShAmt.ult(BitWidth))
2694       return &ShAmt;
2695   }
2696   return nullptr;
2697 }
2698 
2699 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2700     SDValue V, const APInt &DemandedElts) const {
2701   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2702           V.getOpcode() == ISD::SRA) &&
2703          "Unknown shift node");
2704   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2705     return ValidAmt;
2706   unsigned BitWidth = V.getScalarValueSizeInBits();
2707   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2708   if (!BV)
2709     return nullptr;
2710   const APInt *MinShAmt = nullptr;
2711   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2712     if (!DemandedElts[i])
2713       continue;
2714     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2715     if (!SA)
2716       return nullptr;
2717     // Shifting more than the bitwidth is not valid.
2718     const APInt &ShAmt = SA->getAPIntValue();
2719     if (ShAmt.uge(BitWidth))
2720       return nullptr;
2721     if (MinShAmt && MinShAmt->ule(ShAmt))
2722       continue;
2723     MinShAmt = &ShAmt;
2724   }
2725   return MinShAmt;
2726 }
2727 
2728 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2729     SDValue V, const APInt &DemandedElts) const {
2730   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2731           V.getOpcode() == ISD::SRA) &&
2732          "Unknown shift node");
2733   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2734     return ValidAmt;
2735   unsigned BitWidth = V.getScalarValueSizeInBits();
2736   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2737   if (!BV)
2738     return nullptr;
2739   const APInt *MaxShAmt = nullptr;
2740   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2741     if (!DemandedElts[i])
2742       continue;
2743     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2744     if (!SA)
2745       return nullptr;
2746     // Shifting more than the bitwidth is not valid.
2747     const APInt &ShAmt = SA->getAPIntValue();
2748     if (ShAmt.uge(BitWidth))
2749       return nullptr;
2750     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2751       continue;
2752     MaxShAmt = &ShAmt;
2753   }
2754   return MaxShAmt;
2755 }
2756 
2757 /// Determine which bits of Op are known to be either zero or one and return
2758 /// them in Known. For vectors, the known bits are those that are shared by
2759 /// every vector element.
2760 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2761   EVT VT = Op.getValueType();
2762 
2763   // TOOD: Until we have a plan for how to represent demanded elements for
2764   // scalable vectors, we can just bail out for now.
2765   if (Op.getValueType().isScalableVector()) {
2766     unsigned BitWidth = Op.getScalarValueSizeInBits();
2767     return KnownBits(BitWidth);
2768   }
2769 
2770   APInt DemandedElts = VT.isVector()
2771                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2772                            : APInt(1, 1);
2773   return computeKnownBits(Op, DemandedElts, Depth);
2774 }
2775 
2776 /// Determine which bits of Op are known to be either zero or one and return
2777 /// them in Known. The DemandedElts argument allows us to only collect the known
2778 /// bits that are shared by the requested vector elements.
2779 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2780                                          unsigned Depth) const {
2781   unsigned BitWidth = Op.getScalarValueSizeInBits();
2782 
2783   KnownBits Known(BitWidth);   // Don't know anything.
2784 
2785   // TOOD: Until we have a plan for how to represent demanded elements for
2786   // scalable vectors, we can just bail out for now.
2787   if (Op.getValueType().isScalableVector())
2788     return Known;
2789 
2790   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2791     // We know all of the bits for a constant!
2792     return KnownBits::makeConstant(C->getAPIntValue());
2793   }
2794   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2795     // We know all of the bits for a constant fp!
2796     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2797   }
2798 
2799   if (Depth >= MaxRecursionDepth)
2800     return Known;  // Limit search depth.
2801 
2802   KnownBits Known2;
2803   unsigned NumElts = DemandedElts.getBitWidth();
2804   assert((!Op.getValueType().isVector() ||
2805           NumElts == Op.getValueType().getVectorNumElements()) &&
2806          "Unexpected vector size");
2807 
2808   if (!DemandedElts)
2809     return Known;  // No demanded elts, better to assume we don't know anything.
2810 
2811   unsigned Opcode = Op.getOpcode();
2812   switch (Opcode) {
2813   case ISD::BUILD_VECTOR:
2814     // Collect the known bits that are shared by every demanded vector element.
2815     Known.Zero.setAllBits(); Known.One.setAllBits();
2816     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2817       if (!DemandedElts[i])
2818         continue;
2819 
2820       SDValue SrcOp = Op.getOperand(i);
2821       Known2 = computeKnownBits(SrcOp, Depth + 1);
2822 
2823       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2824       if (SrcOp.getValueSizeInBits() != BitWidth) {
2825         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2826                "Expected BUILD_VECTOR implicit truncation");
2827         Known2 = Known2.trunc(BitWidth);
2828       }
2829 
2830       // Known bits are the values that are shared by every demanded element.
2831       Known = KnownBits::commonBits(Known, Known2);
2832 
2833       // If we don't know any bits, early out.
2834       if (Known.isUnknown())
2835         break;
2836     }
2837     break;
2838   case ISD::VECTOR_SHUFFLE: {
2839     // Collect the known bits that are shared by every vector element referenced
2840     // by the shuffle.
2841     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2842     Known.Zero.setAllBits(); Known.One.setAllBits();
2843     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2844     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2845     for (unsigned i = 0; i != NumElts; ++i) {
2846       if (!DemandedElts[i])
2847         continue;
2848 
2849       int M = SVN->getMaskElt(i);
2850       if (M < 0) {
2851         // For UNDEF elements, we don't know anything about the common state of
2852         // the shuffle result.
2853         Known.resetAll();
2854         DemandedLHS.clearAllBits();
2855         DemandedRHS.clearAllBits();
2856         break;
2857       }
2858 
2859       if ((unsigned)M < NumElts)
2860         DemandedLHS.setBit((unsigned)M % NumElts);
2861       else
2862         DemandedRHS.setBit((unsigned)M % NumElts);
2863     }
2864     // Known bits are the values that are shared by every demanded element.
2865     if (!!DemandedLHS) {
2866       SDValue LHS = Op.getOperand(0);
2867       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2868       Known = KnownBits::commonBits(Known, Known2);
2869     }
2870     // If we don't know any bits, early out.
2871     if (Known.isUnknown())
2872       break;
2873     if (!!DemandedRHS) {
2874       SDValue RHS = Op.getOperand(1);
2875       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2876       Known = KnownBits::commonBits(Known, Known2);
2877     }
2878     break;
2879   }
2880   case ISD::CONCAT_VECTORS: {
2881     // Split DemandedElts and test each of the demanded subvectors.
2882     Known.Zero.setAllBits(); Known.One.setAllBits();
2883     EVT SubVectorVT = Op.getOperand(0).getValueType();
2884     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2885     unsigned NumSubVectors = Op.getNumOperands();
2886     for (unsigned i = 0; i != NumSubVectors; ++i) {
2887       APInt DemandedSub =
2888           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2889       if (!!DemandedSub) {
2890         SDValue Sub = Op.getOperand(i);
2891         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2892         Known = KnownBits::commonBits(Known, Known2);
2893       }
2894       // If we don't know any bits, early out.
2895       if (Known.isUnknown())
2896         break;
2897     }
2898     break;
2899   }
2900   case ISD::INSERT_SUBVECTOR: {
2901     // Demand any elements from the subvector and the remainder from the src its
2902     // inserted into.
2903     SDValue Src = Op.getOperand(0);
2904     SDValue Sub = Op.getOperand(1);
2905     uint64_t Idx = Op.getConstantOperandVal(2);
2906     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2907     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2908     APInt DemandedSrcElts = DemandedElts;
2909     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2910 
2911     Known.One.setAllBits();
2912     Known.Zero.setAllBits();
2913     if (!!DemandedSubElts) {
2914       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2915       if (Known.isUnknown())
2916         break; // early-out.
2917     }
2918     if (!!DemandedSrcElts) {
2919       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2920       Known = KnownBits::commonBits(Known, Known2);
2921     }
2922     break;
2923   }
2924   case ISD::EXTRACT_SUBVECTOR: {
2925     // Offset the demanded elts by the subvector index.
2926     SDValue Src = Op.getOperand(0);
2927     // Bail until we can represent demanded elements for scalable vectors.
2928     if (Src.getValueType().isScalableVector())
2929       break;
2930     uint64_t Idx = Op.getConstantOperandVal(1);
2931     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2932     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2933     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2934     break;
2935   }
2936   case ISD::SCALAR_TO_VECTOR: {
2937     // We know about scalar_to_vector as much as we know about it source,
2938     // which becomes the first element of otherwise unknown vector.
2939     if (DemandedElts != 1)
2940       break;
2941 
2942     SDValue N0 = Op.getOperand(0);
2943     Known = computeKnownBits(N0, Depth + 1);
2944     if (N0.getValueSizeInBits() != BitWidth)
2945       Known = Known.trunc(BitWidth);
2946 
2947     break;
2948   }
2949   case ISD::BITCAST: {
2950     SDValue N0 = Op.getOperand(0);
2951     EVT SubVT = N0.getValueType();
2952     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2953 
2954     // Ignore bitcasts from unsupported types.
2955     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2956       break;
2957 
2958     // Fast handling of 'identity' bitcasts.
2959     if (BitWidth == SubBitWidth) {
2960       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2961       break;
2962     }
2963 
2964     bool IsLE = getDataLayout().isLittleEndian();
2965 
2966     // Bitcast 'small element' vector to 'large element' scalar/vector.
2967     if ((BitWidth % SubBitWidth) == 0) {
2968       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2969 
2970       // Collect known bits for the (larger) output by collecting the known
2971       // bits from each set of sub elements and shift these into place.
2972       // We need to separately call computeKnownBits for each set of
2973       // sub elements as the knownbits for each is likely to be different.
2974       unsigned SubScale = BitWidth / SubBitWidth;
2975       APInt SubDemandedElts(NumElts * SubScale, 0);
2976       for (unsigned i = 0; i != NumElts; ++i)
2977         if (DemandedElts[i])
2978           SubDemandedElts.setBit(i * SubScale);
2979 
2980       for (unsigned i = 0; i != SubScale; ++i) {
2981         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2982                          Depth + 1);
2983         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2984         Known.insertBits(Known2, SubBitWidth * Shifts);
2985       }
2986     }
2987 
2988     // Bitcast 'large element' scalar/vector to 'small element' vector.
2989     if ((SubBitWidth % BitWidth) == 0) {
2990       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2991 
2992       // Collect known bits for the (smaller) output by collecting the known
2993       // bits from the overlapping larger input elements and extracting the
2994       // sub sections we actually care about.
2995       unsigned SubScale = SubBitWidth / BitWidth;
2996       APInt SubDemandedElts(NumElts / SubScale, 0);
2997       for (unsigned i = 0; i != NumElts; ++i)
2998         if (DemandedElts[i])
2999           SubDemandedElts.setBit(i / SubScale);
3000 
3001       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3002 
3003       Known.Zero.setAllBits(); Known.One.setAllBits();
3004       for (unsigned i = 0; i != NumElts; ++i)
3005         if (DemandedElts[i]) {
3006           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3007           unsigned Offset = (Shifts % SubScale) * BitWidth;
3008           Known = KnownBits::commonBits(Known,
3009                                         Known2.extractBits(BitWidth, Offset));
3010           // If we don't know any bits, early out.
3011           if (Known.isUnknown())
3012             break;
3013         }
3014     }
3015     break;
3016   }
3017   case ISD::AND:
3018     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3019     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3020 
3021     Known &= Known2;
3022     break;
3023   case ISD::OR:
3024     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3025     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3026 
3027     Known |= Known2;
3028     break;
3029   case ISD::XOR:
3030     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3031     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3032 
3033     Known ^= Known2;
3034     break;
3035   case ISD::MUL: {
3036     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3037     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3038     Known = KnownBits::mul(Known, Known2);
3039     break;
3040   }
3041   case ISD::MULHU: {
3042     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3043     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3044     Known = KnownBits::mulhu(Known, Known2);
3045     break;
3046   }
3047   case ISD::MULHS: {
3048     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3049     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3050     Known = KnownBits::mulhs(Known, Known2);
3051     break;
3052   }
3053   case ISD::UMUL_LOHI: {
3054     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3055     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3056     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3057     if (Op.getResNo() == 0)
3058       Known = KnownBits::mul(Known, Known2);
3059     else
3060       Known = KnownBits::mulhu(Known, Known2);
3061     break;
3062   }
3063   case ISD::SMUL_LOHI: {
3064     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3065     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3066     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3067     if (Op.getResNo() == 0)
3068       Known = KnownBits::mul(Known, Known2);
3069     else
3070       Known = KnownBits::mulhs(Known, Known2);
3071     break;
3072   }
3073   case ISD::UDIV: {
3074     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3075     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3076     Known = KnownBits::udiv(Known, Known2);
3077     break;
3078   }
3079   case ISD::SELECT:
3080   case ISD::VSELECT:
3081     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3082     // If we don't know any bits, early out.
3083     if (Known.isUnknown())
3084       break;
3085     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3086 
3087     // Only known if known in both the LHS and RHS.
3088     Known = KnownBits::commonBits(Known, Known2);
3089     break;
3090   case ISD::SELECT_CC:
3091     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3092     // If we don't know any bits, early out.
3093     if (Known.isUnknown())
3094       break;
3095     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3096 
3097     // Only known if known in both the LHS and RHS.
3098     Known = KnownBits::commonBits(Known, Known2);
3099     break;
3100   case ISD::SMULO:
3101   case ISD::UMULO:
3102     if (Op.getResNo() != 1)
3103       break;
3104     // The boolean result conforms to getBooleanContents.
3105     // If we know the result of a setcc has the top bits zero, use this info.
3106     // We know that we have an integer-based boolean since these operations
3107     // are only available for integer.
3108     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3109             TargetLowering::ZeroOrOneBooleanContent &&
3110         BitWidth > 1)
3111       Known.Zero.setBitsFrom(1);
3112     break;
3113   case ISD::SETCC:
3114   case ISD::STRICT_FSETCC:
3115   case ISD::STRICT_FSETCCS: {
3116     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3117     // If we know the result of a setcc has the top bits zero, use this info.
3118     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3119             TargetLowering::ZeroOrOneBooleanContent &&
3120         BitWidth > 1)
3121       Known.Zero.setBitsFrom(1);
3122     break;
3123   }
3124   case ISD::SHL:
3125     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3126     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3127     Known = KnownBits::shl(Known, Known2);
3128 
3129     // Minimum shift low bits are known zero.
3130     if (const APInt *ShMinAmt =
3131             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3132       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3133     break;
3134   case ISD::SRL:
3135     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3136     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3137     Known = KnownBits::lshr(Known, Known2);
3138 
3139     // Minimum shift high bits are known zero.
3140     if (const APInt *ShMinAmt =
3141             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3142       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3143     break;
3144   case ISD::SRA:
3145     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3146     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3147     Known = KnownBits::ashr(Known, Known2);
3148     // TODO: Add minimum shift high known sign bits.
3149     break;
3150   case ISD::FSHL:
3151   case ISD::FSHR:
3152     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3153       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3154 
3155       // For fshl, 0-shift returns the 1st arg.
3156       // For fshr, 0-shift returns the 2nd arg.
3157       if (Amt == 0) {
3158         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3159                                  DemandedElts, Depth + 1);
3160         break;
3161       }
3162 
3163       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3164       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3165       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3166       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3167       if (Opcode == ISD::FSHL) {
3168         Known.One <<= Amt;
3169         Known.Zero <<= Amt;
3170         Known2.One.lshrInPlace(BitWidth - Amt);
3171         Known2.Zero.lshrInPlace(BitWidth - Amt);
3172       } else {
3173         Known.One <<= BitWidth - Amt;
3174         Known.Zero <<= BitWidth - Amt;
3175         Known2.One.lshrInPlace(Amt);
3176         Known2.Zero.lshrInPlace(Amt);
3177       }
3178       Known.One |= Known2.One;
3179       Known.Zero |= Known2.Zero;
3180     }
3181     break;
3182   case ISD::SIGN_EXTEND_INREG: {
3183     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3184     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3185     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3186     break;
3187   }
3188   case ISD::CTTZ:
3189   case ISD::CTTZ_ZERO_UNDEF: {
3190     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3191     // If we have a known 1, its position is our upper bound.
3192     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3193     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3194     Known.Zero.setBitsFrom(LowBits);
3195     break;
3196   }
3197   case ISD::CTLZ:
3198   case ISD::CTLZ_ZERO_UNDEF: {
3199     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3200     // If we have a known 1, its position is our upper bound.
3201     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3202     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3203     Known.Zero.setBitsFrom(LowBits);
3204     break;
3205   }
3206   case ISD::CTPOP: {
3207     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3208     // If we know some of the bits are zero, they can't be one.
3209     unsigned PossibleOnes = Known2.countMaxPopulation();
3210     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3211     break;
3212   }
3213   case ISD::PARITY: {
3214     // Parity returns 0 everywhere but the LSB.
3215     Known.Zero.setBitsFrom(1);
3216     break;
3217   }
3218   case ISD::LOAD: {
3219     LoadSDNode *LD = cast<LoadSDNode>(Op);
3220     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3221     if (ISD::isNON_EXTLoad(LD) && Cst) {
3222       // Determine any common known bits from the loaded constant pool value.
3223       Type *CstTy = Cst->getType();
3224       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3225         // If its a vector splat, then we can (quickly) reuse the scalar path.
3226         // NOTE: We assume all elements match and none are UNDEF.
3227         if (CstTy->isVectorTy()) {
3228           if (const Constant *Splat = Cst->getSplatValue()) {
3229             Cst = Splat;
3230             CstTy = Cst->getType();
3231           }
3232         }
3233         // TODO - do we need to handle different bitwidths?
3234         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3235           // Iterate across all vector elements finding common known bits.
3236           Known.One.setAllBits();
3237           Known.Zero.setAllBits();
3238           for (unsigned i = 0; i != NumElts; ++i) {
3239             if (!DemandedElts[i])
3240               continue;
3241             if (Constant *Elt = Cst->getAggregateElement(i)) {
3242               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3243                 const APInt &Value = CInt->getValue();
3244                 Known.One &= Value;
3245                 Known.Zero &= ~Value;
3246                 continue;
3247               }
3248               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3249                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3250                 Known.One &= Value;
3251                 Known.Zero &= ~Value;
3252                 continue;
3253               }
3254             }
3255             Known.One.clearAllBits();
3256             Known.Zero.clearAllBits();
3257             break;
3258           }
3259         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3260           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3261             Known = KnownBits::makeConstant(CInt->getValue());
3262           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3263             Known =
3264                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3265           }
3266         }
3267       }
3268     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3269       // If this is a ZEXTLoad and we are looking at the loaded value.
3270       EVT VT = LD->getMemoryVT();
3271       unsigned MemBits = VT.getScalarSizeInBits();
3272       Known.Zero.setBitsFrom(MemBits);
3273     } else if (const MDNode *Ranges = LD->getRanges()) {
3274       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3275         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3276     }
3277     break;
3278   }
3279   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3280     EVT InVT = Op.getOperand(0).getValueType();
3281     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3282     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3283     Known = Known.zext(BitWidth);
3284     break;
3285   }
3286   case ISD::ZERO_EXTEND: {
3287     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3288     Known = Known.zext(BitWidth);
3289     break;
3290   }
3291   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3292     EVT InVT = Op.getOperand(0).getValueType();
3293     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3294     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3295     // If the sign bit is known to be zero or one, then sext will extend
3296     // it to the top bits, else it will just zext.
3297     Known = Known.sext(BitWidth);
3298     break;
3299   }
3300   case ISD::SIGN_EXTEND: {
3301     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3302     // If the sign bit is known to be zero or one, then sext will extend
3303     // it to the top bits, else it will just zext.
3304     Known = Known.sext(BitWidth);
3305     break;
3306   }
3307   case ISD::ANY_EXTEND_VECTOR_INREG: {
3308     EVT InVT = Op.getOperand(0).getValueType();
3309     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3310     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3311     Known = Known.anyext(BitWidth);
3312     break;
3313   }
3314   case ISD::ANY_EXTEND: {
3315     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3316     Known = Known.anyext(BitWidth);
3317     break;
3318   }
3319   case ISD::TRUNCATE: {
3320     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3321     Known = Known.trunc(BitWidth);
3322     break;
3323   }
3324   case ISD::AssertZext: {
3325     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3326     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3327     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3328     Known.Zero |= (~InMask);
3329     Known.One  &= (~Known.Zero);
3330     break;
3331   }
3332   case ISD::AssertAlign: {
3333     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3334     assert(LogOfAlign != 0);
3335     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3336     // well as clearing one bits.
3337     Known.Zero.setLowBits(LogOfAlign);
3338     Known.One.clearLowBits(LogOfAlign);
3339     break;
3340   }
3341   case ISD::FGETSIGN:
3342     // All bits are zero except the low bit.
3343     Known.Zero.setBitsFrom(1);
3344     break;
3345   case ISD::USUBO:
3346   case ISD::SSUBO:
3347     if (Op.getResNo() == 1) {
3348       // If we know the result of a setcc has the top bits zero, use this info.
3349       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3350               TargetLowering::ZeroOrOneBooleanContent &&
3351           BitWidth > 1)
3352         Known.Zero.setBitsFrom(1);
3353       break;
3354     }
3355     LLVM_FALLTHROUGH;
3356   case ISD::SUB:
3357   case ISD::SUBC: {
3358     assert(Op.getResNo() == 0 &&
3359            "We only compute knownbits for the difference here.");
3360 
3361     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3362     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3363     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3364                                         Known, Known2);
3365     break;
3366   }
3367   case ISD::UADDO:
3368   case ISD::SADDO:
3369   case ISD::ADDCARRY:
3370     if (Op.getResNo() == 1) {
3371       // If we know the result of a setcc has the top bits zero, use this info.
3372       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3373               TargetLowering::ZeroOrOneBooleanContent &&
3374           BitWidth > 1)
3375         Known.Zero.setBitsFrom(1);
3376       break;
3377     }
3378     LLVM_FALLTHROUGH;
3379   case ISD::ADD:
3380   case ISD::ADDC:
3381   case ISD::ADDE: {
3382     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3383 
3384     // With ADDE and ADDCARRY, a carry bit may be added in.
3385     KnownBits Carry(1);
3386     if (Opcode == ISD::ADDE)
3387       // Can't track carry from glue, set carry to unknown.
3388       Carry.resetAll();
3389     else if (Opcode == ISD::ADDCARRY)
3390       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3391       // the trouble (how often will we find a known carry bit). And I haven't
3392       // tested this very much yet, but something like this might work:
3393       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3394       //   Carry = Carry.zextOrTrunc(1, false);
3395       Carry.resetAll();
3396     else
3397       Carry.setAllZero();
3398 
3399     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3400     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3401     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3402     break;
3403   }
3404   case ISD::SREM: {
3405     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3406     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3407     Known = KnownBits::srem(Known, Known2);
3408     break;
3409   }
3410   case ISD::UREM: {
3411     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3412     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3413     Known = KnownBits::urem(Known, Known2);
3414     break;
3415   }
3416   case ISD::EXTRACT_ELEMENT: {
3417     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3418     const unsigned Index = Op.getConstantOperandVal(1);
3419     const unsigned EltBitWidth = Op.getValueSizeInBits();
3420 
3421     // Remove low part of known bits mask
3422     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3423     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3424 
3425     // Remove high part of known bit mask
3426     Known = Known.trunc(EltBitWidth);
3427     break;
3428   }
3429   case ISD::EXTRACT_VECTOR_ELT: {
3430     SDValue InVec = Op.getOperand(0);
3431     SDValue EltNo = Op.getOperand(1);
3432     EVT VecVT = InVec.getValueType();
3433     // computeKnownBits not yet implemented for scalable vectors.
3434     if (VecVT.isScalableVector())
3435       break;
3436     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3437     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3438 
3439     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3440     // anything about the extended bits.
3441     if (BitWidth > EltBitWidth)
3442       Known = Known.trunc(EltBitWidth);
3443 
3444     // If we know the element index, just demand that vector element, else for
3445     // an unknown element index, ignore DemandedElts and demand them all.
3446     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3447     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3448     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3449       DemandedSrcElts =
3450           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3451 
3452     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3453     if (BitWidth > EltBitWidth)
3454       Known = Known.anyext(BitWidth);
3455     break;
3456   }
3457   case ISD::INSERT_VECTOR_ELT: {
3458     // If we know the element index, split the demand between the
3459     // source vector and the inserted element, otherwise assume we need
3460     // the original demanded vector elements and the value.
3461     SDValue InVec = Op.getOperand(0);
3462     SDValue InVal = Op.getOperand(1);
3463     SDValue EltNo = Op.getOperand(2);
3464     bool DemandedVal = true;
3465     APInt DemandedVecElts = DemandedElts;
3466     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3467     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3468       unsigned EltIdx = CEltNo->getZExtValue();
3469       DemandedVal = !!DemandedElts[EltIdx];
3470       DemandedVecElts.clearBit(EltIdx);
3471     }
3472     Known.One.setAllBits();
3473     Known.Zero.setAllBits();
3474     if (DemandedVal) {
3475       Known2 = computeKnownBits(InVal, Depth + 1);
3476       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3477     }
3478     if (!!DemandedVecElts) {
3479       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3480       Known = KnownBits::commonBits(Known, Known2);
3481     }
3482     break;
3483   }
3484   case ISD::BITREVERSE: {
3485     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3486     Known = Known2.reverseBits();
3487     break;
3488   }
3489   case ISD::BSWAP: {
3490     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3491     Known = Known2.byteSwap();
3492     break;
3493   }
3494   case ISD::ABS: {
3495     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3496     Known = Known2.abs();
3497     break;
3498   }
3499   case ISD::USUBSAT: {
3500     // The result of usubsat will never be larger than the LHS.
3501     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3502     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3503     break;
3504   }
3505   case ISD::UMIN: {
3506     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3507     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3508     Known = KnownBits::umin(Known, Known2);
3509     break;
3510   }
3511   case ISD::UMAX: {
3512     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3513     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3514     Known = KnownBits::umax(Known, Known2);
3515     break;
3516   }
3517   case ISD::SMIN:
3518   case ISD::SMAX: {
3519     // If we have a clamp pattern, we know that the number of sign bits will be
3520     // the minimum of the clamp min/max range.
3521     bool IsMax = (Opcode == ISD::SMAX);
3522     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3523     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3524       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3525         CstHigh =
3526             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3527     if (CstLow && CstHigh) {
3528       if (!IsMax)
3529         std::swap(CstLow, CstHigh);
3530 
3531       const APInt &ValueLow = CstLow->getAPIntValue();
3532       const APInt &ValueHigh = CstHigh->getAPIntValue();
3533       if (ValueLow.sle(ValueHigh)) {
3534         unsigned LowSignBits = ValueLow.getNumSignBits();
3535         unsigned HighSignBits = ValueHigh.getNumSignBits();
3536         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3537         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3538           Known.One.setHighBits(MinSignBits);
3539           break;
3540         }
3541         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3542           Known.Zero.setHighBits(MinSignBits);
3543           break;
3544         }
3545       }
3546     }
3547 
3548     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3549     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3550     if (IsMax)
3551       Known = KnownBits::smax(Known, Known2);
3552     else
3553       Known = KnownBits::smin(Known, Known2);
3554     break;
3555   }
3556   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3557     if (Op.getResNo() == 1) {
3558       // The boolean result conforms to getBooleanContents.
3559       // If we know the result of a setcc has the top bits zero, use this info.
3560       // We know that we have an integer-based boolean since these operations
3561       // are only available for integer.
3562       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3563               TargetLowering::ZeroOrOneBooleanContent &&
3564           BitWidth > 1)
3565         Known.Zero.setBitsFrom(1);
3566       break;
3567     }
3568     LLVM_FALLTHROUGH;
3569   case ISD::ATOMIC_CMP_SWAP:
3570   case ISD::ATOMIC_SWAP:
3571   case ISD::ATOMIC_LOAD_ADD:
3572   case ISD::ATOMIC_LOAD_SUB:
3573   case ISD::ATOMIC_LOAD_AND:
3574   case ISD::ATOMIC_LOAD_CLR:
3575   case ISD::ATOMIC_LOAD_OR:
3576   case ISD::ATOMIC_LOAD_XOR:
3577   case ISD::ATOMIC_LOAD_NAND:
3578   case ISD::ATOMIC_LOAD_MIN:
3579   case ISD::ATOMIC_LOAD_MAX:
3580   case ISD::ATOMIC_LOAD_UMIN:
3581   case ISD::ATOMIC_LOAD_UMAX:
3582   case ISD::ATOMIC_LOAD: {
3583     unsigned MemBits =
3584         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3585     // If we are looking at the loaded value.
3586     if (Op.getResNo() == 0) {
3587       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3588         Known.Zero.setBitsFrom(MemBits);
3589     }
3590     break;
3591   }
3592   case ISD::FrameIndex:
3593   case ISD::TargetFrameIndex:
3594     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3595                                        Known, getMachineFunction());
3596     break;
3597 
3598   default:
3599     if (Opcode < ISD::BUILTIN_OP_END)
3600       break;
3601     LLVM_FALLTHROUGH;
3602   case ISD::INTRINSIC_WO_CHAIN:
3603   case ISD::INTRINSIC_W_CHAIN:
3604   case ISD::INTRINSIC_VOID:
3605     // Allow the target to implement this method for its nodes.
3606     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3607     break;
3608   }
3609 
3610   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3611   return Known;
3612 }
3613 
3614 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3615                                                              SDValue N1) const {
3616   // X + 0 never overflow
3617   if (isNullConstant(N1))
3618     return OFK_Never;
3619 
3620   KnownBits N1Known = computeKnownBits(N1);
3621   if (N1Known.Zero.getBoolValue()) {
3622     KnownBits N0Known = computeKnownBits(N0);
3623 
3624     bool overflow;
3625     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3626     if (!overflow)
3627       return OFK_Never;
3628   }
3629 
3630   // mulhi + 1 never overflow
3631   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3632       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3633     return OFK_Never;
3634 
3635   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3636     KnownBits N0Known = computeKnownBits(N0);
3637 
3638     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3639       return OFK_Never;
3640   }
3641 
3642   return OFK_Sometime;
3643 }
3644 
3645 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3646   EVT OpVT = Val.getValueType();
3647   unsigned BitWidth = OpVT.getScalarSizeInBits();
3648 
3649   // Is the constant a known power of 2?
3650   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3651     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3652 
3653   // A left-shift of a constant one will have exactly one bit set because
3654   // shifting the bit off the end is undefined.
3655   if (Val.getOpcode() == ISD::SHL) {
3656     auto *C = isConstOrConstSplat(Val.getOperand(0));
3657     if (C && C->getAPIntValue() == 1)
3658       return true;
3659   }
3660 
3661   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3662   // one bit set.
3663   if (Val.getOpcode() == ISD::SRL) {
3664     auto *C = isConstOrConstSplat(Val.getOperand(0));
3665     if (C && C->getAPIntValue().isSignMask())
3666       return true;
3667   }
3668 
3669   // Are all operands of a build vector constant powers of two?
3670   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3671     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3672           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3673             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3674           return false;
3675         }))
3676       return true;
3677 
3678   // Is the operand of a splat vector a constant power of two?
3679   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3680     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3681       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3682         return true;
3683 
3684   // More could be done here, though the above checks are enough
3685   // to handle some common cases.
3686 
3687   // Fall back to computeKnownBits to catch other known cases.
3688   KnownBits Known = computeKnownBits(Val);
3689   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3690 }
3691 
3692 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3693   EVT VT = Op.getValueType();
3694 
3695   // TODO: Assume we don't know anything for now.
3696   if (VT.isScalableVector())
3697     return 1;
3698 
3699   APInt DemandedElts = VT.isVector()
3700                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3701                            : APInt(1, 1);
3702   return ComputeNumSignBits(Op, DemandedElts, Depth);
3703 }
3704 
3705 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3706                                           unsigned Depth) const {
3707   EVT VT = Op.getValueType();
3708   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3709   unsigned VTBits = VT.getScalarSizeInBits();
3710   unsigned NumElts = DemandedElts.getBitWidth();
3711   unsigned Tmp, Tmp2;
3712   unsigned FirstAnswer = 1;
3713 
3714   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3715     const APInt &Val = C->getAPIntValue();
3716     return Val.getNumSignBits();
3717   }
3718 
3719   if (Depth >= MaxRecursionDepth)
3720     return 1;  // Limit search depth.
3721 
3722   if (!DemandedElts || VT.isScalableVector())
3723     return 1;  // No demanded elts, better to assume we don't know anything.
3724 
3725   unsigned Opcode = Op.getOpcode();
3726   switch (Opcode) {
3727   default: break;
3728   case ISD::AssertSext:
3729     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3730     return VTBits-Tmp+1;
3731   case ISD::AssertZext:
3732     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3733     return VTBits-Tmp;
3734 
3735   case ISD::BUILD_VECTOR:
3736     Tmp = VTBits;
3737     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3738       if (!DemandedElts[i])
3739         continue;
3740 
3741       SDValue SrcOp = Op.getOperand(i);
3742       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3743 
3744       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3745       if (SrcOp.getValueSizeInBits() != VTBits) {
3746         assert(SrcOp.getValueSizeInBits() > VTBits &&
3747                "Expected BUILD_VECTOR implicit truncation");
3748         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3749         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3750       }
3751       Tmp = std::min(Tmp, Tmp2);
3752     }
3753     return Tmp;
3754 
3755   case ISD::VECTOR_SHUFFLE: {
3756     // Collect the minimum number of sign bits that are shared by every vector
3757     // element referenced by the shuffle.
3758     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3759     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3760     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3761     for (unsigned i = 0; i != NumElts; ++i) {
3762       int M = SVN->getMaskElt(i);
3763       if (!DemandedElts[i])
3764         continue;
3765       // For UNDEF elements, we don't know anything about the common state of
3766       // the shuffle result.
3767       if (M < 0)
3768         return 1;
3769       if ((unsigned)M < NumElts)
3770         DemandedLHS.setBit((unsigned)M % NumElts);
3771       else
3772         DemandedRHS.setBit((unsigned)M % NumElts);
3773     }
3774     Tmp = std::numeric_limits<unsigned>::max();
3775     if (!!DemandedLHS)
3776       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3777     if (!!DemandedRHS) {
3778       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3779       Tmp = std::min(Tmp, Tmp2);
3780     }
3781     // If we don't know anything, early out and try computeKnownBits fall-back.
3782     if (Tmp == 1)
3783       break;
3784     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3785     return Tmp;
3786   }
3787 
3788   case ISD::BITCAST: {
3789     SDValue N0 = Op.getOperand(0);
3790     EVT SrcVT = N0.getValueType();
3791     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3792 
3793     // Ignore bitcasts from unsupported types..
3794     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3795       break;
3796 
3797     // Fast handling of 'identity' bitcasts.
3798     if (VTBits == SrcBits)
3799       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3800 
3801     bool IsLE = getDataLayout().isLittleEndian();
3802 
3803     // Bitcast 'large element' scalar/vector to 'small element' vector.
3804     if ((SrcBits % VTBits) == 0) {
3805       assert(VT.isVector() && "Expected bitcast to vector");
3806 
3807       unsigned Scale = SrcBits / VTBits;
3808       APInt SrcDemandedElts(NumElts / Scale, 0);
3809       for (unsigned i = 0; i != NumElts; ++i)
3810         if (DemandedElts[i])
3811           SrcDemandedElts.setBit(i / Scale);
3812 
3813       // Fast case - sign splat can be simply split across the small elements.
3814       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3815       if (Tmp == SrcBits)
3816         return VTBits;
3817 
3818       // Slow case - determine how far the sign extends into each sub-element.
3819       Tmp2 = VTBits;
3820       for (unsigned i = 0; i != NumElts; ++i)
3821         if (DemandedElts[i]) {
3822           unsigned SubOffset = i % Scale;
3823           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3824           SubOffset = SubOffset * VTBits;
3825           if (Tmp <= SubOffset)
3826             return 1;
3827           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3828         }
3829       return Tmp2;
3830     }
3831     break;
3832   }
3833 
3834   case ISD::SIGN_EXTEND:
3835     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3836     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3837   case ISD::SIGN_EXTEND_INREG:
3838     // Max of the input and what this extends.
3839     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3840     Tmp = VTBits-Tmp+1;
3841     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3842     return std::max(Tmp, Tmp2);
3843   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3844     SDValue Src = Op.getOperand(0);
3845     EVT SrcVT = Src.getValueType();
3846     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3847     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3848     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3849   }
3850   case ISD::SRA:
3851     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3852     // SRA X, C -> adds C sign bits.
3853     if (const APInt *ShAmt =
3854             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3855       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3856     return Tmp;
3857   case ISD::SHL:
3858     if (const APInt *ShAmt =
3859             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3860       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3861       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3862       if (ShAmt->ult(Tmp))
3863         return Tmp - ShAmt->getZExtValue();
3864     }
3865     break;
3866   case ISD::AND:
3867   case ISD::OR:
3868   case ISD::XOR:    // NOT is handled here.
3869     // Logical binary ops preserve the number of sign bits at the worst.
3870     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3871     if (Tmp != 1) {
3872       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3873       FirstAnswer = std::min(Tmp, Tmp2);
3874       // We computed what we know about the sign bits as our first
3875       // answer. Now proceed to the generic code that uses
3876       // computeKnownBits, and pick whichever answer is better.
3877     }
3878     break;
3879 
3880   case ISD::SELECT:
3881   case ISD::VSELECT:
3882     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3883     if (Tmp == 1) return 1;  // Early out.
3884     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3885     return std::min(Tmp, Tmp2);
3886   case ISD::SELECT_CC:
3887     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3888     if (Tmp == 1) return 1;  // Early out.
3889     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3890     return std::min(Tmp, Tmp2);
3891 
3892   case ISD::SMIN:
3893   case ISD::SMAX: {
3894     // If we have a clamp pattern, we know that the number of sign bits will be
3895     // the minimum of the clamp min/max range.
3896     bool IsMax = (Opcode == ISD::SMAX);
3897     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3898     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3899       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3900         CstHigh =
3901             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3902     if (CstLow && CstHigh) {
3903       if (!IsMax)
3904         std::swap(CstLow, CstHigh);
3905       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3906         Tmp = CstLow->getAPIntValue().getNumSignBits();
3907         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3908         return std::min(Tmp, Tmp2);
3909       }
3910     }
3911 
3912     // Fallback - just get the minimum number of sign bits of the operands.
3913     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3914     if (Tmp == 1)
3915       return 1;  // Early out.
3916     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3917     return std::min(Tmp, Tmp2);
3918   }
3919   case ISD::UMIN:
3920   case ISD::UMAX:
3921     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3922     if (Tmp == 1)
3923       return 1;  // Early out.
3924     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3925     return std::min(Tmp, Tmp2);
3926   case ISD::SADDO:
3927   case ISD::UADDO:
3928   case ISD::SSUBO:
3929   case ISD::USUBO:
3930   case ISD::SMULO:
3931   case ISD::UMULO:
3932     if (Op.getResNo() != 1)
3933       break;
3934     // The boolean result conforms to getBooleanContents.  Fall through.
3935     // If setcc returns 0/-1, all bits are sign bits.
3936     // We know that we have an integer-based boolean since these operations
3937     // are only available for integer.
3938     if (TLI->getBooleanContents(VT.isVector(), false) ==
3939         TargetLowering::ZeroOrNegativeOneBooleanContent)
3940       return VTBits;
3941     break;
3942   case ISD::SETCC:
3943   case ISD::STRICT_FSETCC:
3944   case ISD::STRICT_FSETCCS: {
3945     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3946     // If setcc returns 0/-1, all bits are sign bits.
3947     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3948         TargetLowering::ZeroOrNegativeOneBooleanContent)
3949       return VTBits;
3950     break;
3951   }
3952   case ISD::ROTL:
3953   case ISD::ROTR:
3954     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3955 
3956     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3957     if (Tmp == VTBits)
3958       return VTBits;
3959 
3960     if (ConstantSDNode *C =
3961             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3962       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3963 
3964       // Handle rotate right by N like a rotate left by 32-N.
3965       if (Opcode == ISD::ROTR)
3966         RotAmt = (VTBits - RotAmt) % VTBits;
3967 
3968       // If we aren't rotating out all of the known-in sign bits, return the
3969       // number that are left.  This handles rotl(sext(x), 1) for example.
3970       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3971     }
3972     break;
3973   case ISD::ADD:
3974   case ISD::ADDC:
3975     // Add can have at most one carry bit.  Thus we know that the output
3976     // is, at worst, one more bit than the inputs.
3977     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3978     if (Tmp == 1) return 1; // Early out.
3979 
3980     // Special case decrementing a value (ADD X, -1):
3981     if (ConstantSDNode *CRHS =
3982             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3983       if (CRHS->isAllOnesValue()) {
3984         KnownBits Known =
3985             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3986 
3987         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3988         // sign bits set.
3989         if ((Known.Zero | 1).isAllOnesValue())
3990           return VTBits;
3991 
3992         // If we are subtracting one from a positive number, there is no carry
3993         // out of the result.
3994         if (Known.isNonNegative())
3995           return Tmp;
3996       }
3997 
3998     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3999     if (Tmp2 == 1) return 1; // Early out.
4000     return std::min(Tmp, Tmp2) - 1;
4001   case ISD::SUB:
4002     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4003     if (Tmp2 == 1) return 1; // Early out.
4004 
4005     // Handle NEG.
4006     if (ConstantSDNode *CLHS =
4007             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4008       if (CLHS->isNullValue()) {
4009         KnownBits Known =
4010             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4011         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4012         // sign bits set.
4013         if ((Known.Zero | 1).isAllOnesValue())
4014           return VTBits;
4015 
4016         // If the input is known to be positive (the sign bit is known clear),
4017         // the output of the NEG has the same number of sign bits as the input.
4018         if (Known.isNonNegative())
4019           return Tmp2;
4020 
4021         // Otherwise, we treat this like a SUB.
4022       }
4023 
4024     // Sub can have at most one carry bit.  Thus we know that the output
4025     // is, at worst, one more bit than the inputs.
4026     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4027     if (Tmp == 1) return 1; // Early out.
4028     return std::min(Tmp, Tmp2) - 1;
4029   case ISD::MUL: {
4030     // The output of the Mul can be at most twice the valid bits in the inputs.
4031     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4032     if (SignBitsOp0 == 1)
4033       break;
4034     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4035     if (SignBitsOp1 == 1)
4036       break;
4037     unsigned OutValidBits =
4038         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4039     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4040   }
4041   case ISD::SREM:
4042     // The sign bit is the LHS's sign bit, except when the result of the
4043     // remainder is zero. The magnitude of the result should be less than or
4044     // equal to the magnitude of the LHS. Therefore, the result should have
4045     // at least as many sign bits as the left hand side.
4046     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4047   case ISD::TRUNCATE: {
4048     // Check if the sign bits of source go down as far as the truncated value.
4049     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4050     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4051     if (NumSrcSignBits > (NumSrcBits - VTBits))
4052       return NumSrcSignBits - (NumSrcBits - VTBits);
4053     break;
4054   }
4055   case ISD::EXTRACT_ELEMENT: {
4056     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4057     const int BitWidth = Op.getValueSizeInBits();
4058     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4059 
4060     // Get reverse index (starting from 1), Op1 value indexes elements from
4061     // little end. Sign starts at big end.
4062     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4063 
4064     // If the sign portion ends in our element the subtraction gives correct
4065     // result. Otherwise it gives either negative or > bitwidth result
4066     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4067   }
4068   case ISD::INSERT_VECTOR_ELT: {
4069     // If we know the element index, split the demand between the
4070     // source vector and the inserted element, otherwise assume we need
4071     // the original demanded vector elements and the value.
4072     SDValue InVec = Op.getOperand(0);
4073     SDValue InVal = Op.getOperand(1);
4074     SDValue EltNo = Op.getOperand(2);
4075     bool DemandedVal = true;
4076     APInt DemandedVecElts = DemandedElts;
4077     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4078     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4079       unsigned EltIdx = CEltNo->getZExtValue();
4080       DemandedVal = !!DemandedElts[EltIdx];
4081       DemandedVecElts.clearBit(EltIdx);
4082     }
4083     Tmp = std::numeric_limits<unsigned>::max();
4084     if (DemandedVal) {
4085       // TODO - handle implicit truncation of inserted elements.
4086       if (InVal.getScalarValueSizeInBits() != VTBits)
4087         break;
4088       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4089       Tmp = std::min(Tmp, Tmp2);
4090     }
4091     if (!!DemandedVecElts) {
4092       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4093       Tmp = std::min(Tmp, Tmp2);
4094     }
4095     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4096     return Tmp;
4097   }
4098   case ISD::EXTRACT_VECTOR_ELT: {
4099     SDValue InVec = Op.getOperand(0);
4100     SDValue EltNo = Op.getOperand(1);
4101     EVT VecVT = InVec.getValueType();
4102     // ComputeNumSignBits not yet implemented for scalable vectors.
4103     if (VecVT.isScalableVector())
4104       break;
4105     const unsigned BitWidth = Op.getValueSizeInBits();
4106     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4107     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4108 
4109     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4110     // anything about sign bits. But if the sizes match we can derive knowledge
4111     // about sign bits from the vector operand.
4112     if (BitWidth != EltBitWidth)
4113       break;
4114 
4115     // If we know the element index, just demand that vector element, else for
4116     // an unknown element index, ignore DemandedElts and demand them all.
4117     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4118     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4119     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4120       DemandedSrcElts =
4121           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4122 
4123     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4124   }
4125   case ISD::EXTRACT_SUBVECTOR: {
4126     // Offset the demanded elts by the subvector index.
4127     SDValue Src = Op.getOperand(0);
4128     // Bail until we can represent demanded elements for scalable vectors.
4129     if (Src.getValueType().isScalableVector())
4130       break;
4131     uint64_t Idx = Op.getConstantOperandVal(1);
4132     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4133     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4134     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4135   }
4136   case ISD::CONCAT_VECTORS: {
4137     // Determine the minimum number of sign bits across all demanded
4138     // elts of the input vectors. Early out if the result is already 1.
4139     Tmp = std::numeric_limits<unsigned>::max();
4140     EVT SubVectorVT = Op.getOperand(0).getValueType();
4141     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4142     unsigned NumSubVectors = Op.getNumOperands();
4143     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4144       APInt DemandedSub =
4145           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4146       if (!DemandedSub)
4147         continue;
4148       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4149       Tmp = std::min(Tmp, Tmp2);
4150     }
4151     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4152     return Tmp;
4153   }
4154   case ISD::INSERT_SUBVECTOR: {
4155     // Demand any elements from the subvector and the remainder from the src its
4156     // inserted into.
4157     SDValue Src = Op.getOperand(0);
4158     SDValue Sub = Op.getOperand(1);
4159     uint64_t Idx = Op.getConstantOperandVal(2);
4160     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4161     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4162     APInt DemandedSrcElts = DemandedElts;
4163     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4164 
4165     Tmp = std::numeric_limits<unsigned>::max();
4166     if (!!DemandedSubElts) {
4167       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4168       if (Tmp == 1)
4169         return 1; // early-out
4170     }
4171     if (!!DemandedSrcElts) {
4172       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4173       Tmp = std::min(Tmp, Tmp2);
4174     }
4175     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4176     return Tmp;
4177   }
4178   case ISD::ATOMIC_CMP_SWAP:
4179   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4180   case ISD::ATOMIC_SWAP:
4181   case ISD::ATOMIC_LOAD_ADD:
4182   case ISD::ATOMIC_LOAD_SUB:
4183   case ISD::ATOMIC_LOAD_AND:
4184   case ISD::ATOMIC_LOAD_CLR:
4185   case ISD::ATOMIC_LOAD_OR:
4186   case ISD::ATOMIC_LOAD_XOR:
4187   case ISD::ATOMIC_LOAD_NAND:
4188   case ISD::ATOMIC_LOAD_MIN:
4189   case ISD::ATOMIC_LOAD_MAX:
4190   case ISD::ATOMIC_LOAD_UMIN:
4191   case ISD::ATOMIC_LOAD_UMAX:
4192   case ISD::ATOMIC_LOAD: {
4193     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4194     // If we are looking at the loaded value.
4195     if (Op.getResNo() == 0) {
4196       if (Tmp == VTBits)
4197         return 1; // early-out
4198       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4199         return VTBits - Tmp + 1;
4200       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4201         return VTBits - Tmp;
4202     }
4203     break;
4204   }
4205   }
4206 
4207   // If we are looking at the loaded value of the SDNode.
4208   if (Op.getResNo() == 0) {
4209     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4210     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4211       unsigned ExtType = LD->getExtensionType();
4212       switch (ExtType) {
4213       default: break;
4214       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4215         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4216         return VTBits - Tmp + 1;
4217       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4218         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4219         return VTBits - Tmp;
4220       case ISD::NON_EXTLOAD:
4221         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4222           // We only need to handle vectors - computeKnownBits should handle
4223           // scalar cases.
4224           Type *CstTy = Cst->getType();
4225           if (CstTy->isVectorTy() &&
4226               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4227             Tmp = VTBits;
4228             for (unsigned i = 0; i != NumElts; ++i) {
4229               if (!DemandedElts[i])
4230                 continue;
4231               if (Constant *Elt = Cst->getAggregateElement(i)) {
4232                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4233                   const APInt &Value = CInt->getValue();
4234                   Tmp = std::min(Tmp, Value.getNumSignBits());
4235                   continue;
4236                 }
4237                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4238                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4239                   Tmp = std::min(Tmp, Value.getNumSignBits());
4240                   continue;
4241                 }
4242               }
4243               // Unknown type. Conservatively assume no bits match sign bit.
4244               return 1;
4245             }
4246             return Tmp;
4247           }
4248         }
4249         break;
4250       }
4251     }
4252   }
4253 
4254   // Allow the target to implement this method for its nodes.
4255   if (Opcode >= ISD::BUILTIN_OP_END ||
4256       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4257       Opcode == ISD::INTRINSIC_W_CHAIN ||
4258       Opcode == ISD::INTRINSIC_VOID) {
4259     unsigned NumBits =
4260         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4261     if (NumBits > 1)
4262       FirstAnswer = std::max(FirstAnswer, NumBits);
4263   }
4264 
4265   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4266   // use this information.
4267   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4268 
4269   APInt Mask;
4270   if (Known.isNonNegative()) {        // sign bit is 0
4271     Mask = Known.Zero;
4272   } else if (Known.isNegative()) {  // sign bit is 1;
4273     Mask = Known.One;
4274   } else {
4275     // Nothing known.
4276     return FirstAnswer;
4277   }
4278 
4279   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4280   // the number of identical bits in the top of the input value.
4281   Mask <<= Mask.getBitWidth()-VTBits;
4282   return std::max(FirstAnswer, Mask.countLeadingOnes());
4283 }
4284 
4285 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4286                                                     unsigned Depth) const {
4287   // Early out for FREEZE.
4288   if (Op.getOpcode() == ISD::FREEZE)
4289     return true;
4290 
4291   // TODO: Assume we don't know anything for now.
4292   EVT VT = Op.getValueType();
4293   if (VT.isScalableVector())
4294     return false;
4295 
4296   APInt DemandedElts = VT.isVector()
4297                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
4298                            : APInt(1, 1);
4299   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4300 }
4301 
4302 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4303                                                     const APInt &DemandedElts,
4304                                                     bool PoisonOnly,
4305                                                     unsigned Depth) const {
4306   unsigned Opcode = Op.getOpcode();
4307 
4308   // Early out for FREEZE.
4309   if (Opcode == ISD::FREEZE)
4310     return true;
4311 
4312   if (Depth >= MaxRecursionDepth)
4313     return false; // Limit search depth.
4314 
4315   if (isIntOrFPConstant(Op))
4316     return true;
4317 
4318   switch (Opcode) {
4319   case ISD::UNDEF:
4320     return PoisonOnly;
4321 
4322   case ISD::BUILD_VECTOR:
4323     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4324     // this shouldn't affect the result.
4325     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4326       if (!DemandedElts[i])
4327         continue;
4328       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4329                                             Depth + 1))
4330         return false;
4331     }
4332     return true;
4333 
4334   // TODO: Search for noundef attributes from library functions.
4335 
4336   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4337 
4338   default:
4339     // Allow the target to implement this method for its nodes.
4340     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4341         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4342       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4343           Op, DemandedElts, *this, PoisonOnly, Depth);
4344     break;
4345   }
4346 
4347   return false;
4348 }
4349 
4350 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4351   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4352       !isa<ConstantSDNode>(Op.getOperand(1)))
4353     return false;
4354 
4355   if (Op.getOpcode() == ISD::OR &&
4356       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4357     return false;
4358 
4359   return true;
4360 }
4361 
4362 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4363   // If we're told that NaNs won't happen, assume they won't.
4364   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4365     return true;
4366 
4367   if (Depth >= MaxRecursionDepth)
4368     return false; // Limit search depth.
4369 
4370   // TODO: Handle vectors.
4371   // If the value is a constant, we can obviously see if it is a NaN or not.
4372   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4373     return !C->getValueAPF().isNaN() ||
4374            (SNaN && !C->getValueAPF().isSignaling());
4375   }
4376 
4377   unsigned Opcode = Op.getOpcode();
4378   switch (Opcode) {
4379   case ISD::FADD:
4380   case ISD::FSUB:
4381   case ISD::FMUL:
4382   case ISD::FDIV:
4383   case ISD::FREM:
4384   case ISD::FSIN:
4385   case ISD::FCOS: {
4386     if (SNaN)
4387       return true;
4388     // TODO: Need isKnownNeverInfinity
4389     return false;
4390   }
4391   case ISD::FCANONICALIZE:
4392   case ISD::FEXP:
4393   case ISD::FEXP2:
4394   case ISD::FTRUNC:
4395   case ISD::FFLOOR:
4396   case ISD::FCEIL:
4397   case ISD::FROUND:
4398   case ISD::FROUNDEVEN:
4399   case ISD::FRINT:
4400   case ISD::FNEARBYINT: {
4401     if (SNaN)
4402       return true;
4403     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4404   }
4405   case ISD::FABS:
4406   case ISD::FNEG:
4407   case ISD::FCOPYSIGN: {
4408     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4409   }
4410   case ISD::SELECT:
4411     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4412            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4413   case ISD::FP_EXTEND:
4414   case ISD::FP_ROUND: {
4415     if (SNaN)
4416       return true;
4417     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4418   }
4419   case ISD::SINT_TO_FP:
4420   case ISD::UINT_TO_FP:
4421     return true;
4422   case ISD::FMA:
4423   case ISD::FMAD: {
4424     if (SNaN)
4425       return true;
4426     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4427            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4428            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4429   }
4430   case ISD::FSQRT: // Need is known positive
4431   case ISD::FLOG:
4432   case ISD::FLOG2:
4433   case ISD::FLOG10:
4434   case ISD::FPOWI:
4435   case ISD::FPOW: {
4436     if (SNaN)
4437       return true;
4438     // TODO: Refine on operand
4439     return false;
4440   }
4441   case ISD::FMINNUM:
4442   case ISD::FMAXNUM: {
4443     // Only one needs to be known not-nan, since it will be returned if the
4444     // other ends up being one.
4445     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4446            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4447   }
4448   case ISD::FMINNUM_IEEE:
4449   case ISD::FMAXNUM_IEEE: {
4450     if (SNaN)
4451       return true;
4452     // This can return a NaN if either operand is an sNaN, or if both operands
4453     // are NaN.
4454     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4455             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4456            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4457             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4458   }
4459   case ISD::FMINIMUM:
4460   case ISD::FMAXIMUM: {
4461     // TODO: Does this quiet or return the origina NaN as-is?
4462     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4463            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4464   }
4465   case ISD::EXTRACT_VECTOR_ELT: {
4466     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4467   }
4468   default:
4469     if (Opcode >= ISD::BUILTIN_OP_END ||
4470         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4471         Opcode == ISD::INTRINSIC_W_CHAIN ||
4472         Opcode == ISD::INTRINSIC_VOID) {
4473       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4474     }
4475 
4476     return false;
4477   }
4478 }
4479 
4480 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4481   assert(Op.getValueType().isFloatingPoint() &&
4482          "Floating point type expected");
4483 
4484   // If the value is a constant, we can obviously see if it is a zero or not.
4485   // TODO: Add BuildVector support.
4486   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4487     return !C->isZero();
4488   return false;
4489 }
4490 
4491 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4492   assert(!Op.getValueType().isFloatingPoint() &&
4493          "Floating point types unsupported - use isKnownNeverZeroFloat");
4494 
4495   // If the value is a constant, we can obviously see if it is a zero or not.
4496   if (ISD::matchUnaryPredicate(
4497           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4498     return true;
4499 
4500   // TODO: Recognize more cases here.
4501   switch (Op.getOpcode()) {
4502   default: break;
4503   case ISD::OR:
4504     if (isKnownNeverZero(Op.getOperand(1)) ||
4505         isKnownNeverZero(Op.getOperand(0)))
4506       return true;
4507     break;
4508   }
4509 
4510   return false;
4511 }
4512 
4513 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4514   // Check the obvious case.
4515   if (A == B) return true;
4516 
4517   // For for negative and positive zero.
4518   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4519     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4520       if (CA->isZero() && CB->isZero()) return true;
4521 
4522   // Otherwise they may not be equal.
4523   return false;
4524 }
4525 
4526 // FIXME: unify with llvm::haveNoCommonBitsSet.
4527 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4528 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4529   assert(A.getValueType() == B.getValueType() &&
4530          "Values must have the same type");
4531   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4532                                         computeKnownBits(B));
4533 }
4534 
4535 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4536                                SelectionDAG &DAG) {
4537   if (cast<ConstantSDNode>(Step)->isNullValue())
4538     return DAG.getConstant(0, DL, VT);
4539 
4540   return SDValue();
4541 }
4542 
4543 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4544                                 ArrayRef<SDValue> Ops,
4545                                 SelectionDAG &DAG) {
4546   int NumOps = Ops.size();
4547   assert(NumOps != 0 && "Can't build an empty vector!");
4548   assert(!VT.isScalableVector() &&
4549          "BUILD_VECTOR cannot be used with scalable types");
4550   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4551          "Incorrect element count in BUILD_VECTOR!");
4552 
4553   // BUILD_VECTOR of UNDEFs is UNDEF.
4554   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4555     return DAG.getUNDEF(VT);
4556 
4557   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4558   SDValue IdentitySrc;
4559   bool IsIdentity = true;
4560   for (int i = 0; i != NumOps; ++i) {
4561     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4562         Ops[i].getOperand(0).getValueType() != VT ||
4563         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4564         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4565         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4566       IsIdentity = false;
4567       break;
4568     }
4569     IdentitySrc = Ops[i].getOperand(0);
4570   }
4571   if (IsIdentity)
4572     return IdentitySrc;
4573 
4574   return SDValue();
4575 }
4576 
4577 /// Try to simplify vector concatenation to an input value, undef, or build
4578 /// vector.
4579 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4580                                   ArrayRef<SDValue> Ops,
4581                                   SelectionDAG &DAG) {
4582   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4583   assert(llvm::all_of(Ops,
4584                       [Ops](SDValue Op) {
4585                         return Ops[0].getValueType() == Op.getValueType();
4586                       }) &&
4587          "Concatenation of vectors with inconsistent value types!");
4588   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4589              VT.getVectorElementCount() &&
4590          "Incorrect element count in vector concatenation!");
4591 
4592   if (Ops.size() == 1)
4593     return Ops[0];
4594 
4595   // Concat of UNDEFs is UNDEF.
4596   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4597     return DAG.getUNDEF(VT);
4598 
4599   // Scan the operands and look for extract operations from a single source
4600   // that correspond to insertion at the same location via this concatenation:
4601   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4602   SDValue IdentitySrc;
4603   bool IsIdentity = true;
4604   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4605     SDValue Op = Ops[i];
4606     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4607     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4608         Op.getOperand(0).getValueType() != VT ||
4609         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4610         Op.getConstantOperandVal(1) != IdentityIndex) {
4611       IsIdentity = false;
4612       break;
4613     }
4614     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4615            "Unexpected identity source vector for concat of extracts");
4616     IdentitySrc = Op.getOperand(0);
4617   }
4618   if (IsIdentity) {
4619     assert(IdentitySrc && "Failed to set source vector of extracts");
4620     return IdentitySrc;
4621   }
4622 
4623   // The code below this point is only designed to work for fixed width
4624   // vectors, so we bail out for now.
4625   if (VT.isScalableVector())
4626     return SDValue();
4627 
4628   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4629   // simplified to one big BUILD_VECTOR.
4630   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4631   EVT SVT = VT.getScalarType();
4632   SmallVector<SDValue, 16> Elts;
4633   for (SDValue Op : Ops) {
4634     EVT OpVT = Op.getValueType();
4635     if (Op.isUndef())
4636       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4637     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4638       Elts.append(Op->op_begin(), Op->op_end());
4639     else
4640       return SDValue();
4641   }
4642 
4643   // BUILD_VECTOR requires all inputs to be of the same type, find the
4644   // maximum type and extend them all.
4645   for (SDValue Op : Elts)
4646     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4647 
4648   if (SVT.bitsGT(VT.getScalarType())) {
4649     for (SDValue &Op : Elts) {
4650       if (Op.isUndef())
4651         Op = DAG.getUNDEF(SVT);
4652       else
4653         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4654                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4655                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4656     }
4657   }
4658 
4659   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4660   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4661   return V;
4662 }
4663 
4664 /// Gets or creates the specified node.
4665 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4666   FoldingSetNodeID ID;
4667   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4668   void *IP = nullptr;
4669   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4670     return SDValue(E, 0);
4671 
4672   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4673                               getVTList(VT));
4674   CSEMap.InsertNode(N, IP);
4675 
4676   InsertNode(N);
4677   SDValue V = SDValue(N, 0);
4678   NewSDValueDbgMsg(V, "Creating new node: ", this);
4679   return V;
4680 }
4681 
4682 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4683                               SDValue Operand) {
4684   SDNodeFlags Flags;
4685   if (Inserter)
4686     Flags = Inserter->getFlags();
4687   return getNode(Opcode, DL, VT, Operand, Flags);
4688 }
4689 
4690 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4691                               SDValue Operand, const SDNodeFlags Flags) {
4692   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4693          "Operand is DELETED_NODE!");
4694   // Constant fold unary operations with an integer constant operand. Even
4695   // opaque constant will be folded, because the folding of unary operations
4696   // doesn't create new constants with different values. Nevertheless, the
4697   // opaque flag is preserved during folding to prevent future folding with
4698   // other constants.
4699   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4700     const APInt &Val = C->getAPIntValue();
4701     switch (Opcode) {
4702     default: break;
4703     case ISD::SIGN_EXTEND:
4704       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4705                          C->isTargetOpcode(), C->isOpaque());
4706     case ISD::TRUNCATE:
4707       if (C->isOpaque())
4708         break;
4709       LLVM_FALLTHROUGH;
4710     case ISD::ZERO_EXTEND:
4711       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4712                          C->isTargetOpcode(), C->isOpaque());
4713     case ISD::ANY_EXTEND:
4714       // Some targets like RISCV prefer to sign extend some types.
4715       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4716         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4717                            C->isTargetOpcode(), C->isOpaque());
4718       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4719                          C->isTargetOpcode(), C->isOpaque());
4720     case ISD::UINT_TO_FP:
4721     case ISD::SINT_TO_FP: {
4722       APFloat apf(EVTToAPFloatSemantics(VT),
4723                   APInt::getNullValue(VT.getSizeInBits()));
4724       (void)apf.convertFromAPInt(Val,
4725                                  Opcode==ISD::SINT_TO_FP,
4726                                  APFloat::rmNearestTiesToEven);
4727       return getConstantFP(apf, DL, VT);
4728     }
4729     case ISD::BITCAST:
4730       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4731         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4732       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4733         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4734       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4735         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4736       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4737         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4738       break;
4739     case ISD::ABS:
4740       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4741                          C->isOpaque());
4742     case ISD::BITREVERSE:
4743       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4744                          C->isOpaque());
4745     case ISD::BSWAP:
4746       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4747                          C->isOpaque());
4748     case ISD::CTPOP:
4749       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4750                          C->isOpaque());
4751     case ISD::CTLZ:
4752     case ISD::CTLZ_ZERO_UNDEF:
4753       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4754                          C->isOpaque());
4755     case ISD::CTTZ:
4756     case ISD::CTTZ_ZERO_UNDEF:
4757       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4758                          C->isOpaque());
4759     case ISD::FP16_TO_FP: {
4760       bool Ignored;
4761       APFloat FPV(APFloat::IEEEhalf(),
4762                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4763 
4764       // This can return overflow, underflow, or inexact; we don't care.
4765       // FIXME need to be more flexible about rounding mode.
4766       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4767                         APFloat::rmNearestTiesToEven, &Ignored);
4768       return getConstantFP(FPV, DL, VT);
4769     }
4770     case ISD::STEP_VECTOR: {
4771       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4772         return V;
4773       break;
4774     }
4775     }
4776   }
4777 
4778   // Constant fold unary operations with a floating point constant operand.
4779   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4780     APFloat V = C->getValueAPF();    // make copy
4781     switch (Opcode) {
4782     case ISD::FNEG:
4783       V.changeSign();
4784       return getConstantFP(V, DL, VT);
4785     case ISD::FABS:
4786       V.clearSign();
4787       return getConstantFP(V, DL, VT);
4788     case ISD::FCEIL: {
4789       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4790       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4791         return getConstantFP(V, DL, VT);
4792       break;
4793     }
4794     case ISD::FTRUNC: {
4795       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4796       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4797         return getConstantFP(V, DL, VT);
4798       break;
4799     }
4800     case ISD::FFLOOR: {
4801       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4802       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4803         return getConstantFP(V, DL, VT);
4804       break;
4805     }
4806     case ISD::FP_EXTEND: {
4807       bool ignored;
4808       // This can return overflow, underflow, or inexact; we don't care.
4809       // FIXME need to be more flexible about rounding mode.
4810       (void)V.convert(EVTToAPFloatSemantics(VT),
4811                       APFloat::rmNearestTiesToEven, &ignored);
4812       return getConstantFP(V, DL, VT);
4813     }
4814     case ISD::FP_TO_SINT:
4815     case ISD::FP_TO_UINT: {
4816       bool ignored;
4817       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4818       // FIXME need to be more flexible about rounding mode.
4819       APFloat::opStatus s =
4820           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4821       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4822         break;
4823       return getConstant(IntVal, DL, VT);
4824     }
4825     case ISD::BITCAST:
4826       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4827         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4828       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4829         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4830       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4831         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4832       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4833         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4834       break;
4835     case ISD::FP_TO_FP16: {
4836       bool Ignored;
4837       // This can return overflow, underflow, or inexact; we don't care.
4838       // FIXME need to be more flexible about rounding mode.
4839       (void)V.convert(APFloat::IEEEhalf(),
4840                       APFloat::rmNearestTiesToEven, &Ignored);
4841       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4842     }
4843     }
4844   }
4845 
4846   // Constant fold unary operations with a vector integer or float operand.
4847   switch (Opcode) {
4848   default:
4849     // FIXME: Entirely reasonable to perform folding of other unary
4850     // operations here as the need arises.
4851     break;
4852   case ISD::FNEG:
4853   case ISD::FABS:
4854   case ISD::FCEIL:
4855   case ISD::FTRUNC:
4856   case ISD::FFLOOR:
4857   case ISD::FP_EXTEND:
4858   case ISD::FP_TO_SINT:
4859   case ISD::FP_TO_UINT:
4860   case ISD::TRUNCATE:
4861   case ISD::ANY_EXTEND:
4862   case ISD::ZERO_EXTEND:
4863   case ISD::SIGN_EXTEND:
4864   case ISD::UINT_TO_FP:
4865   case ISD::SINT_TO_FP:
4866   case ISD::ABS:
4867   case ISD::BITREVERSE:
4868   case ISD::BSWAP:
4869   case ISD::CTLZ:
4870   case ISD::CTLZ_ZERO_UNDEF:
4871   case ISD::CTTZ:
4872   case ISD::CTTZ_ZERO_UNDEF:
4873   case ISD::CTPOP: {
4874     SDValue Ops = {Operand};
4875     if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4876       return Fold;
4877   }
4878   }
4879 
4880   unsigned OpOpcode = Operand.getNode()->getOpcode();
4881   switch (Opcode) {
4882   case ISD::STEP_VECTOR:
4883     assert(VT.isScalableVector() &&
4884            "STEP_VECTOR can only be used with scalable types");
4885     assert(OpOpcode == ISD::TargetConstant &&
4886            VT.getVectorElementType() == Operand.getValueType() &&
4887            "Unexpected step operand");
4888     break;
4889   case ISD::FREEZE:
4890     assert(VT == Operand.getValueType() && "Unexpected VT!");
4891     break;
4892   case ISD::TokenFactor:
4893   case ISD::MERGE_VALUES:
4894   case ISD::CONCAT_VECTORS:
4895     return Operand;         // Factor, merge or concat of one node?  No need.
4896   case ISD::BUILD_VECTOR: {
4897     // Attempt to simplify BUILD_VECTOR.
4898     SDValue Ops[] = {Operand};
4899     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4900       return V;
4901     break;
4902   }
4903   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4904   case ISD::FP_EXTEND:
4905     assert(VT.isFloatingPoint() &&
4906            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4907     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4908     assert((!VT.isVector() ||
4909             VT.getVectorElementCount() ==
4910             Operand.getValueType().getVectorElementCount()) &&
4911            "Vector element count mismatch!");
4912     assert(Operand.getValueType().bitsLT(VT) &&
4913            "Invalid fpext node, dst < src!");
4914     if (Operand.isUndef())
4915       return getUNDEF(VT);
4916     break;
4917   case ISD::FP_TO_SINT:
4918   case ISD::FP_TO_UINT:
4919     if (Operand.isUndef())
4920       return getUNDEF(VT);
4921     break;
4922   case ISD::SINT_TO_FP:
4923   case ISD::UINT_TO_FP:
4924     // [us]itofp(undef) = 0, because the result value is bounded.
4925     if (Operand.isUndef())
4926       return getConstantFP(0.0, DL, VT);
4927     break;
4928   case ISD::SIGN_EXTEND:
4929     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4930            "Invalid SIGN_EXTEND!");
4931     assert(VT.isVector() == Operand.getValueType().isVector() &&
4932            "SIGN_EXTEND result type type should be vector iff the operand "
4933            "type is vector!");
4934     if (Operand.getValueType() == VT) return Operand;   // noop extension
4935     assert((!VT.isVector() ||
4936             VT.getVectorElementCount() ==
4937                 Operand.getValueType().getVectorElementCount()) &&
4938            "Vector element count mismatch!");
4939     assert(Operand.getValueType().bitsLT(VT) &&
4940            "Invalid sext node, dst < src!");
4941     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4942       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4943     if (OpOpcode == ISD::UNDEF)
4944       // sext(undef) = 0, because the top bits will all be the same.
4945       return getConstant(0, DL, VT);
4946     break;
4947   case ISD::ZERO_EXTEND:
4948     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4949            "Invalid ZERO_EXTEND!");
4950     assert(VT.isVector() == Operand.getValueType().isVector() &&
4951            "ZERO_EXTEND result type type should be vector iff the operand "
4952            "type is vector!");
4953     if (Operand.getValueType() == VT) return Operand;   // noop extension
4954     assert((!VT.isVector() ||
4955             VT.getVectorElementCount() ==
4956                 Operand.getValueType().getVectorElementCount()) &&
4957            "Vector element count mismatch!");
4958     assert(Operand.getValueType().bitsLT(VT) &&
4959            "Invalid zext node, dst < src!");
4960     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4961       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4962     if (OpOpcode == ISD::UNDEF)
4963       // zext(undef) = 0, because the top bits will be zero.
4964       return getConstant(0, DL, VT);
4965     break;
4966   case ISD::ANY_EXTEND:
4967     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4968            "Invalid ANY_EXTEND!");
4969     assert(VT.isVector() == Operand.getValueType().isVector() &&
4970            "ANY_EXTEND result type type should be vector iff the operand "
4971            "type is vector!");
4972     if (Operand.getValueType() == VT) return Operand;   // noop extension
4973     assert((!VT.isVector() ||
4974             VT.getVectorElementCount() ==
4975                 Operand.getValueType().getVectorElementCount()) &&
4976            "Vector element count mismatch!");
4977     assert(Operand.getValueType().bitsLT(VT) &&
4978            "Invalid anyext node, dst < src!");
4979 
4980     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4981         OpOpcode == ISD::ANY_EXTEND)
4982       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4983       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4984     if (OpOpcode == ISD::UNDEF)
4985       return getUNDEF(VT);
4986 
4987     // (ext (trunc x)) -> x
4988     if (OpOpcode == ISD::TRUNCATE) {
4989       SDValue OpOp = Operand.getOperand(0);
4990       if (OpOp.getValueType() == VT) {
4991         transferDbgValues(Operand, OpOp);
4992         return OpOp;
4993       }
4994     }
4995     break;
4996   case ISD::TRUNCATE:
4997     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4998            "Invalid TRUNCATE!");
4999     assert(VT.isVector() == Operand.getValueType().isVector() &&
5000            "TRUNCATE result type type should be vector iff the operand "
5001            "type is vector!");
5002     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5003     assert((!VT.isVector() ||
5004             VT.getVectorElementCount() ==
5005                 Operand.getValueType().getVectorElementCount()) &&
5006            "Vector element count mismatch!");
5007     assert(Operand.getValueType().bitsGT(VT) &&
5008            "Invalid truncate node, src < dst!");
5009     if (OpOpcode == ISD::TRUNCATE)
5010       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5011     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5012         OpOpcode == ISD::ANY_EXTEND) {
5013       // If the source is smaller than the dest, we still need an extend.
5014       if (Operand.getOperand(0).getValueType().getScalarType()
5015             .bitsLT(VT.getScalarType()))
5016         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5017       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5018         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5019       return Operand.getOperand(0);
5020     }
5021     if (OpOpcode == ISD::UNDEF)
5022       return getUNDEF(VT);
5023     break;
5024   case ISD::ANY_EXTEND_VECTOR_INREG:
5025   case ISD::ZERO_EXTEND_VECTOR_INREG:
5026   case ISD::SIGN_EXTEND_VECTOR_INREG:
5027     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5028     assert(Operand.getValueType().bitsLE(VT) &&
5029            "The input must be the same size or smaller than the result.");
5030     assert(VT.getVectorMinNumElements() <
5031                Operand.getValueType().getVectorMinNumElements() &&
5032            "The destination vector type must have fewer lanes than the input.");
5033     break;
5034   case ISD::ABS:
5035     assert(VT.isInteger() && VT == Operand.getValueType() &&
5036            "Invalid ABS!");
5037     if (OpOpcode == ISD::UNDEF)
5038       return getUNDEF(VT);
5039     break;
5040   case ISD::BSWAP:
5041     assert(VT.isInteger() && VT == Operand.getValueType() &&
5042            "Invalid BSWAP!");
5043     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5044            "BSWAP types must be a multiple of 16 bits!");
5045     if (OpOpcode == ISD::UNDEF)
5046       return getUNDEF(VT);
5047     break;
5048   case ISD::BITREVERSE:
5049     assert(VT.isInteger() && VT == Operand.getValueType() &&
5050            "Invalid BITREVERSE!");
5051     if (OpOpcode == ISD::UNDEF)
5052       return getUNDEF(VT);
5053     break;
5054   case ISD::BITCAST:
5055     // Basic sanity checking.
5056     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5057            "Cannot BITCAST between types of different sizes!");
5058     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5059     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5060       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5061     if (OpOpcode == ISD::UNDEF)
5062       return getUNDEF(VT);
5063     break;
5064   case ISD::SCALAR_TO_VECTOR:
5065     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5066            (VT.getVectorElementType() == Operand.getValueType() ||
5067             (VT.getVectorElementType().isInteger() &&
5068              Operand.getValueType().isInteger() &&
5069              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5070            "Illegal SCALAR_TO_VECTOR node!");
5071     if (OpOpcode == ISD::UNDEF)
5072       return getUNDEF(VT);
5073     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5074     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5075         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5076         Operand.getConstantOperandVal(1) == 0 &&
5077         Operand.getOperand(0).getValueType() == VT)
5078       return Operand.getOperand(0);
5079     break;
5080   case ISD::FNEG:
5081     // Negation of an unknown bag of bits is still completely undefined.
5082     if (OpOpcode == ISD::UNDEF)
5083       return getUNDEF(VT);
5084 
5085     if (OpOpcode == ISD::FNEG)  // --X -> X
5086       return Operand.getOperand(0);
5087     break;
5088   case ISD::FABS:
5089     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5090       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5091     break;
5092   case ISD::VSCALE:
5093     assert(VT == Operand.getValueType() && "Unexpected VT!");
5094     break;
5095   case ISD::CTPOP:
5096     if (Operand.getValueType().getScalarType() == MVT::i1)
5097       return Operand;
5098     break;
5099   case ISD::CTLZ:
5100   case ISD::CTTZ:
5101     if (Operand.getValueType().getScalarType() == MVT::i1)
5102       return getNOT(DL, Operand, Operand.getValueType());
5103     break;
5104   case ISD::VECREDUCE_SMIN:
5105   case ISD::VECREDUCE_UMAX:
5106     if (Operand.getValueType().getScalarType() == MVT::i1)
5107       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5108     break;
5109   case ISD::VECREDUCE_SMAX:
5110   case ISD::VECREDUCE_UMIN:
5111     if (Operand.getValueType().getScalarType() == MVT::i1)
5112       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5113     break;
5114   }
5115 
5116   SDNode *N;
5117   SDVTList VTs = getVTList(VT);
5118   SDValue Ops[] = {Operand};
5119   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5120     FoldingSetNodeID ID;
5121     AddNodeIDNode(ID, Opcode, VTs, Ops);
5122     void *IP = nullptr;
5123     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5124       E->intersectFlagsWith(Flags);
5125       return SDValue(E, 0);
5126     }
5127 
5128     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5129     N->setFlags(Flags);
5130     createOperands(N, Ops);
5131     CSEMap.InsertNode(N, IP);
5132   } else {
5133     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5134     createOperands(N, Ops);
5135   }
5136 
5137   InsertNode(N);
5138   SDValue V = SDValue(N, 0);
5139   NewSDValueDbgMsg(V, "Creating new node: ", this);
5140   return V;
5141 }
5142 
5143 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5144                                        const APInt &C2) {
5145   switch (Opcode) {
5146   case ISD::ADD:  return C1 + C2;
5147   case ISD::SUB:  return C1 - C2;
5148   case ISD::MUL:  return C1 * C2;
5149   case ISD::AND:  return C1 & C2;
5150   case ISD::OR:   return C1 | C2;
5151   case ISD::XOR:  return C1 ^ C2;
5152   case ISD::SHL:  return C1 << C2;
5153   case ISD::SRL:  return C1.lshr(C2);
5154   case ISD::SRA:  return C1.ashr(C2);
5155   case ISD::ROTL: return C1.rotl(C2);
5156   case ISD::ROTR: return C1.rotr(C2);
5157   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5158   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5159   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5160   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5161   case ISD::SADDSAT: return C1.sadd_sat(C2);
5162   case ISD::UADDSAT: return C1.uadd_sat(C2);
5163   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5164   case ISD::USUBSAT: return C1.usub_sat(C2);
5165   case ISD::UDIV:
5166     if (!C2.getBoolValue())
5167       break;
5168     return C1.udiv(C2);
5169   case ISD::UREM:
5170     if (!C2.getBoolValue())
5171       break;
5172     return C1.urem(C2);
5173   case ISD::SDIV:
5174     if (!C2.getBoolValue())
5175       break;
5176     return C1.sdiv(C2);
5177   case ISD::SREM:
5178     if (!C2.getBoolValue())
5179       break;
5180     return C1.srem(C2);
5181   case ISD::MULHS: {
5182     unsigned FullWidth = C1.getBitWidth() * 2;
5183     APInt C1Ext = C1.sext(FullWidth);
5184     APInt C2Ext = C2.sext(FullWidth);
5185     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5186   }
5187   case ISD::MULHU: {
5188     unsigned FullWidth = C1.getBitWidth() * 2;
5189     APInt C1Ext = C1.zext(FullWidth);
5190     APInt C2Ext = C2.zext(FullWidth);
5191     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5192   }
5193   }
5194   return llvm::None;
5195 }
5196 
5197 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5198                                        const GlobalAddressSDNode *GA,
5199                                        const SDNode *N2) {
5200   if (GA->getOpcode() != ISD::GlobalAddress)
5201     return SDValue();
5202   if (!TLI->isOffsetFoldingLegal(GA))
5203     return SDValue();
5204   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5205   if (!C2)
5206     return SDValue();
5207   int64_t Offset = C2->getSExtValue();
5208   switch (Opcode) {
5209   case ISD::ADD: break;
5210   case ISD::SUB: Offset = -uint64_t(Offset); break;
5211   default: return SDValue();
5212   }
5213   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5214                           GA->getOffset() + uint64_t(Offset));
5215 }
5216 
5217 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5218   switch (Opcode) {
5219   case ISD::SDIV:
5220   case ISD::UDIV:
5221   case ISD::SREM:
5222   case ISD::UREM: {
5223     // If a divisor is zero/undef or any element of a divisor vector is
5224     // zero/undef, the whole op is undef.
5225     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5226     SDValue Divisor = Ops[1];
5227     if (Divisor.isUndef() || isNullConstant(Divisor))
5228       return true;
5229 
5230     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5231            llvm::any_of(Divisor->op_values(),
5232                         [](SDValue V) { return V.isUndef() ||
5233                                         isNullConstant(V); });
5234     // TODO: Handle signed overflow.
5235   }
5236   // TODO: Handle oversized shifts.
5237   default:
5238     return false;
5239   }
5240 }
5241 
5242 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5243                                              EVT VT, ArrayRef<SDValue> Ops) {
5244   // If the opcode is a target-specific ISD node, there's nothing we can
5245   // do here and the operand rules may not line up with the below, so
5246   // bail early.
5247   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5248   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5249   // foldCONCAT_VECTORS in getNode before this is called.
5250   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5251     return SDValue();
5252 
5253   // For now, the array Ops should only contain two values.
5254   // This enforcement will be removed once this function is merged with
5255   // FoldConstantVectorArithmetic
5256   if (Ops.size() != 2)
5257     return SDValue();
5258 
5259   if (isUndef(Opcode, Ops))
5260     return getUNDEF(VT);
5261 
5262   SDNode *N1 = Ops[0].getNode();
5263   SDNode *N2 = Ops[1].getNode();
5264 
5265   // Handle the case of two scalars.
5266   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5267     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5268       if (C1->isOpaque() || C2->isOpaque())
5269         return SDValue();
5270 
5271       Optional<APInt> FoldAttempt =
5272           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5273       if (!FoldAttempt)
5274         return SDValue();
5275 
5276       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5277       assert((!Folded || !VT.isVector()) &&
5278              "Can't fold vectors ops with scalar operands");
5279       return Folded;
5280     }
5281   }
5282 
5283   // fold (add Sym, c) -> Sym+c
5284   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5285     return FoldSymbolOffset(Opcode, VT, GA, N2);
5286   if (TLI->isCommutativeBinOp(Opcode))
5287     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5288       return FoldSymbolOffset(Opcode, VT, GA, N1);
5289 
5290   // For fixed width vectors, extract each constant element and fold them
5291   // individually. Either input may be an undef value.
5292   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5293                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5294   if (!IsBVOrSV1 && !N1->isUndef())
5295     return SDValue();
5296   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5297                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5298   if (!IsBVOrSV2 && !N2->isUndef())
5299     return SDValue();
5300   // If both operands are undef, that's handled the same way as scalars.
5301   if (!IsBVOrSV1 && !IsBVOrSV2)
5302     return SDValue();
5303 
5304   EVT SVT = VT.getScalarType();
5305   EVT LegalSVT = SVT;
5306   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5307     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5308     if (LegalSVT.bitsLT(SVT))
5309       return SDValue();
5310   }
5311 
5312   SmallVector<SDValue, 4> Outputs;
5313   unsigned NumOps = 0;
5314   if (IsBVOrSV1)
5315     NumOps = std::max(NumOps, N1->getNumOperands());
5316   if (IsBVOrSV2)
5317     NumOps = std::max(NumOps, N2->getNumOperands());
5318   assert(NumOps != 0 && "Expected non-zero operands");
5319   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5320   // one iteration for that.
5321   assert((!VT.isScalableVector() || NumOps == 1) &&
5322          "Scalable vector should only have one scalar");
5323 
5324   for (unsigned I = 0; I != NumOps; ++I) {
5325     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5326     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5327     SDValue V1;
5328     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5329       V1 = N1->getOperand(I);
5330     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5331       V1 = N1->getOperand(0);
5332     else
5333       V1 = getUNDEF(SVT);
5334 
5335     SDValue V2;
5336     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5337       V2 = N2->getOperand(I);
5338     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5339       V2 = N2->getOperand(0);
5340     else
5341       V2 = getUNDEF(SVT);
5342 
5343     if (SVT.isInteger()) {
5344       if (V1.getValueType().bitsGT(SVT))
5345         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5346       if (V2.getValueType().bitsGT(SVT))
5347         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5348     }
5349 
5350     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5351       return SDValue();
5352 
5353     // Fold one vector element.
5354     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5355     if (LegalSVT != SVT)
5356       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5357 
5358     // Scalar folding only succeeded if the result is a constant or UNDEF.
5359     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5360         ScalarResult.getOpcode() != ISD::ConstantFP)
5361       return SDValue();
5362     Outputs.push_back(ScalarResult);
5363   }
5364 
5365   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5366       N2->getOpcode() == ISD::BUILD_VECTOR) {
5367     assert(VT.getVectorNumElements() == Outputs.size() &&
5368            "Vector size mismatch!");
5369 
5370     // Build a big vector out of the scalar elements we generated.
5371     return getBuildVector(VT, SDLoc(), Outputs);
5372   }
5373 
5374   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5375           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5376          "One operand should be a splat vector");
5377 
5378   assert(Outputs.size() == 1 && "Vector size mismatch!");
5379   return getSplatVector(VT, SDLoc(), Outputs[0]);
5380 }
5381 
5382 // TODO: Merge with FoldConstantArithmetic
5383 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5384                                                    const SDLoc &DL, EVT VT,
5385                                                    ArrayRef<SDValue> Ops,
5386                                                    const SDNodeFlags Flags) {
5387   // If the opcode is a target-specific ISD node, there's nothing we can
5388   // do here and the operand rules may not line up with the below, so
5389   // bail early.
5390   if (Opcode >= ISD::BUILTIN_OP_END)
5391     return SDValue();
5392 
5393   if (isUndef(Opcode, Ops))
5394     return getUNDEF(VT);
5395 
5396   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5397   if (!VT.isVector())
5398     return SDValue();
5399 
5400   ElementCount NumElts = VT.getVectorElementCount();
5401 
5402   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5403     return !Op.getValueType().isVector() ||
5404            Op.getValueType().getVectorElementCount() == NumElts;
5405   };
5406 
5407   auto IsConstantBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5408     APInt SplatVal;
5409     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5410     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5411            (BV && BV->isConstant()) ||
5412            (Op.getOpcode() == ISD::SPLAT_VECTOR &&
5413             ISD::isConstantSplatVector(Op.getNode(), SplatVal));
5414   };
5415 
5416   // All operands must be vector types with the same number of elements as
5417   // the result type and must be either UNDEF or a build vector of constant
5418   // or UNDEF scalars.
5419   if (!llvm::all_of(Ops, IsConstantBuildVectorSplatVectorOrUndef) ||
5420       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5421     return SDValue();
5422 
5423   // If we are comparing vectors, then the result needs to be a i1 boolean
5424   // that is then sign-extended back to the legal result type.
5425   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5426 
5427   // Find legal integer scalar type for constant promotion and
5428   // ensure that its scalar size is at least as large as source.
5429   EVT LegalSVT = VT.getScalarType();
5430   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5431     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5432     if (LegalSVT.bitsLT(VT.getScalarType()))
5433       return SDValue();
5434   }
5435 
5436   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5437   // only have one operand to check. For fixed-length vector types we may have
5438   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5439   unsigned NumOperands = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5440 
5441   // Constant fold each scalar lane separately.
5442   SmallVector<SDValue, 4> ScalarResults;
5443   for (unsigned I = 0; I != NumOperands; I++) {
5444     SmallVector<SDValue, 4> ScalarOps;
5445     for (SDValue Op : Ops) {
5446       EVT InSVT = Op.getValueType().getScalarType();
5447       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5448           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5449         // We've checked that this is UNDEF or a constant of some kind.
5450         if (Op.isUndef())
5451           ScalarOps.push_back(getUNDEF(InSVT));
5452         else
5453           ScalarOps.push_back(Op);
5454         continue;
5455       }
5456 
5457       SDValue ScalarOp =
5458           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5459       EVT ScalarVT = ScalarOp.getValueType();
5460 
5461       // Build vector (integer) scalar operands may need implicit
5462       // truncation - do this before constant folding.
5463       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5464         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5465 
5466       ScalarOps.push_back(ScalarOp);
5467     }
5468 
5469     // Constant fold the scalar operands.
5470     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5471 
5472     // Legalize the (integer) scalar constant if necessary.
5473     if (LegalSVT != SVT)
5474       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5475 
5476     // Scalar folding only succeeded if the result is a constant or UNDEF.
5477     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5478         ScalarResult.getOpcode() != ISD::ConstantFP)
5479       return SDValue();
5480     ScalarResults.push_back(ScalarResult);
5481   }
5482 
5483   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5484                                    : getBuildVector(VT, DL, ScalarResults);
5485   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5486   return V;
5487 }
5488 
5489 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5490                                          EVT VT, SDValue N1, SDValue N2) {
5491   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5492   //       should. That will require dealing with a potentially non-default
5493   //       rounding mode, checking the "opStatus" return value from the APFloat
5494   //       math calculations, and possibly other variations.
5495   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5496   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5497   if (N1CFP && N2CFP) {
5498     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5499     switch (Opcode) {
5500     case ISD::FADD:
5501       C1.add(C2, APFloat::rmNearestTiesToEven);
5502       return getConstantFP(C1, DL, VT);
5503     case ISD::FSUB:
5504       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5505       return getConstantFP(C1, DL, VT);
5506     case ISD::FMUL:
5507       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5508       return getConstantFP(C1, DL, VT);
5509     case ISD::FDIV:
5510       C1.divide(C2, APFloat::rmNearestTiesToEven);
5511       return getConstantFP(C1, DL, VT);
5512     case ISD::FREM:
5513       C1.mod(C2);
5514       return getConstantFP(C1, DL, VT);
5515     case ISD::FCOPYSIGN:
5516       C1.copySign(C2);
5517       return getConstantFP(C1, DL, VT);
5518     default: break;
5519     }
5520   }
5521   if (N1CFP && Opcode == ISD::FP_ROUND) {
5522     APFloat C1 = N1CFP->getValueAPF();    // make copy
5523     bool Unused;
5524     // This can return overflow, underflow, or inexact; we don't care.
5525     // FIXME need to be more flexible about rounding mode.
5526     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5527                       &Unused);
5528     return getConstantFP(C1, DL, VT);
5529   }
5530 
5531   switch (Opcode) {
5532   case ISD::FSUB:
5533     // -0.0 - undef --> undef (consistent with "fneg undef")
5534     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5535       return getUNDEF(VT);
5536     LLVM_FALLTHROUGH;
5537 
5538   case ISD::FADD:
5539   case ISD::FMUL:
5540   case ISD::FDIV:
5541   case ISD::FREM:
5542     // If both operands are undef, the result is undef. If 1 operand is undef,
5543     // the result is NaN. This should match the behavior of the IR optimizer.
5544     if (N1.isUndef() && N2.isUndef())
5545       return getUNDEF(VT);
5546     if (N1.isUndef() || N2.isUndef())
5547       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5548   }
5549   return SDValue();
5550 }
5551 
5552 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5553   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5554 
5555   // There's no need to assert on a byte-aligned pointer. All pointers are at
5556   // least byte aligned.
5557   if (A == Align(1))
5558     return Val;
5559 
5560   FoldingSetNodeID ID;
5561   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5562   ID.AddInteger(A.value());
5563 
5564   void *IP = nullptr;
5565   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5566     return SDValue(E, 0);
5567 
5568   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5569                                          Val.getValueType(), A);
5570   createOperands(N, {Val});
5571 
5572   CSEMap.InsertNode(N, IP);
5573   InsertNode(N);
5574 
5575   SDValue V(N, 0);
5576   NewSDValueDbgMsg(V, "Creating new node: ", this);
5577   return V;
5578 }
5579 
5580 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5581                               SDValue N1, SDValue N2) {
5582   SDNodeFlags Flags;
5583   if (Inserter)
5584     Flags = Inserter->getFlags();
5585   return getNode(Opcode, DL, VT, N1, N2, Flags);
5586 }
5587 
5588 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5589                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5590   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5591          N2.getOpcode() != ISD::DELETED_NODE &&
5592          "Operand is DELETED_NODE!");
5593   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5594   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5595   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5596   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5597 
5598   // Canonicalize constant to RHS if commutative.
5599   if (TLI->isCommutativeBinOp(Opcode)) {
5600     if (N1C && !N2C) {
5601       std::swap(N1C, N2C);
5602       std::swap(N1, N2);
5603     } else if (N1CFP && !N2CFP) {
5604       std::swap(N1CFP, N2CFP);
5605       std::swap(N1, N2);
5606     }
5607   }
5608 
5609   switch (Opcode) {
5610   default: break;
5611   case ISD::TokenFactor:
5612     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5613            N2.getValueType() == MVT::Other && "Invalid token factor!");
5614     // Fold trivial token factors.
5615     if (N1.getOpcode() == ISD::EntryToken) return N2;
5616     if (N2.getOpcode() == ISD::EntryToken) return N1;
5617     if (N1 == N2) return N1;
5618     break;
5619   case ISD::BUILD_VECTOR: {
5620     // Attempt to simplify BUILD_VECTOR.
5621     SDValue Ops[] = {N1, N2};
5622     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5623       return V;
5624     break;
5625   }
5626   case ISD::CONCAT_VECTORS: {
5627     SDValue Ops[] = {N1, N2};
5628     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5629       return V;
5630     break;
5631   }
5632   case ISD::AND:
5633     assert(VT.isInteger() && "This operator does not apply to FP types!");
5634     assert(N1.getValueType() == N2.getValueType() &&
5635            N1.getValueType() == VT && "Binary operator types must match!");
5636     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5637     // worth handling here.
5638     if (N2C && N2C->isNullValue())
5639       return N2;
5640     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5641       return N1;
5642     break;
5643   case ISD::OR:
5644   case ISD::XOR:
5645   case ISD::ADD:
5646   case ISD::SUB:
5647     assert(VT.isInteger() && "This operator does not apply to FP types!");
5648     assert(N1.getValueType() == N2.getValueType() &&
5649            N1.getValueType() == VT && "Binary operator types must match!");
5650     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5651     // it's worth handling here.
5652     if (N2C && N2C->isNullValue())
5653       return N1;
5654     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5655         VT.getVectorElementType() == MVT::i1)
5656       return getNode(ISD::XOR, DL, VT, N1, N2);
5657     break;
5658   case ISD::MUL:
5659     assert(VT.isInteger() && "This operator does not apply to FP types!");
5660     assert(N1.getValueType() == N2.getValueType() &&
5661            N1.getValueType() == VT && "Binary operator types must match!");
5662     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5663       return getNode(ISD::AND, DL, VT, N1, N2);
5664     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5665       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5666       const APInt &N2CImm = N2C->getAPIntValue();
5667       return getVScale(DL, VT, MulImm * N2CImm);
5668     }
5669     break;
5670   case ISD::UDIV:
5671   case ISD::UREM:
5672   case ISD::MULHU:
5673   case ISD::MULHS:
5674   case ISD::SDIV:
5675   case ISD::SREM:
5676   case ISD::SADDSAT:
5677   case ISD::SSUBSAT:
5678   case ISD::UADDSAT:
5679   case ISD::USUBSAT:
5680     assert(VT.isInteger() && "This operator does not apply to FP types!");
5681     assert(N1.getValueType() == N2.getValueType() &&
5682            N1.getValueType() == VT && "Binary operator types must match!");
5683     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5684       // fold (add_sat x, y) -> (or x, y) for bool types.
5685       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5686         return getNode(ISD::OR, DL, VT, N1, N2);
5687       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5688       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5689         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5690     }
5691     break;
5692   case ISD::SMIN:
5693   case ISD::UMAX:
5694     assert(VT.isInteger() && "This operator does not apply to FP types!");
5695     assert(N1.getValueType() == N2.getValueType() &&
5696            N1.getValueType() == VT && "Binary operator types must match!");
5697     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5698       return getNode(ISD::OR, DL, VT, N1, N2);
5699     break;
5700   case ISD::SMAX:
5701   case ISD::UMIN:
5702     assert(VT.isInteger() && "This operator does not apply to FP types!");
5703     assert(N1.getValueType() == N2.getValueType() &&
5704            N1.getValueType() == VT && "Binary operator types must match!");
5705     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5706       return getNode(ISD::AND, DL, VT, N1, N2);
5707     break;
5708   case ISD::FADD:
5709   case ISD::FSUB:
5710   case ISD::FMUL:
5711   case ISD::FDIV:
5712   case ISD::FREM:
5713     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5714     assert(N1.getValueType() == N2.getValueType() &&
5715            N1.getValueType() == VT && "Binary operator types must match!");
5716     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5717       return V;
5718     break;
5719   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5720     assert(N1.getValueType() == VT &&
5721            N1.getValueType().isFloatingPoint() &&
5722            N2.getValueType().isFloatingPoint() &&
5723            "Invalid FCOPYSIGN!");
5724     break;
5725   case ISD::SHL:
5726     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5727       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5728       const APInt &ShiftImm = N2C->getAPIntValue();
5729       return getVScale(DL, VT, MulImm << ShiftImm);
5730     }
5731     LLVM_FALLTHROUGH;
5732   case ISD::SRA:
5733   case ISD::SRL:
5734     if (SDValue V = simplifyShift(N1, N2))
5735       return V;
5736     LLVM_FALLTHROUGH;
5737   case ISD::ROTL:
5738   case ISD::ROTR:
5739     assert(VT == N1.getValueType() &&
5740            "Shift operators return type must be the same as their first arg");
5741     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5742            "Shifts only work on integers");
5743     assert((!VT.isVector() || VT == N2.getValueType()) &&
5744            "Vector shift amounts must be in the same as their first arg");
5745     // Verify that the shift amount VT is big enough to hold valid shift
5746     // amounts.  This catches things like trying to shift an i1024 value by an
5747     // i8, which is easy to fall into in generic code that uses
5748     // TLI.getShiftAmount().
5749     assert(N2.getValueType().getScalarSizeInBits() >=
5750                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5751            "Invalid use of small shift amount with oversized value!");
5752 
5753     // Always fold shifts of i1 values so the code generator doesn't need to
5754     // handle them.  Since we know the size of the shift has to be less than the
5755     // size of the value, the shift/rotate count is guaranteed to be zero.
5756     if (VT == MVT::i1)
5757       return N1;
5758     if (N2C && N2C->isNullValue())
5759       return N1;
5760     break;
5761   case ISD::FP_ROUND:
5762     assert(VT.isFloatingPoint() &&
5763            N1.getValueType().isFloatingPoint() &&
5764            VT.bitsLE(N1.getValueType()) &&
5765            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5766            "Invalid FP_ROUND!");
5767     if (N1.getValueType() == VT) return N1;  // noop conversion.
5768     break;
5769   case ISD::AssertSext:
5770   case ISD::AssertZext: {
5771     EVT EVT = cast<VTSDNode>(N2)->getVT();
5772     assert(VT == N1.getValueType() && "Not an inreg extend!");
5773     assert(VT.isInteger() && EVT.isInteger() &&
5774            "Cannot *_EXTEND_INREG FP types");
5775     assert(!EVT.isVector() &&
5776            "AssertSExt/AssertZExt type should be the vector element type "
5777            "rather than the vector type!");
5778     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5779     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5780     break;
5781   }
5782   case ISD::SIGN_EXTEND_INREG: {
5783     EVT EVT = cast<VTSDNode>(N2)->getVT();
5784     assert(VT == N1.getValueType() && "Not an inreg extend!");
5785     assert(VT.isInteger() && EVT.isInteger() &&
5786            "Cannot *_EXTEND_INREG FP types");
5787     assert(EVT.isVector() == VT.isVector() &&
5788            "SIGN_EXTEND_INREG type should be vector iff the operand "
5789            "type is vector!");
5790     assert((!EVT.isVector() ||
5791             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5792            "Vector element counts must match in SIGN_EXTEND_INREG");
5793     assert(EVT.bitsLE(VT) && "Not extending!");
5794     if (EVT == VT) return N1;  // Not actually extending
5795 
5796     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5797       unsigned FromBits = EVT.getScalarSizeInBits();
5798       Val <<= Val.getBitWidth() - FromBits;
5799       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5800       return getConstant(Val, DL, ConstantVT);
5801     };
5802 
5803     if (N1C) {
5804       const APInt &Val = N1C->getAPIntValue();
5805       return SignExtendInReg(Val, VT);
5806     }
5807 
5808     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5809       SmallVector<SDValue, 8> Ops;
5810       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5811       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5812         SDValue Op = N1.getOperand(i);
5813         if (Op.isUndef()) {
5814           Ops.push_back(getUNDEF(OpVT));
5815           continue;
5816         }
5817         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5818         APInt Val = C->getAPIntValue();
5819         Ops.push_back(SignExtendInReg(Val, OpVT));
5820       }
5821       return getBuildVector(VT, DL, Ops);
5822     }
5823     break;
5824   }
5825   case ISD::FP_TO_SINT_SAT:
5826   case ISD::FP_TO_UINT_SAT: {
5827     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5828            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5829     assert(N1.getValueType().isVector() == VT.isVector() &&
5830            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5831            "vector!");
5832     assert((!VT.isVector() || VT.getVectorNumElements() ==
5833                                   N1.getValueType().getVectorNumElements()) &&
5834            "Vector element counts must match in FP_TO_*INT_SAT");
5835     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5836            "Type to saturate to must be a scalar.");
5837     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5838            "Not extending!");
5839     break;
5840   }
5841   case ISD::EXTRACT_VECTOR_ELT:
5842     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5843            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5844              element type of the vector.");
5845 
5846     // Extract from an undefined value or using an undefined index is undefined.
5847     if (N1.isUndef() || N2.isUndef())
5848       return getUNDEF(VT);
5849 
5850     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5851     // vectors. For scalable vectors we will provide appropriate support for
5852     // dealing with arbitrary indices.
5853     if (N2C && N1.getValueType().isFixedLengthVector() &&
5854         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5855       return getUNDEF(VT);
5856 
5857     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5858     // expanding copies of large vectors from registers. This only works for
5859     // fixed length vectors, since we need to know the exact number of
5860     // elements.
5861     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5862         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5863       unsigned Factor =
5864         N1.getOperand(0).getValueType().getVectorNumElements();
5865       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5866                      N1.getOperand(N2C->getZExtValue() / Factor),
5867                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5868     }
5869 
5870     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5871     // lowering is expanding large vector constants.
5872     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5873                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5874       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5875               N1.getValueType().isFixedLengthVector()) &&
5876              "BUILD_VECTOR used for scalable vectors");
5877       unsigned Index =
5878           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5879       SDValue Elt = N1.getOperand(Index);
5880 
5881       if (VT != Elt.getValueType())
5882         // If the vector element type is not legal, the BUILD_VECTOR operands
5883         // are promoted and implicitly truncated, and the result implicitly
5884         // extended. Make that explicit here.
5885         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5886 
5887       return Elt;
5888     }
5889 
5890     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5891     // operations are lowered to scalars.
5892     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5893       // If the indices are the same, return the inserted element else
5894       // if the indices are known different, extract the element from
5895       // the original vector.
5896       SDValue N1Op2 = N1.getOperand(2);
5897       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5898 
5899       if (N1Op2C && N2C) {
5900         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5901           if (VT == N1.getOperand(1).getValueType())
5902             return N1.getOperand(1);
5903           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5904         }
5905         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5906       }
5907     }
5908 
5909     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5910     // when vector types are scalarized and v1iX is legal.
5911     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5912     // Here we are completely ignoring the extract element index (N2),
5913     // which is fine for fixed width vectors, since any index other than 0
5914     // is undefined anyway. However, this cannot be ignored for scalable
5915     // vectors - in theory we could support this, but we don't want to do this
5916     // without a profitability check.
5917     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5918         N1.getValueType().isFixedLengthVector() &&
5919         N1.getValueType().getVectorNumElements() == 1) {
5920       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5921                      N1.getOperand(1));
5922     }
5923     break;
5924   case ISD::EXTRACT_ELEMENT:
5925     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5926     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5927            (N1.getValueType().isInteger() == VT.isInteger()) &&
5928            N1.getValueType() != VT &&
5929            "Wrong types for EXTRACT_ELEMENT!");
5930 
5931     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5932     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5933     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5934     if (N1.getOpcode() == ISD::BUILD_PAIR)
5935       return N1.getOperand(N2C->getZExtValue());
5936 
5937     // EXTRACT_ELEMENT of a constant int is also very common.
5938     if (N1C) {
5939       unsigned ElementSize = VT.getSizeInBits();
5940       unsigned Shift = ElementSize * N2C->getZExtValue();
5941       const APInt &Val = N1C->getAPIntValue();
5942       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5943     }
5944     break;
5945   case ISD::EXTRACT_SUBVECTOR: {
5946     EVT N1VT = N1.getValueType();
5947     assert(VT.isVector() && N1VT.isVector() &&
5948            "Extract subvector VTs must be vectors!");
5949     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5950            "Extract subvector VTs must have the same element type!");
5951     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5952            "Cannot extract a scalable vector from a fixed length vector!");
5953     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5954             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5955            "Extract subvector must be from larger vector to smaller vector!");
5956     assert(N2C && "Extract subvector index must be a constant");
5957     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5958             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5959                 N1VT.getVectorMinNumElements()) &&
5960            "Extract subvector overflow!");
5961     assert(N2C->getAPIntValue().getBitWidth() ==
5962                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5963            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5964 
5965     // Trivial extraction.
5966     if (VT == N1VT)
5967       return N1;
5968 
5969     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5970     if (N1.isUndef())
5971       return getUNDEF(VT);
5972 
5973     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5974     // the concat have the same type as the extract.
5975     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5976         VT == N1.getOperand(0).getValueType()) {
5977       unsigned Factor = VT.getVectorMinNumElements();
5978       return N1.getOperand(N2C->getZExtValue() / Factor);
5979     }
5980 
5981     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5982     // during shuffle legalization.
5983     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5984         VT == N1.getOperand(1).getValueType())
5985       return N1.getOperand(1);
5986     break;
5987   }
5988   }
5989 
5990   // Perform trivial constant folding.
5991   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5992     return SV;
5993 
5994   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5995     return V;
5996 
5997   // Canonicalize an UNDEF to the RHS, even over a constant.
5998   if (N1.isUndef()) {
5999     if (TLI->isCommutativeBinOp(Opcode)) {
6000       std::swap(N1, N2);
6001     } else {
6002       switch (Opcode) {
6003       case ISD::SIGN_EXTEND_INREG:
6004       case ISD::SUB:
6005         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6006       case ISD::UDIV:
6007       case ISD::SDIV:
6008       case ISD::UREM:
6009       case ISD::SREM:
6010       case ISD::SSUBSAT:
6011       case ISD::USUBSAT:
6012         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6013       }
6014     }
6015   }
6016 
6017   // Fold a bunch of operators when the RHS is undef.
6018   if (N2.isUndef()) {
6019     switch (Opcode) {
6020     case ISD::XOR:
6021       if (N1.isUndef())
6022         // Handle undef ^ undef -> 0 special case. This is a common
6023         // idiom (misuse).
6024         return getConstant(0, DL, VT);
6025       LLVM_FALLTHROUGH;
6026     case ISD::ADD:
6027     case ISD::SUB:
6028     case ISD::UDIV:
6029     case ISD::SDIV:
6030     case ISD::UREM:
6031     case ISD::SREM:
6032       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6033     case ISD::MUL:
6034     case ISD::AND:
6035     case ISD::SSUBSAT:
6036     case ISD::USUBSAT:
6037       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6038     case ISD::OR:
6039     case ISD::SADDSAT:
6040     case ISD::UADDSAT:
6041       return getAllOnesConstant(DL, VT);
6042     }
6043   }
6044 
6045   // Memoize this node if possible.
6046   SDNode *N;
6047   SDVTList VTs = getVTList(VT);
6048   SDValue Ops[] = {N1, N2};
6049   if (VT != MVT::Glue) {
6050     FoldingSetNodeID ID;
6051     AddNodeIDNode(ID, Opcode, VTs, Ops);
6052     void *IP = nullptr;
6053     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6054       E->intersectFlagsWith(Flags);
6055       return SDValue(E, 0);
6056     }
6057 
6058     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6059     N->setFlags(Flags);
6060     createOperands(N, Ops);
6061     CSEMap.InsertNode(N, IP);
6062   } else {
6063     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6064     createOperands(N, Ops);
6065   }
6066 
6067   InsertNode(N);
6068   SDValue V = SDValue(N, 0);
6069   NewSDValueDbgMsg(V, "Creating new node: ", this);
6070   return V;
6071 }
6072 
6073 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6074                               SDValue N1, SDValue N2, SDValue N3) {
6075   SDNodeFlags Flags;
6076   if (Inserter)
6077     Flags = Inserter->getFlags();
6078   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6079 }
6080 
6081 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6082                               SDValue N1, SDValue N2, SDValue N3,
6083                               const SDNodeFlags Flags) {
6084   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6085          N2.getOpcode() != ISD::DELETED_NODE &&
6086          N3.getOpcode() != ISD::DELETED_NODE &&
6087          "Operand is DELETED_NODE!");
6088   // Perform various simplifications.
6089   switch (Opcode) {
6090   case ISD::FMA: {
6091     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6092     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6093            N3.getValueType() == VT && "FMA types must match!");
6094     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6095     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6096     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6097     if (N1CFP && N2CFP && N3CFP) {
6098       APFloat  V1 = N1CFP->getValueAPF();
6099       const APFloat &V2 = N2CFP->getValueAPF();
6100       const APFloat &V3 = N3CFP->getValueAPF();
6101       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6102       return getConstantFP(V1, DL, VT);
6103     }
6104     break;
6105   }
6106   case ISD::BUILD_VECTOR: {
6107     // Attempt to simplify BUILD_VECTOR.
6108     SDValue Ops[] = {N1, N2, N3};
6109     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6110       return V;
6111     break;
6112   }
6113   case ISD::CONCAT_VECTORS: {
6114     SDValue Ops[] = {N1, N2, N3};
6115     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6116       return V;
6117     break;
6118   }
6119   case ISD::SETCC: {
6120     assert(VT.isInteger() && "SETCC result type must be an integer!");
6121     assert(N1.getValueType() == N2.getValueType() &&
6122            "SETCC operands must have the same type!");
6123     assert(VT.isVector() == N1.getValueType().isVector() &&
6124            "SETCC type should be vector iff the operand type is vector!");
6125     assert((!VT.isVector() || VT.getVectorElementCount() ==
6126                                   N1.getValueType().getVectorElementCount()) &&
6127            "SETCC vector element counts must match!");
6128     // Use FoldSetCC to simplify SETCC's.
6129     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6130       return V;
6131     // Vector constant folding.
6132     SDValue Ops[] = {N1, N2, N3};
6133     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
6134       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6135       return V;
6136     }
6137     break;
6138   }
6139   case ISD::SELECT:
6140   case ISD::VSELECT:
6141     if (SDValue V = simplifySelect(N1, N2, N3))
6142       return V;
6143     break;
6144   case ISD::VECTOR_SHUFFLE:
6145     llvm_unreachable("should use getVectorShuffle constructor!");
6146   case ISD::INSERT_VECTOR_ELT: {
6147     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6148     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6149     // for scalable vectors where we will generate appropriate code to
6150     // deal with out-of-bounds cases correctly.
6151     if (N3C && N1.getValueType().isFixedLengthVector() &&
6152         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6153       return getUNDEF(VT);
6154 
6155     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6156     if (N3.isUndef())
6157       return getUNDEF(VT);
6158 
6159     // If the inserted element is an UNDEF, just use the input vector.
6160     if (N2.isUndef())
6161       return N1;
6162 
6163     break;
6164   }
6165   case ISD::INSERT_SUBVECTOR: {
6166     // Inserting undef into undef is still undef.
6167     if (N1.isUndef() && N2.isUndef())
6168       return getUNDEF(VT);
6169 
6170     EVT N2VT = N2.getValueType();
6171     assert(VT == N1.getValueType() &&
6172            "Dest and insert subvector source types must match!");
6173     assert(VT.isVector() && N2VT.isVector() &&
6174            "Insert subvector VTs must be vectors!");
6175     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6176            "Cannot insert a scalable vector into a fixed length vector!");
6177     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6178             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6179            "Insert subvector must be from smaller vector to larger vector!");
6180     assert(isa<ConstantSDNode>(N3) &&
6181            "Insert subvector index must be constant");
6182     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6183             (N2VT.getVectorMinNumElements() +
6184              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6185                 VT.getVectorMinNumElements()) &&
6186            "Insert subvector overflow!");
6187     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6188                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6189            "Constant index for INSERT_SUBVECTOR has an invalid size");
6190 
6191     // Trivial insertion.
6192     if (VT == N2VT)
6193       return N2;
6194 
6195     // If this is an insert of an extracted vector into an undef vector, we
6196     // can just use the input to the extract.
6197     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6198         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6199       return N2.getOperand(0);
6200     break;
6201   }
6202   case ISD::BITCAST:
6203     // Fold bit_convert nodes from a type to themselves.
6204     if (N1.getValueType() == VT)
6205       return N1;
6206     break;
6207   }
6208 
6209   // Memoize node if it doesn't produce a flag.
6210   SDNode *N;
6211   SDVTList VTs = getVTList(VT);
6212   SDValue Ops[] = {N1, N2, N3};
6213   if (VT != MVT::Glue) {
6214     FoldingSetNodeID ID;
6215     AddNodeIDNode(ID, Opcode, VTs, Ops);
6216     void *IP = nullptr;
6217     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6218       E->intersectFlagsWith(Flags);
6219       return SDValue(E, 0);
6220     }
6221 
6222     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6223     N->setFlags(Flags);
6224     createOperands(N, Ops);
6225     CSEMap.InsertNode(N, IP);
6226   } else {
6227     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6228     createOperands(N, Ops);
6229   }
6230 
6231   InsertNode(N);
6232   SDValue V = SDValue(N, 0);
6233   NewSDValueDbgMsg(V, "Creating new node: ", this);
6234   return V;
6235 }
6236 
6237 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6238                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6239   SDValue Ops[] = { N1, N2, N3, N4 };
6240   return getNode(Opcode, DL, VT, Ops);
6241 }
6242 
6243 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6244                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6245                               SDValue N5) {
6246   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6247   return getNode(Opcode, DL, VT, Ops);
6248 }
6249 
6250 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6251 /// the incoming stack arguments to be loaded from the stack.
6252 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6253   SmallVector<SDValue, 8> ArgChains;
6254 
6255   // Include the original chain at the beginning of the list. When this is
6256   // used by target LowerCall hooks, this helps legalize find the
6257   // CALLSEQ_BEGIN node.
6258   ArgChains.push_back(Chain);
6259 
6260   // Add a chain value for each stack argument.
6261   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6262        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6263     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6264       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6265         if (FI->getIndex() < 0)
6266           ArgChains.push_back(SDValue(L, 1));
6267 
6268   // Build a tokenfactor for all the chains.
6269   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6270 }
6271 
6272 /// getMemsetValue - Vectorized representation of the memset value
6273 /// operand.
6274 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6275                               const SDLoc &dl) {
6276   assert(!Value.isUndef());
6277 
6278   unsigned NumBits = VT.getScalarSizeInBits();
6279   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6280     assert(C->getAPIntValue().getBitWidth() == 8);
6281     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6282     if (VT.isInteger()) {
6283       bool IsOpaque = VT.getSizeInBits() > 64 ||
6284           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6285       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6286     }
6287     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6288                              VT);
6289   }
6290 
6291   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6292   EVT IntVT = VT.getScalarType();
6293   if (!IntVT.isInteger())
6294     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6295 
6296   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6297   if (NumBits > 8) {
6298     // Use a multiplication with 0x010101... to extend the input to the
6299     // required length.
6300     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6301     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6302                         DAG.getConstant(Magic, dl, IntVT));
6303   }
6304 
6305   if (VT != Value.getValueType() && !VT.isInteger())
6306     Value = DAG.getBitcast(VT.getScalarType(), Value);
6307   if (VT != Value.getValueType())
6308     Value = DAG.getSplatBuildVector(VT, dl, Value);
6309 
6310   return Value;
6311 }
6312 
6313 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6314 /// used when a memcpy is turned into a memset when the source is a constant
6315 /// string ptr.
6316 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6317                                   const TargetLowering &TLI,
6318                                   const ConstantDataArraySlice &Slice) {
6319   // Handle vector with all elements zero.
6320   if (Slice.Array == nullptr) {
6321     if (VT.isInteger())
6322       return DAG.getConstant(0, dl, VT);
6323     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6324       return DAG.getConstantFP(0.0, dl, VT);
6325     if (VT.isVector()) {
6326       unsigned NumElts = VT.getVectorNumElements();
6327       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6328       return DAG.getNode(ISD::BITCAST, dl, VT,
6329                          DAG.getConstant(0, dl,
6330                                          EVT::getVectorVT(*DAG.getContext(),
6331                                                           EltVT, NumElts)));
6332     }
6333     llvm_unreachable("Expected type!");
6334   }
6335 
6336   assert(!VT.isVector() && "Can't handle vector type here!");
6337   unsigned NumVTBits = VT.getSizeInBits();
6338   unsigned NumVTBytes = NumVTBits / 8;
6339   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6340 
6341   APInt Val(NumVTBits, 0);
6342   if (DAG.getDataLayout().isLittleEndian()) {
6343     for (unsigned i = 0; i != NumBytes; ++i)
6344       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6345   } else {
6346     for (unsigned i = 0; i != NumBytes; ++i)
6347       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6348   }
6349 
6350   // If the "cost" of materializing the integer immediate is less than the cost
6351   // of a load, then it is cost effective to turn the load into the immediate.
6352   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6353   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6354     return DAG.getConstant(Val, dl, VT);
6355   return SDValue(nullptr, 0);
6356 }
6357 
6358 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6359                                            const SDLoc &DL,
6360                                            const SDNodeFlags Flags) {
6361   EVT VT = Base.getValueType();
6362   SDValue Index;
6363 
6364   if (Offset.isScalable())
6365     Index = getVScale(DL, Base.getValueType(),
6366                       APInt(Base.getValueSizeInBits().getFixedSize(),
6367                             Offset.getKnownMinSize()));
6368   else
6369     Index = getConstant(Offset.getFixedSize(), DL, VT);
6370 
6371   return getMemBasePlusOffset(Base, Index, DL, Flags);
6372 }
6373 
6374 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6375                                            const SDLoc &DL,
6376                                            const SDNodeFlags Flags) {
6377   assert(Offset.getValueType().isInteger());
6378   EVT BasePtrVT = Ptr.getValueType();
6379   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6380 }
6381 
6382 /// Returns true if memcpy source is constant data.
6383 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6384   uint64_t SrcDelta = 0;
6385   GlobalAddressSDNode *G = nullptr;
6386   if (Src.getOpcode() == ISD::GlobalAddress)
6387     G = cast<GlobalAddressSDNode>(Src);
6388   else if (Src.getOpcode() == ISD::ADD &&
6389            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6390            Src.getOperand(1).getOpcode() == ISD::Constant) {
6391     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6392     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6393   }
6394   if (!G)
6395     return false;
6396 
6397   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6398                                   SrcDelta + G->getOffset());
6399 }
6400 
6401 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6402                                       SelectionDAG &DAG) {
6403   // On Darwin, -Os means optimize for size without hurting performance, so
6404   // only really optimize for size when -Oz (MinSize) is used.
6405   if (MF.getTarget().getTargetTriple().isOSDarwin())
6406     return MF.getFunction().hasMinSize();
6407   return DAG.shouldOptForSize();
6408 }
6409 
6410 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6411                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6412                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6413                           SmallVector<SDValue, 16> &OutStoreChains) {
6414   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6415   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6416   SmallVector<SDValue, 16> GluedLoadChains;
6417   for (unsigned i = From; i < To; ++i) {
6418     OutChains.push_back(OutLoadChains[i]);
6419     GluedLoadChains.push_back(OutLoadChains[i]);
6420   }
6421 
6422   // Chain for all loads.
6423   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6424                                   GluedLoadChains);
6425 
6426   for (unsigned i = From; i < To; ++i) {
6427     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6428     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6429                                   ST->getBasePtr(), ST->getMemoryVT(),
6430                                   ST->getMemOperand());
6431     OutChains.push_back(NewStore);
6432   }
6433 }
6434 
6435 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6436                                        SDValue Chain, SDValue Dst, SDValue Src,
6437                                        uint64_t Size, Align Alignment,
6438                                        bool isVol, bool AlwaysInline,
6439                                        MachinePointerInfo DstPtrInfo,
6440                                        MachinePointerInfo SrcPtrInfo,
6441                                        const AAMDNodes &AAInfo) {
6442   // Turn a memcpy of undef to nop.
6443   // FIXME: We need to honor volatile even is Src is undef.
6444   if (Src.isUndef())
6445     return Chain;
6446 
6447   // Expand memcpy to a series of load and store ops if the size operand falls
6448   // below a certain threshold.
6449   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6450   // rather than maybe a humongous number of loads and stores.
6451   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6452   const DataLayout &DL = DAG.getDataLayout();
6453   LLVMContext &C = *DAG.getContext();
6454   std::vector<EVT> MemOps;
6455   bool DstAlignCanChange = false;
6456   MachineFunction &MF = DAG.getMachineFunction();
6457   MachineFrameInfo &MFI = MF.getFrameInfo();
6458   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6459   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6460   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6461     DstAlignCanChange = true;
6462   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6463   if (!SrcAlign || Alignment > *SrcAlign)
6464     SrcAlign = Alignment;
6465   assert(SrcAlign && "SrcAlign must be set");
6466   ConstantDataArraySlice Slice;
6467   // If marked as volatile, perform a copy even when marked as constant.
6468   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6469   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6470   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6471   const MemOp Op = isZeroConstant
6472                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6473                                     /*IsZeroMemset*/ true, isVol)
6474                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6475                                      *SrcAlign, isVol, CopyFromConstant);
6476   if (!TLI.findOptimalMemOpLowering(
6477           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6478           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6479     return SDValue();
6480 
6481   if (DstAlignCanChange) {
6482     Type *Ty = MemOps[0].getTypeForEVT(C);
6483     Align NewAlign = DL.getABITypeAlign(Ty);
6484 
6485     // Don't promote to an alignment that would require dynamic stack
6486     // realignment.
6487     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6488     if (!TRI->hasStackRealignment(MF))
6489       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6490         NewAlign = NewAlign / 2;
6491 
6492     if (NewAlign > Alignment) {
6493       // Give the stack frame object a larger alignment if needed.
6494       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6495         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6496       Alignment = NewAlign;
6497     }
6498   }
6499 
6500   // Prepare AAInfo for loads/stores after lowering this memcpy.
6501   AAMDNodes NewAAInfo = AAInfo;
6502   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6503 
6504   MachineMemOperand::Flags MMOFlags =
6505       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6506   SmallVector<SDValue, 16> OutLoadChains;
6507   SmallVector<SDValue, 16> OutStoreChains;
6508   SmallVector<SDValue, 32> OutChains;
6509   unsigned NumMemOps = MemOps.size();
6510   uint64_t SrcOff = 0, DstOff = 0;
6511   for (unsigned i = 0; i != NumMemOps; ++i) {
6512     EVT VT = MemOps[i];
6513     unsigned VTSize = VT.getSizeInBits() / 8;
6514     SDValue Value, Store;
6515 
6516     if (VTSize > Size) {
6517       // Issuing an unaligned load / store pair  that overlaps with the previous
6518       // pair. Adjust the offset accordingly.
6519       assert(i == NumMemOps-1 && i != 0);
6520       SrcOff -= VTSize - Size;
6521       DstOff -= VTSize - Size;
6522     }
6523 
6524     if (CopyFromConstant &&
6525         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6526       // It's unlikely a store of a vector immediate can be done in a single
6527       // instruction. It would require a load from a constantpool first.
6528       // We only handle zero vectors here.
6529       // FIXME: Handle other cases where store of vector immediate is done in
6530       // a single instruction.
6531       ConstantDataArraySlice SubSlice;
6532       if (SrcOff < Slice.Length) {
6533         SubSlice = Slice;
6534         SubSlice.move(SrcOff);
6535       } else {
6536         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6537         SubSlice.Array = nullptr;
6538         SubSlice.Offset = 0;
6539         SubSlice.Length = VTSize;
6540       }
6541       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6542       if (Value.getNode()) {
6543         Store = DAG.getStore(
6544             Chain, dl, Value,
6545             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6546             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6547         OutChains.push_back(Store);
6548       }
6549     }
6550 
6551     if (!Store.getNode()) {
6552       // The type might not be legal for the target.  This should only happen
6553       // if the type is smaller than a legal type, as on PPC, so the right
6554       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6555       // to Load/Store if NVT==VT.
6556       // FIXME does the case above also need this?
6557       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6558       assert(NVT.bitsGE(VT));
6559 
6560       bool isDereferenceable =
6561         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6562       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6563       if (isDereferenceable)
6564         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6565 
6566       Value = DAG.getExtLoad(
6567           ISD::EXTLOAD, dl, NVT, Chain,
6568           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6569           SrcPtrInfo.getWithOffset(SrcOff), VT,
6570           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6571       OutLoadChains.push_back(Value.getValue(1));
6572 
6573       Store = DAG.getTruncStore(
6574           Chain, dl, Value,
6575           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6576           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6577       OutStoreChains.push_back(Store);
6578     }
6579     SrcOff += VTSize;
6580     DstOff += VTSize;
6581     Size -= VTSize;
6582   }
6583 
6584   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6585                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6586   unsigned NumLdStInMemcpy = OutStoreChains.size();
6587 
6588   if (NumLdStInMemcpy) {
6589     // It may be that memcpy might be converted to memset if it's memcpy
6590     // of constants. In such a case, we won't have loads and stores, but
6591     // just stores. In the absence of loads, there is nothing to gang up.
6592     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6593       // If target does not care, just leave as it.
6594       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6595         OutChains.push_back(OutLoadChains[i]);
6596         OutChains.push_back(OutStoreChains[i]);
6597       }
6598     } else {
6599       // Ld/St less than/equal limit set by target.
6600       if (NumLdStInMemcpy <= GluedLdStLimit) {
6601           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6602                                         NumLdStInMemcpy, OutLoadChains,
6603                                         OutStoreChains);
6604       } else {
6605         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6606         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6607         unsigned GlueIter = 0;
6608 
6609         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6610           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6611           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6612 
6613           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6614                                        OutLoadChains, OutStoreChains);
6615           GlueIter += GluedLdStLimit;
6616         }
6617 
6618         // Residual ld/st.
6619         if (RemainingLdStInMemcpy) {
6620           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6621                                         RemainingLdStInMemcpy, OutLoadChains,
6622                                         OutStoreChains);
6623         }
6624       }
6625     }
6626   }
6627   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6628 }
6629 
6630 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6631                                         SDValue Chain, SDValue Dst, SDValue Src,
6632                                         uint64_t Size, Align Alignment,
6633                                         bool isVol, bool AlwaysInline,
6634                                         MachinePointerInfo DstPtrInfo,
6635                                         MachinePointerInfo SrcPtrInfo,
6636                                         const AAMDNodes &AAInfo) {
6637   // Turn a memmove of undef to nop.
6638   // FIXME: We need to honor volatile even is Src is undef.
6639   if (Src.isUndef())
6640     return Chain;
6641 
6642   // Expand memmove to a series of load and store ops if the size operand falls
6643   // below a certain threshold.
6644   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6645   const DataLayout &DL = DAG.getDataLayout();
6646   LLVMContext &C = *DAG.getContext();
6647   std::vector<EVT> MemOps;
6648   bool DstAlignCanChange = false;
6649   MachineFunction &MF = DAG.getMachineFunction();
6650   MachineFrameInfo &MFI = MF.getFrameInfo();
6651   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6652   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6653   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6654     DstAlignCanChange = true;
6655   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6656   if (!SrcAlign || Alignment > *SrcAlign)
6657     SrcAlign = Alignment;
6658   assert(SrcAlign && "SrcAlign must be set");
6659   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6660   if (!TLI.findOptimalMemOpLowering(
6661           MemOps, Limit,
6662           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6663                       /*IsVolatile*/ true),
6664           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6665           MF.getFunction().getAttributes()))
6666     return SDValue();
6667 
6668   if (DstAlignCanChange) {
6669     Type *Ty = MemOps[0].getTypeForEVT(C);
6670     Align NewAlign = DL.getABITypeAlign(Ty);
6671     if (NewAlign > Alignment) {
6672       // Give the stack frame object a larger alignment if needed.
6673       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6674         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6675       Alignment = NewAlign;
6676     }
6677   }
6678 
6679   // Prepare AAInfo for loads/stores after lowering this memmove.
6680   AAMDNodes NewAAInfo = AAInfo;
6681   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6682 
6683   MachineMemOperand::Flags MMOFlags =
6684       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6685   uint64_t SrcOff = 0, DstOff = 0;
6686   SmallVector<SDValue, 8> LoadValues;
6687   SmallVector<SDValue, 8> LoadChains;
6688   SmallVector<SDValue, 8> OutChains;
6689   unsigned NumMemOps = MemOps.size();
6690   for (unsigned i = 0; i < NumMemOps; i++) {
6691     EVT VT = MemOps[i];
6692     unsigned VTSize = VT.getSizeInBits() / 8;
6693     SDValue Value;
6694 
6695     bool isDereferenceable =
6696       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6697     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6698     if (isDereferenceable)
6699       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6700 
6701     Value = DAG.getLoad(
6702         VT, dl, Chain,
6703         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6704         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6705     LoadValues.push_back(Value);
6706     LoadChains.push_back(Value.getValue(1));
6707     SrcOff += VTSize;
6708   }
6709   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6710   OutChains.clear();
6711   for (unsigned i = 0; i < NumMemOps; i++) {
6712     EVT VT = MemOps[i];
6713     unsigned VTSize = VT.getSizeInBits() / 8;
6714     SDValue Store;
6715 
6716     Store = DAG.getStore(
6717         Chain, dl, LoadValues[i],
6718         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6719         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6720     OutChains.push_back(Store);
6721     DstOff += VTSize;
6722   }
6723 
6724   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6725 }
6726 
6727 /// Lower the call to 'memset' intrinsic function into a series of store
6728 /// operations.
6729 ///
6730 /// \param DAG Selection DAG where lowered code is placed.
6731 /// \param dl Link to corresponding IR location.
6732 /// \param Chain Control flow dependency.
6733 /// \param Dst Pointer to destination memory location.
6734 /// \param Src Value of byte to write into the memory.
6735 /// \param Size Number of bytes to write.
6736 /// \param Alignment Alignment of the destination in bytes.
6737 /// \param isVol True if destination is volatile.
6738 /// \param DstPtrInfo IR information on the memory pointer.
6739 /// \returns New head in the control flow, if lowering was successful, empty
6740 /// SDValue otherwise.
6741 ///
6742 /// The function tries to replace 'llvm.memset' intrinsic with several store
6743 /// operations and value calculation code. This is usually profitable for small
6744 /// memory size.
6745 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6746                                SDValue Chain, SDValue Dst, SDValue Src,
6747                                uint64_t Size, Align Alignment, bool isVol,
6748                                MachinePointerInfo DstPtrInfo,
6749                                const AAMDNodes &AAInfo) {
6750   // Turn a memset of undef to nop.
6751   // FIXME: We need to honor volatile even is Src is undef.
6752   if (Src.isUndef())
6753     return Chain;
6754 
6755   // Expand memset to a series of load/store ops if the size operand
6756   // falls below a certain threshold.
6757   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6758   std::vector<EVT> MemOps;
6759   bool DstAlignCanChange = false;
6760   MachineFunction &MF = DAG.getMachineFunction();
6761   MachineFrameInfo &MFI = MF.getFrameInfo();
6762   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6763   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6764   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6765     DstAlignCanChange = true;
6766   bool IsZeroVal =
6767     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6768   if (!TLI.findOptimalMemOpLowering(
6769           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6770           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6771           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6772     return SDValue();
6773 
6774   if (DstAlignCanChange) {
6775     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6776     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6777     if (NewAlign > Alignment) {
6778       // Give the stack frame object a larger alignment if needed.
6779       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6780         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6781       Alignment = NewAlign;
6782     }
6783   }
6784 
6785   SmallVector<SDValue, 8> OutChains;
6786   uint64_t DstOff = 0;
6787   unsigned NumMemOps = MemOps.size();
6788 
6789   // Find the largest store and generate the bit pattern for it.
6790   EVT LargestVT = MemOps[0];
6791   for (unsigned i = 1; i < NumMemOps; i++)
6792     if (MemOps[i].bitsGT(LargestVT))
6793       LargestVT = MemOps[i];
6794   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6795 
6796   // Prepare AAInfo for loads/stores after lowering this memset.
6797   AAMDNodes NewAAInfo = AAInfo;
6798   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6799 
6800   for (unsigned i = 0; i < NumMemOps; i++) {
6801     EVT VT = MemOps[i];
6802     unsigned VTSize = VT.getSizeInBits() / 8;
6803     if (VTSize > Size) {
6804       // Issuing an unaligned load / store pair  that overlaps with the previous
6805       // pair. Adjust the offset accordingly.
6806       assert(i == NumMemOps-1 && i != 0);
6807       DstOff -= VTSize - Size;
6808     }
6809 
6810     // If this store is smaller than the largest store see whether we can get
6811     // the smaller value for free with a truncate.
6812     SDValue Value = MemSetValue;
6813     if (VT.bitsLT(LargestVT)) {
6814       if (!LargestVT.isVector() && !VT.isVector() &&
6815           TLI.isTruncateFree(LargestVT, VT))
6816         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6817       else
6818         Value = getMemsetValue(Src, VT, DAG, dl);
6819     }
6820     assert(Value.getValueType() == VT && "Value with wrong type.");
6821     SDValue Store = DAG.getStore(
6822         Chain, dl, Value,
6823         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6824         DstPtrInfo.getWithOffset(DstOff), Alignment,
6825         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6826         NewAAInfo);
6827     OutChains.push_back(Store);
6828     DstOff += VT.getSizeInBits() / 8;
6829     Size -= VTSize;
6830   }
6831 
6832   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6833 }
6834 
6835 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6836                                             unsigned AS) {
6837   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6838   // pointer operands can be losslessly bitcasted to pointers of address space 0
6839   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6840     report_fatal_error("cannot lower memory intrinsic in address space " +
6841                        Twine(AS));
6842   }
6843 }
6844 
6845 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6846                                 SDValue Src, SDValue Size, Align Alignment,
6847                                 bool isVol, bool AlwaysInline, bool isTailCall,
6848                                 MachinePointerInfo DstPtrInfo,
6849                                 MachinePointerInfo SrcPtrInfo,
6850                                 const AAMDNodes &AAInfo) {
6851   // Check to see if we should lower the memcpy to loads and stores first.
6852   // For cases within the target-specified limits, this is the best choice.
6853   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6854   if (ConstantSize) {
6855     // Memcpy with size zero? Just return the original chain.
6856     if (ConstantSize->isNullValue())
6857       return Chain;
6858 
6859     SDValue Result = getMemcpyLoadsAndStores(
6860         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6861         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6862     if (Result.getNode())
6863       return Result;
6864   }
6865 
6866   // Then check to see if we should lower the memcpy with target-specific
6867   // code. If the target chooses to do this, this is the next best.
6868   if (TSI) {
6869     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6870         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6871         DstPtrInfo, SrcPtrInfo);
6872     if (Result.getNode())
6873       return Result;
6874   }
6875 
6876   // If we really need inline code and the target declined to provide it,
6877   // use a (potentially long) sequence of loads and stores.
6878   if (AlwaysInline) {
6879     assert(ConstantSize && "AlwaysInline requires a constant size!");
6880     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6881                                    ConstantSize->getZExtValue(), Alignment,
6882                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6883   }
6884 
6885   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6886   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6887 
6888   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6889   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6890   // respect volatile, so they may do things like read or write memory
6891   // beyond the given memory regions. But fixing this isn't easy, and most
6892   // people don't care.
6893 
6894   // Emit a library call.
6895   TargetLowering::ArgListTy Args;
6896   TargetLowering::ArgListEntry Entry;
6897   Entry.Ty = Type::getInt8PtrTy(*getContext());
6898   Entry.Node = Dst; Args.push_back(Entry);
6899   Entry.Node = Src; Args.push_back(Entry);
6900 
6901   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6902   Entry.Node = Size; Args.push_back(Entry);
6903   // FIXME: pass in SDLoc
6904   TargetLowering::CallLoweringInfo CLI(*this);
6905   CLI.setDebugLoc(dl)
6906       .setChain(Chain)
6907       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6908                     Dst.getValueType().getTypeForEVT(*getContext()),
6909                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6910                                       TLI->getPointerTy(getDataLayout())),
6911                     std::move(Args))
6912       .setDiscardResult()
6913       .setTailCall(isTailCall);
6914 
6915   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6916   return CallResult.second;
6917 }
6918 
6919 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6920                                       SDValue Dst, unsigned DstAlign,
6921                                       SDValue Src, unsigned SrcAlign,
6922                                       SDValue Size, Type *SizeTy,
6923                                       unsigned ElemSz, bool isTailCall,
6924                                       MachinePointerInfo DstPtrInfo,
6925                                       MachinePointerInfo SrcPtrInfo) {
6926   // Emit a library call.
6927   TargetLowering::ArgListTy Args;
6928   TargetLowering::ArgListEntry Entry;
6929   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6930   Entry.Node = Dst;
6931   Args.push_back(Entry);
6932 
6933   Entry.Node = Src;
6934   Args.push_back(Entry);
6935 
6936   Entry.Ty = SizeTy;
6937   Entry.Node = Size;
6938   Args.push_back(Entry);
6939 
6940   RTLIB::Libcall LibraryCall =
6941       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6942   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6943     report_fatal_error("Unsupported element size");
6944 
6945   TargetLowering::CallLoweringInfo CLI(*this);
6946   CLI.setDebugLoc(dl)
6947       .setChain(Chain)
6948       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6949                     Type::getVoidTy(*getContext()),
6950                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6951                                       TLI->getPointerTy(getDataLayout())),
6952                     std::move(Args))
6953       .setDiscardResult()
6954       .setTailCall(isTailCall);
6955 
6956   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6957   return CallResult.second;
6958 }
6959 
6960 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6961                                  SDValue Src, SDValue Size, Align Alignment,
6962                                  bool isVol, bool isTailCall,
6963                                  MachinePointerInfo DstPtrInfo,
6964                                  MachinePointerInfo SrcPtrInfo,
6965                                  const AAMDNodes &AAInfo) {
6966   // Check to see if we should lower the memmove to loads and stores first.
6967   // For cases within the target-specified limits, this is the best choice.
6968   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6969   if (ConstantSize) {
6970     // Memmove with size zero? Just return the original chain.
6971     if (ConstantSize->isNullValue())
6972       return Chain;
6973 
6974     SDValue Result = getMemmoveLoadsAndStores(
6975         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6976         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6977     if (Result.getNode())
6978       return Result;
6979   }
6980 
6981   // Then check to see if we should lower the memmove with target-specific
6982   // code. If the target chooses to do this, this is the next best.
6983   if (TSI) {
6984     SDValue Result =
6985         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6986                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6987     if (Result.getNode())
6988       return Result;
6989   }
6990 
6991   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6992   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6993 
6994   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6995   // not be safe.  See memcpy above for more details.
6996 
6997   // Emit a library call.
6998   TargetLowering::ArgListTy Args;
6999   TargetLowering::ArgListEntry Entry;
7000   Entry.Ty = Type::getInt8PtrTy(*getContext());
7001   Entry.Node = Dst; Args.push_back(Entry);
7002   Entry.Node = Src; Args.push_back(Entry);
7003 
7004   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7005   Entry.Node = Size; Args.push_back(Entry);
7006   // FIXME:  pass in SDLoc
7007   TargetLowering::CallLoweringInfo CLI(*this);
7008   CLI.setDebugLoc(dl)
7009       .setChain(Chain)
7010       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7011                     Dst.getValueType().getTypeForEVT(*getContext()),
7012                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7013                                       TLI->getPointerTy(getDataLayout())),
7014                     std::move(Args))
7015       .setDiscardResult()
7016       .setTailCall(isTailCall);
7017 
7018   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7019   return CallResult.second;
7020 }
7021 
7022 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7023                                        SDValue Dst, unsigned DstAlign,
7024                                        SDValue Src, unsigned SrcAlign,
7025                                        SDValue Size, Type *SizeTy,
7026                                        unsigned ElemSz, bool isTailCall,
7027                                        MachinePointerInfo DstPtrInfo,
7028                                        MachinePointerInfo SrcPtrInfo) {
7029   // Emit a library call.
7030   TargetLowering::ArgListTy Args;
7031   TargetLowering::ArgListEntry Entry;
7032   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7033   Entry.Node = Dst;
7034   Args.push_back(Entry);
7035 
7036   Entry.Node = Src;
7037   Args.push_back(Entry);
7038 
7039   Entry.Ty = SizeTy;
7040   Entry.Node = Size;
7041   Args.push_back(Entry);
7042 
7043   RTLIB::Libcall LibraryCall =
7044       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7045   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7046     report_fatal_error("Unsupported element size");
7047 
7048   TargetLowering::CallLoweringInfo CLI(*this);
7049   CLI.setDebugLoc(dl)
7050       .setChain(Chain)
7051       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7052                     Type::getVoidTy(*getContext()),
7053                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7054                                       TLI->getPointerTy(getDataLayout())),
7055                     std::move(Args))
7056       .setDiscardResult()
7057       .setTailCall(isTailCall);
7058 
7059   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7060   return CallResult.second;
7061 }
7062 
7063 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7064                                 SDValue Src, SDValue Size, Align Alignment,
7065                                 bool isVol, bool isTailCall,
7066                                 MachinePointerInfo DstPtrInfo,
7067                                 const AAMDNodes &AAInfo) {
7068   // Check to see if we should lower the memset to stores first.
7069   // For cases within the target-specified limits, this is the best choice.
7070   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7071   if (ConstantSize) {
7072     // Memset with size zero? Just return the original chain.
7073     if (ConstantSize->isNullValue())
7074       return Chain;
7075 
7076     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7077                                      ConstantSize->getZExtValue(), Alignment,
7078                                      isVol, DstPtrInfo, AAInfo);
7079 
7080     if (Result.getNode())
7081       return Result;
7082   }
7083 
7084   // Then check to see if we should lower the memset with target-specific
7085   // code. If the target chooses to do this, this is the next best.
7086   if (TSI) {
7087     SDValue Result = TSI->EmitTargetCodeForMemset(
7088         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7089     if (Result.getNode())
7090       return Result;
7091   }
7092 
7093   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7094 
7095   // Emit a library call.
7096   TargetLowering::ArgListTy Args;
7097   TargetLowering::ArgListEntry Entry;
7098   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7099   Args.push_back(Entry);
7100   Entry.Node = Src;
7101   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7102   Args.push_back(Entry);
7103   Entry.Node = Size;
7104   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7105   Args.push_back(Entry);
7106 
7107   // FIXME: pass in SDLoc
7108   TargetLowering::CallLoweringInfo CLI(*this);
7109   CLI.setDebugLoc(dl)
7110       .setChain(Chain)
7111       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7112                     Dst.getValueType().getTypeForEVT(*getContext()),
7113                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7114                                       TLI->getPointerTy(getDataLayout())),
7115                     std::move(Args))
7116       .setDiscardResult()
7117       .setTailCall(isTailCall);
7118 
7119   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7120   return CallResult.second;
7121 }
7122 
7123 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7124                                       SDValue Dst, unsigned DstAlign,
7125                                       SDValue Value, SDValue Size, Type *SizeTy,
7126                                       unsigned ElemSz, bool isTailCall,
7127                                       MachinePointerInfo DstPtrInfo) {
7128   // Emit a library call.
7129   TargetLowering::ArgListTy Args;
7130   TargetLowering::ArgListEntry Entry;
7131   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7132   Entry.Node = Dst;
7133   Args.push_back(Entry);
7134 
7135   Entry.Ty = Type::getInt8Ty(*getContext());
7136   Entry.Node = Value;
7137   Args.push_back(Entry);
7138 
7139   Entry.Ty = SizeTy;
7140   Entry.Node = Size;
7141   Args.push_back(Entry);
7142 
7143   RTLIB::Libcall LibraryCall =
7144       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7145   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7146     report_fatal_error("Unsupported element size");
7147 
7148   TargetLowering::CallLoweringInfo CLI(*this);
7149   CLI.setDebugLoc(dl)
7150       .setChain(Chain)
7151       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7152                     Type::getVoidTy(*getContext()),
7153                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7154                                       TLI->getPointerTy(getDataLayout())),
7155                     std::move(Args))
7156       .setDiscardResult()
7157       .setTailCall(isTailCall);
7158 
7159   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7160   return CallResult.second;
7161 }
7162 
7163 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7164                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7165                                 MachineMemOperand *MMO) {
7166   FoldingSetNodeID ID;
7167   ID.AddInteger(MemVT.getRawBits());
7168   AddNodeIDNode(ID, Opcode, VTList, Ops);
7169   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7170   void* IP = nullptr;
7171   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7172     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7173     return SDValue(E, 0);
7174   }
7175 
7176   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7177                                     VTList, MemVT, MMO);
7178   createOperands(N, Ops);
7179 
7180   CSEMap.InsertNode(N, IP);
7181   InsertNode(N);
7182   return SDValue(N, 0);
7183 }
7184 
7185 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7186                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7187                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7188                                        MachineMemOperand *MMO) {
7189   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7190          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7191   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7192 
7193   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7194   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7195 }
7196 
7197 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7198                                 SDValue Chain, SDValue Ptr, SDValue Val,
7199                                 MachineMemOperand *MMO) {
7200   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7201           Opcode == ISD::ATOMIC_LOAD_SUB ||
7202           Opcode == ISD::ATOMIC_LOAD_AND ||
7203           Opcode == ISD::ATOMIC_LOAD_CLR ||
7204           Opcode == ISD::ATOMIC_LOAD_OR ||
7205           Opcode == ISD::ATOMIC_LOAD_XOR ||
7206           Opcode == ISD::ATOMIC_LOAD_NAND ||
7207           Opcode == ISD::ATOMIC_LOAD_MIN ||
7208           Opcode == ISD::ATOMIC_LOAD_MAX ||
7209           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7210           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7211           Opcode == ISD::ATOMIC_LOAD_FADD ||
7212           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7213           Opcode == ISD::ATOMIC_SWAP ||
7214           Opcode == ISD::ATOMIC_STORE) &&
7215          "Invalid Atomic Op");
7216 
7217   EVT VT = Val.getValueType();
7218 
7219   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7220                                                getVTList(VT, MVT::Other);
7221   SDValue Ops[] = {Chain, Ptr, Val};
7222   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7223 }
7224 
7225 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7226                                 EVT VT, SDValue Chain, SDValue Ptr,
7227                                 MachineMemOperand *MMO) {
7228   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7229 
7230   SDVTList VTs = getVTList(VT, MVT::Other);
7231   SDValue Ops[] = {Chain, Ptr};
7232   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7233 }
7234 
7235 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7236 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7237   if (Ops.size() == 1)
7238     return Ops[0];
7239 
7240   SmallVector<EVT, 4> VTs;
7241   VTs.reserve(Ops.size());
7242   for (const SDValue &Op : Ops)
7243     VTs.push_back(Op.getValueType());
7244   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7245 }
7246 
7247 SDValue SelectionDAG::getMemIntrinsicNode(
7248     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7249     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7250     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7251   if (!Size && MemVT.isScalableVector())
7252     Size = MemoryLocation::UnknownSize;
7253   else if (!Size)
7254     Size = MemVT.getStoreSize();
7255 
7256   MachineFunction &MF = getMachineFunction();
7257   MachineMemOperand *MMO =
7258       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7259 
7260   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7261 }
7262 
7263 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7264                                           SDVTList VTList,
7265                                           ArrayRef<SDValue> Ops, EVT MemVT,
7266                                           MachineMemOperand *MMO) {
7267   assert((Opcode == ISD::INTRINSIC_VOID ||
7268           Opcode == ISD::INTRINSIC_W_CHAIN ||
7269           Opcode == ISD::PREFETCH ||
7270           ((int)Opcode <= std::numeric_limits<int>::max() &&
7271            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7272          "Opcode is not a memory-accessing opcode!");
7273 
7274   // Memoize the node unless it returns a flag.
7275   MemIntrinsicSDNode *N;
7276   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7277     FoldingSetNodeID ID;
7278     AddNodeIDNode(ID, Opcode, VTList, Ops);
7279     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7280         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7281     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7282     void *IP = nullptr;
7283     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7284       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7285       return SDValue(E, 0);
7286     }
7287 
7288     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7289                                       VTList, MemVT, MMO);
7290     createOperands(N, Ops);
7291 
7292   CSEMap.InsertNode(N, IP);
7293   } else {
7294     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7295                                       VTList, MemVT, MMO);
7296     createOperands(N, Ops);
7297   }
7298   InsertNode(N);
7299   SDValue V(N, 0);
7300   NewSDValueDbgMsg(V, "Creating new node: ", this);
7301   return V;
7302 }
7303 
7304 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7305                                       SDValue Chain, int FrameIndex,
7306                                       int64_t Size, int64_t Offset) {
7307   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7308   const auto VTs = getVTList(MVT::Other);
7309   SDValue Ops[2] = {
7310       Chain,
7311       getFrameIndex(FrameIndex,
7312                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7313                     true)};
7314 
7315   FoldingSetNodeID ID;
7316   AddNodeIDNode(ID, Opcode, VTs, Ops);
7317   ID.AddInteger(FrameIndex);
7318   ID.AddInteger(Size);
7319   ID.AddInteger(Offset);
7320   void *IP = nullptr;
7321   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7322     return SDValue(E, 0);
7323 
7324   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7325       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7326   createOperands(N, Ops);
7327   CSEMap.InsertNode(N, IP);
7328   InsertNode(N);
7329   SDValue V(N, 0);
7330   NewSDValueDbgMsg(V, "Creating new node: ", this);
7331   return V;
7332 }
7333 
7334 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7335                                          uint64_t Guid, uint64_t Index,
7336                                          uint32_t Attr) {
7337   const unsigned Opcode = ISD::PSEUDO_PROBE;
7338   const auto VTs = getVTList(MVT::Other);
7339   SDValue Ops[] = {Chain};
7340   FoldingSetNodeID ID;
7341   AddNodeIDNode(ID, Opcode, VTs, Ops);
7342   ID.AddInteger(Guid);
7343   ID.AddInteger(Index);
7344   void *IP = nullptr;
7345   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7346     return SDValue(E, 0);
7347 
7348   auto *N = newSDNode<PseudoProbeSDNode>(
7349       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7350   createOperands(N, Ops);
7351   CSEMap.InsertNode(N, IP);
7352   InsertNode(N);
7353   SDValue V(N, 0);
7354   NewSDValueDbgMsg(V, "Creating new node: ", this);
7355   return V;
7356 }
7357 
7358 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7359 /// MachinePointerInfo record from it.  This is particularly useful because the
7360 /// code generator has many cases where it doesn't bother passing in a
7361 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7362 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7363                                            SelectionDAG &DAG, SDValue Ptr,
7364                                            int64_t Offset = 0) {
7365   // If this is FI+Offset, we can model it.
7366   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7367     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7368                                              FI->getIndex(), Offset);
7369 
7370   // If this is (FI+Offset1)+Offset2, we can model it.
7371   if (Ptr.getOpcode() != ISD::ADD ||
7372       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7373       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7374     return Info;
7375 
7376   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7377   return MachinePointerInfo::getFixedStack(
7378       DAG.getMachineFunction(), FI,
7379       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7380 }
7381 
7382 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7383 /// MachinePointerInfo record from it.  This is particularly useful because the
7384 /// code generator has many cases where it doesn't bother passing in a
7385 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7386 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7387                                            SelectionDAG &DAG, SDValue Ptr,
7388                                            SDValue OffsetOp) {
7389   // If the 'Offset' value isn't a constant, we can't handle this.
7390   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7391     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7392   if (OffsetOp.isUndef())
7393     return InferPointerInfo(Info, DAG, Ptr);
7394   return Info;
7395 }
7396 
7397 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7398                               EVT VT, const SDLoc &dl, SDValue Chain,
7399                               SDValue Ptr, SDValue Offset,
7400                               MachinePointerInfo PtrInfo, EVT MemVT,
7401                               Align Alignment,
7402                               MachineMemOperand::Flags MMOFlags,
7403                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7404   assert(Chain.getValueType() == MVT::Other &&
7405         "Invalid chain type");
7406 
7407   MMOFlags |= MachineMemOperand::MOLoad;
7408   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7409   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7410   // clients.
7411   if (PtrInfo.V.isNull())
7412     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7413 
7414   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7415   MachineFunction &MF = getMachineFunction();
7416   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7417                                                    Alignment, AAInfo, Ranges);
7418   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7419 }
7420 
7421 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7422                               EVT VT, const SDLoc &dl, SDValue Chain,
7423                               SDValue Ptr, SDValue Offset, EVT MemVT,
7424                               MachineMemOperand *MMO) {
7425   if (VT == MemVT) {
7426     ExtType = ISD::NON_EXTLOAD;
7427   } else if (ExtType == ISD::NON_EXTLOAD) {
7428     assert(VT == MemVT && "Non-extending load from different memory type!");
7429   } else {
7430     // Extending load.
7431     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7432            "Should only be an extending load, not truncating!");
7433     assert(VT.isInteger() == MemVT.isInteger() &&
7434            "Cannot convert from FP to Int or Int -> FP!");
7435     assert(VT.isVector() == MemVT.isVector() &&
7436            "Cannot use an ext load to convert to or from a vector!");
7437     assert((!VT.isVector() ||
7438             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7439            "Cannot use an ext load to change the number of vector elements!");
7440   }
7441 
7442   bool Indexed = AM != ISD::UNINDEXED;
7443   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7444 
7445   SDVTList VTs = Indexed ?
7446     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7447   SDValue Ops[] = { Chain, Ptr, Offset };
7448   FoldingSetNodeID ID;
7449   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7450   ID.AddInteger(MemVT.getRawBits());
7451   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7452       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7453   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7454   void *IP = nullptr;
7455   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7456     cast<LoadSDNode>(E)->refineAlignment(MMO);
7457     return SDValue(E, 0);
7458   }
7459   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7460                                   ExtType, MemVT, MMO);
7461   createOperands(N, Ops);
7462 
7463   CSEMap.InsertNode(N, IP);
7464   InsertNode(N);
7465   SDValue V(N, 0);
7466   NewSDValueDbgMsg(V, "Creating new node: ", this);
7467   return V;
7468 }
7469 
7470 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7471                               SDValue Ptr, MachinePointerInfo PtrInfo,
7472                               MaybeAlign Alignment,
7473                               MachineMemOperand::Flags MMOFlags,
7474                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7475   SDValue Undef = getUNDEF(Ptr.getValueType());
7476   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7477                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7478 }
7479 
7480 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7481                               SDValue Ptr, MachineMemOperand *MMO) {
7482   SDValue Undef = getUNDEF(Ptr.getValueType());
7483   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7484                  VT, MMO);
7485 }
7486 
7487 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7488                                  EVT VT, SDValue Chain, SDValue Ptr,
7489                                  MachinePointerInfo PtrInfo, EVT MemVT,
7490                                  MaybeAlign Alignment,
7491                                  MachineMemOperand::Flags MMOFlags,
7492                                  const AAMDNodes &AAInfo) {
7493   SDValue Undef = getUNDEF(Ptr.getValueType());
7494   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7495                  MemVT, Alignment, MMOFlags, AAInfo);
7496 }
7497 
7498 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7499                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7500                                  MachineMemOperand *MMO) {
7501   SDValue Undef = getUNDEF(Ptr.getValueType());
7502   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7503                  MemVT, MMO);
7504 }
7505 
7506 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7507                                      SDValue Base, SDValue Offset,
7508                                      ISD::MemIndexedMode AM) {
7509   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7510   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7511   // Don't propagate the invariant or dereferenceable flags.
7512   auto MMOFlags =
7513       LD->getMemOperand()->getFlags() &
7514       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7515   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7516                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7517                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7518 }
7519 
7520 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7521                                SDValue Ptr, MachinePointerInfo PtrInfo,
7522                                Align Alignment,
7523                                MachineMemOperand::Flags MMOFlags,
7524                                const AAMDNodes &AAInfo) {
7525   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7526 
7527   MMOFlags |= MachineMemOperand::MOStore;
7528   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7529 
7530   if (PtrInfo.V.isNull())
7531     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7532 
7533   MachineFunction &MF = getMachineFunction();
7534   uint64_t Size =
7535       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7536   MachineMemOperand *MMO =
7537       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7538   return getStore(Chain, dl, Val, Ptr, MMO);
7539 }
7540 
7541 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7542                                SDValue Ptr, MachineMemOperand *MMO) {
7543   assert(Chain.getValueType() == MVT::Other &&
7544         "Invalid chain type");
7545   EVT VT = Val.getValueType();
7546   SDVTList VTs = getVTList(MVT::Other);
7547   SDValue Undef = getUNDEF(Ptr.getValueType());
7548   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7549   FoldingSetNodeID ID;
7550   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7551   ID.AddInteger(VT.getRawBits());
7552   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7553       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7554   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7555   void *IP = nullptr;
7556   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7557     cast<StoreSDNode>(E)->refineAlignment(MMO);
7558     return SDValue(E, 0);
7559   }
7560   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7561                                    ISD::UNINDEXED, false, VT, MMO);
7562   createOperands(N, Ops);
7563 
7564   CSEMap.InsertNode(N, IP);
7565   InsertNode(N);
7566   SDValue V(N, 0);
7567   NewSDValueDbgMsg(V, "Creating new node: ", this);
7568   return V;
7569 }
7570 
7571 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7572                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7573                                     EVT SVT, Align Alignment,
7574                                     MachineMemOperand::Flags MMOFlags,
7575                                     const AAMDNodes &AAInfo) {
7576   assert(Chain.getValueType() == MVT::Other &&
7577         "Invalid chain type");
7578 
7579   MMOFlags |= MachineMemOperand::MOStore;
7580   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7581 
7582   if (PtrInfo.V.isNull())
7583     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7584 
7585   MachineFunction &MF = getMachineFunction();
7586   MachineMemOperand *MMO = MF.getMachineMemOperand(
7587       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7588       Alignment, AAInfo);
7589   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7590 }
7591 
7592 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7593                                     SDValue Ptr, EVT SVT,
7594                                     MachineMemOperand *MMO) {
7595   EVT VT = Val.getValueType();
7596 
7597   assert(Chain.getValueType() == MVT::Other &&
7598         "Invalid chain type");
7599   if (VT == SVT)
7600     return getStore(Chain, dl, Val, Ptr, MMO);
7601 
7602   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7603          "Should only be a truncating store, not extending!");
7604   assert(VT.isInteger() == SVT.isInteger() &&
7605          "Can't do FP-INT conversion!");
7606   assert(VT.isVector() == SVT.isVector() &&
7607          "Cannot use trunc store to convert to or from a vector!");
7608   assert((!VT.isVector() ||
7609           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7610          "Cannot use trunc store to change the number of vector elements!");
7611 
7612   SDVTList VTs = getVTList(MVT::Other);
7613   SDValue Undef = getUNDEF(Ptr.getValueType());
7614   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7615   FoldingSetNodeID ID;
7616   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7617   ID.AddInteger(SVT.getRawBits());
7618   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7619       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7620   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7621   void *IP = nullptr;
7622   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7623     cast<StoreSDNode>(E)->refineAlignment(MMO);
7624     return SDValue(E, 0);
7625   }
7626   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7627                                    ISD::UNINDEXED, true, SVT, MMO);
7628   createOperands(N, Ops);
7629 
7630   CSEMap.InsertNode(N, IP);
7631   InsertNode(N);
7632   SDValue V(N, 0);
7633   NewSDValueDbgMsg(V, "Creating new node: ", this);
7634   return V;
7635 }
7636 
7637 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7638                                       SDValue Base, SDValue Offset,
7639                                       ISD::MemIndexedMode AM) {
7640   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7641   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7642   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7643   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7644   FoldingSetNodeID ID;
7645   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7646   ID.AddInteger(ST->getMemoryVT().getRawBits());
7647   ID.AddInteger(ST->getRawSubclassData());
7648   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7649   void *IP = nullptr;
7650   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7651     return SDValue(E, 0);
7652 
7653   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7654                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7655                                    ST->getMemOperand());
7656   createOperands(N, Ops);
7657 
7658   CSEMap.InsertNode(N, IP);
7659   InsertNode(N);
7660   SDValue V(N, 0);
7661   NewSDValueDbgMsg(V, "Creating new node: ", this);
7662   return V;
7663 }
7664 
7665 SDValue SelectionDAG::getLoadVP(
7666     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7667     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7668     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7669     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7670     const MDNode *Ranges, bool IsExpanding) {
7671   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7672 
7673   MMOFlags |= MachineMemOperand::MOLoad;
7674   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7675   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7676   // clients.
7677   if (PtrInfo.V.isNull())
7678     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7679 
7680   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7681   MachineFunction &MF = getMachineFunction();
7682   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7683                                                    Alignment, AAInfo, Ranges);
7684   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7685                    MMO, IsExpanding);
7686 }
7687 
7688 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7689                                 ISD::LoadExtType ExtType, EVT VT,
7690                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7691                                 SDValue Offset, SDValue Mask, SDValue EVL,
7692                                 EVT MemVT, MachineMemOperand *MMO,
7693                                 bool IsExpanding) {
7694   if (VT == MemVT) {
7695     ExtType = ISD::NON_EXTLOAD;
7696   } else if (ExtType == ISD::NON_EXTLOAD) {
7697     assert(VT == MemVT && "Non-extending load from different memory type!");
7698   } else {
7699     // Extending load.
7700     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7701            "Should only be an extending load, not truncating!");
7702     assert(VT.isInteger() == MemVT.isInteger() &&
7703            "Cannot convert from FP to Int or Int -> FP!");
7704     assert(VT.isVector() == MemVT.isVector() &&
7705            "Cannot use an ext load to convert to or from a vector!");
7706     assert((!VT.isVector() ||
7707             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7708            "Cannot use an ext load to change the number of vector elements!");
7709   }
7710 
7711   bool Indexed = AM != ISD::UNINDEXED;
7712   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7713 
7714   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7715                          : getVTList(VT, MVT::Other);
7716   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7717   FoldingSetNodeID ID;
7718   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7719   ID.AddInteger(VT.getRawBits());
7720   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7721       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7722   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7723   void *IP = nullptr;
7724   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7725     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7726     return SDValue(E, 0);
7727   }
7728   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7729                                     ExtType, IsExpanding, MemVT, MMO);
7730   createOperands(N, Ops);
7731 
7732   CSEMap.InsertNode(N, IP);
7733   InsertNode(N);
7734   SDValue V(N, 0);
7735   NewSDValueDbgMsg(V, "Creating new node: ", this);
7736   return V;
7737 }
7738 
7739 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7740                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7741                                 MachinePointerInfo PtrInfo,
7742                                 MaybeAlign Alignment,
7743                                 MachineMemOperand::Flags MMOFlags,
7744                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7745                                 bool IsExpanding) {
7746   SDValue Undef = getUNDEF(Ptr.getValueType());
7747   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7748                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7749                    IsExpanding);
7750 }
7751 
7752 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7753                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7754                                 MachineMemOperand *MMO, bool IsExpanding) {
7755   SDValue Undef = getUNDEF(Ptr.getValueType());
7756   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7757                    Mask, EVL, VT, MMO, IsExpanding);
7758 }
7759 
7760 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7761                                    EVT VT, SDValue Chain, SDValue Ptr,
7762                                    SDValue Mask, SDValue EVL,
7763                                    MachinePointerInfo PtrInfo, EVT MemVT,
7764                                    MaybeAlign Alignment,
7765                                    MachineMemOperand::Flags MMOFlags,
7766                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7767   SDValue Undef = getUNDEF(Ptr.getValueType());
7768   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7769                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7770                    IsExpanding);
7771 }
7772 
7773 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7774                                    EVT VT, SDValue Chain, SDValue Ptr,
7775                                    SDValue Mask, SDValue EVL, EVT MemVT,
7776                                    MachineMemOperand *MMO, bool IsExpanding) {
7777   SDValue Undef = getUNDEF(Ptr.getValueType());
7778   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7779                    EVL, MemVT, MMO, IsExpanding);
7780 }
7781 
7782 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7783                                        SDValue Base, SDValue Offset,
7784                                        ISD::MemIndexedMode AM) {
7785   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7786   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7787   // Don't propagate the invariant or dereferenceable flags.
7788   auto MMOFlags =
7789       LD->getMemOperand()->getFlags() &
7790       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7791   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7792                    LD->getChain(), Base, Offset, LD->getMask(),
7793                    LD->getVectorLength(), LD->getPointerInfo(),
7794                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7795                    nullptr, LD->isExpandingLoad());
7796 }
7797 
7798 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7799                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7800                                  MachinePointerInfo PtrInfo, Align Alignment,
7801                                  MachineMemOperand::Flags MMOFlags,
7802                                  const AAMDNodes &AAInfo, bool IsCompressing) {
7803   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7804 
7805   MMOFlags |= MachineMemOperand::MOStore;
7806   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7807 
7808   if (PtrInfo.V.isNull())
7809     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7810 
7811   MachineFunction &MF = getMachineFunction();
7812   uint64_t Size =
7813       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7814   MachineMemOperand *MMO =
7815       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7816   return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7817 }
7818 
7819 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7820                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7821                                  MachineMemOperand *MMO, bool IsCompressing) {
7822   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7823   EVT VT = Val.getValueType();
7824   SDVTList VTs = getVTList(MVT::Other);
7825   SDValue Undef = getUNDEF(Ptr.getValueType());
7826   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7827   FoldingSetNodeID ID;
7828   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7829   ID.AddInteger(VT.getRawBits());
7830   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7831       dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO));
7832   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7833   void *IP = nullptr;
7834   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7835     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7836     return SDValue(E, 0);
7837   }
7838   auto *N =
7839       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7840                                ISD::UNINDEXED, false, IsCompressing, VT, MMO);
7841   createOperands(N, Ops);
7842 
7843   CSEMap.InsertNode(N, IP);
7844   InsertNode(N);
7845   SDValue V(N, 0);
7846   NewSDValueDbgMsg(V, "Creating new node: ", this);
7847   return V;
7848 }
7849 
7850 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7851                                       SDValue Val, SDValue Ptr, SDValue Mask,
7852                                       SDValue EVL, MachinePointerInfo PtrInfo,
7853                                       EVT SVT, Align Alignment,
7854                                       MachineMemOperand::Flags MMOFlags,
7855                                       const AAMDNodes &AAInfo,
7856                                       bool IsCompressing) {
7857   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7858 
7859   MMOFlags |= MachineMemOperand::MOStore;
7860   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7861 
7862   if (PtrInfo.V.isNull())
7863     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7864 
7865   MachineFunction &MF = getMachineFunction();
7866   MachineMemOperand *MMO = MF.getMachineMemOperand(
7867       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7868       Alignment, AAInfo);
7869   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7870                          IsCompressing);
7871 }
7872 
7873 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7874                                       SDValue Val, SDValue Ptr, SDValue Mask,
7875                                       SDValue EVL, EVT SVT,
7876                                       MachineMemOperand *MMO,
7877                                       bool IsCompressing) {
7878   EVT VT = Val.getValueType();
7879 
7880   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7881   if (VT == SVT)
7882     return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7883 
7884   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7885          "Should only be a truncating store, not extending!");
7886   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7887   assert(VT.isVector() == SVT.isVector() &&
7888          "Cannot use trunc store to convert to or from a vector!");
7889   assert((!VT.isVector() ||
7890           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7891          "Cannot use trunc store to change the number of vector elements!");
7892 
7893   SDVTList VTs = getVTList(MVT::Other);
7894   SDValue Undef = getUNDEF(Ptr.getValueType());
7895   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7896   FoldingSetNodeID ID;
7897   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7898   ID.AddInteger(SVT.getRawBits());
7899   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7900       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7901   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7902   void *IP = nullptr;
7903   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7904     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7905     return SDValue(E, 0);
7906   }
7907   auto *N =
7908       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7909                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7910   createOperands(N, Ops);
7911 
7912   CSEMap.InsertNode(N, IP);
7913   InsertNode(N);
7914   SDValue V(N, 0);
7915   NewSDValueDbgMsg(V, "Creating new node: ", this);
7916   return V;
7917 }
7918 
7919 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7920                                         SDValue Base, SDValue Offset,
7921                                         ISD::MemIndexedMode AM) {
7922   auto *ST = cast<VPStoreSDNode>(OrigStore);
7923   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7924   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7925   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7926                    Offset,         ST->getMask(),  ST->getVectorLength()};
7927   FoldingSetNodeID ID;
7928   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7929   ID.AddInteger(ST->getMemoryVT().getRawBits());
7930   ID.AddInteger(ST->getRawSubclassData());
7931   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7932   void *IP = nullptr;
7933   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7934     return SDValue(E, 0);
7935 
7936   auto *N = newSDNode<VPStoreSDNode>(
7937       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7938       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7939   createOperands(N, Ops);
7940 
7941   CSEMap.InsertNode(N, IP);
7942   InsertNode(N);
7943   SDValue V(N, 0);
7944   NewSDValueDbgMsg(V, "Creating new node: ", this);
7945   return V;
7946 }
7947 
7948 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7949                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7950                                   ISD::MemIndexType IndexType) {
7951   assert(Ops.size() == 6 && "Incompatible number of operands");
7952 
7953   FoldingSetNodeID ID;
7954   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7955   ID.AddInteger(VT.getRawBits());
7956   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7957       dl.getIROrder(), VTs, VT, MMO, IndexType));
7958   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7959   void *IP = nullptr;
7960   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7961     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7962     return SDValue(E, 0);
7963   }
7964 
7965   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7966                                       VT, MMO, IndexType);
7967   createOperands(N, Ops);
7968 
7969   assert(N->getMask().getValueType().getVectorElementCount() ==
7970              N->getValueType(0).getVectorElementCount() &&
7971          "Vector width mismatch between mask and data");
7972   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7973              N->getValueType(0).getVectorElementCount().isScalable() &&
7974          "Scalable flags of index and data do not match");
7975   assert(ElementCount::isKnownGE(
7976              N->getIndex().getValueType().getVectorElementCount(),
7977              N->getValueType(0).getVectorElementCount()) &&
7978          "Vector width mismatch between index and data");
7979   assert(isa<ConstantSDNode>(N->getScale()) &&
7980          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7981          "Scale should be a constant power of 2");
7982 
7983   CSEMap.InsertNode(N, IP);
7984   InsertNode(N);
7985   SDValue V(N, 0);
7986   NewSDValueDbgMsg(V, "Creating new node: ", this);
7987   return V;
7988 }
7989 
7990 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7991                                    ArrayRef<SDValue> Ops,
7992                                    MachineMemOperand *MMO,
7993                                    ISD::MemIndexType IndexType) {
7994   assert(Ops.size() == 7 && "Incompatible number of operands");
7995 
7996   FoldingSetNodeID ID;
7997   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
7998   ID.AddInteger(VT.getRawBits());
7999   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8000       dl.getIROrder(), VTs, VT, MMO, IndexType));
8001   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8002   void *IP = nullptr;
8003   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8004     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8005     return SDValue(E, 0);
8006   }
8007   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8008                                        VT, MMO, IndexType);
8009   createOperands(N, Ops);
8010 
8011   assert(N->getMask().getValueType().getVectorElementCount() ==
8012              N->getValue().getValueType().getVectorElementCount() &&
8013          "Vector width mismatch between mask and data");
8014   assert(
8015       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8016           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8017       "Scalable flags of index and data do not match");
8018   assert(ElementCount::isKnownGE(
8019              N->getIndex().getValueType().getVectorElementCount(),
8020              N->getValue().getValueType().getVectorElementCount()) &&
8021          "Vector width mismatch between index and data");
8022   assert(isa<ConstantSDNode>(N->getScale()) &&
8023          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8024          "Scale should be a constant power of 2");
8025 
8026   CSEMap.InsertNode(N, IP);
8027   InsertNode(N);
8028   SDValue V(N, 0);
8029   NewSDValueDbgMsg(V, "Creating new node: ", this);
8030   return V;
8031 }
8032 
8033 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8034                                     SDValue Base, SDValue Offset, SDValue Mask,
8035                                     SDValue PassThru, EVT MemVT,
8036                                     MachineMemOperand *MMO,
8037                                     ISD::MemIndexedMode AM,
8038                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8039   bool Indexed = AM != ISD::UNINDEXED;
8040   assert((Indexed || Offset.isUndef()) &&
8041          "Unindexed masked load with an offset!");
8042   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8043                          : getVTList(VT, MVT::Other);
8044   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8045   FoldingSetNodeID ID;
8046   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8047   ID.AddInteger(MemVT.getRawBits());
8048   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8049       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8050   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8051   void *IP = nullptr;
8052   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8053     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8054     return SDValue(E, 0);
8055   }
8056   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8057                                         AM, ExtTy, isExpanding, MemVT, MMO);
8058   createOperands(N, Ops);
8059 
8060   CSEMap.InsertNode(N, IP);
8061   InsertNode(N);
8062   SDValue V(N, 0);
8063   NewSDValueDbgMsg(V, "Creating new node: ", this);
8064   return V;
8065 }
8066 
8067 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8068                                            SDValue Base, SDValue Offset,
8069                                            ISD::MemIndexedMode AM) {
8070   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8071   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8072   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8073                        Offset, LD->getMask(), LD->getPassThru(),
8074                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8075                        LD->getExtensionType(), LD->isExpandingLoad());
8076 }
8077 
8078 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8079                                      SDValue Val, SDValue Base, SDValue Offset,
8080                                      SDValue Mask, EVT MemVT,
8081                                      MachineMemOperand *MMO,
8082                                      ISD::MemIndexedMode AM, bool IsTruncating,
8083                                      bool IsCompressing) {
8084   assert(Chain.getValueType() == MVT::Other &&
8085         "Invalid chain type");
8086   bool Indexed = AM != ISD::UNINDEXED;
8087   assert((Indexed || Offset.isUndef()) &&
8088          "Unindexed masked store with an offset!");
8089   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8090                          : getVTList(MVT::Other);
8091   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8092   FoldingSetNodeID ID;
8093   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8094   ID.AddInteger(MemVT.getRawBits());
8095   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8096       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8097   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8098   void *IP = nullptr;
8099   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8100     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8101     return SDValue(E, 0);
8102   }
8103   auto *N =
8104       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8105                                    IsTruncating, IsCompressing, MemVT, MMO);
8106   createOperands(N, Ops);
8107 
8108   CSEMap.InsertNode(N, IP);
8109   InsertNode(N);
8110   SDValue V(N, 0);
8111   NewSDValueDbgMsg(V, "Creating new node: ", this);
8112   return V;
8113 }
8114 
8115 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8116                                             SDValue Base, SDValue Offset,
8117                                             ISD::MemIndexedMode AM) {
8118   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8119   assert(ST->getOffset().isUndef() &&
8120          "Masked store is already a indexed store!");
8121   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8122                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8123                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8124 }
8125 
8126 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8127                                       ArrayRef<SDValue> Ops,
8128                                       MachineMemOperand *MMO,
8129                                       ISD::MemIndexType IndexType,
8130                                       ISD::LoadExtType ExtTy) {
8131   assert(Ops.size() == 6 && "Incompatible number of operands");
8132 
8133   FoldingSetNodeID ID;
8134   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8135   ID.AddInteger(MemVT.getRawBits());
8136   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8137       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8138   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8139   void *IP = nullptr;
8140   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8141     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8142     return SDValue(E, 0);
8143   }
8144 
8145   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8146   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8147                                           VTs, MemVT, MMO, IndexType, ExtTy);
8148   createOperands(N, Ops);
8149 
8150   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8151          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8152   assert(N->getMask().getValueType().getVectorElementCount() ==
8153              N->getValueType(0).getVectorElementCount() &&
8154          "Vector width mismatch between mask and data");
8155   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8156              N->getValueType(0).getVectorElementCount().isScalable() &&
8157          "Scalable flags of index and data do not match");
8158   assert(ElementCount::isKnownGE(
8159              N->getIndex().getValueType().getVectorElementCount(),
8160              N->getValueType(0).getVectorElementCount()) &&
8161          "Vector width mismatch between index and data");
8162   assert(isa<ConstantSDNode>(N->getScale()) &&
8163          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8164          "Scale should be a constant power of 2");
8165 
8166   CSEMap.InsertNode(N, IP);
8167   InsertNode(N);
8168   SDValue V(N, 0);
8169   NewSDValueDbgMsg(V, "Creating new node: ", this);
8170   return V;
8171 }
8172 
8173 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8174                                        ArrayRef<SDValue> Ops,
8175                                        MachineMemOperand *MMO,
8176                                        ISD::MemIndexType IndexType,
8177                                        bool IsTrunc) {
8178   assert(Ops.size() == 6 && "Incompatible number of operands");
8179 
8180   FoldingSetNodeID ID;
8181   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8182   ID.AddInteger(MemVT.getRawBits());
8183   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8184       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8185   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8186   void *IP = nullptr;
8187   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8188     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8189     return SDValue(E, 0);
8190   }
8191 
8192   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8193   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8194                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8195   createOperands(N, Ops);
8196 
8197   assert(N->getMask().getValueType().getVectorElementCount() ==
8198              N->getValue().getValueType().getVectorElementCount() &&
8199          "Vector width mismatch between mask and data");
8200   assert(
8201       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8202           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8203       "Scalable flags of index and data do not match");
8204   assert(ElementCount::isKnownGE(
8205              N->getIndex().getValueType().getVectorElementCount(),
8206              N->getValue().getValueType().getVectorElementCount()) &&
8207          "Vector width mismatch between index and data");
8208   assert(isa<ConstantSDNode>(N->getScale()) &&
8209          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8210          "Scale should be a constant power of 2");
8211 
8212   CSEMap.InsertNode(N, IP);
8213   InsertNode(N);
8214   SDValue V(N, 0);
8215   NewSDValueDbgMsg(V, "Creating new node: ", this);
8216   return V;
8217 }
8218 
8219 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8220   // select undef, T, F --> T (if T is a constant), otherwise F
8221   // select, ?, undef, F --> F
8222   // select, ?, T, undef --> T
8223   if (Cond.isUndef())
8224     return isConstantValueOfAnyType(T) ? T : F;
8225   if (T.isUndef())
8226     return F;
8227   if (F.isUndef())
8228     return T;
8229 
8230   // select true, T, F --> T
8231   // select false, T, F --> F
8232   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8233     return CondC->isNullValue() ? F : T;
8234 
8235   // TODO: This should simplify VSELECT with constant condition using something
8236   // like this (but check boolean contents to be complete?):
8237   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8238   //    return T;
8239   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8240   //    return F;
8241 
8242   // select ?, T, T --> T
8243   if (T == F)
8244     return T;
8245 
8246   return SDValue();
8247 }
8248 
8249 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8250   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8251   if (X.isUndef())
8252     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8253   // shift X, undef --> undef (because it may shift by the bitwidth)
8254   if (Y.isUndef())
8255     return getUNDEF(X.getValueType());
8256 
8257   // shift 0, Y --> 0
8258   // shift X, 0 --> X
8259   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8260     return X;
8261 
8262   // shift X, C >= bitwidth(X) --> undef
8263   // All vector elements must be too big (or undef) to avoid partial undefs.
8264   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8265     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8266   };
8267   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8268     return getUNDEF(X.getValueType());
8269 
8270   return SDValue();
8271 }
8272 
8273 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8274                                       SDNodeFlags Flags) {
8275   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8276   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8277   // operation is poison. That result can be relaxed to undef.
8278   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8279   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8280   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8281                 (YC && YC->getValueAPF().isNaN());
8282   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8283                 (YC && YC->getValueAPF().isInfinity());
8284 
8285   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8286     return getUNDEF(X.getValueType());
8287 
8288   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8289     return getUNDEF(X.getValueType());
8290 
8291   if (!YC)
8292     return SDValue();
8293 
8294   // X + -0.0 --> X
8295   if (Opcode == ISD::FADD)
8296     if (YC->getValueAPF().isNegZero())
8297       return X;
8298 
8299   // X - +0.0 --> X
8300   if (Opcode == ISD::FSUB)
8301     if (YC->getValueAPF().isPosZero())
8302       return X;
8303 
8304   // X * 1.0 --> X
8305   // X / 1.0 --> X
8306   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8307     if (YC->getValueAPF().isExactlyValue(1.0))
8308       return X;
8309 
8310   // X * 0.0 --> 0.0
8311   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8312     if (YC->getValueAPF().isZero())
8313       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8314 
8315   return SDValue();
8316 }
8317 
8318 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8319                                SDValue Ptr, SDValue SV, unsigned Align) {
8320   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8321   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8322 }
8323 
8324 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8325                               ArrayRef<SDUse> Ops) {
8326   switch (Ops.size()) {
8327   case 0: return getNode(Opcode, DL, VT);
8328   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8329   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8330   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8331   default: break;
8332   }
8333 
8334   // Copy from an SDUse array into an SDValue array for use with
8335   // the regular getNode logic.
8336   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8337   return getNode(Opcode, DL, VT, NewOps);
8338 }
8339 
8340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8341                               ArrayRef<SDValue> Ops) {
8342   SDNodeFlags Flags;
8343   if (Inserter)
8344     Flags = Inserter->getFlags();
8345   return getNode(Opcode, DL, VT, Ops, Flags);
8346 }
8347 
8348 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8349                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8350   unsigned NumOps = Ops.size();
8351   switch (NumOps) {
8352   case 0: return getNode(Opcode, DL, VT);
8353   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8354   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8355   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8356   default: break;
8357   }
8358 
8359 #ifndef NDEBUG
8360   for (auto &Op : Ops)
8361     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8362            "Operand is DELETED_NODE!");
8363 #endif
8364 
8365   switch (Opcode) {
8366   default: break;
8367   case ISD::BUILD_VECTOR:
8368     // Attempt to simplify BUILD_VECTOR.
8369     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8370       return V;
8371     break;
8372   case ISD::CONCAT_VECTORS:
8373     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8374       return V;
8375     break;
8376   case ISD::SELECT_CC:
8377     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8378     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8379            "LHS and RHS of condition must have same type!");
8380     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8381            "True and False arms of SelectCC must have same type!");
8382     assert(Ops[2].getValueType() == VT &&
8383            "select_cc node must be of same type as true and false value!");
8384     break;
8385   case ISD::BR_CC:
8386     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8387     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8388            "LHS/RHS of comparison should match types!");
8389     break;
8390   }
8391 
8392   // Memoize nodes.
8393   SDNode *N;
8394   SDVTList VTs = getVTList(VT);
8395 
8396   if (VT != MVT::Glue) {
8397     FoldingSetNodeID ID;
8398     AddNodeIDNode(ID, Opcode, VTs, Ops);
8399     void *IP = nullptr;
8400 
8401     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8402       return SDValue(E, 0);
8403 
8404     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8405     createOperands(N, Ops);
8406 
8407     CSEMap.InsertNode(N, IP);
8408   } else {
8409     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8410     createOperands(N, Ops);
8411   }
8412 
8413   N->setFlags(Flags);
8414   InsertNode(N);
8415   SDValue V(N, 0);
8416   NewSDValueDbgMsg(V, "Creating new node: ", this);
8417   return V;
8418 }
8419 
8420 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8421                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8422   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8423 }
8424 
8425 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8426                               ArrayRef<SDValue> Ops) {
8427   SDNodeFlags Flags;
8428   if (Inserter)
8429     Flags = Inserter->getFlags();
8430   return getNode(Opcode, DL, VTList, Ops, Flags);
8431 }
8432 
8433 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8434                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8435   if (VTList.NumVTs == 1)
8436     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8437 
8438 #ifndef NDEBUG
8439   for (auto &Op : Ops)
8440     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8441            "Operand is DELETED_NODE!");
8442 #endif
8443 
8444   switch (Opcode) {
8445   case ISD::STRICT_FP_EXTEND:
8446     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8447            "Invalid STRICT_FP_EXTEND!");
8448     assert(VTList.VTs[0].isFloatingPoint() &&
8449            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8450     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8451            "STRICT_FP_EXTEND result type should be vector iff the operand "
8452            "type is vector!");
8453     assert((!VTList.VTs[0].isVector() ||
8454             VTList.VTs[0].getVectorNumElements() ==
8455             Ops[1].getValueType().getVectorNumElements()) &&
8456            "Vector element count mismatch!");
8457     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8458            "Invalid fpext node, dst <= src!");
8459     break;
8460   case ISD::STRICT_FP_ROUND:
8461     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8462     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8463            "STRICT_FP_ROUND result type should be vector iff the operand "
8464            "type is vector!");
8465     assert((!VTList.VTs[0].isVector() ||
8466             VTList.VTs[0].getVectorNumElements() ==
8467             Ops[1].getValueType().getVectorNumElements()) &&
8468            "Vector element count mismatch!");
8469     assert(VTList.VTs[0].isFloatingPoint() &&
8470            Ops[1].getValueType().isFloatingPoint() &&
8471            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8472            isa<ConstantSDNode>(Ops[2]) &&
8473            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8474             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8475            "Invalid STRICT_FP_ROUND!");
8476     break;
8477 #if 0
8478   // FIXME: figure out how to safely handle things like
8479   // int foo(int x) { return 1 << (x & 255); }
8480   // int bar() { return foo(256); }
8481   case ISD::SRA_PARTS:
8482   case ISD::SRL_PARTS:
8483   case ISD::SHL_PARTS:
8484     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8485         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8486       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8487     else if (N3.getOpcode() == ISD::AND)
8488       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8489         // If the and is only masking out bits that cannot effect the shift,
8490         // eliminate the and.
8491         unsigned NumBits = VT.getScalarSizeInBits()*2;
8492         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8493           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8494       }
8495     break;
8496 #endif
8497   }
8498 
8499   // Memoize the node unless it returns a flag.
8500   SDNode *N;
8501   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8502     FoldingSetNodeID ID;
8503     AddNodeIDNode(ID, Opcode, VTList, Ops);
8504     void *IP = nullptr;
8505     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8506       return SDValue(E, 0);
8507 
8508     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8509     createOperands(N, Ops);
8510     CSEMap.InsertNode(N, IP);
8511   } else {
8512     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8513     createOperands(N, Ops);
8514   }
8515 
8516   N->setFlags(Flags);
8517   InsertNode(N);
8518   SDValue V(N, 0);
8519   NewSDValueDbgMsg(V, "Creating new node: ", this);
8520   return V;
8521 }
8522 
8523 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8524                               SDVTList VTList) {
8525   return getNode(Opcode, DL, VTList, None);
8526 }
8527 
8528 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8529                               SDValue N1) {
8530   SDValue Ops[] = { N1 };
8531   return getNode(Opcode, DL, VTList, Ops);
8532 }
8533 
8534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8535                               SDValue N1, SDValue N2) {
8536   SDValue Ops[] = { N1, N2 };
8537   return getNode(Opcode, DL, VTList, Ops);
8538 }
8539 
8540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8541                               SDValue N1, SDValue N2, SDValue N3) {
8542   SDValue Ops[] = { N1, N2, N3 };
8543   return getNode(Opcode, DL, VTList, Ops);
8544 }
8545 
8546 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8547                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8548   SDValue Ops[] = { N1, N2, N3, N4 };
8549   return getNode(Opcode, DL, VTList, Ops);
8550 }
8551 
8552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8553                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8554                               SDValue N5) {
8555   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8556   return getNode(Opcode, DL, VTList, Ops);
8557 }
8558 
8559 SDVTList SelectionDAG::getVTList(EVT VT) {
8560   return makeVTList(SDNode::getValueTypeList(VT), 1);
8561 }
8562 
8563 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8564   FoldingSetNodeID ID;
8565   ID.AddInteger(2U);
8566   ID.AddInteger(VT1.getRawBits());
8567   ID.AddInteger(VT2.getRawBits());
8568 
8569   void *IP = nullptr;
8570   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8571   if (!Result) {
8572     EVT *Array = Allocator.Allocate<EVT>(2);
8573     Array[0] = VT1;
8574     Array[1] = VT2;
8575     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8576     VTListMap.InsertNode(Result, IP);
8577   }
8578   return Result->getSDVTList();
8579 }
8580 
8581 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8582   FoldingSetNodeID ID;
8583   ID.AddInteger(3U);
8584   ID.AddInteger(VT1.getRawBits());
8585   ID.AddInteger(VT2.getRawBits());
8586   ID.AddInteger(VT3.getRawBits());
8587 
8588   void *IP = nullptr;
8589   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8590   if (!Result) {
8591     EVT *Array = Allocator.Allocate<EVT>(3);
8592     Array[0] = VT1;
8593     Array[1] = VT2;
8594     Array[2] = VT3;
8595     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8596     VTListMap.InsertNode(Result, IP);
8597   }
8598   return Result->getSDVTList();
8599 }
8600 
8601 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8602   FoldingSetNodeID ID;
8603   ID.AddInteger(4U);
8604   ID.AddInteger(VT1.getRawBits());
8605   ID.AddInteger(VT2.getRawBits());
8606   ID.AddInteger(VT3.getRawBits());
8607   ID.AddInteger(VT4.getRawBits());
8608 
8609   void *IP = nullptr;
8610   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8611   if (!Result) {
8612     EVT *Array = Allocator.Allocate<EVT>(4);
8613     Array[0] = VT1;
8614     Array[1] = VT2;
8615     Array[2] = VT3;
8616     Array[3] = VT4;
8617     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8618     VTListMap.InsertNode(Result, IP);
8619   }
8620   return Result->getSDVTList();
8621 }
8622 
8623 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8624   unsigned NumVTs = VTs.size();
8625   FoldingSetNodeID ID;
8626   ID.AddInteger(NumVTs);
8627   for (unsigned index = 0; index < NumVTs; index++) {
8628     ID.AddInteger(VTs[index].getRawBits());
8629   }
8630 
8631   void *IP = nullptr;
8632   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8633   if (!Result) {
8634     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8635     llvm::copy(VTs, Array);
8636     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8637     VTListMap.InsertNode(Result, IP);
8638   }
8639   return Result->getSDVTList();
8640 }
8641 
8642 
8643 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8644 /// specified operands.  If the resultant node already exists in the DAG,
8645 /// this does not modify the specified node, instead it returns the node that
8646 /// already exists.  If the resultant node does not exist in the DAG, the
8647 /// input node is returned.  As a degenerate case, if you specify the same
8648 /// input operands as the node already has, the input node is returned.
8649 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8650   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8651 
8652   // Check to see if there is no change.
8653   if (Op == N->getOperand(0)) return N;
8654 
8655   // See if the modified node already exists.
8656   void *InsertPos = nullptr;
8657   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8658     return Existing;
8659 
8660   // Nope it doesn't.  Remove the node from its current place in the maps.
8661   if (InsertPos)
8662     if (!RemoveNodeFromCSEMaps(N))
8663       InsertPos = nullptr;
8664 
8665   // Now we update the operands.
8666   N->OperandList[0].set(Op);
8667 
8668   updateDivergence(N);
8669   // If this gets put into a CSE map, add it.
8670   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8671   return N;
8672 }
8673 
8674 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8675   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8676 
8677   // Check to see if there is no change.
8678   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8679     return N;   // No operands changed, just return the input node.
8680 
8681   // See if the modified node already exists.
8682   void *InsertPos = nullptr;
8683   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8684     return Existing;
8685 
8686   // Nope it doesn't.  Remove the node from its current place in the maps.
8687   if (InsertPos)
8688     if (!RemoveNodeFromCSEMaps(N))
8689       InsertPos = nullptr;
8690 
8691   // Now we update the operands.
8692   if (N->OperandList[0] != Op1)
8693     N->OperandList[0].set(Op1);
8694   if (N->OperandList[1] != Op2)
8695     N->OperandList[1].set(Op2);
8696 
8697   updateDivergence(N);
8698   // If this gets put into a CSE map, add it.
8699   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8700   return N;
8701 }
8702 
8703 SDNode *SelectionDAG::
8704 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8705   SDValue Ops[] = { Op1, Op2, Op3 };
8706   return UpdateNodeOperands(N, Ops);
8707 }
8708 
8709 SDNode *SelectionDAG::
8710 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8711                    SDValue Op3, SDValue Op4) {
8712   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8713   return UpdateNodeOperands(N, Ops);
8714 }
8715 
8716 SDNode *SelectionDAG::
8717 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8718                    SDValue Op3, SDValue Op4, SDValue Op5) {
8719   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8720   return UpdateNodeOperands(N, Ops);
8721 }
8722 
8723 SDNode *SelectionDAG::
8724 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8725   unsigned NumOps = Ops.size();
8726   assert(N->getNumOperands() == NumOps &&
8727          "Update with wrong number of operands");
8728 
8729   // If no operands changed just return the input node.
8730   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8731     return N;
8732 
8733   // See if the modified node already exists.
8734   void *InsertPos = nullptr;
8735   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8736     return Existing;
8737 
8738   // Nope it doesn't.  Remove the node from its current place in the maps.
8739   if (InsertPos)
8740     if (!RemoveNodeFromCSEMaps(N))
8741       InsertPos = nullptr;
8742 
8743   // Now we update the operands.
8744   for (unsigned i = 0; i != NumOps; ++i)
8745     if (N->OperandList[i] != Ops[i])
8746       N->OperandList[i].set(Ops[i]);
8747 
8748   updateDivergence(N);
8749   // If this gets put into a CSE map, add it.
8750   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8751   return N;
8752 }
8753 
8754 /// DropOperands - Release the operands and set this node to have
8755 /// zero operands.
8756 void SDNode::DropOperands() {
8757   // Unlike the code in MorphNodeTo that does this, we don't need to
8758   // watch for dead nodes here.
8759   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8760     SDUse &Use = *I++;
8761     Use.set(SDValue());
8762   }
8763 }
8764 
8765 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8766                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8767   if (NewMemRefs.empty()) {
8768     N->clearMemRefs();
8769     return;
8770   }
8771 
8772   // Check if we can avoid allocating by storing a single reference directly.
8773   if (NewMemRefs.size() == 1) {
8774     N->MemRefs = NewMemRefs[0];
8775     N->NumMemRefs = 1;
8776     return;
8777   }
8778 
8779   MachineMemOperand **MemRefsBuffer =
8780       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8781   llvm::copy(NewMemRefs, MemRefsBuffer);
8782   N->MemRefs = MemRefsBuffer;
8783   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8784 }
8785 
8786 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8787 /// machine opcode.
8788 ///
8789 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8790                                    EVT VT) {
8791   SDVTList VTs = getVTList(VT);
8792   return SelectNodeTo(N, MachineOpc, VTs, None);
8793 }
8794 
8795 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8796                                    EVT VT, SDValue Op1) {
8797   SDVTList VTs = getVTList(VT);
8798   SDValue Ops[] = { Op1 };
8799   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8800 }
8801 
8802 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8803                                    EVT VT, SDValue Op1,
8804                                    SDValue Op2) {
8805   SDVTList VTs = getVTList(VT);
8806   SDValue Ops[] = { Op1, Op2 };
8807   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8808 }
8809 
8810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8811                                    EVT VT, SDValue Op1,
8812                                    SDValue Op2, SDValue Op3) {
8813   SDVTList VTs = getVTList(VT);
8814   SDValue Ops[] = { Op1, Op2, Op3 };
8815   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8816 }
8817 
8818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8819                                    EVT VT, ArrayRef<SDValue> Ops) {
8820   SDVTList VTs = getVTList(VT);
8821   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8822 }
8823 
8824 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8825                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8826   SDVTList VTs = getVTList(VT1, VT2);
8827   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8828 }
8829 
8830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8831                                    EVT VT1, EVT VT2) {
8832   SDVTList VTs = getVTList(VT1, VT2);
8833   return SelectNodeTo(N, MachineOpc, VTs, None);
8834 }
8835 
8836 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8837                                    EVT VT1, EVT VT2, EVT VT3,
8838                                    ArrayRef<SDValue> Ops) {
8839   SDVTList VTs = getVTList(VT1, VT2, VT3);
8840   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8841 }
8842 
8843 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8844                                    EVT VT1, EVT VT2,
8845                                    SDValue Op1, SDValue Op2) {
8846   SDVTList VTs = getVTList(VT1, VT2);
8847   SDValue Ops[] = { Op1, Op2 };
8848   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8849 }
8850 
8851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8852                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8853   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8854   // Reset the NodeID to -1.
8855   New->setNodeId(-1);
8856   if (New != N) {
8857     ReplaceAllUsesWith(N, New);
8858     RemoveDeadNode(N);
8859   }
8860   return New;
8861 }
8862 
8863 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8864 /// the line number information on the merged node since it is not possible to
8865 /// preserve the information that operation is associated with multiple lines.
8866 /// This will make the debugger working better at -O0, were there is a higher
8867 /// probability having other instructions associated with that line.
8868 ///
8869 /// For IROrder, we keep the smaller of the two
8870 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8871   DebugLoc NLoc = N->getDebugLoc();
8872   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8873     N->setDebugLoc(DebugLoc());
8874   }
8875   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8876   N->setIROrder(Order);
8877   return N;
8878 }
8879 
8880 /// MorphNodeTo - This *mutates* the specified node to have the specified
8881 /// return type, opcode, and operands.
8882 ///
8883 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8884 /// node of the specified opcode and operands, it returns that node instead of
8885 /// the current one.  Note that the SDLoc need not be the same.
8886 ///
8887 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8888 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8889 /// node, and because it doesn't require CSE recalculation for any of
8890 /// the node's users.
8891 ///
8892 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8893 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8894 /// the legalizer which maintain worklists that would need to be updated when
8895 /// deleting things.
8896 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8897                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8898   // If an identical node already exists, use it.
8899   void *IP = nullptr;
8900   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8901     FoldingSetNodeID ID;
8902     AddNodeIDNode(ID, Opc, VTs, Ops);
8903     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8904       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8905   }
8906 
8907   if (!RemoveNodeFromCSEMaps(N))
8908     IP = nullptr;
8909 
8910   // Start the morphing.
8911   N->NodeType = Opc;
8912   N->ValueList = VTs.VTs;
8913   N->NumValues = VTs.NumVTs;
8914 
8915   // Clear the operands list, updating used nodes to remove this from their
8916   // use list.  Keep track of any operands that become dead as a result.
8917   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8918   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8919     SDUse &Use = *I++;
8920     SDNode *Used = Use.getNode();
8921     Use.set(SDValue());
8922     if (Used->use_empty())
8923       DeadNodeSet.insert(Used);
8924   }
8925 
8926   // For MachineNode, initialize the memory references information.
8927   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8928     MN->clearMemRefs();
8929 
8930   // Swap for an appropriately sized array from the recycler.
8931   removeOperands(N);
8932   createOperands(N, Ops);
8933 
8934   // Delete any nodes that are still dead after adding the uses for the
8935   // new operands.
8936   if (!DeadNodeSet.empty()) {
8937     SmallVector<SDNode *, 16> DeadNodes;
8938     for (SDNode *N : DeadNodeSet)
8939       if (N->use_empty())
8940         DeadNodes.push_back(N);
8941     RemoveDeadNodes(DeadNodes);
8942   }
8943 
8944   if (IP)
8945     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8946   return N;
8947 }
8948 
8949 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8950   unsigned OrigOpc = Node->getOpcode();
8951   unsigned NewOpc;
8952   switch (OrigOpc) {
8953   default:
8954     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8955 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8956   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8957 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8958   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8959 #include "llvm/IR/ConstrainedOps.def"
8960   }
8961 
8962   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8963 
8964   // We're taking this node out of the chain, so we need to re-link things.
8965   SDValue InputChain = Node->getOperand(0);
8966   SDValue OutputChain = SDValue(Node, 1);
8967   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8968 
8969   SmallVector<SDValue, 3> Ops;
8970   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8971     Ops.push_back(Node->getOperand(i));
8972 
8973   SDVTList VTs = getVTList(Node->getValueType(0));
8974   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8975 
8976   // MorphNodeTo can operate in two ways: if an existing node with the
8977   // specified operands exists, it can just return it.  Otherwise, it
8978   // updates the node in place to have the requested operands.
8979   if (Res == Node) {
8980     // If we updated the node in place, reset the node ID.  To the isel,
8981     // this should be just like a newly allocated machine node.
8982     Res->setNodeId(-1);
8983   } else {
8984     ReplaceAllUsesWith(Node, Res);
8985     RemoveDeadNode(Node);
8986   }
8987 
8988   return Res;
8989 }
8990 
8991 /// getMachineNode - These are used for target selectors to create a new node
8992 /// with specified return type(s), MachineInstr opcode, and operands.
8993 ///
8994 /// Note that getMachineNode returns the resultant node.  If there is already a
8995 /// node of the specified opcode and operands, it returns that node instead of
8996 /// the current one.
8997 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8998                                             EVT VT) {
8999   SDVTList VTs = getVTList(VT);
9000   return getMachineNode(Opcode, dl, VTs, None);
9001 }
9002 
9003 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9004                                             EVT VT, SDValue Op1) {
9005   SDVTList VTs = getVTList(VT);
9006   SDValue Ops[] = { Op1 };
9007   return getMachineNode(Opcode, dl, VTs, Ops);
9008 }
9009 
9010 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9011                                             EVT VT, SDValue Op1, SDValue Op2) {
9012   SDVTList VTs = getVTList(VT);
9013   SDValue Ops[] = { Op1, Op2 };
9014   return getMachineNode(Opcode, dl, VTs, Ops);
9015 }
9016 
9017 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9018                                             EVT VT, SDValue Op1, SDValue Op2,
9019                                             SDValue Op3) {
9020   SDVTList VTs = getVTList(VT);
9021   SDValue Ops[] = { Op1, Op2, Op3 };
9022   return getMachineNode(Opcode, dl, VTs, Ops);
9023 }
9024 
9025 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9026                                             EVT VT, ArrayRef<SDValue> Ops) {
9027   SDVTList VTs = getVTList(VT);
9028   return getMachineNode(Opcode, dl, VTs, Ops);
9029 }
9030 
9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9032                                             EVT VT1, EVT VT2, SDValue Op1,
9033                                             SDValue Op2) {
9034   SDVTList VTs = getVTList(VT1, VT2);
9035   SDValue Ops[] = { Op1, Op2 };
9036   return getMachineNode(Opcode, dl, VTs, Ops);
9037 }
9038 
9039 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9040                                             EVT VT1, EVT VT2, SDValue Op1,
9041                                             SDValue Op2, SDValue Op3) {
9042   SDVTList VTs = getVTList(VT1, VT2);
9043   SDValue Ops[] = { Op1, Op2, Op3 };
9044   return getMachineNode(Opcode, dl, VTs, Ops);
9045 }
9046 
9047 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9048                                             EVT VT1, EVT VT2,
9049                                             ArrayRef<SDValue> Ops) {
9050   SDVTList VTs = getVTList(VT1, VT2);
9051   return getMachineNode(Opcode, dl, VTs, Ops);
9052 }
9053 
9054 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9055                                             EVT VT1, EVT VT2, EVT VT3,
9056                                             SDValue Op1, SDValue Op2) {
9057   SDVTList VTs = getVTList(VT1, VT2, VT3);
9058   SDValue Ops[] = { Op1, Op2 };
9059   return getMachineNode(Opcode, dl, VTs, Ops);
9060 }
9061 
9062 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9063                                             EVT VT1, EVT VT2, EVT VT3,
9064                                             SDValue Op1, SDValue Op2,
9065                                             SDValue Op3) {
9066   SDVTList VTs = getVTList(VT1, VT2, VT3);
9067   SDValue Ops[] = { Op1, Op2, Op3 };
9068   return getMachineNode(Opcode, dl, VTs, Ops);
9069 }
9070 
9071 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9072                                             EVT VT1, EVT VT2, EVT VT3,
9073                                             ArrayRef<SDValue> Ops) {
9074   SDVTList VTs = getVTList(VT1, VT2, VT3);
9075   return getMachineNode(Opcode, dl, VTs, Ops);
9076 }
9077 
9078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9079                                             ArrayRef<EVT> ResultTys,
9080                                             ArrayRef<SDValue> Ops) {
9081   SDVTList VTs = getVTList(ResultTys);
9082   return getMachineNode(Opcode, dl, VTs, Ops);
9083 }
9084 
9085 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9086                                             SDVTList VTs,
9087                                             ArrayRef<SDValue> Ops) {
9088   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9089   MachineSDNode *N;
9090   void *IP = nullptr;
9091 
9092   if (DoCSE) {
9093     FoldingSetNodeID ID;
9094     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9095     IP = nullptr;
9096     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9097       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9098     }
9099   }
9100 
9101   // Allocate a new MachineSDNode.
9102   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9103   createOperands(N, Ops);
9104 
9105   if (DoCSE)
9106     CSEMap.InsertNode(N, IP);
9107 
9108   InsertNode(N);
9109   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9110   return N;
9111 }
9112 
9113 /// getTargetExtractSubreg - A convenience function for creating
9114 /// TargetOpcode::EXTRACT_SUBREG nodes.
9115 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9116                                              SDValue Operand) {
9117   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9118   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9119                                   VT, Operand, SRIdxVal);
9120   return SDValue(Subreg, 0);
9121 }
9122 
9123 /// getTargetInsertSubreg - A convenience function for creating
9124 /// TargetOpcode::INSERT_SUBREG nodes.
9125 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9126                                             SDValue Operand, SDValue Subreg) {
9127   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9128   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9129                                   VT, Operand, Subreg, SRIdxVal);
9130   return SDValue(Result, 0);
9131 }
9132 
9133 /// getNodeIfExists - Get the specified node if it's already available, or
9134 /// else return NULL.
9135 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9136                                       ArrayRef<SDValue> Ops) {
9137   SDNodeFlags Flags;
9138   if (Inserter)
9139     Flags = Inserter->getFlags();
9140   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9141 }
9142 
9143 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9144                                       ArrayRef<SDValue> Ops,
9145                                       const SDNodeFlags Flags) {
9146   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9147     FoldingSetNodeID ID;
9148     AddNodeIDNode(ID, Opcode, VTList, Ops);
9149     void *IP = nullptr;
9150     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9151       E->intersectFlagsWith(Flags);
9152       return E;
9153     }
9154   }
9155   return nullptr;
9156 }
9157 
9158 /// doesNodeExist - Check if a node exists without modifying its flags.
9159 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9160                                  ArrayRef<SDValue> Ops) {
9161   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9162     FoldingSetNodeID ID;
9163     AddNodeIDNode(ID, Opcode, VTList, Ops);
9164     void *IP = nullptr;
9165     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9166       return true;
9167   }
9168   return false;
9169 }
9170 
9171 /// getDbgValue - Creates a SDDbgValue node.
9172 ///
9173 /// SDNode
9174 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9175                                       SDNode *N, unsigned R, bool IsIndirect,
9176                                       const DebugLoc &DL, unsigned O) {
9177   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9178          "Expected inlined-at fields to agree");
9179   return new (DbgInfo->getAlloc())
9180       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9181                  {}, IsIndirect, DL, O,
9182                  /*IsVariadic=*/false);
9183 }
9184 
9185 /// Constant
9186 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9187                                               DIExpression *Expr,
9188                                               const Value *C,
9189                                               const DebugLoc &DL, unsigned O) {
9190   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9191          "Expected inlined-at fields to agree");
9192   return new (DbgInfo->getAlloc())
9193       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9194                  /*IsIndirect=*/false, DL, O,
9195                  /*IsVariadic=*/false);
9196 }
9197 
9198 /// FrameIndex
9199 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9200                                                 DIExpression *Expr, unsigned FI,
9201                                                 bool IsIndirect,
9202                                                 const DebugLoc &DL,
9203                                                 unsigned O) {
9204   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9205          "Expected inlined-at fields to agree");
9206   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9207 }
9208 
9209 /// FrameIndex with dependencies
9210 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9211                                                 DIExpression *Expr, unsigned FI,
9212                                                 ArrayRef<SDNode *> Dependencies,
9213                                                 bool IsIndirect,
9214                                                 const DebugLoc &DL,
9215                                                 unsigned O) {
9216   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9217          "Expected inlined-at fields to agree");
9218   return new (DbgInfo->getAlloc())
9219       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9220                  Dependencies, IsIndirect, DL, O,
9221                  /*IsVariadic=*/false);
9222 }
9223 
9224 /// VReg
9225 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9226                                           unsigned VReg, bool IsIndirect,
9227                                           const DebugLoc &DL, unsigned O) {
9228   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9229          "Expected inlined-at fields to agree");
9230   return new (DbgInfo->getAlloc())
9231       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9232                  {}, IsIndirect, DL, O,
9233                  /*IsVariadic=*/false);
9234 }
9235 
9236 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9237                                           ArrayRef<SDDbgOperand> Locs,
9238                                           ArrayRef<SDNode *> Dependencies,
9239                                           bool IsIndirect, const DebugLoc &DL,
9240                                           unsigned O, bool IsVariadic) {
9241   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9242          "Expected inlined-at fields to agree");
9243   return new (DbgInfo->getAlloc())
9244       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9245                  DL, O, IsVariadic);
9246 }
9247 
9248 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9249                                      unsigned OffsetInBits, unsigned SizeInBits,
9250                                      bool InvalidateDbg) {
9251   SDNode *FromNode = From.getNode();
9252   SDNode *ToNode = To.getNode();
9253   assert(FromNode && ToNode && "Can't modify dbg values");
9254 
9255   // PR35338
9256   // TODO: assert(From != To && "Redundant dbg value transfer");
9257   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9258   if (From == To || FromNode == ToNode)
9259     return;
9260 
9261   if (!FromNode->getHasDebugValue())
9262     return;
9263 
9264   SDDbgOperand FromLocOp =
9265       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9266   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9267 
9268   SmallVector<SDDbgValue *, 2> ClonedDVs;
9269   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9270     if (Dbg->isInvalidated())
9271       continue;
9272 
9273     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9274 
9275     // Create a new location ops vector that is equal to the old vector, but
9276     // with each instance of FromLocOp replaced with ToLocOp.
9277     bool Changed = false;
9278     auto NewLocOps = Dbg->copyLocationOps();
9279     std::replace_if(
9280         NewLocOps.begin(), NewLocOps.end(),
9281         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9282           bool Match = Op == FromLocOp;
9283           Changed |= Match;
9284           return Match;
9285         },
9286         ToLocOp);
9287     // Ignore this SDDbgValue if we didn't find a matching location.
9288     if (!Changed)
9289       continue;
9290 
9291     DIVariable *Var = Dbg->getVariable();
9292     auto *Expr = Dbg->getExpression();
9293     // If a fragment is requested, update the expression.
9294     if (SizeInBits) {
9295       // When splitting a larger (e.g., sign-extended) value whose
9296       // lower bits are described with an SDDbgValue, do not attempt
9297       // to transfer the SDDbgValue to the upper bits.
9298       if (auto FI = Expr->getFragmentInfo())
9299         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9300           continue;
9301       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9302                                                              SizeInBits);
9303       if (!Fragment)
9304         continue;
9305       Expr = *Fragment;
9306     }
9307 
9308     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9309     // Clone the SDDbgValue and move it to To.
9310     SDDbgValue *Clone = getDbgValueList(
9311         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9312         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9313         Dbg->isVariadic());
9314     ClonedDVs.push_back(Clone);
9315 
9316     if (InvalidateDbg) {
9317       // Invalidate value and indicate the SDDbgValue should not be emitted.
9318       Dbg->setIsInvalidated();
9319       Dbg->setIsEmitted();
9320     }
9321   }
9322 
9323   for (SDDbgValue *Dbg : ClonedDVs) {
9324     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9325            "Transferred DbgValues should depend on the new SDNode");
9326     AddDbgValue(Dbg, false);
9327   }
9328 }
9329 
9330 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9331   if (!N.getHasDebugValue())
9332     return;
9333 
9334   SmallVector<SDDbgValue *, 2> ClonedDVs;
9335   for (auto DV : GetDbgValues(&N)) {
9336     if (DV->isInvalidated())
9337       continue;
9338     switch (N.getOpcode()) {
9339     default:
9340       break;
9341     case ISD::ADD:
9342       SDValue N0 = N.getOperand(0);
9343       SDValue N1 = N.getOperand(1);
9344       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9345           isConstantIntBuildVectorOrConstantInt(N1)) {
9346         uint64_t Offset = N.getConstantOperandVal(1);
9347 
9348         // Rewrite an ADD constant node into a DIExpression. Since we are
9349         // performing arithmetic to compute the variable's *value* in the
9350         // DIExpression, we need to mark the expression with a
9351         // DW_OP_stack_value.
9352         auto *DIExpr = DV->getExpression();
9353         auto NewLocOps = DV->copyLocationOps();
9354         bool Changed = false;
9355         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9356           // We're not given a ResNo to compare against because the whole
9357           // node is going away. We know that any ISD::ADD only has one
9358           // result, so we can assume any node match is using the result.
9359           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9360               NewLocOps[i].getSDNode() != &N)
9361             continue;
9362           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9363           SmallVector<uint64_t, 3> ExprOps;
9364           DIExpression::appendOffset(ExprOps, Offset);
9365           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9366           Changed = true;
9367         }
9368         (void)Changed;
9369         assert(Changed && "Salvage target doesn't use N");
9370 
9371         auto AdditionalDependencies = DV->getAdditionalDependencies();
9372         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9373                                             NewLocOps, AdditionalDependencies,
9374                                             DV->isIndirect(), DV->getDebugLoc(),
9375                                             DV->getOrder(), DV->isVariadic());
9376         ClonedDVs.push_back(Clone);
9377         DV->setIsInvalidated();
9378         DV->setIsEmitted();
9379         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9380                    N0.getNode()->dumprFull(this);
9381                    dbgs() << " into " << *DIExpr << '\n');
9382       }
9383     }
9384   }
9385 
9386   for (SDDbgValue *Dbg : ClonedDVs) {
9387     assert(!Dbg->getSDNodes().empty() &&
9388            "Salvaged DbgValue should depend on a new SDNode");
9389     AddDbgValue(Dbg, false);
9390   }
9391 }
9392 
9393 /// Creates a SDDbgLabel node.
9394 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9395                                       const DebugLoc &DL, unsigned O) {
9396   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9397          "Expected inlined-at fields to agree");
9398   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9399 }
9400 
9401 namespace {
9402 
9403 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9404 /// pointed to by a use iterator is deleted, increment the use iterator
9405 /// so that it doesn't dangle.
9406 ///
9407 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9408   SDNode::use_iterator &UI;
9409   SDNode::use_iterator &UE;
9410 
9411   void NodeDeleted(SDNode *N, SDNode *E) override {
9412     // Increment the iterator as needed.
9413     while (UI != UE && N == *UI)
9414       ++UI;
9415   }
9416 
9417 public:
9418   RAUWUpdateListener(SelectionDAG &d,
9419                      SDNode::use_iterator &ui,
9420                      SDNode::use_iterator &ue)
9421     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9422 };
9423 
9424 } // end anonymous namespace
9425 
9426 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9427 /// This can cause recursive merging of nodes in the DAG.
9428 ///
9429 /// This version assumes From has a single result value.
9430 ///
9431 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9432   SDNode *From = FromN.getNode();
9433   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9434          "Cannot replace with this method!");
9435   assert(From != To.getNode() && "Cannot replace uses of with self");
9436 
9437   // Preserve Debug Values
9438   transferDbgValues(FromN, To);
9439 
9440   // Iterate over all the existing uses of From. New uses will be added
9441   // to the beginning of the use list, which we avoid visiting.
9442   // This specifically avoids visiting uses of From that arise while the
9443   // replacement is happening, because any such uses would be the result
9444   // of CSE: If an existing node looks like From after one of its operands
9445   // is replaced by To, we don't want to replace of all its users with To
9446   // too. See PR3018 for more info.
9447   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9448   RAUWUpdateListener Listener(*this, UI, UE);
9449   while (UI != UE) {
9450     SDNode *User = *UI;
9451 
9452     // This node is about to morph, remove its old self from the CSE maps.
9453     RemoveNodeFromCSEMaps(User);
9454 
9455     // A user can appear in a use list multiple times, and when this
9456     // happens the uses are usually next to each other in the list.
9457     // To help reduce the number of CSE recomputations, process all
9458     // the uses of this user that we can find this way.
9459     do {
9460       SDUse &Use = UI.getUse();
9461       ++UI;
9462       Use.set(To);
9463       if (To->isDivergent() != From->isDivergent())
9464         updateDivergence(User);
9465     } while (UI != UE && *UI == User);
9466     // Now that we have modified User, add it back to the CSE maps.  If it
9467     // already exists there, recursively merge the results together.
9468     AddModifiedNodeToCSEMaps(User);
9469   }
9470 
9471   // If we just RAUW'd the root, take note.
9472   if (FromN == getRoot())
9473     setRoot(To);
9474 }
9475 
9476 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9477 /// This can cause recursive merging of nodes in the DAG.
9478 ///
9479 /// This version assumes that for each value of From, there is a
9480 /// corresponding value in To in the same position with the same type.
9481 ///
9482 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9483 #ifndef NDEBUG
9484   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9485     assert((!From->hasAnyUseOfValue(i) ||
9486             From->getValueType(i) == To->getValueType(i)) &&
9487            "Cannot use this version of ReplaceAllUsesWith!");
9488 #endif
9489 
9490   // Handle the trivial case.
9491   if (From == To)
9492     return;
9493 
9494   // Preserve Debug Info. Only do this if there's a use.
9495   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9496     if (From->hasAnyUseOfValue(i)) {
9497       assert((i < To->getNumValues()) && "Invalid To location");
9498       transferDbgValues(SDValue(From, i), SDValue(To, i));
9499     }
9500 
9501   // Iterate over just the existing users of From. See the comments in
9502   // the ReplaceAllUsesWith above.
9503   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9504   RAUWUpdateListener Listener(*this, UI, UE);
9505   while (UI != UE) {
9506     SDNode *User = *UI;
9507 
9508     // This node is about to morph, remove its old self from the CSE maps.
9509     RemoveNodeFromCSEMaps(User);
9510 
9511     // A user can appear in a use list multiple times, and when this
9512     // happens the uses are usually next to each other in the list.
9513     // To help reduce the number of CSE recomputations, process all
9514     // the uses of this user that we can find this way.
9515     do {
9516       SDUse &Use = UI.getUse();
9517       ++UI;
9518       Use.setNode(To);
9519       if (To->isDivergent() != From->isDivergent())
9520         updateDivergence(User);
9521     } while (UI != UE && *UI == User);
9522 
9523     // Now that we have modified User, add it back to the CSE maps.  If it
9524     // already exists there, recursively merge the results together.
9525     AddModifiedNodeToCSEMaps(User);
9526   }
9527 
9528   // If we just RAUW'd the root, take note.
9529   if (From == getRoot().getNode())
9530     setRoot(SDValue(To, getRoot().getResNo()));
9531 }
9532 
9533 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9534 /// This can cause recursive merging of nodes in the DAG.
9535 ///
9536 /// This version can replace From with any result values.  To must match the
9537 /// number and types of values returned by From.
9538 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9539   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9540     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9541 
9542   // Preserve Debug Info.
9543   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9544     transferDbgValues(SDValue(From, i), To[i]);
9545 
9546   // Iterate over just the existing users of From. See the comments in
9547   // the ReplaceAllUsesWith above.
9548   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9549   RAUWUpdateListener Listener(*this, UI, UE);
9550   while (UI != UE) {
9551     SDNode *User = *UI;
9552 
9553     // This node is about to morph, remove its old self from the CSE maps.
9554     RemoveNodeFromCSEMaps(User);
9555 
9556     // A user can appear in a use list multiple times, and when this happens the
9557     // uses are usually next to each other in the list.  To help reduce the
9558     // number of CSE and divergence recomputations, process all the uses of this
9559     // user that we can find this way.
9560     bool To_IsDivergent = false;
9561     do {
9562       SDUse &Use = UI.getUse();
9563       const SDValue &ToOp = To[Use.getResNo()];
9564       ++UI;
9565       Use.set(ToOp);
9566       To_IsDivergent |= ToOp->isDivergent();
9567     } while (UI != UE && *UI == User);
9568 
9569     if (To_IsDivergent != From->isDivergent())
9570       updateDivergence(User);
9571 
9572     // Now that we have modified User, add it back to the CSE maps.  If it
9573     // already exists there, recursively merge the results together.
9574     AddModifiedNodeToCSEMaps(User);
9575   }
9576 
9577   // If we just RAUW'd the root, take note.
9578   if (From == getRoot().getNode())
9579     setRoot(SDValue(To[getRoot().getResNo()]));
9580 }
9581 
9582 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9583 /// uses of other values produced by From.getNode() alone.  The Deleted
9584 /// vector is handled the same way as for ReplaceAllUsesWith.
9585 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9586   // Handle the really simple, really trivial case efficiently.
9587   if (From == To) return;
9588 
9589   // Handle the simple, trivial, case efficiently.
9590   if (From.getNode()->getNumValues() == 1) {
9591     ReplaceAllUsesWith(From, To);
9592     return;
9593   }
9594 
9595   // Preserve Debug Info.
9596   transferDbgValues(From, To);
9597 
9598   // Iterate over just the existing users of From. See the comments in
9599   // the ReplaceAllUsesWith above.
9600   SDNode::use_iterator UI = From.getNode()->use_begin(),
9601                        UE = From.getNode()->use_end();
9602   RAUWUpdateListener Listener(*this, UI, UE);
9603   while (UI != UE) {
9604     SDNode *User = *UI;
9605     bool UserRemovedFromCSEMaps = false;
9606 
9607     // A user can appear in a use list multiple times, and when this
9608     // happens the uses are usually next to each other in the list.
9609     // To help reduce the number of CSE recomputations, process all
9610     // the uses of this user that we can find this way.
9611     do {
9612       SDUse &Use = UI.getUse();
9613 
9614       // Skip uses of different values from the same node.
9615       if (Use.getResNo() != From.getResNo()) {
9616         ++UI;
9617         continue;
9618       }
9619 
9620       // If this node hasn't been modified yet, it's still in the CSE maps,
9621       // so remove its old self from the CSE maps.
9622       if (!UserRemovedFromCSEMaps) {
9623         RemoveNodeFromCSEMaps(User);
9624         UserRemovedFromCSEMaps = true;
9625       }
9626 
9627       ++UI;
9628       Use.set(To);
9629       if (To->isDivergent() != From->isDivergent())
9630         updateDivergence(User);
9631     } while (UI != UE && *UI == User);
9632     // We are iterating over all uses of the From node, so if a use
9633     // doesn't use the specific value, no changes are made.
9634     if (!UserRemovedFromCSEMaps)
9635       continue;
9636 
9637     // Now that we have modified User, add it back to the CSE maps.  If it
9638     // already exists there, recursively merge the results together.
9639     AddModifiedNodeToCSEMaps(User);
9640   }
9641 
9642   // If we just RAUW'd the root, take note.
9643   if (From == getRoot())
9644     setRoot(To);
9645 }
9646 
9647 namespace {
9648 
9649   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9650   /// to record information about a use.
9651   struct UseMemo {
9652     SDNode *User;
9653     unsigned Index;
9654     SDUse *Use;
9655   };
9656 
9657   /// operator< - Sort Memos by User.
9658   bool operator<(const UseMemo &L, const UseMemo &R) {
9659     return (intptr_t)L.User < (intptr_t)R.User;
9660   }
9661 
9662 } // end anonymous namespace
9663 
9664 bool SelectionDAG::calculateDivergence(SDNode *N) {
9665   if (TLI->isSDNodeAlwaysUniform(N)) {
9666     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9667            "Conflicting divergence information!");
9668     return false;
9669   }
9670   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9671     return true;
9672   for (auto &Op : N->ops()) {
9673     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9674       return true;
9675   }
9676   return false;
9677 }
9678 
9679 void SelectionDAG::updateDivergence(SDNode *N) {
9680   SmallVector<SDNode *, 16> Worklist(1, N);
9681   do {
9682     N = Worklist.pop_back_val();
9683     bool IsDivergent = calculateDivergence(N);
9684     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9685       N->SDNodeBits.IsDivergent = IsDivergent;
9686       llvm::append_range(Worklist, N->uses());
9687     }
9688   } while (!Worklist.empty());
9689 }
9690 
9691 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9692   DenseMap<SDNode *, unsigned> Degree;
9693   Order.reserve(AllNodes.size());
9694   for (auto &N : allnodes()) {
9695     unsigned NOps = N.getNumOperands();
9696     Degree[&N] = NOps;
9697     if (0 == NOps)
9698       Order.push_back(&N);
9699   }
9700   for (size_t I = 0; I != Order.size(); ++I) {
9701     SDNode *N = Order[I];
9702     for (auto U : N->uses()) {
9703       unsigned &UnsortedOps = Degree[U];
9704       if (0 == --UnsortedOps)
9705         Order.push_back(U);
9706     }
9707   }
9708 }
9709 
9710 #ifndef NDEBUG
9711 void SelectionDAG::VerifyDAGDiverence() {
9712   std::vector<SDNode *> TopoOrder;
9713   CreateTopologicalOrder(TopoOrder);
9714   for (auto *N : TopoOrder) {
9715     assert(calculateDivergence(N) == N->isDivergent() &&
9716            "Divergence bit inconsistency detected");
9717   }
9718 }
9719 #endif
9720 
9721 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9722 /// uses of other values produced by From.getNode() alone.  The same value
9723 /// may appear in both the From and To list.  The Deleted vector is
9724 /// handled the same way as for ReplaceAllUsesWith.
9725 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9726                                               const SDValue *To,
9727                                               unsigned Num){
9728   // Handle the simple, trivial case efficiently.
9729   if (Num == 1)
9730     return ReplaceAllUsesOfValueWith(*From, *To);
9731 
9732   transferDbgValues(*From, *To);
9733 
9734   // Read up all the uses and make records of them. This helps
9735   // processing new uses that are introduced during the
9736   // replacement process.
9737   SmallVector<UseMemo, 4> Uses;
9738   for (unsigned i = 0; i != Num; ++i) {
9739     unsigned FromResNo = From[i].getResNo();
9740     SDNode *FromNode = From[i].getNode();
9741     for (SDNode::use_iterator UI = FromNode->use_begin(),
9742          E = FromNode->use_end(); UI != E; ++UI) {
9743       SDUse &Use = UI.getUse();
9744       if (Use.getResNo() == FromResNo) {
9745         UseMemo Memo = { *UI, i, &Use };
9746         Uses.push_back(Memo);
9747       }
9748     }
9749   }
9750 
9751   // Sort the uses, so that all the uses from a given User are together.
9752   llvm::sort(Uses);
9753 
9754   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9755        UseIndex != UseIndexEnd; ) {
9756     // We know that this user uses some value of From.  If it is the right
9757     // value, update it.
9758     SDNode *User = Uses[UseIndex].User;
9759 
9760     // This node is about to morph, remove its old self from the CSE maps.
9761     RemoveNodeFromCSEMaps(User);
9762 
9763     // The Uses array is sorted, so all the uses for a given User
9764     // are next to each other in the list.
9765     // To help reduce the number of CSE recomputations, process all
9766     // the uses of this user that we can find this way.
9767     do {
9768       unsigned i = Uses[UseIndex].Index;
9769       SDUse &Use = *Uses[UseIndex].Use;
9770       ++UseIndex;
9771 
9772       Use.set(To[i]);
9773     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9774 
9775     // Now that we have modified User, add it back to the CSE maps.  If it
9776     // already exists there, recursively merge the results together.
9777     AddModifiedNodeToCSEMaps(User);
9778   }
9779 }
9780 
9781 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9782 /// based on their topological order. It returns the maximum id and a vector
9783 /// of the SDNodes* in assigned order by reference.
9784 unsigned SelectionDAG::AssignTopologicalOrder() {
9785   unsigned DAGSize = 0;
9786 
9787   // SortedPos tracks the progress of the algorithm. Nodes before it are
9788   // sorted, nodes after it are unsorted. When the algorithm completes
9789   // it is at the end of the list.
9790   allnodes_iterator SortedPos = allnodes_begin();
9791 
9792   // Visit all the nodes. Move nodes with no operands to the front of
9793   // the list immediately. Annotate nodes that do have operands with their
9794   // operand count. Before we do this, the Node Id fields of the nodes
9795   // may contain arbitrary values. After, the Node Id fields for nodes
9796   // before SortedPos will contain the topological sort index, and the
9797   // Node Id fields for nodes At SortedPos and after will contain the
9798   // count of outstanding operands.
9799   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9800     SDNode *N = &*I++;
9801     checkForCycles(N, this);
9802     unsigned Degree = N->getNumOperands();
9803     if (Degree == 0) {
9804       // A node with no uses, add it to the result array immediately.
9805       N->setNodeId(DAGSize++);
9806       allnodes_iterator Q(N);
9807       if (Q != SortedPos)
9808         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9809       assert(SortedPos != AllNodes.end() && "Overran node list");
9810       ++SortedPos;
9811     } else {
9812       // Temporarily use the Node Id as scratch space for the degree count.
9813       N->setNodeId(Degree);
9814     }
9815   }
9816 
9817   // Visit all the nodes. As we iterate, move nodes into sorted order,
9818   // such that by the time the end is reached all nodes will be sorted.
9819   for (SDNode &Node : allnodes()) {
9820     SDNode *N = &Node;
9821     checkForCycles(N, this);
9822     // N is in sorted position, so all its uses have one less operand
9823     // that needs to be sorted.
9824     for (SDNode *P : N->uses()) {
9825       unsigned Degree = P->getNodeId();
9826       assert(Degree != 0 && "Invalid node degree");
9827       --Degree;
9828       if (Degree == 0) {
9829         // All of P's operands are sorted, so P may sorted now.
9830         P->setNodeId(DAGSize++);
9831         if (P->getIterator() != SortedPos)
9832           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9833         assert(SortedPos != AllNodes.end() && "Overran node list");
9834         ++SortedPos;
9835       } else {
9836         // Update P's outstanding operand count.
9837         P->setNodeId(Degree);
9838       }
9839     }
9840     if (Node.getIterator() == SortedPos) {
9841 #ifndef NDEBUG
9842       allnodes_iterator I(N);
9843       SDNode *S = &*++I;
9844       dbgs() << "Overran sorted position:\n";
9845       S->dumprFull(this); dbgs() << "\n";
9846       dbgs() << "Checking if this is due to cycles\n";
9847       checkForCycles(this, true);
9848 #endif
9849       llvm_unreachable(nullptr);
9850     }
9851   }
9852 
9853   assert(SortedPos == AllNodes.end() &&
9854          "Topological sort incomplete!");
9855   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9856          "First node in topological sort is not the entry token!");
9857   assert(AllNodes.front().getNodeId() == 0 &&
9858          "First node in topological sort has non-zero id!");
9859   assert(AllNodes.front().getNumOperands() == 0 &&
9860          "First node in topological sort has operands!");
9861   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9862          "Last node in topologic sort has unexpected id!");
9863   assert(AllNodes.back().use_empty() &&
9864          "Last node in topologic sort has users!");
9865   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9866   return DAGSize;
9867 }
9868 
9869 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9870 /// value is produced by SD.
9871 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9872   for (SDNode *SD : DB->getSDNodes()) {
9873     if (!SD)
9874       continue;
9875     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9876     SD->setHasDebugValue(true);
9877   }
9878   DbgInfo->add(DB, isParameter);
9879 }
9880 
9881 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9882 
9883 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9884                                                    SDValue NewMemOpChain) {
9885   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9886   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9887   // The new memory operation must have the same position as the old load in
9888   // terms of memory dependency. Create a TokenFactor for the old load and new
9889   // memory operation and update uses of the old load's output chain to use that
9890   // TokenFactor.
9891   if (OldChain == NewMemOpChain || OldChain.use_empty())
9892     return NewMemOpChain;
9893 
9894   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9895                                 OldChain, NewMemOpChain);
9896   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9897   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9898   return TokenFactor;
9899 }
9900 
9901 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9902                                                    SDValue NewMemOp) {
9903   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9904   SDValue OldChain = SDValue(OldLoad, 1);
9905   SDValue NewMemOpChain = NewMemOp.getValue(1);
9906   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9907 }
9908 
9909 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9910                                                      Function **OutFunction) {
9911   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9912 
9913   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9914   auto *Module = MF->getFunction().getParent();
9915   auto *Function = Module->getFunction(Symbol);
9916 
9917   if (OutFunction != nullptr)
9918       *OutFunction = Function;
9919 
9920   if (Function != nullptr) {
9921     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9922     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9923   }
9924 
9925   std::string ErrorStr;
9926   raw_string_ostream ErrorFormatter(ErrorStr);
9927 
9928   ErrorFormatter << "Undefined external symbol ";
9929   ErrorFormatter << '"' << Symbol << '"';
9930   ErrorFormatter.flush();
9931 
9932   report_fatal_error(ErrorStr);
9933 }
9934 
9935 //===----------------------------------------------------------------------===//
9936 //                              SDNode Class
9937 //===----------------------------------------------------------------------===//
9938 
9939 bool llvm::isNullConstant(SDValue V) {
9940   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9941   return Const != nullptr && Const->isNullValue();
9942 }
9943 
9944 bool llvm::isNullFPConstant(SDValue V) {
9945   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9946   return Const != nullptr && Const->isZero() && !Const->isNegative();
9947 }
9948 
9949 bool llvm::isAllOnesConstant(SDValue V) {
9950   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9951   return Const != nullptr && Const->isAllOnesValue();
9952 }
9953 
9954 bool llvm::isOneConstant(SDValue V) {
9955   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9956   return Const != nullptr && Const->isOne();
9957 }
9958 
9959 SDValue llvm::peekThroughBitcasts(SDValue V) {
9960   while (V.getOpcode() == ISD::BITCAST)
9961     V = V.getOperand(0);
9962   return V;
9963 }
9964 
9965 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9966   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9967     V = V.getOperand(0);
9968   return V;
9969 }
9970 
9971 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9972   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9973     V = V.getOperand(0);
9974   return V;
9975 }
9976 
9977 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9978   if (V.getOpcode() != ISD::XOR)
9979     return false;
9980   V = peekThroughBitcasts(V.getOperand(1));
9981   unsigned NumBits = V.getScalarValueSizeInBits();
9982   ConstantSDNode *C =
9983       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9984   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9985 }
9986 
9987 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9988                                           bool AllowTruncation) {
9989   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9990     return CN;
9991 
9992   // SplatVectors can truncate their operands. Ignore that case here unless
9993   // AllowTruncation is set.
9994   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9995     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9996     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9997       EVT CVT = CN->getValueType(0);
9998       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9999       if (AllowTruncation || CVT == VecEltVT)
10000         return CN;
10001     }
10002   }
10003 
10004   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10005     BitVector UndefElements;
10006     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10007 
10008     // BuildVectors can truncate their operands. Ignore that case here unless
10009     // AllowTruncation is set.
10010     if (CN && (UndefElements.none() || AllowUndefs)) {
10011       EVT CVT = CN->getValueType(0);
10012       EVT NSVT = N.getValueType().getScalarType();
10013       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10014       if (AllowTruncation || (CVT == NSVT))
10015         return CN;
10016     }
10017   }
10018 
10019   return nullptr;
10020 }
10021 
10022 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10023                                           bool AllowUndefs,
10024                                           bool AllowTruncation) {
10025   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10026     return CN;
10027 
10028   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10029     BitVector UndefElements;
10030     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10031 
10032     // BuildVectors can truncate their operands. Ignore that case here unless
10033     // AllowTruncation is set.
10034     if (CN && (UndefElements.none() || AllowUndefs)) {
10035       EVT CVT = CN->getValueType(0);
10036       EVT NSVT = N.getValueType().getScalarType();
10037       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10038       if (AllowTruncation || (CVT == NSVT))
10039         return CN;
10040     }
10041   }
10042 
10043   return nullptr;
10044 }
10045 
10046 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10047   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10048     return CN;
10049 
10050   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10051     BitVector UndefElements;
10052     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10053     if (CN && (UndefElements.none() || AllowUndefs))
10054       return CN;
10055   }
10056 
10057   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10058     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10059       return CN;
10060 
10061   return nullptr;
10062 }
10063 
10064 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10065                                               const APInt &DemandedElts,
10066                                               bool AllowUndefs) {
10067   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10068     return CN;
10069 
10070   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10071     BitVector UndefElements;
10072     ConstantFPSDNode *CN =
10073         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10074     if (CN && (UndefElements.none() || AllowUndefs))
10075       return CN;
10076   }
10077 
10078   return nullptr;
10079 }
10080 
10081 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10082   // TODO: may want to use peekThroughBitcast() here.
10083   ConstantSDNode *C =
10084       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10085   return C && C->isNullValue();
10086 }
10087 
10088 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10089   // TODO: may want to use peekThroughBitcast() here.
10090   unsigned BitWidth = N.getScalarValueSizeInBits();
10091   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10092   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10093 }
10094 
10095 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10096   N = peekThroughBitcasts(N);
10097   unsigned BitWidth = N.getScalarValueSizeInBits();
10098   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10099   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
10100 }
10101 
10102 HandleSDNode::~HandleSDNode() {
10103   DropOperands();
10104 }
10105 
10106 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10107                                          const DebugLoc &DL,
10108                                          const GlobalValue *GA, EVT VT,
10109                                          int64_t o, unsigned TF)
10110     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10111   TheGlobal = GA;
10112 }
10113 
10114 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10115                                          EVT VT, unsigned SrcAS,
10116                                          unsigned DestAS)
10117     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10118       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10119 
10120 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10121                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10122     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10123   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10124   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10125   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10126   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10127 
10128   // We check here that the size of the memory operand fits within the size of
10129   // the MMO. This is because the MMO might indicate only a possible address
10130   // range instead of specifying the affected memory addresses precisely.
10131   // TODO: Make MachineMemOperands aware of scalable vectors.
10132   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10133          "Size mismatch!");
10134 }
10135 
10136 /// Profile - Gather unique data for the node.
10137 ///
10138 void SDNode::Profile(FoldingSetNodeID &ID) const {
10139   AddNodeIDNode(ID, this);
10140 }
10141 
10142 namespace {
10143 
10144   struct EVTArray {
10145     std::vector<EVT> VTs;
10146 
10147     EVTArray() {
10148       VTs.reserve(MVT::VALUETYPE_SIZE);
10149       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10150         VTs.push_back(MVT((MVT::SimpleValueType)i));
10151     }
10152   };
10153 
10154 } // end anonymous namespace
10155 
10156 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10157 static ManagedStatic<EVTArray> SimpleVTArray;
10158 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10159 
10160 /// getValueTypeList - Return a pointer to the specified value type.
10161 ///
10162 const EVT *SDNode::getValueTypeList(EVT VT) {
10163   if (VT.isExtended()) {
10164     sys::SmartScopedLock<true> Lock(*VTMutex);
10165     return &(*EVTs->insert(VT).first);
10166   }
10167   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10168   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10169 }
10170 
10171 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10172 /// indicated value.  This method ignores uses of other values defined by this
10173 /// operation.
10174 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10175   assert(Value < getNumValues() && "Bad value!");
10176 
10177   // TODO: Only iterate over uses of a given value of the node
10178   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10179     if (UI.getUse().getResNo() == Value) {
10180       if (NUses == 0)
10181         return false;
10182       --NUses;
10183     }
10184   }
10185 
10186   // Found exactly the right number of uses?
10187   return NUses == 0;
10188 }
10189 
10190 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10191 /// value. This method ignores uses of other values defined by this operation.
10192 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10193   assert(Value < getNumValues() && "Bad value!");
10194 
10195   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10196     if (UI.getUse().getResNo() == Value)
10197       return true;
10198 
10199   return false;
10200 }
10201 
10202 /// isOnlyUserOf - Return true if this node is the only use of N.
10203 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10204   bool Seen = false;
10205   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
10206     SDNode *User = *I;
10207     if (User == this)
10208       Seen = true;
10209     else
10210       return false;
10211   }
10212 
10213   return Seen;
10214 }
10215 
10216 /// Return true if the only users of N are contained in Nodes.
10217 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10218   bool Seen = false;
10219   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
10220     SDNode *User = *I;
10221     if (llvm::is_contained(Nodes, User))
10222       Seen = true;
10223     else
10224       return false;
10225   }
10226 
10227   return Seen;
10228 }
10229 
10230 /// isOperand - Return true if this node is an operand of N.
10231 bool SDValue::isOperandOf(const SDNode *N) const {
10232   return is_contained(N->op_values(), *this);
10233 }
10234 
10235 bool SDNode::isOperandOf(const SDNode *N) const {
10236   return any_of(N->op_values(),
10237                 [this](SDValue Op) { return this == Op.getNode(); });
10238 }
10239 
10240 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10241 /// be a chain) reaches the specified operand without crossing any
10242 /// side-effecting instructions on any chain path.  In practice, this looks
10243 /// through token factors and non-volatile loads.  In order to remain efficient,
10244 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10245 ///
10246 /// Note that we only need to examine chains when we're searching for
10247 /// side-effects; SelectionDAG requires that all side-effects are represented
10248 /// by chains, even if another operand would force a specific ordering. This
10249 /// constraint is necessary to allow transformations like splitting loads.
10250 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10251                                              unsigned Depth) const {
10252   if (*this == Dest) return true;
10253 
10254   // Don't search too deeply, we just want to be able to see through
10255   // TokenFactor's etc.
10256   if (Depth == 0) return false;
10257 
10258   // If this is a token factor, all inputs to the TF happen in parallel.
10259   if (getOpcode() == ISD::TokenFactor) {
10260     // First, try a shallow search.
10261     if (is_contained((*this)->ops(), Dest)) {
10262       // We found the chain we want as an operand of this TokenFactor.
10263       // Essentially, we reach the chain without side-effects if we could
10264       // serialize the TokenFactor into a simple chain of operations with
10265       // Dest as the last operation. This is automatically true if the
10266       // chain has one use: there are no other ordering constraints.
10267       // If the chain has more than one use, we give up: some other
10268       // use of Dest might force a side-effect between Dest and the current
10269       // node.
10270       if (Dest.hasOneUse())
10271         return true;
10272     }
10273     // Next, try a deep search: check whether every operand of the TokenFactor
10274     // reaches Dest.
10275     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10276       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10277     });
10278   }
10279 
10280   // Loads don't have side effects, look through them.
10281   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10282     if (Ld->isUnordered())
10283       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10284   }
10285   return false;
10286 }
10287 
10288 bool SDNode::hasPredecessor(const SDNode *N) const {
10289   SmallPtrSet<const SDNode *, 32> Visited;
10290   SmallVector<const SDNode *, 16> Worklist;
10291   Worklist.push_back(this);
10292   return hasPredecessorHelper(N, Visited, Worklist);
10293 }
10294 
10295 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10296   this->Flags.intersectWith(Flags);
10297 }
10298 
10299 SDValue
10300 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10301                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10302                                   bool AllowPartials) {
10303   // The pattern must end in an extract from index 0.
10304   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10305       !isNullConstant(Extract->getOperand(1)))
10306     return SDValue();
10307 
10308   // Match against one of the candidate binary ops.
10309   SDValue Op = Extract->getOperand(0);
10310   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10311         return Op.getOpcode() == unsigned(BinOp);
10312       }))
10313     return SDValue();
10314 
10315   // Floating-point reductions may require relaxed constraints on the final step
10316   // of the reduction because they may reorder intermediate operations.
10317   unsigned CandidateBinOp = Op.getOpcode();
10318   if (Op.getValueType().isFloatingPoint()) {
10319     SDNodeFlags Flags = Op->getFlags();
10320     switch (CandidateBinOp) {
10321     case ISD::FADD:
10322       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10323         return SDValue();
10324       break;
10325     default:
10326       llvm_unreachable("Unhandled FP opcode for binop reduction");
10327     }
10328   }
10329 
10330   // Matching failed - attempt to see if we did enough stages that a partial
10331   // reduction from a subvector is possible.
10332   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10333     if (!AllowPartials || !Op)
10334       return SDValue();
10335     EVT OpVT = Op.getValueType();
10336     EVT OpSVT = OpVT.getScalarType();
10337     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10338     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10339       return SDValue();
10340     BinOp = (ISD::NodeType)CandidateBinOp;
10341     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10342                    getVectorIdxConstant(0, SDLoc(Op)));
10343   };
10344 
10345   // At each stage, we're looking for something that looks like:
10346   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10347   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10348   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10349   // %a = binop <8 x i32> %op, %s
10350   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10351   // we expect something like:
10352   // <4,5,6,7,u,u,u,u>
10353   // <2,3,u,u,u,u,u,u>
10354   // <1,u,u,u,u,u,u,u>
10355   // While a partial reduction match would be:
10356   // <2,3,u,u,u,u,u,u>
10357   // <1,u,u,u,u,u,u,u>
10358   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10359   SDValue PrevOp;
10360   for (unsigned i = 0; i < Stages; ++i) {
10361     unsigned MaskEnd = (1 << i);
10362 
10363     if (Op.getOpcode() != CandidateBinOp)
10364       return PartialReduction(PrevOp, MaskEnd);
10365 
10366     SDValue Op0 = Op.getOperand(0);
10367     SDValue Op1 = Op.getOperand(1);
10368 
10369     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10370     if (Shuffle) {
10371       Op = Op1;
10372     } else {
10373       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10374       Op = Op0;
10375     }
10376 
10377     // The first operand of the shuffle should be the same as the other operand
10378     // of the binop.
10379     if (!Shuffle || Shuffle->getOperand(0) != Op)
10380       return PartialReduction(PrevOp, MaskEnd);
10381 
10382     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10383     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10384       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10385         return PartialReduction(PrevOp, MaskEnd);
10386 
10387     PrevOp = Op;
10388   }
10389 
10390   // Handle subvector reductions, which tend to appear after the shuffle
10391   // reduction stages.
10392   while (Op.getOpcode() == CandidateBinOp) {
10393     unsigned NumElts = Op.getValueType().getVectorNumElements();
10394     SDValue Op0 = Op.getOperand(0);
10395     SDValue Op1 = Op.getOperand(1);
10396     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10397         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10398         Op0.getOperand(0) != Op1.getOperand(0))
10399       break;
10400     SDValue Src = Op0.getOperand(0);
10401     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10402     if (NumSrcElts != (2 * NumElts))
10403       break;
10404     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10405           Op1.getConstantOperandAPInt(1) == NumElts) &&
10406         !(Op1.getConstantOperandAPInt(1) == 0 &&
10407           Op0.getConstantOperandAPInt(1) == NumElts))
10408       break;
10409     Op = Src;
10410   }
10411 
10412   BinOp = (ISD::NodeType)CandidateBinOp;
10413   return Op;
10414 }
10415 
10416 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10417   assert(N->getNumValues() == 1 &&
10418          "Can't unroll a vector with multiple results!");
10419 
10420   EVT VT = N->getValueType(0);
10421   unsigned NE = VT.getVectorNumElements();
10422   EVT EltVT = VT.getVectorElementType();
10423   SDLoc dl(N);
10424 
10425   SmallVector<SDValue, 8> Scalars;
10426   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10427 
10428   // If ResNE is 0, fully unroll the vector op.
10429   if (ResNE == 0)
10430     ResNE = NE;
10431   else if (NE > ResNE)
10432     NE = ResNE;
10433 
10434   unsigned i;
10435   for (i= 0; i != NE; ++i) {
10436     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10437       SDValue Operand = N->getOperand(j);
10438       EVT OperandVT = Operand.getValueType();
10439       if (OperandVT.isVector()) {
10440         // A vector operand; extract a single element.
10441         EVT OperandEltVT = OperandVT.getVectorElementType();
10442         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10443                               Operand, getVectorIdxConstant(i, dl));
10444       } else {
10445         // A scalar operand; just use it as is.
10446         Operands[j] = Operand;
10447       }
10448     }
10449 
10450     switch (N->getOpcode()) {
10451     default: {
10452       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10453                                 N->getFlags()));
10454       break;
10455     }
10456     case ISD::VSELECT:
10457       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10458       break;
10459     case ISD::SHL:
10460     case ISD::SRA:
10461     case ISD::SRL:
10462     case ISD::ROTL:
10463     case ISD::ROTR:
10464       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10465                                getShiftAmountOperand(Operands[0].getValueType(),
10466                                                      Operands[1])));
10467       break;
10468     case ISD::SIGN_EXTEND_INREG: {
10469       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10470       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10471                                 Operands[0],
10472                                 getValueType(ExtVT)));
10473     }
10474     }
10475   }
10476 
10477   for (; i < ResNE; ++i)
10478     Scalars.push_back(getUNDEF(EltVT));
10479 
10480   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10481   return getBuildVector(VecVT, dl, Scalars);
10482 }
10483 
10484 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10485     SDNode *N, unsigned ResNE) {
10486   unsigned Opcode = N->getOpcode();
10487   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10488           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10489           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10490          "Expected an overflow opcode");
10491 
10492   EVT ResVT = N->getValueType(0);
10493   EVT OvVT = N->getValueType(1);
10494   EVT ResEltVT = ResVT.getVectorElementType();
10495   EVT OvEltVT = OvVT.getVectorElementType();
10496   SDLoc dl(N);
10497 
10498   // If ResNE is 0, fully unroll the vector op.
10499   unsigned NE = ResVT.getVectorNumElements();
10500   if (ResNE == 0)
10501     ResNE = NE;
10502   else if (NE > ResNE)
10503     NE = ResNE;
10504 
10505   SmallVector<SDValue, 8> LHSScalars;
10506   SmallVector<SDValue, 8> RHSScalars;
10507   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10508   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10509 
10510   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10511   SDVTList VTs = getVTList(ResEltVT, SVT);
10512   SmallVector<SDValue, 8> ResScalars;
10513   SmallVector<SDValue, 8> OvScalars;
10514   for (unsigned i = 0; i < NE; ++i) {
10515     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10516     SDValue Ov =
10517         getSelect(dl, OvEltVT, Res.getValue(1),
10518                   getBoolConstant(true, dl, OvEltVT, ResVT),
10519                   getConstant(0, dl, OvEltVT));
10520 
10521     ResScalars.push_back(Res);
10522     OvScalars.push_back(Ov);
10523   }
10524 
10525   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10526   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10527 
10528   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10529   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10530   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10531                         getBuildVector(NewOvVT, dl, OvScalars));
10532 }
10533 
10534 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10535                                                   LoadSDNode *Base,
10536                                                   unsigned Bytes,
10537                                                   int Dist) const {
10538   if (LD->isVolatile() || Base->isVolatile())
10539     return false;
10540   // TODO: probably too restrictive for atomics, revisit
10541   if (!LD->isSimple())
10542     return false;
10543   if (LD->isIndexed() || Base->isIndexed())
10544     return false;
10545   if (LD->getChain() != Base->getChain())
10546     return false;
10547   EVT VT = LD->getValueType(0);
10548   if (VT.getSizeInBits() / 8 != Bytes)
10549     return false;
10550 
10551   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10552   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10553 
10554   int64_t Offset = 0;
10555   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10556     return (Dist * Bytes == Offset);
10557   return false;
10558 }
10559 
10560 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10561 /// if it cannot be inferred.
10562 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10563   // If this is a GlobalAddress + cst, return the alignment.
10564   const GlobalValue *GV = nullptr;
10565   int64_t GVOffset = 0;
10566   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10567     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10568     KnownBits Known(PtrWidth);
10569     llvm::computeKnownBits(GV, Known, getDataLayout());
10570     unsigned AlignBits = Known.countMinTrailingZeros();
10571     if (AlignBits)
10572       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10573   }
10574 
10575   // If this is a direct reference to a stack slot, use information about the
10576   // stack slot's alignment.
10577   int FrameIdx = INT_MIN;
10578   int64_t FrameOffset = 0;
10579   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10580     FrameIdx = FI->getIndex();
10581   } else if (isBaseWithConstantOffset(Ptr) &&
10582              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10583     // Handle FI+Cst
10584     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10585     FrameOffset = Ptr.getConstantOperandVal(1);
10586   }
10587 
10588   if (FrameIdx != INT_MIN) {
10589     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10590     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10591   }
10592 
10593   return None;
10594 }
10595 
10596 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10597 /// which is split (or expanded) into two not necessarily identical pieces.
10598 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10599   // Currently all types are split in half.
10600   EVT LoVT, HiVT;
10601   if (!VT.isVector())
10602     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10603   else
10604     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10605 
10606   return std::make_pair(LoVT, HiVT);
10607 }
10608 
10609 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10610 /// type, dependent on an enveloping VT that has been split into two identical
10611 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10612 std::pair<EVT, EVT>
10613 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10614                                        bool *HiIsEmpty) const {
10615   EVT EltTp = VT.getVectorElementType();
10616   // Examples:
10617   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10618   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10619   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10620   //   etc.
10621   ElementCount VTNumElts = VT.getVectorElementCount();
10622   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10623   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10624          "Mixing fixed width and scalable vectors when enveloping a type");
10625   EVT LoVT, HiVT;
10626   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10627     LoVT = EnvVT;
10628     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10629     *HiIsEmpty = false;
10630   } else {
10631     // Flag that hi type has zero storage size, but return split envelop type
10632     // (this would be easier if vector types with zero elements were allowed).
10633     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10634     HiVT = EnvVT;
10635     *HiIsEmpty = true;
10636   }
10637   return std::make_pair(LoVT, HiVT);
10638 }
10639 
10640 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10641 /// low/high part.
10642 std::pair<SDValue, SDValue>
10643 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10644                           const EVT &HiVT) {
10645   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10646          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10647          "Splitting vector with an invalid mixture of fixed and scalable "
10648          "vector types");
10649   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10650              N.getValueType().getVectorMinNumElements() &&
10651          "More vector elements requested than available!");
10652   SDValue Lo, Hi;
10653   Lo =
10654       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10655   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10656   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10657   // IDX with the runtime scaling factor of the result vector type. For
10658   // fixed-width result vectors, that runtime scaling factor is 1.
10659   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10660                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10661   return std::make_pair(Lo, Hi);
10662 }
10663 
10664 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10665 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10666   EVT VT = N.getValueType();
10667   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10668                                 NextPowerOf2(VT.getVectorNumElements()));
10669   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10670                  getVectorIdxConstant(0, DL));
10671 }
10672 
10673 void SelectionDAG::ExtractVectorElements(SDValue Op,
10674                                          SmallVectorImpl<SDValue> &Args,
10675                                          unsigned Start, unsigned Count,
10676                                          EVT EltVT) {
10677   EVT VT = Op.getValueType();
10678   if (Count == 0)
10679     Count = VT.getVectorNumElements();
10680   if (EltVT == EVT())
10681     EltVT = VT.getVectorElementType();
10682   SDLoc SL(Op);
10683   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10684     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10685                            getVectorIdxConstant(i, SL)));
10686   }
10687 }
10688 
10689 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10690 unsigned GlobalAddressSDNode::getAddressSpace() const {
10691   return getGlobal()->getType()->getAddressSpace();
10692 }
10693 
10694 Type *ConstantPoolSDNode::getType() const {
10695   if (isMachineConstantPoolEntry())
10696     return Val.MachineCPVal->getType();
10697   return Val.ConstVal->getType();
10698 }
10699 
10700 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10701                                         unsigned &SplatBitSize,
10702                                         bool &HasAnyUndefs,
10703                                         unsigned MinSplatBits,
10704                                         bool IsBigEndian) const {
10705   EVT VT = getValueType(0);
10706   assert(VT.isVector() && "Expected a vector type");
10707   unsigned VecWidth = VT.getSizeInBits();
10708   if (MinSplatBits > VecWidth)
10709     return false;
10710 
10711   // FIXME: The widths are based on this node's type, but build vectors can
10712   // truncate their operands.
10713   SplatValue = APInt(VecWidth, 0);
10714   SplatUndef = APInt(VecWidth, 0);
10715 
10716   // Get the bits. Bits with undefined values (when the corresponding element
10717   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10718   // in SplatValue. If any of the values are not constant, give up and return
10719   // false.
10720   unsigned int NumOps = getNumOperands();
10721   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10722   unsigned EltWidth = VT.getScalarSizeInBits();
10723 
10724   for (unsigned j = 0; j < NumOps; ++j) {
10725     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10726     SDValue OpVal = getOperand(i);
10727     unsigned BitPos = j * EltWidth;
10728 
10729     if (OpVal.isUndef())
10730       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10731     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10732       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10733     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10734       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10735     else
10736       return false;
10737   }
10738 
10739   // The build_vector is all constants or undefs. Find the smallest element
10740   // size that splats the vector.
10741   HasAnyUndefs = (SplatUndef != 0);
10742 
10743   // FIXME: This does not work for vectors with elements less than 8 bits.
10744   while (VecWidth > 8) {
10745     unsigned HalfSize = VecWidth / 2;
10746     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10747     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10748     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10749     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10750 
10751     // If the two halves do not match (ignoring undef bits), stop here.
10752     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10753         MinSplatBits > HalfSize)
10754       break;
10755 
10756     SplatValue = HighValue | LowValue;
10757     SplatUndef = HighUndef & LowUndef;
10758 
10759     VecWidth = HalfSize;
10760   }
10761 
10762   SplatBitSize = VecWidth;
10763   return true;
10764 }
10765 
10766 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10767                                          BitVector *UndefElements) const {
10768   unsigned NumOps = getNumOperands();
10769   if (UndefElements) {
10770     UndefElements->clear();
10771     UndefElements->resize(NumOps);
10772   }
10773   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10774   if (!DemandedElts)
10775     return SDValue();
10776   SDValue Splatted;
10777   for (unsigned i = 0; i != NumOps; ++i) {
10778     if (!DemandedElts[i])
10779       continue;
10780     SDValue Op = getOperand(i);
10781     if (Op.isUndef()) {
10782       if (UndefElements)
10783         (*UndefElements)[i] = true;
10784     } else if (!Splatted) {
10785       Splatted = Op;
10786     } else if (Splatted != Op) {
10787       return SDValue();
10788     }
10789   }
10790 
10791   if (!Splatted) {
10792     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10793     assert(getOperand(FirstDemandedIdx).isUndef() &&
10794            "Can only have a splat without a constant for all undefs.");
10795     return getOperand(FirstDemandedIdx);
10796   }
10797 
10798   return Splatted;
10799 }
10800 
10801 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10802   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10803   return getSplatValue(DemandedElts, UndefElements);
10804 }
10805 
10806 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10807                                             SmallVectorImpl<SDValue> &Sequence,
10808                                             BitVector *UndefElements) const {
10809   unsigned NumOps = getNumOperands();
10810   Sequence.clear();
10811   if (UndefElements) {
10812     UndefElements->clear();
10813     UndefElements->resize(NumOps);
10814   }
10815   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10816   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10817     return false;
10818 
10819   // Set the undefs even if we don't find a sequence (like getSplatValue).
10820   if (UndefElements)
10821     for (unsigned I = 0; I != NumOps; ++I)
10822       if (DemandedElts[I] && getOperand(I).isUndef())
10823         (*UndefElements)[I] = true;
10824 
10825   // Iteratively widen the sequence length looking for repetitions.
10826   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10827     Sequence.append(SeqLen, SDValue());
10828     for (unsigned I = 0; I != NumOps; ++I) {
10829       if (!DemandedElts[I])
10830         continue;
10831       SDValue &SeqOp = Sequence[I % SeqLen];
10832       SDValue Op = getOperand(I);
10833       if (Op.isUndef()) {
10834         if (!SeqOp)
10835           SeqOp = Op;
10836         continue;
10837       }
10838       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10839         Sequence.clear();
10840         break;
10841       }
10842       SeqOp = Op;
10843     }
10844     if (!Sequence.empty())
10845       return true;
10846   }
10847 
10848   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10849   return false;
10850 }
10851 
10852 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10853                                             BitVector *UndefElements) const {
10854   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10855   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10856 }
10857 
10858 ConstantSDNode *
10859 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10860                                         BitVector *UndefElements) const {
10861   return dyn_cast_or_null<ConstantSDNode>(
10862       getSplatValue(DemandedElts, UndefElements));
10863 }
10864 
10865 ConstantSDNode *
10866 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10867   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10868 }
10869 
10870 ConstantFPSDNode *
10871 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10872                                           BitVector *UndefElements) const {
10873   return dyn_cast_or_null<ConstantFPSDNode>(
10874       getSplatValue(DemandedElts, UndefElements));
10875 }
10876 
10877 ConstantFPSDNode *
10878 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10879   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10880 }
10881 
10882 int32_t
10883 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10884                                                    uint32_t BitWidth) const {
10885   if (ConstantFPSDNode *CN =
10886           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10887     bool IsExact;
10888     APSInt IntVal(BitWidth);
10889     const APFloat &APF = CN->getValueAPF();
10890     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10891             APFloat::opOK ||
10892         !IsExact)
10893       return -1;
10894 
10895     return IntVal.exactLogBase2();
10896   }
10897   return -1;
10898 }
10899 
10900 bool BuildVectorSDNode::isConstant() const {
10901   for (const SDValue &Op : op_values()) {
10902     unsigned Opc = Op.getOpcode();
10903     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10904       return false;
10905   }
10906   return true;
10907 }
10908 
10909 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10910   // Find the first non-undef value in the shuffle mask.
10911   unsigned i, e;
10912   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10913     /* search */;
10914 
10915   // If all elements are undefined, this shuffle can be considered a splat
10916   // (although it should eventually get simplified away completely).
10917   if (i == e)
10918     return true;
10919 
10920   // Make sure all remaining elements are either undef or the same as the first
10921   // non-undef value.
10922   for (int Idx = Mask[i]; i != e; ++i)
10923     if (Mask[i] >= 0 && Mask[i] != Idx)
10924       return false;
10925   return true;
10926 }
10927 
10928 // Returns the SDNode if it is a constant integer BuildVector
10929 // or constant integer.
10930 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10931   if (isa<ConstantSDNode>(N))
10932     return N.getNode();
10933   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10934     return N.getNode();
10935   // Treat a GlobalAddress supporting constant offset folding as a
10936   // constant integer.
10937   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10938     if (GA->getOpcode() == ISD::GlobalAddress &&
10939         TLI->isOffsetFoldingLegal(GA))
10940       return GA;
10941   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10942       isa<ConstantSDNode>(N.getOperand(0)))
10943     return N.getNode();
10944   return nullptr;
10945 }
10946 
10947 // Returns the SDNode if it is a constant float BuildVector
10948 // or constant float.
10949 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10950   if (isa<ConstantFPSDNode>(N))
10951     return N.getNode();
10952 
10953   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10954     return N.getNode();
10955 
10956   return nullptr;
10957 }
10958 
10959 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10960   assert(!Node->OperandList && "Node already has operands");
10961   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10962          "too many operands to fit into SDNode");
10963   SDUse *Ops = OperandRecycler.allocate(
10964       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10965 
10966   bool IsDivergent = false;
10967   for (unsigned I = 0; I != Vals.size(); ++I) {
10968     Ops[I].setUser(Node);
10969     Ops[I].setInitial(Vals[I]);
10970     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10971       IsDivergent |= Ops[I].getNode()->isDivergent();
10972   }
10973   Node->NumOperands = Vals.size();
10974   Node->OperandList = Ops;
10975   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10976     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10977     Node->SDNodeBits.IsDivergent = IsDivergent;
10978   }
10979   checkForCycles(Node);
10980 }
10981 
10982 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10983                                      SmallVectorImpl<SDValue> &Vals) {
10984   size_t Limit = SDNode::getMaxNumOperands();
10985   while (Vals.size() > Limit) {
10986     unsigned SliceIdx = Vals.size() - Limit;
10987     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10988     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10989     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10990     Vals.emplace_back(NewTF);
10991   }
10992   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10993 }
10994 
10995 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10996                                         EVT VT, SDNodeFlags Flags) {
10997   switch (Opcode) {
10998   default:
10999     return SDValue();
11000   case ISD::ADD:
11001   case ISD::OR:
11002   case ISD::XOR:
11003   case ISD::UMAX:
11004     return getConstant(0, DL, VT);
11005   case ISD::MUL:
11006     return getConstant(1, DL, VT);
11007   case ISD::AND:
11008   case ISD::UMIN:
11009     return getAllOnesConstant(DL, VT);
11010   case ISD::SMAX:
11011     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11012   case ISD::SMIN:
11013     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11014   case ISD::FADD:
11015     return getConstantFP(-0.0, DL, VT);
11016   case ISD::FMUL:
11017     return getConstantFP(1.0, DL, VT);
11018   case ISD::FMINNUM:
11019   case ISD::FMAXNUM: {
11020     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11021     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11022     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11023                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11024                         APFloat::getLargest(Semantics);
11025     if (Opcode == ISD::FMAXNUM)
11026       NeutralAF.changeSign();
11027 
11028     return getConstantFP(NeutralAF, DL, VT);
11029   }
11030   }
11031 }
11032 
11033 #ifndef NDEBUG
11034 static void checkForCyclesHelper(const SDNode *N,
11035                                  SmallPtrSetImpl<const SDNode*> &Visited,
11036                                  SmallPtrSetImpl<const SDNode*> &Checked,
11037                                  const llvm::SelectionDAG *DAG) {
11038   // If this node has already been checked, don't check it again.
11039   if (Checked.count(N))
11040     return;
11041 
11042   // If a node has already been visited on this depth-first walk, reject it as
11043   // a cycle.
11044   if (!Visited.insert(N).second) {
11045     errs() << "Detected cycle in SelectionDAG\n";
11046     dbgs() << "Offending node:\n";
11047     N->dumprFull(DAG); dbgs() << "\n";
11048     abort();
11049   }
11050 
11051   for (const SDValue &Op : N->op_values())
11052     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11053 
11054   Checked.insert(N);
11055   Visited.erase(N);
11056 }
11057 #endif
11058 
11059 void llvm::checkForCycles(const llvm::SDNode *N,
11060                           const llvm::SelectionDAG *DAG,
11061                           bool force) {
11062 #ifndef NDEBUG
11063   bool check = force;
11064 #ifdef EXPENSIVE_CHECKS
11065   check = true;
11066 #endif  // EXPENSIVE_CHECKS
11067   if (check) {
11068     assert(N && "Checking nonexistent SDNode");
11069     SmallPtrSet<const SDNode*, 32> visited;
11070     SmallPtrSet<const SDNode*, 32> checked;
11071     checkForCyclesHelper(N, visited, checked, DAG);
11072   }
11073 #endif  // !NDEBUG
11074 }
11075 
11076 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11077   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11078 }
11079