1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 141 unsigned EltSize = 142 N->getValueType(0).getVectorElementType().getSizeInBits(); 143 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 144 SplatVal = Op0->getAPIntValue().trunc(EltSize); 145 return true; 146 } 147 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 149 return true; 150 } 151 } 152 153 auto *BV = dyn_cast<BuildVectorSDNode>(N); 154 if (!BV) 155 return false; 156 157 APInt SplatUndef; 158 unsigned SplatBitSize; 159 bool HasUndefs; 160 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 161 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 162 EltSize) && 163 EltSize == SplatBitSize; 164 } 165 166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 167 // specializations of the more general isConstantSplatVector()? 168 169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 170 // Look through a bit convert. 171 while (N->getOpcode() == ISD::BITCAST) 172 N = N->getOperand(0).getNode(); 173 174 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 175 APInt SplatVal; 176 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 177 } 178 179 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 180 181 unsigned i = 0, e = N->getNumOperands(); 182 183 // Skip over all of the undef values. 184 while (i != e && N->getOperand(i).isUndef()) 185 ++i; 186 187 // Do not accept an all-undef vector. 188 if (i == e) return false; 189 190 // Do not accept build_vectors that aren't all constants or which have non-~0 191 // elements. We have to be a bit careful here, as the type of the constant 192 // may not be the same as the type of the vector elements due to type 193 // legalization (the elements are promoted to a legal type for the target and 194 // a vector of a type may be legal when the base element type is not). 195 // We only want to check enough bits to cover the vector elements, because 196 // we care if the resultant vector is all ones, not whether the individual 197 // constants are. 198 SDValue NotZero = N->getOperand(i); 199 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 200 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 201 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 202 return false; 203 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 204 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 205 return false; 206 } else 207 return false; 208 209 // Okay, we have at least one ~0 value, check to see if the rest match or are 210 // undefs. Even with the above element type twiddling, this should be OK, as 211 // the same type legalization should have applied to all the elements. 212 for (++i; i != e; ++i) 213 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 214 return false; 215 return true; 216 } 217 218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 219 // Look through a bit convert. 220 while (N->getOpcode() == ISD::BITCAST) 221 N = N->getOperand(0).getNode(); 222 223 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 224 APInt SplatVal; 225 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 226 } 227 228 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 229 230 bool IsAllUndef = true; 231 for (const SDValue &Op : N->op_values()) { 232 if (Op.isUndef()) 233 continue; 234 IsAllUndef = false; 235 // Do not accept build_vectors that aren't all constants or which have non-0 236 // elements. We have to be a bit careful here, as the type of the constant 237 // may not be the same as the type of the vector elements due to type 238 // legalization (the elements are promoted to a legal type for the target 239 // and a vector of a type may be legal when the base element type is not). 240 // We only want to check enough bits to cover the vector elements, because 241 // we care if the resultant vector is all zeros, not whether the individual 242 // constants are. 243 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 244 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 245 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 246 return false; 247 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 248 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 249 return false; 250 } else 251 return false; 252 } 253 254 // Do not accept an all-undef vector. 255 if (IsAllUndef) 256 return false; 257 return true; 258 } 259 260 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 261 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 262 } 263 264 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 265 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 266 } 267 268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 269 if (N->getOpcode() != ISD::BUILD_VECTOR) 270 return false; 271 272 for (const SDValue &Op : N->op_values()) { 273 if (Op.isUndef()) 274 continue; 275 if (!isa<ConstantSDNode>(Op)) 276 return false; 277 } 278 return true; 279 } 280 281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 282 if (N->getOpcode() != ISD::BUILD_VECTOR) 283 return false; 284 285 for (const SDValue &Op : N->op_values()) { 286 if (Op.isUndef()) 287 continue; 288 if (!isa<ConstantFPSDNode>(Op)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::allOperandsUndef(const SDNode *N) { 295 // Return false if the node has no operands. 296 // This is "logically inconsistent" with the definition of "all" but 297 // is probably the desired behavior. 298 if (N->getNumOperands() == 0) 299 return false; 300 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 301 } 302 303 bool ISD::matchUnaryPredicate(SDValue Op, 304 std::function<bool(ConstantSDNode *)> Match, 305 bool AllowUndefs) { 306 // FIXME: Add support for scalar UNDEF cases? 307 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 308 return Match(Cst); 309 310 // FIXME: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != Op.getOpcode() && 312 ISD::SPLAT_VECTOR != Op.getOpcode()) 313 return false; 314 315 EVT SVT = Op.getValueType().getScalarType(); 316 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 317 if (AllowUndefs && Op.getOperand(i).isUndef()) { 318 if (!Match(nullptr)) 319 return false; 320 continue; 321 } 322 323 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 324 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 325 return false; 326 } 327 return true; 328 } 329 330 bool ISD::matchBinaryPredicate( 331 SDValue LHS, SDValue RHS, 332 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 333 bool AllowUndefs, bool AllowTypeMismatch) { 334 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 335 return false; 336 337 // TODO: Add support for scalar UNDEF cases? 338 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 339 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 340 return Match(LHSCst, RHSCst); 341 342 // TODO: Add support for vector UNDEF cases? 343 if (LHS.getOpcode() != RHS.getOpcode() || 344 (LHS.getOpcode() != ISD::BUILD_VECTOR && 345 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 346 return false; 347 348 EVT SVT = LHS.getValueType().getScalarType(); 349 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 350 SDValue LHSOp = LHS.getOperand(i); 351 SDValue RHSOp = RHS.getOperand(i); 352 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 353 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 354 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 355 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 356 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 357 return false; 358 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 359 LHSOp.getValueType() != RHSOp.getValueType())) 360 return false; 361 if (!Match(LHSCst, RHSCst)) 362 return false; 363 } 364 return true; 365 } 366 367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 368 switch (VecReduceOpcode) { 369 default: 370 llvm_unreachable("Expected VECREDUCE opcode"); 371 case ISD::VECREDUCE_FADD: 372 case ISD::VECREDUCE_SEQ_FADD: 373 case ISD::VP_REDUCE_FADD: 374 case ISD::VP_REDUCE_SEQ_FADD: 375 return ISD::FADD; 376 case ISD::VECREDUCE_FMUL: 377 case ISD::VECREDUCE_SEQ_FMUL: 378 case ISD::VP_REDUCE_FMUL: 379 case ISD::VP_REDUCE_SEQ_FMUL: 380 return ISD::FMUL; 381 case ISD::VECREDUCE_ADD: 382 case ISD::VP_REDUCE_ADD: 383 return ISD::ADD; 384 case ISD::VECREDUCE_MUL: 385 case ISD::VP_REDUCE_MUL: 386 return ISD::MUL; 387 case ISD::VECREDUCE_AND: 388 case ISD::VP_REDUCE_AND: 389 return ISD::AND; 390 case ISD::VECREDUCE_OR: 391 case ISD::VP_REDUCE_OR: 392 return ISD::OR; 393 case ISD::VECREDUCE_XOR: 394 case ISD::VP_REDUCE_XOR: 395 return ISD::XOR; 396 case ISD::VECREDUCE_SMAX: 397 case ISD::VP_REDUCE_SMAX: 398 return ISD::SMAX; 399 case ISD::VECREDUCE_SMIN: 400 case ISD::VP_REDUCE_SMIN: 401 return ISD::SMIN; 402 case ISD::VECREDUCE_UMAX: 403 case ISD::VP_REDUCE_UMAX: 404 return ISD::UMAX; 405 case ISD::VECREDUCE_UMIN: 406 case ISD::VP_REDUCE_UMIN: 407 return ISD::UMIN; 408 case ISD::VECREDUCE_FMAX: 409 case ISD::VP_REDUCE_FMAX: 410 return ISD::FMAXNUM; 411 case ISD::VECREDUCE_FMIN: 412 case ISD::VP_REDUCE_FMIN: 413 return ISD::FMINNUM; 414 } 415 } 416 417 bool ISD::isVPOpcode(unsigned Opcode) { 418 switch (Opcode) { 419 default: 420 return false; 421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 422 case ISD::VPSD: \ 423 return true; 424 #include "llvm/IR/VPIntrinsics.def" 425 } 426 } 427 428 bool ISD::isVPBinaryOp(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_BINARYOP return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 bool ISD::isVPReduction(unsigned Opcode) { 441 switch (Opcode) { 442 default: 443 break; 444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 446 #define END_REGISTER_VP_SDNODE(VPSD) break; 447 #include "llvm/IR/VPIntrinsics.def" 448 } 449 return false; 450 } 451 452 /// The operand position of the vector mask. 453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 458 case ISD::VPSD: \ 459 return MASKPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 /// The operand position of the explicit vector length parameter. 465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return None; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 470 case ISD::VPSD: \ 471 return EVLPOS; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 477 switch (ExtType) { 478 case ISD::EXTLOAD: 479 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 480 case ISD::SEXTLOAD: 481 return ISD::SIGN_EXTEND; 482 case ISD::ZEXTLOAD: 483 return ISD::ZERO_EXTEND; 484 default: 485 break; 486 } 487 488 llvm_unreachable("Invalid LoadExtType"); 489 } 490 491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 492 // To perform this operation, we just need to swap the L and G bits of the 493 // operation. 494 unsigned OldL = (Operation >> 2) & 1; 495 unsigned OldG = (Operation >> 1) & 1; 496 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 497 (OldL << 1) | // New G bit 498 (OldG << 2)); // New L bit. 499 } 500 501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 502 unsigned Operation = Op; 503 if (isIntegerLike) 504 Operation ^= 7; // Flip L, G, E bits, but not U. 505 else 506 Operation ^= 15; // Flip all of the condition bits. 507 508 if (Operation > ISD::SETTRUE2) 509 Operation &= ~8; // Don't let N and U bits get set. 510 511 return ISD::CondCode(Operation); 512 } 513 514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 515 return getSetCCInverseImpl(Op, Type.isInteger()); 516 } 517 518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 519 bool isIntegerLike) { 520 return getSetCCInverseImpl(Op, isIntegerLike); 521 } 522 523 /// For an integer comparison, return 1 if the comparison is a signed operation 524 /// and 2 if the result is an unsigned comparison. Return zero if the operation 525 /// does not depend on the sign of the input (setne and seteq). 526 static int isSignedOp(ISD::CondCode Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Illegal integer setcc operation!"); 529 case ISD::SETEQ: 530 case ISD::SETNE: return 0; 531 case ISD::SETLT: 532 case ISD::SETLE: 533 case ISD::SETGT: 534 case ISD::SETGE: return 1; 535 case ISD::SETULT: 536 case ISD::SETULE: 537 case ISD::SETUGT: 538 case ISD::SETUGE: return 2; 539 } 540 } 541 542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 543 EVT Type) { 544 bool IsInteger = Type.isInteger(); 545 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 546 // Cannot fold a signed integer setcc with an unsigned integer setcc. 547 return ISD::SETCC_INVALID; 548 549 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 550 551 // If the N and U bits get set, then the resultant comparison DOES suddenly 552 // care about orderedness, and it is true when ordered. 553 if (Op > ISD::SETTRUE2) 554 Op &= ~16; // Clear the U bit if the N bit is set. 555 556 // Canonicalize illegal integer setcc's. 557 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 558 Op = ISD::SETNE; 559 560 return ISD::CondCode(Op); 561 } 562 563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 564 EVT Type) { 565 bool IsInteger = Type.isInteger(); 566 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 567 // Cannot fold a signed setcc with an unsigned setcc. 568 return ISD::SETCC_INVALID; 569 570 // Combine all of the condition bits. 571 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 572 573 // Canonicalize illegal integer setcc's. 574 if (IsInteger) { 575 switch (Result) { 576 default: break; 577 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 578 case ISD::SETOEQ: // SETEQ & SETU[LG]E 579 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 580 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 581 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 582 } 583 } 584 585 return Result; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SDNode Profile Support 590 //===----------------------------------------------------------------------===// 591 592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 594 ID.AddInteger(OpC); 595 } 596 597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 598 /// solely with their pointer. 599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 600 ID.AddPointer(VTList.VTs); 601 } 602 603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 604 static void AddNodeIDOperands(FoldingSetNodeID &ID, 605 ArrayRef<SDValue> Ops) { 606 for (auto& Op : Ops) { 607 ID.AddPointer(Op.getNode()); 608 ID.AddInteger(Op.getResNo()); 609 } 610 } 611 612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 613 static void AddNodeIDOperands(FoldingSetNodeID &ID, 614 ArrayRef<SDUse> Ops) { 615 for (auto& Op : Ops) { 616 ID.AddPointer(Op.getNode()); 617 ID.AddInteger(Op.getResNo()); 618 } 619 } 620 621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 622 SDVTList VTList, ArrayRef<SDValue> OpList) { 623 AddNodeIDOpcode(ID, OpC); 624 AddNodeIDValueTypes(ID, VTList); 625 AddNodeIDOperands(ID, OpList); 626 } 627 628 /// If this is an SDNode with special info, add this info to the NodeID data. 629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 630 switch (N->getOpcode()) { 631 case ISD::TargetExternalSymbol: 632 case ISD::ExternalSymbol: 633 case ISD::MCSymbol: 634 llvm_unreachable("Should only be used on nodes with operands"); 635 default: break; // Normal nodes don't need extra info. 636 case ISD::TargetConstant: 637 case ISD::Constant: { 638 const ConstantSDNode *C = cast<ConstantSDNode>(N); 639 ID.AddPointer(C->getConstantIntValue()); 640 ID.AddBoolean(C->isOpaque()); 641 break; 642 } 643 case ISD::TargetConstantFP: 644 case ISD::ConstantFP: 645 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 646 break; 647 case ISD::TargetGlobalAddress: 648 case ISD::GlobalAddress: 649 case ISD::TargetGlobalTLSAddress: 650 case ISD::GlobalTLSAddress: { 651 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 652 ID.AddPointer(GA->getGlobal()); 653 ID.AddInteger(GA->getOffset()); 654 ID.AddInteger(GA->getTargetFlags()); 655 break; 656 } 657 case ISD::BasicBlock: 658 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 659 break; 660 case ISD::Register: 661 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 662 break; 663 case ISD::RegisterMask: 664 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 665 break; 666 case ISD::SRCVALUE: 667 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 668 break; 669 case ISD::FrameIndex: 670 case ISD::TargetFrameIndex: 671 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 672 break; 673 case ISD::LIFETIME_START: 674 case ISD::LIFETIME_END: 675 if (cast<LifetimeSDNode>(N)->hasOffset()) { 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 677 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 678 } 679 break; 680 case ISD::PSEUDO_PROBE: 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 683 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 684 break; 685 case ISD::JumpTable: 686 case ISD::TargetJumpTable: 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 688 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 689 break; 690 case ISD::ConstantPool: 691 case ISD::TargetConstantPool: { 692 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 693 ID.AddInteger(CP->getAlign().value()); 694 ID.AddInteger(CP->getOffset()); 695 if (CP->isMachineConstantPoolEntry()) 696 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 697 else 698 ID.AddPointer(CP->getConstVal()); 699 ID.AddInteger(CP->getTargetFlags()); 700 break; 701 } 702 case ISD::TargetIndex: { 703 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 704 ID.AddInteger(TI->getIndex()); 705 ID.AddInteger(TI->getOffset()); 706 ID.AddInteger(TI->getTargetFlags()); 707 break; 708 } 709 case ISD::LOAD: { 710 const LoadSDNode *LD = cast<LoadSDNode>(N); 711 ID.AddInteger(LD->getMemoryVT().getRawBits()); 712 ID.AddInteger(LD->getRawSubclassData()); 713 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 714 ID.AddInteger(LD->getMemOperand()->getFlags()); 715 break; 716 } 717 case ISD::STORE: { 718 const StoreSDNode *ST = cast<StoreSDNode>(N); 719 ID.AddInteger(ST->getMemoryVT().getRawBits()); 720 ID.AddInteger(ST->getRawSubclassData()); 721 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 722 ID.AddInteger(ST->getMemOperand()->getFlags()); 723 break; 724 } 725 case ISD::VP_LOAD: { 726 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 727 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 728 ID.AddInteger(ELD->getRawSubclassData()); 729 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 730 ID.AddInteger(ELD->getMemOperand()->getFlags()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 ID.AddInteger(EST->getMemOperand()->getFlags()); 739 break; 740 } 741 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 742 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 743 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 744 ID.AddInteger(SLD->getRawSubclassData()); 745 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 746 break; 747 } 748 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 749 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 750 ID.AddInteger(SST->getMemoryVT().getRawBits()); 751 ID.AddInteger(SST->getRawSubclassData()); 752 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 753 break; 754 } 755 case ISD::VP_GATHER: { 756 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 757 ID.AddInteger(EG->getMemoryVT().getRawBits()); 758 ID.AddInteger(EG->getRawSubclassData()); 759 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 760 ID.AddInteger(EG->getMemOperand()->getFlags()); 761 break; 762 } 763 case ISD::VP_SCATTER: { 764 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 765 ID.AddInteger(ES->getMemoryVT().getRawBits()); 766 ID.AddInteger(ES->getRawSubclassData()); 767 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 768 ID.AddInteger(ES->getMemOperand()->getFlags()); 769 break; 770 } 771 case ISD::MLOAD: { 772 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 773 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 774 ID.AddInteger(MLD->getRawSubclassData()); 775 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 776 ID.AddInteger(MLD->getMemOperand()->getFlags()); 777 break; 778 } 779 case ISD::MSTORE: { 780 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 781 ID.AddInteger(MST->getMemoryVT().getRawBits()); 782 ID.AddInteger(MST->getRawSubclassData()); 783 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 784 ID.AddInteger(MST->getMemOperand()->getFlags()); 785 break; 786 } 787 case ISD::MGATHER: { 788 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 789 ID.AddInteger(MG->getMemoryVT().getRawBits()); 790 ID.AddInteger(MG->getRawSubclassData()); 791 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 792 ID.AddInteger(MG->getMemOperand()->getFlags()); 793 break; 794 } 795 case ISD::MSCATTER: { 796 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 797 ID.AddInteger(MS->getMemoryVT().getRawBits()); 798 ID.AddInteger(MS->getRawSubclassData()); 799 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 800 ID.AddInteger(MS->getMemOperand()->getFlags()); 801 break; 802 } 803 case ISD::ATOMIC_CMP_SWAP: 804 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 805 case ISD::ATOMIC_SWAP: 806 case ISD::ATOMIC_LOAD_ADD: 807 case ISD::ATOMIC_LOAD_SUB: 808 case ISD::ATOMIC_LOAD_AND: 809 case ISD::ATOMIC_LOAD_CLR: 810 case ISD::ATOMIC_LOAD_OR: 811 case ISD::ATOMIC_LOAD_XOR: 812 case ISD::ATOMIC_LOAD_NAND: 813 case ISD::ATOMIC_LOAD_MIN: 814 case ISD::ATOMIC_LOAD_MAX: 815 case ISD::ATOMIC_LOAD_UMIN: 816 case ISD::ATOMIC_LOAD_UMAX: 817 case ISD::ATOMIC_LOAD: 818 case ISD::ATOMIC_STORE: { 819 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 820 ID.AddInteger(AT->getMemoryVT().getRawBits()); 821 ID.AddInteger(AT->getRawSubclassData()); 822 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(AT->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::PREFETCH: { 827 const MemSDNode *PF = cast<MemSDNode>(N); 828 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 829 ID.AddInteger(PF->getMemOperand()->getFlags()); 830 break; 831 } 832 case ISD::VECTOR_SHUFFLE: { 833 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 834 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 835 i != e; ++i) 836 ID.AddInteger(SVN->getMaskElt(i)); 837 break; 838 } 839 case ISD::TargetBlockAddress: 840 case ISD::BlockAddress: { 841 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 842 ID.AddPointer(BA->getBlockAddress()); 843 ID.AddInteger(BA->getOffset()); 844 ID.AddInteger(BA->getTargetFlags()); 845 break; 846 } 847 case ISD::AssertAlign: 848 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 849 break; 850 } // end switch (N->getOpcode()) 851 852 // Target specific memory nodes could also have address spaces and flags 853 // to check. 854 if (N->isTargetMemoryOpcode()) { 855 const MemSDNode *MN = cast<MemSDNode>(N); 856 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MN->getMemOperand()->getFlags()); 858 } 859 } 860 861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 862 /// data. 863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 864 AddNodeIDOpcode(ID, N->getOpcode()); 865 // Add the return value info. 866 AddNodeIDValueTypes(ID, N->getVTList()); 867 // Add the operand info. 868 AddNodeIDOperands(ID, N->ops()); 869 870 // Handle SDNode leafs with special info. 871 AddNodeIDCustom(ID, N); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // SelectionDAG Class 876 //===----------------------------------------------------------------------===// 877 878 /// doNotCSE - Return true if CSE should not be performed for this node. 879 static bool doNotCSE(SDNode *N) { 880 if (N->getValueType(0) == MVT::Glue) 881 return true; // Never CSE anything that produces a flag. 882 883 switch (N->getOpcode()) { 884 default: break; 885 case ISD::HANDLENODE: 886 case ISD::EH_LABEL: 887 return true; // Never CSE these nodes. 888 } 889 890 // Check that remaining values produced are not flags. 891 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 892 if (N->getValueType(i) == MVT::Glue) 893 return true; // Never CSE anything that produces a flag. 894 895 return false; 896 } 897 898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 899 /// SelectionDAG. 900 void SelectionDAG::RemoveDeadNodes() { 901 // Create a dummy node (which is not added to allnodes), that adds a reference 902 // to the root node, preventing it from being deleted. 903 HandleSDNode Dummy(getRoot()); 904 905 SmallVector<SDNode*, 128> DeadNodes; 906 907 // Add all obviously-dead nodes to the DeadNodes worklist. 908 for (SDNode &Node : allnodes()) 909 if (Node.use_empty()) 910 DeadNodes.push_back(&Node); 911 912 RemoveDeadNodes(DeadNodes); 913 914 // If the root changed (e.g. it was a dead load, update the root). 915 setRoot(Dummy.getValue()); 916 } 917 918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 919 /// given list, and any nodes that become unreachable as a result. 920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 921 922 // Process the worklist, deleting the nodes and adding their uses to the 923 // worklist. 924 while (!DeadNodes.empty()) { 925 SDNode *N = DeadNodes.pop_back_val(); 926 // Skip to next node if we've already managed to delete the node. This could 927 // happen if replacing a node causes a node previously added to the node to 928 // be deleted. 929 if (N->getOpcode() == ISD::DELETED_NODE) 930 continue; 931 932 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 933 DUL->NodeDeleted(N, nullptr); 934 935 // Take the node out of the appropriate CSE map. 936 RemoveNodeFromCSEMaps(N); 937 938 // Next, brutally remove the operand list. This is safe to do, as there are 939 // no cycles in the graph. 940 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 941 SDUse &Use = *I++; 942 SDNode *Operand = Use.getNode(); 943 Use.set(SDValue()); 944 945 // Now that we removed this operand, see if there are no uses of it left. 946 if (Operand->use_empty()) 947 DeadNodes.push_back(Operand); 948 } 949 950 DeallocateNode(N); 951 } 952 } 953 954 void SelectionDAG::RemoveDeadNode(SDNode *N){ 955 SmallVector<SDNode*, 16> DeadNodes(1, N); 956 957 // Create a dummy node that adds a reference to the root node, preventing 958 // it from being deleted. (This matters if the root is an operand of the 959 // dead node.) 960 HandleSDNode Dummy(getRoot()); 961 962 RemoveDeadNodes(DeadNodes); 963 } 964 965 void SelectionDAG::DeleteNode(SDNode *N) { 966 // First take this out of the appropriate CSE map. 967 RemoveNodeFromCSEMaps(N); 968 969 // Finally, remove uses due to operands of this node, remove from the 970 // AllNodes list, and delete the node. 971 DeleteNodeNotInCSEMaps(N); 972 } 973 974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 975 assert(N->getIterator() != AllNodes.begin() && 976 "Cannot delete the entry node!"); 977 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 978 979 // Drop all of the operands and decrement used node's use counts. 980 N->DropOperands(); 981 982 DeallocateNode(N); 983 } 984 985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 986 assert(!(V->isVariadic() && isParameter)); 987 if (isParameter) 988 ByvalParmDbgValues.push_back(V); 989 else 990 DbgValues.push_back(V); 991 for (const SDNode *Node : V->getSDNodes()) 992 if (Node) 993 DbgValMap[Node].push_back(V); 994 } 995 996 void SDDbgInfo::erase(const SDNode *Node) { 997 DbgValMapType::iterator I = DbgValMap.find(Node); 998 if (I == DbgValMap.end()) 999 return; 1000 for (auto &Val: I->second) 1001 Val->setIsInvalidated(); 1002 DbgValMap.erase(I); 1003 } 1004 1005 void SelectionDAG::DeallocateNode(SDNode *N) { 1006 // If we have operands, deallocate them. 1007 removeOperands(N); 1008 1009 NodeAllocator.Deallocate(AllNodes.remove(N)); 1010 1011 // Set the opcode to DELETED_NODE to help catch bugs when node 1012 // memory is reallocated. 1013 // FIXME: There are places in SDag that have grown a dependency on the opcode 1014 // value in the released node. 1015 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1016 N->NodeType = ISD::DELETED_NODE; 1017 1018 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1019 // them and forget about that node. 1020 DbgInfo->erase(N); 1021 } 1022 1023 #ifndef NDEBUG 1024 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1025 static void VerifySDNode(SDNode *N) { 1026 switch (N->getOpcode()) { 1027 default: 1028 break; 1029 case ISD::BUILD_PAIR: { 1030 EVT VT = N->getValueType(0); 1031 assert(N->getNumValues() == 1 && "Too many results!"); 1032 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1033 "Wrong return type!"); 1034 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1035 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1036 "Mismatched operand types!"); 1037 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1038 "Wrong operand type!"); 1039 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1040 "Wrong return type size"); 1041 break; 1042 } 1043 case ISD::BUILD_VECTOR: { 1044 assert(N->getNumValues() == 1 && "Too many results!"); 1045 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1046 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1047 "Wrong number of operands!"); 1048 EVT EltVT = N->getValueType(0).getVectorElementType(); 1049 for (const SDUse &Op : N->ops()) { 1050 assert((Op.getValueType() == EltVT || 1051 (EltVT.isInteger() && Op.getValueType().isInteger() && 1052 EltVT.bitsLE(Op.getValueType()))) && 1053 "Wrong operand type!"); 1054 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1055 "Operands must all have the same type"); 1056 } 1057 break; 1058 } 1059 } 1060 } 1061 #endif // NDEBUG 1062 1063 /// Insert a newly allocated node into the DAG. 1064 /// 1065 /// Handles insertion into the all nodes list and CSE map, as well as 1066 /// verification and other common operations when a new node is allocated. 1067 void SelectionDAG::InsertNode(SDNode *N) { 1068 AllNodes.push_back(N); 1069 #ifndef NDEBUG 1070 N->PersistentId = NextPersistentId++; 1071 VerifySDNode(N); 1072 #endif 1073 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1074 DUL->NodeInserted(N); 1075 } 1076 1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1078 /// correspond to it. This is useful when we're about to delete or repurpose 1079 /// the node. We don't want future request for structurally identical nodes 1080 /// to return N anymore. 1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1082 bool Erased = false; 1083 switch (N->getOpcode()) { 1084 case ISD::HANDLENODE: return false; // noop. 1085 case ISD::CONDCODE: 1086 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1087 "Cond code doesn't exist!"); 1088 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1089 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1090 break; 1091 case ISD::ExternalSymbol: 1092 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1093 break; 1094 case ISD::TargetExternalSymbol: { 1095 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1096 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1097 ESN->getSymbol(), ESN->getTargetFlags())); 1098 break; 1099 } 1100 case ISD::MCSymbol: { 1101 auto *MCSN = cast<MCSymbolSDNode>(N); 1102 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1103 break; 1104 } 1105 case ISD::VALUETYPE: { 1106 EVT VT = cast<VTSDNode>(N)->getVT(); 1107 if (VT.isExtended()) { 1108 Erased = ExtendedValueTypeNodes.erase(VT); 1109 } else { 1110 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1111 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1112 } 1113 break; 1114 } 1115 default: 1116 // Remove it from the CSE Map. 1117 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1118 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1119 Erased = CSEMap.RemoveNode(N); 1120 break; 1121 } 1122 #ifndef NDEBUG 1123 // Verify that the node was actually in one of the CSE maps, unless it has a 1124 // flag result (which cannot be CSE'd) or is one of the special cases that are 1125 // not subject to CSE. 1126 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1127 !N->isMachineOpcode() && !doNotCSE(N)) { 1128 N->dump(this); 1129 dbgs() << "\n"; 1130 llvm_unreachable("Node is not in map!"); 1131 } 1132 #endif 1133 return Erased; 1134 } 1135 1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1138 /// node already exists, in which case transfer all its users to the existing 1139 /// node. This transfer can potentially trigger recursive merging. 1140 void 1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1142 // For node types that aren't CSE'd, just act as if no identical node 1143 // already exists. 1144 if (!doNotCSE(N)) { 1145 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1146 if (Existing != N) { 1147 // If there was already an existing matching node, use ReplaceAllUsesWith 1148 // to replace the dead one with the existing one. This can cause 1149 // recursive merging of other unrelated nodes down the line. 1150 ReplaceAllUsesWith(N, Existing); 1151 1152 // N is now dead. Inform the listeners and delete it. 1153 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1154 DUL->NodeDeleted(N, Existing); 1155 DeleteNodeNotInCSEMaps(N); 1156 return; 1157 } 1158 } 1159 1160 // If the node doesn't already exist, we updated it. Inform listeners. 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeUpdated(N); 1163 } 1164 1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1166 /// were replaced with those specified. If this node is never memoized, 1167 /// return null, otherwise return a pointer to the slot it would take. If a 1168 /// node already exists with these operands, the slot will be non-null. 1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1170 void *&InsertPos) { 1171 if (doNotCSE(N)) 1172 return nullptr; 1173 1174 SDValue Ops[] = { Op }; 1175 FoldingSetNodeID ID; 1176 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1177 AddNodeIDCustom(ID, N); 1178 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1179 if (Node) 1180 Node->intersectFlagsWith(N->getFlags()); 1181 return Node; 1182 } 1183 1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1185 /// were replaced with those specified. If this node is never memoized, 1186 /// return null, otherwise return a pointer to the slot it would take. If a 1187 /// node already exists with these operands, the slot will be non-null. 1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1189 SDValue Op1, SDValue Op2, 1190 void *&InsertPos) { 1191 if (doNotCSE(N)) 1192 return nullptr; 1193 1194 SDValue Ops[] = { Op1, Op2 }; 1195 FoldingSetNodeID ID; 1196 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1197 AddNodeIDCustom(ID, N); 1198 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1199 if (Node) 1200 Node->intersectFlagsWith(N->getFlags()); 1201 return Node; 1202 } 1203 1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1205 /// were replaced with those specified. If this node is never memoized, 1206 /// return null, otherwise return a pointer to the slot it would take. If a 1207 /// node already exists with these operands, the slot will be non-null. 1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1209 void *&InsertPos) { 1210 if (doNotCSE(N)) 1211 return nullptr; 1212 1213 FoldingSetNodeID ID; 1214 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1215 AddNodeIDCustom(ID, N); 1216 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1217 if (Node) 1218 Node->intersectFlagsWith(N->getFlags()); 1219 return Node; 1220 } 1221 1222 Align SelectionDAG::getEVTAlign(EVT VT) const { 1223 Type *Ty = VT == MVT::iPTR ? 1224 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1225 VT.getTypeForEVT(*getContext()); 1226 1227 return getDataLayout().getABITypeAlign(Ty); 1228 } 1229 1230 // EntryNode could meaningfully have debug info if we can find it... 1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1232 : TM(tm), OptLevel(OL), 1233 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1234 Root(getEntryNode()) { 1235 InsertNode(&EntryNode); 1236 DbgInfo = new SDDbgInfo(); 1237 } 1238 1239 void SelectionDAG::init(MachineFunction &NewMF, 1240 OptimizationRemarkEmitter &NewORE, 1241 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1242 LegacyDivergenceAnalysis * Divergence, 1243 ProfileSummaryInfo *PSIin, 1244 BlockFrequencyInfo *BFIin) { 1245 MF = &NewMF; 1246 SDAGISelPass = PassPtr; 1247 ORE = &NewORE; 1248 TLI = getSubtarget().getTargetLowering(); 1249 TSI = getSubtarget().getSelectionDAGInfo(); 1250 LibInfo = LibraryInfo; 1251 Context = &MF->getFunction().getContext(); 1252 DA = Divergence; 1253 PSI = PSIin; 1254 BFI = BFIin; 1255 } 1256 1257 SelectionDAG::~SelectionDAG() { 1258 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1259 allnodes_clear(); 1260 OperandRecycler.clear(OperandAllocator); 1261 delete DbgInfo; 1262 } 1263 1264 bool SelectionDAG::shouldOptForSize() const { 1265 return MF->getFunction().hasOptSize() || 1266 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1267 } 1268 1269 void SelectionDAG::allnodes_clear() { 1270 assert(&*AllNodes.begin() == &EntryNode); 1271 AllNodes.remove(AllNodes.begin()); 1272 while (!AllNodes.empty()) 1273 DeallocateNode(&AllNodes.front()); 1274 #ifndef NDEBUG 1275 NextPersistentId = 0; 1276 #endif 1277 } 1278 1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1280 void *&InsertPos) { 1281 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1282 if (N) { 1283 switch (N->getOpcode()) { 1284 default: break; 1285 case ISD::Constant: 1286 case ISD::ConstantFP: 1287 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1288 "debug location. Use another overload."); 1289 } 1290 } 1291 return N; 1292 } 1293 1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1295 const SDLoc &DL, void *&InsertPos) { 1296 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1297 if (N) { 1298 switch (N->getOpcode()) { 1299 case ISD::Constant: 1300 case ISD::ConstantFP: 1301 // Erase debug location from the node if the node is used at several 1302 // different places. Do not propagate one location to all uses as it 1303 // will cause a worse single stepping debugging experience. 1304 if (N->getDebugLoc() != DL.getDebugLoc()) 1305 N->setDebugLoc(DebugLoc()); 1306 break; 1307 default: 1308 // When the node's point of use is located earlier in the instruction 1309 // sequence than its prior point of use, update its debug info to the 1310 // earlier location. 1311 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1312 N->setDebugLoc(DL.getDebugLoc()); 1313 break; 1314 } 1315 } 1316 return N; 1317 } 1318 1319 void SelectionDAG::clear() { 1320 allnodes_clear(); 1321 OperandRecycler.clear(OperandAllocator); 1322 OperandAllocator.Reset(); 1323 CSEMap.clear(); 1324 1325 ExtendedValueTypeNodes.clear(); 1326 ExternalSymbols.clear(); 1327 TargetExternalSymbols.clear(); 1328 MCSymbols.clear(); 1329 SDCallSiteDbgInfo.clear(); 1330 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1331 static_cast<CondCodeSDNode*>(nullptr)); 1332 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1333 static_cast<SDNode*>(nullptr)); 1334 1335 EntryNode.UseList = nullptr; 1336 InsertNode(&EntryNode); 1337 Root = getEntryNode(); 1338 DbgInfo->clear(); 1339 } 1340 1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1342 return VT.bitsGT(Op.getValueType()) 1343 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1344 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1345 } 1346 1347 std::pair<SDValue, SDValue> 1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1349 const SDLoc &DL, EVT VT) { 1350 assert(!VT.bitsEq(Op.getValueType()) && 1351 "Strict no-op FP extend/round not allowed."); 1352 SDValue Res = 1353 VT.bitsGT(Op.getValueType()) 1354 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1355 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1356 {Chain, Op, getIntPtrConstant(0, DL)}); 1357 1358 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1359 } 1360 1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 return VT.bitsGT(Op.getValueType()) ? 1363 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1364 getNode(ISD::TRUNCATE, DL, VT, Op); 1365 } 1366 1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1368 return VT.bitsGT(Op.getValueType()) ? 1369 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1370 getNode(ISD::TRUNCATE, DL, VT, Op); 1371 } 1372 1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1374 return VT.bitsGT(Op.getValueType()) ? 1375 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1376 getNode(ISD::TRUNCATE, DL, VT, Op); 1377 } 1378 1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1380 EVT OpVT) { 1381 if (VT.bitsLE(Op.getValueType())) 1382 return getNode(ISD::TRUNCATE, SL, VT, Op); 1383 1384 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1385 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1386 } 1387 1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1389 EVT OpVT = Op.getValueType(); 1390 assert(VT.isInteger() && OpVT.isInteger() && 1391 "Cannot getZeroExtendInReg FP types"); 1392 assert(VT.isVector() == OpVT.isVector() && 1393 "getZeroExtendInReg type should be vector iff the operand " 1394 "type is vector!"); 1395 assert((!VT.isVector() || 1396 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1397 "Vector element counts must match in getZeroExtendInReg"); 1398 assert(VT.bitsLE(OpVT) && "Not extending!"); 1399 if (OpVT == VT) 1400 return Op; 1401 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1402 VT.getScalarSizeInBits()); 1403 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1404 } 1405 1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1407 // Only unsigned pointer semantics are supported right now. In the future this 1408 // might delegate to TLI to check pointer signedness. 1409 return getZExtOrTrunc(Op, DL, VT); 1410 } 1411 1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1413 // Only unsigned pointer semantics are supported right now. In the future this 1414 // might delegate to TLI to check pointer signedness. 1415 return getZeroExtendInReg(Op, DL, VT); 1416 } 1417 1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1420 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1421 } 1422 1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1424 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1425 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1426 } 1427 1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1429 SDValue Mask, SDValue EVL, EVT VT) { 1430 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1431 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1432 } 1433 1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1435 EVT OpVT) { 1436 if (!V) 1437 return getConstant(0, DL, VT); 1438 1439 switch (TLI->getBooleanContents(OpVT)) { 1440 case TargetLowering::ZeroOrOneBooleanContent: 1441 case TargetLowering::UndefinedBooleanContent: 1442 return getConstant(1, DL, VT); 1443 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1444 return getAllOnesConstant(DL, VT); 1445 } 1446 llvm_unreachable("Unexpected boolean content enum!"); 1447 } 1448 1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1450 bool isT, bool isO) { 1451 EVT EltVT = VT.getScalarType(); 1452 assert((EltVT.getSizeInBits() >= 64 || 1453 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1454 "getConstant with a uint64_t value that doesn't fit in the type!"); 1455 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1456 } 1457 1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1459 bool isT, bool isO) { 1460 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1461 } 1462 1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1464 EVT VT, bool isT, bool isO) { 1465 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1466 1467 EVT EltVT = VT.getScalarType(); 1468 const ConstantInt *Elt = &Val; 1469 1470 // In some cases the vector type is legal but the element type is illegal and 1471 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1472 // inserted value (the type does not need to match the vector element type). 1473 // Any extra bits introduced will be truncated away. 1474 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1475 TargetLowering::TypePromoteInteger) { 1476 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1477 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1478 Elt = ConstantInt::get(*getContext(), NewVal); 1479 } 1480 // In other cases the element type is illegal and needs to be expanded, for 1481 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1482 // the value into n parts and use a vector type with n-times the elements. 1483 // Then bitcast to the type requested. 1484 // Legalizing constants too early makes the DAGCombiner's job harder so we 1485 // only legalize if the DAG tells us we must produce legal types. 1486 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1487 TLI->getTypeAction(*getContext(), EltVT) == 1488 TargetLowering::TypeExpandInteger) { 1489 const APInt &NewVal = Elt->getValue(); 1490 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1491 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1492 1493 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1494 if (VT.isScalableVector()) { 1495 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1496 "Can only handle an even split!"); 1497 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1498 1499 SmallVector<SDValue, 2> ScalarParts; 1500 for (unsigned i = 0; i != Parts; ++i) 1501 ScalarParts.push_back(getConstant( 1502 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1503 ViaEltVT, isT, isO)); 1504 1505 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1506 } 1507 1508 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1509 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1510 1511 // Check the temporary vector is the correct size. If this fails then 1512 // getTypeToTransformTo() probably returned a type whose size (in bits) 1513 // isn't a power-of-2 factor of the requested type size. 1514 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1515 1516 SmallVector<SDValue, 2> EltParts; 1517 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1518 EltParts.push_back(getConstant( 1519 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1520 ViaEltVT, isT, isO)); 1521 1522 // EltParts is currently in little endian order. If we actually want 1523 // big-endian order then reverse it now. 1524 if (getDataLayout().isBigEndian()) 1525 std::reverse(EltParts.begin(), EltParts.end()); 1526 1527 // The elements must be reversed when the element order is different 1528 // to the endianness of the elements (because the BITCAST is itself a 1529 // vector shuffle in this situation). However, we do not need any code to 1530 // perform this reversal because getConstant() is producing a vector 1531 // splat. 1532 // This situation occurs in MIPS MSA. 1533 1534 SmallVector<SDValue, 8> Ops; 1535 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1536 llvm::append_range(Ops, EltParts); 1537 1538 SDValue V = 1539 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1540 return V; 1541 } 1542 1543 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1544 "APInt size does not match type size!"); 1545 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1546 FoldingSetNodeID ID; 1547 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1548 ID.AddPointer(Elt); 1549 ID.AddBoolean(isO); 1550 void *IP = nullptr; 1551 SDNode *N = nullptr; 1552 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1553 if (!VT.isVector()) 1554 return SDValue(N, 0); 1555 1556 if (!N) { 1557 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1558 CSEMap.InsertNode(N, IP); 1559 InsertNode(N); 1560 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1561 } 1562 1563 SDValue Result(N, 0); 1564 if (VT.isScalableVector()) 1565 Result = getSplatVector(VT, DL, Result); 1566 else if (VT.isVector()) 1567 Result = getSplatBuildVector(VT, DL, Result); 1568 1569 return Result; 1570 } 1571 1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1573 bool isTarget) { 1574 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1575 } 1576 1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1578 const SDLoc &DL, bool LegalTypes) { 1579 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1580 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1581 return getConstant(Val, DL, ShiftVT); 1582 } 1583 1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1585 bool isTarget) { 1586 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1587 } 1588 1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1590 bool isTarget) { 1591 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1592 } 1593 1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1595 EVT VT, bool isTarget) { 1596 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1597 1598 EVT EltVT = VT.getScalarType(); 1599 1600 // Do the map lookup using the actual bit pattern for the floating point 1601 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1602 // we don't have issues with SNANs. 1603 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1604 FoldingSetNodeID ID; 1605 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1606 ID.AddPointer(&V); 1607 void *IP = nullptr; 1608 SDNode *N = nullptr; 1609 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1610 if (!VT.isVector()) 1611 return SDValue(N, 0); 1612 1613 if (!N) { 1614 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1615 CSEMap.InsertNode(N, IP); 1616 InsertNode(N); 1617 } 1618 1619 SDValue Result(N, 0); 1620 if (VT.isScalableVector()) 1621 Result = getSplatVector(VT, DL, Result); 1622 else if (VT.isVector()) 1623 Result = getSplatBuildVector(VT, DL, Result); 1624 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1625 return Result; 1626 } 1627 1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1629 bool isTarget) { 1630 EVT EltVT = VT.getScalarType(); 1631 if (EltVT == MVT::f32) 1632 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1633 if (EltVT == MVT::f64) 1634 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1635 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1636 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1637 bool Ignored; 1638 APFloat APF = APFloat(Val); 1639 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1640 &Ignored); 1641 return getConstantFP(APF, DL, VT, isTarget); 1642 } 1643 llvm_unreachable("Unsupported type in getConstantFP"); 1644 } 1645 1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1647 EVT VT, int64_t Offset, bool isTargetGA, 1648 unsigned TargetFlags) { 1649 assert((TargetFlags == 0 || isTargetGA) && 1650 "Cannot set target flags on target-independent globals"); 1651 1652 // Truncate (with sign-extension) the offset value to the pointer size. 1653 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1654 if (BitWidth < 64) 1655 Offset = SignExtend64(Offset, BitWidth); 1656 1657 unsigned Opc; 1658 if (GV->isThreadLocal()) 1659 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1660 else 1661 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1662 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddPointer(GV); 1666 ID.AddInteger(Offset); 1667 ID.AddInteger(TargetFlags); 1668 void *IP = nullptr; 1669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1670 return SDValue(E, 0); 1671 1672 auto *N = newSDNode<GlobalAddressSDNode>( 1673 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1674 CSEMap.InsertNode(N, IP); 1675 InsertNode(N); 1676 return SDValue(N, 0); 1677 } 1678 1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1680 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1681 FoldingSetNodeID ID; 1682 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1683 ID.AddInteger(FI); 1684 void *IP = nullptr; 1685 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1686 return SDValue(E, 0); 1687 1688 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1689 CSEMap.InsertNode(N, IP); 1690 InsertNode(N); 1691 return SDValue(N, 0); 1692 } 1693 1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1695 unsigned TargetFlags) { 1696 assert((TargetFlags == 0 || isTarget) && 1697 "Cannot set target flags on target-independent jump tables"); 1698 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(JTI); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 return SDValue(N, 0); 1711 } 1712 1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1714 MaybeAlign Alignment, int Offset, 1715 bool isTarget, unsigned TargetFlags) { 1716 assert((TargetFlags == 0 || isTarget) && 1717 "Cannot set target flags on target-independent globals"); 1718 if (!Alignment) 1719 Alignment = shouldOptForSize() 1720 ? getDataLayout().getABITypeAlign(C->getType()) 1721 : getDataLayout().getPrefTypeAlign(C->getType()); 1722 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1723 FoldingSetNodeID ID; 1724 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1725 ID.AddInteger(Alignment->value()); 1726 ID.AddInteger(Offset); 1727 ID.AddPointer(C); 1728 ID.AddInteger(TargetFlags); 1729 void *IP = nullptr; 1730 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1731 return SDValue(E, 0); 1732 1733 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1734 TargetFlags); 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1743 MaybeAlign Alignment, int Offset, 1744 bool isTarget, unsigned TargetFlags) { 1745 assert((TargetFlags == 0 || isTarget) && 1746 "Cannot set target flags on target-independent globals"); 1747 if (!Alignment) 1748 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1750 FoldingSetNodeID ID; 1751 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1752 ID.AddInteger(Alignment->value()); 1753 ID.AddInteger(Offset); 1754 C->addSelectionDAGCSEId(ID); 1755 ID.AddInteger(TargetFlags); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1761 TargetFlags); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1768 unsigned TargetFlags) { 1769 FoldingSetNodeID ID; 1770 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1771 ID.AddInteger(Index); 1772 ID.AddInteger(Offset); 1773 ID.AddInteger(TargetFlags); 1774 void *IP = nullptr; 1775 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1776 return SDValue(E, 0); 1777 1778 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1779 CSEMap.InsertNode(N, IP); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1785 FoldingSetNodeID ID; 1786 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1787 ID.AddPointer(MBB); 1788 void *IP = nullptr; 1789 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1790 return SDValue(E, 0); 1791 1792 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1793 CSEMap.InsertNode(N, IP); 1794 InsertNode(N); 1795 return SDValue(N, 0); 1796 } 1797 1798 SDValue SelectionDAG::getValueType(EVT VT) { 1799 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1800 ValueTypeNodes.size()) 1801 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1802 1803 SDNode *&N = VT.isExtended() ? 1804 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1805 1806 if (N) return SDValue(N, 0); 1807 N = newSDNode<VTSDNode>(VT); 1808 InsertNode(N); 1809 return SDValue(N, 0); 1810 } 1811 1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1813 SDNode *&N = ExternalSymbols[Sym]; 1814 if (N) return SDValue(N, 0); 1815 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1816 InsertNode(N); 1817 return SDValue(N, 0); 1818 } 1819 1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1821 SDNode *&N = MCSymbols[Sym]; 1822 if (N) 1823 return SDValue(N, 0); 1824 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1825 InsertNode(N); 1826 return SDValue(N, 0); 1827 } 1828 1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1830 unsigned TargetFlags) { 1831 SDNode *&N = 1832 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1833 if (N) return SDValue(N, 0); 1834 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1835 InsertNode(N); 1836 return SDValue(N, 0); 1837 } 1838 1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1840 if ((unsigned)Cond >= CondCodeNodes.size()) 1841 CondCodeNodes.resize(Cond+1); 1842 1843 if (!CondCodeNodes[Cond]) { 1844 auto *N = newSDNode<CondCodeSDNode>(Cond); 1845 CondCodeNodes[Cond] = N; 1846 InsertNode(N); 1847 } 1848 1849 return SDValue(CondCodeNodes[Cond], 0); 1850 } 1851 1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1853 APInt One(ResVT.getScalarSizeInBits(), 1); 1854 return getStepVector(DL, ResVT, One); 1855 } 1856 1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1858 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1859 if (ResVT.isScalableVector()) 1860 return getNode( 1861 ISD::STEP_VECTOR, DL, ResVT, 1862 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1863 1864 SmallVector<SDValue, 16> OpsStepConstants; 1865 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1866 OpsStepConstants.push_back( 1867 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1868 return getBuildVector(ResVT, DL, OpsStepConstants); 1869 } 1870 1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1874 std::swap(N1, N2); 1875 ShuffleVectorSDNode::commuteMask(M); 1876 } 1877 1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1879 SDValue N2, ArrayRef<int> Mask) { 1880 assert(VT.getVectorNumElements() == Mask.size() && 1881 "Must have the same number of vector elements as mask elements!"); 1882 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1883 "Invalid VECTOR_SHUFFLE"); 1884 1885 // Canonicalize shuffle undef, undef -> undef 1886 if (N1.isUndef() && N2.isUndef()) 1887 return getUNDEF(VT); 1888 1889 // Validate that all indices in Mask are within the range of the elements 1890 // input to the shuffle. 1891 int NElts = Mask.size(); 1892 assert(llvm::all_of(Mask, 1893 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1894 "Index out of range"); 1895 1896 // Copy the mask so we can do any needed cleanup. 1897 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1898 1899 // Canonicalize shuffle v, v -> v, undef 1900 if (N1 == N2) { 1901 N2 = getUNDEF(VT); 1902 for (int i = 0; i != NElts; ++i) 1903 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1904 } 1905 1906 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1907 if (N1.isUndef()) 1908 commuteShuffle(N1, N2, MaskVec); 1909 1910 if (TLI->hasVectorBlend()) { 1911 // If shuffling a splat, try to blend the splat instead. We do this here so 1912 // that even when this arises during lowering we don't have to re-handle it. 1913 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1914 BitVector UndefElements; 1915 SDValue Splat = BV->getSplatValue(&UndefElements); 1916 if (!Splat) 1917 return; 1918 1919 for (int i = 0; i < NElts; ++i) { 1920 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1921 continue; 1922 1923 // If this input comes from undef, mark it as such. 1924 if (UndefElements[MaskVec[i] - Offset]) { 1925 MaskVec[i] = -1; 1926 continue; 1927 } 1928 1929 // If we can blend a non-undef lane, use that instead. 1930 if (!UndefElements[i]) 1931 MaskVec[i] = i + Offset; 1932 } 1933 }; 1934 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1935 BlendSplat(N1BV, 0); 1936 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1937 BlendSplat(N2BV, NElts); 1938 } 1939 1940 // Canonicalize all index into lhs, -> shuffle lhs, undef 1941 // Canonicalize all index into rhs, -> shuffle rhs, undef 1942 bool AllLHS = true, AllRHS = true; 1943 bool N2Undef = N2.isUndef(); 1944 for (int i = 0; i != NElts; ++i) { 1945 if (MaskVec[i] >= NElts) { 1946 if (N2Undef) 1947 MaskVec[i] = -1; 1948 else 1949 AllLHS = false; 1950 } else if (MaskVec[i] >= 0) { 1951 AllRHS = false; 1952 } 1953 } 1954 if (AllLHS && AllRHS) 1955 return getUNDEF(VT); 1956 if (AllLHS && !N2Undef) 1957 N2 = getUNDEF(VT); 1958 if (AllRHS) { 1959 N1 = getUNDEF(VT); 1960 commuteShuffle(N1, N2, MaskVec); 1961 } 1962 // Reset our undef status after accounting for the mask. 1963 N2Undef = N2.isUndef(); 1964 // Re-check whether both sides ended up undef. 1965 if (N1.isUndef() && N2Undef) 1966 return getUNDEF(VT); 1967 1968 // If Identity shuffle return that node. 1969 bool Identity = true, AllSame = true; 1970 for (int i = 0; i != NElts; ++i) { 1971 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1972 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1973 } 1974 if (Identity && NElts) 1975 return N1; 1976 1977 // Shuffling a constant splat doesn't change the result. 1978 if (N2Undef) { 1979 SDValue V = N1; 1980 1981 // Look through any bitcasts. We check that these don't change the number 1982 // (and size) of elements and just changes their types. 1983 while (V.getOpcode() == ISD::BITCAST) 1984 V = V->getOperand(0); 1985 1986 // A splat should always show up as a build vector node. 1987 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1988 BitVector UndefElements; 1989 SDValue Splat = BV->getSplatValue(&UndefElements); 1990 // If this is a splat of an undef, shuffling it is also undef. 1991 if (Splat && Splat.isUndef()) 1992 return getUNDEF(VT); 1993 1994 bool SameNumElts = 1995 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1996 1997 // We only have a splat which can skip shuffles if there is a splatted 1998 // value and no undef lanes rearranged by the shuffle. 1999 if (Splat && UndefElements.none()) { 2000 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2001 // number of elements match or the value splatted is a zero constant. 2002 if (SameNumElts) 2003 return N1; 2004 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2005 if (C->isZero()) 2006 return N1; 2007 } 2008 2009 // If the shuffle itself creates a splat, build the vector directly. 2010 if (AllSame && SameNumElts) { 2011 EVT BuildVT = BV->getValueType(0); 2012 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2013 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2014 2015 // We may have jumped through bitcasts, so the type of the 2016 // BUILD_VECTOR may not match the type of the shuffle. 2017 if (BuildVT != VT) 2018 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2019 return NewBV; 2020 } 2021 } 2022 } 2023 2024 FoldingSetNodeID ID; 2025 SDValue Ops[2] = { N1, N2 }; 2026 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2027 for (int i = 0; i != NElts; ++i) 2028 ID.AddInteger(MaskVec[i]); 2029 2030 void* IP = nullptr; 2031 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2032 return SDValue(E, 0); 2033 2034 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2035 // SDNode doesn't have access to it. This memory will be "leaked" when 2036 // the node is deallocated, but recovered when the NodeAllocator is released. 2037 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2038 llvm::copy(MaskVec, MaskAlloc); 2039 2040 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2041 dl.getDebugLoc(), MaskAlloc); 2042 createOperands(N, Ops); 2043 2044 CSEMap.InsertNode(N, IP); 2045 InsertNode(N); 2046 SDValue V = SDValue(N, 0); 2047 NewSDValueDbgMsg(V, "Creating new node: ", this); 2048 return V; 2049 } 2050 2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2052 EVT VT = SV.getValueType(0); 2053 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2054 ShuffleVectorSDNode::commuteMask(MaskVec); 2055 2056 SDValue Op0 = SV.getOperand(0); 2057 SDValue Op1 = SV.getOperand(1); 2058 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2059 } 2060 2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2062 FoldingSetNodeID ID; 2063 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2064 ID.AddInteger(RegNo); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2070 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2071 CSEMap.InsertNode(N, IP); 2072 InsertNode(N); 2073 return SDValue(N, 0); 2074 } 2075 2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2077 FoldingSetNodeID ID; 2078 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2079 ID.AddPointer(RegMask); 2080 void *IP = nullptr; 2081 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2082 return SDValue(E, 0); 2083 2084 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2085 CSEMap.InsertNode(N, IP); 2086 InsertNode(N); 2087 return SDValue(N, 0); 2088 } 2089 2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2091 MCSymbol *Label) { 2092 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2093 } 2094 2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2096 SDValue Root, MCSymbol *Label) { 2097 FoldingSetNodeID ID; 2098 SDValue Ops[] = { Root }; 2099 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2100 ID.AddPointer(Label); 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = 2106 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2107 createOperands(N, Ops); 2108 2109 CSEMap.InsertNode(N, IP); 2110 InsertNode(N); 2111 return SDValue(N, 0); 2112 } 2113 2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2115 int64_t Offset, bool isTarget, 2116 unsigned TargetFlags) { 2117 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2118 2119 FoldingSetNodeID ID; 2120 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2121 ID.AddPointer(BA); 2122 ID.AddInteger(Offset); 2123 ID.AddInteger(TargetFlags); 2124 void *IP = nullptr; 2125 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2126 return SDValue(E, 0); 2127 2128 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2129 CSEMap.InsertNode(N, IP); 2130 InsertNode(N); 2131 return SDValue(N, 0); 2132 } 2133 2134 SDValue SelectionDAG::getSrcValue(const Value *V) { 2135 FoldingSetNodeID ID; 2136 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2137 ID.AddPointer(V); 2138 2139 void *IP = nullptr; 2140 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2141 return SDValue(E, 0); 2142 2143 auto *N = newSDNode<SrcValueSDNode>(V); 2144 CSEMap.InsertNode(N, IP); 2145 InsertNode(N); 2146 return SDValue(N, 0); 2147 } 2148 2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2150 FoldingSetNodeID ID; 2151 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2152 ID.AddPointer(MD); 2153 2154 void *IP = nullptr; 2155 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2156 return SDValue(E, 0); 2157 2158 auto *N = newSDNode<MDNodeSDNode>(MD); 2159 CSEMap.InsertNode(N, IP); 2160 InsertNode(N); 2161 return SDValue(N, 0); 2162 } 2163 2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2165 if (VT == V.getValueType()) 2166 return V; 2167 2168 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2169 } 2170 2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2172 unsigned SrcAS, unsigned DestAS) { 2173 SDValue Ops[] = {Ptr}; 2174 FoldingSetNodeID ID; 2175 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2176 ID.AddInteger(SrcAS); 2177 ID.AddInteger(DestAS); 2178 2179 void *IP = nullptr; 2180 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2181 return SDValue(E, 0); 2182 2183 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2184 VT, SrcAS, DestAS); 2185 createOperands(N, Ops); 2186 2187 CSEMap.InsertNode(N, IP); 2188 InsertNode(N); 2189 return SDValue(N, 0); 2190 } 2191 2192 SDValue SelectionDAG::getFreeze(SDValue V) { 2193 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2194 } 2195 2196 /// getShiftAmountOperand - Return the specified value casted to 2197 /// the target's desired shift amount type. 2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2199 EVT OpTy = Op.getValueType(); 2200 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2201 if (OpTy == ShTy || OpTy.isVector()) return Op; 2202 2203 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2204 } 2205 2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2207 SDLoc dl(Node); 2208 const TargetLowering &TLI = getTargetLoweringInfo(); 2209 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2210 EVT VT = Node->getValueType(0); 2211 SDValue Tmp1 = Node->getOperand(0); 2212 SDValue Tmp2 = Node->getOperand(1); 2213 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2214 2215 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2216 Tmp2, MachinePointerInfo(V)); 2217 SDValue VAList = VAListLoad; 2218 2219 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2220 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2221 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2222 2223 VAList = 2224 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2225 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2226 } 2227 2228 // Increment the pointer, VAList, to the next vaarg 2229 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2230 getConstant(getDataLayout().getTypeAllocSize( 2231 VT.getTypeForEVT(*getContext())), 2232 dl, VAList.getValueType())); 2233 // Store the incremented VAList to the legalized pointer 2234 Tmp1 = 2235 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2236 // Load the actual argument out of the pointer VAList 2237 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2238 } 2239 2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2241 SDLoc dl(Node); 2242 const TargetLowering &TLI = getTargetLoweringInfo(); 2243 // This defaults to loading a pointer from the input and storing it to the 2244 // output, returning the chain. 2245 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2246 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2247 SDValue Tmp1 = 2248 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2249 Node->getOperand(2), MachinePointerInfo(VS)); 2250 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2251 MachinePointerInfo(VD)); 2252 } 2253 2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2255 const DataLayout &DL = getDataLayout(); 2256 Type *Ty = VT.getTypeForEVT(*getContext()); 2257 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2258 2259 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2260 return RedAlign; 2261 2262 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2263 const Align StackAlign = TFI->getStackAlign(); 2264 2265 // See if we can choose a smaller ABI alignment in cases where it's an 2266 // illegal vector type that will get broken down. 2267 if (RedAlign > StackAlign) { 2268 EVT IntermediateVT; 2269 MVT RegisterVT; 2270 unsigned NumIntermediates; 2271 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2272 NumIntermediates, RegisterVT); 2273 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2274 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2275 if (RedAlign2 < RedAlign) 2276 RedAlign = RedAlign2; 2277 } 2278 2279 return RedAlign; 2280 } 2281 2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2283 MachineFrameInfo &MFI = MF->getFrameInfo(); 2284 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2285 int StackID = 0; 2286 if (Bytes.isScalable()) 2287 StackID = TFI->getStackIDForScalableVectors(); 2288 // The stack id gives an indication of whether the object is scalable or 2289 // not, so it's safe to pass in the minimum size here. 2290 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2291 false, nullptr, StackID); 2292 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2293 } 2294 2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2296 Type *Ty = VT.getTypeForEVT(*getContext()); 2297 Align StackAlign = 2298 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2299 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2300 } 2301 2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2303 TypeSize VT1Size = VT1.getStoreSize(); 2304 TypeSize VT2Size = VT2.getStoreSize(); 2305 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2306 "Don't know how to choose the maximum size when creating a stack " 2307 "temporary"); 2308 TypeSize Bytes = 2309 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2310 2311 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2312 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2313 const DataLayout &DL = getDataLayout(); 2314 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2315 return CreateStackTemporary(Bytes, Align); 2316 } 2317 2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2319 ISD::CondCode Cond, const SDLoc &dl) { 2320 EVT OpVT = N1.getValueType(); 2321 2322 // These setcc operations always fold. 2323 switch (Cond) { 2324 default: break; 2325 case ISD::SETFALSE: 2326 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2327 case ISD::SETTRUE: 2328 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2329 2330 case ISD::SETOEQ: 2331 case ISD::SETOGT: 2332 case ISD::SETOGE: 2333 case ISD::SETOLT: 2334 case ISD::SETOLE: 2335 case ISD::SETONE: 2336 case ISD::SETO: 2337 case ISD::SETUO: 2338 case ISD::SETUEQ: 2339 case ISD::SETUNE: 2340 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2341 break; 2342 } 2343 2344 if (OpVT.isInteger()) { 2345 // For EQ and NE, we can always pick a value for the undef to make the 2346 // predicate pass or fail, so we can return undef. 2347 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2348 // icmp eq/ne X, undef -> undef. 2349 if ((N1.isUndef() || N2.isUndef()) && 2350 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2351 return getUNDEF(VT); 2352 2353 // If both operands are undef, we can return undef for int comparison. 2354 // icmp undef, undef -> undef. 2355 if (N1.isUndef() && N2.isUndef()) 2356 return getUNDEF(VT); 2357 2358 // icmp X, X -> true/false 2359 // icmp X, undef -> true/false because undef could be X. 2360 if (N1 == N2) 2361 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2362 } 2363 2364 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2365 const APInt &C2 = N2C->getAPIntValue(); 2366 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2367 const APInt &C1 = N1C->getAPIntValue(); 2368 2369 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2370 dl, VT, OpVT); 2371 } 2372 } 2373 2374 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2375 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2376 2377 if (N1CFP && N2CFP) { 2378 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2379 switch (Cond) { 2380 default: break; 2381 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2382 return getUNDEF(VT); 2383 LLVM_FALLTHROUGH; 2384 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2387 return getUNDEF(VT); 2388 LLVM_FALLTHROUGH; 2389 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpLessThan, dl, VT, 2391 OpVT); 2392 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2393 return getUNDEF(VT); 2394 LLVM_FALLTHROUGH; 2395 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2396 OpVT); 2397 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2398 return getUNDEF(VT); 2399 LLVM_FALLTHROUGH; 2400 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2401 VT, OpVT); 2402 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2403 return getUNDEF(VT); 2404 LLVM_FALLTHROUGH; 2405 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2406 R==APFloat::cmpEqual, dl, VT, 2407 OpVT); 2408 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2409 return getUNDEF(VT); 2410 LLVM_FALLTHROUGH; 2411 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2412 R==APFloat::cmpEqual, dl, VT, OpVT); 2413 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2414 OpVT); 2415 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2416 OpVT); 2417 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2418 R==APFloat::cmpEqual, dl, VT, 2419 OpVT); 2420 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2421 OpVT); 2422 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2423 R==APFloat::cmpLessThan, dl, VT, 2424 OpVT); 2425 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2426 R==APFloat::cmpUnordered, dl, VT, 2427 OpVT); 2428 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2429 VT, OpVT); 2430 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2431 OpVT); 2432 } 2433 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2434 // Ensure that the constant occurs on the RHS. 2435 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2436 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2437 return SDValue(); 2438 return getSetCC(dl, VT, N2, N1, SwappedCond); 2439 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2440 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2441 // If an operand is known to be a nan (or undef that could be a nan), we can 2442 // fold it. 2443 // Choosing NaN for the undef will always make unordered comparison succeed 2444 // and ordered comparison fails. 2445 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2446 switch (ISD::getUnorderedFlavor(Cond)) { 2447 default: 2448 llvm_unreachable("Unknown flavor!"); 2449 case 0: // Known false. 2450 return getBoolConstant(false, dl, VT, OpVT); 2451 case 1: // Known true. 2452 return getBoolConstant(true, dl, VT, OpVT); 2453 case 2: // Undefined. 2454 return getUNDEF(VT); 2455 } 2456 } 2457 2458 // Could not fold it. 2459 return SDValue(); 2460 } 2461 2462 /// See if the specified operand can be simplified with the knowledge that only 2463 /// the bits specified by DemandedBits are used. 2464 /// TODO: really we should be making this into the DAG equivalent of 2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2467 EVT VT = V.getValueType(); 2468 2469 if (VT.isScalableVector()) 2470 return SDValue(); 2471 2472 APInt DemandedElts = VT.isVector() 2473 ? APInt::getAllOnes(VT.getVectorNumElements()) 2474 : APInt(1, 1); 2475 return GetDemandedBits(V, DemandedBits, DemandedElts); 2476 } 2477 2478 /// See if the specified operand can be simplified with the knowledge that only 2479 /// the bits specified by DemandedBits are used in the elements specified by 2480 /// DemandedElts. 2481 /// TODO: really we should be making this into the DAG equivalent of 2482 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2483 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2484 const APInt &DemandedElts) { 2485 switch (V.getOpcode()) { 2486 default: 2487 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2488 *this); 2489 case ISD::Constant: { 2490 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2491 APInt NewVal = CVal & DemandedBits; 2492 if (NewVal != CVal) 2493 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2494 break; 2495 } 2496 case ISD::SRL: 2497 // Only look at single-use SRLs. 2498 if (!V.getNode()->hasOneUse()) 2499 break; 2500 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2501 // See if we can recursively simplify the LHS. 2502 unsigned Amt = RHSC->getZExtValue(); 2503 2504 // Watch out for shift count overflow though. 2505 if (Amt >= DemandedBits.getBitWidth()) 2506 break; 2507 APInt SrcDemandedBits = DemandedBits << Amt; 2508 if (SDValue SimplifyLHS = 2509 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2510 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2511 V.getOperand(1)); 2512 } 2513 break; 2514 } 2515 return SDValue(); 2516 } 2517 2518 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2519 /// use this predicate to simplify operations downstream. 2520 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2521 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2522 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2523 } 2524 2525 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2526 /// this predicate to simplify operations downstream. Mask is known to be zero 2527 /// for bits that V cannot have. 2528 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2529 unsigned Depth) const { 2530 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2531 } 2532 2533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2534 /// DemandedElts. We use this predicate to simplify operations downstream. 2535 /// Mask is known to be zero for bits that V cannot have. 2536 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2537 const APInt &DemandedElts, 2538 unsigned Depth) const { 2539 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2540 } 2541 2542 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2543 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2544 unsigned Depth) const { 2545 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2546 } 2547 2548 /// isSplatValue - Return true if the vector V has the same value 2549 /// across all DemandedElts. For scalable vectors it does not make 2550 /// sense to specify which elements are demanded or undefined, therefore 2551 /// they are simply ignored. 2552 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2553 APInt &UndefElts, unsigned Depth) const { 2554 unsigned Opcode = V.getOpcode(); 2555 EVT VT = V.getValueType(); 2556 assert(VT.isVector() && "Vector type expected"); 2557 2558 if (!VT.isScalableVector() && !DemandedElts) 2559 return false; // No demanded elts, better to assume we don't know anything. 2560 2561 if (Depth >= MaxRecursionDepth) 2562 return false; // Limit search depth. 2563 2564 // Deal with some common cases here that work for both fixed and scalable 2565 // vector types. 2566 switch (Opcode) { 2567 case ISD::SPLAT_VECTOR: 2568 UndefElts = V.getOperand(0).isUndef() 2569 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2570 : APInt(DemandedElts.getBitWidth(), 0); 2571 return true; 2572 case ISD::ADD: 2573 case ISD::SUB: 2574 case ISD::AND: 2575 case ISD::XOR: 2576 case ISD::OR: { 2577 APInt UndefLHS, UndefRHS; 2578 SDValue LHS = V.getOperand(0); 2579 SDValue RHS = V.getOperand(1); 2580 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2581 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2582 UndefElts = UndefLHS | UndefRHS; 2583 return true; 2584 } 2585 return false; 2586 } 2587 case ISD::ABS: 2588 case ISD::TRUNCATE: 2589 case ISD::SIGN_EXTEND: 2590 case ISD::ZERO_EXTEND: 2591 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2592 default: 2593 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2594 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2595 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2596 break; 2597 } 2598 2599 // We don't support other cases than those above for scalable vectors at 2600 // the moment. 2601 if (VT.isScalableVector()) 2602 return false; 2603 2604 unsigned NumElts = VT.getVectorNumElements(); 2605 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2606 UndefElts = APInt::getZero(NumElts); 2607 2608 switch (Opcode) { 2609 case ISD::BUILD_VECTOR: { 2610 SDValue Scl; 2611 for (unsigned i = 0; i != NumElts; ++i) { 2612 SDValue Op = V.getOperand(i); 2613 if (Op.isUndef()) { 2614 UndefElts.setBit(i); 2615 continue; 2616 } 2617 if (!DemandedElts[i]) 2618 continue; 2619 if (Scl && Scl != Op) 2620 return false; 2621 Scl = Op; 2622 } 2623 return true; 2624 } 2625 case ISD::VECTOR_SHUFFLE: { 2626 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2627 APInt DemandedLHS = APInt::getNullValue(NumElts); 2628 APInt DemandedRHS = APInt::getNullValue(NumElts); 2629 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2630 for (int i = 0; i != (int)NumElts; ++i) { 2631 int M = Mask[i]; 2632 if (M < 0) { 2633 UndefElts.setBit(i); 2634 continue; 2635 } 2636 if (!DemandedElts[i]) 2637 continue; 2638 if (M < (int)NumElts) 2639 DemandedLHS.setBit(M); 2640 else 2641 DemandedRHS.setBit(M - NumElts); 2642 } 2643 2644 // If we aren't demanding either op, assume there's no splat. 2645 // If we are demanding both ops, assume there's no splat. 2646 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2647 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2648 return false; 2649 2650 // See if the demanded elts of the source op is a splat or we only demand 2651 // one element, which should always be a splat. 2652 // TODO: Handle source ops splats with undefs. 2653 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2654 APInt SrcUndefs; 2655 return (SrcElts.countPopulation() == 1) || 2656 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2657 (SrcElts & SrcUndefs).isZero()); 2658 }; 2659 if (!DemandedLHS.isZero()) 2660 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2661 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2662 } 2663 case ISD::EXTRACT_SUBVECTOR: { 2664 // Offset the demanded elts by the subvector index. 2665 SDValue Src = V.getOperand(0); 2666 // We don't support scalable vectors at the moment. 2667 if (Src.getValueType().isScalableVector()) 2668 return false; 2669 uint64_t Idx = V.getConstantOperandVal(1); 2670 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2671 APInt UndefSrcElts; 2672 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2673 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2674 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2675 return true; 2676 } 2677 break; 2678 } 2679 case ISD::ANY_EXTEND_VECTOR_INREG: 2680 case ISD::SIGN_EXTEND_VECTOR_INREG: 2681 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2682 // Widen the demanded elts by the src element count. 2683 SDValue Src = V.getOperand(0); 2684 // We don't support scalable vectors at the moment. 2685 if (Src.getValueType().isScalableVector()) 2686 return false; 2687 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2688 APInt UndefSrcElts; 2689 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2690 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2691 UndefElts = UndefSrcElts.trunc(NumElts); 2692 return true; 2693 } 2694 break; 2695 } 2696 case ISD::BITCAST: { 2697 SDValue Src = V.getOperand(0); 2698 EVT SrcVT = Src.getValueType(); 2699 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2700 unsigned BitWidth = VT.getScalarSizeInBits(); 2701 2702 // Ignore bitcasts from unsupported types. 2703 // TODO: Add fp support? 2704 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2705 break; 2706 2707 // Bitcast 'small element' vector to 'large element' vector. 2708 if ((BitWidth % SrcBitWidth) == 0) { 2709 // See if each sub element is a splat. 2710 unsigned Scale = BitWidth / SrcBitWidth; 2711 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2712 APInt ScaledDemandedElts = 2713 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2714 for (unsigned I = 0; I != Scale; ++I) { 2715 APInt SubUndefElts; 2716 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2717 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2718 SubDemandedElts &= ScaledDemandedElts; 2719 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2720 return false; 2721 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts); 2722 } 2723 return true; 2724 } 2725 break; 2726 } 2727 } 2728 2729 return false; 2730 } 2731 2732 /// Helper wrapper to main isSplatValue function. 2733 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2734 EVT VT = V.getValueType(); 2735 assert(VT.isVector() && "Vector type expected"); 2736 2737 APInt UndefElts; 2738 APInt DemandedElts; 2739 2740 // For now we don't support this with scalable vectors. 2741 if (!VT.isScalableVector()) 2742 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2743 return isSplatValue(V, DemandedElts, UndefElts) && 2744 (AllowUndefs || !UndefElts); 2745 } 2746 2747 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2748 V = peekThroughExtractSubvectors(V); 2749 2750 EVT VT = V.getValueType(); 2751 unsigned Opcode = V.getOpcode(); 2752 switch (Opcode) { 2753 default: { 2754 APInt UndefElts; 2755 APInt DemandedElts; 2756 2757 if (!VT.isScalableVector()) 2758 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2759 2760 if (isSplatValue(V, DemandedElts, UndefElts)) { 2761 if (VT.isScalableVector()) { 2762 // DemandedElts and UndefElts are ignored for scalable vectors, since 2763 // the only supported cases are SPLAT_VECTOR nodes. 2764 SplatIdx = 0; 2765 } else { 2766 // Handle case where all demanded elements are UNDEF. 2767 if (DemandedElts.isSubsetOf(UndefElts)) { 2768 SplatIdx = 0; 2769 return getUNDEF(VT); 2770 } 2771 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2772 } 2773 return V; 2774 } 2775 break; 2776 } 2777 case ISD::SPLAT_VECTOR: 2778 SplatIdx = 0; 2779 return V; 2780 case ISD::VECTOR_SHUFFLE: { 2781 if (VT.isScalableVector()) 2782 return SDValue(); 2783 2784 // Check if this is a shuffle node doing a splat. 2785 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2786 // getTargetVShiftNode currently struggles without the splat source. 2787 auto *SVN = cast<ShuffleVectorSDNode>(V); 2788 if (!SVN->isSplat()) 2789 break; 2790 int Idx = SVN->getSplatIndex(); 2791 int NumElts = V.getValueType().getVectorNumElements(); 2792 SplatIdx = Idx % NumElts; 2793 return V.getOperand(Idx / NumElts); 2794 } 2795 } 2796 2797 return SDValue(); 2798 } 2799 2800 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2801 int SplatIdx; 2802 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2803 EVT SVT = SrcVector.getValueType().getScalarType(); 2804 EVT LegalSVT = SVT; 2805 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2806 if (!SVT.isInteger()) 2807 return SDValue(); 2808 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2809 if (LegalSVT.bitsLT(SVT)) 2810 return SDValue(); 2811 } 2812 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2813 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2814 } 2815 return SDValue(); 2816 } 2817 2818 const APInt * 2819 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2820 const APInt &DemandedElts) const { 2821 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2822 V.getOpcode() == ISD::SRA) && 2823 "Unknown shift node"); 2824 unsigned BitWidth = V.getScalarValueSizeInBits(); 2825 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2826 // Shifting more than the bitwidth is not valid. 2827 const APInt &ShAmt = SA->getAPIntValue(); 2828 if (ShAmt.ult(BitWidth)) 2829 return &ShAmt; 2830 } 2831 return nullptr; 2832 } 2833 2834 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2835 SDValue V, const APInt &DemandedElts) const { 2836 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2837 V.getOpcode() == ISD::SRA) && 2838 "Unknown shift node"); 2839 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2840 return ValidAmt; 2841 unsigned BitWidth = V.getScalarValueSizeInBits(); 2842 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2843 if (!BV) 2844 return nullptr; 2845 const APInt *MinShAmt = nullptr; 2846 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2847 if (!DemandedElts[i]) 2848 continue; 2849 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2850 if (!SA) 2851 return nullptr; 2852 // Shifting more than the bitwidth is not valid. 2853 const APInt &ShAmt = SA->getAPIntValue(); 2854 if (ShAmt.uge(BitWidth)) 2855 return nullptr; 2856 if (MinShAmt && MinShAmt->ule(ShAmt)) 2857 continue; 2858 MinShAmt = &ShAmt; 2859 } 2860 return MinShAmt; 2861 } 2862 2863 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2864 SDValue V, const APInt &DemandedElts) const { 2865 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2866 V.getOpcode() == ISD::SRA) && 2867 "Unknown shift node"); 2868 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2869 return ValidAmt; 2870 unsigned BitWidth = V.getScalarValueSizeInBits(); 2871 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2872 if (!BV) 2873 return nullptr; 2874 const APInt *MaxShAmt = nullptr; 2875 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2876 if (!DemandedElts[i]) 2877 continue; 2878 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2879 if (!SA) 2880 return nullptr; 2881 // Shifting more than the bitwidth is not valid. 2882 const APInt &ShAmt = SA->getAPIntValue(); 2883 if (ShAmt.uge(BitWidth)) 2884 return nullptr; 2885 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2886 continue; 2887 MaxShAmt = &ShAmt; 2888 } 2889 return MaxShAmt; 2890 } 2891 2892 /// Determine which bits of Op are known to be either zero or one and return 2893 /// them in Known. For vectors, the known bits are those that are shared by 2894 /// every vector element. 2895 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2896 EVT VT = Op.getValueType(); 2897 2898 // TOOD: Until we have a plan for how to represent demanded elements for 2899 // scalable vectors, we can just bail out for now. 2900 if (Op.getValueType().isScalableVector()) { 2901 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2902 return KnownBits(BitWidth); 2903 } 2904 2905 APInt DemandedElts = VT.isVector() 2906 ? APInt::getAllOnes(VT.getVectorNumElements()) 2907 : APInt(1, 1); 2908 return computeKnownBits(Op, DemandedElts, Depth); 2909 } 2910 2911 /// Determine which bits of Op are known to be either zero or one and return 2912 /// them in Known. The DemandedElts argument allows us to only collect the known 2913 /// bits that are shared by the requested vector elements. 2914 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2915 unsigned Depth) const { 2916 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2917 2918 KnownBits Known(BitWidth); // Don't know anything. 2919 2920 // TOOD: Until we have a plan for how to represent demanded elements for 2921 // scalable vectors, we can just bail out for now. 2922 if (Op.getValueType().isScalableVector()) 2923 return Known; 2924 2925 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2926 // We know all of the bits for a constant! 2927 return KnownBits::makeConstant(C->getAPIntValue()); 2928 } 2929 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2930 // We know all of the bits for a constant fp! 2931 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2932 } 2933 2934 if (Depth >= MaxRecursionDepth) 2935 return Known; // Limit search depth. 2936 2937 KnownBits Known2; 2938 unsigned NumElts = DemandedElts.getBitWidth(); 2939 assert((!Op.getValueType().isVector() || 2940 NumElts == Op.getValueType().getVectorNumElements()) && 2941 "Unexpected vector size"); 2942 2943 if (!DemandedElts) 2944 return Known; // No demanded elts, better to assume we don't know anything. 2945 2946 unsigned Opcode = Op.getOpcode(); 2947 switch (Opcode) { 2948 case ISD::BUILD_VECTOR: 2949 // Collect the known bits that are shared by every demanded vector element. 2950 Known.Zero.setAllBits(); Known.One.setAllBits(); 2951 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2952 if (!DemandedElts[i]) 2953 continue; 2954 2955 SDValue SrcOp = Op.getOperand(i); 2956 Known2 = computeKnownBits(SrcOp, Depth + 1); 2957 2958 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2959 if (SrcOp.getValueSizeInBits() != BitWidth) { 2960 assert(SrcOp.getValueSizeInBits() > BitWidth && 2961 "Expected BUILD_VECTOR implicit truncation"); 2962 Known2 = Known2.trunc(BitWidth); 2963 } 2964 2965 // Known bits are the values that are shared by every demanded element. 2966 Known = KnownBits::commonBits(Known, Known2); 2967 2968 // If we don't know any bits, early out. 2969 if (Known.isUnknown()) 2970 break; 2971 } 2972 break; 2973 case ISD::VECTOR_SHUFFLE: { 2974 // Collect the known bits that are shared by every vector element referenced 2975 // by the shuffle. 2976 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2977 Known.Zero.setAllBits(); Known.One.setAllBits(); 2978 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2979 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2980 for (unsigned i = 0; i != NumElts; ++i) { 2981 if (!DemandedElts[i]) 2982 continue; 2983 2984 int M = SVN->getMaskElt(i); 2985 if (M < 0) { 2986 // For UNDEF elements, we don't know anything about the common state of 2987 // the shuffle result. 2988 Known.resetAll(); 2989 DemandedLHS.clearAllBits(); 2990 DemandedRHS.clearAllBits(); 2991 break; 2992 } 2993 2994 if ((unsigned)M < NumElts) 2995 DemandedLHS.setBit((unsigned)M % NumElts); 2996 else 2997 DemandedRHS.setBit((unsigned)M % NumElts); 2998 } 2999 // Known bits are the values that are shared by every demanded element. 3000 if (!!DemandedLHS) { 3001 SDValue LHS = Op.getOperand(0); 3002 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3003 Known = KnownBits::commonBits(Known, Known2); 3004 } 3005 // If we don't know any bits, early out. 3006 if (Known.isUnknown()) 3007 break; 3008 if (!!DemandedRHS) { 3009 SDValue RHS = Op.getOperand(1); 3010 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3011 Known = KnownBits::commonBits(Known, Known2); 3012 } 3013 break; 3014 } 3015 case ISD::CONCAT_VECTORS: { 3016 // Split DemandedElts and test each of the demanded subvectors. 3017 Known.Zero.setAllBits(); Known.One.setAllBits(); 3018 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3019 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3020 unsigned NumSubVectors = Op.getNumOperands(); 3021 for (unsigned i = 0; i != NumSubVectors; ++i) { 3022 APInt DemandedSub = 3023 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3024 if (!!DemandedSub) { 3025 SDValue Sub = Op.getOperand(i); 3026 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3027 Known = KnownBits::commonBits(Known, Known2); 3028 } 3029 // If we don't know any bits, early out. 3030 if (Known.isUnknown()) 3031 break; 3032 } 3033 break; 3034 } 3035 case ISD::INSERT_SUBVECTOR: { 3036 // Demand any elements from the subvector and the remainder from the src its 3037 // inserted into. 3038 SDValue Src = Op.getOperand(0); 3039 SDValue Sub = Op.getOperand(1); 3040 uint64_t Idx = Op.getConstantOperandVal(2); 3041 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3042 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3043 APInt DemandedSrcElts = DemandedElts; 3044 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3045 3046 Known.One.setAllBits(); 3047 Known.Zero.setAllBits(); 3048 if (!!DemandedSubElts) { 3049 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3050 if (Known.isUnknown()) 3051 break; // early-out. 3052 } 3053 if (!!DemandedSrcElts) { 3054 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3055 Known = KnownBits::commonBits(Known, Known2); 3056 } 3057 break; 3058 } 3059 case ISD::EXTRACT_SUBVECTOR: { 3060 // Offset the demanded elts by the subvector index. 3061 SDValue Src = Op.getOperand(0); 3062 // Bail until we can represent demanded elements for scalable vectors. 3063 if (Src.getValueType().isScalableVector()) 3064 break; 3065 uint64_t Idx = Op.getConstantOperandVal(1); 3066 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3067 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3068 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3069 break; 3070 } 3071 case ISD::SCALAR_TO_VECTOR: { 3072 // We know about scalar_to_vector as much as we know about it source, 3073 // which becomes the first element of otherwise unknown vector. 3074 if (DemandedElts != 1) 3075 break; 3076 3077 SDValue N0 = Op.getOperand(0); 3078 Known = computeKnownBits(N0, Depth + 1); 3079 if (N0.getValueSizeInBits() != BitWidth) 3080 Known = Known.trunc(BitWidth); 3081 3082 break; 3083 } 3084 case ISD::BITCAST: { 3085 SDValue N0 = Op.getOperand(0); 3086 EVT SubVT = N0.getValueType(); 3087 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3088 3089 // Ignore bitcasts from unsupported types. 3090 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3091 break; 3092 3093 // Fast handling of 'identity' bitcasts. 3094 if (BitWidth == SubBitWidth) { 3095 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3096 break; 3097 } 3098 3099 bool IsLE = getDataLayout().isLittleEndian(); 3100 3101 // Bitcast 'small element' vector to 'large element' scalar/vector. 3102 if ((BitWidth % SubBitWidth) == 0) { 3103 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3104 3105 // Collect known bits for the (larger) output by collecting the known 3106 // bits from each set of sub elements and shift these into place. 3107 // We need to separately call computeKnownBits for each set of 3108 // sub elements as the knownbits for each is likely to be different. 3109 unsigned SubScale = BitWidth / SubBitWidth; 3110 APInt SubDemandedElts(NumElts * SubScale, 0); 3111 for (unsigned i = 0; i != NumElts; ++i) 3112 if (DemandedElts[i]) 3113 SubDemandedElts.setBit(i * SubScale); 3114 3115 for (unsigned i = 0; i != SubScale; ++i) { 3116 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3117 Depth + 1); 3118 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3119 Known.insertBits(Known2, SubBitWidth * Shifts); 3120 } 3121 } 3122 3123 // Bitcast 'large element' scalar/vector to 'small element' vector. 3124 if ((SubBitWidth % BitWidth) == 0) { 3125 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3126 3127 // Collect known bits for the (smaller) output by collecting the known 3128 // bits from the overlapping larger input elements and extracting the 3129 // sub sections we actually care about. 3130 unsigned SubScale = SubBitWidth / BitWidth; 3131 APInt SubDemandedElts = 3132 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3133 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3134 3135 Known.Zero.setAllBits(); Known.One.setAllBits(); 3136 for (unsigned i = 0; i != NumElts; ++i) 3137 if (DemandedElts[i]) { 3138 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3139 unsigned Offset = (Shifts % SubScale) * BitWidth; 3140 Known = KnownBits::commonBits(Known, 3141 Known2.extractBits(BitWidth, Offset)); 3142 // If we don't know any bits, early out. 3143 if (Known.isUnknown()) 3144 break; 3145 } 3146 } 3147 break; 3148 } 3149 case ISD::AND: 3150 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3151 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3152 3153 Known &= Known2; 3154 break; 3155 case ISD::OR: 3156 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3158 3159 Known |= Known2; 3160 break; 3161 case ISD::XOR: 3162 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3163 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3164 3165 Known ^= Known2; 3166 break; 3167 case ISD::MUL: { 3168 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3169 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3170 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3171 // TODO: SelfMultiply can be poison, but not undef. 3172 if (SelfMultiply) 3173 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3174 Op.getOperand(0), DemandedElts, false, Depth + 1); 3175 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3176 break; 3177 } 3178 case ISD::MULHU: { 3179 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3180 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3181 Known = KnownBits::mulhu(Known, Known2); 3182 break; 3183 } 3184 case ISD::MULHS: { 3185 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3186 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3187 Known = KnownBits::mulhs(Known, Known2); 3188 break; 3189 } 3190 case ISD::UMUL_LOHI: { 3191 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3192 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3193 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3194 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3195 if (Op.getResNo() == 0) 3196 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3197 else 3198 Known = KnownBits::mulhu(Known, Known2); 3199 break; 3200 } 3201 case ISD::SMUL_LOHI: { 3202 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3203 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3204 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3205 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3206 if (Op.getResNo() == 0) 3207 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3208 else 3209 Known = KnownBits::mulhs(Known, Known2); 3210 break; 3211 } 3212 case ISD::UDIV: { 3213 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3214 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3215 Known = KnownBits::udiv(Known, Known2); 3216 break; 3217 } 3218 case ISD::AVGCEILU: { 3219 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3220 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3221 Known = Known.zext(BitWidth + 1); 3222 Known2 = Known2.zext(BitWidth + 1); 3223 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3224 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3225 Known = Known.extractBits(BitWidth, 1); 3226 break; 3227 } 3228 case ISD::SELECT: 3229 case ISD::VSELECT: 3230 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3231 // If we don't know any bits, early out. 3232 if (Known.isUnknown()) 3233 break; 3234 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3235 3236 // Only known if known in both the LHS and RHS. 3237 Known = KnownBits::commonBits(Known, Known2); 3238 break; 3239 case ISD::SELECT_CC: 3240 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3241 // If we don't know any bits, early out. 3242 if (Known.isUnknown()) 3243 break; 3244 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3245 3246 // Only known if known in both the LHS and RHS. 3247 Known = KnownBits::commonBits(Known, Known2); 3248 break; 3249 case ISD::SMULO: 3250 case ISD::UMULO: 3251 if (Op.getResNo() != 1) 3252 break; 3253 // The boolean result conforms to getBooleanContents. 3254 // If we know the result of a setcc has the top bits zero, use this info. 3255 // We know that we have an integer-based boolean since these operations 3256 // are only available for integer. 3257 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3258 TargetLowering::ZeroOrOneBooleanContent && 3259 BitWidth > 1) 3260 Known.Zero.setBitsFrom(1); 3261 break; 3262 case ISD::SETCC: 3263 case ISD::STRICT_FSETCC: 3264 case ISD::STRICT_FSETCCS: { 3265 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3266 // If we know the result of a setcc has the top bits zero, use this info. 3267 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3268 TargetLowering::ZeroOrOneBooleanContent && 3269 BitWidth > 1) 3270 Known.Zero.setBitsFrom(1); 3271 break; 3272 } 3273 case ISD::SHL: 3274 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3275 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3276 Known = KnownBits::shl(Known, Known2); 3277 3278 // Minimum shift low bits are known zero. 3279 if (const APInt *ShMinAmt = 3280 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3281 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3282 break; 3283 case ISD::SRL: 3284 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3285 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3286 Known = KnownBits::lshr(Known, Known2); 3287 3288 // Minimum shift high bits are known zero. 3289 if (const APInt *ShMinAmt = 3290 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3291 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3292 break; 3293 case ISD::SRA: 3294 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3295 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3296 Known = KnownBits::ashr(Known, Known2); 3297 // TODO: Add minimum shift high known sign bits. 3298 break; 3299 case ISD::FSHL: 3300 case ISD::FSHR: 3301 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3302 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3303 3304 // For fshl, 0-shift returns the 1st arg. 3305 // For fshr, 0-shift returns the 2nd arg. 3306 if (Amt == 0) { 3307 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3308 DemandedElts, Depth + 1); 3309 break; 3310 } 3311 3312 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3313 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3314 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3315 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3316 if (Opcode == ISD::FSHL) { 3317 Known.One <<= Amt; 3318 Known.Zero <<= Amt; 3319 Known2.One.lshrInPlace(BitWidth - Amt); 3320 Known2.Zero.lshrInPlace(BitWidth - Amt); 3321 } else { 3322 Known.One <<= BitWidth - Amt; 3323 Known.Zero <<= BitWidth - Amt; 3324 Known2.One.lshrInPlace(Amt); 3325 Known2.Zero.lshrInPlace(Amt); 3326 } 3327 Known.One |= Known2.One; 3328 Known.Zero |= Known2.Zero; 3329 } 3330 break; 3331 case ISD::SIGN_EXTEND_INREG: { 3332 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3333 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3334 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3335 break; 3336 } 3337 case ISD::CTTZ: 3338 case ISD::CTTZ_ZERO_UNDEF: { 3339 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3340 // If we have a known 1, its position is our upper bound. 3341 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3342 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3343 Known.Zero.setBitsFrom(LowBits); 3344 break; 3345 } 3346 case ISD::CTLZ: 3347 case ISD::CTLZ_ZERO_UNDEF: { 3348 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3349 // If we have a known 1, its position is our upper bound. 3350 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3351 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3352 Known.Zero.setBitsFrom(LowBits); 3353 break; 3354 } 3355 case ISD::CTPOP: { 3356 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3357 // If we know some of the bits are zero, they can't be one. 3358 unsigned PossibleOnes = Known2.countMaxPopulation(); 3359 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3360 break; 3361 } 3362 case ISD::PARITY: { 3363 // Parity returns 0 everywhere but the LSB. 3364 Known.Zero.setBitsFrom(1); 3365 break; 3366 } 3367 case ISD::LOAD: { 3368 LoadSDNode *LD = cast<LoadSDNode>(Op); 3369 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3370 if (ISD::isNON_EXTLoad(LD) && Cst) { 3371 // Determine any common known bits from the loaded constant pool value. 3372 Type *CstTy = Cst->getType(); 3373 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3374 // If its a vector splat, then we can (quickly) reuse the scalar path. 3375 // NOTE: We assume all elements match and none are UNDEF. 3376 if (CstTy->isVectorTy()) { 3377 if (const Constant *Splat = Cst->getSplatValue()) { 3378 Cst = Splat; 3379 CstTy = Cst->getType(); 3380 } 3381 } 3382 // TODO - do we need to handle different bitwidths? 3383 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3384 // Iterate across all vector elements finding common known bits. 3385 Known.One.setAllBits(); 3386 Known.Zero.setAllBits(); 3387 for (unsigned i = 0; i != NumElts; ++i) { 3388 if (!DemandedElts[i]) 3389 continue; 3390 if (Constant *Elt = Cst->getAggregateElement(i)) { 3391 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3392 const APInt &Value = CInt->getValue(); 3393 Known.One &= Value; 3394 Known.Zero &= ~Value; 3395 continue; 3396 } 3397 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3398 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3399 Known.One &= Value; 3400 Known.Zero &= ~Value; 3401 continue; 3402 } 3403 } 3404 Known.One.clearAllBits(); 3405 Known.Zero.clearAllBits(); 3406 break; 3407 } 3408 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3409 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3410 Known = KnownBits::makeConstant(CInt->getValue()); 3411 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3412 Known = 3413 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3414 } 3415 } 3416 } 3417 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3418 // If this is a ZEXTLoad and we are looking at the loaded value. 3419 EVT VT = LD->getMemoryVT(); 3420 unsigned MemBits = VT.getScalarSizeInBits(); 3421 Known.Zero.setBitsFrom(MemBits); 3422 } else if (const MDNode *Ranges = LD->getRanges()) { 3423 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3424 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3425 } 3426 break; 3427 } 3428 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3429 EVT InVT = Op.getOperand(0).getValueType(); 3430 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3431 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3432 Known = Known.zext(BitWidth); 3433 break; 3434 } 3435 case ISD::ZERO_EXTEND: { 3436 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3437 Known = Known.zext(BitWidth); 3438 break; 3439 } 3440 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3441 EVT InVT = Op.getOperand(0).getValueType(); 3442 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3443 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3444 // If the sign bit is known to be zero or one, then sext will extend 3445 // it to the top bits, else it will just zext. 3446 Known = Known.sext(BitWidth); 3447 break; 3448 } 3449 case ISD::SIGN_EXTEND: { 3450 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3451 // If the sign bit is known to be zero or one, then sext will extend 3452 // it to the top bits, else it will just zext. 3453 Known = Known.sext(BitWidth); 3454 break; 3455 } 3456 case ISD::ANY_EXTEND_VECTOR_INREG: { 3457 EVT InVT = Op.getOperand(0).getValueType(); 3458 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3459 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3460 Known = Known.anyext(BitWidth); 3461 break; 3462 } 3463 case ISD::ANY_EXTEND: { 3464 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3465 Known = Known.anyext(BitWidth); 3466 break; 3467 } 3468 case ISD::TRUNCATE: { 3469 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3470 Known = Known.trunc(BitWidth); 3471 break; 3472 } 3473 case ISD::AssertZext: { 3474 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3475 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3476 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3477 Known.Zero |= (~InMask); 3478 Known.One &= (~Known.Zero); 3479 break; 3480 } 3481 case ISD::AssertAlign: { 3482 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3483 assert(LogOfAlign != 0); 3484 3485 // TODO: Should use maximum with source 3486 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3487 // well as clearing one bits. 3488 Known.Zero.setLowBits(LogOfAlign); 3489 Known.One.clearLowBits(LogOfAlign); 3490 break; 3491 } 3492 case ISD::FGETSIGN: 3493 // All bits are zero except the low bit. 3494 Known.Zero.setBitsFrom(1); 3495 break; 3496 case ISD::USUBO: 3497 case ISD::SSUBO: 3498 if (Op.getResNo() == 1) { 3499 // If we know the result of a setcc has the top bits zero, use this info. 3500 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3501 TargetLowering::ZeroOrOneBooleanContent && 3502 BitWidth > 1) 3503 Known.Zero.setBitsFrom(1); 3504 break; 3505 } 3506 LLVM_FALLTHROUGH; 3507 case ISD::SUB: 3508 case ISD::SUBC: { 3509 assert(Op.getResNo() == 0 && 3510 "We only compute knownbits for the difference here."); 3511 3512 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3513 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3514 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3515 Known, Known2); 3516 break; 3517 } 3518 case ISD::UADDO: 3519 case ISD::SADDO: 3520 case ISD::ADDCARRY: 3521 if (Op.getResNo() == 1) { 3522 // If we know the result of a setcc has the top bits zero, use this info. 3523 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3524 TargetLowering::ZeroOrOneBooleanContent && 3525 BitWidth > 1) 3526 Known.Zero.setBitsFrom(1); 3527 break; 3528 } 3529 LLVM_FALLTHROUGH; 3530 case ISD::ADD: 3531 case ISD::ADDC: 3532 case ISD::ADDE: { 3533 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3534 3535 // With ADDE and ADDCARRY, a carry bit may be added in. 3536 KnownBits Carry(1); 3537 if (Opcode == ISD::ADDE) 3538 // Can't track carry from glue, set carry to unknown. 3539 Carry.resetAll(); 3540 else if (Opcode == ISD::ADDCARRY) 3541 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3542 // the trouble (how often will we find a known carry bit). And I haven't 3543 // tested this very much yet, but something like this might work: 3544 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3545 // Carry = Carry.zextOrTrunc(1, false); 3546 Carry.resetAll(); 3547 else 3548 Carry.setAllZero(); 3549 3550 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3551 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3552 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3553 break; 3554 } 3555 case ISD::SREM: { 3556 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3557 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3558 Known = KnownBits::srem(Known, Known2); 3559 break; 3560 } 3561 case ISD::UREM: { 3562 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3563 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3564 Known = KnownBits::urem(Known, Known2); 3565 break; 3566 } 3567 case ISD::EXTRACT_ELEMENT: { 3568 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3569 const unsigned Index = Op.getConstantOperandVal(1); 3570 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3571 3572 // Remove low part of known bits mask 3573 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3574 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3575 3576 // Remove high part of known bit mask 3577 Known = Known.trunc(EltBitWidth); 3578 break; 3579 } 3580 case ISD::EXTRACT_VECTOR_ELT: { 3581 SDValue InVec = Op.getOperand(0); 3582 SDValue EltNo = Op.getOperand(1); 3583 EVT VecVT = InVec.getValueType(); 3584 // computeKnownBits not yet implemented for scalable vectors. 3585 if (VecVT.isScalableVector()) 3586 break; 3587 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3588 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3589 3590 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3591 // anything about the extended bits. 3592 if (BitWidth > EltBitWidth) 3593 Known = Known.trunc(EltBitWidth); 3594 3595 // If we know the element index, just demand that vector element, else for 3596 // an unknown element index, ignore DemandedElts and demand them all. 3597 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3598 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3599 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3600 DemandedSrcElts = 3601 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3602 3603 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3604 if (BitWidth > EltBitWidth) 3605 Known = Known.anyext(BitWidth); 3606 break; 3607 } 3608 case ISD::INSERT_VECTOR_ELT: { 3609 // If we know the element index, split the demand between the 3610 // source vector and the inserted element, otherwise assume we need 3611 // the original demanded vector elements and the value. 3612 SDValue InVec = Op.getOperand(0); 3613 SDValue InVal = Op.getOperand(1); 3614 SDValue EltNo = Op.getOperand(2); 3615 bool DemandedVal = true; 3616 APInt DemandedVecElts = DemandedElts; 3617 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3618 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3619 unsigned EltIdx = CEltNo->getZExtValue(); 3620 DemandedVal = !!DemandedElts[EltIdx]; 3621 DemandedVecElts.clearBit(EltIdx); 3622 } 3623 Known.One.setAllBits(); 3624 Known.Zero.setAllBits(); 3625 if (DemandedVal) { 3626 Known2 = computeKnownBits(InVal, Depth + 1); 3627 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3628 } 3629 if (!!DemandedVecElts) { 3630 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3631 Known = KnownBits::commonBits(Known, Known2); 3632 } 3633 break; 3634 } 3635 case ISD::BITREVERSE: { 3636 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3637 Known = Known2.reverseBits(); 3638 break; 3639 } 3640 case ISD::BSWAP: { 3641 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3642 Known = Known2.byteSwap(); 3643 break; 3644 } 3645 case ISD::ABS: { 3646 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3647 Known = Known2.abs(); 3648 break; 3649 } 3650 case ISD::USUBSAT: { 3651 // The result of usubsat will never be larger than the LHS. 3652 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3653 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3654 break; 3655 } 3656 case ISD::UMIN: { 3657 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3658 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3659 Known = KnownBits::umin(Known, Known2); 3660 break; 3661 } 3662 case ISD::UMAX: { 3663 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3664 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3665 Known = KnownBits::umax(Known, Known2); 3666 break; 3667 } 3668 case ISD::SMIN: 3669 case ISD::SMAX: { 3670 // If we have a clamp pattern, we know that the number of sign bits will be 3671 // the minimum of the clamp min/max range. 3672 bool IsMax = (Opcode == ISD::SMAX); 3673 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3674 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3675 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3676 CstHigh = 3677 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3678 if (CstLow && CstHigh) { 3679 if (!IsMax) 3680 std::swap(CstLow, CstHigh); 3681 3682 const APInt &ValueLow = CstLow->getAPIntValue(); 3683 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3684 if (ValueLow.sle(ValueHigh)) { 3685 unsigned LowSignBits = ValueLow.getNumSignBits(); 3686 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3687 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3688 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3689 Known.One.setHighBits(MinSignBits); 3690 break; 3691 } 3692 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3693 Known.Zero.setHighBits(MinSignBits); 3694 break; 3695 } 3696 } 3697 } 3698 3699 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3700 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3701 if (IsMax) 3702 Known = KnownBits::smax(Known, Known2); 3703 else 3704 Known = KnownBits::smin(Known, Known2); 3705 3706 // For SMAX, if CstLow is non-negative we know the result will be 3707 // non-negative and thus all sign bits are 0. 3708 // TODO: There's an equivalent of this for smin with negative constant for 3709 // known ones. 3710 if (IsMax && CstLow) { 3711 const APInt &ValueLow = CstLow->getAPIntValue(); 3712 if (ValueLow.isNonNegative()) { 3713 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3714 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3715 } 3716 } 3717 3718 break; 3719 } 3720 case ISD::FP_TO_UINT_SAT: { 3721 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3722 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3723 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3724 break; 3725 } 3726 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3727 if (Op.getResNo() == 1) { 3728 // The boolean result conforms to getBooleanContents. 3729 // If we know the result of a setcc has the top bits zero, use this info. 3730 // We know that we have an integer-based boolean since these operations 3731 // are only available for integer. 3732 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3733 TargetLowering::ZeroOrOneBooleanContent && 3734 BitWidth > 1) 3735 Known.Zero.setBitsFrom(1); 3736 break; 3737 } 3738 LLVM_FALLTHROUGH; 3739 case ISD::ATOMIC_CMP_SWAP: 3740 case ISD::ATOMIC_SWAP: 3741 case ISD::ATOMIC_LOAD_ADD: 3742 case ISD::ATOMIC_LOAD_SUB: 3743 case ISD::ATOMIC_LOAD_AND: 3744 case ISD::ATOMIC_LOAD_CLR: 3745 case ISD::ATOMIC_LOAD_OR: 3746 case ISD::ATOMIC_LOAD_XOR: 3747 case ISD::ATOMIC_LOAD_NAND: 3748 case ISD::ATOMIC_LOAD_MIN: 3749 case ISD::ATOMIC_LOAD_MAX: 3750 case ISD::ATOMIC_LOAD_UMIN: 3751 case ISD::ATOMIC_LOAD_UMAX: 3752 case ISD::ATOMIC_LOAD: { 3753 unsigned MemBits = 3754 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3755 // If we are looking at the loaded value. 3756 if (Op.getResNo() == 0) { 3757 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3758 Known.Zero.setBitsFrom(MemBits); 3759 } 3760 break; 3761 } 3762 case ISD::FrameIndex: 3763 case ISD::TargetFrameIndex: 3764 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3765 Known, getMachineFunction()); 3766 break; 3767 3768 default: 3769 if (Opcode < ISD::BUILTIN_OP_END) 3770 break; 3771 LLVM_FALLTHROUGH; 3772 case ISD::INTRINSIC_WO_CHAIN: 3773 case ISD::INTRINSIC_W_CHAIN: 3774 case ISD::INTRINSIC_VOID: 3775 // Allow the target to implement this method for its nodes. 3776 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3777 break; 3778 } 3779 3780 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3781 return Known; 3782 } 3783 3784 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3785 SDValue N1) const { 3786 // X + 0 never overflow 3787 if (isNullConstant(N1)) 3788 return OFK_Never; 3789 3790 KnownBits N1Known = computeKnownBits(N1); 3791 if (N1Known.Zero.getBoolValue()) { 3792 KnownBits N0Known = computeKnownBits(N0); 3793 3794 bool overflow; 3795 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3796 if (!overflow) 3797 return OFK_Never; 3798 } 3799 3800 // mulhi + 1 never overflow 3801 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3802 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3803 return OFK_Never; 3804 3805 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3806 KnownBits N0Known = computeKnownBits(N0); 3807 3808 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3809 return OFK_Never; 3810 } 3811 3812 return OFK_Sometime; 3813 } 3814 3815 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3816 EVT OpVT = Val.getValueType(); 3817 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3818 3819 // Is the constant a known power of 2? 3820 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3821 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3822 3823 // A left-shift of a constant one will have exactly one bit set because 3824 // shifting the bit off the end is undefined. 3825 if (Val.getOpcode() == ISD::SHL) { 3826 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3827 if (C && C->getAPIntValue() == 1) 3828 return true; 3829 } 3830 3831 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3832 // one bit set. 3833 if (Val.getOpcode() == ISD::SRL) { 3834 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3835 if (C && C->getAPIntValue().isSignMask()) 3836 return true; 3837 } 3838 3839 // Are all operands of a build vector constant powers of two? 3840 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3841 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3842 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3843 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3844 return false; 3845 })) 3846 return true; 3847 3848 // Is the operand of a splat vector a constant power of two? 3849 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3850 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3851 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3852 return true; 3853 3854 // More could be done here, though the above checks are enough 3855 // to handle some common cases. 3856 3857 // Fall back to computeKnownBits to catch other known cases. 3858 KnownBits Known = computeKnownBits(Val); 3859 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3860 } 3861 3862 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3863 EVT VT = Op.getValueType(); 3864 3865 // TODO: Assume we don't know anything for now. 3866 if (VT.isScalableVector()) 3867 return 1; 3868 3869 APInt DemandedElts = VT.isVector() 3870 ? APInt::getAllOnes(VT.getVectorNumElements()) 3871 : APInt(1, 1); 3872 return ComputeNumSignBits(Op, DemandedElts, Depth); 3873 } 3874 3875 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3876 unsigned Depth) const { 3877 EVT VT = Op.getValueType(); 3878 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3879 unsigned VTBits = VT.getScalarSizeInBits(); 3880 unsigned NumElts = DemandedElts.getBitWidth(); 3881 unsigned Tmp, Tmp2; 3882 unsigned FirstAnswer = 1; 3883 3884 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3885 const APInt &Val = C->getAPIntValue(); 3886 return Val.getNumSignBits(); 3887 } 3888 3889 if (Depth >= MaxRecursionDepth) 3890 return 1; // Limit search depth. 3891 3892 if (!DemandedElts || VT.isScalableVector()) 3893 return 1; // No demanded elts, better to assume we don't know anything. 3894 3895 unsigned Opcode = Op.getOpcode(); 3896 switch (Opcode) { 3897 default: break; 3898 case ISD::AssertSext: 3899 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3900 return VTBits-Tmp+1; 3901 case ISD::AssertZext: 3902 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3903 return VTBits-Tmp; 3904 3905 case ISD::BUILD_VECTOR: 3906 Tmp = VTBits; 3907 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3908 if (!DemandedElts[i]) 3909 continue; 3910 3911 SDValue SrcOp = Op.getOperand(i); 3912 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3913 3914 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3915 if (SrcOp.getValueSizeInBits() != VTBits) { 3916 assert(SrcOp.getValueSizeInBits() > VTBits && 3917 "Expected BUILD_VECTOR implicit truncation"); 3918 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3919 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3920 } 3921 Tmp = std::min(Tmp, Tmp2); 3922 } 3923 return Tmp; 3924 3925 case ISD::VECTOR_SHUFFLE: { 3926 // Collect the minimum number of sign bits that are shared by every vector 3927 // element referenced by the shuffle. 3928 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3929 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3930 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3931 for (unsigned i = 0; i != NumElts; ++i) { 3932 int M = SVN->getMaskElt(i); 3933 if (!DemandedElts[i]) 3934 continue; 3935 // For UNDEF elements, we don't know anything about the common state of 3936 // the shuffle result. 3937 if (M < 0) 3938 return 1; 3939 if ((unsigned)M < NumElts) 3940 DemandedLHS.setBit((unsigned)M % NumElts); 3941 else 3942 DemandedRHS.setBit((unsigned)M % NumElts); 3943 } 3944 Tmp = std::numeric_limits<unsigned>::max(); 3945 if (!!DemandedLHS) 3946 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3947 if (!!DemandedRHS) { 3948 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3949 Tmp = std::min(Tmp, Tmp2); 3950 } 3951 // If we don't know anything, early out and try computeKnownBits fall-back. 3952 if (Tmp == 1) 3953 break; 3954 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3955 return Tmp; 3956 } 3957 3958 case ISD::BITCAST: { 3959 SDValue N0 = Op.getOperand(0); 3960 EVT SrcVT = N0.getValueType(); 3961 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3962 3963 // Ignore bitcasts from unsupported types.. 3964 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3965 break; 3966 3967 // Fast handling of 'identity' bitcasts. 3968 if (VTBits == SrcBits) 3969 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3970 3971 bool IsLE = getDataLayout().isLittleEndian(); 3972 3973 // Bitcast 'large element' scalar/vector to 'small element' vector. 3974 if ((SrcBits % VTBits) == 0) { 3975 assert(VT.isVector() && "Expected bitcast to vector"); 3976 3977 unsigned Scale = SrcBits / VTBits; 3978 APInt SrcDemandedElts = 3979 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3980 3981 // Fast case - sign splat can be simply split across the small elements. 3982 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3983 if (Tmp == SrcBits) 3984 return VTBits; 3985 3986 // Slow case - determine how far the sign extends into each sub-element. 3987 Tmp2 = VTBits; 3988 for (unsigned i = 0; i != NumElts; ++i) 3989 if (DemandedElts[i]) { 3990 unsigned SubOffset = i % Scale; 3991 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3992 SubOffset = SubOffset * VTBits; 3993 if (Tmp <= SubOffset) 3994 return 1; 3995 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3996 } 3997 return Tmp2; 3998 } 3999 break; 4000 } 4001 4002 case ISD::FP_TO_SINT_SAT: 4003 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4004 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4005 return VTBits - Tmp + 1; 4006 case ISD::SIGN_EXTEND: 4007 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4008 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4009 case ISD::SIGN_EXTEND_INREG: 4010 // Max of the input and what this extends. 4011 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4012 Tmp = VTBits-Tmp+1; 4013 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4014 return std::max(Tmp, Tmp2); 4015 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4016 SDValue Src = Op.getOperand(0); 4017 EVT SrcVT = Src.getValueType(); 4018 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4019 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4020 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4021 } 4022 case ISD::SRA: 4023 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4024 // SRA X, C -> adds C sign bits. 4025 if (const APInt *ShAmt = 4026 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4027 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4028 return Tmp; 4029 case ISD::SHL: 4030 if (const APInt *ShAmt = 4031 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4032 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4033 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4034 if (ShAmt->ult(Tmp)) 4035 return Tmp - ShAmt->getZExtValue(); 4036 } 4037 break; 4038 case ISD::AND: 4039 case ISD::OR: 4040 case ISD::XOR: // NOT is handled here. 4041 // Logical binary ops preserve the number of sign bits at the worst. 4042 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4043 if (Tmp != 1) { 4044 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4045 FirstAnswer = std::min(Tmp, Tmp2); 4046 // We computed what we know about the sign bits as our first 4047 // answer. Now proceed to the generic code that uses 4048 // computeKnownBits, and pick whichever answer is better. 4049 } 4050 break; 4051 4052 case ISD::SELECT: 4053 case ISD::VSELECT: 4054 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4055 if (Tmp == 1) return 1; // Early out. 4056 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4057 return std::min(Tmp, Tmp2); 4058 case ISD::SELECT_CC: 4059 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4060 if (Tmp == 1) return 1; // Early out. 4061 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4062 return std::min(Tmp, Tmp2); 4063 4064 case ISD::SMIN: 4065 case ISD::SMAX: { 4066 // If we have a clamp pattern, we know that the number of sign bits will be 4067 // the minimum of the clamp min/max range. 4068 bool IsMax = (Opcode == ISD::SMAX); 4069 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4070 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4071 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4072 CstHigh = 4073 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4074 if (CstLow && CstHigh) { 4075 if (!IsMax) 4076 std::swap(CstLow, CstHigh); 4077 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4078 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4079 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4080 return std::min(Tmp, Tmp2); 4081 } 4082 } 4083 4084 // Fallback - just get the minimum number of sign bits of the operands. 4085 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4086 if (Tmp == 1) 4087 return 1; // Early out. 4088 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4089 return std::min(Tmp, Tmp2); 4090 } 4091 case ISD::UMIN: 4092 case ISD::UMAX: 4093 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4094 if (Tmp == 1) 4095 return 1; // Early out. 4096 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4097 return std::min(Tmp, Tmp2); 4098 case ISD::SADDO: 4099 case ISD::UADDO: 4100 case ISD::SSUBO: 4101 case ISD::USUBO: 4102 case ISD::SMULO: 4103 case ISD::UMULO: 4104 if (Op.getResNo() != 1) 4105 break; 4106 // The boolean result conforms to getBooleanContents. Fall through. 4107 // If setcc returns 0/-1, all bits are sign bits. 4108 // We know that we have an integer-based boolean since these operations 4109 // are only available for integer. 4110 if (TLI->getBooleanContents(VT.isVector(), false) == 4111 TargetLowering::ZeroOrNegativeOneBooleanContent) 4112 return VTBits; 4113 break; 4114 case ISD::SETCC: 4115 case ISD::STRICT_FSETCC: 4116 case ISD::STRICT_FSETCCS: { 4117 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4118 // If setcc returns 0/-1, all bits are sign bits. 4119 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4120 TargetLowering::ZeroOrNegativeOneBooleanContent) 4121 return VTBits; 4122 break; 4123 } 4124 case ISD::ROTL: 4125 case ISD::ROTR: 4126 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4127 4128 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4129 if (Tmp == VTBits) 4130 return VTBits; 4131 4132 if (ConstantSDNode *C = 4133 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4134 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4135 4136 // Handle rotate right by N like a rotate left by 32-N. 4137 if (Opcode == ISD::ROTR) 4138 RotAmt = (VTBits - RotAmt) % VTBits; 4139 4140 // If we aren't rotating out all of the known-in sign bits, return the 4141 // number that are left. This handles rotl(sext(x), 1) for example. 4142 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4143 } 4144 break; 4145 case ISD::ADD: 4146 case ISD::ADDC: 4147 // Add can have at most one carry bit. Thus we know that the output 4148 // is, at worst, one more bit than the inputs. 4149 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4150 if (Tmp == 1) return 1; // Early out. 4151 4152 // Special case decrementing a value (ADD X, -1): 4153 if (ConstantSDNode *CRHS = 4154 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4155 if (CRHS->isAllOnes()) { 4156 KnownBits Known = 4157 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4158 4159 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4160 // sign bits set. 4161 if ((Known.Zero | 1).isAllOnes()) 4162 return VTBits; 4163 4164 // If we are subtracting one from a positive number, there is no carry 4165 // out of the result. 4166 if (Known.isNonNegative()) 4167 return Tmp; 4168 } 4169 4170 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4171 if (Tmp2 == 1) return 1; // Early out. 4172 return std::min(Tmp, Tmp2) - 1; 4173 case ISD::SUB: 4174 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4175 if (Tmp2 == 1) return 1; // Early out. 4176 4177 // Handle NEG. 4178 if (ConstantSDNode *CLHS = 4179 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4180 if (CLHS->isZero()) { 4181 KnownBits Known = 4182 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4183 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4184 // sign bits set. 4185 if ((Known.Zero | 1).isAllOnes()) 4186 return VTBits; 4187 4188 // If the input is known to be positive (the sign bit is known clear), 4189 // the output of the NEG has the same number of sign bits as the input. 4190 if (Known.isNonNegative()) 4191 return Tmp2; 4192 4193 // Otherwise, we treat this like a SUB. 4194 } 4195 4196 // Sub can have at most one carry bit. Thus we know that the output 4197 // is, at worst, one more bit than the inputs. 4198 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4199 if (Tmp == 1) return 1; // Early out. 4200 return std::min(Tmp, Tmp2) - 1; 4201 case ISD::MUL: { 4202 // The output of the Mul can be at most twice the valid bits in the inputs. 4203 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4204 if (SignBitsOp0 == 1) 4205 break; 4206 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4207 if (SignBitsOp1 == 1) 4208 break; 4209 unsigned OutValidBits = 4210 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4211 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4212 } 4213 case ISD::SREM: 4214 // The sign bit is the LHS's sign bit, except when the result of the 4215 // remainder is zero. The magnitude of the result should be less than or 4216 // equal to the magnitude of the LHS. Therefore, the result should have 4217 // at least as many sign bits as the left hand side. 4218 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4219 case ISD::TRUNCATE: { 4220 // Check if the sign bits of source go down as far as the truncated value. 4221 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4222 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4223 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4224 return NumSrcSignBits - (NumSrcBits - VTBits); 4225 break; 4226 } 4227 case ISD::EXTRACT_ELEMENT: { 4228 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4229 const int BitWidth = Op.getValueSizeInBits(); 4230 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4231 4232 // Get reverse index (starting from 1), Op1 value indexes elements from 4233 // little end. Sign starts at big end. 4234 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4235 4236 // If the sign portion ends in our element the subtraction gives correct 4237 // result. Otherwise it gives either negative or > bitwidth result 4238 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4239 } 4240 case ISD::INSERT_VECTOR_ELT: { 4241 // If we know the element index, split the demand between the 4242 // source vector and the inserted element, otherwise assume we need 4243 // the original demanded vector elements and the value. 4244 SDValue InVec = Op.getOperand(0); 4245 SDValue InVal = Op.getOperand(1); 4246 SDValue EltNo = Op.getOperand(2); 4247 bool DemandedVal = true; 4248 APInt DemandedVecElts = DemandedElts; 4249 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4250 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4251 unsigned EltIdx = CEltNo->getZExtValue(); 4252 DemandedVal = !!DemandedElts[EltIdx]; 4253 DemandedVecElts.clearBit(EltIdx); 4254 } 4255 Tmp = std::numeric_limits<unsigned>::max(); 4256 if (DemandedVal) { 4257 // TODO - handle implicit truncation of inserted elements. 4258 if (InVal.getScalarValueSizeInBits() != VTBits) 4259 break; 4260 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4261 Tmp = std::min(Tmp, Tmp2); 4262 } 4263 if (!!DemandedVecElts) { 4264 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4265 Tmp = std::min(Tmp, Tmp2); 4266 } 4267 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4268 return Tmp; 4269 } 4270 case ISD::EXTRACT_VECTOR_ELT: { 4271 SDValue InVec = Op.getOperand(0); 4272 SDValue EltNo = Op.getOperand(1); 4273 EVT VecVT = InVec.getValueType(); 4274 // ComputeNumSignBits not yet implemented for scalable vectors. 4275 if (VecVT.isScalableVector()) 4276 break; 4277 const unsigned BitWidth = Op.getValueSizeInBits(); 4278 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4279 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4280 4281 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4282 // anything about sign bits. But if the sizes match we can derive knowledge 4283 // about sign bits from the vector operand. 4284 if (BitWidth != EltBitWidth) 4285 break; 4286 4287 // If we know the element index, just demand that vector element, else for 4288 // an unknown element index, ignore DemandedElts and demand them all. 4289 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4290 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4291 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4292 DemandedSrcElts = 4293 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4294 4295 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4296 } 4297 case ISD::EXTRACT_SUBVECTOR: { 4298 // Offset the demanded elts by the subvector index. 4299 SDValue Src = Op.getOperand(0); 4300 // Bail until we can represent demanded elements for scalable vectors. 4301 if (Src.getValueType().isScalableVector()) 4302 break; 4303 uint64_t Idx = Op.getConstantOperandVal(1); 4304 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4305 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4306 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4307 } 4308 case ISD::CONCAT_VECTORS: { 4309 // Determine the minimum number of sign bits across all demanded 4310 // elts of the input vectors. Early out if the result is already 1. 4311 Tmp = std::numeric_limits<unsigned>::max(); 4312 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4313 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4314 unsigned NumSubVectors = Op.getNumOperands(); 4315 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4316 APInt DemandedSub = 4317 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4318 if (!DemandedSub) 4319 continue; 4320 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4321 Tmp = std::min(Tmp, Tmp2); 4322 } 4323 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4324 return Tmp; 4325 } 4326 case ISD::INSERT_SUBVECTOR: { 4327 // Demand any elements from the subvector and the remainder from the src its 4328 // inserted into. 4329 SDValue Src = Op.getOperand(0); 4330 SDValue Sub = Op.getOperand(1); 4331 uint64_t Idx = Op.getConstantOperandVal(2); 4332 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4333 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4334 APInt DemandedSrcElts = DemandedElts; 4335 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4336 4337 Tmp = std::numeric_limits<unsigned>::max(); 4338 if (!!DemandedSubElts) { 4339 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4340 if (Tmp == 1) 4341 return 1; // early-out 4342 } 4343 if (!!DemandedSrcElts) { 4344 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4345 Tmp = std::min(Tmp, Tmp2); 4346 } 4347 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4348 return Tmp; 4349 } 4350 case ISD::ATOMIC_CMP_SWAP: 4351 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4352 case ISD::ATOMIC_SWAP: 4353 case ISD::ATOMIC_LOAD_ADD: 4354 case ISD::ATOMIC_LOAD_SUB: 4355 case ISD::ATOMIC_LOAD_AND: 4356 case ISD::ATOMIC_LOAD_CLR: 4357 case ISD::ATOMIC_LOAD_OR: 4358 case ISD::ATOMIC_LOAD_XOR: 4359 case ISD::ATOMIC_LOAD_NAND: 4360 case ISD::ATOMIC_LOAD_MIN: 4361 case ISD::ATOMIC_LOAD_MAX: 4362 case ISD::ATOMIC_LOAD_UMIN: 4363 case ISD::ATOMIC_LOAD_UMAX: 4364 case ISD::ATOMIC_LOAD: { 4365 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4366 // If we are looking at the loaded value. 4367 if (Op.getResNo() == 0) { 4368 if (Tmp == VTBits) 4369 return 1; // early-out 4370 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4371 return VTBits - Tmp + 1; 4372 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4373 return VTBits - Tmp; 4374 } 4375 break; 4376 } 4377 } 4378 4379 // If we are looking at the loaded value of the SDNode. 4380 if (Op.getResNo() == 0) { 4381 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4382 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4383 unsigned ExtType = LD->getExtensionType(); 4384 switch (ExtType) { 4385 default: break; 4386 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4387 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4388 return VTBits - Tmp + 1; 4389 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4390 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4391 return VTBits - Tmp; 4392 case ISD::NON_EXTLOAD: 4393 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4394 // We only need to handle vectors - computeKnownBits should handle 4395 // scalar cases. 4396 Type *CstTy = Cst->getType(); 4397 if (CstTy->isVectorTy() && 4398 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4399 VTBits == CstTy->getScalarSizeInBits()) { 4400 Tmp = VTBits; 4401 for (unsigned i = 0; i != NumElts; ++i) { 4402 if (!DemandedElts[i]) 4403 continue; 4404 if (Constant *Elt = Cst->getAggregateElement(i)) { 4405 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4406 const APInt &Value = CInt->getValue(); 4407 Tmp = std::min(Tmp, Value.getNumSignBits()); 4408 continue; 4409 } 4410 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4411 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4412 Tmp = std::min(Tmp, Value.getNumSignBits()); 4413 continue; 4414 } 4415 } 4416 // Unknown type. Conservatively assume no bits match sign bit. 4417 return 1; 4418 } 4419 return Tmp; 4420 } 4421 } 4422 break; 4423 } 4424 } 4425 } 4426 4427 // Allow the target to implement this method for its nodes. 4428 if (Opcode >= ISD::BUILTIN_OP_END || 4429 Opcode == ISD::INTRINSIC_WO_CHAIN || 4430 Opcode == ISD::INTRINSIC_W_CHAIN || 4431 Opcode == ISD::INTRINSIC_VOID) { 4432 unsigned NumBits = 4433 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4434 if (NumBits > 1) 4435 FirstAnswer = std::max(FirstAnswer, NumBits); 4436 } 4437 4438 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4439 // use this information. 4440 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4441 return std::max(FirstAnswer, Known.countMinSignBits()); 4442 } 4443 4444 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4445 unsigned Depth) const { 4446 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4447 return Op.getScalarValueSizeInBits() - SignBits + 1; 4448 } 4449 4450 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4451 const APInt &DemandedElts, 4452 unsigned Depth) const { 4453 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4454 return Op.getScalarValueSizeInBits() - SignBits + 1; 4455 } 4456 4457 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4458 unsigned Depth) const { 4459 // Early out for FREEZE. 4460 if (Op.getOpcode() == ISD::FREEZE) 4461 return true; 4462 4463 // TODO: Assume we don't know anything for now. 4464 EVT VT = Op.getValueType(); 4465 if (VT.isScalableVector()) 4466 return false; 4467 4468 APInt DemandedElts = VT.isVector() 4469 ? APInt::getAllOnes(VT.getVectorNumElements()) 4470 : APInt(1, 1); 4471 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4472 } 4473 4474 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4475 const APInt &DemandedElts, 4476 bool PoisonOnly, 4477 unsigned Depth) const { 4478 unsigned Opcode = Op.getOpcode(); 4479 4480 // Early out for FREEZE. 4481 if (Opcode == ISD::FREEZE) 4482 return true; 4483 4484 if (Depth >= MaxRecursionDepth) 4485 return false; // Limit search depth. 4486 4487 if (isIntOrFPConstant(Op)) 4488 return true; 4489 4490 switch (Opcode) { 4491 case ISD::UNDEF: 4492 return PoisonOnly; 4493 4494 case ISD::BUILD_VECTOR: 4495 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4496 // this shouldn't affect the result. 4497 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4498 if (!DemandedElts[i]) 4499 continue; 4500 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4501 Depth + 1)) 4502 return false; 4503 } 4504 return true; 4505 4506 // TODO: Search for noundef attributes from library functions. 4507 4508 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4509 4510 default: 4511 // Allow the target to implement this method for its nodes. 4512 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4513 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4514 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4515 Op, DemandedElts, *this, PoisonOnly, Depth); 4516 break; 4517 } 4518 4519 return false; 4520 } 4521 4522 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4523 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4524 !isa<ConstantSDNode>(Op.getOperand(1))) 4525 return false; 4526 4527 if (Op.getOpcode() == ISD::OR && 4528 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4529 return false; 4530 4531 return true; 4532 } 4533 4534 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4535 // If we're told that NaNs won't happen, assume they won't. 4536 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4537 return true; 4538 4539 if (Depth >= MaxRecursionDepth) 4540 return false; // Limit search depth. 4541 4542 // TODO: Handle vectors. 4543 // If the value is a constant, we can obviously see if it is a NaN or not. 4544 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4545 return !C->getValueAPF().isNaN() || 4546 (SNaN && !C->getValueAPF().isSignaling()); 4547 } 4548 4549 unsigned Opcode = Op.getOpcode(); 4550 switch (Opcode) { 4551 case ISD::FADD: 4552 case ISD::FSUB: 4553 case ISD::FMUL: 4554 case ISD::FDIV: 4555 case ISD::FREM: 4556 case ISD::FSIN: 4557 case ISD::FCOS: { 4558 if (SNaN) 4559 return true; 4560 // TODO: Need isKnownNeverInfinity 4561 return false; 4562 } 4563 case ISD::FCANONICALIZE: 4564 case ISD::FEXP: 4565 case ISD::FEXP2: 4566 case ISD::FTRUNC: 4567 case ISD::FFLOOR: 4568 case ISD::FCEIL: 4569 case ISD::FROUND: 4570 case ISD::FROUNDEVEN: 4571 case ISD::FRINT: 4572 case ISD::FNEARBYINT: { 4573 if (SNaN) 4574 return true; 4575 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4576 } 4577 case ISD::FABS: 4578 case ISD::FNEG: 4579 case ISD::FCOPYSIGN: { 4580 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4581 } 4582 case ISD::SELECT: 4583 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4584 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4585 case ISD::FP_EXTEND: 4586 case ISD::FP_ROUND: { 4587 if (SNaN) 4588 return true; 4589 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4590 } 4591 case ISD::SINT_TO_FP: 4592 case ISD::UINT_TO_FP: 4593 return true; 4594 case ISD::FMA: 4595 case ISD::FMAD: { 4596 if (SNaN) 4597 return true; 4598 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4599 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4600 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4601 } 4602 case ISD::FSQRT: // Need is known positive 4603 case ISD::FLOG: 4604 case ISD::FLOG2: 4605 case ISD::FLOG10: 4606 case ISD::FPOWI: 4607 case ISD::FPOW: { 4608 if (SNaN) 4609 return true; 4610 // TODO: Refine on operand 4611 return false; 4612 } 4613 case ISD::FMINNUM: 4614 case ISD::FMAXNUM: { 4615 // Only one needs to be known not-nan, since it will be returned if the 4616 // other ends up being one. 4617 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4618 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4619 } 4620 case ISD::FMINNUM_IEEE: 4621 case ISD::FMAXNUM_IEEE: { 4622 if (SNaN) 4623 return true; 4624 // This can return a NaN if either operand is an sNaN, or if both operands 4625 // are NaN. 4626 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4627 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4628 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4629 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4630 } 4631 case ISD::FMINIMUM: 4632 case ISD::FMAXIMUM: { 4633 // TODO: Does this quiet or return the origina NaN as-is? 4634 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4635 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4636 } 4637 case ISD::EXTRACT_VECTOR_ELT: { 4638 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4639 } 4640 default: 4641 if (Opcode >= ISD::BUILTIN_OP_END || 4642 Opcode == ISD::INTRINSIC_WO_CHAIN || 4643 Opcode == ISD::INTRINSIC_W_CHAIN || 4644 Opcode == ISD::INTRINSIC_VOID) { 4645 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4646 } 4647 4648 return false; 4649 } 4650 } 4651 4652 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4653 assert(Op.getValueType().isFloatingPoint() && 4654 "Floating point type expected"); 4655 4656 // If the value is a constant, we can obviously see if it is a zero or not. 4657 // TODO: Add BuildVector support. 4658 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4659 return !C->isZero(); 4660 return false; 4661 } 4662 4663 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4664 assert(!Op.getValueType().isFloatingPoint() && 4665 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4666 4667 // If the value is a constant, we can obviously see if it is a zero or not. 4668 if (ISD::matchUnaryPredicate(Op, 4669 [](ConstantSDNode *C) { return !C->isZero(); })) 4670 return true; 4671 4672 // TODO: Recognize more cases here. 4673 switch (Op.getOpcode()) { 4674 default: break; 4675 case ISD::OR: 4676 if (isKnownNeverZero(Op.getOperand(1)) || 4677 isKnownNeverZero(Op.getOperand(0))) 4678 return true; 4679 break; 4680 } 4681 4682 return false; 4683 } 4684 4685 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4686 // Check the obvious case. 4687 if (A == B) return true; 4688 4689 // For for negative and positive zero. 4690 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4691 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4692 if (CA->isZero() && CB->isZero()) return true; 4693 4694 // Otherwise they may not be equal. 4695 return false; 4696 } 4697 4698 // Only bits set in Mask must be negated, other bits may be arbitrary. 4699 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4700 if (isBitwiseNot(V, AllowUndefs)) 4701 return V.getOperand(0); 4702 4703 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4704 // bits in the non-extended part. 4705 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4706 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4707 return SDValue(); 4708 SDValue ExtArg = V.getOperand(0); 4709 if (ExtArg.getScalarValueSizeInBits() >= 4710 MaskC->getAPIntValue().getActiveBits() && 4711 isBitwiseNot(ExtArg, AllowUndefs) && 4712 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4713 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4714 return ExtArg.getOperand(0).getOperand(0); 4715 return SDValue(); 4716 } 4717 4718 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4719 // Match masked merge pattern (X & ~M) op (Y & M) 4720 // Including degenerate case (X & ~M) op M 4721 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4722 SDValue Other) { 4723 if (SDValue NotOperand = 4724 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4725 if (Other == NotOperand) 4726 return true; 4727 if (Other->getOpcode() == ISD::AND) 4728 return NotOperand == Other->getOperand(0) || 4729 NotOperand == Other->getOperand(1); 4730 } 4731 return false; 4732 }; 4733 if (A->getOpcode() == ISD::AND) 4734 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4735 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4736 return false; 4737 } 4738 4739 // FIXME: unify with llvm::haveNoCommonBitsSet. 4740 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4741 assert(A.getValueType() == B.getValueType() && 4742 "Values must have the same type"); 4743 if (haveNoCommonBitsSetCommutative(A, B) || 4744 haveNoCommonBitsSetCommutative(B, A)) 4745 return true; 4746 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4747 computeKnownBits(B)); 4748 } 4749 4750 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4751 SelectionDAG &DAG) { 4752 if (cast<ConstantSDNode>(Step)->isZero()) 4753 return DAG.getConstant(0, DL, VT); 4754 4755 return SDValue(); 4756 } 4757 4758 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4759 ArrayRef<SDValue> Ops, 4760 SelectionDAG &DAG) { 4761 int NumOps = Ops.size(); 4762 assert(NumOps != 0 && "Can't build an empty vector!"); 4763 assert(!VT.isScalableVector() && 4764 "BUILD_VECTOR cannot be used with scalable types"); 4765 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4766 "Incorrect element count in BUILD_VECTOR!"); 4767 4768 // BUILD_VECTOR of UNDEFs is UNDEF. 4769 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4770 return DAG.getUNDEF(VT); 4771 4772 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4773 SDValue IdentitySrc; 4774 bool IsIdentity = true; 4775 for (int i = 0; i != NumOps; ++i) { 4776 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4777 Ops[i].getOperand(0).getValueType() != VT || 4778 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4779 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4780 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4781 IsIdentity = false; 4782 break; 4783 } 4784 IdentitySrc = Ops[i].getOperand(0); 4785 } 4786 if (IsIdentity) 4787 return IdentitySrc; 4788 4789 return SDValue(); 4790 } 4791 4792 /// Try to simplify vector concatenation to an input value, undef, or build 4793 /// vector. 4794 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4795 ArrayRef<SDValue> Ops, 4796 SelectionDAG &DAG) { 4797 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4798 assert(llvm::all_of(Ops, 4799 [Ops](SDValue Op) { 4800 return Ops[0].getValueType() == Op.getValueType(); 4801 }) && 4802 "Concatenation of vectors with inconsistent value types!"); 4803 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4804 VT.getVectorElementCount() && 4805 "Incorrect element count in vector concatenation!"); 4806 4807 if (Ops.size() == 1) 4808 return Ops[0]; 4809 4810 // Concat of UNDEFs is UNDEF. 4811 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4812 return DAG.getUNDEF(VT); 4813 4814 // Scan the operands and look for extract operations from a single source 4815 // that correspond to insertion at the same location via this concatenation: 4816 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4817 SDValue IdentitySrc; 4818 bool IsIdentity = true; 4819 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4820 SDValue Op = Ops[i]; 4821 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4822 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4823 Op.getOperand(0).getValueType() != VT || 4824 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4825 Op.getConstantOperandVal(1) != IdentityIndex) { 4826 IsIdentity = false; 4827 break; 4828 } 4829 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4830 "Unexpected identity source vector for concat of extracts"); 4831 IdentitySrc = Op.getOperand(0); 4832 } 4833 if (IsIdentity) { 4834 assert(IdentitySrc && "Failed to set source vector of extracts"); 4835 return IdentitySrc; 4836 } 4837 4838 // The code below this point is only designed to work for fixed width 4839 // vectors, so we bail out for now. 4840 if (VT.isScalableVector()) 4841 return SDValue(); 4842 4843 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4844 // simplified to one big BUILD_VECTOR. 4845 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4846 EVT SVT = VT.getScalarType(); 4847 SmallVector<SDValue, 16> Elts; 4848 for (SDValue Op : Ops) { 4849 EVT OpVT = Op.getValueType(); 4850 if (Op.isUndef()) 4851 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4852 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4853 Elts.append(Op->op_begin(), Op->op_end()); 4854 else 4855 return SDValue(); 4856 } 4857 4858 // BUILD_VECTOR requires all inputs to be of the same type, find the 4859 // maximum type and extend them all. 4860 for (SDValue Op : Elts) 4861 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4862 4863 if (SVT.bitsGT(VT.getScalarType())) { 4864 for (SDValue &Op : Elts) { 4865 if (Op.isUndef()) 4866 Op = DAG.getUNDEF(SVT); 4867 else 4868 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4869 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4870 : DAG.getSExtOrTrunc(Op, DL, SVT); 4871 } 4872 } 4873 4874 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4875 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4876 return V; 4877 } 4878 4879 /// Gets or creates the specified node. 4880 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4881 FoldingSetNodeID ID; 4882 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4883 void *IP = nullptr; 4884 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4885 return SDValue(E, 0); 4886 4887 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4888 getVTList(VT)); 4889 CSEMap.InsertNode(N, IP); 4890 4891 InsertNode(N); 4892 SDValue V = SDValue(N, 0); 4893 NewSDValueDbgMsg(V, "Creating new node: ", this); 4894 return V; 4895 } 4896 4897 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4898 SDValue Operand) { 4899 SDNodeFlags Flags; 4900 if (Inserter) 4901 Flags = Inserter->getFlags(); 4902 return getNode(Opcode, DL, VT, Operand, Flags); 4903 } 4904 4905 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4906 SDValue Operand, const SDNodeFlags Flags) { 4907 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4908 "Operand is DELETED_NODE!"); 4909 // Constant fold unary operations with an integer constant operand. Even 4910 // opaque constant will be folded, because the folding of unary operations 4911 // doesn't create new constants with different values. Nevertheless, the 4912 // opaque flag is preserved during folding to prevent future folding with 4913 // other constants. 4914 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4915 const APInt &Val = C->getAPIntValue(); 4916 switch (Opcode) { 4917 default: break; 4918 case ISD::SIGN_EXTEND: 4919 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4920 C->isTargetOpcode(), C->isOpaque()); 4921 case ISD::TRUNCATE: 4922 if (C->isOpaque()) 4923 break; 4924 LLVM_FALLTHROUGH; 4925 case ISD::ZERO_EXTEND: 4926 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4927 C->isTargetOpcode(), C->isOpaque()); 4928 case ISD::ANY_EXTEND: 4929 // Some targets like RISCV prefer to sign extend some types. 4930 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4931 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4932 C->isTargetOpcode(), C->isOpaque()); 4933 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4934 C->isTargetOpcode(), C->isOpaque()); 4935 case ISD::UINT_TO_FP: 4936 case ISD::SINT_TO_FP: { 4937 APFloat apf(EVTToAPFloatSemantics(VT), 4938 APInt::getZero(VT.getSizeInBits())); 4939 (void)apf.convertFromAPInt(Val, 4940 Opcode==ISD::SINT_TO_FP, 4941 APFloat::rmNearestTiesToEven); 4942 return getConstantFP(apf, DL, VT); 4943 } 4944 case ISD::BITCAST: 4945 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4946 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4947 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4948 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4949 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4950 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4951 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4952 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4953 break; 4954 case ISD::ABS: 4955 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4956 C->isOpaque()); 4957 case ISD::BITREVERSE: 4958 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4959 C->isOpaque()); 4960 case ISD::BSWAP: 4961 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4962 C->isOpaque()); 4963 case ISD::CTPOP: 4964 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4965 C->isOpaque()); 4966 case ISD::CTLZ: 4967 case ISD::CTLZ_ZERO_UNDEF: 4968 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4969 C->isOpaque()); 4970 case ISD::CTTZ: 4971 case ISD::CTTZ_ZERO_UNDEF: 4972 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4973 C->isOpaque()); 4974 case ISD::FP16_TO_FP: { 4975 bool Ignored; 4976 APFloat FPV(APFloat::IEEEhalf(), 4977 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4978 4979 // This can return overflow, underflow, or inexact; we don't care. 4980 // FIXME need to be more flexible about rounding mode. 4981 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4982 APFloat::rmNearestTiesToEven, &Ignored); 4983 return getConstantFP(FPV, DL, VT); 4984 } 4985 case ISD::STEP_VECTOR: { 4986 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4987 return V; 4988 break; 4989 } 4990 } 4991 } 4992 4993 // Constant fold unary operations with a floating point constant operand. 4994 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4995 APFloat V = C->getValueAPF(); // make copy 4996 switch (Opcode) { 4997 case ISD::FNEG: 4998 V.changeSign(); 4999 return getConstantFP(V, DL, VT); 5000 case ISD::FABS: 5001 V.clearSign(); 5002 return getConstantFP(V, DL, VT); 5003 case ISD::FCEIL: { 5004 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5005 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5006 return getConstantFP(V, DL, VT); 5007 break; 5008 } 5009 case ISD::FTRUNC: { 5010 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5011 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5012 return getConstantFP(V, DL, VT); 5013 break; 5014 } 5015 case ISD::FFLOOR: { 5016 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5017 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5018 return getConstantFP(V, DL, VT); 5019 break; 5020 } 5021 case ISD::FP_EXTEND: { 5022 bool ignored; 5023 // This can return overflow, underflow, or inexact; we don't care. 5024 // FIXME need to be more flexible about rounding mode. 5025 (void)V.convert(EVTToAPFloatSemantics(VT), 5026 APFloat::rmNearestTiesToEven, &ignored); 5027 return getConstantFP(V, DL, VT); 5028 } 5029 case ISD::FP_TO_SINT: 5030 case ISD::FP_TO_UINT: { 5031 bool ignored; 5032 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5033 // FIXME need to be more flexible about rounding mode. 5034 APFloat::opStatus s = 5035 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5036 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5037 break; 5038 return getConstant(IntVal, DL, VT); 5039 } 5040 case ISD::BITCAST: 5041 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5042 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5043 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5044 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5045 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5046 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5047 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5048 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5049 break; 5050 case ISD::FP_TO_FP16: { 5051 bool Ignored; 5052 // This can return overflow, underflow, or inexact; we don't care. 5053 // FIXME need to be more flexible about rounding mode. 5054 (void)V.convert(APFloat::IEEEhalf(), 5055 APFloat::rmNearestTiesToEven, &Ignored); 5056 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5057 } 5058 } 5059 } 5060 5061 // Constant fold unary operations with a vector integer or float operand. 5062 switch (Opcode) { 5063 default: 5064 // FIXME: Entirely reasonable to perform folding of other unary 5065 // operations here as the need arises. 5066 break; 5067 case ISD::FNEG: 5068 case ISD::FABS: 5069 case ISD::FCEIL: 5070 case ISD::FTRUNC: 5071 case ISD::FFLOOR: 5072 case ISD::FP_EXTEND: 5073 case ISD::FP_TO_SINT: 5074 case ISD::FP_TO_UINT: 5075 case ISD::TRUNCATE: 5076 case ISD::ANY_EXTEND: 5077 case ISD::ZERO_EXTEND: 5078 case ISD::SIGN_EXTEND: 5079 case ISD::UINT_TO_FP: 5080 case ISD::SINT_TO_FP: 5081 case ISD::ABS: 5082 case ISD::BITREVERSE: 5083 case ISD::BSWAP: 5084 case ISD::CTLZ: 5085 case ISD::CTLZ_ZERO_UNDEF: 5086 case ISD::CTTZ: 5087 case ISD::CTTZ_ZERO_UNDEF: 5088 case ISD::CTPOP: { 5089 SDValue Ops = {Operand}; 5090 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5091 return Fold; 5092 } 5093 } 5094 5095 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5096 switch (Opcode) { 5097 case ISD::STEP_VECTOR: 5098 assert(VT.isScalableVector() && 5099 "STEP_VECTOR can only be used with scalable types"); 5100 assert(OpOpcode == ISD::TargetConstant && 5101 VT.getVectorElementType() == Operand.getValueType() && 5102 "Unexpected step operand"); 5103 break; 5104 case ISD::FREEZE: 5105 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5106 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5107 return Operand; 5108 break; 5109 case ISD::TokenFactor: 5110 case ISD::MERGE_VALUES: 5111 case ISD::CONCAT_VECTORS: 5112 return Operand; // Factor, merge or concat of one node? No need. 5113 case ISD::BUILD_VECTOR: { 5114 // Attempt to simplify BUILD_VECTOR. 5115 SDValue Ops[] = {Operand}; 5116 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5117 return V; 5118 break; 5119 } 5120 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5121 case ISD::FP_EXTEND: 5122 assert(VT.isFloatingPoint() && 5123 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5124 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5125 assert((!VT.isVector() || 5126 VT.getVectorElementCount() == 5127 Operand.getValueType().getVectorElementCount()) && 5128 "Vector element count mismatch!"); 5129 assert(Operand.getValueType().bitsLT(VT) && 5130 "Invalid fpext node, dst < src!"); 5131 if (Operand.isUndef()) 5132 return getUNDEF(VT); 5133 break; 5134 case ISD::FP_TO_SINT: 5135 case ISD::FP_TO_UINT: 5136 if (Operand.isUndef()) 5137 return getUNDEF(VT); 5138 break; 5139 case ISD::SINT_TO_FP: 5140 case ISD::UINT_TO_FP: 5141 // [us]itofp(undef) = 0, because the result value is bounded. 5142 if (Operand.isUndef()) 5143 return getConstantFP(0.0, DL, VT); 5144 break; 5145 case ISD::SIGN_EXTEND: 5146 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5147 "Invalid SIGN_EXTEND!"); 5148 assert(VT.isVector() == Operand.getValueType().isVector() && 5149 "SIGN_EXTEND result type type should be vector iff the operand " 5150 "type is vector!"); 5151 if (Operand.getValueType() == VT) return Operand; // noop extension 5152 assert((!VT.isVector() || 5153 VT.getVectorElementCount() == 5154 Operand.getValueType().getVectorElementCount()) && 5155 "Vector element count mismatch!"); 5156 assert(Operand.getValueType().bitsLT(VT) && 5157 "Invalid sext node, dst < src!"); 5158 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5159 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5160 if (OpOpcode == ISD::UNDEF) 5161 // sext(undef) = 0, because the top bits will all be the same. 5162 return getConstant(0, DL, VT); 5163 break; 5164 case ISD::ZERO_EXTEND: 5165 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5166 "Invalid ZERO_EXTEND!"); 5167 assert(VT.isVector() == Operand.getValueType().isVector() && 5168 "ZERO_EXTEND result type type should be vector iff the operand " 5169 "type is vector!"); 5170 if (Operand.getValueType() == VT) return Operand; // noop extension 5171 assert((!VT.isVector() || 5172 VT.getVectorElementCount() == 5173 Operand.getValueType().getVectorElementCount()) && 5174 "Vector element count mismatch!"); 5175 assert(Operand.getValueType().bitsLT(VT) && 5176 "Invalid zext node, dst < src!"); 5177 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5178 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5179 if (OpOpcode == ISD::UNDEF) 5180 // zext(undef) = 0, because the top bits will be zero. 5181 return getConstant(0, DL, VT); 5182 break; 5183 case ISD::ANY_EXTEND: 5184 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5185 "Invalid ANY_EXTEND!"); 5186 assert(VT.isVector() == Operand.getValueType().isVector() && 5187 "ANY_EXTEND result type type should be vector iff the operand " 5188 "type is vector!"); 5189 if (Operand.getValueType() == VT) return Operand; // noop extension 5190 assert((!VT.isVector() || 5191 VT.getVectorElementCount() == 5192 Operand.getValueType().getVectorElementCount()) && 5193 "Vector element count mismatch!"); 5194 assert(Operand.getValueType().bitsLT(VT) && 5195 "Invalid anyext node, dst < src!"); 5196 5197 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5198 OpOpcode == ISD::ANY_EXTEND) 5199 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5200 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5201 if (OpOpcode == ISD::UNDEF) 5202 return getUNDEF(VT); 5203 5204 // (ext (trunc x)) -> x 5205 if (OpOpcode == ISD::TRUNCATE) { 5206 SDValue OpOp = Operand.getOperand(0); 5207 if (OpOp.getValueType() == VT) { 5208 transferDbgValues(Operand, OpOp); 5209 return OpOp; 5210 } 5211 } 5212 break; 5213 case ISD::TRUNCATE: 5214 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5215 "Invalid TRUNCATE!"); 5216 assert(VT.isVector() == Operand.getValueType().isVector() && 5217 "TRUNCATE result type type should be vector iff the operand " 5218 "type is vector!"); 5219 if (Operand.getValueType() == VT) return Operand; // noop truncate 5220 assert((!VT.isVector() || 5221 VT.getVectorElementCount() == 5222 Operand.getValueType().getVectorElementCount()) && 5223 "Vector element count mismatch!"); 5224 assert(Operand.getValueType().bitsGT(VT) && 5225 "Invalid truncate node, src < dst!"); 5226 if (OpOpcode == ISD::TRUNCATE) 5227 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5228 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5229 OpOpcode == ISD::ANY_EXTEND) { 5230 // If the source is smaller than the dest, we still need an extend. 5231 if (Operand.getOperand(0).getValueType().getScalarType() 5232 .bitsLT(VT.getScalarType())) 5233 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5234 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5235 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5236 return Operand.getOperand(0); 5237 } 5238 if (OpOpcode == ISD::UNDEF) 5239 return getUNDEF(VT); 5240 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5241 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5242 break; 5243 case ISD::ANY_EXTEND_VECTOR_INREG: 5244 case ISD::ZERO_EXTEND_VECTOR_INREG: 5245 case ISD::SIGN_EXTEND_VECTOR_INREG: 5246 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5247 assert(Operand.getValueType().bitsLE(VT) && 5248 "The input must be the same size or smaller than the result."); 5249 assert(VT.getVectorMinNumElements() < 5250 Operand.getValueType().getVectorMinNumElements() && 5251 "The destination vector type must have fewer lanes than the input."); 5252 break; 5253 case ISD::ABS: 5254 assert(VT.isInteger() && VT == Operand.getValueType() && 5255 "Invalid ABS!"); 5256 if (OpOpcode == ISD::UNDEF) 5257 return getConstant(0, DL, VT); 5258 break; 5259 case ISD::BSWAP: 5260 assert(VT.isInteger() && VT == Operand.getValueType() && 5261 "Invalid BSWAP!"); 5262 assert((VT.getScalarSizeInBits() % 16 == 0) && 5263 "BSWAP types must be a multiple of 16 bits!"); 5264 if (OpOpcode == ISD::UNDEF) 5265 return getUNDEF(VT); 5266 // bswap(bswap(X)) -> X. 5267 if (OpOpcode == ISD::BSWAP) 5268 return Operand.getOperand(0); 5269 break; 5270 case ISD::BITREVERSE: 5271 assert(VT.isInteger() && VT == Operand.getValueType() && 5272 "Invalid BITREVERSE!"); 5273 if (OpOpcode == ISD::UNDEF) 5274 return getUNDEF(VT); 5275 break; 5276 case ISD::BITCAST: 5277 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5278 "Cannot BITCAST between types of different sizes!"); 5279 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5280 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5281 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5282 if (OpOpcode == ISD::UNDEF) 5283 return getUNDEF(VT); 5284 break; 5285 case ISD::SCALAR_TO_VECTOR: 5286 assert(VT.isVector() && !Operand.getValueType().isVector() && 5287 (VT.getVectorElementType() == Operand.getValueType() || 5288 (VT.getVectorElementType().isInteger() && 5289 Operand.getValueType().isInteger() && 5290 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5291 "Illegal SCALAR_TO_VECTOR node!"); 5292 if (OpOpcode == ISD::UNDEF) 5293 return getUNDEF(VT); 5294 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5295 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5296 isa<ConstantSDNode>(Operand.getOperand(1)) && 5297 Operand.getConstantOperandVal(1) == 0 && 5298 Operand.getOperand(0).getValueType() == VT) 5299 return Operand.getOperand(0); 5300 break; 5301 case ISD::FNEG: 5302 // Negation of an unknown bag of bits is still completely undefined. 5303 if (OpOpcode == ISD::UNDEF) 5304 return getUNDEF(VT); 5305 5306 if (OpOpcode == ISD::FNEG) // --X -> X 5307 return Operand.getOperand(0); 5308 break; 5309 case ISD::FABS: 5310 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5311 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5312 break; 5313 case ISD::VSCALE: 5314 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5315 break; 5316 case ISD::CTPOP: 5317 if (Operand.getValueType().getScalarType() == MVT::i1) 5318 return Operand; 5319 break; 5320 case ISD::CTLZ: 5321 case ISD::CTTZ: 5322 if (Operand.getValueType().getScalarType() == MVT::i1) 5323 return getNOT(DL, Operand, Operand.getValueType()); 5324 break; 5325 case ISD::VECREDUCE_ADD: 5326 if (Operand.getValueType().getScalarType() == MVT::i1) 5327 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5328 break; 5329 case ISD::VECREDUCE_SMIN: 5330 case ISD::VECREDUCE_UMAX: 5331 if (Operand.getValueType().getScalarType() == MVT::i1) 5332 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5333 break; 5334 case ISD::VECREDUCE_SMAX: 5335 case ISD::VECREDUCE_UMIN: 5336 if (Operand.getValueType().getScalarType() == MVT::i1) 5337 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5338 break; 5339 } 5340 5341 SDNode *N; 5342 SDVTList VTs = getVTList(VT); 5343 SDValue Ops[] = {Operand}; 5344 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5345 FoldingSetNodeID ID; 5346 AddNodeIDNode(ID, Opcode, VTs, Ops); 5347 void *IP = nullptr; 5348 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5349 E->intersectFlagsWith(Flags); 5350 return SDValue(E, 0); 5351 } 5352 5353 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5354 N->setFlags(Flags); 5355 createOperands(N, Ops); 5356 CSEMap.InsertNode(N, IP); 5357 } else { 5358 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5359 createOperands(N, Ops); 5360 } 5361 5362 InsertNode(N); 5363 SDValue V = SDValue(N, 0); 5364 NewSDValueDbgMsg(V, "Creating new node: ", this); 5365 return V; 5366 } 5367 5368 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5369 const APInt &C2) { 5370 switch (Opcode) { 5371 case ISD::ADD: return C1 + C2; 5372 case ISD::SUB: return C1 - C2; 5373 case ISD::MUL: return C1 * C2; 5374 case ISD::AND: return C1 & C2; 5375 case ISD::OR: return C1 | C2; 5376 case ISD::XOR: return C1 ^ C2; 5377 case ISD::SHL: return C1 << C2; 5378 case ISD::SRL: return C1.lshr(C2); 5379 case ISD::SRA: return C1.ashr(C2); 5380 case ISD::ROTL: return C1.rotl(C2); 5381 case ISD::ROTR: return C1.rotr(C2); 5382 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5383 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5384 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5385 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5386 case ISD::SADDSAT: return C1.sadd_sat(C2); 5387 case ISD::UADDSAT: return C1.uadd_sat(C2); 5388 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5389 case ISD::USUBSAT: return C1.usub_sat(C2); 5390 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5391 case ISD::USHLSAT: return C1.ushl_sat(C2); 5392 case ISD::UDIV: 5393 if (!C2.getBoolValue()) 5394 break; 5395 return C1.udiv(C2); 5396 case ISD::UREM: 5397 if (!C2.getBoolValue()) 5398 break; 5399 return C1.urem(C2); 5400 case ISD::SDIV: 5401 if (!C2.getBoolValue()) 5402 break; 5403 return C1.sdiv(C2); 5404 case ISD::SREM: 5405 if (!C2.getBoolValue()) 5406 break; 5407 return C1.srem(C2); 5408 case ISD::MULHS: { 5409 unsigned FullWidth = C1.getBitWidth() * 2; 5410 APInt C1Ext = C1.sext(FullWidth); 5411 APInt C2Ext = C2.sext(FullWidth); 5412 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5413 } 5414 case ISD::MULHU: { 5415 unsigned FullWidth = C1.getBitWidth() * 2; 5416 APInt C1Ext = C1.zext(FullWidth); 5417 APInt C2Ext = C2.zext(FullWidth); 5418 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5419 } 5420 case ISD::AVGFLOORS: { 5421 unsigned FullWidth = C1.getBitWidth() + 1; 5422 APInt C1Ext = C1.sext(FullWidth); 5423 APInt C2Ext = C2.sext(FullWidth); 5424 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5425 } 5426 case ISD::AVGFLOORU: { 5427 unsigned FullWidth = C1.getBitWidth() + 1; 5428 APInt C1Ext = C1.zext(FullWidth); 5429 APInt C2Ext = C2.zext(FullWidth); 5430 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5431 } 5432 case ISD::AVGCEILS: { 5433 unsigned FullWidth = C1.getBitWidth() + 1; 5434 APInt C1Ext = C1.sext(FullWidth); 5435 APInt C2Ext = C2.sext(FullWidth); 5436 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5437 } 5438 case ISD::AVGCEILU: { 5439 unsigned FullWidth = C1.getBitWidth() + 1; 5440 APInt C1Ext = C1.zext(FullWidth); 5441 APInt C2Ext = C2.zext(FullWidth); 5442 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5443 } 5444 } 5445 return llvm::None; 5446 } 5447 5448 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5449 const GlobalAddressSDNode *GA, 5450 const SDNode *N2) { 5451 if (GA->getOpcode() != ISD::GlobalAddress) 5452 return SDValue(); 5453 if (!TLI->isOffsetFoldingLegal(GA)) 5454 return SDValue(); 5455 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5456 if (!C2) 5457 return SDValue(); 5458 int64_t Offset = C2->getSExtValue(); 5459 switch (Opcode) { 5460 case ISD::ADD: break; 5461 case ISD::SUB: Offset = -uint64_t(Offset); break; 5462 default: return SDValue(); 5463 } 5464 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5465 GA->getOffset() + uint64_t(Offset)); 5466 } 5467 5468 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5469 switch (Opcode) { 5470 case ISD::SDIV: 5471 case ISD::UDIV: 5472 case ISD::SREM: 5473 case ISD::UREM: { 5474 // If a divisor is zero/undef or any element of a divisor vector is 5475 // zero/undef, the whole op is undef. 5476 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5477 SDValue Divisor = Ops[1]; 5478 if (Divisor.isUndef() || isNullConstant(Divisor)) 5479 return true; 5480 5481 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5482 llvm::any_of(Divisor->op_values(), 5483 [](SDValue V) { return V.isUndef() || 5484 isNullConstant(V); }); 5485 // TODO: Handle signed overflow. 5486 } 5487 // TODO: Handle oversized shifts. 5488 default: 5489 return false; 5490 } 5491 } 5492 5493 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5494 EVT VT, ArrayRef<SDValue> Ops) { 5495 // If the opcode is a target-specific ISD node, there's nothing we can 5496 // do here and the operand rules may not line up with the below, so 5497 // bail early. 5498 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5499 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5500 // foldCONCAT_VECTORS in getNode before this is called. 5501 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5502 return SDValue(); 5503 5504 unsigned NumOps = Ops.size(); 5505 if (NumOps == 0) 5506 return SDValue(); 5507 5508 if (isUndef(Opcode, Ops)) 5509 return getUNDEF(VT); 5510 5511 // Handle binops special cases. 5512 if (NumOps == 2) { 5513 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5514 return CFP; 5515 5516 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5517 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5518 if (C1->isOpaque() || C2->isOpaque()) 5519 return SDValue(); 5520 5521 Optional<APInt> FoldAttempt = 5522 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5523 if (!FoldAttempt) 5524 return SDValue(); 5525 5526 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5527 assert((!Folded || !VT.isVector()) && 5528 "Can't fold vectors ops with scalar operands"); 5529 return Folded; 5530 } 5531 } 5532 5533 // fold (add Sym, c) -> Sym+c 5534 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5535 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5536 if (TLI->isCommutativeBinOp(Opcode)) 5537 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5538 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5539 } 5540 5541 // This is for vector folding only from here on. 5542 if (!VT.isVector()) 5543 return SDValue(); 5544 5545 ElementCount NumElts = VT.getVectorElementCount(); 5546 5547 // See if we can fold through bitcasted integer ops. 5548 // TODO: Can we handle undef elements? 5549 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5550 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5551 Ops[0].getOpcode() == ISD::BITCAST && 5552 Ops[1].getOpcode() == ISD::BITCAST) { 5553 SDValue N1 = peekThroughBitcasts(Ops[0]); 5554 SDValue N2 = peekThroughBitcasts(Ops[1]); 5555 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5556 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5557 EVT BVVT = N1.getValueType(); 5558 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5559 bool IsLE = getDataLayout().isLittleEndian(); 5560 unsigned EltBits = VT.getScalarSizeInBits(); 5561 SmallVector<APInt> RawBits1, RawBits2; 5562 BitVector UndefElts1, UndefElts2; 5563 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5564 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5565 UndefElts1.none() && UndefElts2.none()) { 5566 SmallVector<APInt> RawBits; 5567 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5568 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5569 if (!Fold) 5570 break; 5571 RawBits.push_back(Fold.getValue()); 5572 } 5573 if (RawBits.size() == NumElts.getFixedValue()) { 5574 // We have constant folded, but we need to cast this again back to 5575 // the original (possibly legalized) type. 5576 SmallVector<APInt> DstBits; 5577 BitVector DstUndefs; 5578 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5579 DstBits, RawBits, DstUndefs, 5580 BitVector(RawBits.size(), false)); 5581 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5582 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5583 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5584 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5585 if (DstUndefs[I]) 5586 continue; 5587 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5588 } 5589 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5590 } 5591 } 5592 } 5593 } 5594 5595 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5596 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5597 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5598 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5599 APInt RHSVal; 5600 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5601 APInt NewStep = Opcode == ISD::MUL 5602 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5603 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5604 return getStepVector(DL, VT, NewStep); 5605 } 5606 } 5607 5608 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5609 return !Op.getValueType().isVector() || 5610 Op.getValueType().getVectorElementCount() == NumElts; 5611 }; 5612 5613 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5614 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5615 Op.getOpcode() == ISD::BUILD_VECTOR || 5616 Op.getOpcode() == ISD::SPLAT_VECTOR; 5617 }; 5618 5619 // All operands must be vector types with the same number of elements as 5620 // the result type and must be either UNDEF or a build/splat vector 5621 // or UNDEF scalars. 5622 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5623 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5624 return SDValue(); 5625 5626 // If we are comparing vectors, then the result needs to be a i1 boolean that 5627 // is then extended back to the legal result type depending on how booleans 5628 // are represented. 5629 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5630 ISD::NodeType ExtendCode = 5631 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5632 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5633 : ISD::SIGN_EXTEND; 5634 5635 // Find legal integer scalar type for constant promotion and 5636 // ensure that its scalar size is at least as large as source. 5637 EVT LegalSVT = VT.getScalarType(); 5638 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5639 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5640 if (LegalSVT.bitsLT(VT.getScalarType())) 5641 return SDValue(); 5642 } 5643 5644 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5645 // only have one operand to check. For fixed-length vector types we may have 5646 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5647 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5648 5649 // Constant fold each scalar lane separately. 5650 SmallVector<SDValue, 4> ScalarResults; 5651 for (unsigned I = 0; I != NumVectorElts; I++) { 5652 SmallVector<SDValue, 4> ScalarOps; 5653 for (SDValue Op : Ops) { 5654 EVT InSVT = Op.getValueType().getScalarType(); 5655 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5656 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5657 if (Op.isUndef()) 5658 ScalarOps.push_back(getUNDEF(InSVT)); 5659 else 5660 ScalarOps.push_back(Op); 5661 continue; 5662 } 5663 5664 SDValue ScalarOp = 5665 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5666 EVT ScalarVT = ScalarOp.getValueType(); 5667 5668 // Build vector (integer) scalar operands may need implicit 5669 // truncation - do this before constant folding. 5670 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5671 // Don't create illegally-typed nodes unless they're constants or undef 5672 // - if we fail to constant fold we can't guarantee the (dead) nodes 5673 // we're creating will be cleaned up before being visited for 5674 // legalization. 5675 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5676 !isa<ConstantSDNode>(ScalarOp) && 5677 TLI->getTypeAction(*getContext(), InSVT) != 5678 TargetLowering::TypeLegal) 5679 return SDValue(); 5680 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5681 } 5682 5683 ScalarOps.push_back(ScalarOp); 5684 } 5685 5686 // Constant fold the scalar operands. 5687 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5688 5689 // Legalize the (integer) scalar constant if necessary. 5690 if (LegalSVT != SVT) 5691 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5692 5693 // Scalar folding only succeeded if the result is a constant or UNDEF. 5694 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5695 ScalarResult.getOpcode() != ISD::ConstantFP) 5696 return SDValue(); 5697 ScalarResults.push_back(ScalarResult); 5698 } 5699 5700 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5701 : getBuildVector(VT, DL, ScalarResults); 5702 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5703 return V; 5704 } 5705 5706 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5707 EVT VT, SDValue N1, SDValue N2) { 5708 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5709 // should. That will require dealing with a potentially non-default 5710 // rounding mode, checking the "opStatus" return value from the APFloat 5711 // math calculations, and possibly other variations. 5712 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5713 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5714 if (N1CFP && N2CFP) { 5715 APFloat C1 = N1CFP->getValueAPF(); // make copy 5716 const APFloat &C2 = N2CFP->getValueAPF(); 5717 switch (Opcode) { 5718 case ISD::FADD: 5719 C1.add(C2, APFloat::rmNearestTiesToEven); 5720 return getConstantFP(C1, DL, VT); 5721 case ISD::FSUB: 5722 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5723 return getConstantFP(C1, DL, VT); 5724 case ISD::FMUL: 5725 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5726 return getConstantFP(C1, DL, VT); 5727 case ISD::FDIV: 5728 C1.divide(C2, APFloat::rmNearestTiesToEven); 5729 return getConstantFP(C1, DL, VT); 5730 case ISD::FREM: 5731 C1.mod(C2); 5732 return getConstantFP(C1, DL, VT); 5733 case ISD::FCOPYSIGN: 5734 C1.copySign(C2); 5735 return getConstantFP(C1, DL, VT); 5736 case ISD::FMINNUM: 5737 return getConstantFP(minnum(C1, C2), DL, VT); 5738 case ISD::FMAXNUM: 5739 return getConstantFP(maxnum(C1, C2), DL, VT); 5740 case ISD::FMINIMUM: 5741 return getConstantFP(minimum(C1, C2), DL, VT); 5742 case ISD::FMAXIMUM: 5743 return getConstantFP(maximum(C1, C2), DL, VT); 5744 default: break; 5745 } 5746 } 5747 if (N1CFP && Opcode == ISD::FP_ROUND) { 5748 APFloat C1 = N1CFP->getValueAPF(); // make copy 5749 bool Unused; 5750 // This can return overflow, underflow, or inexact; we don't care. 5751 // FIXME need to be more flexible about rounding mode. 5752 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5753 &Unused); 5754 return getConstantFP(C1, DL, VT); 5755 } 5756 5757 switch (Opcode) { 5758 case ISD::FSUB: 5759 // -0.0 - undef --> undef (consistent with "fneg undef") 5760 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5761 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5762 return getUNDEF(VT); 5763 LLVM_FALLTHROUGH; 5764 5765 case ISD::FADD: 5766 case ISD::FMUL: 5767 case ISD::FDIV: 5768 case ISD::FREM: 5769 // If both operands are undef, the result is undef. If 1 operand is undef, 5770 // the result is NaN. This should match the behavior of the IR optimizer. 5771 if (N1.isUndef() && N2.isUndef()) 5772 return getUNDEF(VT); 5773 if (N1.isUndef() || N2.isUndef()) 5774 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5775 } 5776 return SDValue(); 5777 } 5778 5779 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5780 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5781 5782 // There's no need to assert on a byte-aligned pointer. All pointers are at 5783 // least byte aligned. 5784 if (A == Align(1)) 5785 return Val; 5786 5787 FoldingSetNodeID ID; 5788 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5789 ID.AddInteger(A.value()); 5790 5791 void *IP = nullptr; 5792 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5793 return SDValue(E, 0); 5794 5795 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5796 Val.getValueType(), A); 5797 createOperands(N, {Val}); 5798 5799 CSEMap.InsertNode(N, IP); 5800 InsertNode(N); 5801 5802 SDValue V(N, 0); 5803 NewSDValueDbgMsg(V, "Creating new node: ", this); 5804 return V; 5805 } 5806 5807 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5808 SDValue N1, SDValue N2) { 5809 SDNodeFlags Flags; 5810 if (Inserter) 5811 Flags = Inserter->getFlags(); 5812 return getNode(Opcode, DL, VT, N1, N2, Flags); 5813 } 5814 5815 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5816 SDValue &N2) const { 5817 if (!TLI->isCommutativeBinOp(Opcode)) 5818 return; 5819 5820 // Canonicalize: 5821 // binop(const, nonconst) -> binop(nonconst, const) 5822 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5823 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5824 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5825 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5826 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5827 std::swap(N1, N2); 5828 5829 // Canonicalize: 5830 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5831 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5832 N2.getOpcode() == ISD::STEP_VECTOR) 5833 std::swap(N1, N2); 5834 } 5835 5836 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5837 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5838 assert(N1.getOpcode() != ISD::DELETED_NODE && 5839 N2.getOpcode() != ISD::DELETED_NODE && 5840 "Operand is DELETED_NODE!"); 5841 5842 canonicalizeCommutativeBinop(Opcode, N1, N2); 5843 5844 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5845 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5846 5847 // Don't allow undefs in vector splats - we might be returning N2 when folding 5848 // to zero etc. 5849 ConstantSDNode *N2CV = 5850 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5851 5852 switch (Opcode) { 5853 default: break; 5854 case ISD::TokenFactor: 5855 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5856 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5857 // Fold trivial token factors. 5858 if (N1.getOpcode() == ISD::EntryToken) return N2; 5859 if (N2.getOpcode() == ISD::EntryToken) return N1; 5860 if (N1 == N2) return N1; 5861 break; 5862 case ISD::BUILD_VECTOR: { 5863 // Attempt to simplify BUILD_VECTOR. 5864 SDValue Ops[] = {N1, N2}; 5865 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5866 return V; 5867 break; 5868 } 5869 case ISD::CONCAT_VECTORS: { 5870 SDValue Ops[] = {N1, N2}; 5871 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5872 return V; 5873 break; 5874 } 5875 case ISD::AND: 5876 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5877 assert(N1.getValueType() == N2.getValueType() && 5878 N1.getValueType() == VT && "Binary operator types must match!"); 5879 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5880 // worth handling here. 5881 if (N2CV && N2CV->isZero()) 5882 return N2; 5883 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5884 return N1; 5885 break; 5886 case ISD::OR: 5887 case ISD::XOR: 5888 case ISD::ADD: 5889 case ISD::SUB: 5890 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5891 assert(N1.getValueType() == N2.getValueType() && 5892 N1.getValueType() == VT && "Binary operator types must match!"); 5893 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5894 // it's worth handling here. 5895 if (N2CV && N2CV->isZero()) 5896 return N1; 5897 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5898 VT.getVectorElementType() == MVT::i1) 5899 return getNode(ISD::XOR, DL, VT, N1, N2); 5900 break; 5901 case ISD::MUL: 5902 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5903 assert(N1.getValueType() == N2.getValueType() && 5904 N1.getValueType() == VT && "Binary operator types must match!"); 5905 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5906 return getNode(ISD::AND, DL, VT, N1, N2); 5907 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5908 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5909 const APInt &N2CImm = N2C->getAPIntValue(); 5910 return getVScale(DL, VT, MulImm * N2CImm); 5911 } 5912 break; 5913 case ISD::UDIV: 5914 case ISD::UREM: 5915 case ISD::MULHU: 5916 case ISD::MULHS: 5917 case ISD::SDIV: 5918 case ISD::SREM: 5919 case ISD::SADDSAT: 5920 case ISD::SSUBSAT: 5921 case ISD::UADDSAT: 5922 case ISD::USUBSAT: 5923 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5924 assert(N1.getValueType() == N2.getValueType() && 5925 N1.getValueType() == VT && "Binary operator types must match!"); 5926 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5927 // fold (add_sat x, y) -> (or x, y) for bool types. 5928 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5929 return getNode(ISD::OR, DL, VT, N1, N2); 5930 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5931 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5932 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5933 } 5934 break; 5935 case ISD::SMIN: 5936 case ISD::UMAX: 5937 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5938 assert(N1.getValueType() == N2.getValueType() && 5939 N1.getValueType() == VT && "Binary operator types must match!"); 5940 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5941 return getNode(ISD::OR, DL, VT, N1, N2); 5942 break; 5943 case ISD::SMAX: 5944 case ISD::UMIN: 5945 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5946 assert(N1.getValueType() == N2.getValueType() && 5947 N1.getValueType() == VT && "Binary operator types must match!"); 5948 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5949 return getNode(ISD::AND, DL, VT, N1, N2); 5950 break; 5951 case ISD::FADD: 5952 case ISD::FSUB: 5953 case ISD::FMUL: 5954 case ISD::FDIV: 5955 case ISD::FREM: 5956 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5957 assert(N1.getValueType() == N2.getValueType() && 5958 N1.getValueType() == VT && "Binary operator types must match!"); 5959 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5960 return V; 5961 break; 5962 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5963 assert(N1.getValueType() == VT && 5964 N1.getValueType().isFloatingPoint() && 5965 N2.getValueType().isFloatingPoint() && 5966 "Invalid FCOPYSIGN!"); 5967 break; 5968 case ISD::SHL: 5969 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5970 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5971 const APInt &ShiftImm = N2C->getAPIntValue(); 5972 return getVScale(DL, VT, MulImm << ShiftImm); 5973 } 5974 LLVM_FALLTHROUGH; 5975 case ISD::SRA: 5976 case ISD::SRL: 5977 if (SDValue V = simplifyShift(N1, N2)) 5978 return V; 5979 LLVM_FALLTHROUGH; 5980 case ISD::ROTL: 5981 case ISD::ROTR: 5982 assert(VT == N1.getValueType() && 5983 "Shift operators return type must be the same as their first arg"); 5984 assert(VT.isInteger() && N2.getValueType().isInteger() && 5985 "Shifts only work on integers"); 5986 assert((!VT.isVector() || VT == N2.getValueType()) && 5987 "Vector shift amounts must be in the same as their first arg"); 5988 // Verify that the shift amount VT is big enough to hold valid shift 5989 // amounts. This catches things like trying to shift an i1024 value by an 5990 // i8, which is easy to fall into in generic code that uses 5991 // TLI.getShiftAmount(). 5992 assert(N2.getValueType().getScalarSizeInBits() >= 5993 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5994 "Invalid use of small shift amount with oversized value!"); 5995 5996 // Always fold shifts of i1 values so the code generator doesn't need to 5997 // handle them. Since we know the size of the shift has to be less than the 5998 // size of the value, the shift/rotate count is guaranteed to be zero. 5999 if (VT == MVT::i1) 6000 return N1; 6001 if (N2CV && N2CV->isZero()) 6002 return N1; 6003 break; 6004 case ISD::FP_ROUND: 6005 assert(VT.isFloatingPoint() && 6006 N1.getValueType().isFloatingPoint() && 6007 VT.bitsLE(N1.getValueType()) && 6008 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6009 "Invalid FP_ROUND!"); 6010 if (N1.getValueType() == VT) return N1; // noop conversion. 6011 break; 6012 case ISD::AssertSext: 6013 case ISD::AssertZext: { 6014 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6015 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6016 assert(VT.isInteger() && EVT.isInteger() && 6017 "Cannot *_EXTEND_INREG FP types"); 6018 assert(!EVT.isVector() && 6019 "AssertSExt/AssertZExt type should be the vector element type " 6020 "rather than the vector type!"); 6021 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6022 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6023 break; 6024 } 6025 case ISD::SIGN_EXTEND_INREG: { 6026 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6027 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6028 assert(VT.isInteger() && EVT.isInteger() && 6029 "Cannot *_EXTEND_INREG FP types"); 6030 assert(EVT.isVector() == VT.isVector() && 6031 "SIGN_EXTEND_INREG type should be vector iff the operand " 6032 "type is vector!"); 6033 assert((!EVT.isVector() || 6034 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6035 "Vector element counts must match in SIGN_EXTEND_INREG"); 6036 assert(EVT.bitsLE(VT) && "Not extending!"); 6037 if (EVT == VT) return N1; // Not actually extending 6038 6039 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6040 unsigned FromBits = EVT.getScalarSizeInBits(); 6041 Val <<= Val.getBitWidth() - FromBits; 6042 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6043 return getConstant(Val, DL, ConstantVT); 6044 }; 6045 6046 if (N1C) { 6047 const APInt &Val = N1C->getAPIntValue(); 6048 return SignExtendInReg(Val, VT); 6049 } 6050 6051 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6052 SmallVector<SDValue, 8> Ops; 6053 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6054 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6055 SDValue Op = N1.getOperand(i); 6056 if (Op.isUndef()) { 6057 Ops.push_back(getUNDEF(OpVT)); 6058 continue; 6059 } 6060 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6061 APInt Val = C->getAPIntValue(); 6062 Ops.push_back(SignExtendInReg(Val, OpVT)); 6063 } 6064 return getBuildVector(VT, DL, Ops); 6065 } 6066 break; 6067 } 6068 case ISD::FP_TO_SINT_SAT: 6069 case ISD::FP_TO_UINT_SAT: { 6070 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6071 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6072 assert(N1.getValueType().isVector() == VT.isVector() && 6073 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6074 "vector!"); 6075 assert((!VT.isVector() || VT.getVectorNumElements() == 6076 N1.getValueType().getVectorNumElements()) && 6077 "Vector element counts must match in FP_TO_*INT_SAT"); 6078 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6079 "Type to saturate to must be a scalar."); 6080 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6081 "Not extending!"); 6082 break; 6083 } 6084 case ISD::EXTRACT_VECTOR_ELT: 6085 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6086 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6087 element type of the vector."); 6088 6089 // Extract from an undefined value or using an undefined index is undefined. 6090 if (N1.isUndef() || N2.isUndef()) 6091 return getUNDEF(VT); 6092 6093 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6094 // vectors. For scalable vectors we will provide appropriate support for 6095 // dealing with arbitrary indices. 6096 if (N2C && N1.getValueType().isFixedLengthVector() && 6097 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6098 return getUNDEF(VT); 6099 6100 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6101 // expanding copies of large vectors from registers. This only works for 6102 // fixed length vectors, since we need to know the exact number of 6103 // elements. 6104 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6105 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6106 unsigned Factor = 6107 N1.getOperand(0).getValueType().getVectorNumElements(); 6108 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6109 N1.getOperand(N2C->getZExtValue() / Factor), 6110 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6111 } 6112 6113 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6114 // lowering is expanding large vector constants. 6115 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6116 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6117 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6118 N1.getValueType().isFixedLengthVector()) && 6119 "BUILD_VECTOR used for scalable vectors"); 6120 unsigned Index = 6121 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6122 SDValue Elt = N1.getOperand(Index); 6123 6124 if (VT != Elt.getValueType()) 6125 // If the vector element type is not legal, the BUILD_VECTOR operands 6126 // are promoted and implicitly truncated, and the result implicitly 6127 // extended. Make that explicit here. 6128 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6129 6130 return Elt; 6131 } 6132 6133 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6134 // operations are lowered to scalars. 6135 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6136 // If the indices are the same, return the inserted element else 6137 // if the indices are known different, extract the element from 6138 // the original vector. 6139 SDValue N1Op2 = N1.getOperand(2); 6140 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6141 6142 if (N1Op2C && N2C) { 6143 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6144 if (VT == N1.getOperand(1).getValueType()) 6145 return N1.getOperand(1); 6146 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6147 } 6148 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6149 } 6150 } 6151 6152 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6153 // when vector types are scalarized and v1iX is legal. 6154 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6155 // Here we are completely ignoring the extract element index (N2), 6156 // which is fine for fixed width vectors, since any index other than 0 6157 // is undefined anyway. However, this cannot be ignored for scalable 6158 // vectors - in theory we could support this, but we don't want to do this 6159 // without a profitability check. 6160 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6161 N1.getValueType().isFixedLengthVector() && 6162 N1.getValueType().getVectorNumElements() == 1) { 6163 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6164 N1.getOperand(1)); 6165 } 6166 break; 6167 case ISD::EXTRACT_ELEMENT: 6168 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6169 assert(!N1.getValueType().isVector() && !VT.isVector() && 6170 (N1.getValueType().isInteger() == VT.isInteger()) && 6171 N1.getValueType() != VT && 6172 "Wrong types for EXTRACT_ELEMENT!"); 6173 6174 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6175 // 64-bit integers into 32-bit parts. Instead of building the extract of 6176 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6177 if (N1.getOpcode() == ISD::BUILD_PAIR) 6178 return N1.getOperand(N2C->getZExtValue()); 6179 6180 // EXTRACT_ELEMENT of a constant int is also very common. 6181 if (N1C) { 6182 unsigned ElementSize = VT.getSizeInBits(); 6183 unsigned Shift = ElementSize * N2C->getZExtValue(); 6184 const APInt &Val = N1C->getAPIntValue(); 6185 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6186 } 6187 break; 6188 case ISD::EXTRACT_SUBVECTOR: { 6189 EVT N1VT = N1.getValueType(); 6190 assert(VT.isVector() && N1VT.isVector() && 6191 "Extract subvector VTs must be vectors!"); 6192 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6193 "Extract subvector VTs must have the same element type!"); 6194 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6195 "Cannot extract a scalable vector from a fixed length vector!"); 6196 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6197 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6198 "Extract subvector must be from larger vector to smaller vector!"); 6199 assert(N2C && "Extract subvector index must be a constant"); 6200 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6201 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6202 N1VT.getVectorMinNumElements()) && 6203 "Extract subvector overflow!"); 6204 assert(N2C->getAPIntValue().getBitWidth() == 6205 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6206 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6207 6208 // Trivial extraction. 6209 if (VT == N1VT) 6210 return N1; 6211 6212 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6213 if (N1.isUndef()) 6214 return getUNDEF(VT); 6215 6216 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6217 // the concat have the same type as the extract. 6218 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6219 VT == N1.getOperand(0).getValueType()) { 6220 unsigned Factor = VT.getVectorMinNumElements(); 6221 return N1.getOperand(N2C->getZExtValue() / Factor); 6222 } 6223 6224 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6225 // during shuffle legalization. 6226 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6227 VT == N1.getOperand(1).getValueType()) 6228 return N1.getOperand(1); 6229 break; 6230 } 6231 } 6232 6233 // Perform trivial constant folding. 6234 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6235 return SV; 6236 6237 // Canonicalize an UNDEF to the RHS, even over a constant. 6238 if (N1.isUndef()) { 6239 if (TLI->isCommutativeBinOp(Opcode)) { 6240 std::swap(N1, N2); 6241 } else { 6242 switch (Opcode) { 6243 case ISD::SUB: 6244 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6245 case ISD::SIGN_EXTEND_INREG: 6246 case ISD::UDIV: 6247 case ISD::SDIV: 6248 case ISD::UREM: 6249 case ISD::SREM: 6250 case ISD::SSUBSAT: 6251 case ISD::USUBSAT: 6252 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6253 } 6254 } 6255 } 6256 6257 // Fold a bunch of operators when the RHS is undef. 6258 if (N2.isUndef()) { 6259 switch (Opcode) { 6260 case ISD::XOR: 6261 if (N1.isUndef()) 6262 // Handle undef ^ undef -> 0 special case. This is a common 6263 // idiom (misuse). 6264 return getConstant(0, DL, VT); 6265 LLVM_FALLTHROUGH; 6266 case ISD::ADD: 6267 case ISD::SUB: 6268 case ISD::UDIV: 6269 case ISD::SDIV: 6270 case ISD::UREM: 6271 case ISD::SREM: 6272 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6273 case ISD::MUL: 6274 case ISD::AND: 6275 case ISD::SSUBSAT: 6276 case ISD::USUBSAT: 6277 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6278 case ISD::OR: 6279 case ISD::SADDSAT: 6280 case ISD::UADDSAT: 6281 return getAllOnesConstant(DL, VT); 6282 } 6283 } 6284 6285 // Memoize this node if possible. 6286 SDNode *N; 6287 SDVTList VTs = getVTList(VT); 6288 SDValue Ops[] = {N1, N2}; 6289 if (VT != MVT::Glue) { 6290 FoldingSetNodeID ID; 6291 AddNodeIDNode(ID, Opcode, VTs, Ops); 6292 void *IP = nullptr; 6293 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6294 E->intersectFlagsWith(Flags); 6295 return SDValue(E, 0); 6296 } 6297 6298 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6299 N->setFlags(Flags); 6300 createOperands(N, Ops); 6301 CSEMap.InsertNode(N, IP); 6302 } else { 6303 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6304 createOperands(N, Ops); 6305 } 6306 6307 InsertNode(N); 6308 SDValue V = SDValue(N, 0); 6309 NewSDValueDbgMsg(V, "Creating new node: ", this); 6310 return V; 6311 } 6312 6313 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6314 SDValue N1, SDValue N2, SDValue N3) { 6315 SDNodeFlags Flags; 6316 if (Inserter) 6317 Flags = Inserter->getFlags(); 6318 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6319 } 6320 6321 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6322 SDValue N1, SDValue N2, SDValue N3, 6323 const SDNodeFlags Flags) { 6324 assert(N1.getOpcode() != ISD::DELETED_NODE && 6325 N2.getOpcode() != ISD::DELETED_NODE && 6326 N3.getOpcode() != ISD::DELETED_NODE && 6327 "Operand is DELETED_NODE!"); 6328 // Perform various simplifications. 6329 switch (Opcode) { 6330 case ISD::FMA: { 6331 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6332 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6333 N3.getValueType() == VT && "FMA types must match!"); 6334 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6335 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6336 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6337 if (N1CFP && N2CFP && N3CFP) { 6338 APFloat V1 = N1CFP->getValueAPF(); 6339 const APFloat &V2 = N2CFP->getValueAPF(); 6340 const APFloat &V3 = N3CFP->getValueAPF(); 6341 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6342 return getConstantFP(V1, DL, VT); 6343 } 6344 break; 6345 } 6346 case ISD::BUILD_VECTOR: { 6347 // Attempt to simplify BUILD_VECTOR. 6348 SDValue Ops[] = {N1, N2, N3}; 6349 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6350 return V; 6351 break; 6352 } 6353 case ISD::CONCAT_VECTORS: { 6354 SDValue Ops[] = {N1, N2, N3}; 6355 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6356 return V; 6357 break; 6358 } 6359 case ISD::SETCC: { 6360 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6361 assert(N1.getValueType() == N2.getValueType() && 6362 "SETCC operands must have the same type!"); 6363 assert(VT.isVector() == N1.getValueType().isVector() && 6364 "SETCC type should be vector iff the operand type is vector!"); 6365 assert((!VT.isVector() || VT.getVectorElementCount() == 6366 N1.getValueType().getVectorElementCount()) && 6367 "SETCC vector element counts must match!"); 6368 // Use FoldSetCC to simplify SETCC's. 6369 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6370 return V; 6371 // Vector constant folding. 6372 SDValue Ops[] = {N1, N2, N3}; 6373 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6374 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6375 return V; 6376 } 6377 break; 6378 } 6379 case ISD::SELECT: 6380 case ISD::VSELECT: 6381 if (SDValue V = simplifySelect(N1, N2, N3)) 6382 return V; 6383 break; 6384 case ISD::VECTOR_SHUFFLE: 6385 llvm_unreachable("should use getVectorShuffle constructor!"); 6386 case ISD::VECTOR_SPLICE: { 6387 if (cast<ConstantSDNode>(N3)->isNullValue()) 6388 return N1; 6389 break; 6390 } 6391 case ISD::INSERT_VECTOR_ELT: { 6392 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6393 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6394 // for scalable vectors where we will generate appropriate code to 6395 // deal with out-of-bounds cases correctly. 6396 if (N3C && N1.getValueType().isFixedLengthVector() && 6397 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6398 return getUNDEF(VT); 6399 6400 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6401 if (N3.isUndef()) 6402 return getUNDEF(VT); 6403 6404 // If the inserted element is an UNDEF, just use the input vector. 6405 if (N2.isUndef()) 6406 return N1; 6407 6408 break; 6409 } 6410 case ISD::INSERT_SUBVECTOR: { 6411 // Inserting undef into undef is still undef. 6412 if (N1.isUndef() && N2.isUndef()) 6413 return getUNDEF(VT); 6414 6415 EVT N2VT = N2.getValueType(); 6416 assert(VT == N1.getValueType() && 6417 "Dest and insert subvector source types must match!"); 6418 assert(VT.isVector() && N2VT.isVector() && 6419 "Insert subvector VTs must be vectors!"); 6420 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6421 "Cannot insert a scalable vector into a fixed length vector!"); 6422 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6423 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6424 "Insert subvector must be from smaller vector to larger vector!"); 6425 assert(isa<ConstantSDNode>(N3) && 6426 "Insert subvector index must be constant"); 6427 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6428 (N2VT.getVectorMinNumElements() + 6429 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6430 VT.getVectorMinNumElements()) && 6431 "Insert subvector overflow!"); 6432 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6433 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6434 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6435 6436 // Trivial insertion. 6437 if (VT == N2VT) 6438 return N2; 6439 6440 // If this is an insert of an extracted vector into an undef vector, we 6441 // can just use the input to the extract. 6442 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6443 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6444 return N2.getOperand(0); 6445 break; 6446 } 6447 case ISD::BITCAST: 6448 // Fold bit_convert nodes from a type to themselves. 6449 if (N1.getValueType() == VT) 6450 return N1; 6451 break; 6452 } 6453 6454 // Memoize node if it doesn't produce a flag. 6455 SDNode *N; 6456 SDVTList VTs = getVTList(VT); 6457 SDValue Ops[] = {N1, N2, N3}; 6458 if (VT != MVT::Glue) { 6459 FoldingSetNodeID ID; 6460 AddNodeIDNode(ID, Opcode, VTs, Ops); 6461 void *IP = nullptr; 6462 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6463 E->intersectFlagsWith(Flags); 6464 return SDValue(E, 0); 6465 } 6466 6467 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6468 N->setFlags(Flags); 6469 createOperands(N, Ops); 6470 CSEMap.InsertNode(N, IP); 6471 } else { 6472 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6473 createOperands(N, Ops); 6474 } 6475 6476 InsertNode(N); 6477 SDValue V = SDValue(N, 0); 6478 NewSDValueDbgMsg(V, "Creating new node: ", this); 6479 return V; 6480 } 6481 6482 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6483 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6484 SDValue Ops[] = { N1, N2, N3, N4 }; 6485 return getNode(Opcode, DL, VT, Ops); 6486 } 6487 6488 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6489 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6490 SDValue N5) { 6491 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6492 return getNode(Opcode, DL, VT, Ops); 6493 } 6494 6495 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6496 /// the incoming stack arguments to be loaded from the stack. 6497 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6498 SmallVector<SDValue, 8> ArgChains; 6499 6500 // Include the original chain at the beginning of the list. When this is 6501 // used by target LowerCall hooks, this helps legalize find the 6502 // CALLSEQ_BEGIN node. 6503 ArgChains.push_back(Chain); 6504 6505 // Add a chain value for each stack argument. 6506 for (SDNode *U : getEntryNode().getNode()->uses()) 6507 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6508 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6509 if (FI->getIndex() < 0) 6510 ArgChains.push_back(SDValue(L, 1)); 6511 6512 // Build a tokenfactor for all the chains. 6513 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6514 } 6515 6516 /// getMemsetValue - Vectorized representation of the memset value 6517 /// operand. 6518 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6519 const SDLoc &dl) { 6520 assert(!Value.isUndef()); 6521 6522 unsigned NumBits = VT.getScalarSizeInBits(); 6523 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6524 assert(C->getAPIntValue().getBitWidth() == 8); 6525 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6526 if (VT.isInteger()) { 6527 bool IsOpaque = VT.getSizeInBits() > 64 || 6528 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6529 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6530 } 6531 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6532 VT); 6533 } 6534 6535 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6536 EVT IntVT = VT.getScalarType(); 6537 if (!IntVT.isInteger()) 6538 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6539 6540 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6541 if (NumBits > 8) { 6542 // Use a multiplication with 0x010101... to extend the input to the 6543 // required length. 6544 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6545 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6546 DAG.getConstant(Magic, dl, IntVT)); 6547 } 6548 6549 if (VT != Value.getValueType() && !VT.isInteger()) 6550 Value = DAG.getBitcast(VT.getScalarType(), Value); 6551 if (VT != Value.getValueType()) 6552 Value = DAG.getSplatBuildVector(VT, dl, Value); 6553 6554 return Value; 6555 } 6556 6557 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6558 /// used when a memcpy is turned into a memset when the source is a constant 6559 /// string ptr. 6560 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6561 const TargetLowering &TLI, 6562 const ConstantDataArraySlice &Slice) { 6563 // Handle vector with all elements zero. 6564 if (Slice.Array == nullptr) { 6565 if (VT.isInteger()) 6566 return DAG.getConstant(0, dl, VT); 6567 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6568 return DAG.getConstantFP(0.0, dl, VT); 6569 if (VT.isVector()) { 6570 unsigned NumElts = VT.getVectorNumElements(); 6571 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6572 return DAG.getNode(ISD::BITCAST, dl, VT, 6573 DAG.getConstant(0, dl, 6574 EVT::getVectorVT(*DAG.getContext(), 6575 EltVT, NumElts))); 6576 } 6577 llvm_unreachable("Expected type!"); 6578 } 6579 6580 assert(!VT.isVector() && "Can't handle vector type here!"); 6581 unsigned NumVTBits = VT.getSizeInBits(); 6582 unsigned NumVTBytes = NumVTBits / 8; 6583 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6584 6585 APInt Val(NumVTBits, 0); 6586 if (DAG.getDataLayout().isLittleEndian()) { 6587 for (unsigned i = 0; i != NumBytes; ++i) 6588 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6589 } else { 6590 for (unsigned i = 0; i != NumBytes; ++i) 6591 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6592 } 6593 6594 // If the "cost" of materializing the integer immediate is less than the cost 6595 // of a load, then it is cost effective to turn the load into the immediate. 6596 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6597 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6598 return DAG.getConstant(Val, dl, VT); 6599 return SDValue(); 6600 } 6601 6602 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6603 const SDLoc &DL, 6604 const SDNodeFlags Flags) { 6605 EVT VT = Base.getValueType(); 6606 SDValue Index; 6607 6608 if (Offset.isScalable()) 6609 Index = getVScale(DL, Base.getValueType(), 6610 APInt(Base.getValueSizeInBits().getFixedSize(), 6611 Offset.getKnownMinSize())); 6612 else 6613 Index = getConstant(Offset.getFixedSize(), DL, VT); 6614 6615 return getMemBasePlusOffset(Base, Index, DL, Flags); 6616 } 6617 6618 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6619 const SDLoc &DL, 6620 const SDNodeFlags Flags) { 6621 assert(Offset.getValueType().isInteger()); 6622 EVT BasePtrVT = Ptr.getValueType(); 6623 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6624 } 6625 6626 /// Returns true if memcpy source is constant data. 6627 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6628 uint64_t SrcDelta = 0; 6629 GlobalAddressSDNode *G = nullptr; 6630 if (Src.getOpcode() == ISD::GlobalAddress) 6631 G = cast<GlobalAddressSDNode>(Src); 6632 else if (Src.getOpcode() == ISD::ADD && 6633 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6634 Src.getOperand(1).getOpcode() == ISD::Constant) { 6635 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6636 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6637 } 6638 if (!G) 6639 return false; 6640 6641 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6642 SrcDelta + G->getOffset()); 6643 } 6644 6645 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6646 SelectionDAG &DAG) { 6647 // On Darwin, -Os means optimize for size without hurting performance, so 6648 // only really optimize for size when -Oz (MinSize) is used. 6649 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6650 return MF.getFunction().hasMinSize(); 6651 return DAG.shouldOptForSize(); 6652 } 6653 6654 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6655 SmallVector<SDValue, 32> &OutChains, unsigned From, 6656 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6657 SmallVector<SDValue, 16> &OutStoreChains) { 6658 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6659 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6660 SmallVector<SDValue, 16> GluedLoadChains; 6661 for (unsigned i = From; i < To; ++i) { 6662 OutChains.push_back(OutLoadChains[i]); 6663 GluedLoadChains.push_back(OutLoadChains[i]); 6664 } 6665 6666 // Chain for all loads. 6667 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6668 GluedLoadChains); 6669 6670 for (unsigned i = From; i < To; ++i) { 6671 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6672 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6673 ST->getBasePtr(), ST->getMemoryVT(), 6674 ST->getMemOperand()); 6675 OutChains.push_back(NewStore); 6676 } 6677 } 6678 6679 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6680 SDValue Chain, SDValue Dst, SDValue Src, 6681 uint64_t Size, Align Alignment, 6682 bool isVol, bool AlwaysInline, 6683 MachinePointerInfo DstPtrInfo, 6684 MachinePointerInfo SrcPtrInfo, 6685 const AAMDNodes &AAInfo) { 6686 // Turn a memcpy of undef to nop. 6687 // FIXME: We need to honor volatile even is Src is undef. 6688 if (Src.isUndef()) 6689 return Chain; 6690 6691 // Expand memcpy to a series of load and store ops if the size operand falls 6692 // below a certain threshold. 6693 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6694 // rather than maybe a humongous number of loads and stores. 6695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6696 const DataLayout &DL = DAG.getDataLayout(); 6697 LLVMContext &C = *DAG.getContext(); 6698 std::vector<EVT> MemOps; 6699 bool DstAlignCanChange = false; 6700 MachineFunction &MF = DAG.getMachineFunction(); 6701 MachineFrameInfo &MFI = MF.getFrameInfo(); 6702 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6703 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6704 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6705 DstAlignCanChange = true; 6706 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6707 if (!SrcAlign || Alignment > *SrcAlign) 6708 SrcAlign = Alignment; 6709 assert(SrcAlign && "SrcAlign must be set"); 6710 ConstantDataArraySlice Slice; 6711 // If marked as volatile, perform a copy even when marked as constant. 6712 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6713 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6714 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6715 const MemOp Op = isZeroConstant 6716 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6717 /*IsZeroMemset*/ true, isVol) 6718 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6719 *SrcAlign, isVol, CopyFromConstant); 6720 if (!TLI.findOptimalMemOpLowering( 6721 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6722 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6723 return SDValue(); 6724 6725 if (DstAlignCanChange) { 6726 Type *Ty = MemOps[0].getTypeForEVT(C); 6727 Align NewAlign = DL.getABITypeAlign(Ty); 6728 6729 // Don't promote to an alignment that would require dynamic stack 6730 // realignment. 6731 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6732 if (!TRI->hasStackRealignment(MF)) 6733 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6734 NewAlign = NewAlign / 2; 6735 6736 if (NewAlign > Alignment) { 6737 // Give the stack frame object a larger alignment if needed. 6738 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6739 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6740 Alignment = NewAlign; 6741 } 6742 } 6743 6744 // Prepare AAInfo for loads/stores after lowering this memcpy. 6745 AAMDNodes NewAAInfo = AAInfo; 6746 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6747 6748 MachineMemOperand::Flags MMOFlags = 6749 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6750 SmallVector<SDValue, 16> OutLoadChains; 6751 SmallVector<SDValue, 16> OutStoreChains; 6752 SmallVector<SDValue, 32> OutChains; 6753 unsigned NumMemOps = MemOps.size(); 6754 uint64_t SrcOff = 0, DstOff = 0; 6755 for (unsigned i = 0; i != NumMemOps; ++i) { 6756 EVT VT = MemOps[i]; 6757 unsigned VTSize = VT.getSizeInBits() / 8; 6758 SDValue Value, Store; 6759 6760 if (VTSize > Size) { 6761 // Issuing an unaligned load / store pair that overlaps with the previous 6762 // pair. Adjust the offset accordingly. 6763 assert(i == NumMemOps-1 && i != 0); 6764 SrcOff -= VTSize - Size; 6765 DstOff -= VTSize - Size; 6766 } 6767 6768 if (CopyFromConstant && 6769 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6770 // It's unlikely a store of a vector immediate can be done in a single 6771 // instruction. It would require a load from a constantpool first. 6772 // We only handle zero vectors here. 6773 // FIXME: Handle other cases where store of vector immediate is done in 6774 // a single instruction. 6775 ConstantDataArraySlice SubSlice; 6776 if (SrcOff < Slice.Length) { 6777 SubSlice = Slice; 6778 SubSlice.move(SrcOff); 6779 } else { 6780 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6781 SubSlice.Array = nullptr; 6782 SubSlice.Offset = 0; 6783 SubSlice.Length = VTSize; 6784 } 6785 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6786 if (Value.getNode()) { 6787 Store = DAG.getStore( 6788 Chain, dl, Value, 6789 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6790 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6791 OutChains.push_back(Store); 6792 } 6793 } 6794 6795 if (!Store.getNode()) { 6796 // The type might not be legal for the target. This should only happen 6797 // if the type is smaller than a legal type, as on PPC, so the right 6798 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6799 // to Load/Store if NVT==VT. 6800 // FIXME does the case above also need this? 6801 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6802 assert(NVT.bitsGE(VT)); 6803 6804 bool isDereferenceable = 6805 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6806 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6807 if (isDereferenceable) 6808 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6809 6810 Value = DAG.getExtLoad( 6811 ISD::EXTLOAD, dl, NVT, Chain, 6812 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6813 SrcPtrInfo.getWithOffset(SrcOff), VT, 6814 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6815 OutLoadChains.push_back(Value.getValue(1)); 6816 6817 Store = DAG.getTruncStore( 6818 Chain, dl, Value, 6819 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6820 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6821 OutStoreChains.push_back(Store); 6822 } 6823 SrcOff += VTSize; 6824 DstOff += VTSize; 6825 Size -= VTSize; 6826 } 6827 6828 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6829 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6830 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6831 6832 if (NumLdStInMemcpy) { 6833 // It may be that memcpy might be converted to memset if it's memcpy 6834 // of constants. In such a case, we won't have loads and stores, but 6835 // just stores. In the absence of loads, there is nothing to gang up. 6836 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6837 // If target does not care, just leave as it. 6838 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6839 OutChains.push_back(OutLoadChains[i]); 6840 OutChains.push_back(OutStoreChains[i]); 6841 } 6842 } else { 6843 // Ld/St less than/equal limit set by target. 6844 if (NumLdStInMemcpy <= GluedLdStLimit) { 6845 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6846 NumLdStInMemcpy, OutLoadChains, 6847 OutStoreChains); 6848 } else { 6849 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6850 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6851 unsigned GlueIter = 0; 6852 6853 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6854 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6855 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6856 6857 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6858 OutLoadChains, OutStoreChains); 6859 GlueIter += GluedLdStLimit; 6860 } 6861 6862 // Residual ld/st. 6863 if (RemainingLdStInMemcpy) { 6864 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6865 RemainingLdStInMemcpy, OutLoadChains, 6866 OutStoreChains); 6867 } 6868 } 6869 } 6870 } 6871 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6872 } 6873 6874 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6875 SDValue Chain, SDValue Dst, SDValue Src, 6876 uint64_t Size, Align Alignment, 6877 bool isVol, bool AlwaysInline, 6878 MachinePointerInfo DstPtrInfo, 6879 MachinePointerInfo SrcPtrInfo, 6880 const AAMDNodes &AAInfo) { 6881 // Turn a memmove of undef to nop. 6882 // FIXME: We need to honor volatile even is Src is undef. 6883 if (Src.isUndef()) 6884 return Chain; 6885 6886 // Expand memmove to a series of load and store ops if the size operand falls 6887 // below a certain threshold. 6888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6889 const DataLayout &DL = DAG.getDataLayout(); 6890 LLVMContext &C = *DAG.getContext(); 6891 std::vector<EVT> MemOps; 6892 bool DstAlignCanChange = false; 6893 MachineFunction &MF = DAG.getMachineFunction(); 6894 MachineFrameInfo &MFI = MF.getFrameInfo(); 6895 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6896 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6897 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6898 DstAlignCanChange = true; 6899 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6900 if (!SrcAlign || Alignment > *SrcAlign) 6901 SrcAlign = Alignment; 6902 assert(SrcAlign && "SrcAlign must be set"); 6903 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6904 if (!TLI.findOptimalMemOpLowering( 6905 MemOps, Limit, 6906 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6907 /*IsVolatile*/ true), 6908 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6909 MF.getFunction().getAttributes())) 6910 return SDValue(); 6911 6912 if (DstAlignCanChange) { 6913 Type *Ty = MemOps[0].getTypeForEVT(C); 6914 Align NewAlign = DL.getABITypeAlign(Ty); 6915 if (NewAlign > Alignment) { 6916 // Give the stack frame object a larger alignment if needed. 6917 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6918 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6919 Alignment = NewAlign; 6920 } 6921 } 6922 6923 // Prepare AAInfo for loads/stores after lowering this memmove. 6924 AAMDNodes NewAAInfo = AAInfo; 6925 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6926 6927 MachineMemOperand::Flags MMOFlags = 6928 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6929 uint64_t SrcOff = 0, DstOff = 0; 6930 SmallVector<SDValue, 8> LoadValues; 6931 SmallVector<SDValue, 8> LoadChains; 6932 SmallVector<SDValue, 8> OutChains; 6933 unsigned NumMemOps = MemOps.size(); 6934 for (unsigned i = 0; i < NumMemOps; i++) { 6935 EVT VT = MemOps[i]; 6936 unsigned VTSize = VT.getSizeInBits() / 8; 6937 SDValue Value; 6938 6939 bool isDereferenceable = 6940 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6941 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6942 if (isDereferenceable) 6943 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6944 6945 Value = DAG.getLoad( 6946 VT, dl, Chain, 6947 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6948 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6949 LoadValues.push_back(Value); 6950 LoadChains.push_back(Value.getValue(1)); 6951 SrcOff += VTSize; 6952 } 6953 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6954 OutChains.clear(); 6955 for (unsigned i = 0; i < NumMemOps; i++) { 6956 EVT VT = MemOps[i]; 6957 unsigned VTSize = VT.getSizeInBits() / 8; 6958 SDValue Store; 6959 6960 Store = DAG.getStore( 6961 Chain, dl, LoadValues[i], 6962 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6963 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6964 OutChains.push_back(Store); 6965 DstOff += VTSize; 6966 } 6967 6968 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6969 } 6970 6971 /// Lower the call to 'memset' intrinsic function into a series of store 6972 /// operations. 6973 /// 6974 /// \param DAG Selection DAG where lowered code is placed. 6975 /// \param dl Link to corresponding IR location. 6976 /// \param Chain Control flow dependency. 6977 /// \param Dst Pointer to destination memory location. 6978 /// \param Src Value of byte to write into the memory. 6979 /// \param Size Number of bytes to write. 6980 /// \param Alignment Alignment of the destination in bytes. 6981 /// \param isVol True if destination is volatile. 6982 /// \param DstPtrInfo IR information on the memory pointer. 6983 /// \returns New head in the control flow, if lowering was successful, empty 6984 /// SDValue otherwise. 6985 /// 6986 /// The function tries to replace 'llvm.memset' intrinsic with several store 6987 /// operations and value calculation code. This is usually profitable for small 6988 /// memory size. 6989 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6990 SDValue Chain, SDValue Dst, SDValue Src, 6991 uint64_t Size, Align Alignment, bool isVol, 6992 MachinePointerInfo DstPtrInfo, 6993 const AAMDNodes &AAInfo) { 6994 // Turn a memset of undef to nop. 6995 // FIXME: We need to honor volatile even is Src is undef. 6996 if (Src.isUndef()) 6997 return Chain; 6998 6999 // Expand memset to a series of load/store ops if the size operand 7000 // falls below a certain threshold. 7001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7002 std::vector<EVT> MemOps; 7003 bool DstAlignCanChange = false; 7004 MachineFunction &MF = DAG.getMachineFunction(); 7005 MachineFrameInfo &MFI = MF.getFrameInfo(); 7006 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7007 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7008 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7009 DstAlignCanChange = true; 7010 bool IsZeroVal = 7011 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7012 if (!TLI.findOptimalMemOpLowering( 7013 MemOps, TLI.getMaxStoresPerMemset(OptSize), 7014 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7015 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7016 return SDValue(); 7017 7018 if (DstAlignCanChange) { 7019 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7020 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7021 if (NewAlign > Alignment) { 7022 // Give the stack frame object a larger alignment if needed. 7023 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7024 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7025 Alignment = NewAlign; 7026 } 7027 } 7028 7029 SmallVector<SDValue, 8> OutChains; 7030 uint64_t DstOff = 0; 7031 unsigned NumMemOps = MemOps.size(); 7032 7033 // Find the largest store and generate the bit pattern for it. 7034 EVT LargestVT = MemOps[0]; 7035 for (unsigned i = 1; i < NumMemOps; i++) 7036 if (MemOps[i].bitsGT(LargestVT)) 7037 LargestVT = MemOps[i]; 7038 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7039 7040 // Prepare AAInfo for loads/stores after lowering this memset. 7041 AAMDNodes NewAAInfo = AAInfo; 7042 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7043 7044 for (unsigned i = 0; i < NumMemOps; i++) { 7045 EVT VT = MemOps[i]; 7046 unsigned VTSize = VT.getSizeInBits() / 8; 7047 if (VTSize > Size) { 7048 // Issuing an unaligned load / store pair that overlaps with the previous 7049 // pair. Adjust the offset accordingly. 7050 assert(i == NumMemOps-1 && i != 0); 7051 DstOff -= VTSize - Size; 7052 } 7053 7054 // If this store is smaller than the largest store see whether we can get 7055 // the smaller value for free with a truncate. 7056 SDValue Value = MemSetValue; 7057 if (VT.bitsLT(LargestVT)) { 7058 if (!LargestVT.isVector() && !VT.isVector() && 7059 TLI.isTruncateFree(LargestVT, VT)) 7060 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7061 else 7062 Value = getMemsetValue(Src, VT, DAG, dl); 7063 } 7064 assert(Value.getValueType() == VT && "Value with wrong type."); 7065 SDValue Store = DAG.getStore( 7066 Chain, dl, Value, 7067 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7068 DstPtrInfo.getWithOffset(DstOff), Alignment, 7069 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7070 NewAAInfo); 7071 OutChains.push_back(Store); 7072 DstOff += VT.getSizeInBits() / 8; 7073 Size -= VTSize; 7074 } 7075 7076 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7077 } 7078 7079 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7080 unsigned AS) { 7081 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7082 // pointer operands can be losslessly bitcasted to pointers of address space 0 7083 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7084 report_fatal_error("cannot lower memory intrinsic in address space " + 7085 Twine(AS)); 7086 } 7087 } 7088 7089 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7090 SDValue Src, SDValue Size, Align Alignment, 7091 bool isVol, bool AlwaysInline, bool isTailCall, 7092 MachinePointerInfo DstPtrInfo, 7093 MachinePointerInfo SrcPtrInfo, 7094 const AAMDNodes &AAInfo) { 7095 // Check to see if we should lower the memcpy to loads and stores first. 7096 // For cases within the target-specified limits, this is the best choice. 7097 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7098 if (ConstantSize) { 7099 // Memcpy with size zero? Just return the original chain. 7100 if (ConstantSize->isZero()) 7101 return Chain; 7102 7103 SDValue Result = getMemcpyLoadsAndStores( 7104 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7105 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7106 if (Result.getNode()) 7107 return Result; 7108 } 7109 7110 // Then check to see if we should lower the memcpy with target-specific 7111 // code. If the target chooses to do this, this is the next best. 7112 if (TSI) { 7113 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7114 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7115 DstPtrInfo, SrcPtrInfo); 7116 if (Result.getNode()) 7117 return Result; 7118 } 7119 7120 // If we really need inline code and the target declined to provide it, 7121 // use a (potentially long) sequence of loads and stores. 7122 if (AlwaysInline) { 7123 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7124 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7125 ConstantSize->getZExtValue(), Alignment, 7126 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7127 } 7128 7129 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7130 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7131 7132 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7133 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7134 // respect volatile, so they may do things like read or write memory 7135 // beyond the given memory regions. But fixing this isn't easy, and most 7136 // people don't care. 7137 7138 // Emit a library call. 7139 TargetLowering::ArgListTy Args; 7140 TargetLowering::ArgListEntry Entry; 7141 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7142 Entry.Node = Dst; Args.push_back(Entry); 7143 Entry.Node = Src; Args.push_back(Entry); 7144 7145 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7146 Entry.Node = Size; Args.push_back(Entry); 7147 // FIXME: pass in SDLoc 7148 TargetLowering::CallLoweringInfo CLI(*this); 7149 CLI.setDebugLoc(dl) 7150 .setChain(Chain) 7151 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7152 Dst.getValueType().getTypeForEVT(*getContext()), 7153 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7154 TLI->getPointerTy(getDataLayout())), 7155 std::move(Args)) 7156 .setDiscardResult() 7157 .setTailCall(isTailCall); 7158 7159 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7160 return CallResult.second; 7161 } 7162 7163 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7164 SDValue Dst, unsigned DstAlign, 7165 SDValue Src, unsigned SrcAlign, 7166 SDValue Size, Type *SizeTy, 7167 unsigned ElemSz, bool isTailCall, 7168 MachinePointerInfo DstPtrInfo, 7169 MachinePointerInfo SrcPtrInfo) { 7170 // Emit a library call. 7171 TargetLowering::ArgListTy Args; 7172 TargetLowering::ArgListEntry Entry; 7173 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7174 Entry.Node = Dst; 7175 Args.push_back(Entry); 7176 7177 Entry.Node = Src; 7178 Args.push_back(Entry); 7179 7180 Entry.Ty = SizeTy; 7181 Entry.Node = Size; 7182 Args.push_back(Entry); 7183 7184 RTLIB::Libcall LibraryCall = 7185 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7186 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7187 report_fatal_error("Unsupported element size"); 7188 7189 TargetLowering::CallLoweringInfo CLI(*this); 7190 CLI.setDebugLoc(dl) 7191 .setChain(Chain) 7192 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7193 Type::getVoidTy(*getContext()), 7194 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7195 TLI->getPointerTy(getDataLayout())), 7196 std::move(Args)) 7197 .setDiscardResult() 7198 .setTailCall(isTailCall); 7199 7200 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7201 return CallResult.second; 7202 } 7203 7204 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7205 SDValue Src, SDValue Size, Align Alignment, 7206 bool isVol, bool isTailCall, 7207 MachinePointerInfo DstPtrInfo, 7208 MachinePointerInfo SrcPtrInfo, 7209 const AAMDNodes &AAInfo) { 7210 // Check to see if we should lower the memmove to loads and stores first. 7211 // For cases within the target-specified limits, this is the best choice. 7212 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7213 if (ConstantSize) { 7214 // Memmove with size zero? Just return the original chain. 7215 if (ConstantSize->isZero()) 7216 return Chain; 7217 7218 SDValue Result = getMemmoveLoadsAndStores( 7219 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7220 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7221 if (Result.getNode()) 7222 return Result; 7223 } 7224 7225 // Then check to see if we should lower the memmove with target-specific 7226 // code. If the target chooses to do this, this is the next best. 7227 if (TSI) { 7228 SDValue Result = 7229 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7230 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7231 if (Result.getNode()) 7232 return Result; 7233 } 7234 7235 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7236 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7237 7238 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7239 // not be safe. See memcpy above for more details. 7240 7241 // Emit a library call. 7242 TargetLowering::ArgListTy Args; 7243 TargetLowering::ArgListEntry Entry; 7244 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7245 Entry.Node = Dst; Args.push_back(Entry); 7246 Entry.Node = Src; Args.push_back(Entry); 7247 7248 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7249 Entry.Node = Size; Args.push_back(Entry); 7250 // FIXME: pass in SDLoc 7251 TargetLowering::CallLoweringInfo CLI(*this); 7252 CLI.setDebugLoc(dl) 7253 .setChain(Chain) 7254 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7255 Dst.getValueType().getTypeForEVT(*getContext()), 7256 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7257 TLI->getPointerTy(getDataLayout())), 7258 std::move(Args)) 7259 .setDiscardResult() 7260 .setTailCall(isTailCall); 7261 7262 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7263 return CallResult.second; 7264 } 7265 7266 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7267 SDValue Dst, unsigned DstAlign, 7268 SDValue Src, unsigned SrcAlign, 7269 SDValue Size, Type *SizeTy, 7270 unsigned ElemSz, bool isTailCall, 7271 MachinePointerInfo DstPtrInfo, 7272 MachinePointerInfo SrcPtrInfo) { 7273 // Emit a library call. 7274 TargetLowering::ArgListTy Args; 7275 TargetLowering::ArgListEntry Entry; 7276 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7277 Entry.Node = Dst; 7278 Args.push_back(Entry); 7279 7280 Entry.Node = Src; 7281 Args.push_back(Entry); 7282 7283 Entry.Ty = SizeTy; 7284 Entry.Node = Size; 7285 Args.push_back(Entry); 7286 7287 RTLIB::Libcall LibraryCall = 7288 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7289 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7290 report_fatal_error("Unsupported element size"); 7291 7292 TargetLowering::CallLoweringInfo CLI(*this); 7293 CLI.setDebugLoc(dl) 7294 .setChain(Chain) 7295 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7296 Type::getVoidTy(*getContext()), 7297 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7298 TLI->getPointerTy(getDataLayout())), 7299 std::move(Args)) 7300 .setDiscardResult() 7301 .setTailCall(isTailCall); 7302 7303 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7304 return CallResult.second; 7305 } 7306 7307 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7308 SDValue Src, SDValue Size, Align Alignment, 7309 bool isVol, bool isTailCall, 7310 MachinePointerInfo DstPtrInfo, 7311 const AAMDNodes &AAInfo) { 7312 // Check to see if we should lower the memset to stores first. 7313 // For cases within the target-specified limits, this is the best choice. 7314 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7315 if (ConstantSize) { 7316 // Memset with size zero? Just return the original chain. 7317 if (ConstantSize->isZero()) 7318 return Chain; 7319 7320 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7321 ConstantSize->getZExtValue(), Alignment, 7322 isVol, DstPtrInfo, AAInfo); 7323 7324 if (Result.getNode()) 7325 return Result; 7326 } 7327 7328 // Then check to see if we should lower the memset with target-specific 7329 // code. If the target chooses to do this, this is the next best. 7330 if (TSI) { 7331 SDValue Result = TSI->EmitTargetCodeForMemset( 7332 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7333 if (Result.getNode()) 7334 return Result; 7335 } 7336 7337 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7338 7339 // Emit a library call. 7340 TargetLowering::ArgListTy Args; 7341 TargetLowering::ArgListEntry Entry; 7342 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7343 Args.push_back(Entry); 7344 Entry.Node = Src; 7345 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7346 Args.push_back(Entry); 7347 Entry.Node = Size; 7348 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7349 Args.push_back(Entry); 7350 7351 // FIXME: pass in SDLoc 7352 TargetLowering::CallLoweringInfo CLI(*this); 7353 CLI.setDebugLoc(dl) 7354 .setChain(Chain) 7355 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7356 Dst.getValueType().getTypeForEVT(*getContext()), 7357 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7358 TLI->getPointerTy(getDataLayout())), 7359 std::move(Args)) 7360 .setDiscardResult() 7361 .setTailCall(isTailCall); 7362 7363 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7364 return CallResult.second; 7365 } 7366 7367 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7368 SDValue Dst, unsigned DstAlign, 7369 SDValue Value, SDValue Size, Type *SizeTy, 7370 unsigned ElemSz, bool isTailCall, 7371 MachinePointerInfo DstPtrInfo) { 7372 // Emit a library call. 7373 TargetLowering::ArgListTy Args; 7374 TargetLowering::ArgListEntry Entry; 7375 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7376 Entry.Node = Dst; 7377 Args.push_back(Entry); 7378 7379 Entry.Ty = Type::getInt8Ty(*getContext()); 7380 Entry.Node = Value; 7381 Args.push_back(Entry); 7382 7383 Entry.Ty = SizeTy; 7384 Entry.Node = Size; 7385 Args.push_back(Entry); 7386 7387 RTLIB::Libcall LibraryCall = 7388 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7389 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7390 report_fatal_error("Unsupported element size"); 7391 7392 TargetLowering::CallLoweringInfo CLI(*this); 7393 CLI.setDebugLoc(dl) 7394 .setChain(Chain) 7395 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7396 Type::getVoidTy(*getContext()), 7397 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7398 TLI->getPointerTy(getDataLayout())), 7399 std::move(Args)) 7400 .setDiscardResult() 7401 .setTailCall(isTailCall); 7402 7403 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7404 return CallResult.second; 7405 } 7406 7407 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7408 SDVTList VTList, ArrayRef<SDValue> Ops, 7409 MachineMemOperand *MMO) { 7410 FoldingSetNodeID ID; 7411 ID.AddInteger(MemVT.getRawBits()); 7412 AddNodeIDNode(ID, Opcode, VTList, Ops); 7413 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7414 ID.AddInteger(MMO->getFlags()); 7415 void* IP = nullptr; 7416 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7417 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7418 return SDValue(E, 0); 7419 } 7420 7421 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7422 VTList, MemVT, MMO); 7423 createOperands(N, Ops); 7424 7425 CSEMap.InsertNode(N, IP); 7426 InsertNode(N); 7427 return SDValue(N, 0); 7428 } 7429 7430 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7431 EVT MemVT, SDVTList VTs, SDValue Chain, 7432 SDValue Ptr, SDValue Cmp, SDValue Swp, 7433 MachineMemOperand *MMO) { 7434 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7435 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7436 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7437 7438 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7439 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7440 } 7441 7442 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7443 SDValue Chain, SDValue Ptr, SDValue Val, 7444 MachineMemOperand *MMO) { 7445 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7446 Opcode == ISD::ATOMIC_LOAD_SUB || 7447 Opcode == ISD::ATOMIC_LOAD_AND || 7448 Opcode == ISD::ATOMIC_LOAD_CLR || 7449 Opcode == ISD::ATOMIC_LOAD_OR || 7450 Opcode == ISD::ATOMIC_LOAD_XOR || 7451 Opcode == ISD::ATOMIC_LOAD_NAND || 7452 Opcode == ISD::ATOMIC_LOAD_MIN || 7453 Opcode == ISD::ATOMIC_LOAD_MAX || 7454 Opcode == ISD::ATOMIC_LOAD_UMIN || 7455 Opcode == ISD::ATOMIC_LOAD_UMAX || 7456 Opcode == ISD::ATOMIC_LOAD_FADD || 7457 Opcode == ISD::ATOMIC_LOAD_FSUB || 7458 Opcode == ISD::ATOMIC_SWAP || 7459 Opcode == ISD::ATOMIC_STORE) && 7460 "Invalid Atomic Op"); 7461 7462 EVT VT = Val.getValueType(); 7463 7464 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7465 getVTList(VT, MVT::Other); 7466 SDValue Ops[] = {Chain, Ptr, Val}; 7467 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7468 } 7469 7470 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7471 EVT VT, SDValue Chain, SDValue Ptr, 7472 MachineMemOperand *MMO) { 7473 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7474 7475 SDVTList VTs = getVTList(VT, MVT::Other); 7476 SDValue Ops[] = {Chain, Ptr}; 7477 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7478 } 7479 7480 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7481 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7482 if (Ops.size() == 1) 7483 return Ops[0]; 7484 7485 SmallVector<EVT, 4> VTs; 7486 VTs.reserve(Ops.size()); 7487 for (const SDValue &Op : Ops) 7488 VTs.push_back(Op.getValueType()); 7489 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7490 } 7491 7492 SDValue SelectionDAG::getMemIntrinsicNode( 7493 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7494 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7495 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7496 if (!Size && MemVT.isScalableVector()) 7497 Size = MemoryLocation::UnknownSize; 7498 else if (!Size) 7499 Size = MemVT.getStoreSize(); 7500 7501 MachineFunction &MF = getMachineFunction(); 7502 MachineMemOperand *MMO = 7503 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7504 7505 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7506 } 7507 7508 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7509 SDVTList VTList, 7510 ArrayRef<SDValue> Ops, EVT MemVT, 7511 MachineMemOperand *MMO) { 7512 assert((Opcode == ISD::INTRINSIC_VOID || 7513 Opcode == ISD::INTRINSIC_W_CHAIN || 7514 Opcode == ISD::PREFETCH || 7515 ((int)Opcode <= std::numeric_limits<int>::max() && 7516 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7517 "Opcode is not a memory-accessing opcode!"); 7518 7519 // Memoize the node unless it returns a flag. 7520 MemIntrinsicSDNode *N; 7521 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7522 FoldingSetNodeID ID; 7523 AddNodeIDNode(ID, Opcode, VTList, Ops); 7524 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7525 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7526 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7527 ID.AddInteger(MMO->getFlags()); 7528 void *IP = nullptr; 7529 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7530 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7531 return SDValue(E, 0); 7532 } 7533 7534 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7535 VTList, MemVT, MMO); 7536 createOperands(N, Ops); 7537 7538 CSEMap.InsertNode(N, IP); 7539 } else { 7540 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7541 VTList, MemVT, MMO); 7542 createOperands(N, Ops); 7543 } 7544 InsertNode(N); 7545 SDValue V(N, 0); 7546 NewSDValueDbgMsg(V, "Creating new node: ", this); 7547 return V; 7548 } 7549 7550 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7551 SDValue Chain, int FrameIndex, 7552 int64_t Size, int64_t Offset) { 7553 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7554 const auto VTs = getVTList(MVT::Other); 7555 SDValue Ops[2] = { 7556 Chain, 7557 getFrameIndex(FrameIndex, 7558 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7559 true)}; 7560 7561 FoldingSetNodeID ID; 7562 AddNodeIDNode(ID, Opcode, VTs, Ops); 7563 ID.AddInteger(FrameIndex); 7564 ID.AddInteger(Size); 7565 ID.AddInteger(Offset); 7566 void *IP = nullptr; 7567 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7568 return SDValue(E, 0); 7569 7570 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7571 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7572 createOperands(N, Ops); 7573 CSEMap.InsertNode(N, IP); 7574 InsertNode(N); 7575 SDValue V(N, 0); 7576 NewSDValueDbgMsg(V, "Creating new node: ", this); 7577 return V; 7578 } 7579 7580 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7581 uint64_t Guid, uint64_t Index, 7582 uint32_t Attr) { 7583 const unsigned Opcode = ISD::PSEUDO_PROBE; 7584 const auto VTs = getVTList(MVT::Other); 7585 SDValue Ops[] = {Chain}; 7586 FoldingSetNodeID ID; 7587 AddNodeIDNode(ID, Opcode, VTs, Ops); 7588 ID.AddInteger(Guid); 7589 ID.AddInteger(Index); 7590 void *IP = nullptr; 7591 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7592 return SDValue(E, 0); 7593 7594 auto *N = newSDNode<PseudoProbeSDNode>( 7595 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7596 createOperands(N, Ops); 7597 CSEMap.InsertNode(N, IP); 7598 InsertNode(N); 7599 SDValue V(N, 0); 7600 NewSDValueDbgMsg(V, "Creating new node: ", this); 7601 return V; 7602 } 7603 7604 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7605 /// MachinePointerInfo record from it. This is particularly useful because the 7606 /// code generator has many cases where it doesn't bother passing in a 7607 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7608 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7609 SelectionDAG &DAG, SDValue Ptr, 7610 int64_t Offset = 0) { 7611 // If this is FI+Offset, we can model it. 7612 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7613 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7614 FI->getIndex(), Offset); 7615 7616 // If this is (FI+Offset1)+Offset2, we can model it. 7617 if (Ptr.getOpcode() != ISD::ADD || 7618 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7619 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7620 return Info; 7621 7622 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7623 return MachinePointerInfo::getFixedStack( 7624 DAG.getMachineFunction(), FI, 7625 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7626 } 7627 7628 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7629 /// MachinePointerInfo record from it. This is particularly useful because the 7630 /// code generator has many cases where it doesn't bother passing in a 7631 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7632 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7633 SelectionDAG &DAG, SDValue Ptr, 7634 SDValue OffsetOp) { 7635 // If the 'Offset' value isn't a constant, we can't handle this. 7636 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7637 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7638 if (OffsetOp.isUndef()) 7639 return InferPointerInfo(Info, DAG, Ptr); 7640 return Info; 7641 } 7642 7643 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7644 EVT VT, const SDLoc &dl, SDValue Chain, 7645 SDValue Ptr, SDValue Offset, 7646 MachinePointerInfo PtrInfo, EVT MemVT, 7647 Align Alignment, 7648 MachineMemOperand::Flags MMOFlags, 7649 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7650 assert(Chain.getValueType() == MVT::Other && 7651 "Invalid chain type"); 7652 7653 MMOFlags |= MachineMemOperand::MOLoad; 7654 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7655 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7656 // clients. 7657 if (PtrInfo.V.isNull()) 7658 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7659 7660 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7661 MachineFunction &MF = getMachineFunction(); 7662 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7663 Alignment, AAInfo, Ranges); 7664 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7665 } 7666 7667 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7668 EVT VT, const SDLoc &dl, SDValue Chain, 7669 SDValue Ptr, SDValue Offset, EVT MemVT, 7670 MachineMemOperand *MMO) { 7671 if (VT == MemVT) { 7672 ExtType = ISD::NON_EXTLOAD; 7673 } else if (ExtType == ISD::NON_EXTLOAD) { 7674 assert(VT == MemVT && "Non-extending load from different memory type!"); 7675 } else { 7676 // Extending load. 7677 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7678 "Should only be an extending load, not truncating!"); 7679 assert(VT.isInteger() == MemVT.isInteger() && 7680 "Cannot convert from FP to Int or Int -> FP!"); 7681 assert(VT.isVector() == MemVT.isVector() && 7682 "Cannot use an ext load to convert to or from a vector!"); 7683 assert((!VT.isVector() || 7684 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7685 "Cannot use an ext load to change the number of vector elements!"); 7686 } 7687 7688 bool Indexed = AM != ISD::UNINDEXED; 7689 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7690 7691 SDVTList VTs = Indexed ? 7692 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7693 SDValue Ops[] = { Chain, Ptr, Offset }; 7694 FoldingSetNodeID ID; 7695 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7696 ID.AddInteger(MemVT.getRawBits()); 7697 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7698 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7699 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7700 ID.AddInteger(MMO->getFlags()); 7701 void *IP = nullptr; 7702 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7703 cast<LoadSDNode>(E)->refineAlignment(MMO); 7704 return SDValue(E, 0); 7705 } 7706 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7707 ExtType, MemVT, MMO); 7708 createOperands(N, Ops); 7709 7710 CSEMap.InsertNode(N, IP); 7711 InsertNode(N); 7712 SDValue V(N, 0); 7713 NewSDValueDbgMsg(V, "Creating new node: ", this); 7714 return V; 7715 } 7716 7717 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7718 SDValue Ptr, MachinePointerInfo PtrInfo, 7719 MaybeAlign Alignment, 7720 MachineMemOperand::Flags MMOFlags, 7721 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7722 SDValue Undef = getUNDEF(Ptr.getValueType()); 7723 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7724 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7725 } 7726 7727 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7728 SDValue Ptr, MachineMemOperand *MMO) { 7729 SDValue Undef = getUNDEF(Ptr.getValueType()); 7730 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7731 VT, MMO); 7732 } 7733 7734 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7735 EVT VT, SDValue Chain, SDValue Ptr, 7736 MachinePointerInfo PtrInfo, EVT MemVT, 7737 MaybeAlign Alignment, 7738 MachineMemOperand::Flags MMOFlags, 7739 const AAMDNodes &AAInfo) { 7740 SDValue Undef = getUNDEF(Ptr.getValueType()); 7741 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7742 MemVT, Alignment, MMOFlags, AAInfo); 7743 } 7744 7745 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7746 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7747 MachineMemOperand *MMO) { 7748 SDValue Undef = getUNDEF(Ptr.getValueType()); 7749 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7750 MemVT, MMO); 7751 } 7752 7753 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7754 SDValue Base, SDValue Offset, 7755 ISD::MemIndexedMode AM) { 7756 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7757 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7758 // Don't propagate the invariant or dereferenceable flags. 7759 auto MMOFlags = 7760 LD->getMemOperand()->getFlags() & 7761 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7762 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7763 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7764 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7765 } 7766 7767 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7768 SDValue Ptr, MachinePointerInfo PtrInfo, 7769 Align Alignment, 7770 MachineMemOperand::Flags MMOFlags, 7771 const AAMDNodes &AAInfo) { 7772 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7773 7774 MMOFlags |= MachineMemOperand::MOStore; 7775 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7776 7777 if (PtrInfo.V.isNull()) 7778 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7779 7780 MachineFunction &MF = getMachineFunction(); 7781 uint64_t Size = 7782 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7783 MachineMemOperand *MMO = 7784 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7785 return getStore(Chain, dl, Val, Ptr, MMO); 7786 } 7787 7788 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7789 SDValue Ptr, MachineMemOperand *MMO) { 7790 assert(Chain.getValueType() == MVT::Other && 7791 "Invalid chain type"); 7792 EVT VT = Val.getValueType(); 7793 SDVTList VTs = getVTList(MVT::Other); 7794 SDValue Undef = getUNDEF(Ptr.getValueType()); 7795 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7796 FoldingSetNodeID ID; 7797 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7798 ID.AddInteger(VT.getRawBits()); 7799 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7800 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7801 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7802 ID.AddInteger(MMO->getFlags()); 7803 void *IP = nullptr; 7804 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7805 cast<StoreSDNode>(E)->refineAlignment(MMO); 7806 return SDValue(E, 0); 7807 } 7808 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7809 ISD::UNINDEXED, false, VT, MMO); 7810 createOperands(N, Ops); 7811 7812 CSEMap.InsertNode(N, IP); 7813 InsertNode(N); 7814 SDValue V(N, 0); 7815 NewSDValueDbgMsg(V, "Creating new node: ", this); 7816 return V; 7817 } 7818 7819 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7820 SDValue Ptr, MachinePointerInfo PtrInfo, 7821 EVT SVT, Align Alignment, 7822 MachineMemOperand::Flags MMOFlags, 7823 const AAMDNodes &AAInfo) { 7824 assert(Chain.getValueType() == MVT::Other && 7825 "Invalid chain type"); 7826 7827 MMOFlags |= MachineMemOperand::MOStore; 7828 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7829 7830 if (PtrInfo.V.isNull()) 7831 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7832 7833 MachineFunction &MF = getMachineFunction(); 7834 MachineMemOperand *MMO = MF.getMachineMemOperand( 7835 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7836 Alignment, AAInfo); 7837 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7838 } 7839 7840 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7841 SDValue Ptr, EVT SVT, 7842 MachineMemOperand *MMO) { 7843 EVT VT = Val.getValueType(); 7844 7845 assert(Chain.getValueType() == MVT::Other && 7846 "Invalid chain type"); 7847 if (VT == SVT) 7848 return getStore(Chain, dl, Val, Ptr, MMO); 7849 7850 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7851 "Should only be a truncating store, not extending!"); 7852 assert(VT.isInteger() == SVT.isInteger() && 7853 "Can't do FP-INT conversion!"); 7854 assert(VT.isVector() == SVT.isVector() && 7855 "Cannot use trunc store to convert to or from a vector!"); 7856 assert((!VT.isVector() || 7857 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7858 "Cannot use trunc store to change the number of vector elements!"); 7859 7860 SDVTList VTs = getVTList(MVT::Other); 7861 SDValue Undef = getUNDEF(Ptr.getValueType()); 7862 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7863 FoldingSetNodeID ID; 7864 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7865 ID.AddInteger(SVT.getRawBits()); 7866 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7867 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7868 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7869 ID.AddInteger(MMO->getFlags()); 7870 void *IP = nullptr; 7871 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7872 cast<StoreSDNode>(E)->refineAlignment(MMO); 7873 return SDValue(E, 0); 7874 } 7875 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7876 ISD::UNINDEXED, true, SVT, MMO); 7877 createOperands(N, Ops); 7878 7879 CSEMap.InsertNode(N, IP); 7880 InsertNode(N); 7881 SDValue V(N, 0); 7882 NewSDValueDbgMsg(V, "Creating new node: ", this); 7883 return V; 7884 } 7885 7886 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7887 SDValue Base, SDValue Offset, 7888 ISD::MemIndexedMode AM) { 7889 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7890 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7891 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7892 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7893 FoldingSetNodeID ID; 7894 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7895 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7896 ID.AddInteger(ST->getRawSubclassData()); 7897 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7898 ID.AddInteger(ST->getMemOperand()->getFlags()); 7899 void *IP = nullptr; 7900 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7901 return SDValue(E, 0); 7902 7903 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7904 ST->isTruncatingStore(), ST->getMemoryVT(), 7905 ST->getMemOperand()); 7906 createOperands(N, Ops); 7907 7908 CSEMap.InsertNode(N, IP); 7909 InsertNode(N); 7910 SDValue V(N, 0); 7911 NewSDValueDbgMsg(V, "Creating new node: ", this); 7912 return V; 7913 } 7914 7915 SDValue SelectionDAG::getLoadVP( 7916 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7917 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7918 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7919 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7920 const MDNode *Ranges, bool IsExpanding) { 7921 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7922 7923 MMOFlags |= MachineMemOperand::MOLoad; 7924 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7925 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7926 // clients. 7927 if (PtrInfo.V.isNull()) 7928 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7929 7930 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7931 MachineFunction &MF = getMachineFunction(); 7932 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7933 Alignment, AAInfo, Ranges); 7934 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7935 MMO, IsExpanding); 7936 } 7937 7938 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7939 ISD::LoadExtType ExtType, EVT VT, 7940 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7941 SDValue Offset, SDValue Mask, SDValue EVL, 7942 EVT MemVT, MachineMemOperand *MMO, 7943 bool IsExpanding) { 7944 bool Indexed = AM != ISD::UNINDEXED; 7945 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7946 7947 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7948 : getVTList(VT, MVT::Other); 7949 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7950 FoldingSetNodeID ID; 7951 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7952 ID.AddInteger(VT.getRawBits()); 7953 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7954 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7955 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7956 ID.AddInteger(MMO->getFlags()); 7957 void *IP = nullptr; 7958 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7959 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7960 return SDValue(E, 0); 7961 } 7962 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7963 ExtType, IsExpanding, MemVT, MMO); 7964 createOperands(N, Ops); 7965 7966 CSEMap.InsertNode(N, IP); 7967 InsertNode(N); 7968 SDValue V(N, 0); 7969 NewSDValueDbgMsg(V, "Creating new node: ", this); 7970 return V; 7971 } 7972 7973 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7974 SDValue Ptr, SDValue Mask, SDValue EVL, 7975 MachinePointerInfo PtrInfo, 7976 MaybeAlign Alignment, 7977 MachineMemOperand::Flags MMOFlags, 7978 const AAMDNodes &AAInfo, const MDNode *Ranges, 7979 bool IsExpanding) { 7980 SDValue Undef = getUNDEF(Ptr.getValueType()); 7981 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7982 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7983 IsExpanding); 7984 } 7985 7986 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7987 SDValue Ptr, SDValue Mask, SDValue EVL, 7988 MachineMemOperand *MMO, bool IsExpanding) { 7989 SDValue Undef = getUNDEF(Ptr.getValueType()); 7990 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7991 Mask, EVL, VT, MMO, IsExpanding); 7992 } 7993 7994 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7995 EVT VT, SDValue Chain, SDValue Ptr, 7996 SDValue Mask, SDValue EVL, 7997 MachinePointerInfo PtrInfo, EVT MemVT, 7998 MaybeAlign Alignment, 7999 MachineMemOperand::Flags MMOFlags, 8000 const AAMDNodes &AAInfo, bool IsExpanding) { 8001 SDValue Undef = getUNDEF(Ptr.getValueType()); 8002 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8003 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8004 IsExpanding); 8005 } 8006 8007 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8008 EVT VT, SDValue Chain, SDValue Ptr, 8009 SDValue Mask, SDValue EVL, EVT MemVT, 8010 MachineMemOperand *MMO, bool IsExpanding) { 8011 SDValue Undef = getUNDEF(Ptr.getValueType()); 8012 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8013 EVL, MemVT, MMO, IsExpanding); 8014 } 8015 8016 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8017 SDValue Base, SDValue Offset, 8018 ISD::MemIndexedMode AM) { 8019 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8020 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8021 // Don't propagate the invariant or dereferenceable flags. 8022 auto MMOFlags = 8023 LD->getMemOperand()->getFlags() & 8024 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8025 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8026 LD->getChain(), Base, Offset, LD->getMask(), 8027 LD->getVectorLength(), LD->getPointerInfo(), 8028 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8029 nullptr, LD->isExpandingLoad()); 8030 } 8031 8032 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8033 SDValue Ptr, SDValue Offset, SDValue Mask, 8034 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8035 ISD::MemIndexedMode AM, bool IsTruncating, 8036 bool IsCompressing) { 8037 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8038 bool Indexed = AM != ISD::UNINDEXED; 8039 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8040 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8041 : getVTList(MVT::Other); 8042 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8043 FoldingSetNodeID ID; 8044 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8045 ID.AddInteger(MemVT.getRawBits()); 8046 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8047 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8048 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8049 ID.AddInteger(MMO->getFlags()); 8050 void *IP = nullptr; 8051 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8052 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8053 return SDValue(E, 0); 8054 } 8055 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8056 IsTruncating, IsCompressing, MemVT, MMO); 8057 createOperands(N, Ops); 8058 8059 CSEMap.InsertNode(N, IP); 8060 InsertNode(N); 8061 SDValue V(N, 0); 8062 NewSDValueDbgMsg(V, "Creating new node: ", this); 8063 return V; 8064 } 8065 8066 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8067 SDValue Val, SDValue Ptr, SDValue Mask, 8068 SDValue EVL, MachinePointerInfo PtrInfo, 8069 EVT SVT, Align Alignment, 8070 MachineMemOperand::Flags MMOFlags, 8071 const AAMDNodes &AAInfo, 8072 bool IsCompressing) { 8073 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8074 8075 MMOFlags |= MachineMemOperand::MOStore; 8076 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8077 8078 if (PtrInfo.V.isNull()) 8079 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8080 8081 MachineFunction &MF = getMachineFunction(); 8082 MachineMemOperand *MMO = MF.getMachineMemOperand( 8083 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8084 Alignment, AAInfo); 8085 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8086 IsCompressing); 8087 } 8088 8089 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8090 SDValue Val, SDValue Ptr, SDValue Mask, 8091 SDValue EVL, EVT SVT, 8092 MachineMemOperand *MMO, 8093 bool IsCompressing) { 8094 EVT VT = Val.getValueType(); 8095 8096 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8097 if (VT == SVT) 8098 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8099 EVL, VT, MMO, ISD::UNINDEXED, 8100 /*IsTruncating*/ false, IsCompressing); 8101 8102 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8103 "Should only be a truncating store, not extending!"); 8104 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8105 assert(VT.isVector() == SVT.isVector() && 8106 "Cannot use trunc store to convert to or from a vector!"); 8107 assert((!VT.isVector() || 8108 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8109 "Cannot use trunc store to change the number of vector elements!"); 8110 8111 SDVTList VTs = getVTList(MVT::Other); 8112 SDValue Undef = getUNDEF(Ptr.getValueType()); 8113 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8114 FoldingSetNodeID ID; 8115 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8116 ID.AddInteger(SVT.getRawBits()); 8117 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8118 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8119 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8120 ID.AddInteger(MMO->getFlags()); 8121 void *IP = nullptr; 8122 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8123 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8124 return SDValue(E, 0); 8125 } 8126 auto *N = 8127 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8128 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8129 createOperands(N, Ops); 8130 8131 CSEMap.InsertNode(N, IP); 8132 InsertNode(N); 8133 SDValue V(N, 0); 8134 NewSDValueDbgMsg(V, "Creating new node: ", this); 8135 return V; 8136 } 8137 8138 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8139 SDValue Base, SDValue Offset, 8140 ISD::MemIndexedMode AM) { 8141 auto *ST = cast<VPStoreSDNode>(OrigStore); 8142 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8143 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8144 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8145 Offset, ST->getMask(), ST->getVectorLength()}; 8146 FoldingSetNodeID ID; 8147 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8148 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8149 ID.AddInteger(ST->getRawSubclassData()); 8150 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8151 ID.AddInteger(ST->getMemOperand()->getFlags()); 8152 void *IP = nullptr; 8153 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8154 return SDValue(E, 0); 8155 8156 auto *N = newSDNode<VPStoreSDNode>( 8157 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8158 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8159 createOperands(N, Ops); 8160 8161 CSEMap.InsertNode(N, IP); 8162 InsertNode(N); 8163 SDValue V(N, 0); 8164 NewSDValueDbgMsg(V, "Creating new node: ", this); 8165 return V; 8166 } 8167 8168 SDValue SelectionDAG::getStridedLoadVP( 8169 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8170 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8171 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8172 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8173 const MDNode *Ranges, bool IsExpanding) { 8174 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8175 8176 MMOFlags |= MachineMemOperand::MOLoad; 8177 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8178 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8179 // clients. 8180 if (PtrInfo.V.isNull()) 8181 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8182 8183 uint64_t Size = MemoryLocation::UnknownSize; 8184 MachineFunction &MF = getMachineFunction(); 8185 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8186 Alignment, AAInfo, Ranges); 8187 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8188 EVL, MemVT, MMO, IsExpanding); 8189 } 8190 8191 SDValue SelectionDAG::getStridedLoadVP( 8192 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8193 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8194 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8195 bool Indexed = AM != ISD::UNINDEXED; 8196 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8197 8198 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8199 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8200 : getVTList(VT, MVT::Other); 8201 FoldingSetNodeID ID; 8202 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8203 ID.AddInteger(VT.getRawBits()); 8204 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8205 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8206 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8207 8208 void *IP = nullptr; 8209 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8210 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8211 return SDValue(E, 0); 8212 } 8213 8214 auto *N = 8215 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8216 ExtType, IsExpanding, MemVT, MMO); 8217 createOperands(N, Ops); 8218 CSEMap.InsertNode(N, IP); 8219 InsertNode(N); 8220 SDValue V(N, 0); 8221 NewSDValueDbgMsg(V, "Creating new node: ", this); 8222 return V; 8223 } 8224 8225 SDValue SelectionDAG::getStridedLoadVP( 8226 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8227 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8228 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8229 const MDNode *Ranges, bool IsExpanding) { 8230 SDValue Undef = getUNDEF(Ptr.getValueType()); 8231 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8232 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8233 MMOFlags, AAInfo, Ranges, IsExpanding); 8234 } 8235 8236 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8237 SDValue Ptr, SDValue Stride, 8238 SDValue Mask, SDValue EVL, 8239 MachineMemOperand *MMO, 8240 bool IsExpanding) { 8241 SDValue Undef = getUNDEF(Ptr.getValueType()); 8242 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8243 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8244 } 8245 8246 SDValue SelectionDAG::getExtStridedLoadVP( 8247 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8248 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8249 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8250 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8251 bool IsExpanding) { 8252 SDValue Undef = getUNDEF(Ptr.getValueType()); 8253 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8254 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8255 MMOFlags, AAInfo, nullptr, IsExpanding); 8256 } 8257 8258 SDValue SelectionDAG::getExtStridedLoadVP( 8259 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8260 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8261 MachineMemOperand *MMO, bool IsExpanding) { 8262 SDValue Undef = getUNDEF(Ptr.getValueType()); 8263 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8264 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8265 } 8266 8267 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8268 SDValue Base, SDValue Offset, 8269 ISD::MemIndexedMode AM) { 8270 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8271 assert(SLD->getOffset().isUndef() && 8272 "Strided load is already a indexed load!"); 8273 // Don't propagate the invariant or dereferenceable flags. 8274 auto MMOFlags = 8275 SLD->getMemOperand()->getFlags() & 8276 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8277 return getStridedLoadVP( 8278 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8279 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8280 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8281 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8282 } 8283 8284 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8285 SDValue Val, SDValue Ptr, 8286 SDValue Offset, SDValue Stride, 8287 SDValue Mask, SDValue EVL, EVT MemVT, 8288 MachineMemOperand *MMO, 8289 ISD::MemIndexedMode AM, 8290 bool IsTruncating, bool IsCompressing) { 8291 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8292 bool Indexed = AM != ISD::UNINDEXED; 8293 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8294 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8295 : getVTList(MVT::Other); 8296 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8297 FoldingSetNodeID ID; 8298 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8299 ID.AddInteger(MemVT.getRawBits()); 8300 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8301 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8302 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8303 void *IP = nullptr; 8304 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8305 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8306 return SDValue(E, 0); 8307 } 8308 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8309 VTs, AM, IsTruncating, 8310 IsCompressing, MemVT, MMO); 8311 createOperands(N, Ops); 8312 8313 CSEMap.InsertNode(N, IP); 8314 InsertNode(N); 8315 SDValue V(N, 0); 8316 NewSDValueDbgMsg(V, "Creating new node: ", this); 8317 return V; 8318 } 8319 8320 SDValue SelectionDAG::getTruncStridedStoreVP( 8321 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8322 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8323 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8324 bool IsCompressing) { 8325 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8326 8327 MMOFlags |= MachineMemOperand::MOStore; 8328 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8329 8330 if (PtrInfo.V.isNull()) 8331 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8332 8333 MachineFunction &MF = getMachineFunction(); 8334 MachineMemOperand *MMO = MF.getMachineMemOperand( 8335 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8336 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8337 MMO, IsCompressing); 8338 } 8339 8340 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8341 SDValue Val, SDValue Ptr, 8342 SDValue Stride, SDValue Mask, 8343 SDValue EVL, EVT SVT, 8344 MachineMemOperand *MMO, 8345 bool IsCompressing) { 8346 EVT VT = Val.getValueType(); 8347 8348 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8349 if (VT == SVT) 8350 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8351 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8352 /*IsTruncating*/ false, IsCompressing); 8353 8354 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8355 "Should only be a truncating store, not extending!"); 8356 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8357 assert(VT.isVector() == SVT.isVector() && 8358 "Cannot use trunc store to convert to or from a vector!"); 8359 assert((!VT.isVector() || 8360 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8361 "Cannot use trunc store to change the number of vector elements!"); 8362 8363 SDVTList VTs = getVTList(MVT::Other); 8364 SDValue Undef = getUNDEF(Ptr.getValueType()); 8365 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8366 FoldingSetNodeID ID; 8367 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8368 ID.AddInteger(SVT.getRawBits()); 8369 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8370 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8371 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8372 void *IP = nullptr; 8373 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8374 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8375 return SDValue(E, 0); 8376 } 8377 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8378 VTs, ISD::UNINDEXED, true, 8379 IsCompressing, SVT, MMO); 8380 createOperands(N, Ops); 8381 8382 CSEMap.InsertNode(N, IP); 8383 InsertNode(N); 8384 SDValue V(N, 0); 8385 NewSDValueDbgMsg(V, "Creating new node: ", this); 8386 return V; 8387 } 8388 8389 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8390 const SDLoc &DL, SDValue Base, 8391 SDValue Offset, 8392 ISD::MemIndexedMode AM) { 8393 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8394 assert(SST->getOffset().isUndef() && 8395 "Strided store is already an indexed store!"); 8396 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8397 SDValue Ops[] = { 8398 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8399 SST->getMask(), SST->getVectorLength()}; 8400 FoldingSetNodeID ID; 8401 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8402 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8403 ID.AddInteger(SST->getRawSubclassData()); 8404 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8405 void *IP = nullptr; 8406 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8407 return SDValue(E, 0); 8408 8409 auto *N = newSDNode<VPStridedStoreSDNode>( 8410 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8411 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8412 createOperands(N, Ops); 8413 8414 CSEMap.InsertNode(N, IP); 8415 InsertNode(N); 8416 SDValue V(N, 0); 8417 NewSDValueDbgMsg(V, "Creating new node: ", this); 8418 return V; 8419 } 8420 8421 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8422 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8423 ISD::MemIndexType IndexType) { 8424 assert(Ops.size() == 6 && "Incompatible number of operands"); 8425 8426 FoldingSetNodeID ID; 8427 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8428 ID.AddInteger(VT.getRawBits()); 8429 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8430 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8431 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8432 ID.AddInteger(MMO->getFlags()); 8433 void *IP = nullptr; 8434 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8435 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8436 return SDValue(E, 0); 8437 } 8438 8439 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8440 VT, MMO, IndexType); 8441 createOperands(N, Ops); 8442 8443 assert(N->getMask().getValueType().getVectorElementCount() == 8444 N->getValueType(0).getVectorElementCount() && 8445 "Vector width mismatch between mask and data"); 8446 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8447 N->getValueType(0).getVectorElementCount().isScalable() && 8448 "Scalable flags of index and data do not match"); 8449 assert(ElementCount::isKnownGE( 8450 N->getIndex().getValueType().getVectorElementCount(), 8451 N->getValueType(0).getVectorElementCount()) && 8452 "Vector width mismatch between index and data"); 8453 assert(isa<ConstantSDNode>(N->getScale()) && 8454 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8455 "Scale should be a constant power of 2"); 8456 8457 CSEMap.InsertNode(N, IP); 8458 InsertNode(N); 8459 SDValue V(N, 0); 8460 NewSDValueDbgMsg(V, "Creating new node: ", this); 8461 return V; 8462 } 8463 8464 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8465 ArrayRef<SDValue> Ops, 8466 MachineMemOperand *MMO, 8467 ISD::MemIndexType IndexType) { 8468 assert(Ops.size() == 7 && "Incompatible number of operands"); 8469 8470 FoldingSetNodeID ID; 8471 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8472 ID.AddInteger(VT.getRawBits()); 8473 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8474 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8475 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8476 ID.AddInteger(MMO->getFlags()); 8477 void *IP = nullptr; 8478 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8479 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8480 return SDValue(E, 0); 8481 } 8482 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8483 VT, MMO, IndexType); 8484 createOperands(N, Ops); 8485 8486 assert(N->getMask().getValueType().getVectorElementCount() == 8487 N->getValue().getValueType().getVectorElementCount() && 8488 "Vector width mismatch between mask and data"); 8489 assert( 8490 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8491 N->getValue().getValueType().getVectorElementCount().isScalable() && 8492 "Scalable flags of index and data do not match"); 8493 assert(ElementCount::isKnownGE( 8494 N->getIndex().getValueType().getVectorElementCount(), 8495 N->getValue().getValueType().getVectorElementCount()) && 8496 "Vector width mismatch between index and data"); 8497 assert(isa<ConstantSDNode>(N->getScale()) && 8498 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8499 "Scale should be a constant power of 2"); 8500 8501 CSEMap.InsertNode(N, IP); 8502 InsertNode(N); 8503 SDValue V(N, 0); 8504 NewSDValueDbgMsg(V, "Creating new node: ", this); 8505 return V; 8506 } 8507 8508 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8509 SDValue Base, SDValue Offset, SDValue Mask, 8510 SDValue PassThru, EVT MemVT, 8511 MachineMemOperand *MMO, 8512 ISD::MemIndexedMode AM, 8513 ISD::LoadExtType ExtTy, bool isExpanding) { 8514 bool Indexed = AM != ISD::UNINDEXED; 8515 assert((Indexed || Offset.isUndef()) && 8516 "Unindexed masked load with an offset!"); 8517 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8518 : getVTList(VT, MVT::Other); 8519 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8520 FoldingSetNodeID ID; 8521 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8522 ID.AddInteger(MemVT.getRawBits()); 8523 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8524 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8525 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8526 ID.AddInteger(MMO->getFlags()); 8527 void *IP = nullptr; 8528 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8529 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8530 return SDValue(E, 0); 8531 } 8532 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8533 AM, ExtTy, isExpanding, MemVT, MMO); 8534 createOperands(N, Ops); 8535 8536 CSEMap.InsertNode(N, IP); 8537 InsertNode(N); 8538 SDValue V(N, 0); 8539 NewSDValueDbgMsg(V, "Creating new node: ", this); 8540 return V; 8541 } 8542 8543 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8544 SDValue Base, SDValue Offset, 8545 ISD::MemIndexedMode AM) { 8546 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8547 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8548 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8549 Offset, LD->getMask(), LD->getPassThru(), 8550 LD->getMemoryVT(), LD->getMemOperand(), AM, 8551 LD->getExtensionType(), LD->isExpandingLoad()); 8552 } 8553 8554 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8555 SDValue Val, SDValue Base, SDValue Offset, 8556 SDValue Mask, EVT MemVT, 8557 MachineMemOperand *MMO, 8558 ISD::MemIndexedMode AM, bool IsTruncating, 8559 bool IsCompressing) { 8560 assert(Chain.getValueType() == MVT::Other && 8561 "Invalid chain type"); 8562 bool Indexed = AM != ISD::UNINDEXED; 8563 assert((Indexed || Offset.isUndef()) && 8564 "Unindexed masked store with an offset!"); 8565 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8566 : getVTList(MVT::Other); 8567 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8568 FoldingSetNodeID ID; 8569 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8570 ID.AddInteger(MemVT.getRawBits()); 8571 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8572 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8573 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8574 ID.AddInteger(MMO->getFlags()); 8575 void *IP = nullptr; 8576 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8577 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8578 return SDValue(E, 0); 8579 } 8580 auto *N = 8581 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8582 IsTruncating, IsCompressing, MemVT, MMO); 8583 createOperands(N, Ops); 8584 8585 CSEMap.InsertNode(N, IP); 8586 InsertNode(N); 8587 SDValue V(N, 0); 8588 NewSDValueDbgMsg(V, "Creating new node: ", this); 8589 return V; 8590 } 8591 8592 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8593 SDValue Base, SDValue Offset, 8594 ISD::MemIndexedMode AM) { 8595 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8596 assert(ST->getOffset().isUndef() && 8597 "Masked store is already a indexed store!"); 8598 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8599 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8600 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8601 } 8602 8603 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8604 ArrayRef<SDValue> Ops, 8605 MachineMemOperand *MMO, 8606 ISD::MemIndexType IndexType, 8607 ISD::LoadExtType ExtTy) { 8608 assert(Ops.size() == 6 && "Incompatible number of operands"); 8609 8610 FoldingSetNodeID ID; 8611 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8612 ID.AddInteger(MemVT.getRawBits()); 8613 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8614 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8615 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8616 ID.AddInteger(MMO->getFlags()); 8617 void *IP = nullptr; 8618 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8619 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8620 return SDValue(E, 0); 8621 } 8622 8623 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8624 VTs, MemVT, MMO, IndexType, ExtTy); 8625 createOperands(N, Ops); 8626 8627 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8628 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8629 assert(N->getMask().getValueType().getVectorElementCount() == 8630 N->getValueType(0).getVectorElementCount() && 8631 "Vector width mismatch between mask and data"); 8632 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8633 N->getValueType(0).getVectorElementCount().isScalable() && 8634 "Scalable flags of index and data do not match"); 8635 assert(ElementCount::isKnownGE( 8636 N->getIndex().getValueType().getVectorElementCount(), 8637 N->getValueType(0).getVectorElementCount()) && 8638 "Vector width mismatch between index and data"); 8639 assert(isa<ConstantSDNode>(N->getScale()) && 8640 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8641 "Scale should be a constant power of 2"); 8642 8643 CSEMap.InsertNode(N, IP); 8644 InsertNode(N); 8645 SDValue V(N, 0); 8646 NewSDValueDbgMsg(V, "Creating new node: ", this); 8647 return V; 8648 } 8649 8650 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8651 ArrayRef<SDValue> Ops, 8652 MachineMemOperand *MMO, 8653 ISD::MemIndexType IndexType, 8654 bool IsTrunc) { 8655 assert(Ops.size() == 6 && "Incompatible number of operands"); 8656 8657 FoldingSetNodeID ID; 8658 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8659 ID.AddInteger(MemVT.getRawBits()); 8660 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8661 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8662 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8663 ID.AddInteger(MMO->getFlags()); 8664 void *IP = nullptr; 8665 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8666 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8667 return SDValue(E, 0); 8668 } 8669 8670 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8671 VTs, MemVT, MMO, IndexType, IsTrunc); 8672 createOperands(N, Ops); 8673 8674 assert(N->getMask().getValueType().getVectorElementCount() == 8675 N->getValue().getValueType().getVectorElementCount() && 8676 "Vector width mismatch between mask and data"); 8677 assert( 8678 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8679 N->getValue().getValueType().getVectorElementCount().isScalable() && 8680 "Scalable flags of index and data do not match"); 8681 assert(ElementCount::isKnownGE( 8682 N->getIndex().getValueType().getVectorElementCount(), 8683 N->getValue().getValueType().getVectorElementCount()) && 8684 "Vector width mismatch between index and data"); 8685 assert(isa<ConstantSDNode>(N->getScale()) && 8686 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8687 "Scale should be a constant power of 2"); 8688 8689 CSEMap.InsertNode(N, IP); 8690 InsertNode(N); 8691 SDValue V(N, 0); 8692 NewSDValueDbgMsg(V, "Creating new node: ", this); 8693 return V; 8694 } 8695 8696 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8697 // select undef, T, F --> T (if T is a constant), otherwise F 8698 // select, ?, undef, F --> F 8699 // select, ?, T, undef --> T 8700 if (Cond.isUndef()) 8701 return isConstantValueOfAnyType(T) ? T : F; 8702 if (T.isUndef()) 8703 return F; 8704 if (F.isUndef()) 8705 return T; 8706 8707 // select true, T, F --> T 8708 // select false, T, F --> F 8709 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8710 return CondC->isZero() ? F : T; 8711 8712 // TODO: This should simplify VSELECT with constant condition using something 8713 // like this (but check boolean contents to be complete?): 8714 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8715 // return T; 8716 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8717 // return F; 8718 8719 // select ?, T, T --> T 8720 if (T == F) 8721 return T; 8722 8723 return SDValue(); 8724 } 8725 8726 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8727 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8728 if (X.isUndef()) 8729 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8730 // shift X, undef --> undef (because it may shift by the bitwidth) 8731 if (Y.isUndef()) 8732 return getUNDEF(X.getValueType()); 8733 8734 // shift 0, Y --> 0 8735 // shift X, 0 --> X 8736 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8737 return X; 8738 8739 // shift X, C >= bitwidth(X) --> undef 8740 // All vector elements must be too big (or undef) to avoid partial undefs. 8741 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8742 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8743 }; 8744 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8745 return getUNDEF(X.getValueType()); 8746 8747 return SDValue(); 8748 } 8749 8750 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8751 SDNodeFlags Flags) { 8752 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8753 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8754 // operation is poison. That result can be relaxed to undef. 8755 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8756 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8757 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8758 (YC && YC->getValueAPF().isNaN()); 8759 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8760 (YC && YC->getValueAPF().isInfinity()); 8761 8762 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8763 return getUNDEF(X.getValueType()); 8764 8765 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8766 return getUNDEF(X.getValueType()); 8767 8768 if (!YC) 8769 return SDValue(); 8770 8771 // X + -0.0 --> X 8772 if (Opcode == ISD::FADD) 8773 if (YC->getValueAPF().isNegZero()) 8774 return X; 8775 8776 // X - +0.0 --> X 8777 if (Opcode == ISD::FSUB) 8778 if (YC->getValueAPF().isPosZero()) 8779 return X; 8780 8781 // X * 1.0 --> X 8782 // X / 1.0 --> X 8783 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8784 if (YC->getValueAPF().isExactlyValue(1.0)) 8785 return X; 8786 8787 // X * 0.0 --> 0.0 8788 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8789 if (YC->getValueAPF().isZero()) 8790 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8791 8792 return SDValue(); 8793 } 8794 8795 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8796 SDValue Ptr, SDValue SV, unsigned Align) { 8797 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8798 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8799 } 8800 8801 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8802 ArrayRef<SDUse> Ops) { 8803 switch (Ops.size()) { 8804 case 0: return getNode(Opcode, DL, VT); 8805 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8806 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8807 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8808 default: break; 8809 } 8810 8811 // Copy from an SDUse array into an SDValue array for use with 8812 // the regular getNode logic. 8813 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8814 return getNode(Opcode, DL, VT, NewOps); 8815 } 8816 8817 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8818 ArrayRef<SDValue> Ops) { 8819 SDNodeFlags Flags; 8820 if (Inserter) 8821 Flags = Inserter->getFlags(); 8822 return getNode(Opcode, DL, VT, Ops, Flags); 8823 } 8824 8825 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8826 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8827 unsigned NumOps = Ops.size(); 8828 switch (NumOps) { 8829 case 0: return getNode(Opcode, DL, VT); 8830 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8831 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8832 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8833 default: break; 8834 } 8835 8836 #ifndef NDEBUG 8837 for (auto &Op : Ops) 8838 assert(Op.getOpcode() != ISD::DELETED_NODE && 8839 "Operand is DELETED_NODE!"); 8840 #endif 8841 8842 switch (Opcode) { 8843 default: break; 8844 case ISD::BUILD_VECTOR: 8845 // Attempt to simplify BUILD_VECTOR. 8846 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8847 return V; 8848 break; 8849 case ISD::CONCAT_VECTORS: 8850 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8851 return V; 8852 break; 8853 case ISD::SELECT_CC: 8854 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8855 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8856 "LHS and RHS of condition must have same type!"); 8857 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8858 "True and False arms of SelectCC must have same type!"); 8859 assert(Ops[2].getValueType() == VT && 8860 "select_cc node must be of same type as true and false value!"); 8861 break; 8862 case ISD::BR_CC: 8863 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8864 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8865 "LHS/RHS of comparison should match types!"); 8866 break; 8867 case ISD::VP_ADD: 8868 case ISD::VP_SUB: 8869 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8870 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8871 Opcode = ISD::VP_XOR; 8872 break; 8873 case ISD::VP_MUL: 8874 // If it is VP_MUL mask operation then turn it to VP_AND 8875 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8876 Opcode = ISD::VP_AND; 8877 break; 8878 case ISD::VP_REDUCE_MUL: 8879 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8880 if (VT == MVT::i1) 8881 Opcode = ISD::VP_REDUCE_AND; 8882 break; 8883 case ISD::VP_REDUCE_ADD: 8884 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8885 if (VT == MVT::i1) 8886 Opcode = ISD::VP_REDUCE_XOR; 8887 break; 8888 case ISD::VP_REDUCE_SMAX: 8889 case ISD::VP_REDUCE_UMIN: 8890 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8891 // VP_REDUCE_AND. 8892 if (VT == MVT::i1) 8893 Opcode = ISD::VP_REDUCE_AND; 8894 break; 8895 case ISD::VP_REDUCE_SMIN: 8896 case ISD::VP_REDUCE_UMAX: 8897 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8898 // VP_REDUCE_OR. 8899 if (VT == MVT::i1) 8900 Opcode = ISD::VP_REDUCE_OR; 8901 break; 8902 } 8903 8904 // Memoize nodes. 8905 SDNode *N; 8906 SDVTList VTs = getVTList(VT); 8907 8908 if (VT != MVT::Glue) { 8909 FoldingSetNodeID ID; 8910 AddNodeIDNode(ID, Opcode, VTs, Ops); 8911 void *IP = nullptr; 8912 8913 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8914 return SDValue(E, 0); 8915 8916 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8917 createOperands(N, Ops); 8918 8919 CSEMap.InsertNode(N, IP); 8920 } else { 8921 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8922 createOperands(N, Ops); 8923 } 8924 8925 N->setFlags(Flags); 8926 InsertNode(N); 8927 SDValue V(N, 0); 8928 NewSDValueDbgMsg(V, "Creating new node: ", this); 8929 return V; 8930 } 8931 8932 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8933 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8934 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8935 } 8936 8937 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8938 ArrayRef<SDValue> Ops) { 8939 SDNodeFlags Flags; 8940 if (Inserter) 8941 Flags = Inserter->getFlags(); 8942 return getNode(Opcode, DL, VTList, Ops, Flags); 8943 } 8944 8945 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8946 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8947 if (VTList.NumVTs == 1) 8948 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 8949 8950 #ifndef NDEBUG 8951 for (auto &Op : Ops) 8952 assert(Op.getOpcode() != ISD::DELETED_NODE && 8953 "Operand is DELETED_NODE!"); 8954 #endif 8955 8956 switch (Opcode) { 8957 case ISD::STRICT_FP_EXTEND: 8958 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8959 "Invalid STRICT_FP_EXTEND!"); 8960 assert(VTList.VTs[0].isFloatingPoint() && 8961 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8962 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8963 "STRICT_FP_EXTEND result type should be vector iff the operand " 8964 "type is vector!"); 8965 assert((!VTList.VTs[0].isVector() || 8966 VTList.VTs[0].getVectorNumElements() == 8967 Ops[1].getValueType().getVectorNumElements()) && 8968 "Vector element count mismatch!"); 8969 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8970 "Invalid fpext node, dst <= src!"); 8971 break; 8972 case ISD::STRICT_FP_ROUND: 8973 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8974 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8975 "STRICT_FP_ROUND result type should be vector iff the operand " 8976 "type is vector!"); 8977 assert((!VTList.VTs[0].isVector() || 8978 VTList.VTs[0].getVectorNumElements() == 8979 Ops[1].getValueType().getVectorNumElements()) && 8980 "Vector element count mismatch!"); 8981 assert(VTList.VTs[0].isFloatingPoint() && 8982 Ops[1].getValueType().isFloatingPoint() && 8983 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8984 isa<ConstantSDNode>(Ops[2]) && 8985 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8986 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8987 "Invalid STRICT_FP_ROUND!"); 8988 break; 8989 #if 0 8990 // FIXME: figure out how to safely handle things like 8991 // int foo(int x) { return 1 << (x & 255); } 8992 // int bar() { return foo(256); } 8993 case ISD::SRA_PARTS: 8994 case ISD::SRL_PARTS: 8995 case ISD::SHL_PARTS: 8996 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8997 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8998 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8999 else if (N3.getOpcode() == ISD::AND) 9000 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9001 // If the and is only masking out bits that cannot effect the shift, 9002 // eliminate the and. 9003 unsigned NumBits = VT.getScalarSizeInBits()*2; 9004 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9005 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9006 } 9007 break; 9008 #endif 9009 } 9010 9011 // Memoize the node unless it returns a flag. 9012 SDNode *N; 9013 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9014 FoldingSetNodeID ID; 9015 AddNodeIDNode(ID, Opcode, VTList, Ops); 9016 void *IP = nullptr; 9017 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9018 return SDValue(E, 0); 9019 9020 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9021 createOperands(N, Ops); 9022 CSEMap.InsertNode(N, IP); 9023 } else { 9024 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9025 createOperands(N, Ops); 9026 } 9027 9028 N->setFlags(Flags); 9029 InsertNode(N); 9030 SDValue V(N, 0); 9031 NewSDValueDbgMsg(V, "Creating new node: ", this); 9032 return V; 9033 } 9034 9035 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9036 SDVTList VTList) { 9037 return getNode(Opcode, DL, VTList, None); 9038 } 9039 9040 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9041 SDValue N1) { 9042 SDValue Ops[] = { N1 }; 9043 return getNode(Opcode, DL, VTList, Ops); 9044 } 9045 9046 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9047 SDValue N1, SDValue N2) { 9048 SDValue Ops[] = { N1, N2 }; 9049 return getNode(Opcode, DL, VTList, Ops); 9050 } 9051 9052 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9053 SDValue N1, SDValue N2, SDValue N3) { 9054 SDValue Ops[] = { N1, N2, N3 }; 9055 return getNode(Opcode, DL, VTList, Ops); 9056 } 9057 9058 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9059 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9060 SDValue Ops[] = { N1, N2, N3, N4 }; 9061 return getNode(Opcode, DL, VTList, Ops); 9062 } 9063 9064 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9065 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9066 SDValue N5) { 9067 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9068 return getNode(Opcode, DL, VTList, Ops); 9069 } 9070 9071 SDVTList SelectionDAG::getVTList(EVT VT) { 9072 return makeVTList(SDNode::getValueTypeList(VT), 1); 9073 } 9074 9075 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9076 FoldingSetNodeID ID; 9077 ID.AddInteger(2U); 9078 ID.AddInteger(VT1.getRawBits()); 9079 ID.AddInteger(VT2.getRawBits()); 9080 9081 void *IP = nullptr; 9082 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9083 if (!Result) { 9084 EVT *Array = Allocator.Allocate<EVT>(2); 9085 Array[0] = VT1; 9086 Array[1] = VT2; 9087 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9088 VTListMap.InsertNode(Result, IP); 9089 } 9090 return Result->getSDVTList(); 9091 } 9092 9093 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9094 FoldingSetNodeID ID; 9095 ID.AddInteger(3U); 9096 ID.AddInteger(VT1.getRawBits()); 9097 ID.AddInteger(VT2.getRawBits()); 9098 ID.AddInteger(VT3.getRawBits()); 9099 9100 void *IP = nullptr; 9101 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9102 if (!Result) { 9103 EVT *Array = Allocator.Allocate<EVT>(3); 9104 Array[0] = VT1; 9105 Array[1] = VT2; 9106 Array[2] = VT3; 9107 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9108 VTListMap.InsertNode(Result, IP); 9109 } 9110 return Result->getSDVTList(); 9111 } 9112 9113 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9114 FoldingSetNodeID ID; 9115 ID.AddInteger(4U); 9116 ID.AddInteger(VT1.getRawBits()); 9117 ID.AddInteger(VT2.getRawBits()); 9118 ID.AddInteger(VT3.getRawBits()); 9119 ID.AddInteger(VT4.getRawBits()); 9120 9121 void *IP = nullptr; 9122 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9123 if (!Result) { 9124 EVT *Array = Allocator.Allocate<EVT>(4); 9125 Array[0] = VT1; 9126 Array[1] = VT2; 9127 Array[2] = VT3; 9128 Array[3] = VT4; 9129 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9130 VTListMap.InsertNode(Result, IP); 9131 } 9132 return Result->getSDVTList(); 9133 } 9134 9135 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9136 unsigned NumVTs = VTs.size(); 9137 FoldingSetNodeID ID; 9138 ID.AddInteger(NumVTs); 9139 for (unsigned index = 0; index < NumVTs; index++) { 9140 ID.AddInteger(VTs[index].getRawBits()); 9141 } 9142 9143 void *IP = nullptr; 9144 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9145 if (!Result) { 9146 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9147 llvm::copy(VTs, Array); 9148 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9149 VTListMap.InsertNode(Result, IP); 9150 } 9151 return Result->getSDVTList(); 9152 } 9153 9154 9155 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9156 /// specified operands. If the resultant node already exists in the DAG, 9157 /// this does not modify the specified node, instead it returns the node that 9158 /// already exists. If the resultant node does not exist in the DAG, the 9159 /// input node is returned. As a degenerate case, if you specify the same 9160 /// input operands as the node already has, the input node is returned. 9161 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9162 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9163 9164 // Check to see if there is no change. 9165 if (Op == N->getOperand(0)) return N; 9166 9167 // See if the modified node already exists. 9168 void *InsertPos = nullptr; 9169 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9170 return Existing; 9171 9172 // Nope it doesn't. Remove the node from its current place in the maps. 9173 if (InsertPos) 9174 if (!RemoveNodeFromCSEMaps(N)) 9175 InsertPos = nullptr; 9176 9177 // Now we update the operands. 9178 N->OperandList[0].set(Op); 9179 9180 updateDivergence(N); 9181 // If this gets put into a CSE map, add it. 9182 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9183 return N; 9184 } 9185 9186 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9187 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9188 9189 // Check to see if there is no change. 9190 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9191 return N; // No operands changed, just return the input node. 9192 9193 // See if the modified node already exists. 9194 void *InsertPos = nullptr; 9195 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9196 return Existing; 9197 9198 // Nope it doesn't. Remove the node from its current place in the maps. 9199 if (InsertPos) 9200 if (!RemoveNodeFromCSEMaps(N)) 9201 InsertPos = nullptr; 9202 9203 // Now we update the operands. 9204 if (N->OperandList[0] != Op1) 9205 N->OperandList[0].set(Op1); 9206 if (N->OperandList[1] != Op2) 9207 N->OperandList[1].set(Op2); 9208 9209 updateDivergence(N); 9210 // If this gets put into a CSE map, add it. 9211 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9212 return N; 9213 } 9214 9215 SDNode *SelectionDAG:: 9216 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9217 SDValue Ops[] = { Op1, Op2, Op3 }; 9218 return UpdateNodeOperands(N, Ops); 9219 } 9220 9221 SDNode *SelectionDAG:: 9222 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9223 SDValue Op3, SDValue Op4) { 9224 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9225 return UpdateNodeOperands(N, Ops); 9226 } 9227 9228 SDNode *SelectionDAG:: 9229 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9230 SDValue Op3, SDValue Op4, SDValue Op5) { 9231 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9232 return UpdateNodeOperands(N, Ops); 9233 } 9234 9235 SDNode *SelectionDAG:: 9236 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9237 unsigned NumOps = Ops.size(); 9238 assert(N->getNumOperands() == NumOps && 9239 "Update with wrong number of operands"); 9240 9241 // If no operands changed just return the input node. 9242 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9243 return N; 9244 9245 // See if the modified node already exists. 9246 void *InsertPos = nullptr; 9247 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9248 return Existing; 9249 9250 // Nope it doesn't. Remove the node from its current place in the maps. 9251 if (InsertPos) 9252 if (!RemoveNodeFromCSEMaps(N)) 9253 InsertPos = nullptr; 9254 9255 // Now we update the operands. 9256 for (unsigned i = 0; i != NumOps; ++i) 9257 if (N->OperandList[i] != Ops[i]) 9258 N->OperandList[i].set(Ops[i]); 9259 9260 updateDivergence(N); 9261 // If this gets put into a CSE map, add it. 9262 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9263 return N; 9264 } 9265 9266 /// DropOperands - Release the operands and set this node to have 9267 /// zero operands. 9268 void SDNode::DropOperands() { 9269 // Unlike the code in MorphNodeTo that does this, we don't need to 9270 // watch for dead nodes here. 9271 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9272 SDUse &Use = *I++; 9273 Use.set(SDValue()); 9274 } 9275 } 9276 9277 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9278 ArrayRef<MachineMemOperand *> NewMemRefs) { 9279 if (NewMemRefs.empty()) { 9280 N->clearMemRefs(); 9281 return; 9282 } 9283 9284 // Check if we can avoid allocating by storing a single reference directly. 9285 if (NewMemRefs.size() == 1) { 9286 N->MemRefs = NewMemRefs[0]; 9287 N->NumMemRefs = 1; 9288 return; 9289 } 9290 9291 MachineMemOperand **MemRefsBuffer = 9292 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9293 llvm::copy(NewMemRefs, MemRefsBuffer); 9294 N->MemRefs = MemRefsBuffer; 9295 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9296 } 9297 9298 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9299 /// machine opcode. 9300 /// 9301 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9302 EVT VT) { 9303 SDVTList VTs = getVTList(VT); 9304 return SelectNodeTo(N, MachineOpc, VTs, None); 9305 } 9306 9307 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9308 EVT VT, SDValue Op1) { 9309 SDVTList VTs = getVTList(VT); 9310 SDValue Ops[] = { Op1 }; 9311 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9312 } 9313 9314 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9315 EVT VT, SDValue Op1, 9316 SDValue Op2) { 9317 SDVTList VTs = getVTList(VT); 9318 SDValue Ops[] = { Op1, Op2 }; 9319 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9320 } 9321 9322 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9323 EVT VT, SDValue Op1, 9324 SDValue Op2, SDValue Op3) { 9325 SDVTList VTs = getVTList(VT); 9326 SDValue Ops[] = { Op1, Op2, Op3 }; 9327 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9328 } 9329 9330 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9331 EVT VT, ArrayRef<SDValue> Ops) { 9332 SDVTList VTs = getVTList(VT); 9333 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9334 } 9335 9336 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9337 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9338 SDVTList VTs = getVTList(VT1, VT2); 9339 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9340 } 9341 9342 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9343 EVT VT1, EVT VT2) { 9344 SDVTList VTs = getVTList(VT1, VT2); 9345 return SelectNodeTo(N, MachineOpc, VTs, None); 9346 } 9347 9348 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9349 EVT VT1, EVT VT2, EVT VT3, 9350 ArrayRef<SDValue> Ops) { 9351 SDVTList VTs = getVTList(VT1, VT2, VT3); 9352 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9353 } 9354 9355 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9356 EVT VT1, EVT VT2, 9357 SDValue Op1, SDValue Op2) { 9358 SDVTList VTs = getVTList(VT1, VT2); 9359 SDValue Ops[] = { Op1, Op2 }; 9360 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9361 } 9362 9363 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9364 SDVTList VTs,ArrayRef<SDValue> Ops) { 9365 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9366 // Reset the NodeID to -1. 9367 New->setNodeId(-1); 9368 if (New != N) { 9369 ReplaceAllUsesWith(N, New); 9370 RemoveDeadNode(N); 9371 } 9372 return New; 9373 } 9374 9375 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9376 /// the line number information on the merged node since it is not possible to 9377 /// preserve the information that operation is associated with multiple lines. 9378 /// This will make the debugger working better at -O0, were there is a higher 9379 /// probability having other instructions associated with that line. 9380 /// 9381 /// For IROrder, we keep the smaller of the two 9382 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9383 DebugLoc NLoc = N->getDebugLoc(); 9384 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9385 N->setDebugLoc(DebugLoc()); 9386 } 9387 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9388 N->setIROrder(Order); 9389 return N; 9390 } 9391 9392 /// MorphNodeTo - This *mutates* the specified node to have the specified 9393 /// return type, opcode, and operands. 9394 /// 9395 /// Note that MorphNodeTo returns the resultant node. If there is already a 9396 /// node of the specified opcode and operands, it returns that node instead of 9397 /// the current one. Note that the SDLoc need not be the same. 9398 /// 9399 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9400 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9401 /// node, and because it doesn't require CSE recalculation for any of 9402 /// the node's users. 9403 /// 9404 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9405 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9406 /// the legalizer which maintain worklists that would need to be updated when 9407 /// deleting things. 9408 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9409 SDVTList VTs, ArrayRef<SDValue> Ops) { 9410 // If an identical node already exists, use it. 9411 void *IP = nullptr; 9412 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9413 FoldingSetNodeID ID; 9414 AddNodeIDNode(ID, Opc, VTs, Ops); 9415 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9416 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9417 } 9418 9419 if (!RemoveNodeFromCSEMaps(N)) 9420 IP = nullptr; 9421 9422 // Start the morphing. 9423 N->NodeType = Opc; 9424 N->ValueList = VTs.VTs; 9425 N->NumValues = VTs.NumVTs; 9426 9427 // Clear the operands list, updating used nodes to remove this from their 9428 // use list. Keep track of any operands that become dead as a result. 9429 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9430 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9431 SDUse &Use = *I++; 9432 SDNode *Used = Use.getNode(); 9433 Use.set(SDValue()); 9434 if (Used->use_empty()) 9435 DeadNodeSet.insert(Used); 9436 } 9437 9438 // For MachineNode, initialize the memory references information. 9439 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9440 MN->clearMemRefs(); 9441 9442 // Swap for an appropriately sized array from the recycler. 9443 removeOperands(N); 9444 createOperands(N, Ops); 9445 9446 // Delete any nodes that are still dead after adding the uses for the 9447 // new operands. 9448 if (!DeadNodeSet.empty()) { 9449 SmallVector<SDNode *, 16> DeadNodes; 9450 for (SDNode *N : DeadNodeSet) 9451 if (N->use_empty()) 9452 DeadNodes.push_back(N); 9453 RemoveDeadNodes(DeadNodes); 9454 } 9455 9456 if (IP) 9457 CSEMap.InsertNode(N, IP); // Memoize the new node. 9458 return N; 9459 } 9460 9461 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9462 unsigned OrigOpc = Node->getOpcode(); 9463 unsigned NewOpc; 9464 switch (OrigOpc) { 9465 default: 9466 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9467 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9468 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9469 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9470 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9471 #include "llvm/IR/ConstrainedOps.def" 9472 } 9473 9474 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9475 9476 // We're taking this node out of the chain, so we need to re-link things. 9477 SDValue InputChain = Node->getOperand(0); 9478 SDValue OutputChain = SDValue(Node, 1); 9479 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9480 9481 SmallVector<SDValue, 3> Ops; 9482 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9483 Ops.push_back(Node->getOperand(i)); 9484 9485 SDVTList VTs = getVTList(Node->getValueType(0)); 9486 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9487 9488 // MorphNodeTo can operate in two ways: if an existing node with the 9489 // specified operands exists, it can just return it. Otherwise, it 9490 // updates the node in place to have the requested operands. 9491 if (Res == Node) { 9492 // If we updated the node in place, reset the node ID. To the isel, 9493 // this should be just like a newly allocated machine node. 9494 Res->setNodeId(-1); 9495 } else { 9496 ReplaceAllUsesWith(Node, Res); 9497 RemoveDeadNode(Node); 9498 } 9499 9500 return Res; 9501 } 9502 9503 /// getMachineNode - These are used for target selectors to create a new node 9504 /// with specified return type(s), MachineInstr opcode, and operands. 9505 /// 9506 /// Note that getMachineNode returns the resultant node. If there is already a 9507 /// node of the specified opcode and operands, it returns that node instead of 9508 /// the current one. 9509 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9510 EVT VT) { 9511 SDVTList VTs = getVTList(VT); 9512 return getMachineNode(Opcode, dl, VTs, None); 9513 } 9514 9515 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9516 EVT VT, SDValue Op1) { 9517 SDVTList VTs = getVTList(VT); 9518 SDValue Ops[] = { Op1 }; 9519 return getMachineNode(Opcode, dl, VTs, Ops); 9520 } 9521 9522 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9523 EVT VT, SDValue Op1, SDValue Op2) { 9524 SDVTList VTs = getVTList(VT); 9525 SDValue Ops[] = { Op1, Op2 }; 9526 return getMachineNode(Opcode, dl, VTs, Ops); 9527 } 9528 9529 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9530 EVT VT, SDValue Op1, SDValue Op2, 9531 SDValue Op3) { 9532 SDVTList VTs = getVTList(VT); 9533 SDValue Ops[] = { Op1, Op2, Op3 }; 9534 return getMachineNode(Opcode, dl, VTs, Ops); 9535 } 9536 9537 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9538 EVT VT, ArrayRef<SDValue> Ops) { 9539 SDVTList VTs = getVTList(VT); 9540 return getMachineNode(Opcode, dl, VTs, Ops); 9541 } 9542 9543 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9544 EVT VT1, EVT VT2, SDValue Op1, 9545 SDValue Op2) { 9546 SDVTList VTs = getVTList(VT1, VT2); 9547 SDValue Ops[] = { Op1, Op2 }; 9548 return getMachineNode(Opcode, dl, VTs, Ops); 9549 } 9550 9551 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9552 EVT VT1, EVT VT2, SDValue Op1, 9553 SDValue Op2, SDValue Op3) { 9554 SDVTList VTs = getVTList(VT1, VT2); 9555 SDValue Ops[] = { Op1, Op2, Op3 }; 9556 return getMachineNode(Opcode, dl, VTs, Ops); 9557 } 9558 9559 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9560 EVT VT1, EVT VT2, 9561 ArrayRef<SDValue> Ops) { 9562 SDVTList VTs = getVTList(VT1, VT2); 9563 return getMachineNode(Opcode, dl, VTs, Ops); 9564 } 9565 9566 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9567 EVT VT1, EVT VT2, EVT VT3, 9568 SDValue Op1, SDValue Op2) { 9569 SDVTList VTs = getVTList(VT1, VT2, VT3); 9570 SDValue Ops[] = { Op1, Op2 }; 9571 return getMachineNode(Opcode, dl, VTs, Ops); 9572 } 9573 9574 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9575 EVT VT1, EVT VT2, EVT VT3, 9576 SDValue Op1, SDValue Op2, 9577 SDValue Op3) { 9578 SDVTList VTs = getVTList(VT1, VT2, VT3); 9579 SDValue Ops[] = { Op1, Op2, Op3 }; 9580 return getMachineNode(Opcode, dl, VTs, Ops); 9581 } 9582 9583 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9584 EVT VT1, EVT VT2, EVT VT3, 9585 ArrayRef<SDValue> Ops) { 9586 SDVTList VTs = getVTList(VT1, VT2, VT3); 9587 return getMachineNode(Opcode, dl, VTs, Ops); 9588 } 9589 9590 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9591 ArrayRef<EVT> ResultTys, 9592 ArrayRef<SDValue> Ops) { 9593 SDVTList VTs = getVTList(ResultTys); 9594 return getMachineNode(Opcode, dl, VTs, Ops); 9595 } 9596 9597 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9598 SDVTList VTs, 9599 ArrayRef<SDValue> Ops) { 9600 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9601 MachineSDNode *N; 9602 void *IP = nullptr; 9603 9604 if (DoCSE) { 9605 FoldingSetNodeID ID; 9606 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9607 IP = nullptr; 9608 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9609 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9610 } 9611 } 9612 9613 // Allocate a new MachineSDNode. 9614 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9615 createOperands(N, Ops); 9616 9617 if (DoCSE) 9618 CSEMap.InsertNode(N, IP); 9619 9620 InsertNode(N); 9621 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9622 return N; 9623 } 9624 9625 /// getTargetExtractSubreg - A convenience function for creating 9626 /// TargetOpcode::EXTRACT_SUBREG nodes. 9627 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9628 SDValue Operand) { 9629 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9630 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9631 VT, Operand, SRIdxVal); 9632 return SDValue(Subreg, 0); 9633 } 9634 9635 /// getTargetInsertSubreg - A convenience function for creating 9636 /// TargetOpcode::INSERT_SUBREG nodes. 9637 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9638 SDValue Operand, SDValue Subreg) { 9639 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9640 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9641 VT, Operand, Subreg, SRIdxVal); 9642 return SDValue(Result, 0); 9643 } 9644 9645 /// getNodeIfExists - Get the specified node if it's already available, or 9646 /// else return NULL. 9647 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9648 ArrayRef<SDValue> Ops) { 9649 SDNodeFlags Flags; 9650 if (Inserter) 9651 Flags = Inserter->getFlags(); 9652 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9653 } 9654 9655 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9656 ArrayRef<SDValue> Ops, 9657 const SDNodeFlags Flags) { 9658 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9659 FoldingSetNodeID ID; 9660 AddNodeIDNode(ID, Opcode, VTList, Ops); 9661 void *IP = nullptr; 9662 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9663 E->intersectFlagsWith(Flags); 9664 return E; 9665 } 9666 } 9667 return nullptr; 9668 } 9669 9670 /// doesNodeExist - Check if a node exists without modifying its flags. 9671 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9672 ArrayRef<SDValue> Ops) { 9673 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9674 FoldingSetNodeID ID; 9675 AddNodeIDNode(ID, Opcode, VTList, Ops); 9676 void *IP = nullptr; 9677 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9678 return true; 9679 } 9680 return false; 9681 } 9682 9683 /// getDbgValue - Creates a SDDbgValue node. 9684 /// 9685 /// SDNode 9686 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9687 SDNode *N, unsigned R, bool IsIndirect, 9688 const DebugLoc &DL, unsigned O) { 9689 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9690 "Expected inlined-at fields to agree"); 9691 return new (DbgInfo->getAlloc()) 9692 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9693 {}, IsIndirect, DL, O, 9694 /*IsVariadic=*/false); 9695 } 9696 9697 /// Constant 9698 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9699 DIExpression *Expr, 9700 const Value *C, 9701 const DebugLoc &DL, unsigned O) { 9702 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9703 "Expected inlined-at fields to agree"); 9704 return new (DbgInfo->getAlloc()) 9705 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9706 /*IsIndirect=*/false, DL, O, 9707 /*IsVariadic=*/false); 9708 } 9709 9710 /// FrameIndex 9711 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9712 DIExpression *Expr, unsigned FI, 9713 bool IsIndirect, 9714 const DebugLoc &DL, 9715 unsigned O) { 9716 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9717 "Expected inlined-at fields to agree"); 9718 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9719 } 9720 9721 /// FrameIndex with dependencies 9722 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9723 DIExpression *Expr, unsigned FI, 9724 ArrayRef<SDNode *> Dependencies, 9725 bool IsIndirect, 9726 const DebugLoc &DL, 9727 unsigned O) { 9728 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9729 "Expected inlined-at fields to agree"); 9730 return new (DbgInfo->getAlloc()) 9731 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9732 Dependencies, IsIndirect, DL, O, 9733 /*IsVariadic=*/false); 9734 } 9735 9736 /// VReg 9737 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9738 unsigned VReg, bool IsIndirect, 9739 const DebugLoc &DL, unsigned O) { 9740 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9741 "Expected inlined-at fields to agree"); 9742 return new (DbgInfo->getAlloc()) 9743 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9744 {}, IsIndirect, DL, O, 9745 /*IsVariadic=*/false); 9746 } 9747 9748 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9749 ArrayRef<SDDbgOperand> Locs, 9750 ArrayRef<SDNode *> Dependencies, 9751 bool IsIndirect, const DebugLoc &DL, 9752 unsigned O, bool IsVariadic) { 9753 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9754 "Expected inlined-at fields to agree"); 9755 return new (DbgInfo->getAlloc()) 9756 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9757 DL, O, IsVariadic); 9758 } 9759 9760 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9761 unsigned OffsetInBits, unsigned SizeInBits, 9762 bool InvalidateDbg) { 9763 SDNode *FromNode = From.getNode(); 9764 SDNode *ToNode = To.getNode(); 9765 assert(FromNode && ToNode && "Can't modify dbg values"); 9766 9767 // PR35338 9768 // TODO: assert(From != To && "Redundant dbg value transfer"); 9769 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9770 if (From == To || FromNode == ToNode) 9771 return; 9772 9773 if (!FromNode->getHasDebugValue()) 9774 return; 9775 9776 SDDbgOperand FromLocOp = 9777 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9778 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9779 9780 SmallVector<SDDbgValue *, 2> ClonedDVs; 9781 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9782 if (Dbg->isInvalidated()) 9783 continue; 9784 9785 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9786 9787 // Create a new location ops vector that is equal to the old vector, but 9788 // with each instance of FromLocOp replaced with ToLocOp. 9789 bool Changed = false; 9790 auto NewLocOps = Dbg->copyLocationOps(); 9791 std::replace_if( 9792 NewLocOps.begin(), NewLocOps.end(), 9793 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9794 bool Match = Op == FromLocOp; 9795 Changed |= Match; 9796 return Match; 9797 }, 9798 ToLocOp); 9799 // Ignore this SDDbgValue if we didn't find a matching location. 9800 if (!Changed) 9801 continue; 9802 9803 DIVariable *Var = Dbg->getVariable(); 9804 auto *Expr = Dbg->getExpression(); 9805 // If a fragment is requested, update the expression. 9806 if (SizeInBits) { 9807 // When splitting a larger (e.g., sign-extended) value whose 9808 // lower bits are described with an SDDbgValue, do not attempt 9809 // to transfer the SDDbgValue to the upper bits. 9810 if (auto FI = Expr->getFragmentInfo()) 9811 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9812 continue; 9813 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9814 SizeInBits); 9815 if (!Fragment) 9816 continue; 9817 Expr = *Fragment; 9818 } 9819 9820 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9821 // Clone the SDDbgValue and move it to To. 9822 SDDbgValue *Clone = getDbgValueList( 9823 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9824 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9825 Dbg->isVariadic()); 9826 ClonedDVs.push_back(Clone); 9827 9828 if (InvalidateDbg) { 9829 // Invalidate value and indicate the SDDbgValue should not be emitted. 9830 Dbg->setIsInvalidated(); 9831 Dbg->setIsEmitted(); 9832 } 9833 } 9834 9835 for (SDDbgValue *Dbg : ClonedDVs) { 9836 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9837 "Transferred DbgValues should depend on the new SDNode"); 9838 AddDbgValue(Dbg, false); 9839 } 9840 } 9841 9842 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9843 if (!N.getHasDebugValue()) 9844 return; 9845 9846 SmallVector<SDDbgValue *, 2> ClonedDVs; 9847 for (auto DV : GetDbgValues(&N)) { 9848 if (DV->isInvalidated()) 9849 continue; 9850 switch (N.getOpcode()) { 9851 default: 9852 break; 9853 case ISD::ADD: 9854 SDValue N0 = N.getOperand(0); 9855 SDValue N1 = N.getOperand(1); 9856 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9857 isConstantIntBuildVectorOrConstantInt(N1)) { 9858 uint64_t Offset = N.getConstantOperandVal(1); 9859 9860 // Rewrite an ADD constant node into a DIExpression. Since we are 9861 // performing arithmetic to compute the variable's *value* in the 9862 // DIExpression, we need to mark the expression with a 9863 // DW_OP_stack_value. 9864 auto *DIExpr = DV->getExpression(); 9865 auto NewLocOps = DV->copyLocationOps(); 9866 bool Changed = false; 9867 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9868 // We're not given a ResNo to compare against because the whole 9869 // node is going away. We know that any ISD::ADD only has one 9870 // result, so we can assume any node match is using the result. 9871 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9872 NewLocOps[i].getSDNode() != &N) 9873 continue; 9874 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9875 SmallVector<uint64_t, 3> ExprOps; 9876 DIExpression::appendOffset(ExprOps, Offset); 9877 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9878 Changed = true; 9879 } 9880 (void)Changed; 9881 assert(Changed && "Salvage target doesn't use N"); 9882 9883 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9884 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9885 NewLocOps, AdditionalDependencies, 9886 DV->isIndirect(), DV->getDebugLoc(), 9887 DV->getOrder(), DV->isVariadic()); 9888 ClonedDVs.push_back(Clone); 9889 DV->setIsInvalidated(); 9890 DV->setIsEmitted(); 9891 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9892 N0.getNode()->dumprFull(this); 9893 dbgs() << " into " << *DIExpr << '\n'); 9894 } 9895 } 9896 } 9897 9898 for (SDDbgValue *Dbg : ClonedDVs) { 9899 assert(!Dbg->getSDNodes().empty() && 9900 "Salvaged DbgValue should depend on a new SDNode"); 9901 AddDbgValue(Dbg, false); 9902 } 9903 } 9904 9905 /// Creates a SDDbgLabel node. 9906 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9907 const DebugLoc &DL, unsigned O) { 9908 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9909 "Expected inlined-at fields to agree"); 9910 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9911 } 9912 9913 namespace { 9914 9915 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9916 /// pointed to by a use iterator is deleted, increment the use iterator 9917 /// so that it doesn't dangle. 9918 /// 9919 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9920 SDNode::use_iterator &UI; 9921 SDNode::use_iterator &UE; 9922 9923 void NodeDeleted(SDNode *N, SDNode *E) override { 9924 // Increment the iterator as needed. 9925 while (UI != UE && N == *UI) 9926 ++UI; 9927 } 9928 9929 public: 9930 RAUWUpdateListener(SelectionDAG &d, 9931 SDNode::use_iterator &ui, 9932 SDNode::use_iterator &ue) 9933 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9934 }; 9935 9936 } // end anonymous namespace 9937 9938 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9939 /// This can cause recursive merging of nodes in the DAG. 9940 /// 9941 /// This version assumes From has a single result value. 9942 /// 9943 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9944 SDNode *From = FromN.getNode(); 9945 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9946 "Cannot replace with this method!"); 9947 assert(From != To.getNode() && "Cannot replace uses of with self"); 9948 9949 // Preserve Debug Values 9950 transferDbgValues(FromN, To); 9951 9952 // Iterate over all the existing uses of From. New uses will be added 9953 // to the beginning of the use list, which we avoid visiting. 9954 // This specifically avoids visiting uses of From that arise while the 9955 // replacement is happening, because any such uses would be the result 9956 // of CSE: If an existing node looks like From after one of its operands 9957 // is replaced by To, we don't want to replace of all its users with To 9958 // too. See PR3018 for more info. 9959 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9960 RAUWUpdateListener Listener(*this, UI, UE); 9961 while (UI != UE) { 9962 SDNode *User = *UI; 9963 9964 // This node is about to morph, remove its old self from the CSE maps. 9965 RemoveNodeFromCSEMaps(User); 9966 9967 // A user can appear in a use list multiple times, and when this 9968 // happens the uses are usually next to each other in the list. 9969 // To help reduce the number of CSE recomputations, process all 9970 // the uses of this user that we can find this way. 9971 do { 9972 SDUse &Use = UI.getUse(); 9973 ++UI; 9974 Use.set(To); 9975 if (To->isDivergent() != From->isDivergent()) 9976 updateDivergence(User); 9977 } while (UI != UE && *UI == User); 9978 // Now that we have modified User, add it back to the CSE maps. If it 9979 // already exists there, recursively merge the results together. 9980 AddModifiedNodeToCSEMaps(User); 9981 } 9982 9983 // If we just RAUW'd the root, take note. 9984 if (FromN == getRoot()) 9985 setRoot(To); 9986 } 9987 9988 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9989 /// This can cause recursive merging of nodes in the DAG. 9990 /// 9991 /// This version assumes that for each value of From, there is a 9992 /// corresponding value in To in the same position with the same type. 9993 /// 9994 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9995 #ifndef NDEBUG 9996 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9997 assert((!From->hasAnyUseOfValue(i) || 9998 From->getValueType(i) == To->getValueType(i)) && 9999 "Cannot use this version of ReplaceAllUsesWith!"); 10000 #endif 10001 10002 // Handle the trivial case. 10003 if (From == To) 10004 return; 10005 10006 // Preserve Debug Info. Only do this if there's a use. 10007 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10008 if (From->hasAnyUseOfValue(i)) { 10009 assert((i < To->getNumValues()) && "Invalid To location"); 10010 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10011 } 10012 10013 // Iterate over just the existing users of From. See the comments in 10014 // the ReplaceAllUsesWith above. 10015 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10016 RAUWUpdateListener Listener(*this, UI, UE); 10017 while (UI != UE) { 10018 SDNode *User = *UI; 10019 10020 // This node is about to morph, remove its old self from the CSE maps. 10021 RemoveNodeFromCSEMaps(User); 10022 10023 // A user can appear in a use list multiple times, and when this 10024 // happens the uses are usually next to each other in the list. 10025 // To help reduce the number of CSE recomputations, process all 10026 // the uses of this user that we can find this way. 10027 do { 10028 SDUse &Use = UI.getUse(); 10029 ++UI; 10030 Use.setNode(To); 10031 if (To->isDivergent() != From->isDivergent()) 10032 updateDivergence(User); 10033 } while (UI != UE && *UI == User); 10034 10035 // Now that we have modified User, add it back to the CSE maps. If it 10036 // already exists there, recursively merge the results together. 10037 AddModifiedNodeToCSEMaps(User); 10038 } 10039 10040 // If we just RAUW'd the root, take note. 10041 if (From == getRoot().getNode()) 10042 setRoot(SDValue(To, getRoot().getResNo())); 10043 } 10044 10045 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10046 /// This can cause recursive merging of nodes in the DAG. 10047 /// 10048 /// This version can replace From with any result values. To must match the 10049 /// number and types of values returned by From. 10050 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10051 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10052 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10053 10054 // Preserve Debug Info. 10055 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10056 transferDbgValues(SDValue(From, i), To[i]); 10057 10058 // Iterate over just the existing users of From. See the comments in 10059 // the ReplaceAllUsesWith above. 10060 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10061 RAUWUpdateListener Listener(*this, UI, UE); 10062 while (UI != UE) { 10063 SDNode *User = *UI; 10064 10065 // This node is about to morph, remove its old self from the CSE maps. 10066 RemoveNodeFromCSEMaps(User); 10067 10068 // A user can appear in a use list multiple times, and when this happens the 10069 // uses are usually next to each other in the list. To help reduce the 10070 // number of CSE and divergence recomputations, process all the uses of this 10071 // user that we can find this way. 10072 bool To_IsDivergent = false; 10073 do { 10074 SDUse &Use = UI.getUse(); 10075 const SDValue &ToOp = To[Use.getResNo()]; 10076 ++UI; 10077 Use.set(ToOp); 10078 To_IsDivergent |= ToOp->isDivergent(); 10079 } while (UI != UE && *UI == User); 10080 10081 if (To_IsDivergent != From->isDivergent()) 10082 updateDivergence(User); 10083 10084 // Now that we have modified User, add it back to the CSE maps. If it 10085 // already exists there, recursively merge the results together. 10086 AddModifiedNodeToCSEMaps(User); 10087 } 10088 10089 // If we just RAUW'd the root, take note. 10090 if (From == getRoot().getNode()) 10091 setRoot(SDValue(To[getRoot().getResNo()])); 10092 } 10093 10094 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10095 /// uses of other values produced by From.getNode() alone. The Deleted 10096 /// vector is handled the same way as for ReplaceAllUsesWith. 10097 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10098 // Handle the really simple, really trivial case efficiently. 10099 if (From == To) return; 10100 10101 // Handle the simple, trivial, case efficiently. 10102 if (From.getNode()->getNumValues() == 1) { 10103 ReplaceAllUsesWith(From, To); 10104 return; 10105 } 10106 10107 // Preserve Debug Info. 10108 transferDbgValues(From, To); 10109 10110 // Iterate over just the existing users of From. See the comments in 10111 // the ReplaceAllUsesWith above. 10112 SDNode::use_iterator UI = From.getNode()->use_begin(), 10113 UE = From.getNode()->use_end(); 10114 RAUWUpdateListener Listener(*this, UI, UE); 10115 while (UI != UE) { 10116 SDNode *User = *UI; 10117 bool UserRemovedFromCSEMaps = false; 10118 10119 // A user can appear in a use list multiple times, and when this 10120 // happens the uses are usually next to each other in the list. 10121 // To help reduce the number of CSE recomputations, process all 10122 // the uses of this user that we can find this way. 10123 do { 10124 SDUse &Use = UI.getUse(); 10125 10126 // Skip uses of different values from the same node. 10127 if (Use.getResNo() != From.getResNo()) { 10128 ++UI; 10129 continue; 10130 } 10131 10132 // If this node hasn't been modified yet, it's still in the CSE maps, 10133 // so remove its old self from the CSE maps. 10134 if (!UserRemovedFromCSEMaps) { 10135 RemoveNodeFromCSEMaps(User); 10136 UserRemovedFromCSEMaps = true; 10137 } 10138 10139 ++UI; 10140 Use.set(To); 10141 if (To->isDivergent() != From->isDivergent()) 10142 updateDivergence(User); 10143 } while (UI != UE && *UI == User); 10144 // We are iterating over all uses of the From node, so if a use 10145 // doesn't use the specific value, no changes are made. 10146 if (!UserRemovedFromCSEMaps) 10147 continue; 10148 10149 // Now that we have modified User, add it back to the CSE maps. If it 10150 // already exists there, recursively merge the results together. 10151 AddModifiedNodeToCSEMaps(User); 10152 } 10153 10154 // If we just RAUW'd the root, take note. 10155 if (From == getRoot()) 10156 setRoot(To); 10157 } 10158 10159 namespace { 10160 10161 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10162 /// to record information about a use. 10163 struct UseMemo { 10164 SDNode *User; 10165 unsigned Index; 10166 SDUse *Use; 10167 }; 10168 10169 /// operator< - Sort Memos by User. 10170 bool operator<(const UseMemo &L, const UseMemo &R) { 10171 return (intptr_t)L.User < (intptr_t)R.User; 10172 } 10173 10174 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10175 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10176 /// the node already has been taken care of recursively. 10177 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10178 SmallVector<UseMemo, 4> &Uses; 10179 10180 void NodeDeleted(SDNode *N, SDNode *E) override { 10181 for (UseMemo &Memo : Uses) 10182 if (Memo.User == N) 10183 Memo.User = nullptr; 10184 } 10185 10186 public: 10187 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10188 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10189 }; 10190 10191 } // end anonymous namespace 10192 10193 bool SelectionDAG::calculateDivergence(SDNode *N) { 10194 if (TLI->isSDNodeAlwaysUniform(N)) { 10195 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10196 "Conflicting divergence information!"); 10197 return false; 10198 } 10199 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10200 return true; 10201 for (auto &Op : N->ops()) { 10202 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10203 return true; 10204 } 10205 return false; 10206 } 10207 10208 void SelectionDAG::updateDivergence(SDNode *N) { 10209 SmallVector<SDNode *, 16> Worklist(1, N); 10210 do { 10211 N = Worklist.pop_back_val(); 10212 bool IsDivergent = calculateDivergence(N); 10213 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10214 N->SDNodeBits.IsDivergent = IsDivergent; 10215 llvm::append_range(Worklist, N->uses()); 10216 } 10217 } while (!Worklist.empty()); 10218 } 10219 10220 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10221 DenseMap<SDNode *, unsigned> Degree; 10222 Order.reserve(AllNodes.size()); 10223 for (auto &N : allnodes()) { 10224 unsigned NOps = N.getNumOperands(); 10225 Degree[&N] = NOps; 10226 if (0 == NOps) 10227 Order.push_back(&N); 10228 } 10229 for (size_t I = 0; I != Order.size(); ++I) { 10230 SDNode *N = Order[I]; 10231 for (auto U : N->uses()) { 10232 unsigned &UnsortedOps = Degree[U]; 10233 if (0 == --UnsortedOps) 10234 Order.push_back(U); 10235 } 10236 } 10237 } 10238 10239 #ifndef NDEBUG 10240 void SelectionDAG::VerifyDAGDivergence() { 10241 std::vector<SDNode *> TopoOrder; 10242 CreateTopologicalOrder(TopoOrder); 10243 for (auto *N : TopoOrder) { 10244 assert(calculateDivergence(N) == N->isDivergent() && 10245 "Divergence bit inconsistency detected"); 10246 } 10247 } 10248 #endif 10249 10250 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10251 /// uses of other values produced by From.getNode() alone. The same value 10252 /// may appear in both the From and To list. The Deleted vector is 10253 /// handled the same way as for ReplaceAllUsesWith. 10254 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10255 const SDValue *To, 10256 unsigned Num){ 10257 // Handle the simple, trivial case efficiently. 10258 if (Num == 1) 10259 return ReplaceAllUsesOfValueWith(*From, *To); 10260 10261 transferDbgValues(*From, *To); 10262 10263 // Read up all the uses and make records of them. This helps 10264 // processing new uses that are introduced during the 10265 // replacement process. 10266 SmallVector<UseMemo, 4> Uses; 10267 for (unsigned i = 0; i != Num; ++i) { 10268 unsigned FromResNo = From[i].getResNo(); 10269 SDNode *FromNode = From[i].getNode(); 10270 for (SDNode::use_iterator UI = FromNode->use_begin(), 10271 E = FromNode->use_end(); UI != E; ++UI) { 10272 SDUse &Use = UI.getUse(); 10273 if (Use.getResNo() == FromResNo) { 10274 UseMemo Memo = { *UI, i, &Use }; 10275 Uses.push_back(Memo); 10276 } 10277 } 10278 } 10279 10280 // Sort the uses, so that all the uses from a given User are together. 10281 llvm::sort(Uses); 10282 RAUOVWUpdateListener Listener(*this, Uses); 10283 10284 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10285 UseIndex != UseIndexEnd; ) { 10286 // We know that this user uses some value of From. If it is the right 10287 // value, update it. 10288 SDNode *User = Uses[UseIndex].User; 10289 // If the node has been deleted by recursive CSE updates when updating 10290 // another node, then just skip this entry. 10291 if (User == nullptr) { 10292 ++UseIndex; 10293 continue; 10294 } 10295 10296 // This node is about to morph, remove its old self from the CSE maps. 10297 RemoveNodeFromCSEMaps(User); 10298 10299 // The Uses array is sorted, so all the uses for a given User 10300 // are next to each other in the list. 10301 // To help reduce the number of CSE recomputations, process all 10302 // the uses of this user that we can find this way. 10303 do { 10304 unsigned i = Uses[UseIndex].Index; 10305 SDUse &Use = *Uses[UseIndex].Use; 10306 ++UseIndex; 10307 10308 Use.set(To[i]); 10309 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10310 10311 // Now that we have modified User, add it back to the CSE maps. If it 10312 // already exists there, recursively merge the results together. 10313 AddModifiedNodeToCSEMaps(User); 10314 } 10315 } 10316 10317 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10318 /// based on their topological order. It returns the maximum id and a vector 10319 /// of the SDNodes* in assigned order by reference. 10320 unsigned SelectionDAG::AssignTopologicalOrder() { 10321 unsigned DAGSize = 0; 10322 10323 // SortedPos tracks the progress of the algorithm. Nodes before it are 10324 // sorted, nodes after it are unsorted. When the algorithm completes 10325 // it is at the end of the list. 10326 allnodes_iterator SortedPos = allnodes_begin(); 10327 10328 // Visit all the nodes. Move nodes with no operands to the front of 10329 // the list immediately. Annotate nodes that do have operands with their 10330 // operand count. Before we do this, the Node Id fields of the nodes 10331 // may contain arbitrary values. After, the Node Id fields for nodes 10332 // before SortedPos will contain the topological sort index, and the 10333 // Node Id fields for nodes At SortedPos and after will contain the 10334 // count of outstanding operands. 10335 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10336 checkForCycles(&N, this); 10337 unsigned Degree = N.getNumOperands(); 10338 if (Degree == 0) { 10339 // A node with no uses, add it to the result array immediately. 10340 N.setNodeId(DAGSize++); 10341 allnodes_iterator Q(&N); 10342 if (Q != SortedPos) 10343 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10344 assert(SortedPos != AllNodes.end() && "Overran node list"); 10345 ++SortedPos; 10346 } else { 10347 // Temporarily use the Node Id as scratch space for the degree count. 10348 N.setNodeId(Degree); 10349 } 10350 } 10351 10352 // Visit all the nodes. As we iterate, move nodes into sorted order, 10353 // such that by the time the end is reached all nodes will be sorted. 10354 for (SDNode &Node : allnodes()) { 10355 SDNode *N = &Node; 10356 checkForCycles(N, this); 10357 // N is in sorted position, so all its uses have one less operand 10358 // that needs to be sorted. 10359 for (SDNode *P : N->uses()) { 10360 unsigned Degree = P->getNodeId(); 10361 assert(Degree != 0 && "Invalid node degree"); 10362 --Degree; 10363 if (Degree == 0) { 10364 // All of P's operands are sorted, so P may sorted now. 10365 P->setNodeId(DAGSize++); 10366 if (P->getIterator() != SortedPos) 10367 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10368 assert(SortedPos != AllNodes.end() && "Overran node list"); 10369 ++SortedPos; 10370 } else { 10371 // Update P's outstanding operand count. 10372 P->setNodeId(Degree); 10373 } 10374 } 10375 if (Node.getIterator() == SortedPos) { 10376 #ifndef NDEBUG 10377 allnodes_iterator I(N); 10378 SDNode *S = &*++I; 10379 dbgs() << "Overran sorted position:\n"; 10380 S->dumprFull(this); dbgs() << "\n"; 10381 dbgs() << "Checking if this is due to cycles\n"; 10382 checkForCycles(this, true); 10383 #endif 10384 llvm_unreachable(nullptr); 10385 } 10386 } 10387 10388 assert(SortedPos == AllNodes.end() && 10389 "Topological sort incomplete!"); 10390 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10391 "First node in topological sort is not the entry token!"); 10392 assert(AllNodes.front().getNodeId() == 0 && 10393 "First node in topological sort has non-zero id!"); 10394 assert(AllNodes.front().getNumOperands() == 0 && 10395 "First node in topological sort has operands!"); 10396 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10397 "Last node in topologic sort has unexpected id!"); 10398 assert(AllNodes.back().use_empty() && 10399 "Last node in topologic sort has users!"); 10400 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10401 return DAGSize; 10402 } 10403 10404 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10405 /// value is produced by SD. 10406 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10407 for (SDNode *SD : DB->getSDNodes()) { 10408 if (!SD) 10409 continue; 10410 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10411 SD->setHasDebugValue(true); 10412 } 10413 DbgInfo->add(DB, isParameter); 10414 } 10415 10416 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10417 10418 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10419 SDValue NewMemOpChain) { 10420 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10421 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10422 // The new memory operation must have the same position as the old load in 10423 // terms of memory dependency. Create a TokenFactor for the old load and new 10424 // memory operation and update uses of the old load's output chain to use that 10425 // TokenFactor. 10426 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10427 return NewMemOpChain; 10428 10429 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10430 OldChain, NewMemOpChain); 10431 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10432 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10433 return TokenFactor; 10434 } 10435 10436 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10437 SDValue NewMemOp) { 10438 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10439 SDValue OldChain = SDValue(OldLoad, 1); 10440 SDValue NewMemOpChain = NewMemOp.getValue(1); 10441 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10442 } 10443 10444 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10445 Function **OutFunction) { 10446 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10447 10448 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10449 auto *Module = MF->getFunction().getParent(); 10450 auto *Function = Module->getFunction(Symbol); 10451 10452 if (OutFunction != nullptr) 10453 *OutFunction = Function; 10454 10455 if (Function != nullptr) { 10456 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10457 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10458 } 10459 10460 std::string ErrorStr; 10461 raw_string_ostream ErrorFormatter(ErrorStr); 10462 ErrorFormatter << "Undefined external symbol "; 10463 ErrorFormatter << '"' << Symbol << '"'; 10464 report_fatal_error(Twine(ErrorFormatter.str())); 10465 } 10466 10467 //===----------------------------------------------------------------------===// 10468 // SDNode Class 10469 //===----------------------------------------------------------------------===// 10470 10471 bool llvm::isNullConstant(SDValue V) { 10472 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10473 return Const != nullptr && Const->isZero(); 10474 } 10475 10476 bool llvm::isNullFPConstant(SDValue V) { 10477 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10478 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10479 } 10480 10481 bool llvm::isAllOnesConstant(SDValue V) { 10482 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10483 return Const != nullptr && Const->isAllOnes(); 10484 } 10485 10486 bool llvm::isOneConstant(SDValue V) { 10487 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10488 return Const != nullptr && Const->isOne(); 10489 } 10490 10491 bool llvm::isMinSignedConstant(SDValue V) { 10492 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10493 return Const != nullptr && Const->isMinSignedValue(); 10494 } 10495 10496 SDValue llvm::peekThroughBitcasts(SDValue V) { 10497 while (V.getOpcode() == ISD::BITCAST) 10498 V = V.getOperand(0); 10499 return V; 10500 } 10501 10502 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10503 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10504 V = V.getOperand(0); 10505 return V; 10506 } 10507 10508 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10509 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10510 V = V.getOperand(0); 10511 return V; 10512 } 10513 10514 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10515 if (V.getOpcode() != ISD::XOR) 10516 return false; 10517 V = peekThroughBitcasts(V.getOperand(1)); 10518 unsigned NumBits = V.getScalarValueSizeInBits(); 10519 ConstantSDNode *C = 10520 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10521 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10522 } 10523 10524 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10525 bool AllowTruncation) { 10526 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10527 return CN; 10528 10529 // SplatVectors can truncate their operands. Ignore that case here unless 10530 // AllowTruncation is set. 10531 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10532 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10533 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10534 EVT CVT = CN->getValueType(0); 10535 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10536 if (AllowTruncation || CVT == VecEltVT) 10537 return CN; 10538 } 10539 } 10540 10541 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10542 BitVector UndefElements; 10543 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10544 10545 // BuildVectors can truncate their operands. Ignore that case here unless 10546 // AllowTruncation is set. 10547 if (CN && (UndefElements.none() || AllowUndefs)) { 10548 EVT CVT = CN->getValueType(0); 10549 EVT NSVT = N.getValueType().getScalarType(); 10550 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10551 if (AllowTruncation || (CVT == NSVT)) 10552 return CN; 10553 } 10554 } 10555 10556 return nullptr; 10557 } 10558 10559 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10560 bool AllowUndefs, 10561 bool AllowTruncation) { 10562 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10563 return CN; 10564 10565 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10566 BitVector UndefElements; 10567 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10568 10569 // BuildVectors can truncate their operands. Ignore that case here unless 10570 // AllowTruncation is set. 10571 if (CN && (UndefElements.none() || AllowUndefs)) { 10572 EVT CVT = CN->getValueType(0); 10573 EVT NSVT = N.getValueType().getScalarType(); 10574 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10575 if (AllowTruncation || (CVT == NSVT)) 10576 return CN; 10577 } 10578 } 10579 10580 return nullptr; 10581 } 10582 10583 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10584 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10585 return CN; 10586 10587 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10588 BitVector UndefElements; 10589 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10590 if (CN && (UndefElements.none() || AllowUndefs)) 10591 return CN; 10592 } 10593 10594 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10595 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10596 return CN; 10597 10598 return nullptr; 10599 } 10600 10601 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10602 const APInt &DemandedElts, 10603 bool AllowUndefs) { 10604 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10605 return CN; 10606 10607 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10608 BitVector UndefElements; 10609 ConstantFPSDNode *CN = 10610 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10611 if (CN && (UndefElements.none() || AllowUndefs)) 10612 return CN; 10613 } 10614 10615 return nullptr; 10616 } 10617 10618 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10619 // TODO: may want to use peekThroughBitcast() here. 10620 ConstantSDNode *C = 10621 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10622 return C && C->isZero(); 10623 } 10624 10625 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10626 // TODO: may want to use peekThroughBitcast() here. 10627 unsigned BitWidth = N.getScalarValueSizeInBits(); 10628 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10629 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10630 } 10631 10632 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10633 N = peekThroughBitcasts(N); 10634 unsigned BitWidth = N.getScalarValueSizeInBits(); 10635 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10636 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10637 } 10638 10639 HandleSDNode::~HandleSDNode() { 10640 DropOperands(); 10641 } 10642 10643 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10644 const DebugLoc &DL, 10645 const GlobalValue *GA, EVT VT, 10646 int64_t o, unsigned TF) 10647 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10648 TheGlobal = GA; 10649 } 10650 10651 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10652 EVT VT, unsigned SrcAS, 10653 unsigned DestAS) 10654 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10655 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10656 10657 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10658 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10659 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10660 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10661 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10662 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10663 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10664 10665 // We check here that the size of the memory operand fits within the size of 10666 // the MMO. This is because the MMO might indicate only a possible address 10667 // range instead of specifying the affected memory addresses precisely. 10668 // TODO: Make MachineMemOperands aware of scalable vectors. 10669 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10670 "Size mismatch!"); 10671 } 10672 10673 /// Profile - Gather unique data for the node. 10674 /// 10675 void SDNode::Profile(FoldingSetNodeID &ID) const { 10676 AddNodeIDNode(ID, this); 10677 } 10678 10679 namespace { 10680 10681 struct EVTArray { 10682 std::vector<EVT> VTs; 10683 10684 EVTArray() { 10685 VTs.reserve(MVT::VALUETYPE_SIZE); 10686 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10687 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10688 } 10689 }; 10690 10691 } // end anonymous namespace 10692 10693 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10694 static ManagedStatic<EVTArray> SimpleVTArray; 10695 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10696 10697 /// getValueTypeList - Return a pointer to the specified value type. 10698 /// 10699 const EVT *SDNode::getValueTypeList(EVT VT) { 10700 if (VT.isExtended()) { 10701 sys::SmartScopedLock<true> Lock(*VTMutex); 10702 return &(*EVTs->insert(VT).first); 10703 } 10704 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10705 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10706 } 10707 10708 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10709 /// indicated value. This method ignores uses of other values defined by this 10710 /// operation. 10711 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10712 assert(Value < getNumValues() && "Bad value!"); 10713 10714 // TODO: Only iterate over uses of a given value of the node 10715 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10716 if (UI.getUse().getResNo() == Value) { 10717 if (NUses == 0) 10718 return false; 10719 --NUses; 10720 } 10721 } 10722 10723 // Found exactly the right number of uses? 10724 return NUses == 0; 10725 } 10726 10727 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10728 /// value. This method ignores uses of other values defined by this operation. 10729 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10730 assert(Value < getNumValues() && "Bad value!"); 10731 10732 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10733 if (UI.getUse().getResNo() == Value) 10734 return true; 10735 10736 return false; 10737 } 10738 10739 /// isOnlyUserOf - Return true if this node is the only use of N. 10740 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10741 bool Seen = false; 10742 for (const SDNode *User : N->uses()) { 10743 if (User == this) 10744 Seen = true; 10745 else 10746 return false; 10747 } 10748 10749 return Seen; 10750 } 10751 10752 /// Return true if the only users of N are contained in Nodes. 10753 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10754 bool Seen = false; 10755 for (const SDNode *User : N->uses()) { 10756 if (llvm::is_contained(Nodes, User)) 10757 Seen = true; 10758 else 10759 return false; 10760 } 10761 10762 return Seen; 10763 } 10764 10765 /// isOperand - Return true if this node is an operand of N. 10766 bool SDValue::isOperandOf(const SDNode *N) const { 10767 return is_contained(N->op_values(), *this); 10768 } 10769 10770 bool SDNode::isOperandOf(const SDNode *N) const { 10771 return any_of(N->op_values(), 10772 [this](SDValue Op) { return this == Op.getNode(); }); 10773 } 10774 10775 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10776 /// be a chain) reaches the specified operand without crossing any 10777 /// side-effecting instructions on any chain path. In practice, this looks 10778 /// through token factors and non-volatile loads. In order to remain efficient, 10779 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10780 /// 10781 /// Note that we only need to examine chains when we're searching for 10782 /// side-effects; SelectionDAG requires that all side-effects are represented 10783 /// by chains, even if another operand would force a specific ordering. This 10784 /// constraint is necessary to allow transformations like splitting loads. 10785 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10786 unsigned Depth) const { 10787 if (*this == Dest) return true; 10788 10789 // Don't search too deeply, we just want to be able to see through 10790 // TokenFactor's etc. 10791 if (Depth == 0) return false; 10792 10793 // If this is a token factor, all inputs to the TF happen in parallel. 10794 if (getOpcode() == ISD::TokenFactor) { 10795 // First, try a shallow search. 10796 if (is_contained((*this)->ops(), Dest)) { 10797 // We found the chain we want as an operand of this TokenFactor. 10798 // Essentially, we reach the chain without side-effects if we could 10799 // serialize the TokenFactor into a simple chain of operations with 10800 // Dest as the last operation. This is automatically true if the 10801 // chain has one use: there are no other ordering constraints. 10802 // If the chain has more than one use, we give up: some other 10803 // use of Dest might force a side-effect between Dest and the current 10804 // node. 10805 if (Dest.hasOneUse()) 10806 return true; 10807 } 10808 // Next, try a deep search: check whether every operand of the TokenFactor 10809 // reaches Dest. 10810 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10811 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10812 }); 10813 } 10814 10815 // Loads don't have side effects, look through them. 10816 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10817 if (Ld->isUnordered()) 10818 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10819 } 10820 return false; 10821 } 10822 10823 bool SDNode::hasPredecessor(const SDNode *N) const { 10824 SmallPtrSet<const SDNode *, 32> Visited; 10825 SmallVector<const SDNode *, 16> Worklist; 10826 Worklist.push_back(this); 10827 return hasPredecessorHelper(N, Visited, Worklist); 10828 } 10829 10830 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10831 this->Flags.intersectWith(Flags); 10832 } 10833 10834 SDValue 10835 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10836 ArrayRef<ISD::NodeType> CandidateBinOps, 10837 bool AllowPartials) { 10838 // The pattern must end in an extract from index 0. 10839 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10840 !isNullConstant(Extract->getOperand(1))) 10841 return SDValue(); 10842 10843 // Match against one of the candidate binary ops. 10844 SDValue Op = Extract->getOperand(0); 10845 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10846 return Op.getOpcode() == unsigned(BinOp); 10847 })) 10848 return SDValue(); 10849 10850 // Floating-point reductions may require relaxed constraints on the final step 10851 // of the reduction because they may reorder intermediate operations. 10852 unsigned CandidateBinOp = Op.getOpcode(); 10853 if (Op.getValueType().isFloatingPoint()) { 10854 SDNodeFlags Flags = Op->getFlags(); 10855 switch (CandidateBinOp) { 10856 case ISD::FADD: 10857 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10858 return SDValue(); 10859 break; 10860 default: 10861 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10862 } 10863 } 10864 10865 // Matching failed - attempt to see if we did enough stages that a partial 10866 // reduction from a subvector is possible. 10867 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10868 if (!AllowPartials || !Op) 10869 return SDValue(); 10870 EVT OpVT = Op.getValueType(); 10871 EVT OpSVT = OpVT.getScalarType(); 10872 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10873 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10874 return SDValue(); 10875 BinOp = (ISD::NodeType)CandidateBinOp; 10876 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10877 getVectorIdxConstant(0, SDLoc(Op))); 10878 }; 10879 10880 // At each stage, we're looking for something that looks like: 10881 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10882 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10883 // i32 undef, i32 undef, i32 undef, i32 undef> 10884 // %a = binop <8 x i32> %op, %s 10885 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10886 // we expect something like: 10887 // <4,5,6,7,u,u,u,u> 10888 // <2,3,u,u,u,u,u,u> 10889 // <1,u,u,u,u,u,u,u> 10890 // While a partial reduction match would be: 10891 // <2,3,u,u,u,u,u,u> 10892 // <1,u,u,u,u,u,u,u> 10893 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10894 SDValue PrevOp; 10895 for (unsigned i = 0; i < Stages; ++i) { 10896 unsigned MaskEnd = (1 << i); 10897 10898 if (Op.getOpcode() != CandidateBinOp) 10899 return PartialReduction(PrevOp, MaskEnd); 10900 10901 SDValue Op0 = Op.getOperand(0); 10902 SDValue Op1 = Op.getOperand(1); 10903 10904 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10905 if (Shuffle) { 10906 Op = Op1; 10907 } else { 10908 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10909 Op = Op0; 10910 } 10911 10912 // The first operand of the shuffle should be the same as the other operand 10913 // of the binop. 10914 if (!Shuffle || Shuffle->getOperand(0) != Op) 10915 return PartialReduction(PrevOp, MaskEnd); 10916 10917 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10918 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10919 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10920 return PartialReduction(PrevOp, MaskEnd); 10921 10922 PrevOp = Op; 10923 } 10924 10925 // Handle subvector reductions, which tend to appear after the shuffle 10926 // reduction stages. 10927 while (Op.getOpcode() == CandidateBinOp) { 10928 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10929 SDValue Op0 = Op.getOperand(0); 10930 SDValue Op1 = Op.getOperand(1); 10931 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10932 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10933 Op0.getOperand(0) != Op1.getOperand(0)) 10934 break; 10935 SDValue Src = Op0.getOperand(0); 10936 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10937 if (NumSrcElts != (2 * NumElts)) 10938 break; 10939 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10940 Op1.getConstantOperandAPInt(1) == NumElts) && 10941 !(Op1.getConstantOperandAPInt(1) == 0 && 10942 Op0.getConstantOperandAPInt(1) == NumElts)) 10943 break; 10944 Op = Src; 10945 } 10946 10947 BinOp = (ISD::NodeType)CandidateBinOp; 10948 return Op; 10949 } 10950 10951 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10952 assert(N->getNumValues() == 1 && 10953 "Can't unroll a vector with multiple results!"); 10954 10955 EVT VT = N->getValueType(0); 10956 unsigned NE = VT.getVectorNumElements(); 10957 EVT EltVT = VT.getVectorElementType(); 10958 SDLoc dl(N); 10959 10960 SmallVector<SDValue, 8> Scalars; 10961 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10962 10963 // If ResNE is 0, fully unroll the vector op. 10964 if (ResNE == 0) 10965 ResNE = NE; 10966 else if (NE > ResNE) 10967 NE = ResNE; 10968 10969 unsigned i; 10970 for (i= 0; i != NE; ++i) { 10971 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10972 SDValue Operand = N->getOperand(j); 10973 EVT OperandVT = Operand.getValueType(); 10974 if (OperandVT.isVector()) { 10975 // A vector operand; extract a single element. 10976 EVT OperandEltVT = OperandVT.getVectorElementType(); 10977 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10978 Operand, getVectorIdxConstant(i, dl)); 10979 } else { 10980 // A scalar operand; just use it as is. 10981 Operands[j] = Operand; 10982 } 10983 } 10984 10985 switch (N->getOpcode()) { 10986 default: { 10987 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10988 N->getFlags())); 10989 break; 10990 } 10991 case ISD::VSELECT: 10992 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10993 break; 10994 case ISD::SHL: 10995 case ISD::SRA: 10996 case ISD::SRL: 10997 case ISD::ROTL: 10998 case ISD::ROTR: 10999 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11000 getShiftAmountOperand(Operands[0].getValueType(), 11001 Operands[1]))); 11002 break; 11003 case ISD::SIGN_EXTEND_INREG: { 11004 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11005 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11006 Operands[0], 11007 getValueType(ExtVT))); 11008 } 11009 } 11010 } 11011 11012 for (; i < ResNE; ++i) 11013 Scalars.push_back(getUNDEF(EltVT)); 11014 11015 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11016 return getBuildVector(VecVT, dl, Scalars); 11017 } 11018 11019 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11020 SDNode *N, unsigned ResNE) { 11021 unsigned Opcode = N->getOpcode(); 11022 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11023 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11024 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11025 "Expected an overflow opcode"); 11026 11027 EVT ResVT = N->getValueType(0); 11028 EVT OvVT = N->getValueType(1); 11029 EVT ResEltVT = ResVT.getVectorElementType(); 11030 EVT OvEltVT = OvVT.getVectorElementType(); 11031 SDLoc dl(N); 11032 11033 // If ResNE is 0, fully unroll the vector op. 11034 unsigned NE = ResVT.getVectorNumElements(); 11035 if (ResNE == 0) 11036 ResNE = NE; 11037 else if (NE > ResNE) 11038 NE = ResNE; 11039 11040 SmallVector<SDValue, 8> LHSScalars; 11041 SmallVector<SDValue, 8> RHSScalars; 11042 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11043 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11044 11045 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11046 SDVTList VTs = getVTList(ResEltVT, SVT); 11047 SmallVector<SDValue, 8> ResScalars; 11048 SmallVector<SDValue, 8> OvScalars; 11049 for (unsigned i = 0; i < NE; ++i) { 11050 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11051 SDValue Ov = 11052 getSelect(dl, OvEltVT, Res.getValue(1), 11053 getBoolConstant(true, dl, OvEltVT, ResVT), 11054 getConstant(0, dl, OvEltVT)); 11055 11056 ResScalars.push_back(Res); 11057 OvScalars.push_back(Ov); 11058 } 11059 11060 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11061 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11062 11063 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11064 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11065 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11066 getBuildVector(NewOvVT, dl, OvScalars)); 11067 } 11068 11069 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11070 LoadSDNode *Base, 11071 unsigned Bytes, 11072 int Dist) const { 11073 if (LD->isVolatile() || Base->isVolatile()) 11074 return false; 11075 // TODO: probably too restrictive for atomics, revisit 11076 if (!LD->isSimple()) 11077 return false; 11078 if (LD->isIndexed() || Base->isIndexed()) 11079 return false; 11080 if (LD->getChain() != Base->getChain()) 11081 return false; 11082 EVT VT = LD->getValueType(0); 11083 if (VT.getSizeInBits() / 8 != Bytes) 11084 return false; 11085 11086 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11087 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11088 11089 int64_t Offset = 0; 11090 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11091 return (Dist * Bytes == Offset); 11092 return false; 11093 } 11094 11095 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11096 /// if it cannot be inferred. 11097 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11098 // If this is a GlobalAddress + cst, return the alignment. 11099 const GlobalValue *GV = nullptr; 11100 int64_t GVOffset = 0; 11101 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11102 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11103 KnownBits Known(PtrWidth); 11104 llvm::computeKnownBits(GV, Known, getDataLayout()); 11105 unsigned AlignBits = Known.countMinTrailingZeros(); 11106 if (AlignBits) 11107 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11108 } 11109 11110 // If this is a direct reference to a stack slot, use information about the 11111 // stack slot's alignment. 11112 int FrameIdx = INT_MIN; 11113 int64_t FrameOffset = 0; 11114 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11115 FrameIdx = FI->getIndex(); 11116 } else if (isBaseWithConstantOffset(Ptr) && 11117 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11118 // Handle FI+Cst 11119 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11120 FrameOffset = Ptr.getConstantOperandVal(1); 11121 } 11122 11123 if (FrameIdx != INT_MIN) { 11124 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11125 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11126 } 11127 11128 return None; 11129 } 11130 11131 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11132 /// which is split (or expanded) into two not necessarily identical pieces. 11133 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11134 // Currently all types are split in half. 11135 EVT LoVT, HiVT; 11136 if (!VT.isVector()) 11137 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11138 else 11139 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11140 11141 return std::make_pair(LoVT, HiVT); 11142 } 11143 11144 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11145 /// type, dependent on an enveloping VT that has been split into two identical 11146 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11147 std::pair<EVT, EVT> 11148 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11149 bool *HiIsEmpty) const { 11150 EVT EltTp = VT.getVectorElementType(); 11151 // Examples: 11152 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11153 // custom VL=9 with enveloping VL=8/8 yields 8/1 11154 // custom VL=10 with enveloping VL=8/8 yields 8/2 11155 // etc. 11156 ElementCount VTNumElts = VT.getVectorElementCount(); 11157 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11158 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11159 "Mixing fixed width and scalable vectors when enveloping a type"); 11160 EVT LoVT, HiVT; 11161 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11162 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11163 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11164 *HiIsEmpty = false; 11165 } else { 11166 // Flag that hi type has zero storage size, but return split envelop type 11167 // (this would be easier if vector types with zero elements were allowed). 11168 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11169 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11170 *HiIsEmpty = true; 11171 } 11172 return std::make_pair(LoVT, HiVT); 11173 } 11174 11175 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11176 /// low/high part. 11177 std::pair<SDValue, SDValue> 11178 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11179 const EVT &HiVT) { 11180 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11181 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11182 "Splitting vector with an invalid mixture of fixed and scalable " 11183 "vector types"); 11184 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11185 N.getValueType().getVectorMinNumElements() && 11186 "More vector elements requested than available!"); 11187 SDValue Lo, Hi; 11188 Lo = 11189 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11190 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11191 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11192 // IDX with the runtime scaling factor of the result vector type. For 11193 // fixed-width result vectors, that runtime scaling factor is 1. 11194 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11195 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11196 return std::make_pair(Lo, Hi); 11197 } 11198 11199 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11200 const SDLoc &DL) { 11201 // Split the vector length parameter. 11202 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11203 EVT VT = N.getValueType(); 11204 assert(VecVT.getVectorElementCount().isKnownEven() && 11205 "Expecting the mask to be an evenly-sized vector"); 11206 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11207 SDValue HalfNumElts = 11208 VecVT.isFixedLengthVector() 11209 ? getConstant(HalfMinNumElts, DL, VT) 11210 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11211 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11212 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11213 return std::make_pair(Lo, Hi); 11214 } 11215 11216 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11217 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11218 EVT VT = N.getValueType(); 11219 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11220 NextPowerOf2(VT.getVectorNumElements())); 11221 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11222 getVectorIdxConstant(0, DL)); 11223 } 11224 11225 void SelectionDAG::ExtractVectorElements(SDValue Op, 11226 SmallVectorImpl<SDValue> &Args, 11227 unsigned Start, unsigned Count, 11228 EVT EltVT) { 11229 EVT VT = Op.getValueType(); 11230 if (Count == 0) 11231 Count = VT.getVectorNumElements(); 11232 if (EltVT == EVT()) 11233 EltVT = VT.getVectorElementType(); 11234 SDLoc SL(Op); 11235 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11236 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11237 getVectorIdxConstant(i, SL))); 11238 } 11239 } 11240 11241 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11242 unsigned GlobalAddressSDNode::getAddressSpace() const { 11243 return getGlobal()->getType()->getAddressSpace(); 11244 } 11245 11246 Type *ConstantPoolSDNode::getType() const { 11247 if (isMachineConstantPoolEntry()) 11248 return Val.MachineCPVal->getType(); 11249 return Val.ConstVal->getType(); 11250 } 11251 11252 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11253 unsigned &SplatBitSize, 11254 bool &HasAnyUndefs, 11255 unsigned MinSplatBits, 11256 bool IsBigEndian) const { 11257 EVT VT = getValueType(0); 11258 assert(VT.isVector() && "Expected a vector type"); 11259 unsigned VecWidth = VT.getSizeInBits(); 11260 if (MinSplatBits > VecWidth) 11261 return false; 11262 11263 // FIXME: The widths are based on this node's type, but build vectors can 11264 // truncate their operands. 11265 SplatValue = APInt(VecWidth, 0); 11266 SplatUndef = APInt(VecWidth, 0); 11267 11268 // Get the bits. Bits with undefined values (when the corresponding element 11269 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11270 // in SplatValue. If any of the values are not constant, give up and return 11271 // false. 11272 unsigned int NumOps = getNumOperands(); 11273 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11274 unsigned EltWidth = VT.getScalarSizeInBits(); 11275 11276 for (unsigned j = 0; j < NumOps; ++j) { 11277 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11278 SDValue OpVal = getOperand(i); 11279 unsigned BitPos = j * EltWidth; 11280 11281 if (OpVal.isUndef()) 11282 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11283 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11284 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11285 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11286 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11287 else 11288 return false; 11289 } 11290 11291 // The build_vector is all constants or undefs. Find the smallest element 11292 // size that splats the vector. 11293 HasAnyUndefs = (SplatUndef != 0); 11294 11295 // FIXME: This does not work for vectors with elements less than 8 bits. 11296 while (VecWidth > 8) { 11297 unsigned HalfSize = VecWidth / 2; 11298 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11299 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11300 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11301 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11302 11303 // If the two halves do not match (ignoring undef bits), stop here. 11304 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11305 MinSplatBits > HalfSize) 11306 break; 11307 11308 SplatValue = HighValue | LowValue; 11309 SplatUndef = HighUndef & LowUndef; 11310 11311 VecWidth = HalfSize; 11312 } 11313 11314 SplatBitSize = VecWidth; 11315 return true; 11316 } 11317 11318 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11319 BitVector *UndefElements) const { 11320 unsigned NumOps = getNumOperands(); 11321 if (UndefElements) { 11322 UndefElements->clear(); 11323 UndefElements->resize(NumOps); 11324 } 11325 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11326 if (!DemandedElts) 11327 return SDValue(); 11328 SDValue Splatted; 11329 for (unsigned i = 0; i != NumOps; ++i) { 11330 if (!DemandedElts[i]) 11331 continue; 11332 SDValue Op = getOperand(i); 11333 if (Op.isUndef()) { 11334 if (UndefElements) 11335 (*UndefElements)[i] = true; 11336 } else if (!Splatted) { 11337 Splatted = Op; 11338 } else if (Splatted != Op) { 11339 return SDValue(); 11340 } 11341 } 11342 11343 if (!Splatted) { 11344 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11345 assert(getOperand(FirstDemandedIdx).isUndef() && 11346 "Can only have a splat without a constant for all undefs."); 11347 return getOperand(FirstDemandedIdx); 11348 } 11349 11350 return Splatted; 11351 } 11352 11353 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11354 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11355 return getSplatValue(DemandedElts, UndefElements); 11356 } 11357 11358 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11359 SmallVectorImpl<SDValue> &Sequence, 11360 BitVector *UndefElements) const { 11361 unsigned NumOps = getNumOperands(); 11362 Sequence.clear(); 11363 if (UndefElements) { 11364 UndefElements->clear(); 11365 UndefElements->resize(NumOps); 11366 } 11367 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11368 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11369 return false; 11370 11371 // Set the undefs even if we don't find a sequence (like getSplatValue). 11372 if (UndefElements) 11373 for (unsigned I = 0; I != NumOps; ++I) 11374 if (DemandedElts[I] && getOperand(I).isUndef()) 11375 (*UndefElements)[I] = true; 11376 11377 // Iteratively widen the sequence length looking for repetitions. 11378 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11379 Sequence.append(SeqLen, SDValue()); 11380 for (unsigned I = 0; I != NumOps; ++I) { 11381 if (!DemandedElts[I]) 11382 continue; 11383 SDValue &SeqOp = Sequence[I % SeqLen]; 11384 SDValue Op = getOperand(I); 11385 if (Op.isUndef()) { 11386 if (!SeqOp) 11387 SeqOp = Op; 11388 continue; 11389 } 11390 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11391 Sequence.clear(); 11392 break; 11393 } 11394 SeqOp = Op; 11395 } 11396 if (!Sequence.empty()) 11397 return true; 11398 } 11399 11400 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11401 return false; 11402 } 11403 11404 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11405 BitVector *UndefElements) const { 11406 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11407 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11408 } 11409 11410 ConstantSDNode * 11411 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11412 BitVector *UndefElements) const { 11413 return dyn_cast_or_null<ConstantSDNode>( 11414 getSplatValue(DemandedElts, UndefElements)); 11415 } 11416 11417 ConstantSDNode * 11418 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11419 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11420 } 11421 11422 ConstantFPSDNode * 11423 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11424 BitVector *UndefElements) const { 11425 return dyn_cast_or_null<ConstantFPSDNode>( 11426 getSplatValue(DemandedElts, UndefElements)); 11427 } 11428 11429 ConstantFPSDNode * 11430 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11431 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11432 } 11433 11434 int32_t 11435 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11436 uint32_t BitWidth) const { 11437 if (ConstantFPSDNode *CN = 11438 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11439 bool IsExact; 11440 APSInt IntVal(BitWidth); 11441 const APFloat &APF = CN->getValueAPF(); 11442 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11443 APFloat::opOK || 11444 !IsExact) 11445 return -1; 11446 11447 return IntVal.exactLogBase2(); 11448 } 11449 return -1; 11450 } 11451 11452 bool BuildVectorSDNode::getConstantRawBits( 11453 bool IsLittleEndian, unsigned DstEltSizeInBits, 11454 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11455 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11456 if (!isConstant()) 11457 return false; 11458 11459 unsigned NumSrcOps = getNumOperands(); 11460 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11461 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11462 "Invalid bitcast scale"); 11463 11464 // Extract raw src bits. 11465 SmallVector<APInt> SrcBitElements(NumSrcOps, 11466 APInt::getNullValue(SrcEltSizeInBits)); 11467 BitVector SrcUndeElements(NumSrcOps, false); 11468 11469 for (unsigned I = 0; I != NumSrcOps; ++I) { 11470 SDValue Op = getOperand(I); 11471 if (Op.isUndef()) { 11472 SrcUndeElements.set(I); 11473 continue; 11474 } 11475 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11476 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11477 assert((CInt || CFP) && "Unknown constant"); 11478 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11479 : CFP->getValueAPF().bitcastToAPInt(); 11480 } 11481 11482 // Recast to dst width. 11483 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11484 SrcBitElements, UndefElements, SrcUndeElements); 11485 return true; 11486 } 11487 11488 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11489 unsigned DstEltSizeInBits, 11490 SmallVectorImpl<APInt> &DstBitElements, 11491 ArrayRef<APInt> SrcBitElements, 11492 BitVector &DstUndefElements, 11493 const BitVector &SrcUndefElements) { 11494 unsigned NumSrcOps = SrcBitElements.size(); 11495 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11496 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11497 "Invalid bitcast scale"); 11498 assert(NumSrcOps == SrcUndefElements.size() && 11499 "Vector size mismatch"); 11500 11501 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11502 DstUndefElements.clear(); 11503 DstUndefElements.resize(NumDstOps, false); 11504 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11505 11506 // Concatenate src elements constant bits together into dst element. 11507 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11508 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11509 for (unsigned I = 0; I != NumDstOps; ++I) { 11510 DstUndefElements.set(I); 11511 APInt &DstBits = DstBitElements[I]; 11512 for (unsigned J = 0; J != Scale; ++J) { 11513 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11514 if (SrcUndefElements[Idx]) 11515 continue; 11516 DstUndefElements.reset(I); 11517 const APInt &SrcBits = SrcBitElements[Idx]; 11518 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11519 "Illegal constant bitwidths"); 11520 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11521 } 11522 } 11523 return; 11524 } 11525 11526 // Split src element constant bits into dst elements. 11527 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11528 for (unsigned I = 0; I != NumSrcOps; ++I) { 11529 if (SrcUndefElements[I]) { 11530 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11531 continue; 11532 } 11533 const APInt &SrcBits = SrcBitElements[I]; 11534 for (unsigned J = 0; J != Scale; ++J) { 11535 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11536 APInt &DstBits = DstBitElements[Idx]; 11537 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11538 } 11539 } 11540 } 11541 11542 bool BuildVectorSDNode::isConstant() const { 11543 for (const SDValue &Op : op_values()) { 11544 unsigned Opc = Op.getOpcode(); 11545 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11546 return false; 11547 } 11548 return true; 11549 } 11550 11551 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11552 // Find the first non-undef value in the shuffle mask. 11553 unsigned i, e; 11554 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11555 /* search */; 11556 11557 // If all elements are undefined, this shuffle can be considered a splat 11558 // (although it should eventually get simplified away completely). 11559 if (i == e) 11560 return true; 11561 11562 // Make sure all remaining elements are either undef or the same as the first 11563 // non-undef value. 11564 for (int Idx = Mask[i]; i != e; ++i) 11565 if (Mask[i] >= 0 && Mask[i] != Idx) 11566 return false; 11567 return true; 11568 } 11569 11570 // Returns the SDNode if it is a constant integer BuildVector 11571 // or constant integer. 11572 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11573 if (isa<ConstantSDNode>(N)) 11574 return N.getNode(); 11575 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11576 return N.getNode(); 11577 // Treat a GlobalAddress supporting constant offset folding as a 11578 // constant integer. 11579 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11580 if (GA->getOpcode() == ISD::GlobalAddress && 11581 TLI->isOffsetFoldingLegal(GA)) 11582 return GA; 11583 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11584 isa<ConstantSDNode>(N.getOperand(0))) 11585 return N.getNode(); 11586 return nullptr; 11587 } 11588 11589 // Returns the SDNode if it is a constant float BuildVector 11590 // or constant float. 11591 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11592 if (isa<ConstantFPSDNode>(N)) 11593 return N.getNode(); 11594 11595 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11596 return N.getNode(); 11597 11598 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11599 isa<ConstantFPSDNode>(N.getOperand(0))) 11600 return N.getNode(); 11601 11602 return nullptr; 11603 } 11604 11605 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11606 assert(!Node->OperandList && "Node already has operands"); 11607 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11608 "too many operands to fit into SDNode"); 11609 SDUse *Ops = OperandRecycler.allocate( 11610 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11611 11612 bool IsDivergent = false; 11613 for (unsigned I = 0; I != Vals.size(); ++I) { 11614 Ops[I].setUser(Node); 11615 Ops[I].setInitial(Vals[I]); 11616 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11617 IsDivergent |= Ops[I].getNode()->isDivergent(); 11618 } 11619 Node->NumOperands = Vals.size(); 11620 Node->OperandList = Ops; 11621 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11622 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11623 Node->SDNodeBits.IsDivergent = IsDivergent; 11624 } 11625 checkForCycles(Node); 11626 } 11627 11628 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11629 SmallVectorImpl<SDValue> &Vals) { 11630 size_t Limit = SDNode::getMaxNumOperands(); 11631 while (Vals.size() > Limit) { 11632 unsigned SliceIdx = Vals.size() - Limit; 11633 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11634 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11635 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11636 Vals.emplace_back(NewTF); 11637 } 11638 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11639 } 11640 11641 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11642 EVT VT, SDNodeFlags Flags) { 11643 switch (Opcode) { 11644 default: 11645 return SDValue(); 11646 case ISD::ADD: 11647 case ISD::OR: 11648 case ISD::XOR: 11649 case ISD::UMAX: 11650 return getConstant(0, DL, VT); 11651 case ISD::MUL: 11652 return getConstant(1, DL, VT); 11653 case ISD::AND: 11654 case ISD::UMIN: 11655 return getAllOnesConstant(DL, VT); 11656 case ISD::SMAX: 11657 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11658 case ISD::SMIN: 11659 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11660 case ISD::FADD: 11661 return getConstantFP(-0.0, DL, VT); 11662 case ISD::FMUL: 11663 return getConstantFP(1.0, DL, VT); 11664 case ISD::FMINNUM: 11665 case ISD::FMAXNUM: { 11666 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11667 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11668 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11669 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11670 APFloat::getLargest(Semantics); 11671 if (Opcode == ISD::FMAXNUM) 11672 NeutralAF.changeSign(); 11673 11674 return getConstantFP(NeutralAF, DL, VT); 11675 } 11676 } 11677 } 11678 11679 #ifndef NDEBUG 11680 static void checkForCyclesHelper(const SDNode *N, 11681 SmallPtrSetImpl<const SDNode*> &Visited, 11682 SmallPtrSetImpl<const SDNode*> &Checked, 11683 const llvm::SelectionDAG *DAG) { 11684 // If this node has already been checked, don't check it again. 11685 if (Checked.count(N)) 11686 return; 11687 11688 // If a node has already been visited on this depth-first walk, reject it as 11689 // a cycle. 11690 if (!Visited.insert(N).second) { 11691 errs() << "Detected cycle in SelectionDAG\n"; 11692 dbgs() << "Offending node:\n"; 11693 N->dumprFull(DAG); dbgs() << "\n"; 11694 abort(); 11695 } 11696 11697 for (const SDValue &Op : N->op_values()) 11698 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11699 11700 Checked.insert(N); 11701 Visited.erase(N); 11702 } 11703 #endif 11704 11705 void llvm::checkForCycles(const llvm::SDNode *N, 11706 const llvm::SelectionDAG *DAG, 11707 bool force) { 11708 #ifndef NDEBUG 11709 bool check = force; 11710 #ifdef EXPENSIVE_CHECKS 11711 check = true; 11712 #endif // EXPENSIVE_CHECKS 11713 if (check) { 11714 assert(N && "Checking nonexistent SDNode"); 11715 SmallPtrSet<const SDNode*, 32> visited; 11716 SmallPtrSet<const SDNode*, 32> checked; 11717 checkForCyclesHelper(N, visited, checked, DAG); 11718 } 11719 #endif // !NDEBUG 11720 } 11721 11722 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11723 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11724 } 11725