1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Mutex.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cmath> 52 #include <utility> 53 54 using namespace llvm; 55 56 /// makeVTList - Return an instance of the SDVTList struct initialized with the 57 /// specified members. 58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 59 SDVTList Res = {VTs, NumVTs}; 60 return Res; 61 } 62 63 // Default null implementations of the callbacks. 64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 66 67 //===----------------------------------------------------------------------===// 68 // ConstantFPSDNode Class 69 //===----------------------------------------------------------------------===// 70 71 /// isExactlyValue - We don't rely on operator== working on double values, as 72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 73 /// As such, this method can be used to do an exact bit-for-bit comparison of 74 /// two floating point values. 75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 76 return getValueAPF().bitwiseIsEqual(V); 77 } 78 79 bool ConstantFPSDNode::isValueValidForType(EVT VT, 80 const APFloat& Val) { 81 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 82 83 // convert modifies in place, so make a copy. 84 APFloat Val2 = APFloat(Val); 85 bool losesInfo; 86 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 87 APFloat::rmNearestTiesToEven, 88 &losesInfo); 89 return !losesInfo; 90 } 91 92 //===----------------------------------------------------------------------===// 93 // ISD Namespace 94 //===----------------------------------------------------------------------===// 95 96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 97 auto *BV = dyn_cast<BuildVectorSDNode>(N); 98 if (!BV) 99 return false; 100 101 APInt SplatUndef; 102 unsigned SplatBitSize; 103 bool HasUndefs; 104 EVT EltVT = N->getValueType(0).getVectorElementType(); 105 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) && 106 EltVT.getSizeInBits() >= SplatBitSize; 107 } 108 109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 110 // specializations of the more general isConstantSplatVector()? 111 112 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 113 // Look through a bit convert. 114 while (N->getOpcode() == ISD::BITCAST) 115 N = N->getOperand(0).getNode(); 116 117 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 118 119 unsigned i = 0, e = N->getNumOperands(); 120 121 // Skip over all of the undef values. 122 while (i != e && N->getOperand(i).isUndef()) 123 ++i; 124 125 // Do not accept an all-undef vector. 126 if (i == e) return false; 127 128 // Do not accept build_vectors that aren't all constants or which have non-~0 129 // elements. We have to be a bit careful here, as the type of the constant 130 // may not be the same as the type of the vector elements due to type 131 // legalization (the elements are promoted to a legal type for the target and 132 // a vector of a type may be legal when the base element type is not). 133 // We only want to check enough bits to cover the vector elements, because 134 // we care if the resultant vector is all ones, not whether the individual 135 // constants are. 136 SDValue NotZero = N->getOperand(i); 137 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 138 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 139 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 140 return false; 141 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 142 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 143 return false; 144 } else 145 return false; 146 147 // Okay, we have at least one ~0 value, check to see if the rest match or are 148 // undefs. Even with the above element type twiddling, this should be OK, as 149 // the same type legalization should have applied to all the elements. 150 for (++i; i != e; ++i) 151 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 152 return false; 153 return true; 154 } 155 156 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 bool IsAllUndef = true; 164 for (const SDValue &Op : N->op_values()) { 165 if (Op.isUndef()) 166 continue; 167 IsAllUndef = false; 168 // Do not accept build_vectors that aren't all constants or which have non-0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target 172 // and a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all zeros, not whether the individual 175 // constants are. 176 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 177 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 178 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 179 return false; 180 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 181 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 182 return false; 183 } else 184 return false; 185 } 186 187 // Do not accept an all-undef vector. 188 if (IsAllUndef) 189 return false; 190 return true; 191 } 192 193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 194 if (N->getOpcode() != ISD::BUILD_VECTOR) 195 return false; 196 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 if (!isa<ConstantSDNode>(Op)) 201 return false; 202 } 203 return true; 204 } 205 206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 207 if (N->getOpcode() != ISD::BUILD_VECTOR) 208 return false; 209 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 if (!isa<ConstantFPSDNode>(Op)) 214 return false; 215 } 216 return true; 217 } 218 219 bool ISD::allOperandsUndef(const SDNode *N) { 220 // Return false if the node has no operands. 221 // This is "logically inconsistent" with the definition of "all" but 222 // is probably the desired behavior. 223 if (N->getNumOperands() == 0) 224 return false; 225 226 for (const SDValue &Op : N->op_values()) 227 if (!Op.isUndef()) 228 return false; 229 230 return true; 231 } 232 233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 234 switch (ExtType) { 235 case ISD::EXTLOAD: 236 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 237 case ISD::SEXTLOAD: 238 return ISD::SIGN_EXTEND; 239 case ISD::ZEXTLOAD: 240 return ISD::ZERO_EXTEND; 241 default: 242 break; 243 } 244 245 llvm_unreachable("Invalid LoadExtType"); 246 } 247 248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 249 // To perform this operation, we just need to swap the L and G bits of the 250 // operation. 251 unsigned OldL = (Operation >> 2) & 1; 252 unsigned OldG = (Operation >> 1) & 1; 253 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 254 (OldL << 1) | // New G bit 255 (OldG << 2)); // New L bit. 256 } 257 258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 259 unsigned Operation = Op; 260 if (isInteger) 261 Operation ^= 7; // Flip L, G, E bits, but not U. 262 else 263 Operation ^= 15; // Flip all of the condition bits. 264 265 if (Operation > ISD::SETTRUE2) 266 Operation &= ~8; // Don't let N and U bits get set. 267 268 return ISD::CondCode(Operation); 269 } 270 271 272 /// For an integer comparison, return 1 if the comparison is a signed operation 273 /// and 2 if the result is an unsigned comparison. Return zero if the operation 274 /// does not depend on the sign of the input (setne and seteq). 275 static int isSignedOp(ISD::CondCode Opcode) { 276 switch (Opcode) { 277 default: llvm_unreachable("Illegal integer setcc operation!"); 278 case ISD::SETEQ: 279 case ISD::SETNE: return 0; 280 case ISD::SETLT: 281 case ISD::SETLE: 282 case ISD::SETGT: 283 case ISD::SETGE: return 1; 284 case ISD::SETULT: 285 case ISD::SETULE: 286 case ISD::SETUGT: 287 case ISD::SETUGE: return 2; 288 } 289 } 290 291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 292 bool isInteger) { 293 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 294 // Cannot fold a signed integer setcc with an unsigned integer setcc. 295 return ISD::SETCC_INVALID; 296 297 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 298 299 // If the N and U bits get set then the resultant comparison DOES suddenly 300 // care about orderedness, and is true when ordered. 301 if (Op > ISD::SETTRUE2) 302 Op &= ~16; // Clear the U bit if the N bit is set. 303 304 // Canonicalize illegal integer setcc's. 305 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 306 Op = ISD::SETNE; 307 308 return ISD::CondCode(Op); 309 } 310 311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 312 bool isInteger) { 313 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 314 // Cannot fold a signed setcc with an unsigned setcc. 315 return ISD::SETCC_INVALID; 316 317 // Combine all of the condition bits. 318 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 319 320 // Canonicalize illegal integer setcc's. 321 if (isInteger) { 322 switch (Result) { 323 default: break; 324 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 325 case ISD::SETOEQ: // SETEQ & SETU[LG]E 326 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 327 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 328 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 329 } 330 } 331 332 return Result; 333 } 334 335 //===----------------------------------------------------------------------===// 336 // SDNode Profile Support 337 //===----------------------------------------------------------------------===// 338 339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 340 /// 341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 342 ID.AddInteger(OpC); 343 } 344 345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 346 /// solely with their pointer. 347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 348 ID.AddPointer(VTList.VTs); 349 } 350 351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 352 /// 353 static void AddNodeIDOperands(FoldingSetNodeID &ID, 354 ArrayRef<SDValue> Ops) { 355 for (auto& Op : Ops) { 356 ID.AddPointer(Op.getNode()); 357 ID.AddInteger(Op.getResNo()); 358 } 359 } 360 361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 362 /// 363 static void AddNodeIDOperands(FoldingSetNodeID &ID, 364 ArrayRef<SDUse> Ops) { 365 for (auto& Op : Ops) { 366 ID.AddPointer(Op.getNode()); 367 ID.AddInteger(Op.getResNo()); 368 } 369 } 370 371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 372 SDVTList VTList, ArrayRef<SDValue> OpList) { 373 AddNodeIDOpcode(ID, OpC); 374 AddNodeIDValueTypes(ID, VTList); 375 AddNodeIDOperands(ID, OpList); 376 } 377 378 /// If this is an SDNode with special info, add this info to the NodeID data. 379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 380 switch (N->getOpcode()) { 381 case ISD::TargetExternalSymbol: 382 case ISD::ExternalSymbol: 383 case ISD::MCSymbol: 384 llvm_unreachable("Should only be used on nodes with operands"); 385 default: break; // Normal nodes don't need extra info. 386 case ISD::TargetConstant: 387 case ISD::Constant: { 388 const ConstantSDNode *C = cast<ConstantSDNode>(N); 389 ID.AddPointer(C->getConstantIntValue()); 390 ID.AddBoolean(C->isOpaque()); 391 break; 392 } 393 case ISD::TargetConstantFP: 394 case ISD::ConstantFP: { 395 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 396 break; 397 } 398 case ISD::TargetGlobalAddress: 399 case ISD::GlobalAddress: 400 case ISD::TargetGlobalTLSAddress: 401 case ISD::GlobalTLSAddress: { 402 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 403 ID.AddPointer(GA->getGlobal()); 404 ID.AddInteger(GA->getOffset()); 405 ID.AddInteger(GA->getTargetFlags()); 406 break; 407 } 408 case ISD::BasicBlock: 409 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 410 break; 411 case ISD::Register: 412 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 413 break; 414 case ISD::RegisterMask: 415 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 416 break; 417 case ISD::SRCVALUE: 418 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 419 break; 420 case ISD::FrameIndex: 421 case ISD::TargetFrameIndex: 422 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 423 break; 424 case ISD::JumpTable: 425 case ISD::TargetJumpTable: 426 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 427 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 428 break; 429 case ISD::ConstantPool: 430 case ISD::TargetConstantPool: { 431 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 432 ID.AddInteger(CP->getAlignment()); 433 ID.AddInteger(CP->getOffset()); 434 if (CP->isMachineConstantPoolEntry()) 435 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 436 else 437 ID.AddPointer(CP->getConstVal()); 438 ID.AddInteger(CP->getTargetFlags()); 439 break; 440 } 441 case ISD::TargetIndex: { 442 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 443 ID.AddInteger(TI->getIndex()); 444 ID.AddInteger(TI->getOffset()); 445 ID.AddInteger(TI->getTargetFlags()); 446 break; 447 } 448 case ISD::LOAD: { 449 const LoadSDNode *LD = cast<LoadSDNode>(N); 450 ID.AddInteger(LD->getMemoryVT().getRawBits()); 451 ID.AddInteger(LD->getRawSubclassData()); 452 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 453 break; 454 } 455 case ISD::STORE: { 456 const StoreSDNode *ST = cast<StoreSDNode>(N); 457 ID.AddInteger(ST->getMemoryVT().getRawBits()); 458 ID.AddInteger(ST->getRawSubclassData()); 459 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 460 break; 461 } 462 case ISD::ATOMIC_CMP_SWAP: 463 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 464 case ISD::ATOMIC_SWAP: 465 case ISD::ATOMIC_LOAD_ADD: 466 case ISD::ATOMIC_LOAD_SUB: 467 case ISD::ATOMIC_LOAD_AND: 468 case ISD::ATOMIC_LOAD_OR: 469 case ISD::ATOMIC_LOAD_XOR: 470 case ISD::ATOMIC_LOAD_NAND: 471 case ISD::ATOMIC_LOAD_MIN: 472 case ISD::ATOMIC_LOAD_MAX: 473 case ISD::ATOMIC_LOAD_UMIN: 474 case ISD::ATOMIC_LOAD_UMAX: 475 case ISD::ATOMIC_LOAD: 476 case ISD::ATOMIC_STORE: { 477 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 478 ID.AddInteger(AT->getMemoryVT().getRawBits()); 479 ID.AddInteger(AT->getRawSubclassData()); 480 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 481 break; 482 } 483 case ISD::PREFETCH: { 484 const MemSDNode *PF = cast<MemSDNode>(N); 485 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 486 break; 487 } 488 case ISD::VECTOR_SHUFFLE: { 489 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 490 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 491 i != e; ++i) 492 ID.AddInteger(SVN->getMaskElt(i)); 493 break; 494 } 495 case ISD::TargetBlockAddress: 496 case ISD::BlockAddress: { 497 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 498 ID.AddPointer(BA->getBlockAddress()); 499 ID.AddInteger(BA->getOffset()); 500 ID.AddInteger(BA->getTargetFlags()); 501 break; 502 } 503 } // end switch (N->getOpcode()) 504 505 // Target specific memory nodes could also have address spaces to check. 506 if (N->isTargetMemoryOpcode()) 507 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 508 } 509 510 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 511 /// data. 512 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 513 AddNodeIDOpcode(ID, N->getOpcode()); 514 // Add the return value info. 515 AddNodeIDValueTypes(ID, N->getVTList()); 516 // Add the operand info. 517 AddNodeIDOperands(ID, N->ops()); 518 519 // Handle SDNode leafs with special info. 520 AddNodeIDCustom(ID, N); 521 } 522 523 //===----------------------------------------------------------------------===// 524 // SelectionDAG Class 525 //===----------------------------------------------------------------------===// 526 527 /// doNotCSE - Return true if CSE should not be performed for this node. 528 static bool doNotCSE(SDNode *N) { 529 if (N->getValueType(0) == MVT::Glue) 530 return true; // Never CSE anything that produces a flag. 531 532 switch (N->getOpcode()) { 533 default: break; 534 case ISD::HANDLENODE: 535 case ISD::EH_LABEL: 536 return true; // Never CSE these nodes. 537 } 538 539 // Check that remaining values produced are not flags. 540 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 541 if (N->getValueType(i) == MVT::Glue) 542 return true; // Never CSE anything that produces a flag. 543 544 return false; 545 } 546 547 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 548 /// SelectionDAG. 549 void SelectionDAG::RemoveDeadNodes() { 550 // Create a dummy node (which is not added to allnodes), that adds a reference 551 // to the root node, preventing it from being deleted. 552 HandleSDNode Dummy(getRoot()); 553 554 SmallVector<SDNode*, 128> DeadNodes; 555 556 // Add all obviously-dead nodes to the DeadNodes worklist. 557 for (SDNode &Node : allnodes()) 558 if (Node.use_empty()) 559 DeadNodes.push_back(&Node); 560 561 RemoveDeadNodes(DeadNodes); 562 563 // If the root changed (e.g. it was a dead load, update the root). 564 setRoot(Dummy.getValue()); 565 } 566 567 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 568 /// given list, and any nodes that become unreachable as a result. 569 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 570 571 // Process the worklist, deleting the nodes and adding their uses to the 572 // worklist. 573 while (!DeadNodes.empty()) { 574 SDNode *N = DeadNodes.pop_back_val(); 575 576 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 577 DUL->NodeDeleted(N, nullptr); 578 579 // Take the node out of the appropriate CSE map. 580 RemoveNodeFromCSEMaps(N); 581 582 // Next, brutally remove the operand list. This is safe to do, as there are 583 // no cycles in the graph. 584 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 585 SDUse &Use = *I++; 586 SDNode *Operand = Use.getNode(); 587 Use.set(SDValue()); 588 589 // Now that we removed this operand, see if there are no uses of it left. 590 if (Operand->use_empty()) 591 DeadNodes.push_back(Operand); 592 } 593 594 DeallocateNode(N); 595 } 596 } 597 598 void SelectionDAG::RemoveDeadNode(SDNode *N){ 599 SmallVector<SDNode*, 16> DeadNodes(1, N); 600 601 // Create a dummy node that adds a reference to the root node, preventing 602 // it from being deleted. (This matters if the root is an operand of the 603 // dead node.) 604 HandleSDNode Dummy(getRoot()); 605 606 RemoveDeadNodes(DeadNodes); 607 } 608 609 void SelectionDAG::DeleteNode(SDNode *N) { 610 // First take this out of the appropriate CSE map. 611 RemoveNodeFromCSEMaps(N); 612 613 // Finally, remove uses due to operands of this node, remove from the 614 // AllNodes list, and delete the node. 615 DeleteNodeNotInCSEMaps(N); 616 } 617 618 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 619 assert(N->getIterator() != AllNodes.begin() && 620 "Cannot delete the entry node!"); 621 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 622 623 // Drop all of the operands and decrement used node's use counts. 624 N->DropOperands(); 625 626 DeallocateNode(N); 627 } 628 629 void SDDbgInfo::erase(const SDNode *Node) { 630 DbgValMapType::iterator I = DbgValMap.find(Node); 631 if (I == DbgValMap.end()) 632 return; 633 for (auto &Val: I->second) 634 Val->setIsInvalidated(); 635 DbgValMap.erase(I); 636 } 637 638 void SelectionDAG::DeallocateNode(SDNode *N) { 639 // If we have operands, deallocate them. 640 removeOperands(N); 641 642 // Set the opcode to DELETED_NODE to help catch bugs when node 643 // memory is reallocated. 644 N->NodeType = ISD::DELETED_NODE; 645 646 NodeAllocator.Deallocate(AllNodes.remove(N)); 647 648 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 649 // them and forget about that node. 650 DbgInfo->erase(N); 651 } 652 653 #ifndef NDEBUG 654 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 655 static void VerifySDNode(SDNode *N) { 656 switch (N->getOpcode()) { 657 default: 658 break; 659 case ISD::BUILD_PAIR: { 660 EVT VT = N->getValueType(0); 661 assert(N->getNumValues() == 1 && "Too many results!"); 662 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 663 "Wrong return type!"); 664 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 665 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 666 "Mismatched operand types!"); 667 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 668 "Wrong operand type!"); 669 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 670 "Wrong return type size"); 671 break; 672 } 673 case ISD::BUILD_VECTOR: { 674 assert(N->getNumValues() == 1 && "Too many results!"); 675 assert(N->getValueType(0).isVector() && "Wrong return type!"); 676 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 677 "Wrong number of operands!"); 678 EVT EltVT = N->getValueType(0).getVectorElementType(); 679 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 680 assert((I->getValueType() == EltVT || 681 (EltVT.isInteger() && I->getValueType().isInteger() && 682 EltVT.bitsLE(I->getValueType()))) && 683 "Wrong operand type!"); 684 assert(I->getValueType() == N->getOperand(0).getValueType() && 685 "Operands must all have the same type"); 686 } 687 break; 688 } 689 } 690 } 691 #endif // NDEBUG 692 693 /// \brief Insert a newly allocated node into the DAG. 694 /// 695 /// Handles insertion into the all nodes list and CSE map, as well as 696 /// verification and other common operations when a new node is allocated. 697 void SelectionDAG::InsertNode(SDNode *N) { 698 AllNodes.push_back(N); 699 #ifndef NDEBUG 700 N->PersistentId = NextPersistentId++; 701 VerifySDNode(N); 702 #endif 703 } 704 705 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 706 /// correspond to it. This is useful when we're about to delete or repurpose 707 /// the node. We don't want future request for structurally identical nodes 708 /// to return N anymore. 709 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 710 bool Erased = false; 711 switch (N->getOpcode()) { 712 case ISD::HANDLENODE: return false; // noop. 713 case ISD::CONDCODE: 714 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 715 "Cond code doesn't exist!"); 716 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 717 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 718 break; 719 case ISD::ExternalSymbol: 720 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 721 break; 722 case ISD::TargetExternalSymbol: { 723 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 724 Erased = TargetExternalSymbols.erase( 725 std::pair<std::string,unsigned char>(ESN->getSymbol(), 726 ESN->getTargetFlags())); 727 break; 728 } 729 case ISD::MCSymbol: { 730 auto *MCSN = cast<MCSymbolSDNode>(N); 731 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 732 break; 733 } 734 case ISD::VALUETYPE: { 735 EVT VT = cast<VTSDNode>(N)->getVT(); 736 if (VT.isExtended()) { 737 Erased = ExtendedValueTypeNodes.erase(VT); 738 } else { 739 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 740 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 741 } 742 break; 743 } 744 default: 745 // Remove it from the CSE Map. 746 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 747 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 748 Erased = CSEMap.RemoveNode(N); 749 break; 750 } 751 #ifndef NDEBUG 752 // Verify that the node was actually in one of the CSE maps, unless it has a 753 // flag result (which cannot be CSE'd) or is one of the special cases that are 754 // not subject to CSE. 755 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 756 !N->isMachineOpcode() && !doNotCSE(N)) { 757 N->dump(this); 758 dbgs() << "\n"; 759 llvm_unreachable("Node is not in map!"); 760 } 761 #endif 762 return Erased; 763 } 764 765 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 766 /// maps and modified in place. Add it back to the CSE maps, unless an identical 767 /// node already exists, in which case transfer all its users to the existing 768 /// node. This transfer can potentially trigger recursive merging. 769 /// 770 void 771 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 772 // For node types that aren't CSE'd, just act as if no identical node 773 // already exists. 774 if (!doNotCSE(N)) { 775 SDNode *Existing = CSEMap.GetOrInsertNode(N); 776 if (Existing != N) { 777 // If there was already an existing matching node, use ReplaceAllUsesWith 778 // to replace the dead one with the existing one. This can cause 779 // recursive merging of other unrelated nodes down the line. 780 ReplaceAllUsesWith(N, Existing); 781 782 // N is now dead. Inform the listeners and delete it. 783 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 784 DUL->NodeDeleted(N, Existing); 785 DeleteNodeNotInCSEMaps(N); 786 return; 787 } 788 } 789 790 // If the node doesn't already exist, we updated it. Inform listeners. 791 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 792 DUL->NodeUpdated(N); 793 } 794 795 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 796 /// were replaced with those specified. If this node is never memoized, 797 /// return null, otherwise return a pointer to the slot it would take. If a 798 /// node already exists with these operands, the slot will be non-null. 799 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 800 void *&InsertPos) { 801 if (doNotCSE(N)) 802 return nullptr; 803 804 SDValue Ops[] = { Op }; 805 FoldingSetNodeID ID; 806 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 807 AddNodeIDCustom(ID, N); 808 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 809 if (Node) 810 if (const SDNodeFlags *Flags = N->getFlags()) 811 Node->intersectFlagsWith(Flags); 812 return Node; 813 } 814 815 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 816 /// were replaced with those specified. If this node is never memoized, 817 /// return null, otherwise return a pointer to the slot it would take. If a 818 /// node already exists with these operands, the slot will be non-null. 819 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 820 SDValue Op1, SDValue Op2, 821 void *&InsertPos) { 822 if (doNotCSE(N)) 823 return nullptr; 824 825 SDValue Ops[] = { Op1, Op2 }; 826 FoldingSetNodeID ID; 827 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 828 AddNodeIDCustom(ID, N); 829 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 830 if (Node) 831 if (const SDNodeFlags *Flags = N->getFlags()) 832 Node->intersectFlagsWith(Flags); 833 return Node; 834 } 835 836 837 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 838 /// were replaced with those specified. If this node is never memoized, 839 /// return null, otherwise return a pointer to the slot it would take. If a 840 /// node already exists with these operands, the slot will be non-null. 841 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 842 void *&InsertPos) { 843 if (doNotCSE(N)) 844 return nullptr; 845 846 FoldingSetNodeID ID; 847 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 848 AddNodeIDCustom(ID, N); 849 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 850 if (Node) 851 if (const SDNodeFlags *Flags = N->getFlags()) 852 Node->intersectFlagsWith(Flags); 853 return Node; 854 } 855 856 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 857 Type *Ty = VT == MVT::iPTR ? 858 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 859 VT.getTypeForEVT(*getContext()); 860 861 return getDataLayout().getABITypeAlignment(Ty); 862 } 863 864 // EntryNode could meaningfully have debug info if we can find it... 865 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 866 : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), 867 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 868 Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), 869 UpdateListeners(nullptr) { 870 InsertNode(&EntryNode); 871 DbgInfo = new SDDbgInfo(); 872 } 873 874 void SelectionDAG::init(MachineFunction &mf) { 875 MF = &mf; 876 TLI = getSubtarget().getTargetLowering(); 877 TSI = getSubtarget().getSelectionDAGInfo(); 878 Context = &mf.getFunction()->getContext(); 879 } 880 881 SelectionDAG::~SelectionDAG() { 882 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 883 allnodes_clear(); 884 OperandRecycler.clear(OperandAllocator); 885 delete DbgInfo; 886 } 887 888 void SelectionDAG::allnodes_clear() { 889 assert(&*AllNodes.begin() == &EntryNode); 890 AllNodes.remove(AllNodes.begin()); 891 while (!AllNodes.empty()) 892 DeallocateNode(&AllNodes.front()); 893 #ifndef NDEBUG 894 NextPersistentId = 0; 895 #endif 896 } 897 898 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL, 899 SDVTList VTs, SDValue N1, SDValue N2, 900 const SDNodeFlags *Flags) { 901 SDValue Ops[] = {N1, N2}; 902 903 if (isBinOpWithFlags(Opcode)) { 904 // If no flags were passed in, use a default flags object. 905 SDNodeFlags F; 906 if (Flags == nullptr) 907 Flags = &F; 908 909 auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(), 910 DL.getDebugLoc(), VTs, *Flags); 911 createOperands(FN, Ops); 912 913 return FN; 914 } 915 916 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 917 createOperands(N, Ops); 918 return N; 919 } 920 921 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 922 void *&InsertPos) { 923 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 924 if (N) { 925 switch (N->getOpcode()) { 926 default: break; 927 case ISD::Constant: 928 case ISD::ConstantFP: 929 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 930 "debug location. Use another overload."); 931 } 932 } 933 return N; 934 } 935 936 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 937 const SDLoc &DL, void *&InsertPos) { 938 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 939 if (N) { 940 switch (N->getOpcode()) { 941 case ISD::Constant: 942 case ISD::ConstantFP: 943 // Erase debug location from the node if the node is used at several 944 // different places. Do not propagate one location to all uses as it 945 // will cause a worse single stepping debugging experience. 946 if (N->getDebugLoc() != DL.getDebugLoc()) 947 N->setDebugLoc(DebugLoc()); 948 break; 949 default: 950 // When the node's point of use is located earlier in the instruction 951 // sequence than its prior point of use, update its debug info to the 952 // earlier location. 953 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 954 N->setDebugLoc(DL.getDebugLoc()); 955 break; 956 } 957 } 958 return N; 959 } 960 961 void SelectionDAG::clear() { 962 allnodes_clear(); 963 OperandRecycler.clear(OperandAllocator); 964 OperandAllocator.Reset(); 965 CSEMap.clear(); 966 967 ExtendedValueTypeNodes.clear(); 968 ExternalSymbols.clear(); 969 TargetExternalSymbols.clear(); 970 MCSymbols.clear(); 971 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 972 static_cast<CondCodeSDNode*>(nullptr)); 973 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 974 static_cast<SDNode*>(nullptr)); 975 976 EntryNode.UseList = nullptr; 977 InsertNode(&EntryNode); 978 Root = getEntryNode(); 979 DbgInfo->clear(); 980 } 981 982 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 983 return VT.bitsGT(Op.getValueType()) ? 984 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 985 getNode(ISD::TRUNCATE, DL, VT, Op); 986 } 987 988 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 989 return VT.bitsGT(Op.getValueType()) ? 990 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 991 getNode(ISD::TRUNCATE, DL, VT, Op); 992 } 993 994 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 995 return VT.bitsGT(Op.getValueType()) ? 996 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 997 getNode(ISD::TRUNCATE, DL, VT, Op); 998 } 999 1000 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1001 EVT OpVT) { 1002 if (VT.bitsLE(Op.getValueType())) 1003 return getNode(ISD::TRUNCATE, SL, VT, Op); 1004 1005 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1006 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1007 } 1008 1009 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1010 assert(!VT.isVector() && 1011 "getZeroExtendInReg should use the vector element type instead of " 1012 "the vector type!"); 1013 if (Op.getValueType() == VT) return Op; 1014 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1015 APInt Imm = APInt::getLowBitsSet(BitWidth, 1016 VT.getSizeInBits()); 1017 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1018 getConstant(Imm, DL, Op.getValueType())); 1019 } 1020 1021 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1022 EVT VT) { 1023 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1024 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1025 "The sizes of the input and result must match in order to perform the " 1026 "extend in-register."); 1027 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1028 "The destination vector type must have fewer lanes than the input."); 1029 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1030 } 1031 1032 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1033 EVT VT) { 1034 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1035 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1036 "The sizes of the input and result must match in order to perform the " 1037 "extend in-register."); 1038 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1039 "The destination vector type must have fewer lanes than the input."); 1040 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1041 } 1042 1043 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1044 EVT VT) { 1045 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1046 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1047 "The sizes of the input and result must match in order to perform the " 1048 "extend in-register."); 1049 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1050 "The destination vector type must have fewer lanes than the input."); 1051 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1052 } 1053 1054 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1055 /// 1056 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1057 EVT EltVT = VT.getScalarType(); 1058 SDValue NegOne = 1059 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1060 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1061 } 1062 1063 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1064 EVT EltVT = VT.getScalarType(); 1065 SDValue TrueValue; 1066 switch (TLI->getBooleanContents(VT)) { 1067 case TargetLowering::ZeroOrOneBooleanContent: 1068 case TargetLowering::UndefinedBooleanContent: 1069 TrueValue = getConstant(1, DL, VT); 1070 break; 1071 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1072 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1073 VT); 1074 break; 1075 } 1076 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1077 } 1078 1079 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1080 bool isT, bool isO) { 1081 EVT EltVT = VT.getScalarType(); 1082 assert((EltVT.getSizeInBits() >= 64 || 1083 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1084 "getConstant with a uint64_t value that doesn't fit in the type!"); 1085 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1086 } 1087 1088 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1089 bool isT, bool isO) { 1090 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1091 } 1092 1093 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1094 EVT VT, bool isT, bool isO) { 1095 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1096 1097 EVT EltVT = VT.getScalarType(); 1098 const ConstantInt *Elt = &Val; 1099 1100 // In some cases the vector type is legal but the element type is illegal and 1101 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1102 // inserted value (the type does not need to match the vector element type). 1103 // Any extra bits introduced will be truncated away. 1104 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1105 TargetLowering::TypePromoteInteger) { 1106 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1107 APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits()); 1108 Elt = ConstantInt::get(*getContext(), NewVal); 1109 } 1110 // In other cases the element type is illegal and needs to be expanded, for 1111 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1112 // the value into n parts and use a vector type with n-times the elements. 1113 // Then bitcast to the type requested. 1114 // Legalizing constants too early makes the DAGCombiner's job harder so we 1115 // only legalize if the DAG tells us we must produce legal types. 1116 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1117 TLI->getTypeAction(*getContext(), EltVT) == 1118 TargetLowering::TypeExpandInteger) { 1119 const APInt &NewVal = Elt->getValue(); 1120 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1121 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1122 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1123 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1124 1125 // Check the temporary vector is the correct size. If this fails then 1126 // getTypeToTransformTo() probably returned a type whose size (in bits) 1127 // isn't a power-of-2 factor of the requested type size. 1128 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1129 1130 SmallVector<SDValue, 2> EltParts; 1131 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1132 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1133 .trunc(ViaEltSizeInBits), DL, 1134 ViaEltVT, isT, isO)); 1135 } 1136 1137 // EltParts is currently in little endian order. If we actually want 1138 // big-endian order then reverse it now. 1139 if (getDataLayout().isBigEndian()) 1140 std::reverse(EltParts.begin(), EltParts.end()); 1141 1142 // The elements must be reversed when the element order is different 1143 // to the endianness of the elements (because the BITCAST is itself a 1144 // vector shuffle in this situation). However, we do not need any code to 1145 // perform this reversal because getConstant() is producing a vector 1146 // splat. 1147 // This situation occurs in MIPS MSA. 1148 1149 SmallVector<SDValue, 8> Ops; 1150 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) 1151 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1152 1153 SDValue Result = getNode(ISD::BITCAST, DL, VT, 1154 getNode(ISD::BUILD_VECTOR, DL, ViaVecVT, Ops)); 1155 return Result; 1156 } 1157 1158 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1159 "APInt size does not match type size!"); 1160 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1161 FoldingSetNodeID ID; 1162 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1163 ID.AddPointer(Elt); 1164 ID.AddBoolean(isO); 1165 void *IP = nullptr; 1166 SDNode *N = nullptr; 1167 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1168 if (!VT.isVector()) 1169 return SDValue(N, 0); 1170 1171 if (!N) { 1172 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1173 CSEMap.InsertNode(N, IP); 1174 InsertNode(N); 1175 } 1176 1177 SDValue Result(N, 0); 1178 if (VT.isVector()) 1179 Result = getSplatBuildVector(VT, DL, Result); 1180 return Result; 1181 } 1182 1183 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1184 bool isTarget) { 1185 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1186 } 1187 1188 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1189 bool isTarget) { 1190 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1191 } 1192 1193 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1194 EVT VT, bool isTarget) { 1195 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1196 1197 EVT EltVT = VT.getScalarType(); 1198 1199 // Do the map lookup using the actual bit pattern for the floating point 1200 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1201 // we don't have issues with SNANs. 1202 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1203 FoldingSetNodeID ID; 1204 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1205 ID.AddPointer(&V); 1206 void *IP = nullptr; 1207 SDNode *N = nullptr; 1208 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1209 if (!VT.isVector()) 1210 return SDValue(N, 0); 1211 1212 if (!N) { 1213 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1214 CSEMap.InsertNode(N, IP); 1215 InsertNode(N); 1216 } 1217 1218 SDValue Result(N, 0); 1219 if (VT.isVector()) 1220 Result = getSplatBuildVector(VT, DL, Result); 1221 return Result; 1222 } 1223 1224 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1225 bool isTarget) { 1226 EVT EltVT = VT.getScalarType(); 1227 if (EltVT == MVT::f32) 1228 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1229 else if (EltVT == MVT::f64) 1230 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1231 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1232 EltVT == MVT::f16) { 1233 bool Ignored; 1234 APFloat APF = APFloat(Val); 1235 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1236 &Ignored); 1237 return getConstantFP(APF, DL, VT, isTarget); 1238 } else 1239 llvm_unreachable("Unsupported type in getConstantFP"); 1240 } 1241 1242 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1243 EVT VT, int64_t Offset, bool isTargetGA, 1244 unsigned char TargetFlags) { 1245 assert((TargetFlags == 0 || isTargetGA) && 1246 "Cannot set target flags on target-independent globals"); 1247 1248 // Truncate (with sign-extension) the offset value to the pointer size. 1249 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1250 if (BitWidth < 64) 1251 Offset = SignExtend64(Offset, BitWidth); 1252 1253 unsigned Opc; 1254 if (GV->isThreadLocal()) 1255 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1256 else 1257 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1258 1259 FoldingSetNodeID ID; 1260 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1261 ID.AddPointer(GV); 1262 ID.AddInteger(Offset); 1263 ID.AddInteger(TargetFlags); 1264 void *IP = nullptr; 1265 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1266 return SDValue(E, 0); 1267 1268 auto *N = newSDNode<GlobalAddressSDNode>( 1269 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1270 CSEMap.InsertNode(N, IP); 1271 InsertNode(N); 1272 return SDValue(N, 0); 1273 } 1274 1275 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1276 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1277 FoldingSetNodeID ID; 1278 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1279 ID.AddInteger(FI); 1280 void *IP = nullptr; 1281 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1282 return SDValue(E, 0); 1283 1284 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1285 CSEMap.InsertNode(N, IP); 1286 InsertNode(N); 1287 return SDValue(N, 0); 1288 } 1289 1290 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1291 unsigned char TargetFlags) { 1292 assert((TargetFlags == 0 || isTarget) && 1293 "Cannot set target flags on target-independent jump tables"); 1294 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1295 FoldingSetNodeID ID; 1296 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1297 ID.AddInteger(JTI); 1298 ID.AddInteger(TargetFlags); 1299 void *IP = nullptr; 1300 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1301 return SDValue(E, 0); 1302 1303 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1304 CSEMap.InsertNode(N, IP); 1305 InsertNode(N); 1306 return SDValue(N, 0); 1307 } 1308 1309 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1310 unsigned Alignment, int Offset, 1311 bool isTarget, 1312 unsigned char TargetFlags) { 1313 assert((TargetFlags == 0 || isTarget) && 1314 "Cannot set target flags on target-independent globals"); 1315 if (Alignment == 0) 1316 Alignment = MF->getFunction()->optForSize() 1317 ? getDataLayout().getABITypeAlignment(C->getType()) 1318 : getDataLayout().getPrefTypeAlignment(C->getType()); 1319 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1320 FoldingSetNodeID ID; 1321 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1322 ID.AddInteger(Alignment); 1323 ID.AddInteger(Offset); 1324 ID.AddPointer(C); 1325 ID.AddInteger(TargetFlags); 1326 void *IP = nullptr; 1327 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1328 return SDValue(E, 0); 1329 1330 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1331 TargetFlags); 1332 CSEMap.InsertNode(N, IP); 1333 InsertNode(N); 1334 return SDValue(N, 0); 1335 } 1336 1337 1338 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1339 unsigned Alignment, int Offset, 1340 bool isTarget, 1341 unsigned char TargetFlags) { 1342 assert((TargetFlags == 0 || isTarget) && 1343 "Cannot set target flags on target-independent globals"); 1344 if (Alignment == 0) 1345 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1346 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1347 FoldingSetNodeID ID; 1348 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1349 ID.AddInteger(Alignment); 1350 ID.AddInteger(Offset); 1351 C->addSelectionDAGCSEId(ID); 1352 ID.AddInteger(TargetFlags); 1353 void *IP = nullptr; 1354 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1355 return SDValue(E, 0); 1356 1357 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1358 TargetFlags); 1359 CSEMap.InsertNode(N, IP); 1360 InsertNode(N); 1361 return SDValue(N, 0); 1362 } 1363 1364 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1365 unsigned char TargetFlags) { 1366 FoldingSetNodeID ID; 1367 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1368 ID.AddInteger(Index); 1369 ID.AddInteger(Offset); 1370 ID.AddInteger(TargetFlags); 1371 void *IP = nullptr; 1372 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1373 return SDValue(E, 0); 1374 1375 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1376 CSEMap.InsertNode(N, IP); 1377 InsertNode(N); 1378 return SDValue(N, 0); 1379 } 1380 1381 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1382 FoldingSetNodeID ID; 1383 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1384 ID.AddPointer(MBB); 1385 void *IP = nullptr; 1386 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1387 return SDValue(E, 0); 1388 1389 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1390 CSEMap.InsertNode(N, IP); 1391 InsertNode(N); 1392 return SDValue(N, 0); 1393 } 1394 1395 SDValue SelectionDAG::getValueType(EVT VT) { 1396 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1397 ValueTypeNodes.size()) 1398 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1399 1400 SDNode *&N = VT.isExtended() ? 1401 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1402 1403 if (N) return SDValue(N, 0); 1404 N = newSDNode<VTSDNode>(VT); 1405 InsertNode(N); 1406 return SDValue(N, 0); 1407 } 1408 1409 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1410 SDNode *&N = ExternalSymbols[Sym]; 1411 if (N) return SDValue(N, 0); 1412 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1413 InsertNode(N); 1414 return SDValue(N, 0); 1415 } 1416 1417 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1418 SDNode *&N = MCSymbols[Sym]; 1419 if (N) 1420 return SDValue(N, 0); 1421 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1422 InsertNode(N); 1423 return SDValue(N, 0); 1424 } 1425 1426 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1427 unsigned char TargetFlags) { 1428 SDNode *&N = 1429 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1430 TargetFlags)]; 1431 if (N) return SDValue(N, 0); 1432 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1433 InsertNode(N); 1434 return SDValue(N, 0); 1435 } 1436 1437 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1438 if ((unsigned)Cond >= CondCodeNodes.size()) 1439 CondCodeNodes.resize(Cond+1); 1440 1441 if (!CondCodeNodes[Cond]) { 1442 auto *N = newSDNode<CondCodeSDNode>(Cond); 1443 CondCodeNodes[Cond] = N; 1444 InsertNode(N); 1445 } 1446 1447 return SDValue(CondCodeNodes[Cond], 0); 1448 } 1449 1450 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1451 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1452 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1453 std::swap(N1, N2); 1454 ShuffleVectorSDNode::commuteMask(M); 1455 } 1456 1457 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1458 SDValue N2, ArrayRef<int> Mask) { 1459 assert(VT.getVectorNumElements() == Mask.size() && 1460 "Must have the same number of vector elements as mask elements!"); 1461 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1462 "Invalid VECTOR_SHUFFLE"); 1463 1464 // Canonicalize shuffle undef, undef -> undef 1465 if (N1.isUndef() && N2.isUndef()) 1466 return getUNDEF(VT); 1467 1468 // Validate that all indices in Mask are within the range of the elements 1469 // input to the shuffle. 1470 int NElts = Mask.size(); 1471 assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1472 "Index out of range"); 1473 1474 // Copy the mask so we can do any needed cleanup. 1475 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1476 1477 // Canonicalize shuffle v, v -> v, undef 1478 if (N1 == N2) { 1479 N2 = getUNDEF(VT); 1480 for (int i = 0; i != NElts; ++i) 1481 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1482 } 1483 1484 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1485 if (N1.isUndef()) 1486 commuteShuffle(N1, N2, MaskVec); 1487 1488 // If shuffling a splat, try to blend the splat instead. We do this here so 1489 // that even when this arises during lowering we don't have to re-handle it. 1490 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1491 BitVector UndefElements; 1492 SDValue Splat = BV->getSplatValue(&UndefElements); 1493 if (!Splat) 1494 return; 1495 1496 for (int i = 0; i < NElts; ++i) { 1497 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1498 continue; 1499 1500 // If this input comes from undef, mark it as such. 1501 if (UndefElements[MaskVec[i] - Offset]) { 1502 MaskVec[i] = -1; 1503 continue; 1504 } 1505 1506 // If we can blend a non-undef lane, use that instead. 1507 if (!UndefElements[i]) 1508 MaskVec[i] = i + Offset; 1509 } 1510 }; 1511 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1512 BlendSplat(N1BV, 0); 1513 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1514 BlendSplat(N2BV, NElts); 1515 1516 // Canonicalize all index into lhs, -> shuffle lhs, undef 1517 // Canonicalize all index into rhs, -> shuffle rhs, undef 1518 bool AllLHS = true, AllRHS = true; 1519 bool N2Undef = N2.isUndef(); 1520 for (int i = 0; i != NElts; ++i) { 1521 if (MaskVec[i] >= NElts) { 1522 if (N2Undef) 1523 MaskVec[i] = -1; 1524 else 1525 AllLHS = false; 1526 } else if (MaskVec[i] >= 0) { 1527 AllRHS = false; 1528 } 1529 } 1530 if (AllLHS && AllRHS) 1531 return getUNDEF(VT); 1532 if (AllLHS && !N2Undef) 1533 N2 = getUNDEF(VT); 1534 if (AllRHS) { 1535 N1 = getUNDEF(VT); 1536 commuteShuffle(N1, N2, MaskVec); 1537 } 1538 // Reset our undef status after accounting for the mask. 1539 N2Undef = N2.isUndef(); 1540 // Re-check whether both sides ended up undef. 1541 if (N1.isUndef() && N2Undef) 1542 return getUNDEF(VT); 1543 1544 // If Identity shuffle return that node. 1545 bool Identity = true, AllSame = true; 1546 for (int i = 0; i != NElts; ++i) { 1547 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1548 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1549 } 1550 if (Identity && NElts) 1551 return N1; 1552 1553 // Shuffling a constant splat doesn't change the result. 1554 if (N2Undef) { 1555 SDValue V = N1; 1556 1557 // Look through any bitcasts. We check that these don't change the number 1558 // (and size) of elements and just changes their types. 1559 while (V.getOpcode() == ISD::BITCAST) 1560 V = V->getOperand(0); 1561 1562 // A splat should always show up as a build vector node. 1563 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1564 BitVector UndefElements; 1565 SDValue Splat = BV->getSplatValue(&UndefElements); 1566 // If this is a splat of an undef, shuffling it is also undef. 1567 if (Splat && Splat.isUndef()) 1568 return getUNDEF(VT); 1569 1570 bool SameNumElts = 1571 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1572 1573 // We only have a splat which can skip shuffles if there is a splatted 1574 // value and no undef lanes rearranged by the shuffle. 1575 if (Splat && UndefElements.none()) { 1576 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1577 // number of elements match or the value splatted is a zero constant. 1578 if (SameNumElts) 1579 return N1; 1580 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1581 if (C->isNullValue()) 1582 return N1; 1583 } 1584 1585 // If the shuffle itself creates a splat, build the vector directly. 1586 if (AllSame && SameNumElts) { 1587 EVT BuildVT = BV->getValueType(0); 1588 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1589 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1590 1591 // We may have jumped through bitcasts, so the type of the 1592 // BUILD_VECTOR may not match the type of the shuffle. 1593 if (BuildVT != VT) 1594 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1595 return NewBV; 1596 } 1597 } 1598 } 1599 1600 FoldingSetNodeID ID; 1601 SDValue Ops[2] = { N1, N2 }; 1602 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1603 for (int i = 0; i != NElts; ++i) 1604 ID.AddInteger(MaskVec[i]); 1605 1606 void* IP = nullptr; 1607 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1608 return SDValue(E, 0); 1609 1610 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1611 // SDNode doesn't have access to it. This memory will be "leaked" when 1612 // the node is deallocated, but recovered when the NodeAllocator is released. 1613 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1614 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1615 1616 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1617 dl.getDebugLoc(), MaskAlloc); 1618 createOperands(N, Ops); 1619 1620 CSEMap.InsertNode(N, IP); 1621 InsertNode(N); 1622 return SDValue(N, 0); 1623 } 1624 1625 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1626 MVT VT = SV.getSimpleValueType(0); 1627 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1628 ShuffleVectorSDNode::commuteMask(MaskVec); 1629 1630 SDValue Op0 = SV.getOperand(0); 1631 SDValue Op1 = SV.getOperand(1); 1632 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1633 } 1634 1635 SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val, 1636 SDValue DTy, SDValue STy, SDValue Rnd, 1637 SDValue Sat, ISD::CvtCode Code) { 1638 // If the src and dest types are the same and the conversion is between 1639 // integer types of the same sign or two floats, no conversion is necessary. 1640 if (DTy == STy && 1641 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF)) 1642 return Val; 1643 1644 FoldingSetNodeID ID; 1645 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat }; 1646 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops); 1647 void* IP = nullptr; 1648 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1649 return SDValue(E, 0); 1650 1651 auto *N = 1652 newSDNode<CvtRndSatSDNode>(VT, dl.getIROrder(), dl.getDebugLoc(), Code); 1653 createOperands(N, Ops); 1654 1655 CSEMap.InsertNode(N, IP); 1656 InsertNode(N); 1657 return SDValue(N, 0); 1658 } 1659 1660 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1661 FoldingSetNodeID ID; 1662 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1663 ID.AddInteger(RegNo); 1664 void *IP = nullptr; 1665 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1666 return SDValue(E, 0); 1667 1668 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1669 CSEMap.InsertNode(N, IP); 1670 InsertNode(N); 1671 return SDValue(N, 0); 1672 } 1673 1674 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1675 FoldingSetNodeID ID; 1676 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1677 ID.AddPointer(RegMask); 1678 void *IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1680 return SDValue(E, 0); 1681 1682 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1683 CSEMap.InsertNode(N, IP); 1684 InsertNode(N); 1685 return SDValue(N, 0); 1686 } 1687 1688 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1689 MCSymbol *Label) { 1690 FoldingSetNodeID ID; 1691 SDValue Ops[] = { Root }; 1692 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1693 ID.AddPointer(Label); 1694 void *IP = nullptr; 1695 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1696 return SDValue(E, 0); 1697 1698 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1699 createOperands(N, Ops); 1700 1701 CSEMap.InsertNode(N, IP); 1702 InsertNode(N); 1703 return SDValue(N, 0); 1704 } 1705 1706 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1707 int64_t Offset, 1708 bool isTarget, 1709 unsigned char TargetFlags) { 1710 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1711 1712 FoldingSetNodeID ID; 1713 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1714 ID.AddPointer(BA); 1715 ID.AddInteger(Offset); 1716 ID.AddInteger(TargetFlags); 1717 void *IP = nullptr; 1718 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1719 return SDValue(E, 0); 1720 1721 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1722 CSEMap.InsertNode(N, IP); 1723 InsertNode(N); 1724 return SDValue(N, 0); 1725 } 1726 1727 SDValue SelectionDAG::getSrcValue(const Value *V) { 1728 assert((!V || V->getType()->isPointerTy()) && 1729 "SrcValue is not a pointer?"); 1730 1731 FoldingSetNodeID ID; 1732 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1733 ID.AddPointer(V); 1734 1735 void *IP = nullptr; 1736 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1737 return SDValue(E, 0); 1738 1739 auto *N = newSDNode<SrcValueSDNode>(V); 1740 CSEMap.InsertNode(N, IP); 1741 InsertNode(N); 1742 return SDValue(N, 0); 1743 } 1744 1745 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1746 FoldingSetNodeID ID; 1747 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1748 ID.AddPointer(MD); 1749 1750 void *IP = nullptr; 1751 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1752 return SDValue(E, 0); 1753 1754 auto *N = newSDNode<MDNodeSDNode>(MD); 1755 CSEMap.InsertNode(N, IP); 1756 InsertNode(N); 1757 return SDValue(N, 0); 1758 } 1759 1760 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1761 if (VT == V.getValueType()) 1762 return V; 1763 1764 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1765 } 1766 1767 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1768 unsigned SrcAS, unsigned DestAS) { 1769 SDValue Ops[] = {Ptr}; 1770 FoldingSetNodeID ID; 1771 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1772 ID.AddInteger(SrcAS); 1773 ID.AddInteger(DestAS); 1774 1775 void *IP = nullptr; 1776 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1777 return SDValue(E, 0); 1778 1779 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1780 VT, SrcAS, DestAS); 1781 createOperands(N, Ops); 1782 1783 CSEMap.InsertNode(N, IP); 1784 InsertNode(N); 1785 return SDValue(N, 0); 1786 } 1787 1788 /// getShiftAmountOperand - Return the specified value casted to 1789 /// the target's desired shift amount type. 1790 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1791 EVT OpTy = Op.getValueType(); 1792 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1793 if (OpTy == ShTy || OpTy.isVector()) return Op; 1794 1795 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1796 } 1797 1798 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1799 SDLoc dl(Node); 1800 const TargetLowering &TLI = getTargetLoweringInfo(); 1801 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1802 EVT VT = Node->getValueType(0); 1803 SDValue Tmp1 = Node->getOperand(0); 1804 SDValue Tmp2 = Node->getOperand(1); 1805 unsigned Align = Node->getConstantOperandVal(3); 1806 1807 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1808 Tmp2, MachinePointerInfo(V)); 1809 SDValue VAList = VAListLoad; 1810 1811 if (Align > TLI.getMinStackArgumentAlignment()) { 1812 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1813 1814 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1815 getConstant(Align - 1, dl, VAList.getValueType())); 1816 1817 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1818 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1819 } 1820 1821 // Increment the pointer, VAList, to the next vaarg 1822 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1823 getConstant(getDataLayout().getTypeAllocSize( 1824 VT.getTypeForEVT(*getContext())), 1825 dl, VAList.getValueType())); 1826 // Store the incremented VAList to the legalized pointer 1827 Tmp1 = 1828 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1829 // Load the actual argument out of the pointer VAList 1830 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1831 } 1832 1833 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1834 SDLoc dl(Node); 1835 const TargetLowering &TLI = getTargetLoweringInfo(); 1836 // This defaults to loading a pointer from the input and storing it to the 1837 // output, returning the chain. 1838 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1839 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1840 SDValue Tmp1 = 1841 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1842 Node->getOperand(2), MachinePointerInfo(VS)); 1843 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1844 MachinePointerInfo(VD)); 1845 } 1846 1847 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1848 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1849 unsigned ByteSize = VT.getStoreSize(); 1850 Type *Ty = VT.getTypeForEVT(*getContext()); 1851 unsigned StackAlign = 1852 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1853 1854 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1855 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1856 } 1857 1858 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1859 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1860 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1861 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1862 const DataLayout &DL = getDataLayout(); 1863 unsigned Align = 1864 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1865 1866 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1867 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1868 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1869 } 1870 1871 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1872 ISD::CondCode Cond, const SDLoc &dl) { 1873 // These setcc operations always fold. 1874 switch (Cond) { 1875 default: break; 1876 case ISD::SETFALSE: 1877 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1878 case ISD::SETTRUE: 1879 case ISD::SETTRUE2: { 1880 TargetLowering::BooleanContent Cnt = 1881 TLI->getBooleanContents(N1->getValueType(0)); 1882 return getConstant( 1883 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1884 VT); 1885 } 1886 1887 case ISD::SETOEQ: 1888 case ISD::SETOGT: 1889 case ISD::SETOGE: 1890 case ISD::SETOLT: 1891 case ISD::SETOLE: 1892 case ISD::SETONE: 1893 case ISD::SETO: 1894 case ISD::SETUO: 1895 case ISD::SETUEQ: 1896 case ISD::SETUNE: 1897 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1898 break; 1899 } 1900 1901 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1902 const APInt &C2 = N2C->getAPIntValue(); 1903 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1904 const APInt &C1 = N1C->getAPIntValue(); 1905 1906 switch (Cond) { 1907 default: llvm_unreachable("Unknown integer setcc!"); 1908 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1909 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1910 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1911 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1912 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1913 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1914 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1915 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1916 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1917 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1918 } 1919 } 1920 } 1921 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1922 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1923 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1924 switch (Cond) { 1925 default: break; 1926 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1927 return getUNDEF(VT); 1928 LLVM_FALLTHROUGH; 1929 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1930 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1931 return getUNDEF(VT); 1932 LLVM_FALLTHROUGH; 1933 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1934 R==APFloat::cmpLessThan, dl, VT); 1935 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1936 return getUNDEF(VT); 1937 LLVM_FALLTHROUGH; 1938 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1939 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1940 return getUNDEF(VT); 1941 LLVM_FALLTHROUGH; 1942 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1943 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1944 return getUNDEF(VT); 1945 LLVM_FALLTHROUGH; 1946 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1947 R==APFloat::cmpEqual, dl, VT); 1948 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1949 return getUNDEF(VT); 1950 LLVM_FALLTHROUGH; 1951 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1952 R==APFloat::cmpEqual, dl, VT); 1953 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1954 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1955 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1956 R==APFloat::cmpEqual, dl, VT); 1957 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1958 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1959 R==APFloat::cmpLessThan, dl, VT); 1960 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1961 R==APFloat::cmpUnordered, dl, VT); 1962 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1963 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1964 } 1965 } else { 1966 // Ensure that the constant occurs on the RHS. 1967 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1968 MVT CompVT = N1.getValueType().getSimpleVT(); 1969 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1970 return SDValue(); 1971 1972 return getSetCC(dl, VT, N2, N1, SwappedCond); 1973 } 1974 } 1975 1976 // Could not fold it. 1977 return SDValue(); 1978 } 1979 1980 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 1981 /// use this predicate to simplify operations downstream. 1982 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 1983 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1984 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); 1985 } 1986 1987 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1988 /// this predicate to simplify operations downstream. Mask is known to be zero 1989 /// for bits that V cannot have. 1990 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 1991 unsigned Depth) const { 1992 APInt KnownZero, KnownOne; 1993 computeKnownBits(Op, KnownZero, KnownOne, Depth); 1994 return (KnownZero & Mask) == Mask; 1995 } 1996 1997 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 1998 /// is less than the element bit-width of the shift node, return it. 1999 static const APInt *getValidShiftAmountConstant(SDValue V) { 2000 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2001 // Shifting more than the bitwidth is not valid. 2002 const APInt &ShAmt = SA->getAPIntValue(); 2003 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2004 return &ShAmt; 2005 } 2006 return nullptr; 2007 } 2008 2009 /// Determine which bits of Op are known to be either zero or one and return 2010 /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are 2011 /// those that are shared by every vector element. 2012 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2013 APInt &KnownOne, unsigned Depth) const { 2014 EVT VT = Op.getValueType(); 2015 APInt DemandedElts = VT.isVector() 2016 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2017 : APInt(1, 1); 2018 computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth); 2019 } 2020 2021 /// Determine which bits of Op are known to be either zero or one and return 2022 /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows 2023 /// us to only collect the known bits that are shared by the requested vector 2024 /// elements. 2025 /// TODO: We only support DemandedElts on a few opcodes so far, the remainder 2026 /// should be added when they become necessary. 2027 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2028 APInt &KnownOne, const APInt &DemandedElts, 2029 unsigned Depth) const { 2030 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2031 2032 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 2033 if (Depth == 6) 2034 return; // Limit search depth. 2035 2036 APInt KnownZero2, KnownOne2; 2037 unsigned NumElts = DemandedElts.getBitWidth(); 2038 2039 if (!DemandedElts) 2040 return; // No demanded elts, better to assume we don't know anything. 2041 2042 switch (Op.getOpcode()) { 2043 case ISD::Constant: 2044 // We know all of the bits for a constant! 2045 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 2046 KnownZero = ~KnownOne; 2047 break; 2048 case ISD::BUILD_VECTOR: 2049 // Collect the known bits that are shared by every demanded vector element. 2050 assert(NumElts == Op.getValueType().getVectorNumElements() && 2051 "Unexpected vector size"); 2052 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2053 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2054 if (!DemandedElts[i]) 2055 continue; 2056 2057 SDValue SrcOp = Op.getOperand(i); 2058 computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1); 2059 2060 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2061 if (SrcOp.getValueSizeInBits() != BitWidth) { 2062 assert(SrcOp.getValueSizeInBits() > BitWidth && 2063 "Expected BUILD_VECTOR implicit truncation"); 2064 KnownOne2 = KnownOne2.trunc(BitWidth); 2065 KnownZero2 = KnownZero2.trunc(BitWidth); 2066 } 2067 2068 // Known bits are the values that are shared by every demanded element. 2069 KnownOne &= KnownOne2; 2070 KnownZero &= KnownZero2; 2071 2072 // If we don't know any bits, early out. 2073 if (!KnownOne && !KnownZero) 2074 break; 2075 } 2076 break; 2077 case ISD::VECTOR_SHUFFLE: { 2078 // Collect the known bits that are shared by every vector element referenced 2079 // by the shuffle. 2080 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2081 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2082 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2083 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2084 for (unsigned i = 0; i != NumElts; ++i) { 2085 int M = SVN->getMaskElt(i); 2086 if (M < 0) { 2087 // For UNDEF elements, we don't know anything about the common state of 2088 // the shuffle result. 2089 // FIXME: Is this too pessimistic? 2090 KnownZero = KnownOne = APInt(BitWidth, 0); 2091 break; 2092 } 2093 if (!DemandedElts[i]) 2094 continue; 2095 2096 if ((unsigned)M < NumElts) 2097 DemandedLHS.setBit((unsigned)M % NumElts); 2098 else 2099 DemandedRHS.setBit((unsigned)M % NumElts); 2100 } 2101 // Known bits are the values that are shared by every demanded element. 2102 if (!!DemandedLHS) { 2103 SDValue LHS = Op.getOperand(0); 2104 computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1); 2105 KnownOne &= KnownOne2; 2106 KnownZero &= KnownZero2; 2107 } 2108 if (!!DemandedRHS) { 2109 SDValue RHS = Op.getOperand(1); 2110 computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1); 2111 KnownOne &= KnownOne2; 2112 KnownZero &= KnownZero2; 2113 } 2114 break; 2115 } 2116 case ISD::EXTRACT_SUBVECTOR: { 2117 // If we know the element index, just demand that subvector elements, 2118 // otherwise demand them all. 2119 SDValue Src = Op.getOperand(0); 2120 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2121 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2122 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2123 // Offset the demanded elts by the subvector index. 2124 uint64_t Idx = SubIdx->getZExtValue(); 2125 APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); 2126 computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1); 2127 } else { 2128 computeKnownBits(Src, KnownZero, KnownOne, Depth + 1); 2129 } 2130 break; 2131 } 2132 case ISD::AND: 2133 // If either the LHS or the RHS are Zero, the result is zero. 2134 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2135 Depth + 1); 2136 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2137 Depth + 1); 2138 2139 // Output known-1 bits are only known if set in both the LHS & RHS. 2140 KnownOne &= KnownOne2; 2141 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2142 KnownZero |= KnownZero2; 2143 break; 2144 case ISD::OR: 2145 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2146 Depth + 1); 2147 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2148 Depth + 1); 2149 2150 // Output known-0 bits are only known if clear in both the LHS & RHS. 2151 KnownZero &= KnownZero2; 2152 // Output known-1 are known to be set if set in either the LHS | RHS. 2153 KnownOne |= KnownOne2; 2154 break; 2155 case ISD::XOR: { 2156 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2157 Depth + 1); 2158 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2159 Depth + 1); 2160 2161 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2162 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 2163 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2164 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 2165 KnownZero = KnownZeroOut; 2166 break; 2167 } 2168 case ISD::MUL: { 2169 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, 2170 Depth + 1); 2171 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2172 Depth + 1); 2173 2174 // If low bits are zero in either operand, output low known-0 bits. 2175 // Also compute a conservative estimate for high known-0 bits. 2176 // More trickiness is possible, but this is sufficient for the 2177 // interesting case of alignment computation. 2178 KnownOne.clearAllBits(); 2179 unsigned TrailZ = KnownZero.countTrailingOnes() + 2180 KnownZero2.countTrailingOnes(); 2181 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 2182 KnownZero2.countLeadingOnes(), 2183 BitWidth) - BitWidth; 2184 2185 TrailZ = std::min(TrailZ, BitWidth); 2186 LeadZ = std::min(LeadZ, BitWidth); 2187 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 2188 APInt::getHighBitsSet(BitWidth, LeadZ); 2189 break; 2190 } 2191 case ISD::UDIV: { 2192 // For the purposes of computing leading zeros we can conservatively 2193 // treat a udiv as a logical right shift by the power of 2 known to 2194 // be less than the denominator. 2195 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2196 Depth + 1); 2197 unsigned LeadZ = KnownZero2.countLeadingOnes(); 2198 2199 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2200 Depth + 1); 2201 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 2202 if (RHSUnknownLeadingOnes != BitWidth) 2203 LeadZ = std::min(BitWidth, 2204 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 2205 2206 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 2207 break; 2208 } 2209 case ISD::SELECT: 2210 computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); 2211 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2212 2213 // Only known if known in both the LHS and RHS. 2214 KnownOne &= KnownOne2; 2215 KnownZero &= KnownZero2; 2216 break; 2217 case ISD::SELECT_CC: 2218 computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); 2219 computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); 2220 2221 // Only known if known in both the LHS and RHS. 2222 KnownOne &= KnownOne2; 2223 KnownZero &= KnownZero2; 2224 break; 2225 case ISD::SADDO: 2226 case ISD::UADDO: 2227 case ISD::SSUBO: 2228 case ISD::USUBO: 2229 case ISD::SMULO: 2230 case ISD::UMULO: 2231 if (Op.getResNo() != 1) 2232 break; 2233 // The boolean result conforms to getBooleanContents. 2234 // If we know the result of a setcc has the top bits zero, use this info. 2235 // We know that we have an integer-based boolean since these operations 2236 // are only available for integer. 2237 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2238 TargetLowering::ZeroOrOneBooleanContent && 2239 BitWidth > 1) 2240 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2241 break; 2242 case ISD::SETCC: 2243 // If we know the result of a setcc has the top bits zero, use this info. 2244 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2245 TargetLowering::ZeroOrOneBooleanContent && 2246 BitWidth > 1) 2247 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2248 break; 2249 case ISD::SHL: 2250 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2251 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2252 Depth + 1); 2253 KnownZero = KnownZero << *ShAmt; 2254 KnownOne = KnownOne << *ShAmt; 2255 // Low bits are known zero. 2256 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt->getZExtValue()); 2257 } 2258 break; 2259 case ISD::SRL: 2260 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2261 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2262 Depth + 1); 2263 KnownZero = KnownZero.lshr(*ShAmt); 2264 KnownOne = KnownOne.lshr(*ShAmt); 2265 // High bits are known zero. 2266 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue()); 2267 KnownZero |= HighBits; 2268 } 2269 break; 2270 case ISD::SRA: 2271 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2272 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2273 Depth + 1); 2274 KnownZero = KnownZero.lshr(*ShAmt); 2275 KnownOne = KnownOne.lshr(*ShAmt); 2276 // If we know the value of the sign bit, then we know it is copied across 2277 // the high bits by the shift amount. 2278 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue()); 2279 APInt SignBit = APInt::getSignBit(BitWidth); 2280 SignBit = SignBit.lshr(*ShAmt); // Adjust to where it is now in the mask. 2281 if (KnownZero.intersects(SignBit)) { 2282 KnownZero |= HighBits; // New bits are known zero. 2283 } else if (KnownOne.intersects(SignBit)) { 2284 KnownOne |= HighBits; // New bits are known one. 2285 } 2286 } 2287 break; 2288 case ISD::SIGN_EXTEND_INREG: { 2289 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2290 unsigned EBits = EVT.getScalarSizeInBits(); 2291 2292 // Sign extension. Compute the demanded bits in the result that are not 2293 // present in the input. 2294 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2295 2296 APInt InSignBit = APInt::getSignBit(EBits); 2297 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2298 2299 // If the sign extended bits are demanded, we know that the sign 2300 // bit is demanded. 2301 InSignBit = InSignBit.zext(BitWidth); 2302 if (NewBits.getBoolValue()) 2303 InputDemandedBits |= InSignBit; 2304 2305 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2306 Depth + 1); 2307 KnownOne &= InputDemandedBits; 2308 KnownZero &= InputDemandedBits; 2309 2310 // If the sign bit of the input is known set or clear, then we know the 2311 // top bits of the result. 2312 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear 2313 KnownZero |= NewBits; 2314 KnownOne &= ~NewBits; 2315 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 2316 KnownOne |= NewBits; 2317 KnownZero &= ~NewBits; 2318 } else { // Input sign bit unknown 2319 KnownZero &= ~NewBits; 2320 KnownOne &= ~NewBits; 2321 } 2322 break; 2323 } 2324 case ISD::CTTZ: 2325 case ISD::CTTZ_ZERO_UNDEF: 2326 case ISD::CTLZ: 2327 case ISD::CTLZ_ZERO_UNDEF: 2328 case ISD::CTPOP: { 2329 unsigned LowBits = Log2_32(BitWidth)+1; 2330 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 2331 KnownOne.clearAllBits(); 2332 break; 2333 } 2334 case ISD::LOAD: { 2335 LoadSDNode *LD = cast<LoadSDNode>(Op); 2336 // If this is a ZEXTLoad and we are looking at the loaded value. 2337 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2338 EVT VT = LD->getMemoryVT(); 2339 unsigned MemBits = VT.getScalarSizeInBits(); 2340 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 2341 } else if (const MDNode *Ranges = LD->getRanges()) { 2342 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2343 computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); 2344 } 2345 break; 2346 } 2347 case ISD::ZERO_EXTEND: { 2348 EVT InVT = Op.getOperand(0).getValueType(); 2349 unsigned InBits = InVT.getScalarSizeInBits(); 2350 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2351 KnownZero = KnownZero.trunc(InBits); 2352 KnownOne = KnownOne.trunc(InBits); 2353 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2354 Depth + 1); 2355 KnownZero = KnownZero.zext(BitWidth); 2356 KnownOne = KnownOne.zext(BitWidth); 2357 KnownZero |= NewBits; 2358 break; 2359 } 2360 case ISD::SIGN_EXTEND: { 2361 EVT InVT = Op.getOperand(0).getValueType(); 2362 unsigned InBits = InVT.getScalarSizeInBits(); 2363 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2364 2365 KnownZero = KnownZero.trunc(InBits); 2366 KnownOne = KnownOne.trunc(InBits); 2367 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2368 Depth + 1); 2369 2370 // Note if the sign bit is known to be zero or one. 2371 bool SignBitKnownZero = KnownZero.isNegative(); 2372 bool SignBitKnownOne = KnownOne.isNegative(); 2373 2374 KnownZero = KnownZero.zext(BitWidth); 2375 KnownOne = KnownOne.zext(BitWidth); 2376 2377 // If the sign bit is known zero or one, the top bits match. 2378 if (SignBitKnownZero) 2379 KnownZero |= NewBits; 2380 else if (SignBitKnownOne) 2381 KnownOne |= NewBits; 2382 break; 2383 } 2384 case ISD::ANY_EXTEND: { 2385 EVT InVT = Op.getOperand(0).getValueType(); 2386 unsigned InBits = InVT.getScalarSizeInBits(); 2387 KnownZero = KnownZero.trunc(InBits); 2388 KnownOne = KnownOne.trunc(InBits); 2389 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2390 KnownZero = KnownZero.zext(BitWidth); 2391 KnownOne = KnownOne.zext(BitWidth); 2392 break; 2393 } 2394 case ISD::TRUNCATE: { 2395 EVT InVT = Op.getOperand(0).getValueType(); 2396 unsigned InBits = InVT.getScalarSizeInBits(); 2397 KnownZero = KnownZero.zext(InBits); 2398 KnownOne = KnownOne.zext(InBits); 2399 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2400 Depth + 1); 2401 KnownZero = KnownZero.trunc(BitWidth); 2402 KnownOne = KnownOne.trunc(BitWidth); 2403 break; 2404 } 2405 case ISD::AssertZext: { 2406 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2407 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2408 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2409 KnownZero |= (~InMask); 2410 KnownOne &= (~KnownZero); 2411 break; 2412 } 2413 case ISD::FGETSIGN: 2414 // All bits are zero except the low bit. 2415 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2416 break; 2417 2418 case ISD::SUB: { 2419 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) { 2420 // We know that the top bits of C-X are clear if X contains less bits 2421 // than C (i.e. no wrap-around can happen). For example, 20-X is 2422 // positive if we can prove that X is >= 0 and < 16. 2423 if (CLHS->getAPIntValue().isNonNegative()) { 2424 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2425 // NLZ can't be BitWidth with no sign bit 2426 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2427 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2428 Depth + 1); 2429 2430 // If all of the MaskV bits are known to be zero, then we know the 2431 // output top bits are zero, because we now know that the output is 2432 // from [0-C]. 2433 if ((KnownZero2 & MaskV) == MaskV) { 2434 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2435 // Top bits known zero. 2436 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 2437 } 2438 } 2439 } 2440 LLVM_FALLTHROUGH; 2441 } 2442 case ISD::ADD: 2443 case ISD::ADDE: { 2444 // Output known-0 bits are known if clear or set in both the low clear bits 2445 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2446 // low 3 bits clear. 2447 // Output known-0 bits are also known if the top bits of each input are 2448 // known to be clear. For example, if one input has the top 10 bits clear 2449 // and the other has the top 8 bits clear, we know the top 7 bits of the 2450 // output must be clear. 2451 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2452 Depth + 1); 2453 unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); 2454 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2455 2456 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2457 Depth + 1); 2458 KnownZeroHigh = std::min(KnownZeroHigh, 2459 KnownZero2.countLeadingOnes()); 2460 KnownZeroLow = std::min(KnownZeroLow, 2461 KnownZero2.countTrailingOnes()); 2462 2463 if (Op.getOpcode() == ISD::ADD) { 2464 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow); 2465 if (KnownZeroHigh > 1) 2466 KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1); 2467 break; 2468 } 2469 2470 // With ADDE, a carry bit may be added in, so we can only use this 2471 // information if we know (at least) that the low two bits are clear. We 2472 // then return to the caller that the low bit is unknown but that other bits 2473 // are known zero. 2474 if (KnownZeroLow >= 2) // ADDE 2475 KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow); 2476 break; 2477 } 2478 case ISD::SREM: 2479 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2480 const APInt &RA = Rem->getAPIntValue().abs(); 2481 if (RA.isPowerOf2()) { 2482 APInt LowBits = RA - 1; 2483 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2484 Depth + 1); 2485 2486 // The low bits of the first operand are unchanged by the srem. 2487 KnownZero = KnownZero2 & LowBits; 2488 KnownOne = KnownOne2 & LowBits; 2489 2490 // If the first operand is non-negative or has all low bits zero, then 2491 // the upper bits are all zero. 2492 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 2493 KnownZero |= ~LowBits; 2494 2495 // If the first operand is negative and not all low bits are zero, then 2496 // the upper bits are all one. 2497 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 2498 KnownOne |= ~LowBits; 2499 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 2500 } 2501 } 2502 break; 2503 case ISD::UREM: { 2504 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 2505 const APInt &RA = Rem->getAPIntValue(); 2506 if (RA.isPowerOf2()) { 2507 APInt LowBits = (RA - 1); 2508 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2509 Depth + 1); 2510 2511 // The upper bits are all zero, the lower ones are unchanged. 2512 KnownZero = KnownZero2 | ~LowBits; 2513 KnownOne = KnownOne2 & LowBits; 2514 break; 2515 } 2516 } 2517 2518 // Since the result is less than or equal to either operand, any leading 2519 // zero bits in either operand must also exist in the result. 2520 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, 2521 Depth + 1); 2522 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, 2523 Depth + 1); 2524 2525 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), 2526 KnownZero2.countLeadingOnes()); 2527 KnownOne.clearAllBits(); 2528 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 2529 break; 2530 } 2531 case ISD::EXTRACT_ELEMENT: { 2532 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2533 const unsigned Index = Op.getConstantOperandVal(1); 2534 const unsigned BitWidth = Op.getValueSizeInBits(); 2535 2536 // Remove low part of known bits mask 2537 KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); 2538 KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); 2539 2540 // Remove high part of known bit mask 2541 KnownZero = KnownZero.trunc(BitWidth); 2542 KnownOne = KnownOne.trunc(BitWidth); 2543 break; 2544 } 2545 case ISD::EXTRACT_VECTOR_ELT: { 2546 // At the moment we keep this simple and skip tracking the specific 2547 // element. This way we get the lowest common denominator for all elements 2548 // of the vector. 2549 SDValue InVec = Op.getOperand(0); 2550 SDValue EltNo = Op.getOperand(1); 2551 EVT VecVT = InVec.getValueType(); 2552 const unsigned BitWidth = Op.getValueSizeInBits(); 2553 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 2554 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 2555 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2556 // anything about the extended bits. 2557 if (BitWidth > EltBitWidth) { 2558 KnownZero = KnownZero.trunc(EltBitWidth); 2559 KnownOne = KnownOne.trunc(EltBitWidth); 2560 } 2561 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 2562 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 2563 // If we know the element index, just demand that vector element. 2564 unsigned Idx = ConstEltNo->getZExtValue(); 2565 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 2566 computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1); 2567 } else { 2568 // Unknown element index, so ignore DemandedElts and demand them all. 2569 computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); 2570 } 2571 if (BitWidth > EltBitWidth) { 2572 KnownZero = KnownZero.zext(BitWidth); 2573 KnownOne = KnownOne.zext(BitWidth); 2574 } 2575 break; 2576 } 2577 case ISD::BSWAP: { 2578 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, 2579 Depth + 1); 2580 KnownZero = KnownZero2.byteSwap(); 2581 KnownOne = KnownOne2.byteSwap(); 2582 break; 2583 } 2584 case ISD::SMIN: 2585 case ISD::SMAX: 2586 case ISD::UMIN: 2587 case ISD::UMAX: { 2588 APInt Op0Zero, Op0One; 2589 APInt Op1Zero, Op1One; 2590 computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth+1); 2591 computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth+1); 2592 2593 KnownZero = Op0Zero & Op1Zero; 2594 KnownOne = Op0One & Op1One; 2595 break; 2596 } 2597 case ISD::FrameIndex: 2598 case ISD::TargetFrameIndex: 2599 if (unsigned Align = InferPtrAlignment(Op)) { 2600 // The low bits are known zero if the pointer is aligned. 2601 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); 2602 break; 2603 } 2604 break; 2605 2606 default: 2607 if (Op.getOpcode() < ISD::BUILTIN_OP_END) 2608 break; 2609 LLVM_FALLTHROUGH; 2610 case ISD::INTRINSIC_WO_CHAIN: 2611 case ISD::INTRINSIC_W_CHAIN: 2612 case ISD::INTRINSIC_VOID: 2613 // Allow the target to implement this method for its nodes. 2614 TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); 2615 break; 2616 } 2617 2618 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 2619 } 2620 2621 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2622 // A left-shift of a constant one will have exactly one bit set because 2623 // shifting the bit off the end is undefined. 2624 if (Val.getOpcode() == ISD::SHL) { 2625 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2626 if (C && C->getAPIntValue() == 1) 2627 return true; 2628 } 2629 2630 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2631 // one bit set. 2632 if (Val.getOpcode() == ISD::SRL) { 2633 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2634 if (C && C->getAPIntValue().isSignBit()) 2635 return true; 2636 } 2637 2638 // More could be done here, though the above checks are enough 2639 // to handle some common cases. 2640 2641 // Fall back to computeKnownBits to catch other known cases. 2642 EVT OpVT = Val.getValueType(); 2643 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2644 APInt KnownZero, KnownOne; 2645 computeKnownBits(Val, KnownZero, KnownOne); 2646 return (KnownZero.countPopulation() == BitWidth - 1) && 2647 (KnownOne.countPopulation() == 1); 2648 } 2649 2650 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2651 EVT VT = Op.getValueType(); 2652 assert(VT.isInteger() && "Invalid VT!"); 2653 unsigned VTBits = VT.getScalarSizeInBits(); 2654 unsigned Tmp, Tmp2; 2655 unsigned FirstAnswer = 1; 2656 2657 if (Depth == 6) 2658 return 1; // Limit search depth. 2659 2660 switch (Op.getOpcode()) { 2661 default: break; 2662 case ISD::AssertSext: 2663 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2664 return VTBits-Tmp+1; 2665 case ISD::AssertZext: 2666 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2667 return VTBits-Tmp; 2668 2669 case ISD::Constant: { 2670 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2671 return Val.getNumSignBits(); 2672 } 2673 2674 case ISD::SIGN_EXTEND: 2675 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 2676 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 2677 2678 case ISD::SIGN_EXTEND_INREG: 2679 // Max of the input and what this extends. 2680 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 2681 Tmp = VTBits-Tmp+1; 2682 2683 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2684 return std::max(Tmp, Tmp2); 2685 2686 case ISD::SRA: 2687 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2688 // SRA X, C -> adds C sign bits. 2689 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2690 APInt ShiftVal = C->getAPIntValue(); 2691 ShiftVal += Tmp; 2692 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 2693 } 2694 return Tmp; 2695 case ISD::SHL: 2696 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) { 2697 // shl destroys sign bits. 2698 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2699 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 2700 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 2701 return Tmp - C->getZExtValue(); 2702 } 2703 break; 2704 case ISD::AND: 2705 case ISD::OR: 2706 case ISD::XOR: // NOT is handled here. 2707 // Logical binary ops preserve the number of sign bits at the worst. 2708 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2709 if (Tmp != 1) { 2710 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2711 FirstAnswer = std::min(Tmp, Tmp2); 2712 // We computed what we know about the sign bits as our first 2713 // answer. Now proceed to the generic code that uses 2714 // computeKnownBits, and pick whichever answer is better. 2715 } 2716 break; 2717 2718 case ISD::SELECT: 2719 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2720 if (Tmp == 1) return 1; // Early out. 2721 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2722 return std::min(Tmp, Tmp2); 2723 case ISD::SELECT_CC: 2724 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2725 if (Tmp == 1) return 1; // Early out. 2726 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 2727 return std::min(Tmp, Tmp2); 2728 case ISD::SMIN: 2729 case ISD::SMAX: 2730 case ISD::UMIN: 2731 case ISD::UMAX: 2732 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2733 if (Tmp == 1) 2734 return 1; // Early out. 2735 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 2736 return std::min(Tmp, Tmp2); 2737 case ISD::SADDO: 2738 case ISD::UADDO: 2739 case ISD::SSUBO: 2740 case ISD::USUBO: 2741 case ISD::SMULO: 2742 case ISD::UMULO: 2743 if (Op.getResNo() != 1) 2744 break; 2745 // The boolean result conforms to getBooleanContents. Fall through. 2746 // If setcc returns 0/-1, all bits are sign bits. 2747 // We know that we have an integer-based boolean since these operations 2748 // are only available for integer. 2749 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2750 TargetLowering::ZeroOrNegativeOneBooleanContent) 2751 return VTBits; 2752 break; 2753 case ISD::SETCC: 2754 // If setcc returns 0/-1, all bits are sign bits. 2755 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2756 TargetLowering::ZeroOrNegativeOneBooleanContent) 2757 return VTBits; 2758 break; 2759 case ISD::ROTL: 2760 case ISD::ROTR: 2761 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2762 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 2763 2764 // Handle rotate right by N like a rotate left by 32-N. 2765 if (Op.getOpcode() == ISD::ROTR) 2766 RotAmt = (VTBits-RotAmt) & (VTBits-1); 2767 2768 // If we aren't rotating out all of the known-in sign bits, return the 2769 // number that are left. This handles rotl(sext(x), 1) for example. 2770 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2771 if (Tmp > RotAmt+1) return Tmp-RotAmt; 2772 } 2773 break; 2774 case ISD::ADD: 2775 // Add can have at most one carry bit. Thus we know that the output 2776 // is, at worst, one more bit than the inputs. 2777 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2778 if (Tmp == 1) return 1; // Early out. 2779 2780 // Special case decrementing a value (ADD X, -1): 2781 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2782 if (CRHS->isAllOnesValue()) { 2783 APInt KnownZero, KnownOne; 2784 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2785 2786 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2787 // sign bits set. 2788 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2789 return VTBits; 2790 2791 // If we are subtracting one from a positive number, there is no carry 2792 // out of the result. 2793 if (KnownZero.isNegative()) 2794 return Tmp; 2795 } 2796 2797 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2798 if (Tmp2 == 1) return 1; 2799 return std::min(Tmp, Tmp2)-1; 2800 2801 case ISD::SUB: 2802 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2803 if (Tmp2 == 1) return 1; 2804 2805 // Handle NEG. 2806 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 2807 if (CLHS->isNullValue()) { 2808 APInt KnownZero, KnownOne; 2809 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2810 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2811 // sign bits set. 2812 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2813 return VTBits; 2814 2815 // If the input is known to be positive (the sign bit is known clear), 2816 // the output of the NEG has the same number of sign bits as the input. 2817 if (KnownZero.isNegative()) 2818 return Tmp2; 2819 2820 // Otherwise, we treat this like a SUB. 2821 } 2822 2823 // Sub can have at most one carry bit. Thus we know that the output 2824 // is, at worst, one more bit than the inputs. 2825 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2826 if (Tmp == 1) return 1; // Early out. 2827 return std::min(Tmp, Tmp2)-1; 2828 case ISD::TRUNCATE: 2829 // FIXME: it's tricky to do anything useful for this, but it is an important 2830 // case for targets like X86. 2831 break; 2832 case ISD::EXTRACT_ELEMENT: { 2833 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2834 const int BitWidth = Op.getValueSizeInBits(); 2835 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 2836 2837 // Get reverse index (starting from 1), Op1 value indexes elements from 2838 // little end. Sign starts at big end. 2839 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 2840 2841 // If the sign portion ends in our element the subtraction gives correct 2842 // result. Otherwise it gives either negative or > bitwidth result 2843 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 2844 } 2845 case ISD::EXTRACT_VECTOR_ELT: { 2846 // At the moment we keep this simple and skip tracking the specific 2847 // element. This way we get the lowest common denominator for all elements 2848 // of the vector. 2849 // TODO: get information for given vector element 2850 const unsigned BitWidth = Op.getValueSizeInBits(); 2851 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 2852 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 2853 // anything about sign bits. But if the sizes match we can derive knowledge 2854 // about sign bits from the vector operand. 2855 if (BitWidth == EltBitWidth) 2856 return ComputeNumSignBits(Op.getOperand(0), Depth+1); 2857 break; 2858 } 2859 } 2860 2861 // If we are looking at the loaded value of the SDNode. 2862 if (Op.getResNo() == 0) { 2863 // Handle LOADX separately here. EXTLOAD case will fallthrough. 2864 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 2865 unsigned ExtType = LD->getExtensionType(); 2866 switch (ExtType) { 2867 default: break; 2868 case ISD::SEXTLOAD: // '17' bits known 2869 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 2870 return VTBits-Tmp+1; 2871 case ISD::ZEXTLOAD: // '16' bits known 2872 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 2873 return VTBits-Tmp; 2874 } 2875 } 2876 } 2877 2878 // Allow the target to implement this method for its nodes. 2879 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2880 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2881 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2882 Op.getOpcode() == ISD::INTRINSIC_VOID) { 2883 unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); 2884 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); 2885 } 2886 2887 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2888 // use this information. 2889 APInt KnownZero, KnownOne; 2890 computeKnownBits(Op, KnownZero, KnownOne, Depth); 2891 2892 APInt Mask; 2893 if (KnownZero.isNegative()) { // sign bit is 0 2894 Mask = KnownZero; 2895 } else if (KnownOne.isNegative()) { // sign bit is 1; 2896 Mask = KnownOne; 2897 } else { 2898 // Nothing known. 2899 return FirstAnswer; 2900 } 2901 2902 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2903 // the number of identical bits in the top of the input value. 2904 Mask = ~Mask; 2905 Mask <<= Mask.getBitWidth()-VTBits; 2906 // Return # leading zeros. We use 'min' here in case Val was zero before 2907 // shifting. We don't want to return '64' as for an i32 "0". 2908 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 2909 } 2910 2911 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 2912 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 2913 !isa<ConstantSDNode>(Op.getOperand(1))) 2914 return false; 2915 2916 if (Op.getOpcode() == ISD::OR && 2917 !MaskedValueIsZero(Op.getOperand(0), 2918 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 2919 return false; 2920 2921 return true; 2922 } 2923 2924 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 2925 // If we're told that NaNs won't happen, assume they won't. 2926 if (getTarget().Options.NoNaNsFPMath) 2927 return true; 2928 2929 // If the value is a constant, we can obviously see if it is a NaN or not. 2930 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2931 return !C->getValueAPF().isNaN(); 2932 2933 // TODO: Recognize more cases here. 2934 2935 return false; 2936 } 2937 2938 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 2939 // If the value is a constant, we can obviously see if it is a zero or not. 2940 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2941 return !C->isZero(); 2942 2943 // TODO: Recognize more cases here. 2944 switch (Op.getOpcode()) { 2945 default: break; 2946 case ISD::OR: 2947 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2948 return !C->isNullValue(); 2949 break; 2950 } 2951 2952 return false; 2953 } 2954 2955 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 2956 // Check the obvious case. 2957 if (A == B) return true; 2958 2959 // For for negative and positive zero. 2960 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 2961 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 2962 if (CA->isZero() && CB->isZero()) return true; 2963 2964 // Otherwise they may not be equal. 2965 return false; 2966 } 2967 2968 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 2969 assert(A.getValueType() == B.getValueType() && 2970 "Values must have the same type"); 2971 APInt AZero, AOne; 2972 APInt BZero, BOne; 2973 computeKnownBits(A, AZero, AOne); 2974 computeKnownBits(B, BZero, BOne); 2975 return (AZero | BZero).isAllOnesValue(); 2976 } 2977 2978 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 2979 ArrayRef<SDValue> Ops, 2980 llvm::SelectionDAG &DAG) { 2981 if (Ops.size() == 1) 2982 return Ops[0]; 2983 2984 // Concat of UNDEFs is UNDEF. 2985 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 2986 return DAG.getUNDEF(VT); 2987 2988 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 2989 // simplified to one big BUILD_VECTOR. 2990 // FIXME: Add support for SCALAR_TO_VECTOR as well. 2991 EVT SVT = VT.getScalarType(); 2992 SmallVector<SDValue, 16> Elts; 2993 for (SDValue Op : Ops) { 2994 EVT OpVT = Op.getValueType(); 2995 if (Op.isUndef()) 2996 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 2997 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 2998 Elts.append(Op->op_begin(), Op->op_end()); 2999 else 3000 return SDValue(); 3001 } 3002 3003 // BUILD_VECTOR requires all inputs to be of the same type, find the 3004 // maximum type and extend them all. 3005 for (SDValue Op : Elts) 3006 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 3007 3008 if (SVT.bitsGT(VT.getScalarType())) 3009 for (SDValue &Op : Elts) 3010 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 3011 ? DAG.getZExtOrTrunc(Op, DL, SVT) 3012 : DAG.getSExtOrTrunc(Op, DL, SVT); 3013 3014 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts); 3015 } 3016 3017 /// Gets or creates the specified node. 3018 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 3019 FoldingSetNodeID ID; 3020 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 3021 void *IP = nullptr; 3022 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3023 return SDValue(E, 0); 3024 3025 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 3026 getVTList(VT)); 3027 CSEMap.InsertNode(N, IP); 3028 3029 InsertNode(N); 3030 return SDValue(N, 0); 3031 } 3032 3033 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3034 SDValue Operand) { 3035 // Constant fold unary operations with an integer constant operand. Even 3036 // opaque constant will be folded, because the folding of unary operations 3037 // doesn't create new constants with different values. Nevertheless, the 3038 // opaque flag is preserved during folding to prevent future folding with 3039 // other constants. 3040 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 3041 const APInt &Val = C->getAPIntValue(); 3042 switch (Opcode) { 3043 default: break; 3044 case ISD::SIGN_EXTEND: 3045 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 3046 C->isTargetOpcode(), C->isOpaque()); 3047 case ISD::ANY_EXTEND: 3048 case ISD::ZERO_EXTEND: 3049 case ISD::TRUNCATE: 3050 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 3051 C->isTargetOpcode(), C->isOpaque()); 3052 case ISD::UINT_TO_FP: 3053 case ISD::SINT_TO_FP: { 3054 APFloat apf(EVTToAPFloatSemantics(VT), 3055 APInt::getNullValue(VT.getSizeInBits())); 3056 (void)apf.convertFromAPInt(Val, 3057 Opcode==ISD::SINT_TO_FP, 3058 APFloat::rmNearestTiesToEven); 3059 return getConstantFP(apf, DL, VT); 3060 } 3061 case ISD::BITCAST: 3062 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 3063 return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT); 3064 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 3065 return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT); 3066 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 3067 return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT); 3068 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 3069 return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT); 3070 break; 3071 case ISD::BSWAP: 3072 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 3073 C->isOpaque()); 3074 case ISD::CTPOP: 3075 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 3076 C->isOpaque()); 3077 case ISD::CTLZ: 3078 case ISD::CTLZ_ZERO_UNDEF: 3079 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 3080 C->isOpaque()); 3081 case ISD::CTTZ: 3082 case ISD::CTTZ_ZERO_UNDEF: 3083 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 3084 C->isOpaque()); 3085 } 3086 } 3087 3088 // Constant fold unary operations with a floating point constant operand. 3089 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 3090 APFloat V = C->getValueAPF(); // make copy 3091 switch (Opcode) { 3092 case ISD::FNEG: 3093 V.changeSign(); 3094 return getConstantFP(V, DL, VT); 3095 case ISD::FABS: 3096 V.clearSign(); 3097 return getConstantFP(V, DL, VT); 3098 case ISD::FCEIL: { 3099 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 3100 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3101 return getConstantFP(V, DL, VT); 3102 break; 3103 } 3104 case ISD::FTRUNC: { 3105 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3106 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3107 return getConstantFP(V, DL, VT); 3108 break; 3109 } 3110 case ISD::FFLOOR: { 3111 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3112 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3113 return getConstantFP(V, DL, VT); 3114 break; 3115 } 3116 case ISD::FP_EXTEND: { 3117 bool ignored; 3118 // This can return overflow, underflow, or inexact; we don't care. 3119 // FIXME need to be more flexible about rounding mode. 3120 (void)V.convert(EVTToAPFloatSemantics(VT), 3121 APFloat::rmNearestTiesToEven, &ignored); 3122 return getConstantFP(V, DL, VT); 3123 } 3124 case ISD::FP_TO_SINT: 3125 case ISD::FP_TO_UINT: { 3126 integerPart x[2]; 3127 bool ignored; 3128 static_assert(integerPartWidth >= 64, "APFloat parts too small!"); 3129 // FIXME need to be more flexible about rounding mode. 3130 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), 3131 Opcode==ISD::FP_TO_SINT, 3132 APFloat::rmTowardZero, &ignored); 3133 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual 3134 break; 3135 APInt api(VT.getSizeInBits(), x); 3136 return getConstant(api, DL, VT); 3137 } 3138 case ISD::BITCAST: 3139 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3140 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3141 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3142 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3143 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3144 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3145 break; 3146 } 3147 } 3148 3149 // Constant fold unary operations with a vector integer or float operand. 3150 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3151 if (BV->isConstant()) { 3152 switch (Opcode) { 3153 default: 3154 // FIXME: Entirely reasonable to perform folding of other unary 3155 // operations here as the need arises. 3156 break; 3157 case ISD::FNEG: 3158 case ISD::FABS: 3159 case ISD::FCEIL: 3160 case ISD::FTRUNC: 3161 case ISD::FFLOOR: 3162 case ISD::FP_EXTEND: 3163 case ISD::FP_TO_SINT: 3164 case ISD::FP_TO_UINT: 3165 case ISD::TRUNCATE: 3166 case ISD::UINT_TO_FP: 3167 case ISD::SINT_TO_FP: 3168 case ISD::BSWAP: 3169 case ISD::CTLZ: 3170 case ISD::CTLZ_ZERO_UNDEF: 3171 case ISD::CTTZ: 3172 case ISD::CTTZ_ZERO_UNDEF: 3173 case ISD::CTPOP: { 3174 SDValue Ops = { Operand }; 3175 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3176 return Fold; 3177 } 3178 } 3179 } 3180 } 3181 3182 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3183 switch (Opcode) { 3184 case ISD::TokenFactor: 3185 case ISD::MERGE_VALUES: 3186 case ISD::CONCAT_VECTORS: 3187 return Operand; // Factor, merge or concat of one node? No need. 3188 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3189 case ISD::FP_EXTEND: 3190 assert(VT.isFloatingPoint() && 3191 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3192 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3193 assert((!VT.isVector() || 3194 VT.getVectorNumElements() == 3195 Operand.getValueType().getVectorNumElements()) && 3196 "Vector element count mismatch!"); 3197 assert(Operand.getValueType().bitsLT(VT) && 3198 "Invalid fpext node, dst < src!"); 3199 if (Operand.isUndef()) 3200 return getUNDEF(VT); 3201 break; 3202 case ISD::SIGN_EXTEND: 3203 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3204 "Invalid SIGN_EXTEND!"); 3205 if (Operand.getValueType() == VT) return Operand; // noop extension 3206 assert((!VT.isVector() || 3207 VT.getVectorNumElements() == 3208 Operand.getValueType().getVectorNumElements()) && 3209 "Vector element count mismatch!"); 3210 assert(Operand.getValueType().bitsLT(VT) && 3211 "Invalid sext node, dst < src!"); 3212 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3213 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3214 else if (OpOpcode == ISD::UNDEF) 3215 // sext(undef) = 0, because the top bits will all be the same. 3216 return getConstant(0, DL, VT); 3217 break; 3218 case ISD::ZERO_EXTEND: 3219 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3220 "Invalid ZERO_EXTEND!"); 3221 if (Operand.getValueType() == VT) return Operand; // noop extension 3222 assert((!VT.isVector() || 3223 VT.getVectorNumElements() == 3224 Operand.getValueType().getVectorNumElements()) && 3225 "Vector element count mismatch!"); 3226 assert(Operand.getValueType().bitsLT(VT) && 3227 "Invalid zext node, dst < src!"); 3228 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3229 return getNode(ISD::ZERO_EXTEND, DL, VT, 3230 Operand.getNode()->getOperand(0)); 3231 else if (OpOpcode == ISD::UNDEF) 3232 // zext(undef) = 0, because the top bits will be zero. 3233 return getConstant(0, DL, VT); 3234 break; 3235 case ISD::ANY_EXTEND: 3236 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3237 "Invalid ANY_EXTEND!"); 3238 if (Operand.getValueType() == VT) return Operand; // noop extension 3239 assert((!VT.isVector() || 3240 VT.getVectorNumElements() == 3241 Operand.getValueType().getVectorNumElements()) && 3242 "Vector element count mismatch!"); 3243 assert(Operand.getValueType().bitsLT(VT) && 3244 "Invalid anyext node, dst < src!"); 3245 3246 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3247 OpOpcode == ISD::ANY_EXTEND) 3248 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3249 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3250 else if (OpOpcode == ISD::UNDEF) 3251 return getUNDEF(VT); 3252 3253 // (ext (trunx x)) -> x 3254 if (OpOpcode == ISD::TRUNCATE) { 3255 SDValue OpOp = Operand.getNode()->getOperand(0); 3256 if (OpOp.getValueType() == VT) 3257 return OpOp; 3258 } 3259 break; 3260 case ISD::TRUNCATE: 3261 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3262 "Invalid TRUNCATE!"); 3263 if (Operand.getValueType() == VT) return Operand; // noop truncate 3264 assert((!VT.isVector() || 3265 VT.getVectorNumElements() == 3266 Operand.getValueType().getVectorNumElements()) && 3267 "Vector element count mismatch!"); 3268 assert(Operand.getValueType().bitsGT(VT) && 3269 "Invalid truncate node, src < dst!"); 3270 if (OpOpcode == ISD::TRUNCATE) 3271 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3272 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3273 OpOpcode == ISD::ANY_EXTEND) { 3274 // If the source is smaller than the dest, we still need an extend. 3275 if (Operand.getNode()->getOperand(0).getValueType().getScalarType() 3276 .bitsLT(VT.getScalarType())) 3277 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3278 if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) 3279 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3280 return Operand.getNode()->getOperand(0); 3281 } 3282 if (OpOpcode == ISD::UNDEF) 3283 return getUNDEF(VT); 3284 break; 3285 case ISD::BSWAP: 3286 assert(VT.isInteger() && VT == Operand.getValueType() && 3287 "Invalid BSWAP!"); 3288 assert((VT.getScalarSizeInBits() % 16 == 0) && 3289 "BSWAP types must be a multiple of 16 bits!"); 3290 if (OpOpcode == ISD::UNDEF) 3291 return getUNDEF(VT); 3292 break; 3293 case ISD::BITREVERSE: 3294 assert(VT.isInteger() && VT == Operand.getValueType() && 3295 "Invalid BITREVERSE!"); 3296 if (OpOpcode == ISD::UNDEF) 3297 return getUNDEF(VT); 3298 break; 3299 case ISD::BITCAST: 3300 // Basic sanity checking. 3301 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3302 "Cannot BITCAST between types of different sizes!"); 3303 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3304 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3305 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3306 if (OpOpcode == ISD::UNDEF) 3307 return getUNDEF(VT); 3308 break; 3309 case ISD::SCALAR_TO_VECTOR: 3310 assert(VT.isVector() && !Operand.getValueType().isVector() && 3311 (VT.getVectorElementType() == Operand.getValueType() || 3312 (VT.getVectorElementType().isInteger() && 3313 Operand.getValueType().isInteger() && 3314 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3315 "Illegal SCALAR_TO_VECTOR node!"); 3316 if (OpOpcode == ISD::UNDEF) 3317 return getUNDEF(VT); 3318 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3319 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3320 isa<ConstantSDNode>(Operand.getOperand(1)) && 3321 Operand.getConstantOperandVal(1) == 0 && 3322 Operand.getOperand(0).getValueType() == VT) 3323 return Operand.getOperand(0); 3324 break; 3325 case ISD::FNEG: 3326 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3327 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3328 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3329 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), 3330 Operand.getNode()->getOperand(0), 3331 &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags); 3332 if (OpOpcode == ISD::FNEG) // --X -> X 3333 return Operand.getNode()->getOperand(0); 3334 break; 3335 case ISD::FABS: 3336 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3337 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); 3338 break; 3339 } 3340 3341 SDNode *N; 3342 SDVTList VTs = getVTList(VT); 3343 SDValue Ops[] = {Operand}; 3344 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3345 FoldingSetNodeID ID; 3346 AddNodeIDNode(ID, Opcode, VTs, Ops); 3347 void *IP = nullptr; 3348 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3349 return SDValue(E, 0); 3350 3351 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3352 createOperands(N, Ops); 3353 CSEMap.InsertNode(N, IP); 3354 } else { 3355 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3356 createOperands(N, Ops); 3357 } 3358 3359 InsertNode(N); 3360 return SDValue(N, 0); 3361 } 3362 3363 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3364 const APInt &C2) { 3365 switch (Opcode) { 3366 case ISD::ADD: return std::make_pair(C1 + C2, true); 3367 case ISD::SUB: return std::make_pair(C1 - C2, true); 3368 case ISD::MUL: return std::make_pair(C1 * C2, true); 3369 case ISD::AND: return std::make_pair(C1 & C2, true); 3370 case ISD::OR: return std::make_pair(C1 | C2, true); 3371 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3372 case ISD::SHL: return std::make_pair(C1 << C2, true); 3373 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3374 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3375 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3376 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3377 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3378 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3379 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3380 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3381 case ISD::UDIV: 3382 if (!C2.getBoolValue()) 3383 break; 3384 return std::make_pair(C1.udiv(C2), true); 3385 case ISD::UREM: 3386 if (!C2.getBoolValue()) 3387 break; 3388 return std::make_pair(C1.urem(C2), true); 3389 case ISD::SDIV: 3390 if (!C2.getBoolValue()) 3391 break; 3392 return std::make_pair(C1.sdiv(C2), true); 3393 case ISD::SREM: 3394 if (!C2.getBoolValue()) 3395 break; 3396 return std::make_pair(C1.srem(C2), true); 3397 } 3398 return std::make_pair(APInt(1, 0), false); 3399 } 3400 3401 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3402 EVT VT, const ConstantSDNode *Cst1, 3403 const ConstantSDNode *Cst2) { 3404 if (Cst1->isOpaque() || Cst2->isOpaque()) 3405 return SDValue(); 3406 3407 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3408 Cst2->getAPIntValue()); 3409 if (!Folded.second) 3410 return SDValue(); 3411 return getConstant(Folded.first, DL, VT); 3412 } 3413 3414 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3415 const GlobalAddressSDNode *GA, 3416 const SDNode *N2) { 3417 if (GA->getOpcode() != ISD::GlobalAddress) 3418 return SDValue(); 3419 if (!TLI->isOffsetFoldingLegal(GA)) 3420 return SDValue(); 3421 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3422 if (!Cst2) 3423 return SDValue(); 3424 int64_t Offset = Cst2->getSExtValue(); 3425 switch (Opcode) { 3426 case ISD::ADD: break; 3427 case ISD::SUB: Offset = -uint64_t(Offset); break; 3428 default: return SDValue(); 3429 } 3430 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3431 GA->getOffset() + uint64_t(Offset)); 3432 } 3433 3434 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3435 EVT VT, SDNode *Cst1, 3436 SDNode *Cst2) { 3437 // If the opcode is a target-specific ISD node, there's nothing we can 3438 // do here and the operand rules may not line up with the below, so 3439 // bail early. 3440 if (Opcode >= ISD::BUILTIN_OP_END) 3441 return SDValue(); 3442 3443 // Handle the case of two scalars. 3444 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3445 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3446 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3447 assert((!Folded || !VT.isVector()) && 3448 "Can't fold vectors ops with scalar operands"); 3449 return Folded; 3450 } 3451 } 3452 3453 // fold (add Sym, c) -> Sym+c 3454 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3455 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3456 if (isCommutativeBinOp(Opcode)) 3457 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3458 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3459 3460 // For vectors extract each constant element into Inputs so we can constant 3461 // fold them individually. 3462 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3463 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3464 if (!BV1 || !BV2) 3465 return SDValue(); 3466 3467 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3468 3469 EVT SVT = VT.getScalarType(); 3470 SmallVector<SDValue, 4> Outputs; 3471 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3472 ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I)); 3473 ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I)); 3474 if (!V1 || !V2) // Not a constant, bail. 3475 return SDValue(); 3476 3477 if (V1->isOpaque() || V2->isOpaque()) 3478 return SDValue(); 3479 3480 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3481 // FIXME: This is valid and could be handled by truncating the APInts. 3482 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3483 return SDValue(); 3484 3485 // Fold one vector element. 3486 std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(), 3487 V2->getAPIntValue()); 3488 if (!Folded.second) 3489 return SDValue(); 3490 Outputs.push_back(getConstant(Folded.first, DL, SVT)); 3491 } 3492 3493 assert(VT.getVectorNumElements() == Outputs.size() && 3494 "Vector size mismatch!"); 3495 3496 // We may have a vector type but a scalar result. Create a splat. 3497 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3498 3499 // Build a big vector out of the scalar elements we generated. 3500 return getBuildVector(VT, SDLoc(), Outputs); 3501 } 3502 3503 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3504 const SDLoc &DL, EVT VT, 3505 ArrayRef<SDValue> Ops, 3506 const SDNodeFlags *Flags) { 3507 // If the opcode is a target-specific ISD node, there's nothing we can 3508 // do here and the operand rules may not line up with the below, so 3509 // bail early. 3510 if (Opcode >= ISD::BUILTIN_OP_END) 3511 return SDValue(); 3512 3513 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 3514 if (!VT.isVector()) 3515 return SDValue(); 3516 3517 unsigned NumElts = VT.getVectorNumElements(); 3518 3519 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 3520 return !Op.getValueType().isVector() || 3521 Op.getValueType().getVectorNumElements() == NumElts; 3522 }; 3523 3524 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 3525 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 3526 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 3527 (BV && BV->isConstant()); 3528 }; 3529 3530 // All operands must be vector types with the same number of elements as 3531 // the result type and must be either UNDEF or a build vector of constant 3532 // or UNDEF scalars. 3533 if (!all_of(Ops, IsConstantBuildVectorOrUndef) || 3534 !all_of(Ops, IsScalarOrSameVectorSize)) 3535 return SDValue(); 3536 3537 // If we are comparing vectors, then the result needs to be a i1 boolean 3538 // that is then sign-extended back to the legal result type. 3539 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 3540 3541 // Find legal integer scalar type for constant promotion and 3542 // ensure that its scalar size is at least as large as source. 3543 EVT LegalSVT = VT.getScalarType(); 3544 if (LegalSVT.isInteger()) { 3545 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 3546 if (LegalSVT.bitsLT(VT.getScalarType())) 3547 return SDValue(); 3548 } 3549 3550 // Constant fold each scalar lane separately. 3551 SmallVector<SDValue, 4> ScalarResults; 3552 for (unsigned i = 0; i != NumElts; i++) { 3553 SmallVector<SDValue, 4> ScalarOps; 3554 for (SDValue Op : Ops) { 3555 EVT InSVT = Op.getValueType().getScalarType(); 3556 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 3557 if (!InBV) { 3558 // We've checked that this is UNDEF or a constant of some kind. 3559 if (Op.isUndef()) 3560 ScalarOps.push_back(getUNDEF(InSVT)); 3561 else 3562 ScalarOps.push_back(Op); 3563 continue; 3564 } 3565 3566 SDValue ScalarOp = InBV->getOperand(i); 3567 EVT ScalarVT = ScalarOp.getValueType(); 3568 3569 // Build vector (integer) scalar operands may need implicit 3570 // truncation - do this before constant folding. 3571 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 3572 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 3573 3574 ScalarOps.push_back(ScalarOp); 3575 } 3576 3577 // Constant fold the scalar operands. 3578 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 3579 3580 // Legalize the (integer) scalar constant if necessary. 3581 if (LegalSVT != SVT) 3582 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 3583 3584 // Scalar folding only succeeded if the result is a constant or UNDEF. 3585 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3586 ScalarResult.getOpcode() != ISD::ConstantFP) 3587 return SDValue(); 3588 ScalarResults.push_back(ScalarResult); 3589 } 3590 3591 return getBuildVector(VT, DL, ScalarResults); 3592 } 3593 3594 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3595 SDValue N1, SDValue N2, 3596 const SDNodeFlags *Flags) { 3597 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3598 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 3599 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3600 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3601 3602 // Canonicalize constant to RHS if commutative. 3603 if (isCommutativeBinOp(Opcode)) { 3604 if (N1C && !N2C) { 3605 std::swap(N1C, N2C); 3606 std::swap(N1, N2); 3607 } else if (N1CFP && !N2CFP) { 3608 std::swap(N1CFP, N2CFP); 3609 std::swap(N1, N2); 3610 } 3611 } 3612 3613 switch (Opcode) { 3614 default: break; 3615 case ISD::TokenFactor: 3616 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 3617 N2.getValueType() == MVT::Other && "Invalid token factor!"); 3618 // Fold trivial token factors. 3619 if (N1.getOpcode() == ISD::EntryToken) return N2; 3620 if (N2.getOpcode() == ISD::EntryToken) return N1; 3621 if (N1 == N2) return N1; 3622 break; 3623 case ISD::CONCAT_VECTORS: { 3624 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3625 SDValue Ops[] = {N1, N2}; 3626 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3627 return V; 3628 break; 3629 } 3630 case ISD::AND: 3631 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3632 assert(N1.getValueType() == N2.getValueType() && 3633 N1.getValueType() == VT && "Binary operator types must match!"); 3634 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 3635 // worth handling here. 3636 if (N2C && N2C->isNullValue()) 3637 return N2; 3638 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 3639 return N1; 3640 break; 3641 case ISD::OR: 3642 case ISD::XOR: 3643 case ISD::ADD: 3644 case ISD::SUB: 3645 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3646 assert(N1.getValueType() == N2.getValueType() && 3647 N1.getValueType() == VT && "Binary operator types must match!"); 3648 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 3649 // it's worth handling here. 3650 if (N2C && N2C->isNullValue()) 3651 return N1; 3652 break; 3653 case ISD::UDIV: 3654 case ISD::UREM: 3655 case ISD::MULHU: 3656 case ISD::MULHS: 3657 case ISD::MUL: 3658 case ISD::SDIV: 3659 case ISD::SREM: 3660 case ISD::SMIN: 3661 case ISD::SMAX: 3662 case ISD::UMIN: 3663 case ISD::UMAX: 3664 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3665 assert(N1.getValueType() == N2.getValueType() && 3666 N1.getValueType() == VT && "Binary operator types must match!"); 3667 break; 3668 case ISD::FADD: 3669 case ISD::FSUB: 3670 case ISD::FMUL: 3671 case ISD::FDIV: 3672 case ISD::FREM: 3673 if (getTarget().Options.UnsafeFPMath) { 3674 if (Opcode == ISD::FADD) { 3675 // x+0 --> x 3676 if (N2CFP && N2CFP->getValueAPF().isZero()) 3677 return N1; 3678 } else if (Opcode == ISD::FSUB) { 3679 // x-0 --> x 3680 if (N2CFP && N2CFP->getValueAPF().isZero()) 3681 return N1; 3682 } else if (Opcode == ISD::FMUL) { 3683 // x*0 --> 0 3684 if (N2CFP && N2CFP->isZero()) 3685 return N2; 3686 // x*1 --> x 3687 if (N2CFP && N2CFP->isExactlyValue(1.0)) 3688 return N1; 3689 } 3690 } 3691 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 3692 assert(N1.getValueType() == N2.getValueType() && 3693 N1.getValueType() == VT && "Binary operator types must match!"); 3694 break; 3695 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 3696 assert(N1.getValueType() == VT && 3697 N1.getValueType().isFloatingPoint() && 3698 N2.getValueType().isFloatingPoint() && 3699 "Invalid FCOPYSIGN!"); 3700 break; 3701 case ISD::SHL: 3702 case ISD::SRA: 3703 case ISD::SRL: 3704 case ISD::ROTL: 3705 case ISD::ROTR: 3706 assert(VT == N1.getValueType() && 3707 "Shift operators return type must be the same as their first arg"); 3708 assert(VT.isInteger() && N2.getValueType().isInteger() && 3709 "Shifts only work on integers"); 3710 assert((!VT.isVector() || VT == N2.getValueType()) && 3711 "Vector shift amounts must be in the same as their first arg"); 3712 // Verify that the shift amount VT is bit enough to hold valid shift 3713 // amounts. This catches things like trying to shift an i1024 value by an 3714 // i8, which is easy to fall into in generic code that uses 3715 // TLI.getShiftAmount(). 3716 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 3717 "Invalid use of small shift amount with oversized value!"); 3718 3719 // Always fold shifts of i1 values so the code generator doesn't need to 3720 // handle them. Since we know the size of the shift has to be less than the 3721 // size of the value, the shift/rotate count is guaranteed to be zero. 3722 if (VT == MVT::i1) 3723 return N1; 3724 if (N2C && N2C->isNullValue()) 3725 return N1; 3726 break; 3727 case ISD::FP_ROUND_INREG: { 3728 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3729 assert(VT == N1.getValueType() && "Not an inreg round!"); 3730 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 3731 "Cannot FP_ROUND_INREG integer types"); 3732 assert(EVT.isVector() == VT.isVector() && 3733 "FP_ROUND_INREG type should be vector iff the operand " 3734 "type is vector!"); 3735 assert((!EVT.isVector() || 3736 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3737 "Vector element counts must match in FP_ROUND_INREG"); 3738 assert(EVT.bitsLE(VT) && "Not rounding down!"); 3739 (void)EVT; 3740 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 3741 break; 3742 } 3743 case ISD::FP_ROUND: 3744 assert(VT.isFloatingPoint() && 3745 N1.getValueType().isFloatingPoint() && 3746 VT.bitsLE(N1.getValueType()) && 3747 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 3748 "Invalid FP_ROUND!"); 3749 if (N1.getValueType() == VT) return N1; // noop conversion. 3750 break; 3751 case ISD::AssertSext: 3752 case ISD::AssertZext: { 3753 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3754 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3755 assert(VT.isInteger() && EVT.isInteger() && 3756 "Cannot *_EXTEND_INREG FP types"); 3757 assert(!EVT.isVector() && 3758 "AssertSExt/AssertZExt type should be the vector element type " 3759 "rather than the vector type!"); 3760 assert(EVT.bitsLE(VT) && "Not extending!"); 3761 if (VT == EVT) return N1; // noop assertion. 3762 break; 3763 } 3764 case ISD::SIGN_EXTEND_INREG: { 3765 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3766 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3767 assert(VT.isInteger() && EVT.isInteger() && 3768 "Cannot *_EXTEND_INREG FP types"); 3769 assert(EVT.isVector() == VT.isVector() && 3770 "SIGN_EXTEND_INREG type should be vector iff the operand " 3771 "type is vector!"); 3772 assert((!EVT.isVector() || 3773 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3774 "Vector element counts must match in SIGN_EXTEND_INREG"); 3775 assert(EVT.bitsLE(VT) && "Not extending!"); 3776 if (EVT == VT) return N1; // Not actually extending 3777 3778 auto SignExtendInReg = [&](APInt Val) { 3779 unsigned FromBits = EVT.getScalarSizeInBits(); 3780 Val <<= Val.getBitWidth() - FromBits; 3781 Val = Val.ashr(Val.getBitWidth() - FromBits); 3782 return getConstant(Val, DL, VT.getScalarType()); 3783 }; 3784 3785 if (N1C) { 3786 const APInt &Val = N1C->getAPIntValue(); 3787 return SignExtendInReg(Val); 3788 } 3789 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 3790 SmallVector<SDValue, 8> Ops; 3791 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 3792 SDValue Op = N1.getOperand(i); 3793 if (Op.isUndef()) { 3794 Ops.push_back(getUNDEF(VT.getScalarType())); 3795 continue; 3796 } 3797 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3798 APInt Val = C->getAPIntValue(); 3799 Val = Val.zextOrTrunc(VT.getScalarSizeInBits()); 3800 Ops.push_back(SignExtendInReg(Val)); 3801 continue; 3802 } 3803 break; 3804 } 3805 if (Ops.size() == VT.getVectorNumElements()) 3806 return getBuildVector(VT, DL, Ops); 3807 } 3808 break; 3809 } 3810 case ISD::EXTRACT_VECTOR_ELT: 3811 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 3812 if (N1.isUndef()) 3813 return getUNDEF(VT); 3814 3815 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 3816 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 3817 return getUNDEF(VT); 3818 3819 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 3820 // expanding copies of large vectors from registers. 3821 if (N2C && 3822 N1.getOpcode() == ISD::CONCAT_VECTORS && 3823 N1.getNumOperands() > 0) { 3824 unsigned Factor = 3825 N1.getOperand(0).getValueType().getVectorNumElements(); 3826 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 3827 N1.getOperand(N2C->getZExtValue() / Factor), 3828 getConstant(N2C->getZExtValue() % Factor, DL, 3829 N2.getValueType())); 3830 } 3831 3832 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 3833 // expanding large vector constants. 3834 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 3835 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 3836 3837 if (VT != Elt.getValueType()) 3838 // If the vector element type is not legal, the BUILD_VECTOR operands 3839 // are promoted and implicitly truncated, and the result implicitly 3840 // extended. Make that explicit here. 3841 Elt = getAnyExtOrTrunc(Elt, DL, VT); 3842 3843 return Elt; 3844 } 3845 3846 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 3847 // operations are lowered to scalars. 3848 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 3849 // If the indices are the same, return the inserted element else 3850 // if the indices are known different, extract the element from 3851 // the original vector. 3852 SDValue N1Op2 = N1.getOperand(2); 3853 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 3854 3855 if (N1Op2C && N2C) { 3856 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 3857 if (VT == N1.getOperand(1).getValueType()) 3858 return N1.getOperand(1); 3859 else 3860 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 3861 } 3862 3863 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 3864 } 3865 } 3866 break; 3867 case ISD::EXTRACT_ELEMENT: 3868 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 3869 assert(!N1.getValueType().isVector() && !VT.isVector() && 3870 (N1.getValueType().isInteger() == VT.isInteger()) && 3871 N1.getValueType() != VT && 3872 "Wrong types for EXTRACT_ELEMENT!"); 3873 3874 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 3875 // 64-bit integers into 32-bit parts. Instead of building the extract of 3876 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 3877 if (N1.getOpcode() == ISD::BUILD_PAIR) 3878 return N1.getOperand(N2C->getZExtValue()); 3879 3880 // EXTRACT_ELEMENT of a constant int is also very common. 3881 if (N1C) { 3882 unsigned ElementSize = VT.getSizeInBits(); 3883 unsigned Shift = ElementSize * N2C->getZExtValue(); 3884 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 3885 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 3886 } 3887 break; 3888 case ISD::EXTRACT_SUBVECTOR: 3889 if (VT.isSimple() && N1.getValueType().isSimple()) { 3890 assert(VT.isVector() && N1.getValueType().isVector() && 3891 "Extract subvector VTs must be a vectors!"); 3892 assert(VT.getVectorElementType() == 3893 N1.getValueType().getVectorElementType() && 3894 "Extract subvector VTs must have the same element type!"); 3895 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 3896 "Extract subvector must be from larger vector to smaller vector!"); 3897 3898 if (N2C) { 3899 assert((VT.getVectorNumElements() + N2C->getZExtValue() 3900 <= N1.getValueType().getVectorNumElements()) 3901 && "Extract subvector overflow!"); 3902 } 3903 3904 // Trivial extraction. 3905 if (VT.getSimpleVT() == N1.getSimpleValueType()) 3906 return N1; 3907 3908 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 3909 // during shuffle legalization. 3910 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 3911 VT == N1.getOperand(1).getValueType()) 3912 return N1.getOperand(1); 3913 } 3914 break; 3915 } 3916 3917 // Perform trivial constant folding. 3918 if (SDValue SV = 3919 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 3920 return SV; 3921 3922 // Constant fold FP operations. 3923 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 3924 if (N1CFP) { 3925 if (N2CFP) { 3926 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 3927 APFloat::opStatus s; 3928 switch (Opcode) { 3929 case ISD::FADD: 3930 s = V1.add(V2, APFloat::rmNearestTiesToEven); 3931 if (!HasFPExceptions || s != APFloat::opInvalidOp) 3932 return getConstantFP(V1, DL, VT); 3933 break; 3934 case ISD::FSUB: 3935 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 3936 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3937 return getConstantFP(V1, DL, VT); 3938 break; 3939 case ISD::FMUL: 3940 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 3941 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3942 return getConstantFP(V1, DL, VT); 3943 break; 3944 case ISD::FDIV: 3945 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 3946 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3947 s!=APFloat::opDivByZero)) { 3948 return getConstantFP(V1, DL, VT); 3949 } 3950 break; 3951 case ISD::FREM : 3952 s = V1.mod(V2); 3953 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3954 s!=APFloat::opDivByZero)) { 3955 return getConstantFP(V1, DL, VT); 3956 } 3957 break; 3958 case ISD::FCOPYSIGN: 3959 V1.copySign(V2); 3960 return getConstantFP(V1, DL, VT); 3961 default: break; 3962 } 3963 } 3964 3965 if (Opcode == ISD::FP_ROUND) { 3966 APFloat V = N1CFP->getValueAPF(); // make copy 3967 bool ignored; 3968 // This can return overflow, underflow, or inexact; we don't care. 3969 // FIXME need to be more flexible about rounding mode. 3970 (void)V.convert(EVTToAPFloatSemantics(VT), 3971 APFloat::rmNearestTiesToEven, &ignored); 3972 return getConstantFP(V, DL, VT); 3973 } 3974 } 3975 3976 // Canonicalize an UNDEF to the RHS, even over a constant. 3977 if (N1.isUndef()) { 3978 if (isCommutativeBinOp(Opcode)) { 3979 std::swap(N1, N2); 3980 } else { 3981 switch (Opcode) { 3982 case ISD::FP_ROUND_INREG: 3983 case ISD::SIGN_EXTEND_INREG: 3984 case ISD::SUB: 3985 case ISD::FSUB: 3986 case ISD::FDIV: 3987 case ISD::FREM: 3988 case ISD::SRA: 3989 return N1; // fold op(undef, arg2) -> undef 3990 case ISD::UDIV: 3991 case ISD::SDIV: 3992 case ISD::UREM: 3993 case ISD::SREM: 3994 case ISD::SRL: 3995 case ISD::SHL: 3996 if (!VT.isVector()) 3997 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 3998 // For vectors, we can't easily build an all zero vector, just return 3999 // the LHS. 4000 return N2; 4001 } 4002 } 4003 } 4004 4005 // Fold a bunch of operators when the RHS is undef. 4006 if (N2.isUndef()) { 4007 switch (Opcode) { 4008 case ISD::XOR: 4009 if (N1.isUndef()) 4010 // Handle undef ^ undef -> 0 special case. This is a common 4011 // idiom (misuse). 4012 return getConstant(0, DL, VT); 4013 LLVM_FALLTHROUGH; 4014 case ISD::ADD: 4015 case ISD::ADDC: 4016 case ISD::ADDE: 4017 case ISD::SUB: 4018 case ISD::UDIV: 4019 case ISD::SDIV: 4020 case ISD::UREM: 4021 case ISD::SREM: 4022 return N2; // fold op(arg1, undef) -> undef 4023 case ISD::FADD: 4024 case ISD::FSUB: 4025 case ISD::FMUL: 4026 case ISD::FDIV: 4027 case ISD::FREM: 4028 if (getTarget().Options.UnsafeFPMath) 4029 return N2; 4030 break; 4031 case ISD::MUL: 4032 case ISD::AND: 4033 case ISD::SRL: 4034 case ISD::SHL: 4035 if (!VT.isVector()) 4036 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 4037 // For vectors, we can't easily build an all zero vector, just return 4038 // the LHS. 4039 return N1; 4040 case ISD::OR: 4041 if (!VT.isVector()) 4042 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 4043 // For vectors, we can't easily build an all one vector, just return 4044 // the LHS. 4045 return N1; 4046 case ISD::SRA: 4047 return N1; 4048 } 4049 } 4050 4051 // Memoize this node if possible. 4052 SDNode *N; 4053 SDVTList VTs = getVTList(VT); 4054 if (VT != MVT::Glue) { 4055 SDValue Ops[] = {N1, N2}; 4056 FoldingSetNodeID ID; 4057 AddNodeIDNode(ID, Opcode, VTs, Ops); 4058 void *IP = nullptr; 4059 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4060 if (Flags) 4061 E->intersectFlagsWith(Flags); 4062 return SDValue(E, 0); 4063 } 4064 4065 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4066 CSEMap.InsertNode(N, IP); 4067 } else { 4068 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 4069 } 4070 4071 InsertNode(N); 4072 return SDValue(N, 0); 4073 } 4074 4075 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4076 SDValue N1, SDValue N2, SDValue N3) { 4077 // Perform various simplifications. 4078 switch (Opcode) { 4079 case ISD::FMA: { 4080 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 4081 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 4082 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 4083 if (N1CFP && N2CFP && N3CFP) { 4084 APFloat V1 = N1CFP->getValueAPF(); 4085 const APFloat &V2 = N2CFP->getValueAPF(); 4086 const APFloat &V3 = N3CFP->getValueAPF(); 4087 APFloat::opStatus s = 4088 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 4089 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 4090 return getConstantFP(V1, DL, VT); 4091 } 4092 break; 4093 } 4094 case ISD::CONCAT_VECTORS: { 4095 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 4096 SDValue Ops[] = {N1, N2, N3}; 4097 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 4098 return V; 4099 break; 4100 } 4101 case ISD::SETCC: { 4102 // Use FoldSetCC to simplify SETCC's. 4103 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 4104 return V; 4105 // Vector constant folding. 4106 SDValue Ops[] = {N1, N2, N3}; 4107 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4108 return V; 4109 break; 4110 } 4111 case ISD::SELECT: 4112 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4113 if (N1C->getZExtValue()) 4114 return N2; // select true, X, Y -> X 4115 return N3; // select false, X, Y -> Y 4116 } 4117 4118 if (N2 == N3) return N2; // select C, X, X -> X 4119 break; 4120 case ISD::VECTOR_SHUFFLE: 4121 llvm_unreachable("should use getVectorShuffle constructor!"); 4122 case ISD::INSERT_SUBVECTOR: { 4123 SDValue Index = N3; 4124 if (VT.isSimple() && N1.getValueType().isSimple() 4125 && N2.getValueType().isSimple()) { 4126 assert(VT.isVector() && N1.getValueType().isVector() && 4127 N2.getValueType().isVector() && 4128 "Insert subvector VTs must be a vectors"); 4129 assert(VT == N1.getValueType() && 4130 "Dest and insert subvector source types must match!"); 4131 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4132 "Insert subvector must be from smaller vector to larger vector!"); 4133 if (isa<ConstantSDNode>(Index)) { 4134 assert((N2.getValueType().getVectorNumElements() + 4135 cast<ConstantSDNode>(Index)->getZExtValue() 4136 <= VT.getVectorNumElements()) 4137 && "Insert subvector overflow!"); 4138 } 4139 4140 // Trivial insertion. 4141 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4142 return N2; 4143 } 4144 break; 4145 } 4146 case ISD::BITCAST: 4147 // Fold bit_convert nodes from a type to themselves. 4148 if (N1.getValueType() == VT) 4149 return N1; 4150 break; 4151 } 4152 4153 // Memoize node if it doesn't produce a flag. 4154 SDNode *N; 4155 SDVTList VTs = getVTList(VT); 4156 SDValue Ops[] = {N1, N2, N3}; 4157 if (VT != MVT::Glue) { 4158 FoldingSetNodeID ID; 4159 AddNodeIDNode(ID, Opcode, VTs, Ops); 4160 void *IP = nullptr; 4161 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4162 return SDValue(E, 0); 4163 4164 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4165 createOperands(N, Ops); 4166 CSEMap.InsertNode(N, IP); 4167 } else { 4168 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4169 createOperands(N, Ops); 4170 } 4171 4172 InsertNode(N); 4173 return SDValue(N, 0); 4174 } 4175 4176 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4177 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4178 SDValue Ops[] = { N1, N2, N3, N4 }; 4179 return getNode(Opcode, DL, VT, Ops); 4180 } 4181 4182 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4183 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4184 SDValue N5) { 4185 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4186 return getNode(Opcode, DL, VT, Ops); 4187 } 4188 4189 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4190 /// the incoming stack arguments to be loaded from the stack. 4191 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4192 SmallVector<SDValue, 8> ArgChains; 4193 4194 // Include the original chain at the beginning of the list. When this is 4195 // used by target LowerCall hooks, this helps legalize find the 4196 // CALLSEQ_BEGIN node. 4197 ArgChains.push_back(Chain); 4198 4199 // Add a chain value for each stack argument. 4200 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4201 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4202 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4203 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4204 if (FI->getIndex() < 0) 4205 ArgChains.push_back(SDValue(L, 1)); 4206 4207 // Build a tokenfactor for all the chains. 4208 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4209 } 4210 4211 /// getMemsetValue - Vectorized representation of the memset value 4212 /// operand. 4213 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4214 const SDLoc &dl) { 4215 assert(!Value.isUndef()); 4216 4217 unsigned NumBits = VT.getScalarSizeInBits(); 4218 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4219 assert(C->getAPIntValue().getBitWidth() == 8); 4220 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4221 if (VT.isInteger()) 4222 return DAG.getConstant(Val, dl, VT); 4223 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4224 VT); 4225 } 4226 4227 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4228 EVT IntVT = VT.getScalarType(); 4229 if (!IntVT.isInteger()) 4230 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4231 4232 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4233 if (NumBits > 8) { 4234 // Use a multiplication with 0x010101... to extend the input to the 4235 // required length. 4236 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4237 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4238 DAG.getConstant(Magic, dl, IntVT)); 4239 } 4240 4241 if (VT != Value.getValueType() && !VT.isInteger()) 4242 Value = DAG.getBitcast(VT.getScalarType(), Value); 4243 if (VT != Value.getValueType()) 4244 Value = DAG.getSplatBuildVector(VT, dl, Value); 4245 4246 return Value; 4247 } 4248 4249 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4250 /// used when a memcpy is turned into a memset when the source is a constant 4251 /// string ptr. 4252 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4253 const TargetLowering &TLI, StringRef Str) { 4254 // Handle vector with all elements zero. 4255 if (Str.empty()) { 4256 if (VT.isInteger()) 4257 return DAG.getConstant(0, dl, VT); 4258 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4259 return DAG.getConstantFP(0.0, dl, VT); 4260 else if (VT.isVector()) { 4261 unsigned NumElts = VT.getVectorNumElements(); 4262 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4263 return DAG.getNode(ISD::BITCAST, dl, VT, 4264 DAG.getConstant(0, dl, 4265 EVT::getVectorVT(*DAG.getContext(), 4266 EltVT, NumElts))); 4267 } else 4268 llvm_unreachable("Expected type!"); 4269 } 4270 4271 assert(!VT.isVector() && "Can't handle vector type here!"); 4272 unsigned NumVTBits = VT.getSizeInBits(); 4273 unsigned NumVTBytes = NumVTBits / 8; 4274 unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); 4275 4276 APInt Val(NumVTBits, 0); 4277 if (DAG.getDataLayout().isLittleEndian()) { 4278 for (unsigned i = 0; i != NumBytes; ++i) 4279 Val |= (uint64_t)(unsigned char)Str[i] << i*8; 4280 } else { 4281 for (unsigned i = 0; i != NumBytes; ++i) 4282 Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; 4283 } 4284 4285 // If the "cost" of materializing the integer immediate is less than the cost 4286 // of a load, then it is cost effective to turn the load into the immediate. 4287 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4288 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4289 return DAG.getConstant(Val, dl, VT); 4290 return SDValue(nullptr, 0); 4291 } 4292 4293 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4294 const SDLoc &DL) { 4295 EVT VT = Base.getValueType(); 4296 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4297 } 4298 4299 /// isMemSrcFromString - Returns true if memcpy source is a string constant. 4300 /// 4301 static bool isMemSrcFromString(SDValue Src, StringRef &Str) { 4302 uint64_t SrcDelta = 0; 4303 GlobalAddressSDNode *G = nullptr; 4304 if (Src.getOpcode() == ISD::GlobalAddress) 4305 G = cast<GlobalAddressSDNode>(Src); 4306 else if (Src.getOpcode() == ISD::ADD && 4307 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4308 Src.getOperand(1).getOpcode() == ISD::Constant) { 4309 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4310 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4311 } 4312 if (!G) 4313 return false; 4314 4315 return getConstantStringInfo(G->getGlobal(), Str, 4316 SrcDelta + G->getOffset(), false); 4317 } 4318 4319 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4320 /// Return true if the number of memory ops is below the threshold (Limit). 4321 /// It returns the types of the sequence of memory ops to perform 4322 /// memset / memcpy by reference. 4323 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4324 unsigned Limit, uint64_t Size, 4325 unsigned DstAlign, unsigned SrcAlign, 4326 bool IsMemset, 4327 bool ZeroMemset, 4328 bool MemcpyStrSrc, 4329 bool AllowOverlap, 4330 unsigned DstAS, unsigned SrcAS, 4331 SelectionDAG &DAG, 4332 const TargetLowering &TLI) { 4333 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4334 "Expecting memcpy / memset source to meet alignment requirement!"); 4335 // If 'SrcAlign' is zero, that means the memory operation does not need to 4336 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4337 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4338 // is the specified alignment of the memory operation. If it is zero, that 4339 // means it's possible to change the alignment of the destination. 4340 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4341 // not need to be loaded. 4342 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4343 IsMemset, ZeroMemset, MemcpyStrSrc, 4344 DAG.getMachineFunction()); 4345 4346 if (VT == MVT::Other) { 4347 if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) || 4348 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) { 4349 VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS); 4350 } else { 4351 switch (DstAlign & 7) { 4352 case 0: VT = MVT::i64; break; 4353 case 4: VT = MVT::i32; break; 4354 case 2: VT = MVT::i16; break; 4355 default: VT = MVT::i8; break; 4356 } 4357 } 4358 4359 MVT LVT = MVT::i64; 4360 while (!TLI.isTypeLegal(LVT)) 4361 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4362 assert(LVT.isInteger()); 4363 4364 if (VT.bitsGT(LVT)) 4365 VT = LVT; 4366 } 4367 4368 unsigned NumMemOps = 0; 4369 while (Size != 0) { 4370 unsigned VTSize = VT.getSizeInBits() / 8; 4371 while (VTSize > Size) { 4372 // For now, only use non-vector load / store's for the left-over pieces. 4373 EVT NewVT = VT; 4374 unsigned NewVTSize; 4375 4376 bool Found = false; 4377 if (VT.isVector() || VT.isFloatingPoint()) { 4378 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4379 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4380 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4381 Found = true; 4382 else if (NewVT == MVT::i64 && 4383 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4384 TLI.isSafeMemOpType(MVT::f64)) { 4385 // i64 is usually not legal on 32-bit targets, but f64 may be. 4386 NewVT = MVT::f64; 4387 Found = true; 4388 } 4389 } 4390 4391 if (!Found) { 4392 do { 4393 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4394 if (NewVT == MVT::i8) 4395 break; 4396 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4397 } 4398 NewVTSize = NewVT.getSizeInBits() / 8; 4399 4400 // If the new VT cannot cover all of the remaining bits, then consider 4401 // issuing a (or a pair of) unaligned and overlapping load / store. 4402 // FIXME: Only does this for 64-bit or more since we don't have proper 4403 // cost model for unaligned load / store. 4404 bool Fast; 4405 if (NumMemOps && AllowOverlap && 4406 VTSize >= 8 && NewVTSize < Size && 4407 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4408 VTSize = Size; 4409 else { 4410 VT = NewVT; 4411 VTSize = NewVTSize; 4412 } 4413 } 4414 4415 if (++NumMemOps > Limit) 4416 return false; 4417 4418 MemOps.push_back(VT); 4419 Size -= VTSize; 4420 } 4421 4422 return true; 4423 } 4424 4425 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4426 // On Darwin, -Os means optimize for size without hurting performance, so 4427 // only really optimize for size when -Oz (MinSize) is used. 4428 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4429 return MF.getFunction()->optForMinSize(); 4430 return MF.getFunction()->optForSize(); 4431 } 4432 4433 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4434 SDValue Chain, SDValue Dst, SDValue Src, 4435 uint64_t Size, unsigned Align, 4436 bool isVol, bool AlwaysInline, 4437 MachinePointerInfo DstPtrInfo, 4438 MachinePointerInfo SrcPtrInfo) { 4439 // Turn a memcpy of undef to nop. 4440 if (Src.isUndef()) 4441 return Chain; 4442 4443 // Expand memcpy to a series of load and store ops if the size operand falls 4444 // below a certain threshold. 4445 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4446 // rather than maybe a humongous number of loads and stores. 4447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4448 std::vector<EVT> MemOps; 4449 bool DstAlignCanChange = false; 4450 MachineFunction &MF = DAG.getMachineFunction(); 4451 MachineFrameInfo &MFI = MF.getFrameInfo(); 4452 bool OptSize = shouldLowerMemFuncForSize(MF); 4453 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4454 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4455 DstAlignCanChange = true; 4456 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4457 if (Align > SrcAlign) 4458 SrcAlign = Align; 4459 StringRef Str; 4460 bool CopyFromStr = isMemSrcFromString(Src, Str); 4461 bool isZeroStr = CopyFromStr && Str.empty(); 4462 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4463 4464 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4465 (DstAlignCanChange ? 0 : Align), 4466 (isZeroStr ? 0 : SrcAlign), 4467 false, false, CopyFromStr, true, 4468 DstPtrInfo.getAddrSpace(), 4469 SrcPtrInfo.getAddrSpace(), 4470 DAG, TLI)) 4471 return SDValue(); 4472 4473 if (DstAlignCanChange) { 4474 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4475 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4476 4477 // Don't promote to an alignment that would require dynamic stack 4478 // realignment. 4479 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4480 if (!TRI->needsStackRealignment(MF)) 4481 while (NewAlign > Align && 4482 DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign)) 4483 NewAlign /= 2; 4484 4485 if (NewAlign > Align) { 4486 // Give the stack frame object a larger alignment if needed. 4487 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4488 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4489 Align = NewAlign; 4490 } 4491 } 4492 4493 MachineMemOperand::Flags MMOFlags = 4494 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4495 SmallVector<SDValue, 8> OutChains; 4496 unsigned NumMemOps = MemOps.size(); 4497 uint64_t SrcOff = 0, DstOff = 0; 4498 for (unsigned i = 0; i != NumMemOps; ++i) { 4499 EVT VT = MemOps[i]; 4500 unsigned VTSize = VT.getSizeInBits() / 8; 4501 SDValue Value, Store; 4502 4503 if (VTSize > Size) { 4504 // Issuing an unaligned load / store pair that overlaps with the previous 4505 // pair. Adjust the offset accordingly. 4506 assert(i == NumMemOps-1 && i != 0); 4507 SrcOff -= VTSize - Size; 4508 DstOff -= VTSize - Size; 4509 } 4510 4511 if (CopyFromStr && 4512 (isZeroStr || (VT.isInteger() && !VT.isVector()))) { 4513 // It's unlikely a store of a vector immediate can be done in a single 4514 // instruction. It would require a load from a constantpool first. 4515 // We only handle zero vectors here. 4516 // FIXME: Handle other cases where store of vector immediate is done in 4517 // a single instruction. 4518 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); 4519 if (Value.getNode()) 4520 Store = DAG.getStore(Chain, dl, Value, 4521 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4522 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4523 } 4524 4525 if (!Store.getNode()) { 4526 // The type might not be legal for the target. This should only happen 4527 // if the type is smaller than a legal type, as on PPC, so the right 4528 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 4529 // to Load/Store if NVT==VT. 4530 // FIXME does the case above also need this? 4531 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 4532 assert(NVT.bitsGE(VT)); 4533 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 4534 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4535 SrcPtrInfo.getWithOffset(SrcOff), VT, 4536 MinAlign(SrcAlign, SrcOff), MMOFlags); 4537 OutChains.push_back(Value.getValue(1)); 4538 Store = DAG.getTruncStore( 4539 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4540 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 4541 } 4542 OutChains.push_back(Store); 4543 SrcOff += VTSize; 4544 DstOff += VTSize; 4545 Size -= VTSize; 4546 } 4547 4548 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4549 } 4550 4551 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4552 SDValue Chain, SDValue Dst, SDValue Src, 4553 uint64_t Size, unsigned Align, 4554 bool isVol, bool AlwaysInline, 4555 MachinePointerInfo DstPtrInfo, 4556 MachinePointerInfo SrcPtrInfo) { 4557 // Turn a memmove of undef to nop. 4558 if (Src.isUndef()) 4559 return Chain; 4560 4561 // Expand memmove to a series of load and store ops if the size operand falls 4562 // below a certain threshold. 4563 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4564 std::vector<EVT> MemOps; 4565 bool DstAlignCanChange = false; 4566 MachineFunction &MF = DAG.getMachineFunction(); 4567 MachineFrameInfo &MFI = MF.getFrameInfo(); 4568 bool OptSize = shouldLowerMemFuncForSize(MF); 4569 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4570 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4571 DstAlignCanChange = true; 4572 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4573 if (Align > SrcAlign) 4574 SrcAlign = Align; 4575 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 4576 4577 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4578 (DstAlignCanChange ? 0 : Align), SrcAlign, 4579 false, false, false, false, 4580 DstPtrInfo.getAddrSpace(), 4581 SrcPtrInfo.getAddrSpace(), 4582 DAG, TLI)) 4583 return SDValue(); 4584 4585 if (DstAlignCanChange) { 4586 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4587 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4588 if (NewAlign > Align) { 4589 // Give the stack frame object a larger alignment if needed. 4590 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4591 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4592 Align = NewAlign; 4593 } 4594 } 4595 4596 MachineMemOperand::Flags MMOFlags = 4597 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4598 uint64_t SrcOff = 0, DstOff = 0; 4599 SmallVector<SDValue, 8> LoadValues; 4600 SmallVector<SDValue, 8> LoadChains; 4601 SmallVector<SDValue, 8> OutChains; 4602 unsigned NumMemOps = MemOps.size(); 4603 for (unsigned i = 0; i < NumMemOps; i++) { 4604 EVT VT = MemOps[i]; 4605 unsigned VTSize = VT.getSizeInBits() / 8; 4606 SDValue Value; 4607 4608 Value = 4609 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4610 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags); 4611 LoadValues.push_back(Value); 4612 LoadChains.push_back(Value.getValue(1)); 4613 SrcOff += VTSize; 4614 } 4615 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 4616 OutChains.clear(); 4617 for (unsigned i = 0; i < NumMemOps; i++) { 4618 EVT VT = MemOps[i]; 4619 unsigned VTSize = VT.getSizeInBits() / 8; 4620 SDValue Store; 4621 4622 Store = DAG.getStore(Chain, dl, LoadValues[i], 4623 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4624 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4625 OutChains.push_back(Store); 4626 DstOff += VTSize; 4627 } 4628 4629 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4630 } 4631 4632 /// \brief Lower the call to 'memset' intrinsic function into a series of store 4633 /// operations. 4634 /// 4635 /// \param DAG Selection DAG where lowered code is placed. 4636 /// \param dl Link to corresponding IR location. 4637 /// \param Chain Control flow dependency. 4638 /// \param Dst Pointer to destination memory location. 4639 /// \param Src Value of byte to write into the memory. 4640 /// \param Size Number of bytes to write. 4641 /// \param Align Alignment of the destination in bytes. 4642 /// \param isVol True if destination is volatile. 4643 /// \param DstPtrInfo IR information on the memory pointer. 4644 /// \returns New head in the control flow, if lowering was successful, empty 4645 /// SDValue otherwise. 4646 /// 4647 /// The function tries to replace 'llvm.memset' intrinsic with several store 4648 /// operations and value calculation code. This is usually profitable for small 4649 /// memory size. 4650 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 4651 SDValue Chain, SDValue Dst, SDValue Src, 4652 uint64_t Size, unsigned Align, bool isVol, 4653 MachinePointerInfo DstPtrInfo) { 4654 // Turn a memset of undef to nop. 4655 if (Src.isUndef()) 4656 return Chain; 4657 4658 // Expand memset to a series of load/store ops if the size operand 4659 // falls below a certain threshold. 4660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4661 std::vector<EVT> MemOps; 4662 bool DstAlignCanChange = false; 4663 MachineFunction &MF = DAG.getMachineFunction(); 4664 MachineFrameInfo &MFI = MF.getFrameInfo(); 4665 bool OptSize = shouldLowerMemFuncForSize(MF); 4666 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4667 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4668 DstAlignCanChange = true; 4669 bool IsZeroVal = 4670 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 4671 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 4672 Size, (DstAlignCanChange ? 0 : Align), 0, 4673 true, IsZeroVal, false, true, 4674 DstPtrInfo.getAddrSpace(), ~0u, 4675 DAG, TLI)) 4676 return SDValue(); 4677 4678 if (DstAlignCanChange) { 4679 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4680 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4681 if (NewAlign > Align) { 4682 // Give the stack frame object a larger alignment if needed. 4683 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4684 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4685 Align = NewAlign; 4686 } 4687 } 4688 4689 SmallVector<SDValue, 8> OutChains; 4690 uint64_t DstOff = 0; 4691 unsigned NumMemOps = MemOps.size(); 4692 4693 // Find the largest store and generate the bit pattern for it. 4694 EVT LargestVT = MemOps[0]; 4695 for (unsigned i = 1; i < NumMemOps; i++) 4696 if (MemOps[i].bitsGT(LargestVT)) 4697 LargestVT = MemOps[i]; 4698 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 4699 4700 for (unsigned i = 0; i < NumMemOps; i++) { 4701 EVT VT = MemOps[i]; 4702 unsigned VTSize = VT.getSizeInBits() / 8; 4703 if (VTSize > Size) { 4704 // Issuing an unaligned load / store pair that overlaps with the previous 4705 // pair. Adjust the offset accordingly. 4706 assert(i == NumMemOps-1 && i != 0); 4707 DstOff -= VTSize - Size; 4708 } 4709 4710 // If this store is smaller than the largest store see whether we can get 4711 // the smaller value for free with a truncate. 4712 SDValue Value = MemSetValue; 4713 if (VT.bitsLT(LargestVT)) { 4714 if (!LargestVT.isVector() && !VT.isVector() && 4715 TLI.isTruncateFree(LargestVT, VT)) 4716 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 4717 else 4718 Value = getMemsetValue(Src, VT, DAG, dl); 4719 } 4720 assert(Value.getValueType() == VT && "Value with wrong type."); 4721 SDValue Store = DAG.getStore( 4722 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4723 DstPtrInfo.getWithOffset(DstOff), Align, 4724 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 4725 OutChains.push_back(Store); 4726 DstOff += VT.getSizeInBits() / 8; 4727 Size -= VTSize; 4728 } 4729 4730 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4731 } 4732 4733 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 4734 unsigned AS) { 4735 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 4736 // pointer operands can be losslessly bitcasted to pointers of address space 0 4737 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 4738 report_fatal_error("cannot lower memory intrinsic in address space " + 4739 Twine(AS)); 4740 } 4741 } 4742 4743 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 4744 SDValue Src, SDValue Size, unsigned Align, 4745 bool isVol, bool AlwaysInline, bool isTailCall, 4746 MachinePointerInfo DstPtrInfo, 4747 MachinePointerInfo SrcPtrInfo) { 4748 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4749 4750 // Check to see if we should lower the memcpy to loads and stores first. 4751 // For cases within the target-specified limits, this is the best choice. 4752 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4753 if (ConstantSize) { 4754 // Memcpy with size zero? Just return the original chain. 4755 if (ConstantSize->isNullValue()) 4756 return Chain; 4757 4758 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4759 ConstantSize->getZExtValue(),Align, 4760 isVol, false, DstPtrInfo, SrcPtrInfo); 4761 if (Result.getNode()) 4762 return Result; 4763 } 4764 4765 // Then check to see if we should lower the memcpy with target-specific 4766 // code. If the target chooses to do this, this is the next best. 4767 if (TSI) { 4768 SDValue Result = TSI->EmitTargetCodeForMemcpy( 4769 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 4770 DstPtrInfo, SrcPtrInfo); 4771 if (Result.getNode()) 4772 return Result; 4773 } 4774 4775 // If we really need inline code and the target declined to provide it, 4776 // use a (potentially long) sequence of loads and stores. 4777 if (AlwaysInline) { 4778 assert(ConstantSize && "AlwaysInline requires a constant size!"); 4779 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4780 ConstantSize->getZExtValue(), Align, isVol, 4781 true, DstPtrInfo, SrcPtrInfo); 4782 } 4783 4784 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4785 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4786 4787 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 4788 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 4789 // respect volatile, so they may do things like read or write memory 4790 // beyond the given memory regions. But fixing this isn't easy, and most 4791 // people don't care. 4792 4793 // Emit a library call. 4794 TargetLowering::ArgListTy Args; 4795 TargetLowering::ArgListEntry Entry; 4796 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4797 Entry.Node = Dst; Args.push_back(Entry); 4798 Entry.Node = Src; Args.push_back(Entry); 4799 Entry.Node = Size; Args.push_back(Entry); 4800 // FIXME: pass in SDLoc 4801 TargetLowering::CallLoweringInfo CLI(*this); 4802 CLI.setDebugLoc(dl) 4803 .setChain(Chain) 4804 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 4805 Dst.getValueType().getTypeForEVT(*getContext()), 4806 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 4807 TLI->getPointerTy(getDataLayout())), 4808 std::move(Args)) 4809 .setDiscardResult() 4810 .setTailCall(isTailCall); 4811 4812 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4813 return CallResult.second; 4814 } 4815 4816 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 4817 SDValue Src, SDValue Size, unsigned Align, 4818 bool isVol, bool isTailCall, 4819 MachinePointerInfo DstPtrInfo, 4820 MachinePointerInfo SrcPtrInfo) { 4821 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4822 4823 // Check to see if we should lower the memmove to loads and stores first. 4824 // For cases within the target-specified limits, this is the best choice. 4825 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4826 if (ConstantSize) { 4827 // Memmove with size zero? Just return the original chain. 4828 if (ConstantSize->isNullValue()) 4829 return Chain; 4830 4831 SDValue Result = 4832 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 4833 ConstantSize->getZExtValue(), Align, isVol, 4834 false, DstPtrInfo, SrcPtrInfo); 4835 if (Result.getNode()) 4836 return Result; 4837 } 4838 4839 // Then check to see if we should lower the memmove with target-specific 4840 // code. If the target chooses to do this, this is the next best. 4841 if (TSI) { 4842 SDValue Result = TSI->EmitTargetCodeForMemmove( 4843 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 4844 if (Result.getNode()) 4845 return Result; 4846 } 4847 4848 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4849 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4850 4851 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 4852 // not be safe. See memcpy above for more details. 4853 4854 // Emit a library call. 4855 TargetLowering::ArgListTy Args; 4856 TargetLowering::ArgListEntry Entry; 4857 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4858 Entry.Node = Dst; Args.push_back(Entry); 4859 Entry.Node = Src; Args.push_back(Entry); 4860 Entry.Node = Size; Args.push_back(Entry); 4861 // FIXME: pass in SDLoc 4862 TargetLowering::CallLoweringInfo CLI(*this); 4863 CLI.setDebugLoc(dl) 4864 .setChain(Chain) 4865 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 4866 Dst.getValueType().getTypeForEVT(*getContext()), 4867 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 4868 TLI->getPointerTy(getDataLayout())), 4869 std::move(Args)) 4870 .setDiscardResult() 4871 .setTailCall(isTailCall); 4872 4873 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4874 return CallResult.second; 4875 } 4876 4877 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 4878 SDValue Src, SDValue Size, unsigned Align, 4879 bool isVol, bool isTailCall, 4880 MachinePointerInfo DstPtrInfo) { 4881 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4882 4883 // Check to see if we should lower the memset to stores first. 4884 // For cases within the target-specified limits, this is the best choice. 4885 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4886 if (ConstantSize) { 4887 // Memset with size zero? Just return the original chain. 4888 if (ConstantSize->isNullValue()) 4889 return Chain; 4890 4891 SDValue Result = 4892 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 4893 Align, isVol, DstPtrInfo); 4894 4895 if (Result.getNode()) 4896 return Result; 4897 } 4898 4899 // Then check to see if we should lower the memset with target-specific 4900 // code. If the target chooses to do this, this is the next best. 4901 if (TSI) { 4902 SDValue Result = TSI->EmitTargetCodeForMemset( 4903 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 4904 if (Result.getNode()) 4905 return Result; 4906 } 4907 4908 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4909 4910 // Emit a library call. 4911 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 4912 TargetLowering::ArgListTy Args; 4913 TargetLowering::ArgListEntry Entry; 4914 Entry.Node = Dst; Entry.Ty = IntPtrTy; 4915 Args.push_back(Entry); 4916 Entry.Node = Src; 4917 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 4918 Args.push_back(Entry); 4919 Entry.Node = Size; 4920 Entry.Ty = IntPtrTy; 4921 Args.push_back(Entry); 4922 4923 // FIXME: pass in SDLoc 4924 TargetLowering::CallLoweringInfo CLI(*this); 4925 CLI.setDebugLoc(dl) 4926 .setChain(Chain) 4927 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 4928 Dst.getValueType().getTypeForEVT(*getContext()), 4929 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 4930 TLI->getPointerTy(getDataLayout())), 4931 std::move(Args)) 4932 .setDiscardResult() 4933 .setTailCall(isTailCall); 4934 4935 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4936 return CallResult.second; 4937 } 4938 4939 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4940 SDVTList VTList, ArrayRef<SDValue> Ops, 4941 MachineMemOperand *MMO) { 4942 FoldingSetNodeID ID; 4943 ID.AddInteger(MemVT.getRawBits()); 4944 AddNodeIDNode(ID, Opcode, VTList, Ops); 4945 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 4946 void* IP = nullptr; 4947 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 4948 cast<AtomicSDNode>(E)->refineAlignment(MMO); 4949 return SDValue(E, 0); 4950 } 4951 4952 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 4953 VTList, MemVT, MMO); 4954 createOperands(N, Ops); 4955 4956 CSEMap.InsertNode(N, IP); 4957 InsertNode(N); 4958 return SDValue(N, 0); 4959 } 4960 4961 SDValue SelectionDAG::getAtomicCmpSwap( 4962 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 4963 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 4964 unsigned Alignment, AtomicOrdering SuccessOrdering, 4965 AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { 4966 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4967 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4968 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4969 4970 if (Alignment == 0) // Ensure that codegen never sees alignment 0 4971 Alignment = getEVTAlignment(MemVT); 4972 4973 MachineFunction &MF = getMachineFunction(); 4974 4975 // FIXME: Volatile isn't really correct; we should keep track of atomic 4976 // orderings in the memoperand. 4977 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 4978 MachineMemOperand::MOStore; 4979 MachineMemOperand *MMO = 4980 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 4981 AAMDNodes(), nullptr, SynchScope, SuccessOrdering, 4982 FailureOrdering); 4983 4984 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 4985 } 4986 4987 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 4988 EVT MemVT, SDVTList VTs, SDValue Chain, 4989 SDValue Ptr, SDValue Cmp, SDValue Swp, 4990 MachineMemOperand *MMO) { 4991 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4992 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4993 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4994 4995 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 4996 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 4997 } 4998 4999 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5000 SDValue Chain, SDValue Ptr, SDValue Val, 5001 const Value *PtrVal, unsigned Alignment, 5002 AtomicOrdering Ordering, 5003 SynchronizationScope SynchScope) { 5004 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5005 Alignment = getEVTAlignment(MemVT); 5006 5007 MachineFunction &MF = getMachineFunction(); 5008 // An atomic store does not load. An atomic load does not store. 5009 // (An atomicrmw obviously both loads and stores.) 5010 // For now, atomics are considered to be volatile always, and they are 5011 // chained as such. 5012 // FIXME: Volatile isn't really correct; we should keep track of atomic 5013 // orderings in the memoperand. 5014 auto Flags = MachineMemOperand::MOVolatile; 5015 if (Opcode != ISD::ATOMIC_STORE) 5016 Flags |= MachineMemOperand::MOLoad; 5017 if (Opcode != ISD::ATOMIC_LOAD) 5018 Flags |= MachineMemOperand::MOStore; 5019 5020 MachineMemOperand *MMO = 5021 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 5022 MemVT.getStoreSize(), Alignment, AAMDNodes(), 5023 nullptr, SynchScope, Ordering); 5024 5025 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 5026 } 5027 5028 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5029 SDValue Chain, SDValue Ptr, SDValue Val, 5030 MachineMemOperand *MMO) { 5031 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 5032 Opcode == ISD::ATOMIC_LOAD_SUB || 5033 Opcode == ISD::ATOMIC_LOAD_AND || 5034 Opcode == ISD::ATOMIC_LOAD_OR || 5035 Opcode == ISD::ATOMIC_LOAD_XOR || 5036 Opcode == ISD::ATOMIC_LOAD_NAND || 5037 Opcode == ISD::ATOMIC_LOAD_MIN || 5038 Opcode == ISD::ATOMIC_LOAD_MAX || 5039 Opcode == ISD::ATOMIC_LOAD_UMIN || 5040 Opcode == ISD::ATOMIC_LOAD_UMAX || 5041 Opcode == ISD::ATOMIC_SWAP || 5042 Opcode == ISD::ATOMIC_STORE) && 5043 "Invalid Atomic Op"); 5044 5045 EVT VT = Val.getValueType(); 5046 5047 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 5048 getVTList(VT, MVT::Other); 5049 SDValue Ops[] = {Chain, Ptr, Val}; 5050 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5051 } 5052 5053 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 5054 EVT VT, SDValue Chain, SDValue Ptr, 5055 MachineMemOperand *MMO) { 5056 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 5057 5058 SDVTList VTs = getVTList(VT, MVT::Other); 5059 SDValue Ops[] = {Chain, Ptr}; 5060 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 5061 } 5062 5063 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 5064 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 5065 if (Ops.size() == 1) 5066 return Ops[0]; 5067 5068 SmallVector<EVT, 4> VTs; 5069 VTs.reserve(Ops.size()); 5070 for (unsigned i = 0; i < Ops.size(); ++i) 5071 VTs.push_back(Ops[i].getValueType()); 5072 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 5073 } 5074 5075 SDValue SelectionDAG::getMemIntrinsicNode( 5076 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 5077 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 5078 bool ReadMem, bool WriteMem, unsigned Size) { 5079 if (Align == 0) // Ensure that codegen never sees alignment 0 5080 Align = getEVTAlignment(MemVT); 5081 5082 MachineFunction &MF = getMachineFunction(); 5083 auto Flags = MachineMemOperand::MONone; 5084 if (WriteMem) 5085 Flags |= MachineMemOperand::MOStore; 5086 if (ReadMem) 5087 Flags |= MachineMemOperand::MOLoad; 5088 if (Vol) 5089 Flags |= MachineMemOperand::MOVolatile; 5090 if (!Size) 5091 Size = MemVT.getStoreSize(); 5092 MachineMemOperand *MMO = 5093 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 5094 5095 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 5096 } 5097 5098 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 5099 SDVTList VTList, 5100 ArrayRef<SDValue> Ops, EVT MemVT, 5101 MachineMemOperand *MMO) { 5102 assert((Opcode == ISD::INTRINSIC_VOID || 5103 Opcode == ISD::INTRINSIC_W_CHAIN || 5104 Opcode == ISD::PREFETCH || 5105 Opcode == ISD::LIFETIME_START || 5106 Opcode == ISD::LIFETIME_END || 5107 (Opcode <= INT_MAX && 5108 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5109 "Opcode is not a memory-accessing opcode!"); 5110 5111 // Memoize the node unless it returns a flag. 5112 MemIntrinsicSDNode *N; 5113 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5114 FoldingSetNodeID ID; 5115 AddNodeIDNode(ID, Opcode, VTList, Ops); 5116 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5117 void *IP = nullptr; 5118 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5119 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5120 return SDValue(E, 0); 5121 } 5122 5123 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5124 VTList, MemVT, MMO); 5125 createOperands(N, Ops); 5126 5127 CSEMap.InsertNode(N, IP); 5128 } else { 5129 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5130 VTList, MemVT, MMO); 5131 createOperands(N, Ops); 5132 } 5133 InsertNode(N); 5134 return SDValue(N, 0); 5135 } 5136 5137 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5138 /// MachinePointerInfo record from it. This is particularly useful because the 5139 /// code generator has many cases where it doesn't bother passing in a 5140 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5141 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5142 int64_t Offset = 0) { 5143 // If this is FI+Offset, we can model it. 5144 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5145 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5146 FI->getIndex(), Offset); 5147 5148 // If this is (FI+Offset1)+Offset2, we can model it. 5149 if (Ptr.getOpcode() != ISD::ADD || 5150 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5151 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5152 return MachinePointerInfo(); 5153 5154 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5155 return MachinePointerInfo::getFixedStack( 5156 DAG.getMachineFunction(), FI, 5157 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5158 } 5159 5160 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5161 /// MachinePointerInfo record from it. This is particularly useful because the 5162 /// code generator has many cases where it doesn't bother passing in a 5163 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5164 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5165 SDValue OffsetOp) { 5166 // If the 'Offset' value isn't a constant, we can't handle this. 5167 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5168 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5169 if (OffsetOp.isUndef()) 5170 return InferPointerInfo(DAG, Ptr); 5171 return MachinePointerInfo(); 5172 } 5173 5174 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5175 EVT VT, const SDLoc &dl, SDValue Chain, 5176 SDValue Ptr, SDValue Offset, 5177 MachinePointerInfo PtrInfo, EVT MemVT, 5178 unsigned Alignment, 5179 MachineMemOperand::Flags MMOFlags, 5180 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5181 assert(Chain.getValueType() == MVT::Other && 5182 "Invalid chain type"); 5183 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5184 Alignment = getEVTAlignment(MemVT); 5185 5186 MMOFlags |= MachineMemOperand::MOLoad; 5187 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5188 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5189 // clients. 5190 if (PtrInfo.V.isNull()) 5191 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5192 5193 MachineFunction &MF = getMachineFunction(); 5194 MachineMemOperand *MMO = MF.getMachineMemOperand( 5195 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5196 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5197 } 5198 5199 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5200 EVT VT, const SDLoc &dl, SDValue Chain, 5201 SDValue Ptr, SDValue Offset, EVT MemVT, 5202 MachineMemOperand *MMO) { 5203 if (VT == MemVT) { 5204 ExtType = ISD::NON_EXTLOAD; 5205 } else if (ExtType == ISD::NON_EXTLOAD) { 5206 assert(VT == MemVT && "Non-extending load from different memory type!"); 5207 } else { 5208 // Extending load. 5209 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5210 "Should only be an extending load, not truncating!"); 5211 assert(VT.isInteger() == MemVT.isInteger() && 5212 "Cannot convert from FP to Int or Int -> FP!"); 5213 assert(VT.isVector() == MemVT.isVector() && 5214 "Cannot use an ext load to convert to or from a vector!"); 5215 assert((!VT.isVector() || 5216 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5217 "Cannot use an ext load to change the number of vector elements!"); 5218 } 5219 5220 bool Indexed = AM != ISD::UNINDEXED; 5221 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5222 5223 SDVTList VTs = Indexed ? 5224 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5225 SDValue Ops[] = { Chain, Ptr, Offset }; 5226 FoldingSetNodeID ID; 5227 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5228 ID.AddInteger(MemVT.getRawBits()); 5229 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5230 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5231 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5232 void *IP = nullptr; 5233 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5234 cast<LoadSDNode>(E)->refineAlignment(MMO); 5235 return SDValue(E, 0); 5236 } 5237 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5238 ExtType, MemVT, MMO); 5239 createOperands(N, Ops); 5240 5241 CSEMap.InsertNode(N, IP); 5242 InsertNode(N); 5243 return SDValue(N, 0); 5244 } 5245 5246 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5247 SDValue Ptr, MachinePointerInfo PtrInfo, 5248 unsigned Alignment, 5249 MachineMemOperand::Flags MMOFlags, 5250 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5251 SDValue Undef = getUNDEF(Ptr.getValueType()); 5252 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5253 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5254 } 5255 5256 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5257 SDValue Ptr, MachineMemOperand *MMO) { 5258 SDValue Undef = getUNDEF(Ptr.getValueType()); 5259 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5260 VT, MMO); 5261 } 5262 5263 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5264 EVT VT, SDValue Chain, SDValue Ptr, 5265 MachinePointerInfo PtrInfo, EVT MemVT, 5266 unsigned Alignment, 5267 MachineMemOperand::Flags MMOFlags, 5268 const AAMDNodes &AAInfo) { 5269 SDValue Undef = getUNDEF(Ptr.getValueType()); 5270 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5271 MemVT, Alignment, MMOFlags, AAInfo); 5272 } 5273 5274 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5275 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5276 MachineMemOperand *MMO) { 5277 SDValue Undef = getUNDEF(Ptr.getValueType()); 5278 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5279 MemVT, MMO); 5280 } 5281 5282 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5283 SDValue Base, SDValue Offset, 5284 ISD::MemIndexedMode AM) { 5285 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5286 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5287 // Don't propagate the invariant or dereferenceable flags. 5288 auto MMOFlags = 5289 LD->getMemOperand()->getFlags() & 5290 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5291 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5292 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5293 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5294 LD->getAAInfo()); 5295 } 5296 5297 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5298 SDValue Ptr, MachinePointerInfo PtrInfo, 5299 unsigned Alignment, 5300 MachineMemOperand::Flags MMOFlags, 5301 const AAMDNodes &AAInfo) { 5302 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5303 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5304 Alignment = getEVTAlignment(Val.getValueType()); 5305 5306 MMOFlags |= MachineMemOperand::MOStore; 5307 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5308 5309 if (PtrInfo.V.isNull()) 5310 PtrInfo = InferPointerInfo(*this, Ptr); 5311 5312 MachineFunction &MF = getMachineFunction(); 5313 MachineMemOperand *MMO = MF.getMachineMemOperand( 5314 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5315 return getStore(Chain, dl, Val, Ptr, MMO); 5316 } 5317 5318 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5319 SDValue Ptr, MachineMemOperand *MMO) { 5320 assert(Chain.getValueType() == MVT::Other && 5321 "Invalid chain type"); 5322 EVT VT = Val.getValueType(); 5323 SDVTList VTs = getVTList(MVT::Other); 5324 SDValue Undef = getUNDEF(Ptr.getValueType()); 5325 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5326 FoldingSetNodeID ID; 5327 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5328 ID.AddInteger(VT.getRawBits()); 5329 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5330 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 5331 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5332 void *IP = nullptr; 5333 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5334 cast<StoreSDNode>(E)->refineAlignment(MMO); 5335 return SDValue(E, 0); 5336 } 5337 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5338 ISD::UNINDEXED, false, VT, MMO); 5339 createOperands(N, Ops); 5340 5341 CSEMap.InsertNode(N, IP); 5342 InsertNode(N); 5343 return SDValue(N, 0); 5344 } 5345 5346 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5347 SDValue Ptr, MachinePointerInfo PtrInfo, 5348 EVT SVT, unsigned Alignment, 5349 MachineMemOperand::Flags MMOFlags, 5350 const AAMDNodes &AAInfo) { 5351 assert(Chain.getValueType() == MVT::Other && 5352 "Invalid chain type"); 5353 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5354 Alignment = getEVTAlignment(SVT); 5355 5356 MMOFlags |= MachineMemOperand::MOStore; 5357 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5358 5359 if (PtrInfo.V.isNull()) 5360 PtrInfo = InferPointerInfo(*this, Ptr); 5361 5362 MachineFunction &MF = getMachineFunction(); 5363 MachineMemOperand *MMO = MF.getMachineMemOperand( 5364 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 5365 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5366 } 5367 5368 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5369 SDValue Ptr, EVT SVT, 5370 MachineMemOperand *MMO) { 5371 EVT VT = Val.getValueType(); 5372 5373 assert(Chain.getValueType() == MVT::Other && 5374 "Invalid chain type"); 5375 if (VT == SVT) 5376 return getStore(Chain, dl, Val, Ptr, MMO); 5377 5378 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5379 "Should only be a truncating store, not extending!"); 5380 assert(VT.isInteger() == SVT.isInteger() && 5381 "Can't do FP-INT conversion!"); 5382 assert(VT.isVector() == SVT.isVector() && 5383 "Cannot use trunc store to convert to or from a vector!"); 5384 assert((!VT.isVector() || 5385 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5386 "Cannot use trunc store to change the number of vector elements!"); 5387 5388 SDVTList VTs = getVTList(MVT::Other); 5389 SDValue Undef = getUNDEF(Ptr.getValueType()); 5390 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5391 FoldingSetNodeID ID; 5392 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5393 ID.AddInteger(SVT.getRawBits()); 5394 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5395 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 5396 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5397 void *IP = nullptr; 5398 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5399 cast<StoreSDNode>(E)->refineAlignment(MMO); 5400 return SDValue(E, 0); 5401 } 5402 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5403 ISD::UNINDEXED, true, SVT, MMO); 5404 createOperands(N, Ops); 5405 5406 CSEMap.InsertNode(N, IP); 5407 InsertNode(N); 5408 return SDValue(N, 0); 5409 } 5410 5411 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5412 SDValue Base, SDValue Offset, 5413 ISD::MemIndexedMode AM) { 5414 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5415 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5416 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5417 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5418 FoldingSetNodeID ID; 5419 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5420 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5421 ID.AddInteger(ST->getRawSubclassData()); 5422 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5423 void *IP = nullptr; 5424 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5425 return SDValue(E, 0); 5426 5427 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5428 ST->isTruncatingStore(), ST->getMemoryVT(), 5429 ST->getMemOperand()); 5430 createOperands(N, Ops); 5431 5432 CSEMap.InsertNode(N, IP); 5433 InsertNode(N); 5434 return SDValue(N, 0); 5435 } 5436 5437 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5438 SDValue Ptr, SDValue Mask, SDValue Src0, 5439 EVT MemVT, MachineMemOperand *MMO, 5440 ISD::LoadExtType ExtTy, bool isExpanding) { 5441 5442 SDVTList VTs = getVTList(VT, MVT::Other); 5443 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5444 FoldingSetNodeID ID; 5445 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5446 ID.AddInteger(VT.getRawBits()); 5447 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 5448 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 5449 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5450 void *IP = nullptr; 5451 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5452 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5453 return SDValue(E, 0); 5454 } 5455 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5456 ExtTy, isExpanding, MemVT, MMO); 5457 createOperands(N, Ops); 5458 5459 CSEMap.InsertNode(N, IP); 5460 InsertNode(N); 5461 return SDValue(N, 0); 5462 } 5463 5464 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5465 SDValue Val, SDValue Ptr, SDValue Mask, 5466 EVT MemVT, MachineMemOperand *MMO, 5467 bool IsTruncating, bool IsCompressing) { 5468 assert(Chain.getValueType() == MVT::Other && 5469 "Invalid chain type"); 5470 EVT VT = Val.getValueType(); 5471 SDVTList VTs = getVTList(MVT::Other); 5472 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 5473 FoldingSetNodeID ID; 5474 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 5475 ID.AddInteger(VT.getRawBits()); 5476 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 5477 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 5478 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5479 void *IP = nullptr; 5480 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5481 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 5482 return SDValue(E, 0); 5483 } 5484 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5485 IsTruncating, IsCompressing, MemVT, MMO); 5486 createOperands(N, Ops); 5487 5488 CSEMap.InsertNode(N, IP); 5489 InsertNode(N); 5490 return SDValue(N, 0); 5491 } 5492 5493 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 5494 ArrayRef<SDValue> Ops, 5495 MachineMemOperand *MMO) { 5496 assert(Ops.size() == 5 && "Incompatible number of operands"); 5497 5498 FoldingSetNodeID ID; 5499 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 5500 ID.AddInteger(VT.getRawBits()); 5501 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 5502 dl.getIROrder(), VTs, VT, MMO)); 5503 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5504 void *IP = nullptr; 5505 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5506 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 5507 return SDValue(E, 0); 5508 } 5509 5510 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5511 VTs, VT, MMO); 5512 createOperands(N, Ops); 5513 5514 assert(N->getValue().getValueType() == N->getValueType(0) && 5515 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 5516 assert(N->getMask().getValueType().getVectorNumElements() == 5517 N->getValueType(0).getVectorNumElements() && 5518 "Vector width mismatch between mask and data"); 5519 assert(N->getIndex().getValueType().getVectorNumElements() == 5520 N->getValueType(0).getVectorNumElements() && 5521 "Vector width mismatch between index and data"); 5522 5523 CSEMap.InsertNode(N, IP); 5524 InsertNode(N); 5525 return SDValue(N, 0); 5526 } 5527 5528 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 5529 ArrayRef<SDValue> Ops, 5530 MachineMemOperand *MMO) { 5531 assert(Ops.size() == 5 && "Incompatible number of operands"); 5532 5533 FoldingSetNodeID ID; 5534 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 5535 ID.AddInteger(VT.getRawBits()); 5536 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 5537 dl.getIROrder(), VTs, VT, MMO)); 5538 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5539 void *IP = nullptr; 5540 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5541 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 5542 return SDValue(E, 0); 5543 } 5544 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5545 VTs, VT, MMO); 5546 createOperands(N, Ops); 5547 5548 assert(N->getMask().getValueType().getVectorNumElements() == 5549 N->getValue().getValueType().getVectorNumElements() && 5550 "Vector width mismatch between mask and data"); 5551 assert(N->getIndex().getValueType().getVectorNumElements() == 5552 N->getValue().getValueType().getVectorNumElements() && 5553 "Vector width mismatch between index and data"); 5554 5555 CSEMap.InsertNode(N, IP); 5556 InsertNode(N); 5557 return SDValue(N, 0); 5558 } 5559 5560 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 5561 SDValue Ptr, SDValue SV, unsigned Align) { 5562 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 5563 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 5564 } 5565 5566 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5567 ArrayRef<SDUse> Ops) { 5568 switch (Ops.size()) { 5569 case 0: return getNode(Opcode, DL, VT); 5570 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 5571 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 5572 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5573 default: break; 5574 } 5575 5576 // Copy from an SDUse array into an SDValue array for use with 5577 // the regular getNode logic. 5578 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 5579 return getNode(Opcode, DL, VT, NewOps); 5580 } 5581 5582 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5583 ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) { 5584 unsigned NumOps = Ops.size(); 5585 switch (NumOps) { 5586 case 0: return getNode(Opcode, DL, VT); 5587 case 1: return getNode(Opcode, DL, VT, Ops[0]); 5588 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 5589 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5590 default: break; 5591 } 5592 5593 switch (Opcode) { 5594 default: break; 5595 case ISD::CONCAT_VECTORS: { 5596 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5597 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5598 return V; 5599 break; 5600 } 5601 case ISD::SELECT_CC: { 5602 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 5603 assert(Ops[0].getValueType() == Ops[1].getValueType() && 5604 "LHS and RHS of condition must have same type!"); 5605 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5606 "True and False arms of SelectCC must have same type!"); 5607 assert(Ops[2].getValueType() == VT && 5608 "select_cc node must be of same type as true and false value!"); 5609 break; 5610 } 5611 case ISD::BR_CC: { 5612 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 5613 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5614 "LHS/RHS of comparison should match types!"); 5615 break; 5616 } 5617 } 5618 5619 // Memoize nodes. 5620 SDNode *N; 5621 SDVTList VTs = getVTList(VT); 5622 5623 if (VT != MVT::Glue) { 5624 FoldingSetNodeID ID; 5625 AddNodeIDNode(ID, Opcode, VTs, Ops); 5626 void *IP = nullptr; 5627 5628 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5629 return SDValue(E, 0); 5630 5631 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5632 createOperands(N, Ops); 5633 5634 CSEMap.InsertNode(N, IP); 5635 } else { 5636 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5637 createOperands(N, Ops); 5638 } 5639 5640 InsertNode(N); 5641 return SDValue(N, 0); 5642 } 5643 5644 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5645 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 5646 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 5647 } 5648 5649 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5650 ArrayRef<SDValue> Ops) { 5651 if (VTList.NumVTs == 1) 5652 return getNode(Opcode, DL, VTList.VTs[0], Ops); 5653 5654 #if 0 5655 switch (Opcode) { 5656 // FIXME: figure out how to safely handle things like 5657 // int foo(int x) { return 1 << (x & 255); } 5658 // int bar() { return foo(256); } 5659 case ISD::SRA_PARTS: 5660 case ISD::SRL_PARTS: 5661 case ISD::SHL_PARTS: 5662 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 5663 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 5664 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5665 else if (N3.getOpcode() == ISD::AND) 5666 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 5667 // If the and is only masking out bits that cannot effect the shift, 5668 // eliminate the and. 5669 unsigned NumBits = VT.getScalarSizeInBits()*2; 5670 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 5671 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5672 } 5673 break; 5674 } 5675 #endif 5676 5677 // Memoize the node unless it returns a flag. 5678 SDNode *N; 5679 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5680 FoldingSetNodeID ID; 5681 AddNodeIDNode(ID, Opcode, VTList, Ops); 5682 void *IP = nullptr; 5683 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5684 return SDValue(E, 0); 5685 5686 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5687 createOperands(N, Ops); 5688 CSEMap.InsertNode(N, IP); 5689 } else { 5690 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5691 createOperands(N, Ops); 5692 } 5693 InsertNode(N); 5694 return SDValue(N, 0); 5695 } 5696 5697 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5698 SDVTList VTList) { 5699 return getNode(Opcode, DL, VTList, None); 5700 } 5701 5702 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5703 SDValue N1) { 5704 SDValue Ops[] = { N1 }; 5705 return getNode(Opcode, DL, VTList, Ops); 5706 } 5707 5708 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5709 SDValue N1, SDValue N2) { 5710 SDValue Ops[] = { N1, N2 }; 5711 return getNode(Opcode, DL, VTList, Ops); 5712 } 5713 5714 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5715 SDValue N1, SDValue N2, SDValue N3) { 5716 SDValue Ops[] = { N1, N2, N3 }; 5717 return getNode(Opcode, DL, VTList, Ops); 5718 } 5719 5720 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5721 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5722 SDValue Ops[] = { N1, N2, N3, N4 }; 5723 return getNode(Opcode, DL, VTList, Ops); 5724 } 5725 5726 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5727 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5728 SDValue N5) { 5729 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5730 return getNode(Opcode, DL, VTList, Ops); 5731 } 5732 5733 SDVTList SelectionDAG::getVTList(EVT VT) { 5734 return makeVTList(SDNode::getValueTypeList(VT), 1); 5735 } 5736 5737 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 5738 FoldingSetNodeID ID; 5739 ID.AddInteger(2U); 5740 ID.AddInteger(VT1.getRawBits()); 5741 ID.AddInteger(VT2.getRawBits()); 5742 5743 void *IP = nullptr; 5744 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5745 if (!Result) { 5746 EVT *Array = Allocator.Allocate<EVT>(2); 5747 Array[0] = VT1; 5748 Array[1] = VT2; 5749 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 5750 VTListMap.InsertNode(Result, IP); 5751 } 5752 return Result->getSDVTList(); 5753 } 5754 5755 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 5756 FoldingSetNodeID ID; 5757 ID.AddInteger(3U); 5758 ID.AddInteger(VT1.getRawBits()); 5759 ID.AddInteger(VT2.getRawBits()); 5760 ID.AddInteger(VT3.getRawBits()); 5761 5762 void *IP = nullptr; 5763 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5764 if (!Result) { 5765 EVT *Array = Allocator.Allocate<EVT>(3); 5766 Array[0] = VT1; 5767 Array[1] = VT2; 5768 Array[2] = VT3; 5769 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 5770 VTListMap.InsertNode(Result, IP); 5771 } 5772 return Result->getSDVTList(); 5773 } 5774 5775 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 5776 FoldingSetNodeID ID; 5777 ID.AddInteger(4U); 5778 ID.AddInteger(VT1.getRawBits()); 5779 ID.AddInteger(VT2.getRawBits()); 5780 ID.AddInteger(VT3.getRawBits()); 5781 ID.AddInteger(VT4.getRawBits()); 5782 5783 void *IP = nullptr; 5784 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5785 if (!Result) { 5786 EVT *Array = Allocator.Allocate<EVT>(4); 5787 Array[0] = VT1; 5788 Array[1] = VT2; 5789 Array[2] = VT3; 5790 Array[3] = VT4; 5791 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 5792 VTListMap.InsertNode(Result, IP); 5793 } 5794 return Result->getSDVTList(); 5795 } 5796 5797 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 5798 unsigned NumVTs = VTs.size(); 5799 FoldingSetNodeID ID; 5800 ID.AddInteger(NumVTs); 5801 for (unsigned index = 0; index < NumVTs; index++) { 5802 ID.AddInteger(VTs[index].getRawBits()); 5803 } 5804 5805 void *IP = nullptr; 5806 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5807 if (!Result) { 5808 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 5809 std::copy(VTs.begin(), VTs.end(), Array); 5810 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 5811 VTListMap.InsertNode(Result, IP); 5812 } 5813 return Result->getSDVTList(); 5814 } 5815 5816 5817 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 5818 /// specified operands. If the resultant node already exists in the DAG, 5819 /// this does not modify the specified node, instead it returns the node that 5820 /// already exists. If the resultant node does not exist in the DAG, the 5821 /// input node is returned. As a degenerate case, if you specify the same 5822 /// input operands as the node already has, the input node is returned. 5823 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 5824 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 5825 5826 // Check to see if there is no change. 5827 if (Op == N->getOperand(0)) return N; 5828 5829 // See if the modified node already exists. 5830 void *InsertPos = nullptr; 5831 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 5832 return Existing; 5833 5834 // Nope it doesn't. Remove the node from its current place in the maps. 5835 if (InsertPos) 5836 if (!RemoveNodeFromCSEMaps(N)) 5837 InsertPos = nullptr; 5838 5839 // Now we update the operands. 5840 N->OperandList[0].set(Op); 5841 5842 // If this gets put into a CSE map, add it. 5843 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5844 return N; 5845 } 5846 5847 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 5848 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 5849 5850 // Check to see if there is no change. 5851 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 5852 return N; // No operands changed, just return the input node. 5853 5854 // See if the modified node already exists. 5855 void *InsertPos = nullptr; 5856 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 5857 return Existing; 5858 5859 // Nope it doesn't. Remove the node from its current place in the maps. 5860 if (InsertPos) 5861 if (!RemoveNodeFromCSEMaps(N)) 5862 InsertPos = nullptr; 5863 5864 // Now we update the operands. 5865 if (N->OperandList[0] != Op1) 5866 N->OperandList[0].set(Op1); 5867 if (N->OperandList[1] != Op2) 5868 N->OperandList[1].set(Op2); 5869 5870 // If this gets put into a CSE map, add it. 5871 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5872 return N; 5873 } 5874 5875 SDNode *SelectionDAG:: 5876 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 5877 SDValue Ops[] = { Op1, Op2, Op3 }; 5878 return UpdateNodeOperands(N, Ops); 5879 } 5880 5881 SDNode *SelectionDAG:: 5882 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5883 SDValue Op3, SDValue Op4) { 5884 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 5885 return UpdateNodeOperands(N, Ops); 5886 } 5887 5888 SDNode *SelectionDAG:: 5889 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5890 SDValue Op3, SDValue Op4, SDValue Op5) { 5891 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 5892 return UpdateNodeOperands(N, Ops); 5893 } 5894 5895 SDNode *SelectionDAG:: 5896 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 5897 unsigned NumOps = Ops.size(); 5898 assert(N->getNumOperands() == NumOps && 5899 "Update with wrong number of operands"); 5900 5901 // If no operands changed just return the input node. 5902 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 5903 return N; 5904 5905 // See if the modified node already exists. 5906 void *InsertPos = nullptr; 5907 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 5908 return Existing; 5909 5910 // Nope it doesn't. Remove the node from its current place in the maps. 5911 if (InsertPos) 5912 if (!RemoveNodeFromCSEMaps(N)) 5913 InsertPos = nullptr; 5914 5915 // Now we update the operands. 5916 for (unsigned i = 0; i != NumOps; ++i) 5917 if (N->OperandList[i] != Ops[i]) 5918 N->OperandList[i].set(Ops[i]); 5919 5920 // If this gets put into a CSE map, add it. 5921 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5922 return N; 5923 } 5924 5925 /// DropOperands - Release the operands and set this node to have 5926 /// zero operands. 5927 void SDNode::DropOperands() { 5928 // Unlike the code in MorphNodeTo that does this, we don't need to 5929 // watch for dead nodes here. 5930 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 5931 SDUse &Use = *I++; 5932 Use.set(SDValue()); 5933 } 5934 } 5935 5936 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 5937 /// machine opcode. 5938 /// 5939 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5940 EVT VT) { 5941 SDVTList VTs = getVTList(VT); 5942 return SelectNodeTo(N, MachineOpc, VTs, None); 5943 } 5944 5945 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5946 EVT VT, SDValue Op1) { 5947 SDVTList VTs = getVTList(VT); 5948 SDValue Ops[] = { Op1 }; 5949 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5950 } 5951 5952 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5953 EVT VT, SDValue Op1, 5954 SDValue Op2) { 5955 SDVTList VTs = getVTList(VT); 5956 SDValue Ops[] = { Op1, Op2 }; 5957 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5958 } 5959 5960 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5961 EVT VT, SDValue Op1, 5962 SDValue Op2, SDValue Op3) { 5963 SDVTList VTs = getVTList(VT); 5964 SDValue Ops[] = { Op1, Op2, Op3 }; 5965 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5966 } 5967 5968 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5969 EVT VT, ArrayRef<SDValue> Ops) { 5970 SDVTList VTs = getVTList(VT); 5971 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5972 } 5973 5974 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5975 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 5976 SDVTList VTs = getVTList(VT1, VT2); 5977 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5978 } 5979 5980 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5981 EVT VT1, EVT VT2) { 5982 SDVTList VTs = getVTList(VT1, VT2); 5983 return SelectNodeTo(N, MachineOpc, VTs, None); 5984 } 5985 5986 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5987 EVT VT1, EVT VT2, EVT VT3, 5988 ArrayRef<SDValue> Ops) { 5989 SDVTList VTs = getVTList(VT1, VT2, VT3); 5990 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5991 } 5992 5993 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5994 EVT VT1, EVT VT2, 5995 SDValue Op1, SDValue Op2) { 5996 SDVTList VTs = getVTList(VT1, VT2); 5997 SDValue Ops[] = { Op1, Op2 }; 5998 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5999 } 6000 6001 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 6002 SDVTList VTs,ArrayRef<SDValue> Ops) { 6003 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 6004 // Reset the NodeID to -1. 6005 New->setNodeId(-1); 6006 if (New != N) { 6007 ReplaceAllUsesWith(N, New); 6008 RemoveDeadNode(N); 6009 } 6010 return New; 6011 } 6012 6013 /// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away 6014 /// the line number information on the merged node since it is not possible to 6015 /// preserve the information that operation is associated with multiple lines. 6016 /// This will make the debugger working better at -O0, were there is a higher 6017 /// probability having other instructions associated with that line. 6018 /// 6019 /// For IROrder, we keep the smaller of the two 6020 SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &OLoc) { 6021 DebugLoc NLoc = N->getDebugLoc(); 6022 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 6023 N->setDebugLoc(DebugLoc()); 6024 } 6025 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 6026 N->setIROrder(Order); 6027 return N; 6028 } 6029 6030 /// MorphNodeTo - This *mutates* the specified node to have the specified 6031 /// return type, opcode, and operands. 6032 /// 6033 /// Note that MorphNodeTo returns the resultant node. If there is already a 6034 /// node of the specified opcode and operands, it returns that node instead of 6035 /// the current one. Note that the SDLoc need not be the same. 6036 /// 6037 /// Using MorphNodeTo is faster than creating a new node and swapping it in 6038 /// with ReplaceAllUsesWith both because it often avoids allocating a new 6039 /// node, and because it doesn't require CSE recalculation for any of 6040 /// the node's users. 6041 /// 6042 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 6043 /// As a consequence it isn't appropriate to use from within the DAG combiner or 6044 /// the legalizer which maintain worklists that would need to be updated when 6045 /// deleting things. 6046 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 6047 SDVTList VTs, ArrayRef<SDValue> Ops) { 6048 // If an identical node already exists, use it. 6049 void *IP = nullptr; 6050 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 6051 FoldingSetNodeID ID; 6052 AddNodeIDNode(ID, Opc, VTs, Ops); 6053 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 6054 return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N)); 6055 } 6056 6057 if (!RemoveNodeFromCSEMaps(N)) 6058 IP = nullptr; 6059 6060 // Start the morphing. 6061 N->NodeType = Opc; 6062 N->ValueList = VTs.VTs; 6063 N->NumValues = VTs.NumVTs; 6064 6065 // Clear the operands list, updating used nodes to remove this from their 6066 // use list. Keep track of any operands that become dead as a result. 6067 SmallPtrSet<SDNode*, 16> DeadNodeSet; 6068 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 6069 SDUse &Use = *I++; 6070 SDNode *Used = Use.getNode(); 6071 Use.set(SDValue()); 6072 if (Used->use_empty()) 6073 DeadNodeSet.insert(Used); 6074 } 6075 6076 // For MachineNode, initialize the memory references information. 6077 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 6078 MN->setMemRefs(nullptr, nullptr); 6079 6080 // Swap for an appropriately sized array from the recycler. 6081 removeOperands(N); 6082 createOperands(N, Ops); 6083 6084 // Delete any nodes that are still dead after adding the uses for the 6085 // new operands. 6086 if (!DeadNodeSet.empty()) { 6087 SmallVector<SDNode *, 16> DeadNodes; 6088 for (SDNode *N : DeadNodeSet) 6089 if (N->use_empty()) 6090 DeadNodes.push_back(N); 6091 RemoveDeadNodes(DeadNodes); 6092 } 6093 6094 if (IP) 6095 CSEMap.InsertNode(N, IP); // Memoize the new node. 6096 return N; 6097 } 6098 6099 6100 /// getMachineNode - These are used for target selectors to create a new node 6101 /// with specified return type(s), MachineInstr opcode, and operands. 6102 /// 6103 /// Note that getMachineNode returns the resultant node. If there is already a 6104 /// node of the specified opcode and operands, it returns that node instead of 6105 /// the current one. 6106 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6107 EVT VT) { 6108 SDVTList VTs = getVTList(VT); 6109 return getMachineNode(Opcode, dl, VTs, None); 6110 } 6111 6112 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6113 EVT VT, SDValue Op1) { 6114 SDVTList VTs = getVTList(VT); 6115 SDValue Ops[] = { Op1 }; 6116 return getMachineNode(Opcode, dl, VTs, Ops); 6117 } 6118 6119 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6120 EVT VT, SDValue Op1, SDValue Op2) { 6121 SDVTList VTs = getVTList(VT); 6122 SDValue Ops[] = { Op1, Op2 }; 6123 return getMachineNode(Opcode, dl, VTs, Ops); 6124 } 6125 6126 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6127 EVT VT, SDValue Op1, SDValue Op2, 6128 SDValue Op3) { 6129 SDVTList VTs = getVTList(VT); 6130 SDValue Ops[] = { Op1, Op2, Op3 }; 6131 return getMachineNode(Opcode, dl, VTs, Ops); 6132 } 6133 6134 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6135 EVT VT, ArrayRef<SDValue> Ops) { 6136 SDVTList VTs = getVTList(VT); 6137 return getMachineNode(Opcode, dl, VTs, Ops); 6138 } 6139 6140 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6141 EVT VT1, EVT VT2, SDValue Op1, 6142 SDValue Op2) { 6143 SDVTList VTs = getVTList(VT1, VT2); 6144 SDValue Ops[] = { Op1, Op2 }; 6145 return getMachineNode(Opcode, dl, VTs, Ops); 6146 } 6147 6148 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6149 EVT VT1, EVT VT2, SDValue Op1, 6150 SDValue Op2, SDValue Op3) { 6151 SDVTList VTs = getVTList(VT1, VT2); 6152 SDValue Ops[] = { Op1, Op2, Op3 }; 6153 return getMachineNode(Opcode, dl, VTs, Ops); 6154 } 6155 6156 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6157 EVT VT1, EVT VT2, 6158 ArrayRef<SDValue> Ops) { 6159 SDVTList VTs = getVTList(VT1, VT2); 6160 return getMachineNode(Opcode, dl, VTs, Ops); 6161 } 6162 6163 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6164 EVT VT1, EVT VT2, EVT VT3, 6165 SDValue Op1, SDValue Op2) { 6166 SDVTList VTs = getVTList(VT1, VT2, VT3); 6167 SDValue Ops[] = { Op1, Op2 }; 6168 return getMachineNode(Opcode, dl, VTs, Ops); 6169 } 6170 6171 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6172 EVT VT1, EVT VT2, EVT VT3, 6173 SDValue Op1, SDValue Op2, 6174 SDValue Op3) { 6175 SDVTList VTs = getVTList(VT1, VT2, VT3); 6176 SDValue Ops[] = { Op1, Op2, Op3 }; 6177 return getMachineNode(Opcode, dl, VTs, Ops); 6178 } 6179 6180 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6181 EVT VT1, EVT VT2, EVT VT3, 6182 ArrayRef<SDValue> Ops) { 6183 SDVTList VTs = getVTList(VT1, VT2, VT3); 6184 return getMachineNode(Opcode, dl, VTs, Ops); 6185 } 6186 6187 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6188 ArrayRef<EVT> ResultTys, 6189 ArrayRef<SDValue> Ops) { 6190 SDVTList VTs = getVTList(ResultTys); 6191 return getMachineNode(Opcode, dl, VTs, Ops); 6192 } 6193 6194 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6195 SDVTList VTs, 6196 ArrayRef<SDValue> Ops) { 6197 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6198 MachineSDNode *N; 6199 void *IP = nullptr; 6200 6201 if (DoCSE) { 6202 FoldingSetNodeID ID; 6203 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6204 IP = nullptr; 6205 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6206 return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL)); 6207 } 6208 } 6209 6210 // Allocate a new MachineSDNode. 6211 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6212 createOperands(N, Ops); 6213 6214 if (DoCSE) 6215 CSEMap.InsertNode(N, IP); 6216 6217 InsertNode(N); 6218 return N; 6219 } 6220 6221 /// getTargetExtractSubreg - A convenience function for creating 6222 /// TargetOpcode::EXTRACT_SUBREG nodes. 6223 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6224 SDValue Operand) { 6225 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6226 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6227 VT, Operand, SRIdxVal); 6228 return SDValue(Subreg, 0); 6229 } 6230 6231 /// getTargetInsertSubreg - A convenience function for creating 6232 /// TargetOpcode::INSERT_SUBREG nodes. 6233 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6234 SDValue Operand, SDValue Subreg) { 6235 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6236 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6237 VT, Operand, Subreg, SRIdxVal); 6238 return SDValue(Result, 0); 6239 } 6240 6241 /// getNodeIfExists - Get the specified node if it's already available, or 6242 /// else return NULL. 6243 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6244 ArrayRef<SDValue> Ops, 6245 const SDNodeFlags *Flags) { 6246 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6247 FoldingSetNodeID ID; 6248 AddNodeIDNode(ID, Opcode, VTList, Ops); 6249 void *IP = nullptr; 6250 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6251 if (Flags) 6252 E->intersectFlagsWith(Flags); 6253 return E; 6254 } 6255 } 6256 return nullptr; 6257 } 6258 6259 /// getDbgValue - Creates a SDDbgValue node. 6260 /// 6261 /// SDNode 6262 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6263 unsigned R, bool IsIndirect, uint64_t Off, 6264 const DebugLoc &DL, unsigned O) { 6265 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6266 "Expected inlined-at fields to agree"); 6267 return new (DbgInfo->getAlloc()) 6268 SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); 6269 } 6270 6271 /// Constant 6272 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6273 const Value *C, uint64_t Off, 6274 const DebugLoc &DL, unsigned O) { 6275 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6276 "Expected inlined-at fields to agree"); 6277 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); 6278 } 6279 6280 /// FrameIndex 6281 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6282 unsigned FI, uint64_t Off, 6283 const DebugLoc &DL, 6284 unsigned O) { 6285 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6286 "Expected inlined-at fields to agree"); 6287 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); 6288 } 6289 6290 namespace { 6291 6292 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6293 /// pointed to by a use iterator is deleted, increment the use iterator 6294 /// so that it doesn't dangle. 6295 /// 6296 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6297 SDNode::use_iterator &UI; 6298 SDNode::use_iterator &UE; 6299 6300 void NodeDeleted(SDNode *N, SDNode *E) override { 6301 // Increment the iterator as needed. 6302 while (UI != UE && N == *UI) 6303 ++UI; 6304 } 6305 6306 public: 6307 RAUWUpdateListener(SelectionDAG &d, 6308 SDNode::use_iterator &ui, 6309 SDNode::use_iterator &ue) 6310 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6311 }; 6312 6313 } 6314 6315 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6316 /// This can cause recursive merging of nodes in the DAG. 6317 /// 6318 /// This version assumes From has a single result value. 6319 /// 6320 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6321 SDNode *From = FromN.getNode(); 6322 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6323 "Cannot replace with this method!"); 6324 assert(From != To.getNode() && "Cannot replace uses of with self"); 6325 6326 // Preserve Debug Values 6327 TransferDbgValues(FromN, To); 6328 6329 // Iterate over all the existing uses of From. New uses will be added 6330 // to the beginning of the use list, which we avoid visiting. 6331 // This specifically avoids visiting uses of From that arise while the 6332 // replacement is happening, because any such uses would be the result 6333 // of CSE: If an existing node looks like From after one of its operands 6334 // is replaced by To, we don't want to replace of all its users with To 6335 // too. See PR3018 for more info. 6336 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6337 RAUWUpdateListener Listener(*this, UI, UE); 6338 while (UI != UE) { 6339 SDNode *User = *UI; 6340 6341 // This node is about to morph, remove its old self from the CSE maps. 6342 RemoveNodeFromCSEMaps(User); 6343 6344 // A user can appear in a use list multiple times, and when this 6345 // happens the uses are usually next to each other in the list. 6346 // To help reduce the number of CSE recomputations, process all 6347 // the uses of this user that we can find this way. 6348 do { 6349 SDUse &Use = UI.getUse(); 6350 ++UI; 6351 Use.set(To); 6352 } while (UI != UE && *UI == User); 6353 6354 // Now that we have modified User, add it back to the CSE maps. If it 6355 // already exists there, recursively merge the results together. 6356 AddModifiedNodeToCSEMaps(User); 6357 } 6358 6359 6360 // If we just RAUW'd the root, take note. 6361 if (FromN == getRoot()) 6362 setRoot(To); 6363 } 6364 6365 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6366 /// This can cause recursive merging of nodes in the DAG. 6367 /// 6368 /// This version assumes that for each value of From, there is a 6369 /// corresponding value in To in the same position with the same type. 6370 /// 6371 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6372 #ifndef NDEBUG 6373 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6374 assert((!From->hasAnyUseOfValue(i) || 6375 From->getValueType(i) == To->getValueType(i)) && 6376 "Cannot use this version of ReplaceAllUsesWith!"); 6377 #endif 6378 6379 // Handle the trivial case. 6380 if (From == To) 6381 return; 6382 6383 // Preserve Debug Info. Only do this if there's a use. 6384 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6385 if (From->hasAnyUseOfValue(i)) { 6386 assert((i < To->getNumValues()) && "Invalid To location"); 6387 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 6388 } 6389 6390 // Iterate over just the existing users of From. See the comments in 6391 // the ReplaceAllUsesWith above. 6392 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6393 RAUWUpdateListener Listener(*this, UI, UE); 6394 while (UI != UE) { 6395 SDNode *User = *UI; 6396 6397 // This node is about to morph, remove its old self from the CSE maps. 6398 RemoveNodeFromCSEMaps(User); 6399 6400 // A user can appear in a use list multiple times, and when this 6401 // happens the uses are usually next to each other in the list. 6402 // To help reduce the number of CSE recomputations, process all 6403 // the uses of this user that we can find this way. 6404 do { 6405 SDUse &Use = UI.getUse(); 6406 ++UI; 6407 Use.setNode(To); 6408 } while (UI != UE && *UI == User); 6409 6410 // Now that we have modified User, add it back to the CSE maps. If it 6411 // already exists there, recursively merge the results together. 6412 AddModifiedNodeToCSEMaps(User); 6413 } 6414 6415 // If we just RAUW'd the root, take note. 6416 if (From == getRoot().getNode()) 6417 setRoot(SDValue(To, getRoot().getResNo())); 6418 } 6419 6420 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6421 /// This can cause recursive merging of nodes in the DAG. 6422 /// 6423 /// This version can replace From with any result values. To must match the 6424 /// number and types of values returned by From. 6425 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 6426 if (From->getNumValues() == 1) // Handle the simple case efficiently. 6427 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 6428 6429 // Preserve Debug Info. 6430 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6431 TransferDbgValues(SDValue(From, i), *To); 6432 6433 // Iterate over just the existing users of From. See the comments in 6434 // the ReplaceAllUsesWith above. 6435 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6436 RAUWUpdateListener Listener(*this, UI, UE); 6437 while (UI != UE) { 6438 SDNode *User = *UI; 6439 6440 // This node is about to morph, remove its old self from the CSE maps. 6441 RemoveNodeFromCSEMaps(User); 6442 6443 // A user can appear in a use list multiple times, and when this 6444 // happens the uses are usually next to each other in the list. 6445 // To help reduce the number of CSE recomputations, process all 6446 // the uses of this user that we can find this way. 6447 do { 6448 SDUse &Use = UI.getUse(); 6449 const SDValue &ToOp = To[Use.getResNo()]; 6450 ++UI; 6451 Use.set(ToOp); 6452 } while (UI != UE && *UI == User); 6453 6454 // Now that we have modified User, add it back to the CSE maps. If it 6455 // already exists there, recursively merge the results together. 6456 AddModifiedNodeToCSEMaps(User); 6457 } 6458 6459 // If we just RAUW'd the root, take note. 6460 if (From == getRoot().getNode()) 6461 setRoot(SDValue(To[getRoot().getResNo()])); 6462 } 6463 6464 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 6465 /// uses of other values produced by From.getNode() alone. The Deleted 6466 /// vector is handled the same way as for ReplaceAllUsesWith. 6467 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 6468 // Handle the really simple, really trivial case efficiently. 6469 if (From == To) return; 6470 6471 // Handle the simple, trivial, case efficiently. 6472 if (From.getNode()->getNumValues() == 1) { 6473 ReplaceAllUsesWith(From, To); 6474 return; 6475 } 6476 6477 // Preserve Debug Info. 6478 TransferDbgValues(From, To); 6479 6480 // Iterate over just the existing users of From. See the comments in 6481 // the ReplaceAllUsesWith above. 6482 SDNode::use_iterator UI = From.getNode()->use_begin(), 6483 UE = From.getNode()->use_end(); 6484 RAUWUpdateListener Listener(*this, UI, UE); 6485 while (UI != UE) { 6486 SDNode *User = *UI; 6487 bool UserRemovedFromCSEMaps = false; 6488 6489 // A user can appear in a use list multiple times, and when this 6490 // happens the uses are usually next to each other in the list. 6491 // To help reduce the number of CSE recomputations, process all 6492 // the uses of this user that we can find this way. 6493 do { 6494 SDUse &Use = UI.getUse(); 6495 6496 // Skip uses of different values from the same node. 6497 if (Use.getResNo() != From.getResNo()) { 6498 ++UI; 6499 continue; 6500 } 6501 6502 // If this node hasn't been modified yet, it's still in the CSE maps, 6503 // so remove its old self from the CSE maps. 6504 if (!UserRemovedFromCSEMaps) { 6505 RemoveNodeFromCSEMaps(User); 6506 UserRemovedFromCSEMaps = true; 6507 } 6508 6509 ++UI; 6510 Use.set(To); 6511 } while (UI != UE && *UI == User); 6512 6513 // We are iterating over all uses of the From node, so if a use 6514 // doesn't use the specific value, no changes are made. 6515 if (!UserRemovedFromCSEMaps) 6516 continue; 6517 6518 // Now that we have modified User, add it back to the CSE maps. If it 6519 // already exists there, recursively merge the results together. 6520 AddModifiedNodeToCSEMaps(User); 6521 } 6522 6523 // If we just RAUW'd the root, take note. 6524 if (From == getRoot()) 6525 setRoot(To); 6526 } 6527 6528 namespace { 6529 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 6530 /// to record information about a use. 6531 struct UseMemo { 6532 SDNode *User; 6533 unsigned Index; 6534 SDUse *Use; 6535 }; 6536 6537 /// operator< - Sort Memos by User. 6538 bool operator<(const UseMemo &L, const UseMemo &R) { 6539 return (intptr_t)L.User < (intptr_t)R.User; 6540 } 6541 } 6542 6543 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 6544 /// uses of other values produced by From.getNode() alone. The same value 6545 /// may appear in both the From and To list. The Deleted vector is 6546 /// handled the same way as for ReplaceAllUsesWith. 6547 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 6548 const SDValue *To, 6549 unsigned Num){ 6550 // Handle the simple, trivial case efficiently. 6551 if (Num == 1) 6552 return ReplaceAllUsesOfValueWith(*From, *To); 6553 6554 TransferDbgValues(*From, *To); 6555 6556 // Read up all the uses and make records of them. This helps 6557 // processing new uses that are introduced during the 6558 // replacement process. 6559 SmallVector<UseMemo, 4> Uses; 6560 for (unsigned i = 0; i != Num; ++i) { 6561 unsigned FromResNo = From[i].getResNo(); 6562 SDNode *FromNode = From[i].getNode(); 6563 for (SDNode::use_iterator UI = FromNode->use_begin(), 6564 E = FromNode->use_end(); UI != E; ++UI) { 6565 SDUse &Use = UI.getUse(); 6566 if (Use.getResNo() == FromResNo) { 6567 UseMemo Memo = { *UI, i, &Use }; 6568 Uses.push_back(Memo); 6569 } 6570 } 6571 } 6572 6573 // Sort the uses, so that all the uses from a given User are together. 6574 std::sort(Uses.begin(), Uses.end()); 6575 6576 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 6577 UseIndex != UseIndexEnd; ) { 6578 // We know that this user uses some value of From. If it is the right 6579 // value, update it. 6580 SDNode *User = Uses[UseIndex].User; 6581 6582 // This node is about to morph, remove its old self from the CSE maps. 6583 RemoveNodeFromCSEMaps(User); 6584 6585 // The Uses array is sorted, so all the uses for a given User 6586 // are next to each other in the list. 6587 // To help reduce the number of CSE recomputations, process all 6588 // the uses of this user that we can find this way. 6589 do { 6590 unsigned i = Uses[UseIndex].Index; 6591 SDUse &Use = *Uses[UseIndex].Use; 6592 ++UseIndex; 6593 6594 Use.set(To[i]); 6595 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 6596 6597 // Now that we have modified User, add it back to the CSE maps. If it 6598 // already exists there, recursively merge the results together. 6599 AddModifiedNodeToCSEMaps(User); 6600 } 6601 } 6602 6603 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 6604 /// based on their topological order. It returns the maximum id and a vector 6605 /// of the SDNodes* in assigned order by reference. 6606 unsigned SelectionDAG::AssignTopologicalOrder() { 6607 6608 unsigned DAGSize = 0; 6609 6610 // SortedPos tracks the progress of the algorithm. Nodes before it are 6611 // sorted, nodes after it are unsorted. When the algorithm completes 6612 // it is at the end of the list. 6613 allnodes_iterator SortedPos = allnodes_begin(); 6614 6615 // Visit all the nodes. Move nodes with no operands to the front of 6616 // the list immediately. Annotate nodes that do have operands with their 6617 // operand count. Before we do this, the Node Id fields of the nodes 6618 // may contain arbitrary values. After, the Node Id fields for nodes 6619 // before SortedPos will contain the topological sort index, and the 6620 // Node Id fields for nodes At SortedPos and after will contain the 6621 // count of outstanding operands. 6622 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 6623 SDNode *N = &*I++; 6624 checkForCycles(N, this); 6625 unsigned Degree = N->getNumOperands(); 6626 if (Degree == 0) { 6627 // A node with no uses, add it to the result array immediately. 6628 N->setNodeId(DAGSize++); 6629 allnodes_iterator Q(N); 6630 if (Q != SortedPos) 6631 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 6632 assert(SortedPos != AllNodes.end() && "Overran node list"); 6633 ++SortedPos; 6634 } else { 6635 // Temporarily use the Node Id as scratch space for the degree count. 6636 N->setNodeId(Degree); 6637 } 6638 } 6639 6640 // Visit all the nodes. As we iterate, move nodes into sorted order, 6641 // such that by the time the end is reached all nodes will be sorted. 6642 for (SDNode &Node : allnodes()) { 6643 SDNode *N = &Node; 6644 checkForCycles(N, this); 6645 // N is in sorted position, so all its uses have one less operand 6646 // that needs to be sorted. 6647 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6648 UI != UE; ++UI) { 6649 SDNode *P = *UI; 6650 unsigned Degree = P->getNodeId(); 6651 assert(Degree != 0 && "Invalid node degree"); 6652 --Degree; 6653 if (Degree == 0) { 6654 // All of P's operands are sorted, so P may sorted now. 6655 P->setNodeId(DAGSize++); 6656 if (P->getIterator() != SortedPos) 6657 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 6658 assert(SortedPos != AllNodes.end() && "Overran node list"); 6659 ++SortedPos; 6660 } else { 6661 // Update P's outstanding operand count. 6662 P->setNodeId(Degree); 6663 } 6664 } 6665 if (Node.getIterator() == SortedPos) { 6666 #ifndef NDEBUG 6667 allnodes_iterator I(N); 6668 SDNode *S = &*++I; 6669 dbgs() << "Overran sorted position:\n"; 6670 S->dumprFull(this); dbgs() << "\n"; 6671 dbgs() << "Checking if this is due to cycles\n"; 6672 checkForCycles(this, true); 6673 #endif 6674 llvm_unreachable(nullptr); 6675 } 6676 } 6677 6678 assert(SortedPos == AllNodes.end() && 6679 "Topological sort incomplete!"); 6680 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 6681 "First node in topological sort is not the entry token!"); 6682 assert(AllNodes.front().getNodeId() == 0 && 6683 "First node in topological sort has non-zero id!"); 6684 assert(AllNodes.front().getNumOperands() == 0 && 6685 "First node in topological sort has operands!"); 6686 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 6687 "Last node in topologic sort has unexpected id!"); 6688 assert(AllNodes.back().use_empty() && 6689 "Last node in topologic sort has users!"); 6690 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 6691 return DAGSize; 6692 } 6693 6694 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 6695 /// value is produced by SD. 6696 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 6697 if (SD) { 6698 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 6699 SD->setHasDebugValue(true); 6700 } 6701 DbgInfo->add(DB, SD, isParameter); 6702 } 6703 6704 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 6705 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 6706 if (From == To || !From.getNode()->getHasDebugValue()) 6707 return; 6708 SDNode *FromNode = From.getNode(); 6709 SDNode *ToNode = To.getNode(); 6710 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 6711 SmallVector<SDDbgValue *, 2> ClonedDVs; 6712 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 6713 I != E; ++I) { 6714 SDDbgValue *Dbg = *I; 6715 // Only add Dbgvalues attached to same ResNo. 6716 if (Dbg->getKind() == SDDbgValue::SDNODE && 6717 Dbg->getSDNode() == From.getNode() && 6718 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 6719 assert(FromNode != ToNode && 6720 "Should not transfer Debug Values intranode"); 6721 SDDbgValue *Clone = 6722 getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, 6723 To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), 6724 Dbg->getDebugLoc(), Dbg->getOrder()); 6725 ClonedDVs.push_back(Clone); 6726 Dbg->setIsInvalidated(); 6727 } 6728 } 6729 for (SDDbgValue *I : ClonedDVs) 6730 AddDbgValue(I, ToNode, false); 6731 } 6732 6733 //===----------------------------------------------------------------------===// 6734 // SDNode Class 6735 //===----------------------------------------------------------------------===// 6736 6737 bool llvm::isNullConstant(SDValue V) { 6738 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6739 return Const != nullptr && Const->isNullValue(); 6740 } 6741 6742 bool llvm::isNullFPConstant(SDValue V) { 6743 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 6744 return Const != nullptr && Const->isZero() && !Const->isNegative(); 6745 } 6746 6747 bool llvm::isAllOnesConstant(SDValue V) { 6748 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6749 return Const != nullptr && Const->isAllOnesValue(); 6750 } 6751 6752 bool llvm::isOneConstant(SDValue V) { 6753 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6754 return Const != nullptr && Const->isOne(); 6755 } 6756 6757 bool llvm::isBitwiseNot(SDValue V) { 6758 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 6759 } 6760 6761 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 6762 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 6763 return CN; 6764 6765 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 6766 BitVector UndefElements; 6767 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 6768 6769 // BuildVectors can truncate their operands. Ignore that case here. 6770 // FIXME: We blindly ignore splats which include undef which is overly 6771 // pessimistic. 6772 if (CN && UndefElements.none() && 6773 CN->getValueType(0) == N.getValueType().getScalarType()) 6774 return CN; 6775 } 6776 6777 return nullptr; 6778 } 6779 6780 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 6781 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 6782 return CN; 6783 6784 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 6785 BitVector UndefElements; 6786 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 6787 6788 if (CN && UndefElements.none()) 6789 return CN; 6790 } 6791 6792 return nullptr; 6793 } 6794 6795 HandleSDNode::~HandleSDNode() { 6796 DropOperands(); 6797 } 6798 6799 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 6800 const DebugLoc &DL, 6801 const GlobalValue *GA, EVT VT, 6802 int64_t o, unsigned char TF) 6803 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 6804 TheGlobal = GA; 6805 } 6806 6807 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 6808 EVT VT, unsigned SrcAS, 6809 unsigned DestAS) 6810 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 6811 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 6812 6813 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 6814 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 6815 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 6816 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 6817 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 6818 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 6819 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 6820 6821 // We check here that the size of the memory operand fits within the size of 6822 // the MMO. This is because the MMO might indicate only a possible address 6823 // range instead of specifying the affected memory addresses precisely. 6824 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 6825 } 6826 6827 /// Profile - Gather unique data for the node. 6828 /// 6829 void SDNode::Profile(FoldingSetNodeID &ID) const { 6830 AddNodeIDNode(ID, this); 6831 } 6832 6833 namespace { 6834 struct EVTArray { 6835 std::vector<EVT> VTs; 6836 6837 EVTArray() { 6838 VTs.reserve(MVT::LAST_VALUETYPE); 6839 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 6840 VTs.push_back(MVT((MVT::SimpleValueType)i)); 6841 } 6842 }; 6843 } 6844 6845 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; 6846 static ManagedStatic<EVTArray> SimpleVTArray; 6847 static ManagedStatic<sys::SmartMutex<true> > VTMutex; 6848 6849 /// getValueTypeList - Return a pointer to the specified value type. 6850 /// 6851 const EVT *SDNode::getValueTypeList(EVT VT) { 6852 if (VT.isExtended()) { 6853 sys::SmartScopedLock<true> Lock(*VTMutex); 6854 return &(*EVTs->insert(VT).first); 6855 } else { 6856 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 6857 "Value type out of range!"); 6858 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 6859 } 6860 } 6861 6862 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 6863 /// indicated value. This method ignores uses of other values defined by this 6864 /// operation. 6865 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 6866 assert(Value < getNumValues() && "Bad value!"); 6867 6868 // TODO: Only iterate over uses of a given value of the node 6869 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 6870 if (UI.getUse().getResNo() == Value) { 6871 if (NUses == 0) 6872 return false; 6873 --NUses; 6874 } 6875 } 6876 6877 // Found exactly the right number of uses? 6878 return NUses == 0; 6879 } 6880 6881 6882 /// hasAnyUseOfValue - Return true if there are any use of the indicated 6883 /// value. This method ignores uses of other values defined by this operation. 6884 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 6885 assert(Value < getNumValues() && "Bad value!"); 6886 6887 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 6888 if (UI.getUse().getResNo() == Value) 6889 return true; 6890 6891 return false; 6892 } 6893 6894 6895 /// isOnlyUserOf - Return true if this node is the only use of N. 6896 /// 6897 bool SDNode::isOnlyUserOf(const SDNode *N) const { 6898 bool Seen = false; 6899 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 6900 SDNode *User = *I; 6901 if (User == this) 6902 Seen = true; 6903 else 6904 return false; 6905 } 6906 6907 return Seen; 6908 } 6909 6910 /// isOperand - Return true if this node is an operand of N. 6911 /// 6912 bool SDValue::isOperandOf(const SDNode *N) const { 6913 for (const SDValue &Op : N->op_values()) 6914 if (*this == Op) 6915 return true; 6916 return false; 6917 } 6918 6919 bool SDNode::isOperandOf(const SDNode *N) const { 6920 for (const SDValue &Op : N->op_values()) 6921 if (this == Op.getNode()) 6922 return true; 6923 return false; 6924 } 6925 6926 /// reachesChainWithoutSideEffects - Return true if this operand (which must 6927 /// be a chain) reaches the specified operand without crossing any 6928 /// side-effecting instructions on any chain path. In practice, this looks 6929 /// through token factors and non-volatile loads. In order to remain efficient, 6930 /// this only looks a couple of nodes in, it does not do an exhaustive search. 6931 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 6932 unsigned Depth) const { 6933 if (*this == Dest) return true; 6934 6935 // Don't search too deeply, we just want to be able to see through 6936 // TokenFactor's etc. 6937 if (Depth == 0) return false; 6938 6939 // If this is a token factor, all inputs to the TF happen in parallel. If any 6940 // of the operands of the TF does not reach dest, then we cannot do the xform. 6941 if (getOpcode() == ISD::TokenFactor) { 6942 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6943 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) 6944 return false; 6945 return true; 6946 } 6947 6948 // Loads don't have side effects, look through them. 6949 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 6950 if (!Ld->isVolatile()) 6951 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 6952 } 6953 return false; 6954 } 6955 6956 bool SDNode::hasPredecessor(const SDNode *N) const { 6957 SmallPtrSet<const SDNode *, 32> Visited; 6958 SmallVector<const SDNode *, 16> Worklist; 6959 Worklist.push_back(this); 6960 return hasPredecessorHelper(N, Visited, Worklist); 6961 } 6962 6963 uint64_t SDNode::getConstantOperandVal(unsigned Num) const { 6964 assert(Num < NumOperands && "Invalid child # of SDNode!"); 6965 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue(); 6966 } 6967 6968 const SDNodeFlags *SDNode::getFlags() const { 6969 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6970 return &FlagsNode->Flags; 6971 return nullptr; 6972 } 6973 6974 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) { 6975 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6976 FlagsNode->Flags.intersectWith(Flags); 6977 } 6978 6979 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 6980 assert(N->getNumValues() == 1 && 6981 "Can't unroll a vector with multiple results!"); 6982 6983 EVT VT = N->getValueType(0); 6984 unsigned NE = VT.getVectorNumElements(); 6985 EVT EltVT = VT.getVectorElementType(); 6986 SDLoc dl(N); 6987 6988 SmallVector<SDValue, 8> Scalars; 6989 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 6990 6991 // If ResNE is 0, fully unroll the vector op. 6992 if (ResNE == 0) 6993 ResNE = NE; 6994 else if (NE > ResNE) 6995 NE = ResNE; 6996 6997 unsigned i; 6998 for (i= 0; i != NE; ++i) { 6999 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 7000 SDValue Operand = N->getOperand(j); 7001 EVT OperandVT = Operand.getValueType(); 7002 if (OperandVT.isVector()) { 7003 // A vector operand; extract a single element. 7004 EVT OperandEltVT = OperandVT.getVectorElementType(); 7005 Operands[j] = 7006 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 7007 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 7008 } else { 7009 // A scalar operand; just use it as is. 7010 Operands[j] = Operand; 7011 } 7012 } 7013 7014 switch (N->getOpcode()) { 7015 default: { 7016 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 7017 N->getFlags())); 7018 break; 7019 } 7020 case ISD::VSELECT: 7021 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 7022 break; 7023 case ISD::SHL: 7024 case ISD::SRA: 7025 case ISD::SRL: 7026 case ISD::ROTL: 7027 case ISD::ROTR: 7028 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 7029 getShiftAmountOperand(Operands[0].getValueType(), 7030 Operands[1]))); 7031 break; 7032 case ISD::SIGN_EXTEND_INREG: 7033 case ISD::FP_ROUND_INREG: { 7034 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 7035 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 7036 Operands[0], 7037 getValueType(ExtVT))); 7038 } 7039 } 7040 } 7041 7042 for (; i < ResNE; ++i) 7043 Scalars.push_back(getUNDEF(EltVT)); 7044 7045 return getNode(ISD::BUILD_VECTOR, dl, 7046 EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars); 7047 } 7048 7049 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 7050 LoadSDNode *Base, 7051 unsigned Bytes, 7052 int Dist) const { 7053 if (LD->isVolatile() || Base->isVolatile()) 7054 return false; 7055 if (LD->isIndexed() || Base->isIndexed()) 7056 return false; 7057 if (LD->getChain() != Base->getChain()) 7058 return false; 7059 EVT VT = LD->getValueType(0); 7060 if (VT.getSizeInBits() / 8 != Bytes) 7061 return false; 7062 7063 SDValue Loc = LD->getOperand(1); 7064 SDValue BaseLoc = Base->getOperand(1); 7065 if (Loc.getOpcode() == ISD::FrameIndex) { 7066 if (BaseLoc.getOpcode() != ISD::FrameIndex) 7067 return false; 7068 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7069 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 7070 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 7071 int FS = MFI.getObjectSize(FI); 7072 int BFS = MFI.getObjectSize(BFI); 7073 if (FS != BFS || FS != (int)Bytes) return false; 7074 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 7075 } 7076 7077 // Handle X + C. 7078 if (isBaseWithConstantOffset(Loc)) { 7079 int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 7080 if (Loc.getOperand(0) == BaseLoc) { 7081 // If the base location is a simple address with no offset itself, then 7082 // the second load's first add operand should be the base address. 7083 if (LocOffset == Dist * (int)Bytes) 7084 return true; 7085 } else if (isBaseWithConstantOffset(BaseLoc)) { 7086 // The base location itself has an offset, so subtract that value from the 7087 // second load's offset before comparing to distance * size. 7088 int64_t BOffset = 7089 cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); 7090 if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { 7091 if ((LocOffset - BOffset) == Dist * (int)Bytes) 7092 return true; 7093 } 7094 } 7095 } 7096 const GlobalValue *GV1 = nullptr; 7097 const GlobalValue *GV2 = nullptr; 7098 int64_t Offset1 = 0; 7099 int64_t Offset2 = 0; 7100 bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); 7101 bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 7102 if (isGA1 && isGA2 && GV1 == GV2) 7103 return Offset1 == (Offset2 + Dist*Bytes); 7104 return false; 7105 } 7106 7107 7108 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7109 /// it cannot be inferred. 7110 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7111 // If this is a GlobalAddress + cst, return the alignment. 7112 const GlobalValue *GV; 7113 int64_t GVOffset = 0; 7114 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7115 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7116 APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); 7117 llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, 7118 getDataLayout()); 7119 unsigned AlignBits = KnownZero.countTrailingOnes(); 7120 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7121 if (Align) 7122 return MinAlign(Align, GVOffset); 7123 } 7124 7125 // If this is a direct reference to a stack slot, use information about the 7126 // stack slot's alignment. 7127 int FrameIdx = 1 << 31; 7128 int64_t FrameOffset = 0; 7129 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7130 FrameIdx = FI->getIndex(); 7131 } else if (isBaseWithConstantOffset(Ptr) && 7132 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7133 // Handle FI+Cst 7134 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7135 FrameOffset = Ptr.getConstantOperandVal(1); 7136 } 7137 7138 if (FrameIdx != (1 << 31)) { 7139 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7140 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7141 FrameOffset); 7142 return FIInfoAlign; 7143 } 7144 7145 return 0; 7146 } 7147 7148 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7149 /// which is split (or expanded) into two not necessarily identical pieces. 7150 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7151 // Currently all types are split in half. 7152 EVT LoVT, HiVT; 7153 if (!VT.isVector()) { 7154 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7155 } else { 7156 unsigned NumElements = VT.getVectorNumElements(); 7157 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 7158 LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 7159 NumElements/2); 7160 } 7161 return std::make_pair(LoVT, HiVT); 7162 } 7163 7164 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7165 /// low/high part. 7166 std::pair<SDValue, SDValue> 7167 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7168 const EVT &HiVT) { 7169 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7170 N.getValueType().getVectorNumElements() && 7171 "More vector elements requested than available!"); 7172 SDValue Lo, Hi; 7173 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7174 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7175 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7176 getConstant(LoVT.getVectorNumElements(), DL, 7177 TLI->getVectorIdxTy(getDataLayout()))); 7178 return std::make_pair(Lo, Hi); 7179 } 7180 7181 void SelectionDAG::ExtractVectorElements(SDValue Op, 7182 SmallVectorImpl<SDValue> &Args, 7183 unsigned Start, unsigned Count) { 7184 EVT VT = Op.getValueType(); 7185 if (Count == 0) 7186 Count = VT.getVectorNumElements(); 7187 7188 EVT EltVT = VT.getVectorElementType(); 7189 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7190 SDLoc SL(Op); 7191 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7192 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7193 Op, getConstant(i, SL, IdxTy))); 7194 } 7195 } 7196 7197 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7198 unsigned GlobalAddressSDNode::getAddressSpace() const { 7199 return getGlobal()->getType()->getAddressSpace(); 7200 } 7201 7202 7203 Type *ConstantPoolSDNode::getType() const { 7204 if (isMachineConstantPoolEntry()) 7205 return Val.MachineCPVal->getType(); 7206 return Val.ConstVal->getType(); 7207 } 7208 7209 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, 7210 APInt &SplatUndef, 7211 unsigned &SplatBitSize, 7212 bool &HasAnyUndefs, 7213 unsigned MinSplatBits, 7214 bool isBigEndian) const { 7215 EVT VT = getValueType(0); 7216 assert(VT.isVector() && "Expected a vector type"); 7217 unsigned sz = VT.getSizeInBits(); 7218 if (MinSplatBits > sz) 7219 return false; 7220 7221 SplatValue = APInt(sz, 0); 7222 SplatUndef = APInt(sz, 0); 7223 7224 // Get the bits. Bits with undefined values (when the corresponding element 7225 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7226 // in SplatValue. If any of the values are not constant, give up and return 7227 // false. 7228 unsigned int nOps = getNumOperands(); 7229 assert(nOps > 0 && "isConstantSplat has 0-size build vector"); 7230 unsigned EltBitSize = VT.getScalarSizeInBits(); 7231 7232 for (unsigned j = 0; j < nOps; ++j) { 7233 unsigned i = isBigEndian ? nOps-1-j : j; 7234 SDValue OpVal = getOperand(i); 7235 unsigned BitPos = j * EltBitSize; 7236 7237 if (OpVal.isUndef()) 7238 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize); 7239 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) 7240 SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize). 7241 zextOrTrunc(sz) << BitPos; 7242 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7243 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; 7244 else 7245 return false; 7246 } 7247 7248 // The build_vector is all constants or undefs. Find the smallest element 7249 // size that splats the vector. 7250 7251 HasAnyUndefs = (SplatUndef != 0); 7252 while (sz > 8) { 7253 7254 unsigned HalfSize = sz / 2; 7255 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7256 APInt LowValue = SplatValue.trunc(HalfSize); 7257 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7258 APInt LowUndef = SplatUndef.trunc(HalfSize); 7259 7260 // If the two halves do not match (ignoring undef bits), stop here. 7261 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7262 MinSplatBits > HalfSize) 7263 break; 7264 7265 SplatValue = HighValue | LowValue; 7266 SplatUndef = HighUndef & LowUndef; 7267 7268 sz = HalfSize; 7269 } 7270 7271 SplatBitSize = sz; 7272 return true; 7273 } 7274 7275 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7276 if (UndefElements) { 7277 UndefElements->clear(); 7278 UndefElements->resize(getNumOperands()); 7279 } 7280 SDValue Splatted; 7281 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7282 SDValue Op = getOperand(i); 7283 if (Op.isUndef()) { 7284 if (UndefElements) 7285 (*UndefElements)[i] = true; 7286 } else if (!Splatted) { 7287 Splatted = Op; 7288 } else if (Splatted != Op) { 7289 return SDValue(); 7290 } 7291 } 7292 7293 if (!Splatted) { 7294 assert(getOperand(0).isUndef() && 7295 "Can only have a splat without a constant for all undefs."); 7296 return getOperand(0); 7297 } 7298 7299 return Splatted; 7300 } 7301 7302 ConstantSDNode * 7303 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7304 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7305 } 7306 7307 ConstantFPSDNode * 7308 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7309 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7310 } 7311 7312 int32_t 7313 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7314 uint32_t BitWidth) const { 7315 if (ConstantFPSDNode *CN = 7316 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7317 bool IsExact; 7318 APSInt IntVal(BitWidth); 7319 const APFloat &APF = CN->getValueAPF(); 7320 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7321 APFloat::opOK || 7322 !IsExact) 7323 return -1; 7324 7325 return IntVal.exactLogBase2(); 7326 } 7327 return -1; 7328 } 7329 7330 bool BuildVectorSDNode::isConstant() const { 7331 for (const SDValue &Op : op_values()) { 7332 unsigned Opc = Op.getOpcode(); 7333 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7334 return false; 7335 } 7336 return true; 7337 } 7338 7339 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7340 // Find the first non-undef value in the shuffle mask. 7341 unsigned i, e; 7342 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7343 /* search */; 7344 7345 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7346 7347 // Make sure all remaining elements are either undef or the same as the first 7348 // non-undef value. 7349 for (int Idx = Mask[i]; i != e; ++i) 7350 if (Mask[i] >= 0 && Mask[i] != Idx) 7351 return false; 7352 return true; 7353 } 7354 7355 // \brief Returns the SDNode if it is a constant integer BuildVector 7356 // or constant integer. 7357 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7358 if (isa<ConstantSDNode>(N)) 7359 return N.getNode(); 7360 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7361 return N.getNode(); 7362 // Treat a GlobalAddress supporting constant offset folding as a 7363 // constant integer. 7364 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7365 if (GA->getOpcode() == ISD::GlobalAddress && 7366 TLI->isOffsetFoldingLegal(GA)) 7367 return GA; 7368 return nullptr; 7369 } 7370 7371 #ifndef NDEBUG 7372 static void checkForCyclesHelper(const SDNode *N, 7373 SmallPtrSetImpl<const SDNode*> &Visited, 7374 SmallPtrSetImpl<const SDNode*> &Checked, 7375 const llvm::SelectionDAG *DAG) { 7376 // If this node has already been checked, don't check it again. 7377 if (Checked.count(N)) 7378 return; 7379 7380 // If a node has already been visited on this depth-first walk, reject it as 7381 // a cycle. 7382 if (!Visited.insert(N).second) { 7383 errs() << "Detected cycle in SelectionDAG\n"; 7384 dbgs() << "Offending node:\n"; 7385 N->dumprFull(DAG); dbgs() << "\n"; 7386 abort(); 7387 } 7388 7389 for (const SDValue &Op : N->op_values()) 7390 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7391 7392 Checked.insert(N); 7393 Visited.erase(N); 7394 } 7395 #endif 7396 7397 void llvm::checkForCycles(const llvm::SDNode *N, 7398 const llvm::SelectionDAG *DAG, 7399 bool force) { 7400 #ifndef NDEBUG 7401 bool check = force; 7402 #ifdef EXPENSIVE_CHECKS 7403 check = true; 7404 #endif // EXPENSIVE_CHECKS 7405 if (check) { 7406 assert(N && "Checking nonexistent SDNode"); 7407 SmallPtrSet<const SDNode*, 32> visited; 7408 SmallPtrSet<const SDNode*, 32> checked; 7409 checkForCyclesHelper(N, visited, checked, DAG); 7410 } 7411 #endif // !NDEBUG 7412 } 7413 7414 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 7415 checkForCycles(DAG->getRoot().getNode(), DAG, force); 7416 } 7417