1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/Analysis.h"
30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
141     unsigned EltSize =
142         N->getValueType(0).getVectorElementType().getSizeInBits();
143     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
144       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
145       return true;
146     }
147     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
148       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
149       return true;
150     }
151   }
152 
153   auto *BV = dyn_cast<BuildVectorSDNode>(N);
154   if (!BV)
155     return false;
156 
157   APInt SplatUndef;
158   unsigned SplatBitSize;
159   bool HasUndefs;
160   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
161   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
162                              EltSize) &&
163          EltSize == SplatBitSize;
164 }
165 
166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
167 // specializations of the more general isConstantSplatVector()?
168 
169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
170   // Look through a bit convert.
171   while (N->getOpcode() == ISD::BITCAST)
172     N = N->getOperand(0).getNode();
173 
174   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
175     APInt SplatVal;
176     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
177   }
178 
179   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
180 
181   unsigned i = 0, e = N->getNumOperands();
182 
183   // Skip over all of the undef values.
184   while (i != e && N->getOperand(i).isUndef())
185     ++i;
186 
187   // Do not accept an all-undef vector.
188   if (i == e) return false;
189 
190   // Do not accept build_vectors that aren't all constants or which have non-~0
191   // elements. We have to be a bit careful here, as the type of the constant
192   // may not be the same as the type of the vector elements due to type
193   // legalization (the elements are promoted to a legal type for the target and
194   // a vector of a type may be legal when the base element type is not).
195   // We only want to check enough bits to cover the vector elements, because
196   // we care if the resultant vector is all ones, not whether the individual
197   // constants are.
198   SDValue NotZero = N->getOperand(i);
199   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
200   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
201     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
202       return false;
203   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
204     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
205       return false;
206   } else
207     return false;
208 
209   // Okay, we have at least one ~0 value, check to see if the rest match or are
210   // undefs. Even with the above element type twiddling, this should be OK, as
211   // the same type legalization should have applied to all the elements.
212   for (++i; i != e; ++i)
213     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
214       return false;
215   return true;
216 }
217 
218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
219   // Look through a bit convert.
220   while (N->getOpcode() == ISD::BITCAST)
221     N = N->getOperand(0).getNode();
222 
223   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
224     APInt SplatVal;
225     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
226   }
227 
228   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
229 
230   bool IsAllUndef = true;
231   for (const SDValue &Op : N->op_values()) {
232     if (Op.isUndef())
233       continue;
234     IsAllUndef = false;
235     // Do not accept build_vectors that aren't all constants or which have non-0
236     // elements. We have to be a bit careful here, as the type of the constant
237     // may not be the same as the type of the vector elements due to type
238     // legalization (the elements are promoted to a legal type for the target
239     // and a vector of a type may be legal when the base element type is not).
240     // We only want to check enough bits to cover the vector elements, because
241     // we care if the resultant vector is all zeros, not whether the individual
242     // constants are.
243     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
244     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
245       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
246         return false;
247     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
248       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
249         return false;
250     } else
251       return false;
252   }
253 
254   // Do not accept an all-undef vector.
255   if (IsAllUndef)
256     return false;
257   return true;
258 }
259 
260 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
261   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
262 }
263 
264 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
265   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
266 }
267 
268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
269   if (N->getOpcode() != ISD::BUILD_VECTOR)
270     return false;
271 
272   for (const SDValue &Op : N->op_values()) {
273     if (Op.isUndef())
274       continue;
275     if (!isa<ConstantSDNode>(Op))
276       return false;
277   }
278   return true;
279 }
280 
281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
282   if (N->getOpcode() != ISD::BUILD_VECTOR)
283     return false;
284 
285   for (const SDValue &Op : N->op_values()) {
286     if (Op.isUndef())
287       continue;
288     if (!isa<ConstantFPSDNode>(Op))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::allOperandsUndef(const SDNode *N) {
295   // Return false if the node has no operands.
296   // This is "logically inconsistent" with the definition of "all" but
297   // is probably the desired behavior.
298   if (N->getNumOperands() == 0)
299     return false;
300   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
301 }
302 
303 bool ISD::matchUnaryPredicate(SDValue Op,
304                               std::function<bool(ConstantSDNode *)> Match,
305                               bool AllowUndefs) {
306   // FIXME: Add support for scalar UNDEF cases?
307   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
308     return Match(Cst);
309 
310   // FIXME: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
312       ISD::SPLAT_VECTOR != Op.getOpcode())
313     return false;
314 
315   EVT SVT = Op.getValueType().getScalarType();
316   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
317     if (AllowUndefs && Op.getOperand(i).isUndef()) {
318       if (!Match(nullptr))
319         return false;
320       continue;
321     }
322 
323     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
324     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
325       return false;
326   }
327   return true;
328 }
329 
330 bool ISD::matchBinaryPredicate(
331     SDValue LHS, SDValue RHS,
332     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
333     bool AllowUndefs, bool AllowTypeMismatch) {
334   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
335     return false;
336 
337   // TODO: Add support for scalar UNDEF cases?
338   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
339     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
340       return Match(LHSCst, RHSCst);
341 
342   // TODO: Add support for vector UNDEF cases?
343   if (LHS.getOpcode() != RHS.getOpcode() ||
344       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
345        LHS.getOpcode() != ISD::SPLAT_VECTOR))
346     return false;
347 
348   EVT SVT = LHS.getValueType().getScalarType();
349   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
350     SDValue LHSOp = LHS.getOperand(i);
351     SDValue RHSOp = RHS.getOperand(i);
352     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
353     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
354     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
355     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
356     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
357       return false;
358     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
359                                LHSOp.getValueType() != RHSOp.getValueType()))
360       return false;
361     if (!Match(LHSCst, RHSCst))
362       return false;
363   }
364   return true;
365 }
366 
367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
368   switch (VecReduceOpcode) {
369   default:
370     llvm_unreachable("Expected VECREDUCE opcode");
371   case ISD::VECREDUCE_FADD:
372   case ISD::VECREDUCE_SEQ_FADD:
373   case ISD::VP_REDUCE_FADD:
374   case ISD::VP_REDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378   case ISD::VP_REDUCE_FMUL:
379   case ISD::VP_REDUCE_SEQ_FMUL:
380     return ISD::FMUL;
381   case ISD::VECREDUCE_ADD:
382   case ISD::VP_REDUCE_ADD:
383     return ISD::ADD;
384   case ISD::VECREDUCE_MUL:
385   case ISD::VP_REDUCE_MUL:
386     return ISD::MUL;
387   case ISD::VECREDUCE_AND:
388   case ISD::VP_REDUCE_AND:
389     return ISD::AND;
390   case ISD::VECREDUCE_OR:
391   case ISD::VP_REDUCE_OR:
392     return ISD::OR;
393   case ISD::VECREDUCE_XOR:
394   case ISD::VP_REDUCE_XOR:
395     return ISD::XOR;
396   case ISD::VECREDUCE_SMAX:
397   case ISD::VP_REDUCE_SMAX:
398     return ISD::SMAX;
399   case ISD::VECREDUCE_SMIN:
400   case ISD::VP_REDUCE_SMIN:
401     return ISD::SMIN;
402   case ISD::VECREDUCE_UMAX:
403   case ISD::VP_REDUCE_UMAX:
404     return ISD::UMAX;
405   case ISD::VECREDUCE_UMIN:
406   case ISD::VP_REDUCE_UMIN:
407     return ISD::UMIN;
408   case ISD::VECREDUCE_FMAX:
409   case ISD::VP_REDUCE_FMAX:
410     return ISD::FMAXNUM;
411   case ISD::VECREDUCE_FMIN:
412   case ISD::VP_REDUCE_FMIN:
413     return ISD::FMINNUM;
414   }
415 }
416 
417 bool ISD::isVPOpcode(unsigned Opcode) {
418   switch (Opcode) {
419   default:
420     return false;
421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
422   case ISD::VPSD:                                                              \
423     return true;
424 #include "llvm/IR/VPIntrinsics.def"
425   }
426 }
427 
428 bool ISD::isVPBinaryOp(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     break;
432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
433 #define VP_PROPERTY_BINARYOP return true;
434 #define END_REGISTER_VP_SDNODE(VPSD) break;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437   return false;
438 }
439 
440 bool ISD::isVPReduction(unsigned Opcode) {
441   switch (Opcode) {
442   default:
443     break;
444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
446 #define END_REGISTER_VP_SDNODE(VPSD) break;
447 #include "llvm/IR/VPIntrinsics.def"
448   }
449   return false;
450 }
451 
452 /// The operand position of the vector mask.
453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
454   switch (Opcode) {
455   default:
456     return None;
457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
458   case ISD::VPSD:                                                              \
459     return MASKPOS;
460 #include "llvm/IR/VPIntrinsics.def"
461   }
462 }
463 
464 /// The operand position of the explicit vector length parameter.
465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
466   switch (Opcode) {
467   default:
468     return None;
469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
470   case ISD::VPSD:                                                              \
471     return EVLPOS;
472 #include "llvm/IR/VPIntrinsics.def"
473   }
474 }
475 
476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
477   switch (ExtType) {
478   case ISD::EXTLOAD:
479     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
480   case ISD::SEXTLOAD:
481     return ISD::SIGN_EXTEND;
482   case ISD::ZEXTLOAD:
483     return ISD::ZERO_EXTEND;
484   default:
485     break;
486   }
487 
488   llvm_unreachable("Invalid LoadExtType");
489 }
490 
491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
492   // To perform this operation, we just need to swap the L and G bits of the
493   // operation.
494   unsigned OldL = (Operation >> 2) & 1;
495   unsigned OldG = (Operation >> 1) & 1;
496   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
497                        (OldL << 1) |       // New G bit
498                        (OldG << 2));       // New L bit.
499 }
500 
501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
502   unsigned Operation = Op;
503   if (isIntegerLike)
504     Operation ^= 7;   // Flip L, G, E bits, but not U.
505   else
506     Operation ^= 15;  // Flip all of the condition bits.
507 
508   if (Operation > ISD::SETTRUE2)
509     Operation &= ~8;  // Don't let N and U bits get set.
510 
511   return ISD::CondCode(Operation);
512 }
513 
514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
515   return getSetCCInverseImpl(Op, Type.isInteger());
516 }
517 
518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
519                                                bool isIntegerLike) {
520   return getSetCCInverseImpl(Op, isIntegerLike);
521 }
522 
523 /// For an integer comparison, return 1 if the comparison is a signed operation
524 /// and 2 if the result is an unsigned comparison. Return zero if the operation
525 /// does not depend on the sign of the input (setne and seteq).
526 static int isSignedOp(ISD::CondCode Opcode) {
527   switch (Opcode) {
528   default: llvm_unreachable("Illegal integer setcc operation!");
529   case ISD::SETEQ:
530   case ISD::SETNE: return 0;
531   case ISD::SETLT:
532   case ISD::SETLE:
533   case ISD::SETGT:
534   case ISD::SETGE: return 1;
535   case ISD::SETULT:
536   case ISD::SETULE:
537   case ISD::SETUGT:
538   case ISD::SETUGE: return 2;
539   }
540 }
541 
542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
543                                        EVT Type) {
544   bool IsInteger = Type.isInteger();
545   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
546     // Cannot fold a signed integer setcc with an unsigned integer setcc.
547     return ISD::SETCC_INVALID;
548 
549   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
550 
551   // If the N and U bits get set, then the resultant comparison DOES suddenly
552   // care about orderedness, and it is true when ordered.
553   if (Op > ISD::SETTRUE2)
554     Op &= ~16;     // Clear the U bit if the N bit is set.
555 
556   // Canonicalize illegal integer setcc's.
557   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
558     Op = ISD::SETNE;
559 
560   return ISD::CondCode(Op);
561 }
562 
563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
564                                         EVT Type) {
565   bool IsInteger = Type.isInteger();
566   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
567     // Cannot fold a signed setcc with an unsigned setcc.
568     return ISD::SETCC_INVALID;
569 
570   // Combine all of the condition bits.
571   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
572 
573   // Canonicalize illegal integer setcc's.
574   if (IsInteger) {
575     switch (Result) {
576     default: break;
577     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
578     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
579     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
580     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
581     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
582     }
583   }
584 
585   return Result;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                           SDNode Profile Support
590 //===----------------------------------------------------------------------===//
591 
592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
594   ID.AddInteger(OpC);
595 }
596 
597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
598 /// solely with their pointer.
599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
600   ID.AddPointer(VTList.VTs);
601 }
602 
603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
604 static void AddNodeIDOperands(FoldingSetNodeID &ID,
605                               ArrayRef<SDValue> Ops) {
606   for (auto& Op : Ops) {
607     ID.AddPointer(Op.getNode());
608     ID.AddInteger(Op.getResNo());
609   }
610 }
611 
612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
613 static void AddNodeIDOperands(FoldingSetNodeID &ID,
614                               ArrayRef<SDUse> Ops) {
615   for (auto& Op : Ops) {
616     ID.AddPointer(Op.getNode());
617     ID.AddInteger(Op.getResNo());
618   }
619 }
620 
621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
622                           SDVTList VTList, ArrayRef<SDValue> OpList) {
623   AddNodeIDOpcode(ID, OpC);
624   AddNodeIDValueTypes(ID, VTList);
625   AddNodeIDOperands(ID, OpList);
626 }
627 
628 /// If this is an SDNode with special info, add this info to the NodeID data.
629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
630   switch (N->getOpcode()) {
631   case ISD::TargetExternalSymbol:
632   case ISD::ExternalSymbol:
633   case ISD::MCSymbol:
634     llvm_unreachable("Should only be used on nodes with operands");
635   default: break;  // Normal nodes don't need extra info.
636   case ISD::TargetConstant:
637   case ISD::Constant: {
638     const ConstantSDNode *C = cast<ConstantSDNode>(N);
639     ID.AddPointer(C->getConstantIntValue());
640     ID.AddBoolean(C->isOpaque());
641     break;
642   }
643   case ISD::TargetConstantFP:
644   case ISD::ConstantFP:
645     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
646     break;
647   case ISD::TargetGlobalAddress:
648   case ISD::GlobalAddress:
649   case ISD::TargetGlobalTLSAddress:
650   case ISD::GlobalTLSAddress: {
651     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
652     ID.AddPointer(GA->getGlobal());
653     ID.AddInteger(GA->getOffset());
654     ID.AddInteger(GA->getTargetFlags());
655     break;
656   }
657   case ISD::BasicBlock:
658     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
659     break;
660   case ISD::Register:
661     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
662     break;
663   case ISD::RegisterMask:
664     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
665     break;
666   case ISD::SRCVALUE:
667     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
668     break;
669   case ISD::FrameIndex:
670   case ISD::TargetFrameIndex:
671     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
672     break;
673   case ISD::LIFETIME_START:
674   case ISD::LIFETIME_END:
675     if (cast<LifetimeSDNode>(N)->hasOffset()) {
676       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
677       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
678     }
679     break;
680   case ISD::PSEUDO_PROBE:
681     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
682     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
683     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
684     break;
685   case ISD::JumpTable:
686   case ISD::TargetJumpTable:
687     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
688     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
689     break;
690   case ISD::ConstantPool:
691   case ISD::TargetConstantPool: {
692     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
693     ID.AddInteger(CP->getAlign().value());
694     ID.AddInteger(CP->getOffset());
695     if (CP->isMachineConstantPoolEntry())
696       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
697     else
698       ID.AddPointer(CP->getConstVal());
699     ID.AddInteger(CP->getTargetFlags());
700     break;
701   }
702   case ISD::TargetIndex: {
703     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
704     ID.AddInteger(TI->getIndex());
705     ID.AddInteger(TI->getOffset());
706     ID.AddInteger(TI->getTargetFlags());
707     break;
708   }
709   case ISD::LOAD: {
710     const LoadSDNode *LD = cast<LoadSDNode>(N);
711     ID.AddInteger(LD->getMemoryVT().getRawBits());
712     ID.AddInteger(LD->getRawSubclassData());
713     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
714     ID.AddInteger(LD->getMemOperand()->getFlags());
715     break;
716   }
717   case ISD::STORE: {
718     const StoreSDNode *ST = cast<StoreSDNode>(N);
719     ID.AddInteger(ST->getMemoryVT().getRawBits());
720     ID.AddInteger(ST->getRawSubclassData());
721     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
722     ID.AddInteger(ST->getMemOperand()->getFlags());
723     break;
724   }
725   case ISD::VP_LOAD: {
726     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
727     ID.AddInteger(ELD->getMemoryVT().getRawBits());
728     ID.AddInteger(ELD->getRawSubclassData());
729     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
730     ID.AddInteger(ELD->getMemOperand()->getFlags());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     ID.AddInteger(EST->getMemOperand()->getFlags());
739     break;
740   }
741   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
742     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
743     ID.AddInteger(SLD->getMemoryVT().getRawBits());
744     ID.AddInteger(SLD->getRawSubclassData());
745     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
746     break;
747   }
748   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
749     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
750     ID.AddInteger(SST->getMemoryVT().getRawBits());
751     ID.AddInteger(SST->getRawSubclassData());
752     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
753     break;
754   }
755   case ISD::VP_GATHER: {
756     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
757     ID.AddInteger(EG->getMemoryVT().getRawBits());
758     ID.AddInteger(EG->getRawSubclassData());
759     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
760     ID.AddInteger(EG->getMemOperand()->getFlags());
761     break;
762   }
763   case ISD::VP_SCATTER: {
764     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
765     ID.AddInteger(ES->getMemoryVT().getRawBits());
766     ID.AddInteger(ES->getRawSubclassData());
767     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
768     ID.AddInteger(ES->getMemOperand()->getFlags());
769     break;
770   }
771   case ISD::MLOAD: {
772     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
773     ID.AddInteger(MLD->getMemoryVT().getRawBits());
774     ID.AddInteger(MLD->getRawSubclassData());
775     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
776     ID.AddInteger(MLD->getMemOperand()->getFlags());
777     break;
778   }
779   case ISD::MSTORE: {
780     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
781     ID.AddInteger(MST->getMemoryVT().getRawBits());
782     ID.AddInteger(MST->getRawSubclassData());
783     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
784     ID.AddInteger(MST->getMemOperand()->getFlags());
785     break;
786   }
787   case ISD::MGATHER: {
788     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
789     ID.AddInteger(MG->getMemoryVT().getRawBits());
790     ID.AddInteger(MG->getRawSubclassData());
791     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
792     ID.AddInteger(MG->getMemOperand()->getFlags());
793     break;
794   }
795   case ISD::MSCATTER: {
796     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
797     ID.AddInteger(MS->getMemoryVT().getRawBits());
798     ID.AddInteger(MS->getRawSubclassData());
799     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
800     ID.AddInteger(MS->getMemOperand()->getFlags());
801     break;
802   }
803   case ISD::ATOMIC_CMP_SWAP:
804   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
805   case ISD::ATOMIC_SWAP:
806   case ISD::ATOMIC_LOAD_ADD:
807   case ISD::ATOMIC_LOAD_SUB:
808   case ISD::ATOMIC_LOAD_AND:
809   case ISD::ATOMIC_LOAD_CLR:
810   case ISD::ATOMIC_LOAD_OR:
811   case ISD::ATOMIC_LOAD_XOR:
812   case ISD::ATOMIC_LOAD_NAND:
813   case ISD::ATOMIC_LOAD_MIN:
814   case ISD::ATOMIC_LOAD_MAX:
815   case ISD::ATOMIC_LOAD_UMIN:
816   case ISD::ATOMIC_LOAD_UMAX:
817   case ISD::ATOMIC_LOAD:
818   case ISD::ATOMIC_STORE: {
819     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
820     ID.AddInteger(AT->getMemoryVT().getRawBits());
821     ID.AddInteger(AT->getRawSubclassData());
822     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
823     ID.AddInteger(AT->getMemOperand()->getFlags());
824     break;
825   }
826   case ISD::PREFETCH: {
827     const MemSDNode *PF = cast<MemSDNode>(N);
828     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
829     ID.AddInteger(PF->getMemOperand()->getFlags());
830     break;
831   }
832   case ISD::VECTOR_SHUFFLE: {
833     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
834     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
835          i != e; ++i)
836       ID.AddInteger(SVN->getMaskElt(i));
837     break;
838   }
839   case ISD::TargetBlockAddress:
840   case ISD::BlockAddress: {
841     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
842     ID.AddPointer(BA->getBlockAddress());
843     ID.AddInteger(BA->getOffset());
844     ID.AddInteger(BA->getTargetFlags());
845     break;
846   }
847   } // end switch (N->getOpcode())
848 
849   // Target specific memory nodes could also have address spaces and flags
850   // to check.
851   if (N->isTargetMemoryOpcode()) {
852     const MemSDNode *MN = cast<MemSDNode>(N);
853     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
854     ID.AddInteger(MN->getMemOperand()->getFlags());
855   }
856 }
857 
858 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
859 /// data.
860 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
861   AddNodeIDOpcode(ID, N->getOpcode());
862   // Add the return value info.
863   AddNodeIDValueTypes(ID, N->getVTList());
864   // Add the operand info.
865   AddNodeIDOperands(ID, N->ops());
866 
867   // Handle SDNode leafs with special info.
868   AddNodeIDCustom(ID, N);
869 }
870 
871 //===----------------------------------------------------------------------===//
872 //                              SelectionDAG Class
873 //===----------------------------------------------------------------------===//
874 
875 /// doNotCSE - Return true if CSE should not be performed for this node.
876 static bool doNotCSE(SDNode *N) {
877   if (N->getValueType(0) == MVT::Glue)
878     return true; // Never CSE anything that produces a flag.
879 
880   switch (N->getOpcode()) {
881   default: break;
882   case ISD::HANDLENODE:
883   case ISD::EH_LABEL:
884     return true;   // Never CSE these nodes.
885   }
886 
887   // Check that remaining values produced are not flags.
888   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
889     if (N->getValueType(i) == MVT::Glue)
890       return true; // Never CSE anything that produces a flag.
891 
892   return false;
893 }
894 
895 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
896 /// SelectionDAG.
897 void SelectionDAG::RemoveDeadNodes() {
898   // Create a dummy node (which is not added to allnodes), that adds a reference
899   // to the root node, preventing it from being deleted.
900   HandleSDNode Dummy(getRoot());
901 
902   SmallVector<SDNode*, 128> DeadNodes;
903 
904   // Add all obviously-dead nodes to the DeadNodes worklist.
905   for (SDNode &Node : allnodes())
906     if (Node.use_empty())
907       DeadNodes.push_back(&Node);
908 
909   RemoveDeadNodes(DeadNodes);
910 
911   // If the root changed (e.g. it was a dead load, update the root).
912   setRoot(Dummy.getValue());
913 }
914 
915 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
916 /// given list, and any nodes that become unreachable as a result.
917 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
918 
919   // Process the worklist, deleting the nodes and adding their uses to the
920   // worklist.
921   while (!DeadNodes.empty()) {
922     SDNode *N = DeadNodes.pop_back_val();
923     // Skip to next node if we've already managed to delete the node. This could
924     // happen if replacing a node causes a node previously added to the node to
925     // be deleted.
926     if (N->getOpcode() == ISD::DELETED_NODE)
927       continue;
928 
929     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
930       DUL->NodeDeleted(N, nullptr);
931 
932     // Take the node out of the appropriate CSE map.
933     RemoveNodeFromCSEMaps(N);
934 
935     // Next, brutally remove the operand list.  This is safe to do, as there are
936     // no cycles in the graph.
937     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
938       SDUse &Use = *I++;
939       SDNode *Operand = Use.getNode();
940       Use.set(SDValue());
941 
942       // Now that we removed this operand, see if there are no uses of it left.
943       if (Operand->use_empty())
944         DeadNodes.push_back(Operand);
945     }
946 
947     DeallocateNode(N);
948   }
949 }
950 
951 void SelectionDAG::RemoveDeadNode(SDNode *N){
952   SmallVector<SDNode*, 16> DeadNodes(1, N);
953 
954   // Create a dummy node that adds a reference to the root node, preventing
955   // it from being deleted.  (This matters if the root is an operand of the
956   // dead node.)
957   HandleSDNode Dummy(getRoot());
958 
959   RemoveDeadNodes(DeadNodes);
960 }
961 
962 void SelectionDAG::DeleteNode(SDNode *N) {
963   // First take this out of the appropriate CSE map.
964   RemoveNodeFromCSEMaps(N);
965 
966   // Finally, remove uses due to operands of this node, remove from the
967   // AllNodes list, and delete the node.
968   DeleteNodeNotInCSEMaps(N);
969 }
970 
971 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
972   assert(N->getIterator() != AllNodes.begin() &&
973          "Cannot delete the entry node!");
974   assert(N->use_empty() && "Cannot delete a node that is not dead!");
975 
976   // Drop all of the operands and decrement used node's use counts.
977   N->DropOperands();
978 
979   DeallocateNode(N);
980 }
981 
982 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
983   assert(!(V->isVariadic() && isParameter));
984   if (isParameter)
985     ByvalParmDbgValues.push_back(V);
986   else
987     DbgValues.push_back(V);
988   for (const SDNode *Node : V->getSDNodes())
989     if (Node)
990       DbgValMap[Node].push_back(V);
991 }
992 
993 void SDDbgInfo::erase(const SDNode *Node) {
994   DbgValMapType::iterator I = DbgValMap.find(Node);
995   if (I == DbgValMap.end())
996     return;
997   for (auto &Val: I->second)
998     Val->setIsInvalidated();
999   DbgValMap.erase(I);
1000 }
1001 
1002 void SelectionDAG::DeallocateNode(SDNode *N) {
1003   // If we have operands, deallocate them.
1004   removeOperands(N);
1005 
1006   NodeAllocator.Deallocate(AllNodes.remove(N));
1007 
1008   // Set the opcode to DELETED_NODE to help catch bugs when node
1009   // memory is reallocated.
1010   // FIXME: There are places in SDag that have grown a dependency on the opcode
1011   // value in the released node.
1012   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1013   N->NodeType = ISD::DELETED_NODE;
1014 
1015   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1016   // them and forget about that node.
1017   DbgInfo->erase(N);
1018 }
1019 
1020 #ifndef NDEBUG
1021 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1022 static void VerifySDNode(SDNode *N) {
1023   switch (N->getOpcode()) {
1024   default:
1025     break;
1026   case ISD::BUILD_PAIR: {
1027     EVT VT = N->getValueType(0);
1028     assert(N->getNumValues() == 1 && "Too many results!");
1029     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1030            "Wrong return type!");
1031     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1032     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1033            "Mismatched operand types!");
1034     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1035            "Wrong operand type!");
1036     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1037            "Wrong return type size");
1038     break;
1039   }
1040   case ISD::BUILD_VECTOR: {
1041     assert(N->getNumValues() == 1 && "Too many results!");
1042     assert(N->getValueType(0).isVector() && "Wrong return type!");
1043     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1044            "Wrong number of operands!");
1045     EVT EltVT = N->getValueType(0).getVectorElementType();
1046     for (const SDUse &Op : N->ops()) {
1047       assert((Op.getValueType() == EltVT ||
1048               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1049                EltVT.bitsLE(Op.getValueType()))) &&
1050              "Wrong operand type!");
1051       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1052              "Operands must all have the same type");
1053     }
1054     break;
1055   }
1056   }
1057 }
1058 #endif // NDEBUG
1059 
1060 /// Insert a newly allocated node into the DAG.
1061 ///
1062 /// Handles insertion into the all nodes list and CSE map, as well as
1063 /// verification and other common operations when a new node is allocated.
1064 void SelectionDAG::InsertNode(SDNode *N) {
1065   AllNodes.push_back(N);
1066 #ifndef NDEBUG
1067   N->PersistentId = NextPersistentId++;
1068   VerifySDNode(N);
1069 #endif
1070   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1071     DUL->NodeInserted(N);
1072 }
1073 
1074 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1075 /// correspond to it.  This is useful when we're about to delete or repurpose
1076 /// the node.  We don't want future request for structurally identical nodes
1077 /// to return N anymore.
1078 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1079   bool Erased = false;
1080   switch (N->getOpcode()) {
1081   case ISD::HANDLENODE: return false;  // noop.
1082   case ISD::CONDCODE:
1083     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1084            "Cond code doesn't exist!");
1085     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1086     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1087     break;
1088   case ISD::ExternalSymbol:
1089     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1090     break;
1091   case ISD::TargetExternalSymbol: {
1092     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1093     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1094         ESN->getSymbol(), ESN->getTargetFlags()));
1095     break;
1096   }
1097   case ISD::MCSymbol: {
1098     auto *MCSN = cast<MCSymbolSDNode>(N);
1099     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1100     break;
1101   }
1102   case ISD::VALUETYPE: {
1103     EVT VT = cast<VTSDNode>(N)->getVT();
1104     if (VT.isExtended()) {
1105       Erased = ExtendedValueTypeNodes.erase(VT);
1106     } else {
1107       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1108       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1109     }
1110     break;
1111   }
1112   default:
1113     // Remove it from the CSE Map.
1114     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1115     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1116     Erased = CSEMap.RemoveNode(N);
1117     break;
1118   }
1119 #ifndef NDEBUG
1120   // Verify that the node was actually in one of the CSE maps, unless it has a
1121   // flag result (which cannot be CSE'd) or is one of the special cases that are
1122   // not subject to CSE.
1123   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1124       !N->isMachineOpcode() && !doNotCSE(N)) {
1125     N->dump(this);
1126     dbgs() << "\n";
1127     llvm_unreachable("Node is not in map!");
1128   }
1129 #endif
1130   return Erased;
1131 }
1132 
1133 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1134 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1135 /// node already exists, in which case transfer all its users to the existing
1136 /// node. This transfer can potentially trigger recursive merging.
1137 void
1138 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1139   // For node types that aren't CSE'd, just act as if no identical node
1140   // already exists.
1141   if (!doNotCSE(N)) {
1142     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1143     if (Existing != N) {
1144       // If there was already an existing matching node, use ReplaceAllUsesWith
1145       // to replace the dead one with the existing one.  This can cause
1146       // recursive merging of other unrelated nodes down the line.
1147       ReplaceAllUsesWith(N, Existing);
1148 
1149       // N is now dead. Inform the listeners and delete it.
1150       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1151         DUL->NodeDeleted(N, Existing);
1152       DeleteNodeNotInCSEMaps(N);
1153       return;
1154     }
1155   }
1156 
1157   // If the node doesn't already exist, we updated it.  Inform listeners.
1158   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1159     DUL->NodeUpdated(N);
1160 }
1161 
1162 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1163 /// were replaced with those specified.  If this node is never memoized,
1164 /// return null, otherwise return a pointer to the slot it would take.  If a
1165 /// node already exists with these operands, the slot will be non-null.
1166 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1167                                            void *&InsertPos) {
1168   if (doNotCSE(N))
1169     return nullptr;
1170 
1171   SDValue Ops[] = { Op };
1172   FoldingSetNodeID ID;
1173   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1174   AddNodeIDCustom(ID, N);
1175   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1176   if (Node)
1177     Node->intersectFlagsWith(N->getFlags());
1178   return Node;
1179 }
1180 
1181 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1182 /// were replaced with those specified.  If this node is never memoized,
1183 /// return null, otherwise return a pointer to the slot it would take.  If a
1184 /// node already exists with these operands, the slot will be non-null.
1185 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1186                                            SDValue Op1, SDValue Op2,
1187                                            void *&InsertPos) {
1188   if (doNotCSE(N))
1189     return nullptr;
1190 
1191   SDValue Ops[] = { Op1, Op2 };
1192   FoldingSetNodeID ID;
1193   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1194   AddNodeIDCustom(ID, N);
1195   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1196   if (Node)
1197     Node->intersectFlagsWith(N->getFlags());
1198   return Node;
1199 }
1200 
1201 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1202 /// were replaced with those specified.  If this node is never memoized,
1203 /// return null, otherwise return a pointer to the slot it would take.  If a
1204 /// node already exists with these operands, the slot will be non-null.
1205 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1206                                            void *&InsertPos) {
1207   if (doNotCSE(N))
1208     return nullptr;
1209 
1210   FoldingSetNodeID ID;
1211   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1212   AddNodeIDCustom(ID, N);
1213   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1214   if (Node)
1215     Node->intersectFlagsWith(N->getFlags());
1216   return Node;
1217 }
1218 
1219 Align SelectionDAG::getEVTAlign(EVT VT) const {
1220   Type *Ty = VT == MVT::iPTR ?
1221                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1222                    VT.getTypeForEVT(*getContext());
1223 
1224   return getDataLayout().getABITypeAlign(Ty);
1225 }
1226 
1227 // EntryNode could meaningfully have debug info if we can find it...
1228 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1229     : TM(tm), OptLevel(OL),
1230       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1231       Root(getEntryNode()) {
1232   InsertNode(&EntryNode);
1233   DbgInfo = new SDDbgInfo();
1234 }
1235 
1236 void SelectionDAG::init(MachineFunction &NewMF,
1237                         OptimizationRemarkEmitter &NewORE,
1238                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1239                         LegacyDivergenceAnalysis * Divergence,
1240                         ProfileSummaryInfo *PSIin,
1241                         BlockFrequencyInfo *BFIin) {
1242   MF = &NewMF;
1243   SDAGISelPass = PassPtr;
1244   ORE = &NewORE;
1245   TLI = getSubtarget().getTargetLowering();
1246   TSI = getSubtarget().getSelectionDAGInfo();
1247   LibInfo = LibraryInfo;
1248   Context = &MF->getFunction().getContext();
1249   DA = Divergence;
1250   PSI = PSIin;
1251   BFI = BFIin;
1252 }
1253 
1254 SelectionDAG::~SelectionDAG() {
1255   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1256   allnodes_clear();
1257   OperandRecycler.clear(OperandAllocator);
1258   delete DbgInfo;
1259 }
1260 
1261 bool SelectionDAG::shouldOptForSize() const {
1262   return MF->getFunction().hasOptSize() ||
1263       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1264 }
1265 
1266 void SelectionDAG::allnodes_clear() {
1267   assert(&*AllNodes.begin() == &EntryNode);
1268   AllNodes.remove(AllNodes.begin());
1269   while (!AllNodes.empty())
1270     DeallocateNode(&AllNodes.front());
1271 #ifndef NDEBUG
1272   NextPersistentId = 0;
1273 #endif
1274 }
1275 
1276 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1277                                           void *&InsertPos) {
1278   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1279   if (N) {
1280     switch (N->getOpcode()) {
1281     default: break;
1282     case ISD::Constant:
1283     case ISD::ConstantFP:
1284       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1285                        "debug location.  Use another overload.");
1286     }
1287   }
1288   return N;
1289 }
1290 
1291 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1292                                           const SDLoc &DL, void *&InsertPos) {
1293   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1294   if (N) {
1295     switch (N->getOpcode()) {
1296     case ISD::Constant:
1297     case ISD::ConstantFP:
1298       // Erase debug location from the node if the node is used at several
1299       // different places. Do not propagate one location to all uses as it
1300       // will cause a worse single stepping debugging experience.
1301       if (N->getDebugLoc() != DL.getDebugLoc())
1302         N->setDebugLoc(DebugLoc());
1303       break;
1304     default:
1305       // When the node's point of use is located earlier in the instruction
1306       // sequence than its prior point of use, update its debug info to the
1307       // earlier location.
1308       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1309         N->setDebugLoc(DL.getDebugLoc());
1310       break;
1311     }
1312   }
1313   return N;
1314 }
1315 
1316 void SelectionDAG::clear() {
1317   allnodes_clear();
1318   OperandRecycler.clear(OperandAllocator);
1319   OperandAllocator.Reset();
1320   CSEMap.clear();
1321 
1322   ExtendedValueTypeNodes.clear();
1323   ExternalSymbols.clear();
1324   TargetExternalSymbols.clear();
1325   MCSymbols.clear();
1326   SDCallSiteDbgInfo.clear();
1327   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1328             static_cast<CondCodeSDNode*>(nullptr));
1329   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1330             static_cast<SDNode*>(nullptr));
1331 
1332   EntryNode.UseList = nullptr;
1333   InsertNode(&EntryNode);
1334   Root = getEntryNode();
1335   DbgInfo->clear();
1336 }
1337 
1338 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1339   return VT.bitsGT(Op.getValueType())
1340              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1341              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1342 }
1343 
1344 std::pair<SDValue, SDValue>
1345 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1346                                        const SDLoc &DL, EVT VT) {
1347   assert(!VT.bitsEq(Op.getValueType()) &&
1348          "Strict no-op FP extend/round not allowed.");
1349   SDValue Res =
1350       VT.bitsGT(Op.getValueType())
1351           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1352           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1353                     {Chain, Op, getIntPtrConstant(0, DL)});
1354 
1355   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1356 }
1357 
1358 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1359   return VT.bitsGT(Op.getValueType()) ?
1360     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1361     getNode(ISD::TRUNCATE, DL, VT, Op);
1362 }
1363 
1364 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1365   return VT.bitsGT(Op.getValueType()) ?
1366     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1367     getNode(ISD::TRUNCATE, DL, VT, Op);
1368 }
1369 
1370 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1371   return VT.bitsGT(Op.getValueType()) ?
1372     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1373     getNode(ISD::TRUNCATE, DL, VT, Op);
1374 }
1375 
1376 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1377                                         EVT OpVT) {
1378   if (VT.bitsLE(Op.getValueType()))
1379     return getNode(ISD::TRUNCATE, SL, VT, Op);
1380 
1381   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1382   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1383 }
1384 
1385 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1386   EVT OpVT = Op.getValueType();
1387   assert(VT.isInteger() && OpVT.isInteger() &&
1388          "Cannot getZeroExtendInReg FP types");
1389   assert(VT.isVector() == OpVT.isVector() &&
1390          "getZeroExtendInReg type should be vector iff the operand "
1391          "type is vector!");
1392   assert((!VT.isVector() ||
1393           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1394          "Vector element counts must match in getZeroExtendInReg");
1395   assert(VT.bitsLE(OpVT) && "Not extending!");
1396   if (OpVT == VT)
1397     return Op;
1398   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1399                                    VT.getScalarSizeInBits());
1400   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1401 }
1402 
1403 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1404   // Only unsigned pointer semantics are supported right now. In the future this
1405   // might delegate to TLI to check pointer signedness.
1406   return getZExtOrTrunc(Op, DL, VT);
1407 }
1408 
1409 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1410   // Only unsigned pointer semantics are supported right now. In the future this
1411   // might delegate to TLI to check pointer signedness.
1412   return getZeroExtendInReg(Op, DL, VT);
1413 }
1414 
1415 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1416 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1417   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1418 }
1419 
1420 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1421   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1422   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1423 }
1424 
1425 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1426                                       EVT OpVT) {
1427   if (!V)
1428     return getConstant(0, DL, VT);
1429 
1430   switch (TLI->getBooleanContents(OpVT)) {
1431   case TargetLowering::ZeroOrOneBooleanContent:
1432   case TargetLowering::UndefinedBooleanContent:
1433     return getConstant(1, DL, VT);
1434   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1435     return getAllOnesConstant(DL, VT);
1436   }
1437   llvm_unreachable("Unexpected boolean content enum!");
1438 }
1439 
1440 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1441                                   bool isT, bool isO) {
1442   EVT EltVT = VT.getScalarType();
1443   assert((EltVT.getSizeInBits() >= 64 ||
1444           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1445          "getConstant with a uint64_t value that doesn't fit in the type!");
1446   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1447 }
1448 
1449 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1450                                   bool isT, bool isO) {
1451   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1452 }
1453 
1454 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1455                                   EVT VT, bool isT, bool isO) {
1456   assert(VT.isInteger() && "Cannot create FP integer constant!");
1457 
1458   EVT EltVT = VT.getScalarType();
1459   const ConstantInt *Elt = &Val;
1460 
1461   // In some cases the vector type is legal but the element type is illegal and
1462   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1463   // inserted value (the type does not need to match the vector element type).
1464   // Any extra bits introduced will be truncated away.
1465   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1466                            TargetLowering::TypePromoteInteger) {
1467     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1468     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1469     Elt = ConstantInt::get(*getContext(), NewVal);
1470   }
1471   // In other cases the element type is illegal and needs to be expanded, for
1472   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1473   // the value into n parts and use a vector type with n-times the elements.
1474   // Then bitcast to the type requested.
1475   // Legalizing constants too early makes the DAGCombiner's job harder so we
1476   // only legalize if the DAG tells us we must produce legal types.
1477   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1478            TLI->getTypeAction(*getContext(), EltVT) ==
1479                TargetLowering::TypeExpandInteger) {
1480     const APInt &NewVal = Elt->getValue();
1481     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1482     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1483 
1484     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1485     if (VT.isScalableVector()) {
1486       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1487              "Can only handle an even split!");
1488       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1489 
1490       SmallVector<SDValue, 2> ScalarParts;
1491       for (unsigned i = 0; i != Parts; ++i)
1492         ScalarParts.push_back(getConstant(
1493             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1494             ViaEltVT, isT, isO));
1495 
1496       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1497     }
1498 
1499     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1500     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1501 
1502     // Check the temporary vector is the correct size. If this fails then
1503     // getTypeToTransformTo() probably returned a type whose size (in bits)
1504     // isn't a power-of-2 factor of the requested type size.
1505     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1506 
1507     SmallVector<SDValue, 2> EltParts;
1508     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1509       EltParts.push_back(getConstant(
1510           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1511           ViaEltVT, isT, isO));
1512 
1513     // EltParts is currently in little endian order. If we actually want
1514     // big-endian order then reverse it now.
1515     if (getDataLayout().isBigEndian())
1516       std::reverse(EltParts.begin(), EltParts.end());
1517 
1518     // The elements must be reversed when the element order is different
1519     // to the endianness of the elements (because the BITCAST is itself a
1520     // vector shuffle in this situation). However, we do not need any code to
1521     // perform this reversal because getConstant() is producing a vector
1522     // splat.
1523     // This situation occurs in MIPS MSA.
1524 
1525     SmallVector<SDValue, 8> Ops;
1526     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1527       llvm::append_range(Ops, EltParts);
1528 
1529     SDValue V =
1530         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1531     return V;
1532   }
1533 
1534   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1535          "APInt size does not match type size!");
1536   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1537   FoldingSetNodeID ID;
1538   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1539   ID.AddPointer(Elt);
1540   ID.AddBoolean(isO);
1541   void *IP = nullptr;
1542   SDNode *N = nullptr;
1543   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1544     if (!VT.isVector())
1545       return SDValue(N, 0);
1546 
1547   if (!N) {
1548     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1549     CSEMap.InsertNode(N, IP);
1550     InsertNode(N);
1551     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1552   }
1553 
1554   SDValue Result(N, 0);
1555   if (VT.isScalableVector())
1556     Result = getSplatVector(VT, DL, Result);
1557   else if (VT.isVector())
1558     Result = getSplatBuildVector(VT, DL, Result);
1559 
1560   return Result;
1561 }
1562 
1563 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1564                                         bool isTarget) {
1565   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1566 }
1567 
1568 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1569                                              const SDLoc &DL, bool LegalTypes) {
1570   assert(VT.isInteger() && "Shift amount is not an integer type!");
1571   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1572   return getConstant(Val, DL, ShiftVT);
1573 }
1574 
1575 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1576                                            bool isTarget) {
1577   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1578 }
1579 
1580 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1581                                     bool isTarget) {
1582   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1583 }
1584 
1585 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1586                                     EVT VT, bool isTarget) {
1587   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1588 
1589   EVT EltVT = VT.getScalarType();
1590 
1591   // Do the map lookup using the actual bit pattern for the floating point
1592   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1593   // we don't have issues with SNANs.
1594   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1595   FoldingSetNodeID ID;
1596   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1597   ID.AddPointer(&V);
1598   void *IP = nullptr;
1599   SDNode *N = nullptr;
1600   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1601     if (!VT.isVector())
1602       return SDValue(N, 0);
1603 
1604   if (!N) {
1605     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1606     CSEMap.InsertNode(N, IP);
1607     InsertNode(N);
1608   }
1609 
1610   SDValue Result(N, 0);
1611   if (VT.isScalableVector())
1612     Result = getSplatVector(VT, DL, Result);
1613   else if (VT.isVector())
1614     Result = getSplatBuildVector(VT, DL, Result);
1615   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1616   return Result;
1617 }
1618 
1619 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1620                                     bool isTarget) {
1621   EVT EltVT = VT.getScalarType();
1622   if (EltVT == MVT::f32)
1623     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1624   if (EltVT == MVT::f64)
1625     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1626   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1627       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1628     bool Ignored;
1629     APFloat APF = APFloat(Val);
1630     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1631                 &Ignored);
1632     return getConstantFP(APF, DL, VT, isTarget);
1633   }
1634   llvm_unreachable("Unsupported type in getConstantFP");
1635 }
1636 
1637 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1638                                        EVT VT, int64_t Offset, bool isTargetGA,
1639                                        unsigned TargetFlags) {
1640   assert((TargetFlags == 0 || isTargetGA) &&
1641          "Cannot set target flags on target-independent globals");
1642 
1643   // Truncate (with sign-extension) the offset value to the pointer size.
1644   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1645   if (BitWidth < 64)
1646     Offset = SignExtend64(Offset, BitWidth);
1647 
1648   unsigned Opc;
1649   if (GV->isThreadLocal())
1650     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1651   else
1652     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1653 
1654   FoldingSetNodeID ID;
1655   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1656   ID.AddPointer(GV);
1657   ID.AddInteger(Offset);
1658   ID.AddInteger(TargetFlags);
1659   void *IP = nullptr;
1660   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1661     return SDValue(E, 0);
1662 
1663   auto *N = newSDNode<GlobalAddressSDNode>(
1664       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1665   CSEMap.InsertNode(N, IP);
1666     InsertNode(N);
1667   return SDValue(N, 0);
1668 }
1669 
1670 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1671   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1672   FoldingSetNodeID ID;
1673   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1674   ID.AddInteger(FI);
1675   void *IP = nullptr;
1676   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1677     return SDValue(E, 0);
1678 
1679   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1680   CSEMap.InsertNode(N, IP);
1681   InsertNode(N);
1682   return SDValue(N, 0);
1683 }
1684 
1685 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1686                                    unsigned TargetFlags) {
1687   assert((TargetFlags == 0 || isTarget) &&
1688          "Cannot set target flags on target-independent jump tables");
1689   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1690   FoldingSetNodeID ID;
1691   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1692   ID.AddInteger(JTI);
1693   ID.AddInteger(TargetFlags);
1694   void *IP = nullptr;
1695   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1696     return SDValue(E, 0);
1697 
1698   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1699   CSEMap.InsertNode(N, IP);
1700   InsertNode(N);
1701   return SDValue(N, 0);
1702 }
1703 
1704 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1705                                       MaybeAlign Alignment, int Offset,
1706                                       bool isTarget, unsigned TargetFlags) {
1707   assert((TargetFlags == 0 || isTarget) &&
1708          "Cannot set target flags on target-independent globals");
1709   if (!Alignment)
1710     Alignment = shouldOptForSize()
1711                     ? getDataLayout().getABITypeAlign(C->getType())
1712                     : getDataLayout().getPrefTypeAlign(C->getType());
1713   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1714   FoldingSetNodeID ID;
1715   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1716   ID.AddInteger(Alignment->value());
1717   ID.AddInteger(Offset);
1718   ID.AddPointer(C);
1719   ID.AddInteger(TargetFlags);
1720   void *IP = nullptr;
1721   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1722     return SDValue(E, 0);
1723 
1724   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1725                                           TargetFlags);
1726   CSEMap.InsertNode(N, IP);
1727   InsertNode(N);
1728   SDValue V = SDValue(N, 0);
1729   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1730   return V;
1731 }
1732 
1733 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1734                                       MaybeAlign Alignment, int Offset,
1735                                       bool isTarget, unsigned TargetFlags) {
1736   assert((TargetFlags == 0 || isTarget) &&
1737          "Cannot set target flags on target-independent globals");
1738   if (!Alignment)
1739     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1740   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1741   FoldingSetNodeID ID;
1742   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1743   ID.AddInteger(Alignment->value());
1744   ID.AddInteger(Offset);
1745   C->addSelectionDAGCSEId(ID);
1746   ID.AddInteger(TargetFlags);
1747   void *IP = nullptr;
1748   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1749     return SDValue(E, 0);
1750 
1751   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1752                                           TargetFlags);
1753   CSEMap.InsertNode(N, IP);
1754   InsertNode(N);
1755   return SDValue(N, 0);
1756 }
1757 
1758 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1759                                      unsigned TargetFlags) {
1760   FoldingSetNodeID ID;
1761   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1762   ID.AddInteger(Index);
1763   ID.AddInteger(Offset);
1764   ID.AddInteger(TargetFlags);
1765   void *IP = nullptr;
1766   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1767     return SDValue(E, 0);
1768 
1769   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1770   CSEMap.InsertNode(N, IP);
1771   InsertNode(N);
1772   return SDValue(N, 0);
1773 }
1774 
1775 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1776   FoldingSetNodeID ID;
1777   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1778   ID.AddPointer(MBB);
1779   void *IP = nullptr;
1780   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1781     return SDValue(E, 0);
1782 
1783   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1784   CSEMap.InsertNode(N, IP);
1785   InsertNode(N);
1786   return SDValue(N, 0);
1787 }
1788 
1789 SDValue SelectionDAG::getValueType(EVT VT) {
1790   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1791       ValueTypeNodes.size())
1792     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1793 
1794   SDNode *&N = VT.isExtended() ?
1795     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1796 
1797   if (N) return SDValue(N, 0);
1798   N = newSDNode<VTSDNode>(VT);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1804   SDNode *&N = ExternalSymbols[Sym];
1805   if (N) return SDValue(N, 0);
1806   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1807   InsertNode(N);
1808   return SDValue(N, 0);
1809 }
1810 
1811 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1812   SDNode *&N = MCSymbols[Sym];
1813   if (N)
1814     return SDValue(N, 0);
1815   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1816   InsertNode(N);
1817   return SDValue(N, 0);
1818 }
1819 
1820 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1821                                               unsigned TargetFlags) {
1822   SDNode *&N =
1823       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1824   if (N) return SDValue(N, 0);
1825   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1826   InsertNode(N);
1827   return SDValue(N, 0);
1828 }
1829 
1830 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1831   if ((unsigned)Cond >= CondCodeNodes.size())
1832     CondCodeNodes.resize(Cond+1);
1833 
1834   if (!CondCodeNodes[Cond]) {
1835     auto *N = newSDNode<CondCodeSDNode>(Cond);
1836     CondCodeNodes[Cond] = N;
1837     InsertNode(N);
1838   }
1839 
1840   return SDValue(CondCodeNodes[Cond], 0);
1841 }
1842 
1843 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1844   APInt One(ResVT.getScalarSizeInBits(), 1);
1845   return getStepVector(DL, ResVT, One);
1846 }
1847 
1848 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1849   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1850   if (ResVT.isScalableVector())
1851     return getNode(
1852         ISD::STEP_VECTOR, DL, ResVT,
1853         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1854 
1855   SmallVector<SDValue, 16> OpsStepConstants;
1856   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1857     OpsStepConstants.push_back(
1858         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1859   return getBuildVector(ResVT, DL, OpsStepConstants);
1860 }
1861 
1862 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1863 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1864 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1865   std::swap(N1, N2);
1866   ShuffleVectorSDNode::commuteMask(M);
1867 }
1868 
1869 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1870                                        SDValue N2, ArrayRef<int> Mask) {
1871   assert(VT.getVectorNumElements() == Mask.size() &&
1872          "Must have the same number of vector elements as mask elements!");
1873   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1874          "Invalid VECTOR_SHUFFLE");
1875 
1876   // Canonicalize shuffle undef, undef -> undef
1877   if (N1.isUndef() && N2.isUndef())
1878     return getUNDEF(VT);
1879 
1880   // Validate that all indices in Mask are within the range of the elements
1881   // input to the shuffle.
1882   int NElts = Mask.size();
1883   assert(llvm::all_of(Mask,
1884                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1885          "Index out of range");
1886 
1887   // Copy the mask so we can do any needed cleanup.
1888   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1889 
1890   // Canonicalize shuffle v, v -> v, undef
1891   if (N1 == N2) {
1892     N2 = getUNDEF(VT);
1893     for (int i = 0; i != NElts; ++i)
1894       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1895   }
1896 
1897   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1898   if (N1.isUndef())
1899     commuteShuffle(N1, N2, MaskVec);
1900 
1901   if (TLI->hasVectorBlend()) {
1902     // If shuffling a splat, try to blend the splat instead. We do this here so
1903     // that even when this arises during lowering we don't have to re-handle it.
1904     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1905       BitVector UndefElements;
1906       SDValue Splat = BV->getSplatValue(&UndefElements);
1907       if (!Splat)
1908         return;
1909 
1910       for (int i = 0; i < NElts; ++i) {
1911         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1912           continue;
1913 
1914         // If this input comes from undef, mark it as such.
1915         if (UndefElements[MaskVec[i] - Offset]) {
1916           MaskVec[i] = -1;
1917           continue;
1918         }
1919 
1920         // If we can blend a non-undef lane, use that instead.
1921         if (!UndefElements[i])
1922           MaskVec[i] = i + Offset;
1923       }
1924     };
1925     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1926       BlendSplat(N1BV, 0);
1927     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1928       BlendSplat(N2BV, NElts);
1929   }
1930 
1931   // Canonicalize all index into lhs, -> shuffle lhs, undef
1932   // Canonicalize all index into rhs, -> shuffle rhs, undef
1933   bool AllLHS = true, AllRHS = true;
1934   bool N2Undef = N2.isUndef();
1935   for (int i = 0; i != NElts; ++i) {
1936     if (MaskVec[i] >= NElts) {
1937       if (N2Undef)
1938         MaskVec[i] = -1;
1939       else
1940         AllLHS = false;
1941     } else if (MaskVec[i] >= 0) {
1942       AllRHS = false;
1943     }
1944   }
1945   if (AllLHS && AllRHS)
1946     return getUNDEF(VT);
1947   if (AllLHS && !N2Undef)
1948     N2 = getUNDEF(VT);
1949   if (AllRHS) {
1950     N1 = getUNDEF(VT);
1951     commuteShuffle(N1, N2, MaskVec);
1952   }
1953   // Reset our undef status after accounting for the mask.
1954   N2Undef = N2.isUndef();
1955   // Re-check whether both sides ended up undef.
1956   if (N1.isUndef() && N2Undef)
1957     return getUNDEF(VT);
1958 
1959   // If Identity shuffle return that node.
1960   bool Identity = true, AllSame = true;
1961   for (int i = 0; i != NElts; ++i) {
1962     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1963     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1964   }
1965   if (Identity && NElts)
1966     return N1;
1967 
1968   // Shuffling a constant splat doesn't change the result.
1969   if (N2Undef) {
1970     SDValue V = N1;
1971 
1972     // Look through any bitcasts. We check that these don't change the number
1973     // (and size) of elements and just changes their types.
1974     while (V.getOpcode() == ISD::BITCAST)
1975       V = V->getOperand(0);
1976 
1977     // A splat should always show up as a build vector node.
1978     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1979       BitVector UndefElements;
1980       SDValue Splat = BV->getSplatValue(&UndefElements);
1981       // If this is a splat of an undef, shuffling it is also undef.
1982       if (Splat && Splat.isUndef())
1983         return getUNDEF(VT);
1984 
1985       bool SameNumElts =
1986           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1987 
1988       // We only have a splat which can skip shuffles if there is a splatted
1989       // value and no undef lanes rearranged by the shuffle.
1990       if (Splat && UndefElements.none()) {
1991         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1992         // number of elements match or the value splatted is a zero constant.
1993         if (SameNumElts)
1994           return N1;
1995         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1996           if (C->isZero())
1997             return N1;
1998       }
1999 
2000       // If the shuffle itself creates a splat, build the vector directly.
2001       if (AllSame && SameNumElts) {
2002         EVT BuildVT = BV->getValueType(0);
2003         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2004         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2005 
2006         // We may have jumped through bitcasts, so the type of the
2007         // BUILD_VECTOR may not match the type of the shuffle.
2008         if (BuildVT != VT)
2009           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2010         return NewBV;
2011       }
2012     }
2013   }
2014 
2015   FoldingSetNodeID ID;
2016   SDValue Ops[2] = { N1, N2 };
2017   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2018   for (int i = 0; i != NElts; ++i)
2019     ID.AddInteger(MaskVec[i]);
2020 
2021   void* IP = nullptr;
2022   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2023     return SDValue(E, 0);
2024 
2025   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2026   // SDNode doesn't have access to it.  This memory will be "leaked" when
2027   // the node is deallocated, but recovered when the NodeAllocator is released.
2028   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2029   llvm::copy(MaskVec, MaskAlloc);
2030 
2031   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2032                                            dl.getDebugLoc(), MaskAlloc);
2033   createOperands(N, Ops);
2034 
2035   CSEMap.InsertNode(N, IP);
2036   InsertNode(N);
2037   SDValue V = SDValue(N, 0);
2038   NewSDValueDbgMsg(V, "Creating new node: ", this);
2039   return V;
2040 }
2041 
2042 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2043   EVT VT = SV.getValueType(0);
2044   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2045   ShuffleVectorSDNode::commuteMask(MaskVec);
2046 
2047   SDValue Op0 = SV.getOperand(0);
2048   SDValue Op1 = SV.getOperand(1);
2049   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2050 }
2051 
2052 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2053   FoldingSetNodeID ID;
2054   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2055   ID.AddInteger(RegNo);
2056   void *IP = nullptr;
2057   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2058     return SDValue(E, 0);
2059 
2060   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2061   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2062   CSEMap.InsertNode(N, IP);
2063   InsertNode(N);
2064   return SDValue(N, 0);
2065 }
2066 
2067 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2068   FoldingSetNodeID ID;
2069   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2070   ID.AddPointer(RegMask);
2071   void *IP = nullptr;
2072   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2073     return SDValue(E, 0);
2074 
2075   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2076   CSEMap.InsertNode(N, IP);
2077   InsertNode(N);
2078   return SDValue(N, 0);
2079 }
2080 
2081 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2082                                  MCSymbol *Label) {
2083   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2084 }
2085 
2086 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2087                                    SDValue Root, MCSymbol *Label) {
2088   FoldingSetNodeID ID;
2089   SDValue Ops[] = { Root };
2090   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2091   ID.AddPointer(Label);
2092   void *IP = nullptr;
2093   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2094     return SDValue(E, 0);
2095 
2096   auto *N =
2097       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2098   createOperands(N, Ops);
2099 
2100   CSEMap.InsertNode(N, IP);
2101   InsertNode(N);
2102   return SDValue(N, 0);
2103 }
2104 
2105 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2106                                       int64_t Offset, bool isTarget,
2107                                       unsigned TargetFlags) {
2108   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2109 
2110   FoldingSetNodeID ID;
2111   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2112   ID.AddPointer(BA);
2113   ID.AddInteger(Offset);
2114   ID.AddInteger(TargetFlags);
2115   void *IP = nullptr;
2116   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2117     return SDValue(E, 0);
2118 
2119   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2120   CSEMap.InsertNode(N, IP);
2121   InsertNode(N);
2122   return SDValue(N, 0);
2123 }
2124 
2125 SDValue SelectionDAG::getSrcValue(const Value *V) {
2126   FoldingSetNodeID ID;
2127   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2128   ID.AddPointer(V);
2129 
2130   void *IP = nullptr;
2131   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2132     return SDValue(E, 0);
2133 
2134   auto *N = newSDNode<SrcValueSDNode>(V);
2135   CSEMap.InsertNode(N, IP);
2136   InsertNode(N);
2137   return SDValue(N, 0);
2138 }
2139 
2140 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2141   FoldingSetNodeID ID;
2142   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2143   ID.AddPointer(MD);
2144 
2145   void *IP = nullptr;
2146   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2147     return SDValue(E, 0);
2148 
2149   auto *N = newSDNode<MDNodeSDNode>(MD);
2150   CSEMap.InsertNode(N, IP);
2151   InsertNode(N);
2152   return SDValue(N, 0);
2153 }
2154 
2155 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2156   if (VT == V.getValueType())
2157     return V;
2158 
2159   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2160 }
2161 
2162 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2163                                        unsigned SrcAS, unsigned DestAS) {
2164   SDValue Ops[] = {Ptr};
2165   FoldingSetNodeID ID;
2166   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2167   ID.AddInteger(SrcAS);
2168   ID.AddInteger(DestAS);
2169 
2170   void *IP = nullptr;
2171   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2172     return SDValue(E, 0);
2173 
2174   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2175                                            VT, SrcAS, DestAS);
2176   createOperands(N, Ops);
2177 
2178   CSEMap.InsertNode(N, IP);
2179   InsertNode(N);
2180   return SDValue(N, 0);
2181 }
2182 
2183 SDValue SelectionDAG::getFreeze(SDValue V) {
2184   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2185 }
2186 
2187 /// getShiftAmountOperand - Return the specified value casted to
2188 /// the target's desired shift amount type.
2189 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2190   EVT OpTy = Op.getValueType();
2191   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2192   if (OpTy == ShTy || OpTy.isVector()) return Op;
2193 
2194   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2195 }
2196 
2197 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2198   SDLoc dl(Node);
2199   const TargetLowering &TLI = getTargetLoweringInfo();
2200   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2201   EVT VT = Node->getValueType(0);
2202   SDValue Tmp1 = Node->getOperand(0);
2203   SDValue Tmp2 = Node->getOperand(1);
2204   const MaybeAlign MA(Node->getConstantOperandVal(3));
2205 
2206   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2207                                Tmp2, MachinePointerInfo(V));
2208   SDValue VAList = VAListLoad;
2209 
2210   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2211     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2212                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2213 
2214     VAList =
2215         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2216                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2217   }
2218 
2219   // Increment the pointer, VAList, to the next vaarg
2220   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2221                  getConstant(getDataLayout().getTypeAllocSize(
2222                                                VT.getTypeForEVT(*getContext())),
2223                              dl, VAList.getValueType()));
2224   // Store the incremented VAList to the legalized pointer
2225   Tmp1 =
2226       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2227   // Load the actual argument out of the pointer VAList
2228   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2229 }
2230 
2231 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2232   SDLoc dl(Node);
2233   const TargetLowering &TLI = getTargetLoweringInfo();
2234   // This defaults to loading a pointer from the input and storing it to the
2235   // output, returning the chain.
2236   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2237   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2238   SDValue Tmp1 =
2239       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2240               Node->getOperand(2), MachinePointerInfo(VS));
2241   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2242                   MachinePointerInfo(VD));
2243 }
2244 
2245 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2246   const DataLayout &DL = getDataLayout();
2247   Type *Ty = VT.getTypeForEVT(*getContext());
2248   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2249 
2250   if (TLI->isTypeLegal(VT) || !VT.isVector())
2251     return RedAlign;
2252 
2253   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2254   const Align StackAlign = TFI->getStackAlign();
2255 
2256   // See if we can choose a smaller ABI alignment in cases where it's an
2257   // illegal vector type that will get broken down.
2258   if (RedAlign > StackAlign) {
2259     EVT IntermediateVT;
2260     MVT RegisterVT;
2261     unsigned NumIntermediates;
2262     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2263                                 NumIntermediates, RegisterVT);
2264     Ty = IntermediateVT.getTypeForEVT(*getContext());
2265     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2266     if (RedAlign2 < RedAlign)
2267       RedAlign = RedAlign2;
2268   }
2269 
2270   return RedAlign;
2271 }
2272 
2273 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2274   MachineFrameInfo &MFI = MF->getFrameInfo();
2275   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2276   int StackID = 0;
2277   if (Bytes.isScalable())
2278     StackID = TFI->getStackIDForScalableVectors();
2279   // The stack id gives an indication of whether the object is scalable or
2280   // not, so it's safe to pass in the minimum size here.
2281   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2282                                        false, nullptr, StackID);
2283   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2284 }
2285 
2286 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2287   Type *Ty = VT.getTypeForEVT(*getContext());
2288   Align StackAlign =
2289       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2290   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2291 }
2292 
2293 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2294   TypeSize VT1Size = VT1.getStoreSize();
2295   TypeSize VT2Size = VT2.getStoreSize();
2296   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2297          "Don't know how to choose the maximum size when creating a stack "
2298          "temporary");
2299   TypeSize Bytes =
2300       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2301 
2302   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2303   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2304   const DataLayout &DL = getDataLayout();
2305   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2306   return CreateStackTemporary(Bytes, Align);
2307 }
2308 
2309 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2310                                 ISD::CondCode Cond, const SDLoc &dl) {
2311   EVT OpVT = N1.getValueType();
2312 
2313   // These setcc operations always fold.
2314   switch (Cond) {
2315   default: break;
2316   case ISD::SETFALSE:
2317   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2318   case ISD::SETTRUE:
2319   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2320 
2321   case ISD::SETOEQ:
2322   case ISD::SETOGT:
2323   case ISD::SETOGE:
2324   case ISD::SETOLT:
2325   case ISD::SETOLE:
2326   case ISD::SETONE:
2327   case ISD::SETO:
2328   case ISD::SETUO:
2329   case ISD::SETUEQ:
2330   case ISD::SETUNE:
2331     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2332     break;
2333   }
2334 
2335   if (OpVT.isInteger()) {
2336     // For EQ and NE, we can always pick a value for the undef to make the
2337     // predicate pass or fail, so we can return undef.
2338     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2339     // icmp eq/ne X, undef -> undef.
2340     if ((N1.isUndef() || N2.isUndef()) &&
2341         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2342       return getUNDEF(VT);
2343 
2344     // If both operands are undef, we can return undef for int comparison.
2345     // icmp undef, undef -> undef.
2346     if (N1.isUndef() && N2.isUndef())
2347       return getUNDEF(VT);
2348 
2349     // icmp X, X -> true/false
2350     // icmp X, undef -> true/false because undef could be X.
2351     if (N1 == N2)
2352       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2353   }
2354 
2355   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2356     const APInt &C2 = N2C->getAPIntValue();
2357     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2358       const APInt &C1 = N1C->getAPIntValue();
2359 
2360       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2361                              dl, VT, OpVT);
2362     }
2363   }
2364 
2365   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2366   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2367 
2368   if (N1CFP && N2CFP) {
2369     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2370     switch (Cond) {
2371     default: break;
2372     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2373                         return getUNDEF(VT);
2374                       LLVM_FALLTHROUGH;
2375     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2376                                              OpVT);
2377     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2378                         return getUNDEF(VT);
2379                       LLVM_FALLTHROUGH;
2380     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2381                                              R==APFloat::cmpLessThan, dl, VT,
2382                                              OpVT);
2383     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2384                         return getUNDEF(VT);
2385                       LLVM_FALLTHROUGH;
2386     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2387                                              OpVT);
2388     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2389                         return getUNDEF(VT);
2390                       LLVM_FALLTHROUGH;
2391     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2392                                              VT, OpVT);
2393     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2394                         return getUNDEF(VT);
2395                       LLVM_FALLTHROUGH;
2396     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2397                                              R==APFloat::cmpEqual, dl, VT,
2398                                              OpVT);
2399     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2400                         return getUNDEF(VT);
2401                       LLVM_FALLTHROUGH;
2402     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2403                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2404     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2405                                              OpVT);
2406     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2407                                              OpVT);
2408     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2409                                              R==APFloat::cmpEqual, dl, VT,
2410                                              OpVT);
2411     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2412                                              OpVT);
2413     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2414                                              R==APFloat::cmpLessThan, dl, VT,
2415                                              OpVT);
2416     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2417                                              R==APFloat::cmpUnordered, dl, VT,
2418                                              OpVT);
2419     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2420                                              VT, OpVT);
2421     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2422                                              OpVT);
2423     }
2424   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2425     // Ensure that the constant occurs on the RHS.
2426     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2427     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2428       return SDValue();
2429     return getSetCC(dl, VT, N2, N1, SwappedCond);
2430   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2431              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2432     // If an operand is known to be a nan (or undef that could be a nan), we can
2433     // fold it.
2434     // Choosing NaN for the undef will always make unordered comparison succeed
2435     // and ordered comparison fails.
2436     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2437     switch (ISD::getUnorderedFlavor(Cond)) {
2438     default:
2439       llvm_unreachable("Unknown flavor!");
2440     case 0: // Known false.
2441       return getBoolConstant(false, dl, VT, OpVT);
2442     case 1: // Known true.
2443       return getBoolConstant(true, dl, VT, OpVT);
2444     case 2: // Undefined.
2445       return getUNDEF(VT);
2446     }
2447   }
2448 
2449   // Could not fold it.
2450   return SDValue();
2451 }
2452 
2453 /// See if the specified operand can be simplified with the knowledge that only
2454 /// the bits specified by DemandedBits are used.
2455 /// TODO: really we should be making this into the DAG equivalent of
2456 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2457 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2458   EVT VT = V.getValueType();
2459 
2460   if (VT.isScalableVector())
2461     return SDValue();
2462 
2463   APInt DemandedElts = VT.isVector()
2464                            ? APInt::getAllOnes(VT.getVectorNumElements())
2465                            : APInt(1, 1);
2466   return GetDemandedBits(V, DemandedBits, DemandedElts);
2467 }
2468 
2469 /// See if the specified operand can be simplified with the knowledge that only
2470 /// the bits specified by DemandedBits are used in the elements specified by
2471 /// DemandedElts.
2472 /// TODO: really we should be making this into the DAG equivalent of
2473 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2474 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2475                                       const APInt &DemandedElts) {
2476   switch (V.getOpcode()) {
2477   default:
2478     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2479                                                 *this);
2480   case ISD::Constant: {
2481     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2482     APInt NewVal = CVal & DemandedBits;
2483     if (NewVal != CVal)
2484       return getConstant(NewVal, SDLoc(V), V.getValueType());
2485     break;
2486   }
2487   case ISD::SRL:
2488     // Only look at single-use SRLs.
2489     if (!V.getNode()->hasOneUse())
2490       break;
2491     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2492       // See if we can recursively simplify the LHS.
2493       unsigned Amt = RHSC->getZExtValue();
2494 
2495       // Watch out for shift count overflow though.
2496       if (Amt >= DemandedBits.getBitWidth())
2497         break;
2498       APInt SrcDemandedBits = DemandedBits << Amt;
2499       if (SDValue SimplifyLHS =
2500               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2501         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2502                        V.getOperand(1));
2503     }
2504     break;
2505   }
2506   return SDValue();
2507 }
2508 
2509 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2510 /// use this predicate to simplify operations downstream.
2511 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2512   unsigned BitWidth = Op.getScalarValueSizeInBits();
2513   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2514 }
2515 
2516 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2517 /// this predicate to simplify operations downstream.  Mask is known to be zero
2518 /// for bits that V cannot have.
2519 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2520                                      unsigned Depth) const {
2521   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2522 }
2523 
2524 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2525 /// DemandedElts.  We use this predicate to simplify operations downstream.
2526 /// Mask is known to be zero for bits that V cannot have.
2527 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2528                                      const APInt &DemandedElts,
2529                                      unsigned Depth) const {
2530   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2531 }
2532 
2533 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2534 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2535                                         unsigned Depth) const {
2536   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2537 }
2538 
2539 /// isSplatValue - Return true if the vector V has the same value
2540 /// across all DemandedElts. For scalable vectors it does not make
2541 /// sense to specify which elements are demanded or undefined, therefore
2542 /// they are simply ignored.
2543 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2544                                 APInt &UndefElts, unsigned Depth) const {
2545   unsigned Opcode = V.getOpcode();
2546   EVT VT = V.getValueType();
2547   assert(VT.isVector() && "Vector type expected");
2548 
2549   if (!VT.isScalableVector() && !DemandedElts)
2550     return false; // No demanded elts, better to assume we don't know anything.
2551 
2552   if (Depth >= MaxRecursionDepth)
2553     return false; // Limit search depth.
2554 
2555   // Deal with some common cases here that work for both fixed and scalable
2556   // vector types.
2557   switch (Opcode) {
2558   case ISD::SPLAT_VECTOR:
2559     UndefElts = V.getOperand(0).isUndef()
2560                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2561                     : APInt(DemandedElts.getBitWidth(), 0);
2562     return true;
2563   case ISD::ADD:
2564   case ISD::SUB:
2565   case ISD::AND:
2566   case ISD::XOR:
2567   case ISD::OR: {
2568     APInt UndefLHS, UndefRHS;
2569     SDValue LHS = V.getOperand(0);
2570     SDValue RHS = V.getOperand(1);
2571     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2572         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2573       UndefElts = UndefLHS | UndefRHS;
2574       return true;
2575     }
2576     return false;
2577   }
2578   case ISD::ABS:
2579   case ISD::TRUNCATE:
2580   case ISD::SIGN_EXTEND:
2581   case ISD::ZERO_EXTEND:
2582     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2583   default:
2584     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2585         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2586       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2587     break;
2588 }
2589 
2590   // We don't support other cases than those above for scalable vectors at
2591   // the moment.
2592   if (VT.isScalableVector())
2593     return false;
2594 
2595   unsigned NumElts = VT.getVectorNumElements();
2596   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2597   UndefElts = APInt::getZero(NumElts);
2598 
2599   switch (Opcode) {
2600   case ISD::BUILD_VECTOR: {
2601     SDValue Scl;
2602     for (unsigned i = 0; i != NumElts; ++i) {
2603       SDValue Op = V.getOperand(i);
2604       if (Op.isUndef()) {
2605         UndefElts.setBit(i);
2606         continue;
2607       }
2608       if (!DemandedElts[i])
2609         continue;
2610       if (Scl && Scl != Op)
2611         return false;
2612       Scl = Op;
2613     }
2614     return true;
2615   }
2616   case ISD::VECTOR_SHUFFLE: {
2617     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2618     APInt DemandedLHS = APInt::getNullValue(NumElts);
2619     APInt DemandedRHS = APInt::getNullValue(NumElts);
2620     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2621     for (int i = 0; i != (int)NumElts; ++i) {
2622       int M = Mask[i];
2623       if (M < 0) {
2624         UndefElts.setBit(i);
2625         continue;
2626       }
2627       if (!DemandedElts[i])
2628         continue;
2629       if (M < (int)NumElts)
2630         DemandedLHS.setBit(M);
2631       else
2632         DemandedRHS.setBit(M - NumElts);
2633     }
2634 
2635     // If we aren't demanding either op, assume there's no splat.
2636     // If we are demanding both ops, assume there's no splat.
2637     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2638         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2639       return false;
2640 
2641     // See if the demanded elts of the source op is a splat or we only demand
2642     // one element, which should always be a splat.
2643     // TODO: Handle source ops splats with undefs.
2644     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2645       APInt SrcUndefs;
2646       return (SrcElts.countPopulation() == 1) ||
2647              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2648               (SrcElts & SrcUndefs).isZero());
2649     };
2650     if (!DemandedLHS.isZero())
2651       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2652     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2653   }
2654   case ISD::EXTRACT_SUBVECTOR: {
2655     // Offset the demanded elts by the subvector index.
2656     SDValue Src = V.getOperand(0);
2657     // We don't support scalable vectors at the moment.
2658     if (Src.getValueType().isScalableVector())
2659       return false;
2660     uint64_t Idx = V.getConstantOperandVal(1);
2661     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2662     APInt UndefSrcElts;
2663     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2664     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2665       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2666       return true;
2667     }
2668     break;
2669   }
2670   case ISD::ANY_EXTEND_VECTOR_INREG:
2671   case ISD::SIGN_EXTEND_VECTOR_INREG:
2672   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2673     // Widen the demanded elts by the src element count.
2674     SDValue Src = V.getOperand(0);
2675     // We don't support scalable vectors at the moment.
2676     if (Src.getValueType().isScalableVector())
2677       return false;
2678     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2679     APInt UndefSrcElts;
2680     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2681     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2682       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2683       return true;
2684     }
2685     break;
2686   }
2687   case ISD::BITCAST: {
2688     SDValue Src = V.getOperand(0);
2689     EVT SrcVT = Src.getValueType();
2690     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2691     unsigned BitWidth = VT.getScalarSizeInBits();
2692 
2693     // Ignore bitcasts from unsupported types.
2694     // TODO: Add fp support?
2695     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2696       break;
2697 
2698     // Bitcast 'small element' vector to 'large element' vector.
2699     if ((BitWidth % SrcBitWidth) == 0) {
2700       // See if each sub element is a splat.
2701       unsigned Scale = BitWidth / SrcBitWidth;
2702       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2703       APInt ScaledDemandedElts =
2704           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2705       for (unsigned I = 0; I != Scale; ++I) {
2706         APInt SubUndefElts;
2707         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2708         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2709         SubDemandedElts &= ScaledDemandedElts;
2710         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2711           return false;
2712         // TODO: Add support for merging sub undef elements.
2713         if (SubDemandedElts.isSubsetOf(SubUndefElts))
2714           return false;
2715       }
2716       return true;
2717     }
2718     break;
2719   }
2720   }
2721 
2722   return false;
2723 }
2724 
2725 /// Helper wrapper to main isSplatValue function.
2726 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2727   EVT VT = V.getValueType();
2728   assert(VT.isVector() && "Vector type expected");
2729 
2730   APInt UndefElts;
2731   APInt DemandedElts;
2732 
2733   // For now we don't support this with scalable vectors.
2734   if (!VT.isScalableVector())
2735     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2736   return isSplatValue(V, DemandedElts, UndefElts) &&
2737          (AllowUndefs || !UndefElts);
2738 }
2739 
2740 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2741   V = peekThroughExtractSubvectors(V);
2742 
2743   EVT VT = V.getValueType();
2744   unsigned Opcode = V.getOpcode();
2745   switch (Opcode) {
2746   default: {
2747     APInt UndefElts;
2748     APInt DemandedElts;
2749 
2750     if (!VT.isScalableVector())
2751       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2752 
2753     if (isSplatValue(V, DemandedElts, UndefElts)) {
2754       if (VT.isScalableVector()) {
2755         // DemandedElts and UndefElts are ignored for scalable vectors, since
2756         // the only supported cases are SPLAT_VECTOR nodes.
2757         SplatIdx = 0;
2758       } else {
2759         // Handle case where all demanded elements are UNDEF.
2760         if (DemandedElts.isSubsetOf(UndefElts)) {
2761           SplatIdx = 0;
2762           return getUNDEF(VT);
2763         }
2764         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2765       }
2766       return V;
2767     }
2768     break;
2769   }
2770   case ISD::SPLAT_VECTOR:
2771     SplatIdx = 0;
2772     return V;
2773   case ISD::VECTOR_SHUFFLE: {
2774     if (VT.isScalableVector())
2775       return SDValue();
2776 
2777     // Check if this is a shuffle node doing a splat.
2778     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2779     // getTargetVShiftNode currently struggles without the splat source.
2780     auto *SVN = cast<ShuffleVectorSDNode>(V);
2781     if (!SVN->isSplat())
2782       break;
2783     int Idx = SVN->getSplatIndex();
2784     int NumElts = V.getValueType().getVectorNumElements();
2785     SplatIdx = Idx % NumElts;
2786     return V.getOperand(Idx / NumElts);
2787   }
2788   }
2789 
2790   return SDValue();
2791 }
2792 
2793 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2794   int SplatIdx;
2795   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2796     EVT SVT = SrcVector.getValueType().getScalarType();
2797     EVT LegalSVT = SVT;
2798     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2799       if (!SVT.isInteger())
2800         return SDValue();
2801       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2802       if (LegalSVT.bitsLT(SVT))
2803         return SDValue();
2804     }
2805     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2806                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2807   }
2808   return SDValue();
2809 }
2810 
2811 const APInt *
2812 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2813                                           const APInt &DemandedElts) const {
2814   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2815           V.getOpcode() == ISD::SRA) &&
2816          "Unknown shift node");
2817   unsigned BitWidth = V.getScalarValueSizeInBits();
2818   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2819     // Shifting more than the bitwidth is not valid.
2820     const APInt &ShAmt = SA->getAPIntValue();
2821     if (ShAmt.ult(BitWidth))
2822       return &ShAmt;
2823   }
2824   return nullptr;
2825 }
2826 
2827 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2828     SDValue V, const APInt &DemandedElts) const {
2829   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2830           V.getOpcode() == ISD::SRA) &&
2831          "Unknown shift node");
2832   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2833     return ValidAmt;
2834   unsigned BitWidth = V.getScalarValueSizeInBits();
2835   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2836   if (!BV)
2837     return nullptr;
2838   const APInt *MinShAmt = nullptr;
2839   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2840     if (!DemandedElts[i])
2841       continue;
2842     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2843     if (!SA)
2844       return nullptr;
2845     // Shifting more than the bitwidth is not valid.
2846     const APInt &ShAmt = SA->getAPIntValue();
2847     if (ShAmt.uge(BitWidth))
2848       return nullptr;
2849     if (MinShAmt && MinShAmt->ule(ShAmt))
2850       continue;
2851     MinShAmt = &ShAmt;
2852   }
2853   return MinShAmt;
2854 }
2855 
2856 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2857     SDValue V, const APInt &DemandedElts) const {
2858   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2859           V.getOpcode() == ISD::SRA) &&
2860          "Unknown shift node");
2861   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2862     return ValidAmt;
2863   unsigned BitWidth = V.getScalarValueSizeInBits();
2864   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2865   if (!BV)
2866     return nullptr;
2867   const APInt *MaxShAmt = nullptr;
2868   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2869     if (!DemandedElts[i])
2870       continue;
2871     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2872     if (!SA)
2873       return nullptr;
2874     // Shifting more than the bitwidth is not valid.
2875     const APInt &ShAmt = SA->getAPIntValue();
2876     if (ShAmt.uge(BitWidth))
2877       return nullptr;
2878     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2879       continue;
2880     MaxShAmt = &ShAmt;
2881   }
2882   return MaxShAmt;
2883 }
2884 
2885 /// Determine which bits of Op are known to be either zero or one and return
2886 /// them in Known. For vectors, the known bits are those that are shared by
2887 /// every vector element.
2888 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2889   EVT VT = Op.getValueType();
2890 
2891   // TOOD: Until we have a plan for how to represent demanded elements for
2892   // scalable vectors, we can just bail out for now.
2893   if (Op.getValueType().isScalableVector()) {
2894     unsigned BitWidth = Op.getScalarValueSizeInBits();
2895     return KnownBits(BitWidth);
2896   }
2897 
2898   APInt DemandedElts = VT.isVector()
2899                            ? APInt::getAllOnes(VT.getVectorNumElements())
2900                            : APInt(1, 1);
2901   return computeKnownBits(Op, DemandedElts, Depth);
2902 }
2903 
2904 /// Determine which bits of Op are known to be either zero or one and return
2905 /// them in Known. The DemandedElts argument allows us to only collect the known
2906 /// bits that are shared by the requested vector elements.
2907 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2908                                          unsigned Depth) const {
2909   unsigned BitWidth = Op.getScalarValueSizeInBits();
2910 
2911   KnownBits Known(BitWidth);   // Don't know anything.
2912 
2913   // TOOD: Until we have a plan for how to represent demanded elements for
2914   // scalable vectors, we can just bail out for now.
2915   if (Op.getValueType().isScalableVector())
2916     return Known;
2917 
2918   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2919     // We know all of the bits for a constant!
2920     return KnownBits::makeConstant(C->getAPIntValue());
2921   }
2922   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2923     // We know all of the bits for a constant fp!
2924     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2925   }
2926 
2927   if (Depth >= MaxRecursionDepth)
2928     return Known;  // Limit search depth.
2929 
2930   KnownBits Known2;
2931   unsigned NumElts = DemandedElts.getBitWidth();
2932   assert((!Op.getValueType().isVector() ||
2933           NumElts == Op.getValueType().getVectorNumElements()) &&
2934          "Unexpected vector size");
2935 
2936   if (!DemandedElts)
2937     return Known;  // No demanded elts, better to assume we don't know anything.
2938 
2939   unsigned Opcode = Op.getOpcode();
2940   switch (Opcode) {
2941   case ISD::BUILD_VECTOR:
2942     // Collect the known bits that are shared by every demanded vector element.
2943     Known.Zero.setAllBits(); Known.One.setAllBits();
2944     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2945       if (!DemandedElts[i])
2946         continue;
2947 
2948       SDValue SrcOp = Op.getOperand(i);
2949       Known2 = computeKnownBits(SrcOp, Depth + 1);
2950 
2951       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2952       if (SrcOp.getValueSizeInBits() != BitWidth) {
2953         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2954                "Expected BUILD_VECTOR implicit truncation");
2955         Known2 = Known2.trunc(BitWidth);
2956       }
2957 
2958       // Known bits are the values that are shared by every demanded element.
2959       Known = KnownBits::commonBits(Known, Known2);
2960 
2961       // If we don't know any bits, early out.
2962       if (Known.isUnknown())
2963         break;
2964     }
2965     break;
2966   case ISD::VECTOR_SHUFFLE: {
2967     // Collect the known bits that are shared by every vector element referenced
2968     // by the shuffle.
2969     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2970     Known.Zero.setAllBits(); Known.One.setAllBits();
2971     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2972     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2973     for (unsigned i = 0; i != NumElts; ++i) {
2974       if (!DemandedElts[i])
2975         continue;
2976 
2977       int M = SVN->getMaskElt(i);
2978       if (M < 0) {
2979         // For UNDEF elements, we don't know anything about the common state of
2980         // the shuffle result.
2981         Known.resetAll();
2982         DemandedLHS.clearAllBits();
2983         DemandedRHS.clearAllBits();
2984         break;
2985       }
2986 
2987       if ((unsigned)M < NumElts)
2988         DemandedLHS.setBit((unsigned)M % NumElts);
2989       else
2990         DemandedRHS.setBit((unsigned)M % NumElts);
2991     }
2992     // Known bits are the values that are shared by every demanded element.
2993     if (!!DemandedLHS) {
2994       SDValue LHS = Op.getOperand(0);
2995       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2996       Known = KnownBits::commonBits(Known, Known2);
2997     }
2998     // If we don't know any bits, early out.
2999     if (Known.isUnknown())
3000       break;
3001     if (!!DemandedRHS) {
3002       SDValue RHS = Op.getOperand(1);
3003       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3004       Known = KnownBits::commonBits(Known, Known2);
3005     }
3006     break;
3007   }
3008   case ISD::CONCAT_VECTORS: {
3009     // Split DemandedElts and test each of the demanded subvectors.
3010     Known.Zero.setAllBits(); Known.One.setAllBits();
3011     EVT SubVectorVT = Op.getOperand(0).getValueType();
3012     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3013     unsigned NumSubVectors = Op.getNumOperands();
3014     for (unsigned i = 0; i != NumSubVectors; ++i) {
3015       APInt DemandedSub =
3016           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3017       if (!!DemandedSub) {
3018         SDValue Sub = Op.getOperand(i);
3019         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3020         Known = KnownBits::commonBits(Known, Known2);
3021       }
3022       // If we don't know any bits, early out.
3023       if (Known.isUnknown())
3024         break;
3025     }
3026     break;
3027   }
3028   case ISD::INSERT_SUBVECTOR: {
3029     // Demand any elements from the subvector and the remainder from the src its
3030     // inserted into.
3031     SDValue Src = Op.getOperand(0);
3032     SDValue Sub = Op.getOperand(1);
3033     uint64_t Idx = Op.getConstantOperandVal(2);
3034     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3035     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3036     APInt DemandedSrcElts = DemandedElts;
3037     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3038 
3039     Known.One.setAllBits();
3040     Known.Zero.setAllBits();
3041     if (!!DemandedSubElts) {
3042       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3043       if (Known.isUnknown())
3044         break; // early-out.
3045     }
3046     if (!!DemandedSrcElts) {
3047       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3048       Known = KnownBits::commonBits(Known, Known2);
3049     }
3050     break;
3051   }
3052   case ISD::EXTRACT_SUBVECTOR: {
3053     // Offset the demanded elts by the subvector index.
3054     SDValue Src = Op.getOperand(0);
3055     // Bail until we can represent demanded elements for scalable vectors.
3056     if (Src.getValueType().isScalableVector())
3057       break;
3058     uint64_t Idx = Op.getConstantOperandVal(1);
3059     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3060     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3061     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3062     break;
3063   }
3064   case ISD::SCALAR_TO_VECTOR: {
3065     // We know about scalar_to_vector as much as we know about it source,
3066     // which becomes the first element of otherwise unknown vector.
3067     if (DemandedElts != 1)
3068       break;
3069 
3070     SDValue N0 = Op.getOperand(0);
3071     Known = computeKnownBits(N0, Depth + 1);
3072     if (N0.getValueSizeInBits() != BitWidth)
3073       Known = Known.trunc(BitWidth);
3074 
3075     break;
3076   }
3077   case ISD::BITCAST: {
3078     SDValue N0 = Op.getOperand(0);
3079     EVT SubVT = N0.getValueType();
3080     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3081 
3082     // Ignore bitcasts from unsupported types.
3083     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3084       break;
3085 
3086     // Fast handling of 'identity' bitcasts.
3087     if (BitWidth == SubBitWidth) {
3088       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3089       break;
3090     }
3091 
3092     bool IsLE = getDataLayout().isLittleEndian();
3093 
3094     // Bitcast 'small element' vector to 'large element' scalar/vector.
3095     if ((BitWidth % SubBitWidth) == 0) {
3096       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3097 
3098       // Collect known bits for the (larger) output by collecting the known
3099       // bits from each set of sub elements and shift these into place.
3100       // We need to separately call computeKnownBits for each set of
3101       // sub elements as the knownbits for each is likely to be different.
3102       unsigned SubScale = BitWidth / SubBitWidth;
3103       APInt SubDemandedElts(NumElts * SubScale, 0);
3104       for (unsigned i = 0; i != NumElts; ++i)
3105         if (DemandedElts[i])
3106           SubDemandedElts.setBit(i * SubScale);
3107 
3108       for (unsigned i = 0; i != SubScale; ++i) {
3109         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3110                          Depth + 1);
3111         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3112         Known.insertBits(Known2, SubBitWidth * Shifts);
3113       }
3114     }
3115 
3116     // Bitcast 'large element' scalar/vector to 'small element' vector.
3117     if ((SubBitWidth % BitWidth) == 0) {
3118       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3119 
3120       // Collect known bits for the (smaller) output by collecting the known
3121       // bits from the overlapping larger input elements and extracting the
3122       // sub sections we actually care about.
3123       unsigned SubScale = SubBitWidth / BitWidth;
3124       APInt SubDemandedElts =
3125           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3126       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3127 
3128       Known.Zero.setAllBits(); Known.One.setAllBits();
3129       for (unsigned i = 0; i != NumElts; ++i)
3130         if (DemandedElts[i]) {
3131           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3132           unsigned Offset = (Shifts % SubScale) * BitWidth;
3133           Known = KnownBits::commonBits(Known,
3134                                         Known2.extractBits(BitWidth, Offset));
3135           // If we don't know any bits, early out.
3136           if (Known.isUnknown())
3137             break;
3138         }
3139     }
3140     break;
3141   }
3142   case ISD::AND:
3143     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3144     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3145 
3146     Known &= Known2;
3147     break;
3148   case ISD::OR:
3149     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3150     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3151 
3152     Known |= Known2;
3153     break;
3154   case ISD::XOR:
3155     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3156     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3157 
3158     Known ^= Known2;
3159     break;
3160   case ISD::MUL: {
3161     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3162     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3163     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3164     // TODO: SelfMultiply can be poison, but not undef.
3165     if (SelfMultiply)
3166       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3167           Op.getOperand(0), DemandedElts, false, Depth + 1);
3168     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3169     break;
3170   }
3171   case ISD::MULHU: {
3172     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3173     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3174     Known = KnownBits::mulhu(Known, Known2);
3175     break;
3176   }
3177   case ISD::MULHS: {
3178     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3179     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3180     Known = KnownBits::mulhs(Known, Known2);
3181     break;
3182   }
3183   case ISD::UMUL_LOHI: {
3184     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3185     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3186     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3187     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3188     if (Op.getResNo() == 0)
3189       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3190     else
3191       Known = KnownBits::mulhu(Known, Known2);
3192     break;
3193   }
3194   case ISD::SMUL_LOHI: {
3195     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3196     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3197     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3198     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3199     if (Op.getResNo() == 0)
3200       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3201     else
3202       Known = KnownBits::mulhs(Known, Known2);
3203     break;
3204   }
3205   case ISD::UDIV: {
3206     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3207     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3208     Known = KnownBits::udiv(Known, Known2);
3209     break;
3210   }
3211   case ISD::AVGCEILU: {
3212     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3213     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3214     Known = Known.zext(BitWidth + 1);
3215     Known2 = Known2.zext(BitWidth + 1);
3216     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3217     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3218     Known = Known.extractBits(BitWidth, 1);
3219     break;
3220   }
3221   case ISD::SELECT:
3222   case ISD::VSELECT:
3223     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3224     // If we don't know any bits, early out.
3225     if (Known.isUnknown())
3226       break;
3227     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3228 
3229     // Only known if known in both the LHS and RHS.
3230     Known = KnownBits::commonBits(Known, Known2);
3231     break;
3232   case ISD::SELECT_CC:
3233     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3234     // If we don't know any bits, early out.
3235     if (Known.isUnknown())
3236       break;
3237     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3238 
3239     // Only known if known in both the LHS and RHS.
3240     Known = KnownBits::commonBits(Known, Known2);
3241     break;
3242   case ISD::SMULO:
3243   case ISD::UMULO:
3244     if (Op.getResNo() != 1)
3245       break;
3246     // The boolean result conforms to getBooleanContents.
3247     // If we know the result of a setcc has the top bits zero, use this info.
3248     // We know that we have an integer-based boolean since these operations
3249     // are only available for integer.
3250     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3251             TargetLowering::ZeroOrOneBooleanContent &&
3252         BitWidth > 1)
3253       Known.Zero.setBitsFrom(1);
3254     break;
3255   case ISD::SETCC:
3256   case ISD::STRICT_FSETCC:
3257   case ISD::STRICT_FSETCCS: {
3258     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3259     // If we know the result of a setcc has the top bits zero, use this info.
3260     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3261             TargetLowering::ZeroOrOneBooleanContent &&
3262         BitWidth > 1)
3263       Known.Zero.setBitsFrom(1);
3264     break;
3265   }
3266   case ISD::SHL:
3267     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3268     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3269     Known = KnownBits::shl(Known, Known2);
3270 
3271     // Minimum shift low bits are known zero.
3272     if (const APInt *ShMinAmt =
3273             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3274       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3275     break;
3276   case ISD::SRL:
3277     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3278     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3279     Known = KnownBits::lshr(Known, Known2);
3280 
3281     // Minimum shift high bits are known zero.
3282     if (const APInt *ShMinAmt =
3283             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3284       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3285     break;
3286   case ISD::SRA:
3287     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3288     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3289     Known = KnownBits::ashr(Known, Known2);
3290     // TODO: Add minimum shift high known sign bits.
3291     break;
3292   case ISD::FSHL:
3293   case ISD::FSHR:
3294     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3295       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3296 
3297       // For fshl, 0-shift returns the 1st arg.
3298       // For fshr, 0-shift returns the 2nd arg.
3299       if (Amt == 0) {
3300         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3301                                  DemandedElts, Depth + 1);
3302         break;
3303       }
3304 
3305       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3306       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3307       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3308       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3309       if (Opcode == ISD::FSHL) {
3310         Known.One <<= Amt;
3311         Known.Zero <<= Amt;
3312         Known2.One.lshrInPlace(BitWidth - Amt);
3313         Known2.Zero.lshrInPlace(BitWidth - Amt);
3314       } else {
3315         Known.One <<= BitWidth - Amt;
3316         Known.Zero <<= BitWidth - Amt;
3317         Known2.One.lshrInPlace(Amt);
3318         Known2.Zero.lshrInPlace(Amt);
3319       }
3320       Known.One |= Known2.One;
3321       Known.Zero |= Known2.Zero;
3322     }
3323     break;
3324   case ISD::SIGN_EXTEND_INREG: {
3325     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3326     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3327     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3328     break;
3329   }
3330   case ISD::CTTZ:
3331   case ISD::CTTZ_ZERO_UNDEF: {
3332     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3333     // If we have a known 1, its position is our upper bound.
3334     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3335     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3336     Known.Zero.setBitsFrom(LowBits);
3337     break;
3338   }
3339   case ISD::CTLZ:
3340   case ISD::CTLZ_ZERO_UNDEF: {
3341     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3342     // If we have a known 1, its position is our upper bound.
3343     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3344     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3345     Known.Zero.setBitsFrom(LowBits);
3346     break;
3347   }
3348   case ISD::CTPOP: {
3349     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3350     // If we know some of the bits are zero, they can't be one.
3351     unsigned PossibleOnes = Known2.countMaxPopulation();
3352     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3353     break;
3354   }
3355   case ISD::PARITY: {
3356     // Parity returns 0 everywhere but the LSB.
3357     Known.Zero.setBitsFrom(1);
3358     break;
3359   }
3360   case ISD::LOAD: {
3361     LoadSDNode *LD = cast<LoadSDNode>(Op);
3362     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3363     if (ISD::isNON_EXTLoad(LD) && Cst) {
3364       // Determine any common known bits from the loaded constant pool value.
3365       Type *CstTy = Cst->getType();
3366       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3367         // If its a vector splat, then we can (quickly) reuse the scalar path.
3368         // NOTE: We assume all elements match and none are UNDEF.
3369         if (CstTy->isVectorTy()) {
3370           if (const Constant *Splat = Cst->getSplatValue()) {
3371             Cst = Splat;
3372             CstTy = Cst->getType();
3373           }
3374         }
3375         // TODO - do we need to handle different bitwidths?
3376         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3377           // Iterate across all vector elements finding common known bits.
3378           Known.One.setAllBits();
3379           Known.Zero.setAllBits();
3380           for (unsigned i = 0; i != NumElts; ++i) {
3381             if (!DemandedElts[i])
3382               continue;
3383             if (Constant *Elt = Cst->getAggregateElement(i)) {
3384               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3385                 const APInt &Value = CInt->getValue();
3386                 Known.One &= Value;
3387                 Known.Zero &= ~Value;
3388                 continue;
3389               }
3390               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3391                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3392                 Known.One &= Value;
3393                 Known.Zero &= ~Value;
3394                 continue;
3395               }
3396             }
3397             Known.One.clearAllBits();
3398             Known.Zero.clearAllBits();
3399             break;
3400           }
3401         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3402           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3403             Known = KnownBits::makeConstant(CInt->getValue());
3404           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3405             Known =
3406                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3407           }
3408         }
3409       }
3410     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3411       // If this is a ZEXTLoad and we are looking at the loaded value.
3412       EVT VT = LD->getMemoryVT();
3413       unsigned MemBits = VT.getScalarSizeInBits();
3414       Known.Zero.setBitsFrom(MemBits);
3415     } else if (const MDNode *Ranges = LD->getRanges()) {
3416       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3417         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3418     }
3419     break;
3420   }
3421   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3422     EVT InVT = Op.getOperand(0).getValueType();
3423     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3424     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3425     Known = Known.zext(BitWidth);
3426     break;
3427   }
3428   case ISD::ZERO_EXTEND: {
3429     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3430     Known = Known.zext(BitWidth);
3431     break;
3432   }
3433   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3434     EVT InVT = Op.getOperand(0).getValueType();
3435     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3436     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3437     // If the sign bit is known to be zero or one, then sext will extend
3438     // it to the top bits, else it will just zext.
3439     Known = Known.sext(BitWidth);
3440     break;
3441   }
3442   case ISD::SIGN_EXTEND: {
3443     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3444     // If the sign bit is known to be zero or one, then sext will extend
3445     // it to the top bits, else it will just zext.
3446     Known = Known.sext(BitWidth);
3447     break;
3448   }
3449   case ISD::ANY_EXTEND_VECTOR_INREG: {
3450     EVT InVT = Op.getOperand(0).getValueType();
3451     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3452     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3453     Known = Known.anyext(BitWidth);
3454     break;
3455   }
3456   case ISD::ANY_EXTEND: {
3457     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3458     Known = Known.anyext(BitWidth);
3459     break;
3460   }
3461   case ISD::TRUNCATE: {
3462     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3463     Known = Known.trunc(BitWidth);
3464     break;
3465   }
3466   case ISD::AssertZext: {
3467     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3468     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3469     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3470     Known.Zero |= (~InMask);
3471     Known.One  &= (~Known.Zero);
3472     break;
3473   }
3474   case ISD::AssertAlign: {
3475     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3476     assert(LogOfAlign != 0);
3477 
3478     // TODO: Should use maximum with source
3479     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3480     // well as clearing one bits.
3481     Known.Zero.setLowBits(LogOfAlign);
3482     Known.One.clearLowBits(LogOfAlign);
3483     break;
3484   }
3485   case ISD::FGETSIGN:
3486     // All bits are zero except the low bit.
3487     Known.Zero.setBitsFrom(1);
3488     break;
3489   case ISD::USUBO:
3490   case ISD::SSUBO:
3491     if (Op.getResNo() == 1) {
3492       // If we know the result of a setcc has the top bits zero, use this info.
3493       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3494               TargetLowering::ZeroOrOneBooleanContent &&
3495           BitWidth > 1)
3496         Known.Zero.setBitsFrom(1);
3497       break;
3498     }
3499     LLVM_FALLTHROUGH;
3500   case ISD::SUB:
3501   case ISD::SUBC: {
3502     assert(Op.getResNo() == 0 &&
3503            "We only compute knownbits for the difference here.");
3504 
3505     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3506     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3507     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3508                                         Known, Known2);
3509     break;
3510   }
3511   case ISD::UADDO:
3512   case ISD::SADDO:
3513   case ISD::ADDCARRY:
3514     if (Op.getResNo() == 1) {
3515       // If we know the result of a setcc has the top bits zero, use this info.
3516       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3517               TargetLowering::ZeroOrOneBooleanContent &&
3518           BitWidth > 1)
3519         Known.Zero.setBitsFrom(1);
3520       break;
3521     }
3522     LLVM_FALLTHROUGH;
3523   case ISD::ADD:
3524   case ISD::ADDC:
3525   case ISD::ADDE: {
3526     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3527 
3528     // With ADDE and ADDCARRY, a carry bit may be added in.
3529     KnownBits Carry(1);
3530     if (Opcode == ISD::ADDE)
3531       // Can't track carry from glue, set carry to unknown.
3532       Carry.resetAll();
3533     else if (Opcode == ISD::ADDCARRY)
3534       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3535       // the trouble (how often will we find a known carry bit). And I haven't
3536       // tested this very much yet, but something like this might work:
3537       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3538       //   Carry = Carry.zextOrTrunc(1, false);
3539       Carry.resetAll();
3540     else
3541       Carry.setAllZero();
3542 
3543     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3544     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3545     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3546     break;
3547   }
3548   case ISD::SREM: {
3549     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3550     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3551     Known = KnownBits::srem(Known, Known2);
3552     break;
3553   }
3554   case ISD::UREM: {
3555     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3556     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3557     Known = KnownBits::urem(Known, Known2);
3558     break;
3559   }
3560   case ISD::EXTRACT_ELEMENT: {
3561     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3562     const unsigned Index = Op.getConstantOperandVal(1);
3563     const unsigned EltBitWidth = Op.getValueSizeInBits();
3564 
3565     // Remove low part of known bits mask
3566     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3567     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3568 
3569     // Remove high part of known bit mask
3570     Known = Known.trunc(EltBitWidth);
3571     break;
3572   }
3573   case ISD::EXTRACT_VECTOR_ELT: {
3574     SDValue InVec = Op.getOperand(0);
3575     SDValue EltNo = Op.getOperand(1);
3576     EVT VecVT = InVec.getValueType();
3577     // computeKnownBits not yet implemented for scalable vectors.
3578     if (VecVT.isScalableVector())
3579       break;
3580     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3581     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3582 
3583     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3584     // anything about the extended bits.
3585     if (BitWidth > EltBitWidth)
3586       Known = Known.trunc(EltBitWidth);
3587 
3588     // If we know the element index, just demand that vector element, else for
3589     // an unknown element index, ignore DemandedElts and demand them all.
3590     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3591     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3592     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3593       DemandedSrcElts =
3594           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3595 
3596     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3597     if (BitWidth > EltBitWidth)
3598       Known = Known.anyext(BitWidth);
3599     break;
3600   }
3601   case ISD::INSERT_VECTOR_ELT: {
3602     // If we know the element index, split the demand between the
3603     // source vector and the inserted element, otherwise assume we need
3604     // the original demanded vector elements and the value.
3605     SDValue InVec = Op.getOperand(0);
3606     SDValue InVal = Op.getOperand(1);
3607     SDValue EltNo = Op.getOperand(2);
3608     bool DemandedVal = true;
3609     APInt DemandedVecElts = DemandedElts;
3610     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3611     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3612       unsigned EltIdx = CEltNo->getZExtValue();
3613       DemandedVal = !!DemandedElts[EltIdx];
3614       DemandedVecElts.clearBit(EltIdx);
3615     }
3616     Known.One.setAllBits();
3617     Known.Zero.setAllBits();
3618     if (DemandedVal) {
3619       Known2 = computeKnownBits(InVal, Depth + 1);
3620       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3621     }
3622     if (!!DemandedVecElts) {
3623       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3624       Known = KnownBits::commonBits(Known, Known2);
3625     }
3626     break;
3627   }
3628   case ISD::BITREVERSE: {
3629     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3630     Known = Known2.reverseBits();
3631     break;
3632   }
3633   case ISD::BSWAP: {
3634     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3635     Known = Known2.byteSwap();
3636     break;
3637   }
3638   case ISD::ABS: {
3639     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3640     Known = Known2.abs();
3641     break;
3642   }
3643   case ISD::USUBSAT: {
3644     // The result of usubsat will never be larger than the LHS.
3645     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3646     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3647     break;
3648   }
3649   case ISD::UMIN: {
3650     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3651     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3652     Known = KnownBits::umin(Known, Known2);
3653     break;
3654   }
3655   case ISD::UMAX: {
3656     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3657     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3658     Known = KnownBits::umax(Known, Known2);
3659     break;
3660   }
3661   case ISD::SMIN:
3662   case ISD::SMAX: {
3663     // If we have a clamp pattern, we know that the number of sign bits will be
3664     // the minimum of the clamp min/max range.
3665     bool IsMax = (Opcode == ISD::SMAX);
3666     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3667     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3668       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3669         CstHigh =
3670             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3671     if (CstLow && CstHigh) {
3672       if (!IsMax)
3673         std::swap(CstLow, CstHigh);
3674 
3675       const APInt &ValueLow = CstLow->getAPIntValue();
3676       const APInt &ValueHigh = CstHigh->getAPIntValue();
3677       if (ValueLow.sle(ValueHigh)) {
3678         unsigned LowSignBits = ValueLow.getNumSignBits();
3679         unsigned HighSignBits = ValueHigh.getNumSignBits();
3680         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3681         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3682           Known.One.setHighBits(MinSignBits);
3683           break;
3684         }
3685         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3686           Known.Zero.setHighBits(MinSignBits);
3687           break;
3688         }
3689       }
3690     }
3691 
3692     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3693     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3694     if (IsMax)
3695       Known = KnownBits::smax(Known, Known2);
3696     else
3697       Known = KnownBits::smin(Known, Known2);
3698     break;
3699   }
3700   case ISD::FP_TO_UINT_SAT: {
3701     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3702     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3703     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3704     break;
3705   }
3706   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3707     if (Op.getResNo() == 1) {
3708       // The boolean result conforms to getBooleanContents.
3709       // If we know the result of a setcc has the top bits zero, use this info.
3710       // We know that we have an integer-based boolean since these operations
3711       // are only available for integer.
3712       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3713               TargetLowering::ZeroOrOneBooleanContent &&
3714           BitWidth > 1)
3715         Known.Zero.setBitsFrom(1);
3716       break;
3717     }
3718     LLVM_FALLTHROUGH;
3719   case ISD::ATOMIC_CMP_SWAP:
3720   case ISD::ATOMIC_SWAP:
3721   case ISD::ATOMIC_LOAD_ADD:
3722   case ISD::ATOMIC_LOAD_SUB:
3723   case ISD::ATOMIC_LOAD_AND:
3724   case ISD::ATOMIC_LOAD_CLR:
3725   case ISD::ATOMIC_LOAD_OR:
3726   case ISD::ATOMIC_LOAD_XOR:
3727   case ISD::ATOMIC_LOAD_NAND:
3728   case ISD::ATOMIC_LOAD_MIN:
3729   case ISD::ATOMIC_LOAD_MAX:
3730   case ISD::ATOMIC_LOAD_UMIN:
3731   case ISD::ATOMIC_LOAD_UMAX:
3732   case ISD::ATOMIC_LOAD: {
3733     unsigned MemBits =
3734         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3735     // If we are looking at the loaded value.
3736     if (Op.getResNo() == 0) {
3737       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3738         Known.Zero.setBitsFrom(MemBits);
3739     }
3740     break;
3741   }
3742   case ISD::FrameIndex:
3743   case ISD::TargetFrameIndex:
3744     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3745                                        Known, getMachineFunction());
3746     break;
3747 
3748   default:
3749     if (Opcode < ISD::BUILTIN_OP_END)
3750       break;
3751     LLVM_FALLTHROUGH;
3752   case ISD::INTRINSIC_WO_CHAIN:
3753   case ISD::INTRINSIC_W_CHAIN:
3754   case ISD::INTRINSIC_VOID:
3755     // Allow the target to implement this method for its nodes.
3756     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3757     break;
3758   }
3759 
3760   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3761   return Known;
3762 }
3763 
3764 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3765                                                              SDValue N1) const {
3766   // X + 0 never overflow
3767   if (isNullConstant(N1))
3768     return OFK_Never;
3769 
3770   KnownBits N1Known = computeKnownBits(N1);
3771   if (N1Known.Zero.getBoolValue()) {
3772     KnownBits N0Known = computeKnownBits(N0);
3773 
3774     bool overflow;
3775     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3776     if (!overflow)
3777       return OFK_Never;
3778   }
3779 
3780   // mulhi + 1 never overflow
3781   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3782       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3783     return OFK_Never;
3784 
3785   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3786     KnownBits N0Known = computeKnownBits(N0);
3787 
3788     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3789       return OFK_Never;
3790   }
3791 
3792   return OFK_Sometime;
3793 }
3794 
3795 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3796   EVT OpVT = Val.getValueType();
3797   unsigned BitWidth = OpVT.getScalarSizeInBits();
3798 
3799   // Is the constant a known power of 2?
3800   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3801     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3802 
3803   // A left-shift of a constant one will have exactly one bit set because
3804   // shifting the bit off the end is undefined.
3805   if (Val.getOpcode() == ISD::SHL) {
3806     auto *C = isConstOrConstSplat(Val.getOperand(0));
3807     if (C && C->getAPIntValue() == 1)
3808       return true;
3809   }
3810 
3811   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3812   // one bit set.
3813   if (Val.getOpcode() == ISD::SRL) {
3814     auto *C = isConstOrConstSplat(Val.getOperand(0));
3815     if (C && C->getAPIntValue().isSignMask())
3816       return true;
3817   }
3818 
3819   // Are all operands of a build vector constant powers of two?
3820   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3821     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3822           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3823             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3824           return false;
3825         }))
3826       return true;
3827 
3828   // Is the operand of a splat vector a constant power of two?
3829   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3830     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3831       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3832         return true;
3833 
3834   // More could be done here, though the above checks are enough
3835   // to handle some common cases.
3836 
3837   // Fall back to computeKnownBits to catch other known cases.
3838   KnownBits Known = computeKnownBits(Val);
3839   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3840 }
3841 
3842 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3843   EVT VT = Op.getValueType();
3844 
3845   // TODO: Assume we don't know anything for now.
3846   if (VT.isScalableVector())
3847     return 1;
3848 
3849   APInt DemandedElts = VT.isVector()
3850                            ? APInt::getAllOnes(VT.getVectorNumElements())
3851                            : APInt(1, 1);
3852   return ComputeNumSignBits(Op, DemandedElts, Depth);
3853 }
3854 
3855 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3856                                           unsigned Depth) const {
3857   EVT VT = Op.getValueType();
3858   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3859   unsigned VTBits = VT.getScalarSizeInBits();
3860   unsigned NumElts = DemandedElts.getBitWidth();
3861   unsigned Tmp, Tmp2;
3862   unsigned FirstAnswer = 1;
3863 
3864   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3865     const APInt &Val = C->getAPIntValue();
3866     return Val.getNumSignBits();
3867   }
3868 
3869   if (Depth >= MaxRecursionDepth)
3870     return 1;  // Limit search depth.
3871 
3872   if (!DemandedElts || VT.isScalableVector())
3873     return 1;  // No demanded elts, better to assume we don't know anything.
3874 
3875   unsigned Opcode = Op.getOpcode();
3876   switch (Opcode) {
3877   default: break;
3878   case ISD::AssertSext:
3879     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3880     return VTBits-Tmp+1;
3881   case ISD::AssertZext:
3882     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3883     return VTBits-Tmp;
3884 
3885   case ISD::BUILD_VECTOR:
3886     Tmp = VTBits;
3887     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3888       if (!DemandedElts[i])
3889         continue;
3890 
3891       SDValue SrcOp = Op.getOperand(i);
3892       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3893 
3894       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3895       if (SrcOp.getValueSizeInBits() != VTBits) {
3896         assert(SrcOp.getValueSizeInBits() > VTBits &&
3897                "Expected BUILD_VECTOR implicit truncation");
3898         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3899         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3900       }
3901       Tmp = std::min(Tmp, Tmp2);
3902     }
3903     return Tmp;
3904 
3905   case ISD::VECTOR_SHUFFLE: {
3906     // Collect the minimum number of sign bits that are shared by every vector
3907     // element referenced by the shuffle.
3908     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3909     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3910     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3911     for (unsigned i = 0; i != NumElts; ++i) {
3912       int M = SVN->getMaskElt(i);
3913       if (!DemandedElts[i])
3914         continue;
3915       // For UNDEF elements, we don't know anything about the common state of
3916       // the shuffle result.
3917       if (M < 0)
3918         return 1;
3919       if ((unsigned)M < NumElts)
3920         DemandedLHS.setBit((unsigned)M % NumElts);
3921       else
3922         DemandedRHS.setBit((unsigned)M % NumElts);
3923     }
3924     Tmp = std::numeric_limits<unsigned>::max();
3925     if (!!DemandedLHS)
3926       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3927     if (!!DemandedRHS) {
3928       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3929       Tmp = std::min(Tmp, Tmp2);
3930     }
3931     // If we don't know anything, early out and try computeKnownBits fall-back.
3932     if (Tmp == 1)
3933       break;
3934     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3935     return Tmp;
3936   }
3937 
3938   case ISD::BITCAST: {
3939     SDValue N0 = Op.getOperand(0);
3940     EVT SrcVT = N0.getValueType();
3941     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3942 
3943     // Ignore bitcasts from unsupported types..
3944     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3945       break;
3946 
3947     // Fast handling of 'identity' bitcasts.
3948     if (VTBits == SrcBits)
3949       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3950 
3951     bool IsLE = getDataLayout().isLittleEndian();
3952 
3953     // Bitcast 'large element' scalar/vector to 'small element' vector.
3954     if ((SrcBits % VTBits) == 0) {
3955       assert(VT.isVector() && "Expected bitcast to vector");
3956 
3957       unsigned Scale = SrcBits / VTBits;
3958       APInt SrcDemandedElts =
3959           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3960 
3961       // Fast case - sign splat can be simply split across the small elements.
3962       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3963       if (Tmp == SrcBits)
3964         return VTBits;
3965 
3966       // Slow case - determine how far the sign extends into each sub-element.
3967       Tmp2 = VTBits;
3968       for (unsigned i = 0; i != NumElts; ++i)
3969         if (DemandedElts[i]) {
3970           unsigned SubOffset = i % Scale;
3971           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3972           SubOffset = SubOffset * VTBits;
3973           if (Tmp <= SubOffset)
3974             return 1;
3975           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3976         }
3977       return Tmp2;
3978     }
3979     break;
3980   }
3981 
3982   case ISD::FP_TO_SINT_SAT:
3983     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
3984     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3985     return VTBits - Tmp + 1;
3986   case ISD::SIGN_EXTEND:
3987     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3988     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3989   case ISD::SIGN_EXTEND_INREG:
3990     // Max of the input and what this extends.
3991     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3992     Tmp = VTBits-Tmp+1;
3993     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3994     return std::max(Tmp, Tmp2);
3995   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3996     SDValue Src = Op.getOperand(0);
3997     EVT SrcVT = Src.getValueType();
3998     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3999     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4000     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4001   }
4002   case ISD::SRA:
4003     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4004     // SRA X, C -> adds C sign bits.
4005     if (const APInt *ShAmt =
4006             getValidMinimumShiftAmountConstant(Op, DemandedElts))
4007       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4008     return Tmp;
4009   case ISD::SHL:
4010     if (const APInt *ShAmt =
4011             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4012       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4013       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4014       if (ShAmt->ult(Tmp))
4015         return Tmp - ShAmt->getZExtValue();
4016     }
4017     break;
4018   case ISD::AND:
4019   case ISD::OR:
4020   case ISD::XOR:    // NOT is handled here.
4021     // Logical binary ops preserve the number of sign bits at the worst.
4022     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4023     if (Tmp != 1) {
4024       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4025       FirstAnswer = std::min(Tmp, Tmp2);
4026       // We computed what we know about the sign bits as our first
4027       // answer. Now proceed to the generic code that uses
4028       // computeKnownBits, and pick whichever answer is better.
4029     }
4030     break;
4031 
4032   case ISD::SELECT:
4033   case ISD::VSELECT:
4034     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4035     if (Tmp == 1) return 1;  // Early out.
4036     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4037     return std::min(Tmp, Tmp2);
4038   case ISD::SELECT_CC:
4039     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4040     if (Tmp == 1) return 1;  // Early out.
4041     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4042     return std::min(Tmp, Tmp2);
4043 
4044   case ISD::SMIN:
4045   case ISD::SMAX: {
4046     // If we have a clamp pattern, we know that the number of sign bits will be
4047     // the minimum of the clamp min/max range.
4048     bool IsMax = (Opcode == ISD::SMAX);
4049     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4050     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4051       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4052         CstHigh =
4053             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4054     if (CstLow && CstHigh) {
4055       if (!IsMax)
4056         std::swap(CstLow, CstHigh);
4057       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4058         Tmp = CstLow->getAPIntValue().getNumSignBits();
4059         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4060         return std::min(Tmp, Tmp2);
4061       }
4062     }
4063 
4064     // Fallback - just get the minimum number of sign bits of the operands.
4065     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4066     if (Tmp == 1)
4067       return 1;  // Early out.
4068     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4069     return std::min(Tmp, Tmp2);
4070   }
4071   case ISD::UMIN:
4072   case ISD::UMAX:
4073     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4074     if (Tmp == 1)
4075       return 1;  // Early out.
4076     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4077     return std::min(Tmp, Tmp2);
4078   case ISD::SADDO:
4079   case ISD::UADDO:
4080   case ISD::SSUBO:
4081   case ISD::USUBO:
4082   case ISD::SMULO:
4083   case ISD::UMULO:
4084     if (Op.getResNo() != 1)
4085       break;
4086     // The boolean result conforms to getBooleanContents.  Fall through.
4087     // If setcc returns 0/-1, all bits are sign bits.
4088     // We know that we have an integer-based boolean since these operations
4089     // are only available for integer.
4090     if (TLI->getBooleanContents(VT.isVector(), false) ==
4091         TargetLowering::ZeroOrNegativeOneBooleanContent)
4092       return VTBits;
4093     break;
4094   case ISD::SETCC:
4095   case ISD::STRICT_FSETCC:
4096   case ISD::STRICT_FSETCCS: {
4097     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4098     // If setcc returns 0/-1, all bits are sign bits.
4099     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4100         TargetLowering::ZeroOrNegativeOneBooleanContent)
4101       return VTBits;
4102     break;
4103   }
4104   case ISD::ROTL:
4105   case ISD::ROTR:
4106     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4107 
4108     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4109     if (Tmp == VTBits)
4110       return VTBits;
4111 
4112     if (ConstantSDNode *C =
4113             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4114       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4115 
4116       // Handle rotate right by N like a rotate left by 32-N.
4117       if (Opcode == ISD::ROTR)
4118         RotAmt = (VTBits - RotAmt) % VTBits;
4119 
4120       // If we aren't rotating out all of the known-in sign bits, return the
4121       // number that are left.  This handles rotl(sext(x), 1) for example.
4122       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4123     }
4124     break;
4125   case ISD::ADD:
4126   case ISD::ADDC:
4127     // Add can have at most one carry bit.  Thus we know that the output
4128     // is, at worst, one more bit than the inputs.
4129     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4130     if (Tmp == 1) return 1; // Early out.
4131 
4132     // Special case decrementing a value (ADD X, -1):
4133     if (ConstantSDNode *CRHS =
4134             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4135       if (CRHS->isAllOnes()) {
4136         KnownBits Known =
4137             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4138 
4139         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4140         // sign bits set.
4141         if ((Known.Zero | 1).isAllOnes())
4142           return VTBits;
4143 
4144         // If we are subtracting one from a positive number, there is no carry
4145         // out of the result.
4146         if (Known.isNonNegative())
4147           return Tmp;
4148       }
4149 
4150     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4151     if (Tmp2 == 1) return 1; // Early out.
4152     return std::min(Tmp, Tmp2) - 1;
4153   case ISD::SUB:
4154     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4155     if (Tmp2 == 1) return 1; // Early out.
4156 
4157     // Handle NEG.
4158     if (ConstantSDNode *CLHS =
4159             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4160       if (CLHS->isZero()) {
4161         KnownBits Known =
4162             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4163         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4164         // sign bits set.
4165         if ((Known.Zero | 1).isAllOnes())
4166           return VTBits;
4167 
4168         // If the input is known to be positive (the sign bit is known clear),
4169         // the output of the NEG has the same number of sign bits as the input.
4170         if (Known.isNonNegative())
4171           return Tmp2;
4172 
4173         // Otherwise, we treat this like a SUB.
4174       }
4175 
4176     // Sub can have at most one carry bit.  Thus we know that the output
4177     // is, at worst, one more bit than the inputs.
4178     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4179     if (Tmp == 1) return 1; // Early out.
4180     return std::min(Tmp, Tmp2) - 1;
4181   case ISD::MUL: {
4182     // The output of the Mul can be at most twice the valid bits in the inputs.
4183     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4184     if (SignBitsOp0 == 1)
4185       break;
4186     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4187     if (SignBitsOp1 == 1)
4188       break;
4189     unsigned OutValidBits =
4190         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4191     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4192   }
4193   case ISD::SREM:
4194     // The sign bit is the LHS's sign bit, except when the result of the
4195     // remainder is zero. The magnitude of the result should be less than or
4196     // equal to the magnitude of the LHS. Therefore, the result should have
4197     // at least as many sign bits as the left hand side.
4198     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4199   case ISD::TRUNCATE: {
4200     // Check if the sign bits of source go down as far as the truncated value.
4201     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4202     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4203     if (NumSrcSignBits > (NumSrcBits - VTBits))
4204       return NumSrcSignBits - (NumSrcBits - VTBits);
4205     break;
4206   }
4207   case ISD::EXTRACT_ELEMENT: {
4208     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4209     const int BitWidth = Op.getValueSizeInBits();
4210     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4211 
4212     // Get reverse index (starting from 1), Op1 value indexes elements from
4213     // little end. Sign starts at big end.
4214     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4215 
4216     // If the sign portion ends in our element the subtraction gives correct
4217     // result. Otherwise it gives either negative or > bitwidth result
4218     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4219   }
4220   case ISD::INSERT_VECTOR_ELT: {
4221     // If we know the element index, split the demand between the
4222     // source vector and the inserted element, otherwise assume we need
4223     // the original demanded vector elements and the value.
4224     SDValue InVec = Op.getOperand(0);
4225     SDValue InVal = Op.getOperand(1);
4226     SDValue EltNo = Op.getOperand(2);
4227     bool DemandedVal = true;
4228     APInt DemandedVecElts = DemandedElts;
4229     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4230     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4231       unsigned EltIdx = CEltNo->getZExtValue();
4232       DemandedVal = !!DemandedElts[EltIdx];
4233       DemandedVecElts.clearBit(EltIdx);
4234     }
4235     Tmp = std::numeric_limits<unsigned>::max();
4236     if (DemandedVal) {
4237       // TODO - handle implicit truncation of inserted elements.
4238       if (InVal.getScalarValueSizeInBits() != VTBits)
4239         break;
4240       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4241       Tmp = std::min(Tmp, Tmp2);
4242     }
4243     if (!!DemandedVecElts) {
4244       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4245       Tmp = std::min(Tmp, Tmp2);
4246     }
4247     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4248     return Tmp;
4249   }
4250   case ISD::EXTRACT_VECTOR_ELT: {
4251     SDValue InVec = Op.getOperand(0);
4252     SDValue EltNo = Op.getOperand(1);
4253     EVT VecVT = InVec.getValueType();
4254     // ComputeNumSignBits not yet implemented for scalable vectors.
4255     if (VecVT.isScalableVector())
4256       break;
4257     const unsigned BitWidth = Op.getValueSizeInBits();
4258     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4259     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4260 
4261     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4262     // anything about sign bits. But if the sizes match we can derive knowledge
4263     // about sign bits from the vector operand.
4264     if (BitWidth != EltBitWidth)
4265       break;
4266 
4267     // If we know the element index, just demand that vector element, else for
4268     // an unknown element index, ignore DemandedElts and demand them all.
4269     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4270     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4271     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4272       DemandedSrcElts =
4273           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4274 
4275     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4276   }
4277   case ISD::EXTRACT_SUBVECTOR: {
4278     // Offset the demanded elts by the subvector index.
4279     SDValue Src = Op.getOperand(0);
4280     // Bail until we can represent demanded elements for scalable vectors.
4281     if (Src.getValueType().isScalableVector())
4282       break;
4283     uint64_t Idx = Op.getConstantOperandVal(1);
4284     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4285     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4286     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4287   }
4288   case ISD::CONCAT_VECTORS: {
4289     // Determine the minimum number of sign bits across all demanded
4290     // elts of the input vectors. Early out if the result is already 1.
4291     Tmp = std::numeric_limits<unsigned>::max();
4292     EVT SubVectorVT = Op.getOperand(0).getValueType();
4293     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4294     unsigned NumSubVectors = Op.getNumOperands();
4295     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4296       APInt DemandedSub =
4297           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4298       if (!DemandedSub)
4299         continue;
4300       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4301       Tmp = std::min(Tmp, Tmp2);
4302     }
4303     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4304     return Tmp;
4305   }
4306   case ISD::INSERT_SUBVECTOR: {
4307     // Demand any elements from the subvector and the remainder from the src its
4308     // inserted into.
4309     SDValue Src = Op.getOperand(0);
4310     SDValue Sub = Op.getOperand(1);
4311     uint64_t Idx = Op.getConstantOperandVal(2);
4312     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4313     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4314     APInt DemandedSrcElts = DemandedElts;
4315     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4316 
4317     Tmp = std::numeric_limits<unsigned>::max();
4318     if (!!DemandedSubElts) {
4319       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4320       if (Tmp == 1)
4321         return 1; // early-out
4322     }
4323     if (!!DemandedSrcElts) {
4324       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4325       Tmp = std::min(Tmp, Tmp2);
4326     }
4327     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4328     return Tmp;
4329   }
4330   case ISD::ATOMIC_CMP_SWAP:
4331   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4332   case ISD::ATOMIC_SWAP:
4333   case ISD::ATOMIC_LOAD_ADD:
4334   case ISD::ATOMIC_LOAD_SUB:
4335   case ISD::ATOMIC_LOAD_AND:
4336   case ISD::ATOMIC_LOAD_CLR:
4337   case ISD::ATOMIC_LOAD_OR:
4338   case ISD::ATOMIC_LOAD_XOR:
4339   case ISD::ATOMIC_LOAD_NAND:
4340   case ISD::ATOMIC_LOAD_MIN:
4341   case ISD::ATOMIC_LOAD_MAX:
4342   case ISD::ATOMIC_LOAD_UMIN:
4343   case ISD::ATOMIC_LOAD_UMAX:
4344   case ISD::ATOMIC_LOAD: {
4345     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4346     // If we are looking at the loaded value.
4347     if (Op.getResNo() == 0) {
4348       if (Tmp == VTBits)
4349         return 1; // early-out
4350       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4351         return VTBits - Tmp + 1;
4352       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4353         return VTBits - Tmp;
4354     }
4355     break;
4356   }
4357   }
4358 
4359   // If we are looking at the loaded value of the SDNode.
4360   if (Op.getResNo() == 0) {
4361     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4362     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4363       unsigned ExtType = LD->getExtensionType();
4364       switch (ExtType) {
4365       default: break;
4366       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4367         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4368         return VTBits - Tmp + 1;
4369       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4370         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4371         return VTBits - Tmp;
4372       case ISD::NON_EXTLOAD:
4373         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4374           // We only need to handle vectors - computeKnownBits should handle
4375           // scalar cases.
4376           Type *CstTy = Cst->getType();
4377           if (CstTy->isVectorTy() &&
4378               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4379               VTBits == CstTy->getScalarSizeInBits()) {
4380             Tmp = VTBits;
4381             for (unsigned i = 0; i != NumElts; ++i) {
4382               if (!DemandedElts[i])
4383                 continue;
4384               if (Constant *Elt = Cst->getAggregateElement(i)) {
4385                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4386                   const APInt &Value = CInt->getValue();
4387                   Tmp = std::min(Tmp, Value.getNumSignBits());
4388                   continue;
4389                 }
4390                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4391                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4392                   Tmp = std::min(Tmp, Value.getNumSignBits());
4393                   continue;
4394                 }
4395               }
4396               // Unknown type. Conservatively assume no bits match sign bit.
4397               return 1;
4398             }
4399             return Tmp;
4400           }
4401         }
4402         break;
4403       }
4404     }
4405   }
4406 
4407   // Allow the target to implement this method for its nodes.
4408   if (Opcode >= ISD::BUILTIN_OP_END ||
4409       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4410       Opcode == ISD::INTRINSIC_W_CHAIN ||
4411       Opcode == ISD::INTRINSIC_VOID) {
4412     unsigned NumBits =
4413         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4414     if (NumBits > 1)
4415       FirstAnswer = std::max(FirstAnswer, NumBits);
4416   }
4417 
4418   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4419   // use this information.
4420   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4421   return std::max(FirstAnswer, Known.countMinSignBits());
4422 }
4423 
4424 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4425                                                  unsigned Depth) const {
4426   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4427   return Op.getScalarValueSizeInBits() - SignBits + 1;
4428 }
4429 
4430 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4431                                                  const APInt &DemandedElts,
4432                                                  unsigned Depth) const {
4433   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4434   return Op.getScalarValueSizeInBits() - SignBits + 1;
4435 }
4436 
4437 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4438                                                     unsigned Depth) const {
4439   // Early out for FREEZE.
4440   if (Op.getOpcode() == ISD::FREEZE)
4441     return true;
4442 
4443   // TODO: Assume we don't know anything for now.
4444   EVT VT = Op.getValueType();
4445   if (VT.isScalableVector())
4446     return false;
4447 
4448   APInt DemandedElts = VT.isVector()
4449                            ? APInt::getAllOnes(VT.getVectorNumElements())
4450                            : APInt(1, 1);
4451   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4452 }
4453 
4454 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4455                                                     const APInt &DemandedElts,
4456                                                     bool PoisonOnly,
4457                                                     unsigned Depth) const {
4458   unsigned Opcode = Op.getOpcode();
4459 
4460   // Early out for FREEZE.
4461   if (Opcode == ISD::FREEZE)
4462     return true;
4463 
4464   if (Depth >= MaxRecursionDepth)
4465     return false; // Limit search depth.
4466 
4467   if (isIntOrFPConstant(Op))
4468     return true;
4469 
4470   switch (Opcode) {
4471   case ISD::UNDEF:
4472     return PoisonOnly;
4473 
4474   case ISD::BUILD_VECTOR:
4475     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4476     // this shouldn't affect the result.
4477     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4478       if (!DemandedElts[i])
4479         continue;
4480       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4481                                             Depth + 1))
4482         return false;
4483     }
4484     return true;
4485 
4486   // TODO: Search for noundef attributes from library functions.
4487 
4488   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4489 
4490   default:
4491     // Allow the target to implement this method for its nodes.
4492     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4493         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4494       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4495           Op, DemandedElts, *this, PoisonOnly, Depth);
4496     break;
4497   }
4498 
4499   return false;
4500 }
4501 
4502 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4503   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4504       !isa<ConstantSDNode>(Op.getOperand(1)))
4505     return false;
4506 
4507   if (Op.getOpcode() == ISD::OR &&
4508       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4509     return false;
4510 
4511   return true;
4512 }
4513 
4514 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4515   // If we're told that NaNs won't happen, assume they won't.
4516   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4517     return true;
4518 
4519   if (Depth >= MaxRecursionDepth)
4520     return false; // Limit search depth.
4521 
4522   // TODO: Handle vectors.
4523   // If the value is a constant, we can obviously see if it is a NaN or not.
4524   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4525     return !C->getValueAPF().isNaN() ||
4526            (SNaN && !C->getValueAPF().isSignaling());
4527   }
4528 
4529   unsigned Opcode = Op.getOpcode();
4530   switch (Opcode) {
4531   case ISD::FADD:
4532   case ISD::FSUB:
4533   case ISD::FMUL:
4534   case ISD::FDIV:
4535   case ISD::FREM:
4536   case ISD::FSIN:
4537   case ISD::FCOS: {
4538     if (SNaN)
4539       return true;
4540     // TODO: Need isKnownNeverInfinity
4541     return false;
4542   }
4543   case ISD::FCANONICALIZE:
4544   case ISD::FEXP:
4545   case ISD::FEXP2:
4546   case ISD::FTRUNC:
4547   case ISD::FFLOOR:
4548   case ISD::FCEIL:
4549   case ISD::FROUND:
4550   case ISD::FROUNDEVEN:
4551   case ISD::FRINT:
4552   case ISD::FNEARBYINT: {
4553     if (SNaN)
4554       return true;
4555     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4556   }
4557   case ISD::FABS:
4558   case ISD::FNEG:
4559   case ISD::FCOPYSIGN: {
4560     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4561   }
4562   case ISD::SELECT:
4563     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4564            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4565   case ISD::FP_EXTEND:
4566   case ISD::FP_ROUND: {
4567     if (SNaN)
4568       return true;
4569     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4570   }
4571   case ISD::SINT_TO_FP:
4572   case ISD::UINT_TO_FP:
4573     return true;
4574   case ISD::FMA:
4575   case ISD::FMAD: {
4576     if (SNaN)
4577       return true;
4578     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4579            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4580            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4581   }
4582   case ISD::FSQRT: // Need is known positive
4583   case ISD::FLOG:
4584   case ISD::FLOG2:
4585   case ISD::FLOG10:
4586   case ISD::FPOWI:
4587   case ISD::FPOW: {
4588     if (SNaN)
4589       return true;
4590     // TODO: Refine on operand
4591     return false;
4592   }
4593   case ISD::FMINNUM:
4594   case ISD::FMAXNUM: {
4595     // Only one needs to be known not-nan, since it will be returned if the
4596     // other ends up being one.
4597     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4598            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4599   }
4600   case ISD::FMINNUM_IEEE:
4601   case ISD::FMAXNUM_IEEE: {
4602     if (SNaN)
4603       return true;
4604     // This can return a NaN if either operand is an sNaN, or if both operands
4605     // are NaN.
4606     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4607             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4608            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4609             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4610   }
4611   case ISD::FMINIMUM:
4612   case ISD::FMAXIMUM: {
4613     // TODO: Does this quiet or return the origina NaN as-is?
4614     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4615            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4616   }
4617   case ISD::EXTRACT_VECTOR_ELT: {
4618     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4619   }
4620   default:
4621     if (Opcode >= ISD::BUILTIN_OP_END ||
4622         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4623         Opcode == ISD::INTRINSIC_W_CHAIN ||
4624         Opcode == ISD::INTRINSIC_VOID) {
4625       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4626     }
4627 
4628     return false;
4629   }
4630 }
4631 
4632 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4633   assert(Op.getValueType().isFloatingPoint() &&
4634          "Floating point type expected");
4635 
4636   // If the value is a constant, we can obviously see if it is a zero or not.
4637   // TODO: Add BuildVector support.
4638   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4639     return !C->isZero();
4640   return false;
4641 }
4642 
4643 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4644   assert(!Op.getValueType().isFloatingPoint() &&
4645          "Floating point types unsupported - use isKnownNeverZeroFloat");
4646 
4647   // If the value is a constant, we can obviously see if it is a zero or not.
4648   if (ISD::matchUnaryPredicate(Op,
4649                                [](ConstantSDNode *C) { return !C->isZero(); }))
4650     return true;
4651 
4652   // TODO: Recognize more cases here.
4653   switch (Op.getOpcode()) {
4654   default: break;
4655   case ISD::OR:
4656     if (isKnownNeverZero(Op.getOperand(1)) ||
4657         isKnownNeverZero(Op.getOperand(0)))
4658       return true;
4659     break;
4660   }
4661 
4662   return false;
4663 }
4664 
4665 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4666   // Check the obvious case.
4667   if (A == B) return true;
4668 
4669   // For for negative and positive zero.
4670   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4671     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4672       if (CA->isZero() && CB->isZero()) return true;
4673 
4674   // Otherwise they may not be equal.
4675   return false;
4676 }
4677 
4678 // FIXME: unify with llvm::haveNoCommonBitsSet.
4679 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4680   assert(A.getValueType() == B.getValueType() &&
4681          "Values must have the same type");
4682   // Match masked merge pattern (X & ~M) op (Y & M)
4683   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4684     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4685       if (isBitwiseNot(NotM, true)) {
4686         SDValue NotOperand = NotM->getOperand(0);
4687         return NotOperand == And->getOperand(0) ||
4688                NotOperand == And->getOperand(1);
4689       }
4690       return false;
4691     };
4692     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4693         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4694         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4695         MatchNoCommonBitsPattern(B->getOperand(1), A))
4696       return true;
4697   }
4698   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4699                                         computeKnownBits(B));
4700 }
4701 
4702 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4703                                SelectionDAG &DAG) {
4704   if (cast<ConstantSDNode>(Step)->isZero())
4705     return DAG.getConstant(0, DL, VT);
4706 
4707   return SDValue();
4708 }
4709 
4710 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4711                                 ArrayRef<SDValue> Ops,
4712                                 SelectionDAG &DAG) {
4713   int NumOps = Ops.size();
4714   assert(NumOps != 0 && "Can't build an empty vector!");
4715   assert(!VT.isScalableVector() &&
4716          "BUILD_VECTOR cannot be used with scalable types");
4717   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4718          "Incorrect element count in BUILD_VECTOR!");
4719 
4720   // BUILD_VECTOR of UNDEFs is UNDEF.
4721   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4722     return DAG.getUNDEF(VT);
4723 
4724   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4725   SDValue IdentitySrc;
4726   bool IsIdentity = true;
4727   for (int i = 0; i != NumOps; ++i) {
4728     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4729         Ops[i].getOperand(0).getValueType() != VT ||
4730         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4731         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4732         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4733       IsIdentity = false;
4734       break;
4735     }
4736     IdentitySrc = Ops[i].getOperand(0);
4737   }
4738   if (IsIdentity)
4739     return IdentitySrc;
4740 
4741   return SDValue();
4742 }
4743 
4744 /// Try to simplify vector concatenation to an input value, undef, or build
4745 /// vector.
4746 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4747                                   ArrayRef<SDValue> Ops,
4748                                   SelectionDAG &DAG) {
4749   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4750   assert(llvm::all_of(Ops,
4751                       [Ops](SDValue Op) {
4752                         return Ops[0].getValueType() == Op.getValueType();
4753                       }) &&
4754          "Concatenation of vectors with inconsistent value types!");
4755   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4756              VT.getVectorElementCount() &&
4757          "Incorrect element count in vector concatenation!");
4758 
4759   if (Ops.size() == 1)
4760     return Ops[0];
4761 
4762   // Concat of UNDEFs is UNDEF.
4763   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4764     return DAG.getUNDEF(VT);
4765 
4766   // Scan the operands and look for extract operations from a single source
4767   // that correspond to insertion at the same location via this concatenation:
4768   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4769   SDValue IdentitySrc;
4770   bool IsIdentity = true;
4771   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4772     SDValue Op = Ops[i];
4773     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4774     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4775         Op.getOperand(0).getValueType() != VT ||
4776         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4777         Op.getConstantOperandVal(1) != IdentityIndex) {
4778       IsIdentity = false;
4779       break;
4780     }
4781     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4782            "Unexpected identity source vector for concat of extracts");
4783     IdentitySrc = Op.getOperand(0);
4784   }
4785   if (IsIdentity) {
4786     assert(IdentitySrc && "Failed to set source vector of extracts");
4787     return IdentitySrc;
4788   }
4789 
4790   // The code below this point is only designed to work for fixed width
4791   // vectors, so we bail out for now.
4792   if (VT.isScalableVector())
4793     return SDValue();
4794 
4795   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4796   // simplified to one big BUILD_VECTOR.
4797   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4798   EVT SVT = VT.getScalarType();
4799   SmallVector<SDValue, 16> Elts;
4800   for (SDValue Op : Ops) {
4801     EVT OpVT = Op.getValueType();
4802     if (Op.isUndef())
4803       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4804     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4805       Elts.append(Op->op_begin(), Op->op_end());
4806     else
4807       return SDValue();
4808   }
4809 
4810   // BUILD_VECTOR requires all inputs to be of the same type, find the
4811   // maximum type and extend them all.
4812   for (SDValue Op : Elts)
4813     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4814 
4815   if (SVT.bitsGT(VT.getScalarType())) {
4816     for (SDValue &Op : Elts) {
4817       if (Op.isUndef())
4818         Op = DAG.getUNDEF(SVT);
4819       else
4820         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4821                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4822                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4823     }
4824   }
4825 
4826   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4827   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4828   return V;
4829 }
4830 
4831 /// Gets or creates the specified node.
4832 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4833   FoldingSetNodeID ID;
4834   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4835   void *IP = nullptr;
4836   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4837     return SDValue(E, 0);
4838 
4839   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4840                               getVTList(VT));
4841   CSEMap.InsertNode(N, IP);
4842 
4843   InsertNode(N);
4844   SDValue V = SDValue(N, 0);
4845   NewSDValueDbgMsg(V, "Creating new node: ", this);
4846   return V;
4847 }
4848 
4849 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4850                               SDValue Operand) {
4851   SDNodeFlags Flags;
4852   if (Inserter)
4853     Flags = Inserter->getFlags();
4854   return getNode(Opcode, DL, VT, Operand, Flags);
4855 }
4856 
4857 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4858                               SDValue Operand, const SDNodeFlags Flags) {
4859   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4860          "Operand is DELETED_NODE!");
4861   // Constant fold unary operations with an integer constant operand. Even
4862   // opaque constant will be folded, because the folding of unary operations
4863   // doesn't create new constants with different values. Nevertheless, the
4864   // opaque flag is preserved during folding to prevent future folding with
4865   // other constants.
4866   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4867     const APInt &Val = C->getAPIntValue();
4868     switch (Opcode) {
4869     default: break;
4870     case ISD::SIGN_EXTEND:
4871       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4872                          C->isTargetOpcode(), C->isOpaque());
4873     case ISD::TRUNCATE:
4874       if (C->isOpaque())
4875         break;
4876       LLVM_FALLTHROUGH;
4877     case ISD::ZERO_EXTEND:
4878       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4879                          C->isTargetOpcode(), C->isOpaque());
4880     case ISD::ANY_EXTEND:
4881       // Some targets like RISCV prefer to sign extend some types.
4882       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4883         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4884                            C->isTargetOpcode(), C->isOpaque());
4885       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4886                          C->isTargetOpcode(), C->isOpaque());
4887     case ISD::UINT_TO_FP:
4888     case ISD::SINT_TO_FP: {
4889       APFloat apf(EVTToAPFloatSemantics(VT),
4890                   APInt::getZero(VT.getSizeInBits()));
4891       (void)apf.convertFromAPInt(Val,
4892                                  Opcode==ISD::SINT_TO_FP,
4893                                  APFloat::rmNearestTiesToEven);
4894       return getConstantFP(apf, DL, VT);
4895     }
4896     case ISD::BITCAST:
4897       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4898         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4899       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4900         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4901       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4902         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4903       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4904         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4905       break;
4906     case ISD::ABS:
4907       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4908                          C->isOpaque());
4909     case ISD::BITREVERSE:
4910       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4911                          C->isOpaque());
4912     case ISD::BSWAP:
4913       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4914                          C->isOpaque());
4915     case ISD::CTPOP:
4916       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4917                          C->isOpaque());
4918     case ISD::CTLZ:
4919     case ISD::CTLZ_ZERO_UNDEF:
4920       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4921                          C->isOpaque());
4922     case ISD::CTTZ:
4923     case ISD::CTTZ_ZERO_UNDEF:
4924       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4925                          C->isOpaque());
4926     case ISD::FP16_TO_FP: {
4927       bool Ignored;
4928       APFloat FPV(APFloat::IEEEhalf(),
4929                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4930 
4931       // This can return overflow, underflow, or inexact; we don't care.
4932       // FIXME need to be more flexible about rounding mode.
4933       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4934                         APFloat::rmNearestTiesToEven, &Ignored);
4935       return getConstantFP(FPV, DL, VT);
4936     }
4937     case ISD::STEP_VECTOR: {
4938       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4939         return V;
4940       break;
4941     }
4942     }
4943   }
4944 
4945   // Constant fold unary operations with a floating point constant operand.
4946   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4947     APFloat V = C->getValueAPF();    // make copy
4948     switch (Opcode) {
4949     case ISD::FNEG:
4950       V.changeSign();
4951       return getConstantFP(V, DL, VT);
4952     case ISD::FABS:
4953       V.clearSign();
4954       return getConstantFP(V, DL, VT);
4955     case ISD::FCEIL: {
4956       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4957       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4958         return getConstantFP(V, DL, VT);
4959       break;
4960     }
4961     case ISD::FTRUNC: {
4962       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4963       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4964         return getConstantFP(V, DL, VT);
4965       break;
4966     }
4967     case ISD::FFLOOR: {
4968       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4969       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4970         return getConstantFP(V, DL, VT);
4971       break;
4972     }
4973     case ISD::FP_EXTEND: {
4974       bool ignored;
4975       // This can return overflow, underflow, or inexact; we don't care.
4976       // FIXME need to be more flexible about rounding mode.
4977       (void)V.convert(EVTToAPFloatSemantics(VT),
4978                       APFloat::rmNearestTiesToEven, &ignored);
4979       return getConstantFP(V, DL, VT);
4980     }
4981     case ISD::FP_TO_SINT:
4982     case ISD::FP_TO_UINT: {
4983       bool ignored;
4984       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4985       // FIXME need to be more flexible about rounding mode.
4986       APFloat::opStatus s =
4987           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4988       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4989         break;
4990       return getConstant(IntVal, DL, VT);
4991     }
4992     case ISD::BITCAST:
4993       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4994         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4995       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4996         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4997       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4998         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4999       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
5000         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5001       break;
5002     case ISD::FP_TO_FP16: {
5003       bool Ignored;
5004       // This can return overflow, underflow, or inexact; we don't care.
5005       // FIXME need to be more flexible about rounding mode.
5006       (void)V.convert(APFloat::IEEEhalf(),
5007                       APFloat::rmNearestTiesToEven, &Ignored);
5008       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5009     }
5010     }
5011   }
5012 
5013   // Constant fold unary operations with a vector integer or float operand.
5014   switch (Opcode) {
5015   default:
5016     // FIXME: Entirely reasonable to perform folding of other unary
5017     // operations here as the need arises.
5018     break;
5019   case ISD::FNEG:
5020   case ISD::FABS:
5021   case ISD::FCEIL:
5022   case ISD::FTRUNC:
5023   case ISD::FFLOOR:
5024   case ISD::FP_EXTEND:
5025   case ISD::FP_TO_SINT:
5026   case ISD::FP_TO_UINT:
5027   case ISD::TRUNCATE:
5028   case ISD::ANY_EXTEND:
5029   case ISD::ZERO_EXTEND:
5030   case ISD::SIGN_EXTEND:
5031   case ISD::UINT_TO_FP:
5032   case ISD::SINT_TO_FP:
5033   case ISD::ABS:
5034   case ISD::BITREVERSE:
5035   case ISD::BSWAP:
5036   case ISD::CTLZ:
5037   case ISD::CTLZ_ZERO_UNDEF:
5038   case ISD::CTTZ:
5039   case ISD::CTTZ_ZERO_UNDEF:
5040   case ISD::CTPOP: {
5041     SDValue Ops = {Operand};
5042     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5043       return Fold;
5044   }
5045   }
5046 
5047   unsigned OpOpcode = Operand.getNode()->getOpcode();
5048   switch (Opcode) {
5049   case ISD::STEP_VECTOR:
5050     assert(VT.isScalableVector() &&
5051            "STEP_VECTOR can only be used with scalable types");
5052     assert(OpOpcode == ISD::TargetConstant &&
5053            VT.getVectorElementType() == Operand.getValueType() &&
5054            "Unexpected step operand");
5055     break;
5056   case ISD::FREEZE:
5057     assert(VT == Operand.getValueType() && "Unexpected VT!");
5058     break;
5059   case ISD::TokenFactor:
5060   case ISD::MERGE_VALUES:
5061   case ISD::CONCAT_VECTORS:
5062     return Operand;         // Factor, merge or concat of one node?  No need.
5063   case ISD::BUILD_VECTOR: {
5064     // Attempt to simplify BUILD_VECTOR.
5065     SDValue Ops[] = {Operand};
5066     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5067       return V;
5068     break;
5069   }
5070   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5071   case ISD::FP_EXTEND:
5072     assert(VT.isFloatingPoint() &&
5073            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
5074     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
5075     assert((!VT.isVector() ||
5076             VT.getVectorElementCount() ==
5077             Operand.getValueType().getVectorElementCount()) &&
5078            "Vector element count mismatch!");
5079     assert(Operand.getValueType().bitsLT(VT) &&
5080            "Invalid fpext node, dst < src!");
5081     if (Operand.isUndef())
5082       return getUNDEF(VT);
5083     break;
5084   case ISD::FP_TO_SINT:
5085   case ISD::FP_TO_UINT:
5086     if (Operand.isUndef())
5087       return getUNDEF(VT);
5088     break;
5089   case ISD::SINT_TO_FP:
5090   case ISD::UINT_TO_FP:
5091     // [us]itofp(undef) = 0, because the result value is bounded.
5092     if (Operand.isUndef())
5093       return getConstantFP(0.0, DL, VT);
5094     break;
5095   case ISD::SIGN_EXTEND:
5096     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5097            "Invalid SIGN_EXTEND!");
5098     assert(VT.isVector() == Operand.getValueType().isVector() &&
5099            "SIGN_EXTEND result type type should be vector iff the operand "
5100            "type is vector!");
5101     if (Operand.getValueType() == VT) return Operand;   // noop extension
5102     assert((!VT.isVector() ||
5103             VT.getVectorElementCount() ==
5104                 Operand.getValueType().getVectorElementCount()) &&
5105            "Vector element count mismatch!");
5106     assert(Operand.getValueType().bitsLT(VT) &&
5107            "Invalid sext node, dst < src!");
5108     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5109       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5110     if (OpOpcode == ISD::UNDEF)
5111       // sext(undef) = 0, because the top bits will all be the same.
5112       return getConstant(0, DL, VT);
5113     break;
5114   case ISD::ZERO_EXTEND:
5115     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5116            "Invalid ZERO_EXTEND!");
5117     assert(VT.isVector() == Operand.getValueType().isVector() &&
5118            "ZERO_EXTEND result type type should be vector iff the operand "
5119            "type is vector!");
5120     if (Operand.getValueType() == VT) return Operand;   // noop extension
5121     assert((!VT.isVector() ||
5122             VT.getVectorElementCount() ==
5123                 Operand.getValueType().getVectorElementCount()) &&
5124            "Vector element count mismatch!");
5125     assert(Operand.getValueType().bitsLT(VT) &&
5126            "Invalid zext node, dst < src!");
5127     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5128       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5129     if (OpOpcode == ISD::UNDEF)
5130       // zext(undef) = 0, because the top bits will be zero.
5131       return getConstant(0, DL, VT);
5132     break;
5133   case ISD::ANY_EXTEND:
5134     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5135            "Invalid ANY_EXTEND!");
5136     assert(VT.isVector() == Operand.getValueType().isVector() &&
5137            "ANY_EXTEND result type type should be vector iff the operand "
5138            "type is vector!");
5139     if (Operand.getValueType() == VT) return Operand;   // noop extension
5140     assert((!VT.isVector() ||
5141             VT.getVectorElementCount() ==
5142                 Operand.getValueType().getVectorElementCount()) &&
5143            "Vector element count mismatch!");
5144     assert(Operand.getValueType().bitsLT(VT) &&
5145            "Invalid anyext node, dst < src!");
5146 
5147     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5148         OpOpcode == ISD::ANY_EXTEND)
5149       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5150       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5151     if (OpOpcode == ISD::UNDEF)
5152       return getUNDEF(VT);
5153 
5154     // (ext (trunc x)) -> x
5155     if (OpOpcode == ISD::TRUNCATE) {
5156       SDValue OpOp = Operand.getOperand(0);
5157       if (OpOp.getValueType() == VT) {
5158         transferDbgValues(Operand, OpOp);
5159         return OpOp;
5160       }
5161     }
5162     break;
5163   case ISD::TRUNCATE:
5164     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5165            "Invalid TRUNCATE!");
5166     assert(VT.isVector() == Operand.getValueType().isVector() &&
5167            "TRUNCATE result type type should be vector iff the operand "
5168            "type is vector!");
5169     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5170     assert((!VT.isVector() ||
5171             VT.getVectorElementCount() ==
5172                 Operand.getValueType().getVectorElementCount()) &&
5173            "Vector element count mismatch!");
5174     assert(Operand.getValueType().bitsGT(VT) &&
5175            "Invalid truncate node, src < dst!");
5176     if (OpOpcode == ISD::TRUNCATE)
5177       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5178     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5179         OpOpcode == ISD::ANY_EXTEND) {
5180       // If the source is smaller than the dest, we still need an extend.
5181       if (Operand.getOperand(0).getValueType().getScalarType()
5182             .bitsLT(VT.getScalarType()))
5183         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5184       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5185         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5186       return Operand.getOperand(0);
5187     }
5188     if (OpOpcode == ISD::UNDEF)
5189       return getUNDEF(VT);
5190     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5191       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5192     break;
5193   case ISD::ANY_EXTEND_VECTOR_INREG:
5194   case ISD::ZERO_EXTEND_VECTOR_INREG:
5195   case ISD::SIGN_EXTEND_VECTOR_INREG:
5196     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5197     assert(Operand.getValueType().bitsLE(VT) &&
5198            "The input must be the same size or smaller than the result.");
5199     assert(VT.getVectorMinNumElements() <
5200                Operand.getValueType().getVectorMinNumElements() &&
5201            "The destination vector type must have fewer lanes than the input.");
5202     break;
5203   case ISD::ABS:
5204     assert(VT.isInteger() && VT == Operand.getValueType() &&
5205            "Invalid ABS!");
5206     if (OpOpcode == ISD::UNDEF)
5207       return getUNDEF(VT);
5208     break;
5209   case ISD::BSWAP:
5210     assert(VT.isInteger() && VT == Operand.getValueType() &&
5211            "Invalid BSWAP!");
5212     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5213            "BSWAP types must be a multiple of 16 bits!");
5214     if (OpOpcode == ISD::UNDEF)
5215       return getUNDEF(VT);
5216     // bswap(bswap(X)) -> X.
5217     if (OpOpcode == ISD::BSWAP)
5218       return Operand.getOperand(0);
5219     break;
5220   case ISD::BITREVERSE:
5221     assert(VT.isInteger() && VT == Operand.getValueType() &&
5222            "Invalid BITREVERSE!");
5223     if (OpOpcode == ISD::UNDEF)
5224       return getUNDEF(VT);
5225     break;
5226   case ISD::BITCAST:
5227     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5228            "Cannot BITCAST between types of different sizes!");
5229     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5230     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5231       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5232     if (OpOpcode == ISD::UNDEF)
5233       return getUNDEF(VT);
5234     break;
5235   case ISD::SCALAR_TO_VECTOR:
5236     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5237            (VT.getVectorElementType() == Operand.getValueType() ||
5238             (VT.getVectorElementType().isInteger() &&
5239              Operand.getValueType().isInteger() &&
5240              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5241            "Illegal SCALAR_TO_VECTOR node!");
5242     if (OpOpcode == ISD::UNDEF)
5243       return getUNDEF(VT);
5244     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5245     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5246         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5247         Operand.getConstantOperandVal(1) == 0 &&
5248         Operand.getOperand(0).getValueType() == VT)
5249       return Operand.getOperand(0);
5250     break;
5251   case ISD::FNEG:
5252     // Negation of an unknown bag of bits is still completely undefined.
5253     if (OpOpcode == ISD::UNDEF)
5254       return getUNDEF(VT);
5255 
5256     if (OpOpcode == ISD::FNEG)  // --X -> X
5257       return Operand.getOperand(0);
5258     break;
5259   case ISD::FABS:
5260     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5261       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5262     break;
5263   case ISD::VSCALE:
5264     assert(VT == Operand.getValueType() && "Unexpected VT!");
5265     break;
5266   case ISD::CTPOP:
5267     if (Operand.getValueType().getScalarType() == MVT::i1)
5268       return Operand;
5269     break;
5270   case ISD::CTLZ:
5271   case ISD::CTTZ:
5272     if (Operand.getValueType().getScalarType() == MVT::i1)
5273       return getNOT(DL, Operand, Operand.getValueType());
5274     break;
5275   case ISD::VECREDUCE_SMIN:
5276   case ISD::VECREDUCE_UMAX:
5277     if (Operand.getValueType().getScalarType() == MVT::i1)
5278       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5279     break;
5280   case ISD::VECREDUCE_SMAX:
5281   case ISD::VECREDUCE_UMIN:
5282     if (Operand.getValueType().getScalarType() == MVT::i1)
5283       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5284     break;
5285   }
5286 
5287   SDNode *N;
5288   SDVTList VTs = getVTList(VT);
5289   SDValue Ops[] = {Operand};
5290   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5291     FoldingSetNodeID ID;
5292     AddNodeIDNode(ID, Opcode, VTs, Ops);
5293     void *IP = nullptr;
5294     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5295       E->intersectFlagsWith(Flags);
5296       return SDValue(E, 0);
5297     }
5298 
5299     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5300     N->setFlags(Flags);
5301     createOperands(N, Ops);
5302     CSEMap.InsertNode(N, IP);
5303   } else {
5304     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5305     createOperands(N, Ops);
5306   }
5307 
5308   InsertNode(N);
5309   SDValue V = SDValue(N, 0);
5310   NewSDValueDbgMsg(V, "Creating new node: ", this);
5311   return V;
5312 }
5313 
5314 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5315                                        const APInt &C2) {
5316   switch (Opcode) {
5317   case ISD::ADD:  return C1 + C2;
5318   case ISD::SUB:  return C1 - C2;
5319   case ISD::MUL:  return C1 * C2;
5320   case ISD::AND:  return C1 & C2;
5321   case ISD::OR:   return C1 | C2;
5322   case ISD::XOR:  return C1 ^ C2;
5323   case ISD::SHL:  return C1 << C2;
5324   case ISD::SRL:  return C1.lshr(C2);
5325   case ISD::SRA:  return C1.ashr(C2);
5326   case ISD::ROTL: return C1.rotl(C2);
5327   case ISD::ROTR: return C1.rotr(C2);
5328   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5329   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5330   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5331   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5332   case ISD::SADDSAT: return C1.sadd_sat(C2);
5333   case ISD::UADDSAT: return C1.uadd_sat(C2);
5334   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5335   case ISD::USUBSAT: return C1.usub_sat(C2);
5336   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5337   case ISD::USHLSAT: return C1.ushl_sat(C2);
5338   case ISD::UDIV:
5339     if (!C2.getBoolValue())
5340       break;
5341     return C1.udiv(C2);
5342   case ISD::UREM:
5343     if (!C2.getBoolValue())
5344       break;
5345     return C1.urem(C2);
5346   case ISD::SDIV:
5347     if (!C2.getBoolValue())
5348       break;
5349     return C1.sdiv(C2);
5350   case ISD::SREM:
5351     if (!C2.getBoolValue())
5352       break;
5353     return C1.srem(C2);
5354   case ISD::MULHS: {
5355     unsigned FullWidth = C1.getBitWidth() * 2;
5356     APInt C1Ext = C1.sext(FullWidth);
5357     APInt C2Ext = C2.sext(FullWidth);
5358     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5359   }
5360   case ISD::MULHU: {
5361     unsigned FullWidth = C1.getBitWidth() * 2;
5362     APInt C1Ext = C1.zext(FullWidth);
5363     APInt C2Ext = C2.zext(FullWidth);
5364     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5365   }
5366   case ISD::AVGFLOORS: {
5367     unsigned FullWidth = C1.getBitWidth() + 1;
5368     APInt C1Ext = C1.sext(FullWidth);
5369     APInt C2Ext = C2.sext(FullWidth);
5370     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5371   }
5372   case ISD::AVGFLOORU: {
5373     unsigned FullWidth = C1.getBitWidth() + 1;
5374     APInt C1Ext = C1.zext(FullWidth);
5375     APInt C2Ext = C2.zext(FullWidth);
5376     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5377   }
5378   case ISD::AVGCEILS: {
5379     unsigned FullWidth = C1.getBitWidth() + 1;
5380     APInt C1Ext = C1.sext(FullWidth);
5381     APInt C2Ext = C2.sext(FullWidth);
5382     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5383   }
5384   case ISD::AVGCEILU: {
5385     unsigned FullWidth = C1.getBitWidth() + 1;
5386     APInt C1Ext = C1.zext(FullWidth);
5387     APInt C2Ext = C2.zext(FullWidth);
5388     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5389   }
5390   }
5391   return llvm::None;
5392 }
5393 
5394 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5395                                        const GlobalAddressSDNode *GA,
5396                                        const SDNode *N2) {
5397   if (GA->getOpcode() != ISD::GlobalAddress)
5398     return SDValue();
5399   if (!TLI->isOffsetFoldingLegal(GA))
5400     return SDValue();
5401   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5402   if (!C2)
5403     return SDValue();
5404   int64_t Offset = C2->getSExtValue();
5405   switch (Opcode) {
5406   case ISD::ADD: break;
5407   case ISD::SUB: Offset = -uint64_t(Offset); break;
5408   default: return SDValue();
5409   }
5410   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5411                           GA->getOffset() + uint64_t(Offset));
5412 }
5413 
5414 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5415   switch (Opcode) {
5416   case ISD::SDIV:
5417   case ISD::UDIV:
5418   case ISD::SREM:
5419   case ISD::UREM: {
5420     // If a divisor is zero/undef or any element of a divisor vector is
5421     // zero/undef, the whole op is undef.
5422     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5423     SDValue Divisor = Ops[1];
5424     if (Divisor.isUndef() || isNullConstant(Divisor))
5425       return true;
5426 
5427     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5428            llvm::any_of(Divisor->op_values(),
5429                         [](SDValue V) { return V.isUndef() ||
5430                                         isNullConstant(V); });
5431     // TODO: Handle signed overflow.
5432   }
5433   // TODO: Handle oversized shifts.
5434   default:
5435     return false;
5436   }
5437 }
5438 
5439 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5440                                              EVT VT, ArrayRef<SDValue> Ops) {
5441   // If the opcode is a target-specific ISD node, there's nothing we can
5442   // do here and the operand rules may not line up with the below, so
5443   // bail early.
5444   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5445   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5446   // foldCONCAT_VECTORS in getNode before this is called.
5447   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5448     return SDValue();
5449 
5450   unsigned NumOps = Ops.size();
5451   if (NumOps == 0)
5452     return SDValue();
5453 
5454   if (isUndef(Opcode, Ops))
5455     return getUNDEF(VT);
5456 
5457   // Handle binops special cases.
5458   if (NumOps == 2) {
5459     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5460       return CFP;
5461 
5462     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5463       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5464         if (C1->isOpaque() || C2->isOpaque())
5465           return SDValue();
5466 
5467         Optional<APInt> FoldAttempt =
5468             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5469         if (!FoldAttempt)
5470           return SDValue();
5471 
5472         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5473         assert((!Folded || !VT.isVector()) &&
5474                "Can't fold vectors ops with scalar operands");
5475         return Folded;
5476       }
5477     }
5478 
5479     // fold (add Sym, c) -> Sym+c
5480     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5481       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5482     if (TLI->isCommutativeBinOp(Opcode))
5483       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5484         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5485   }
5486 
5487   // This is for vector folding only from here on.
5488   if (!VT.isVector())
5489     return SDValue();
5490 
5491   ElementCount NumElts = VT.getVectorElementCount();
5492 
5493   // See if we can fold through bitcasted integer ops.
5494   // TODO: Can we handle undef elements?
5495   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5496       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5497       Ops[0].getOpcode() == ISD::BITCAST &&
5498       Ops[1].getOpcode() == ISD::BITCAST) {
5499     SDValue N1 = peekThroughBitcasts(Ops[0]);
5500     SDValue N2 = peekThroughBitcasts(Ops[1]);
5501     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5502     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5503     EVT BVVT = N1.getValueType();
5504     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5505       bool IsLE = getDataLayout().isLittleEndian();
5506       unsigned EltBits = VT.getScalarSizeInBits();
5507       SmallVector<APInt> RawBits1, RawBits2;
5508       BitVector UndefElts1, UndefElts2;
5509       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5510           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5511           UndefElts1.none() && UndefElts2.none()) {
5512         SmallVector<APInt> RawBits;
5513         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5514           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5515           if (!Fold)
5516             break;
5517           RawBits.push_back(Fold.getValue());
5518         }
5519         if (RawBits.size() == NumElts.getFixedValue()) {
5520           // We have constant folded, but we need to cast this again back to
5521           // the original (possibly legalized) type.
5522           SmallVector<APInt> DstBits;
5523           BitVector DstUndefs;
5524           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5525                                            DstBits, RawBits, DstUndefs,
5526                                            BitVector(RawBits.size(), false));
5527           EVT BVEltVT = BV1->getOperand(0).getValueType();
5528           unsigned BVEltBits = BVEltVT.getSizeInBits();
5529           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5530           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5531             if (DstUndefs[I])
5532               continue;
5533             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5534           }
5535           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5536         }
5537       }
5538     }
5539   }
5540 
5541   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5542   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5543   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5544       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5545     APInt RHSVal;
5546     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5547       APInt NewStep = Opcode == ISD::MUL
5548                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5549                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5550       return getStepVector(DL, VT, NewStep);
5551     }
5552   }
5553 
5554   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5555     return !Op.getValueType().isVector() ||
5556            Op.getValueType().getVectorElementCount() == NumElts;
5557   };
5558 
5559   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5560     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5561            Op.getOpcode() == ISD::BUILD_VECTOR ||
5562            Op.getOpcode() == ISD::SPLAT_VECTOR;
5563   };
5564 
5565   // All operands must be vector types with the same number of elements as
5566   // the result type and must be either UNDEF or a build/splat vector
5567   // or UNDEF scalars.
5568   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5569       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5570     return SDValue();
5571 
5572   // If we are comparing vectors, then the result needs to be a i1 boolean
5573   // that is then sign-extended back to the legal result type.
5574   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5575 
5576   // Find legal integer scalar type for constant promotion and
5577   // ensure that its scalar size is at least as large as source.
5578   EVT LegalSVT = VT.getScalarType();
5579   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5580     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5581     if (LegalSVT.bitsLT(VT.getScalarType()))
5582       return SDValue();
5583   }
5584 
5585   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5586   // only have one operand to check. For fixed-length vector types we may have
5587   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5588   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5589 
5590   // Constant fold each scalar lane separately.
5591   SmallVector<SDValue, 4> ScalarResults;
5592   for (unsigned I = 0; I != NumVectorElts; I++) {
5593     SmallVector<SDValue, 4> ScalarOps;
5594     for (SDValue Op : Ops) {
5595       EVT InSVT = Op.getValueType().getScalarType();
5596       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5597           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5598         if (Op.isUndef())
5599           ScalarOps.push_back(getUNDEF(InSVT));
5600         else
5601           ScalarOps.push_back(Op);
5602         continue;
5603       }
5604 
5605       SDValue ScalarOp =
5606           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5607       EVT ScalarVT = ScalarOp.getValueType();
5608 
5609       // Build vector (integer) scalar operands may need implicit
5610       // truncation - do this before constant folding.
5611       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5612         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5613 
5614       ScalarOps.push_back(ScalarOp);
5615     }
5616 
5617     // Constant fold the scalar operands.
5618     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5619 
5620     // Legalize the (integer) scalar constant if necessary.
5621     if (LegalSVT != SVT)
5622       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5623 
5624     // Scalar folding only succeeded if the result is a constant or UNDEF.
5625     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5626         ScalarResult.getOpcode() != ISD::ConstantFP)
5627       return SDValue();
5628     ScalarResults.push_back(ScalarResult);
5629   }
5630 
5631   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5632                                    : getBuildVector(VT, DL, ScalarResults);
5633   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5634   return V;
5635 }
5636 
5637 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5638                                          EVT VT, SDValue N1, SDValue N2) {
5639   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5640   //       should. That will require dealing with a potentially non-default
5641   //       rounding mode, checking the "opStatus" return value from the APFloat
5642   //       math calculations, and possibly other variations.
5643   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5644   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5645   if (N1CFP && N2CFP) {
5646     APFloat C1 = N1CFP->getValueAPF(); // make copy
5647     const APFloat &C2 = N2CFP->getValueAPF();
5648     switch (Opcode) {
5649     case ISD::FADD:
5650       C1.add(C2, APFloat::rmNearestTiesToEven);
5651       return getConstantFP(C1, DL, VT);
5652     case ISD::FSUB:
5653       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5654       return getConstantFP(C1, DL, VT);
5655     case ISD::FMUL:
5656       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5657       return getConstantFP(C1, DL, VT);
5658     case ISD::FDIV:
5659       C1.divide(C2, APFloat::rmNearestTiesToEven);
5660       return getConstantFP(C1, DL, VT);
5661     case ISD::FREM:
5662       C1.mod(C2);
5663       return getConstantFP(C1, DL, VT);
5664     case ISD::FCOPYSIGN:
5665       C1.copySign(C2);
5666       return getConstantFP(C1, DL, VT);
5667     case ISD::FMINNUM:
5668       return getConstantFP(minnum(C1, C2), DL, VT);
5669     case ISD::FMAXNUM:
5670       return getConstantFP(maxnum(C1, C2), DL, VT);
5671     case ISD::FMINIMUM:
5672       return getConstantFP(minimum(C1, C2), DL, VT);
5673     case ISD::FMAXIMUM:
5674       return getConstantFP(maximum(C1, C2), DL, VT);
5675     default: break;
5676     }
5677   }
5678   if (N1CFP && Opcode == ISD::FP_ROUND) {
5679     APFloat C1 = N1CFP->getValueAPF();    // make copy
5680     bool Unused;
5681     // This can return overflow, underflow, or inexact; we don't care.
5682     // FIXME need to be more flexible about rounding mode.
5683     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5684                       &Unused);
5685     return getConstantFP(C1, DL, VT);
5686   }
5687 
5688   switch (Opcode) {
5689   case ISD::FSUB:
5690     // -0.0 - undef --> undef (consistent with "fneg undef")
5691     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5692       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5693         return getUNDEF(VT);
5694     LLVM_FALLTHROUGH;
5695 
5696   case ISD::FADD:
5697   case ISD::FMUL:
5698   case ISD::FDIV:
5699   case ISD::FREM:
5700     // If both operands are undef, the result is undef. If 1 operand is undef,
5701     // the result is NaN. This should match the behavior of the IR optimizer.
5702     if (N1.isUndef() && N2.isUndef())
5703       return getUNDEF(VT);
5704     if (N1.isUndef() || N2.isUndef())
5705       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5706   }
5707   return SDValue();
5708 }
5709 
5710 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5711   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5712 
5713   // There's no need to assert on a byte-aligned pointer. All pointers are at
5714   // least byte aligned.
5715   if (A == Align(1))
5716     return Val;
5717 
5718   FoldingSetNodeID ID;
5719   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5720   ID.AddInteger(A.value());
5721 
5722   void *IP = nullptr;
5723   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5724     return SDValue(E, 0);
5725 
5726   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5727                                          Val.getValueType(), A);
5728   createOperands(N, {Val});
5729 
5730   CSEMap.InsertNode(N, IP);
5731   InsertNode(N);
5732 
5733   SDValue V(N, 0);
5734   NewSDValueDbgMsg(V, "Creating new node: ", this);
5735   return V;
5736 }
5737 
5738 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5739                               SDValue N1, SDValue N2) {
5740   SDNodeFlags Flags;
5741   if (Inserter)
5742     Flags = Inserter->getFlags();
5743   return getNode(Opcode, DL, VT, N1, N2, Flags);
5744 }
5745 
5746 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5747                                                 SDValue &N2) const {
5748   if (!TLI->isCommutativeBinOp(Opcode))
5749     return;
5750 
5751   // Canonicalize:
5752   //   binop(const, nonconst) -> binop(nonconst, const)
5753   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5754   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5755   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5756   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5757   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5758     std::swap(N1, N2);
5759 
5760   // Canonicalize:
5761   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5762   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5763            N2.getOpcode() == ISD::STEP_VECTOR)
5764     std::swap(N1, N2);
5765 }
5766 
5767 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5768                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5769   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5770          N2.getOpcode() != ISD::DELETED_NODE &&
5771          "Operand is DELETED_NODE!");
5772 
5773   canonicalizeCommutativeBinop(Opcode, N1, N2);
5774 
5775   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5776   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5777 
5778   // Don't allow undefs in vector splats - we might be returning N2 when folding
5779   // to zero etc.
5780   ConstantSDNode *N2CV =
5781       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5782 
5783   switch (Opcode) {
5784   default: break;
5785   case ISD::TokenFactor:
5786     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5787            N2.getValueType() == MVT::Other && "Invalid token factor!");
5788     // Fold trivial token factors.
5789     if (N1.getOpcode() == ISD::EntryToken) return N2;
5790     if (N2.getOpcode() == ISD::EntryToken) return N1;
5791     if (N1 == N2) return N1;
5792     break;
5793   case ISD::BUILD_VECTOR: {
5794     // Attempt to simplify BUILD_VECTOR.
5795     SDValue Ops[] = {N1, N2};
5796     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5797       return V;
5798     break;
5799   }
5800   case ISD::CONCAT_VECTORS: {
5801     SDValue Ops[] = {N1, N2};
5802     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5803       return V;
5804     break;
5805   }
5806   case ISD::AND:
5807     assert(VT.isInteger() && "This operator does not apply to FP types!");
5808     assert(N1.getValueType() == N2.getValueType() &&
5809            N1.getValueType() == VT && "Binary operator types must match!");
5810     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5811     // worth handling here.
5812     if (N2CV && N2CV->isZero())
5813       return N2;
5814     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5815       return N1;
5816     break;
5817   case ISD::OR:
5818   case ISD::XOR:
5819   case ISD::ADD:
5820   case ISD::SUB:
5821     assert(VT.isInteger() && "This operator does not apply to FP types!");
5822     assert(N1.getValueType() == N2.getValueType() &&
5823            N1.getValueType() == VT && "Binary operator types must match!");
5824     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5825     // it's worth handling here.
5826     if (N2CV && N2CV->isZero())
5827       return N1;
5828     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5829         VT.getVectorElementType() == MVT::i1)
5830       return getNode(ISD::XOR, DL, VT, N1, N2);
5831     break;
5832   case ISD::MUL:
5833     assert(VT.isInteger() && "This operator does not apply to FP types!");
5834     assert(N1.getValueType() == N2.getValueType() &&
5835            N1.getValueType() == VT && "Binary operator types must match!");
5836     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5837       return getNode(ISD::AND, DL, VT, N1, N2);
5838     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5839       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5840       const APInt &N2CImm = N2C->getAPIntValue();
5841       return getVScale(DL, VT, MulImm * N2CImm);
5842     }
5843     break;
5844   case ISD::UDIV:
5845   case ISD::UREM:
5846   case ISD::MULHU:
5847   case ISD::MULHS:
5848   case ISD::SDIV:
5849   case ISD::SREM:
5850   case ISD::SADDSAT:
5851   case ISD::SSUBSAT:
5852   case ISD::UADDSAT:
5853   case ISD::USUBSAT:
5854     assert(VT.isInteger() && "This operator does not apply to FP types!");
5855     assert(N1.getValueType() == N2.getValueType() &&
5856            N1.getValueType() == VT && "Binary operator types must match!");
5857     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5858       // fold (add_sat x, y) -> (or x, y) for bool types.
5859       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5860         return getNode(ISD::OR, DL, VT, N1, N2);
5861       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5862       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5863         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5864     }
5865     break;
5866   case ISD::SMIN:
5867   case ISD::UMAX:
5868     assert(VT.isInteger() && "This operator does not apply to FP types!");
5869     assert(N1.getValueType() == N2.getValueType() &&
5870            N1.getValueType() == VT && "Binary operator types must match!");
5871     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5872       return getNode(ISD::OR, DL, VT, N1, N2);
5873     break;
5874   case ISD::SMAX:
5875   case ISD::UMIN:
5876     assert(VT.isInteger() && "This operator does not apply to FP types!");
5877     assert(N1.getValueType() == N2.getValueType() &&
5878            N1.getValueType() == VT && "Binary operator types must match!");
5879     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5880       return getNode(ISD::AND, DL, VT, N1, N2);
5881     break;
5882   case ISD::FADD:
5883   case ISD::FSUB:
5884   case ISD::FMUL:
5885   case ISD::FDIV:
5886   case ISD::FREM:
5887     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5888     assert(N1.getValueType() == N2.getValueType() &&
5889            N1.getValueType() == VT && "Binary operator types must match!");
5890     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5891       return V;
5892     break;
5893   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5894     assert(N1.getValueType() == VT &&
5895            N1.getValueType().isFloatingPoint() &&
5896            N2.getValueType().isFloatingPoint() &&
5897            "Invalid FCOPYSIGN!");
5898     break;
5899   case ISD::SHL:
5900     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5901       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5902       const APInt &ShiftImm = N2C->getAPIntValue();
5903       return getVScale(DL, VT, MulImm << ShiftImm);
5904     }
5905     LLVM_FALLTHROUGH;
5906   case ISD::SRA:
5907   case ISD::SRL:
5908     if (SDValue V = simplifyShift(N1, N2))
5909       return V;
5910     LLVM_FALLTHROUGH;
5911   case ISD::ROTL:
5912   case ISD::ROTR:
5913     assert(VT == N1.getValueType() &&
5914            "Shift operators return type must be the same as their first arg");
5915     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5916            "Shifts only work on integers");
5917     assert((!VT.isVector() || VT == N2.getValueType()) &&
5918            "Vector shift amounts must be in the same as their first arg");
5919     // Verify that the shift amount VT is big enough to hold valid shift
5920     // amounts.  This catches things like trying to shift an i1024 value by an
5921     // i8, which is easy to fall into in generic code that uses
5922     // TLI.getShiftAmount().
5923     assert(N2.getValueType().getScalarSizeInBits() >=
5924                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5925            "Invalid use of small shift amount with oversized value!");
5926 
5927     // Always fold shifts of i1 values so the code generator doesn't need to
5928     // handle them.  Since we know the size of the shift has to be less than the
5929     // size of the value, the shift/rotate count is guaranteed to be zero.
5930     if (VT == MVT::i1)
5931       return N1;
5932     if (N2CV && N2CV->isZero())
5933       return N1;
5934     break;
5935   case ISD::FP_ROUND:
5936     assert(VT.isFloatingPoint() &&
5937            N1.getValueType().isFloatingPoint() &&
5938            VT.bitsLE(N1.getValueType()) &&
5939            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5940            "Invalid FP_ROUND!");
5941     if (N1.getValueType() == VT) return N1;  // noop conversion.
5942     break;
5943   case ISD::AssertSext:
5944   case ISD::AssertZext: {
5945     EVT EVT = cast<VTSDNode>(N2)->getVT();
5946     assert(VT == N1.getValueType() && "Not an inreg extend!");
5947     assert(VT.isInteger() && EVT.isInteger() &&
5948            "Cannot *_EXTEND_INREG FP types");
5949     assert(!EVT.isVector() &&
5950            "AssertSExt/AssertZExt type should be the vector element type "
5951            "rather than the vector type!");
5952     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5953     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5954     break;
5955   }
5956   case ISD::SIGN_EXTEND_INREG: {
5957     EVT EVT = cast<VTSDNode>(N2)->getVT();
5958     assert(VT == N1.getValueType() && "Not an inreg extend!");
5959     assert(VT.isInteger() && EVT.isInteger() &&
5960            "Cannot *_EXTEND_INREG FP types");
5961     assert(EVT.isVector() == VT.isVector() &&
5962            "SIGN_EXTEND_INREG type should be vector iff the operand "
5963            "type is vector!");
5964     assert((!EVT.isVector() ||
5965             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5966            "Vector element counts must match in SIGN_EXTEND_INREG");
5967     assert(EVT.bitsLE(VT) && "Not extending!");
5968     if (EVT == VT) return N1;  // Not actually extending
5969 
5970     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5971       unsigned FromBits = EVT.getScalarSizeInBits();
5972       Val <<= Val.getBitWidth() - FromBits;
5973       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5974       return getConstant(Val, DL, ConstantVT);
5975     };
5976 
5977     if (N1C) {
5978       const APInt &Val = N1C->getAPIntValue();
5979       return SignExtendInReg(Val, VT);
5980     }
5981 
5982     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5983       SmallVector<SDValue, 8> Ops;
5984       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5985       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5986         SDValue Op = N1.getOperand(i);
5987         if (Op.isUndef()) {
5988           Ops.push_back(getUNDEF(OpVT));
5989           continue;
5990         }
5991         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5992         APInt Val = C->getAPIntValue();
5993         Ops.push_back(SignExtendInReg(Val, OpVT));
5994       }
5995       return getBuildVector(VT, DL, Ops);
5996     }
5997     break;
5998   }
5999   case ISD::FP_TO_SINT_SAT:
6000   case ISD::FP_TO_UINT_SAT: {
6001     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6002            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6003     assert(N1.getValueType().isVector() == VT.isVector() &&
6004            "FP_TO_*INT_SAT type should be vector iff the operand type is "
6005            "vector!");
6006     assert((!VT.isVector() || VT.getVectorNumElements() ==
6007                                   N1.getValueType().getVectorNumElements()) &&
6008            "Vector element counts must match in FP_TO_*INT_SAT");
6009     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6010            "Type to saturate to must be a scalar.");
6011     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6012            "Not extending!");
6013     break;
6014   }
6015   case ISD::EXTRACT_VECTOR_ELT:
6016     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6017            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6018              element type of the vector.");
6019 
6020     // Extract from an undefined value or using an undefined index is undefined.
6021     if (N1.isUndef() || N2.isUndef())
6022       return getUNDEF(VT);
6023 
6024     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6025     // vectors. For scalable vectors we will provide appropriate support for
6026     // dealing with arbitrary indices.
6027     if (N2C && N1.getValueType().isFixedLengthVector() &&
6028         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6029       return getUNDEF(VT);
6030 
6031     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6032     // expanding copies of large vectors from registers. This only works for
6033     // fixed length vectors, since we need to know the exact number of
6034     // elements.
6035     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
6036         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
6037       unsigned Factor =
6038         N1.getOperand(0).getValueType().getVectorNumElements();
6039       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6040                      N1.getOperand(N2C->getZExtValue() / Factor),
6041                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6042     }
6043 
6044     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6045     // lowering is expanding large vector constants.
6046     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6047                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6048       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6049               N1.getValueType().isFixedLengthVector()) &&
6050              "BUILD_VECTOR used for scalable vectors");
6051       unsigned Index =
6052           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6053       SDValue Elt = N1.getOperand(Index);
6054 
6055       if (VT != Elt.getValueType())
6056         // If the vector element type is not legal, the BUILD_VECTOR operands
6057         // are promoted and implicitly truncated, and the result implicitly
6058         // extended. Make that explicit here.
6059         Elt = getAnyExtOrTrunc(Elt, DL, VT);
6060 
6061       return Elt;
6062     }
6063 
6064     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6065     // operations are lowered to scalars.
6066     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6067       // If the indices are the same, return the inserted element else
6068       // if the indices are known different, extract the element from
6069       // the original vector.
6070       SDValue N1Op2 = N1.getOperand(2);
6071       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6072 
6073       if (N1Op2C && N2C) {
6074         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6075           if (VT == N1.getOperand(1).getValueType())
6076             return N1.getOperand(1);
6077           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6078         }
6079         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6080       }
6081     }
6082 
6083     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6084     // when vector types are scalarized and v1iX is legal.
6085     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6086     // Here we are completely ignoring the extract element index (N2),
6087     // which is fine for fixed width vectors, since any index other than 0
6088     // is undefined anyway. However, this cannot be ignored for scalable
6089     // vectors - in theory we could support this, but we don't want to do this
6090     // without a profitability check.
6091     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6092         N1.getValueType().isFixedLengthVector() &&
6093         N1.getValueType().getVectorNumElements() == 1) {
6094       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6095                      N1.getOperand(1));
6096     }
6097     break;
6098   case ISD::EXTRACT_ELEMENT:
6099     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6100     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6101            (N1.getValueType().isInteger() == VT.isInteger()) &&
6102            N1.getValueType() != VT &&
6103            "Wrong types for EXTRACT_ELEMENT!");
6104 
6105     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6106     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6107     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6108     if (N1.getOpcode() == ISD::BUILD_PAIR)
6109       return N1.getOperand(N2C->getZExtValue());
6110 
6111     // EXTRACT_ELEMENT of a constant int is also very common.
6112     if (N1C) {
6113       unsigned ElementSize = VT.getSizeInBits();
6114       unsigned Shift = ElementSize * N2C->getZExtValue();
6115       const APInt &Val = N1C->getAPIntValue();
6116       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6117     }
6118     break;
6119   case ISD::EXTRACT_SUBVECTOR: {
6120     EVT N1VT = N1.getValueType();
6121     assert(VT.isVector() && N1VT.isVector() &&
6122            "Extract subvector VTs must be vectors!");
6123     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6124            "Extract subvector VTs must have the same element type!");
6125     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6126            "Cannot extract a scalable vector from a fixed length vector!");
6127     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6128             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6129            "Extract subvector must be from larger vector to smaller vector!");
6130     assert(N2C && "Extract subvector index must be a constant");
6131     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6132             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6133                 N1VT.getVectorMinNumElements()) &&
6134            "Extract subvector overflow!");
6135     assert(N2C->getAPIntValue().getBitWidth() ==
6136                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6137            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6138 
6139     // Trivial extraction.
6140     if (VT == N1VT)
6141       return N1;
6142 
6143     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6144     if (N1.isUndef())
6145       return getUNDEF(VT);
6146 
6147     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6148     // the concat have the same type as the extract.
6149     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6150         VT == N1.getOperand(0).getValueType()) {
6151       unsigned Factor = VT.getVectorMinNumElements();
6152       return N1.getOperand(N2C->getZExtValue() / Factor);
6153     }
6154 
6155     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6156     // during shuffle legalization.
6157     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6158         VT == N1.getOperand(1).getValueType())
6159       return N1.getOperand(1);
6160     break;
6161   }
6162   }
6163 
6164   // Perform trivial constant folding.
6165   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6166     return SV;
6167 
6168   // Canonicalize an UNDEF to the RHS, even over a constant.
6169   if (N1.isUndef()) {
6170     if (TLI->isCommutativeBinOp(Opcode)) {
6171       std::swap(N1, N2);
6172     } else {
6173       switch (Opcode) {
6174       case ISD::SIGN_EXTEND_INREG:
6175       case ISD::SUB:
6176         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6177       case ISD::UDIV:
6178       case ISD::SDIV:
6179       case ISD::UREM:
6180       case ISD::SREM:
6181       case ISD::SSUBSAT:
6182       case ISD::USUBSAT:
6183         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6184       }
6185     }
6186   }
6187 
6188   // Fold a bunch of operators when the RHS is undef.
6189   if (N2.isUndef()) {
6190     switch (Opcode) {
6191     case ISD::XOR:
6192       if (N1.isUndef())
6193         // Handle undef ^ undef -> 0 special case. This is a common
6194         // idiom (misuse).
6195         return getConstant(0, DL, VT);
6196       LLVM_FALLTHROUGH;
6197     case ISD::ADD:
6198     case ISD::SUB:
6199     case ISD::UDIV:
6200     case ISD::SDIV:
6201     case ISD::UREM:
6202     case ISD::SREM:
6203       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6204     case ISD::MUL:
6205     case ISD::AND:
6206     case ISD::SSUBSAT:
6207     case ISD::USUBSAT:
6208       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6209     case ISD::OR:
6210     case ISD::SADDSAT:
6211     case ISD::UADDSAT:
6212       return getAllOnesConstant(DL, VT);
6213     }
6214   }
6215 
6216   // Memoize this node if possible.
6217   SDNode *N;
6218   SDVTList VTs = getVTList(VT);
6219   SDValue Ops[] = {N1, N2};
6220   if (VT != MVT::Glue) {
6221     FoldingSetNodeID ID;
6222     AddNodeIDNode(ID, Opcode, VTs, Ops);
6223     void *IP = nullptr;
6224     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6225       E->intersectFlagsWith(Flags);
6226       return SDValue(E, 0);
6227     }
6228 
6229     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6230     N->setFlags(Flags);
6231     createOperands(N, Ops);
6232     CSEMap.InsertNode(N, IP);
6233   } else {
6234     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6235     createOperands(N, Ops);
6236   }
6237 
6238   InsertNode(N);
6239   SDValue V = SDValue(N, 0);
6240   NewSDValueDbgMsg(V, "Creating new node: ", this);
6241   return V;
6242 }
6243 
6244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6245                               SDValue N1, SDValue N2, SDValue N3) {
6246   SDNodeFlags Flags;
6247   if (Inserter)
6248     Flags = Inserter->getFlags();
6249   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6250 }
6251 
6252 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6253                               SDValue N1, SDValue N2, SDValue N3,
6254                               const SDNodeFlags Flags) {
6255   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6256          N2.getOpcode() != ISD::DELETED_NODE &&
6257          N3.getOpcode() != ISD::DELETED_NODE &&
6258          "Operand is DELETED_NODE!");
6259   // Perform various simplifications.
6260   switch (Opcode) {
6261   case ISD::FMA: {
6262     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6263     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6264            N3.getValueType() == VT && "FMA types must match!");
6265     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6266     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6267     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6268     if (N1CFP && N2CFP && N3CFP) {
6269       APFloat  V1 = N1CFP->getValueAPF();
6270       const APFloat &V2 = N2CFP->getValueAPF();
6271       const APFloat &V3 = N3CFP->getValueAPF();
6272       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6273       return getConstantFP(V1, DL, VT);
6274     }
6275     break;
6276   }
6277   case ISD::BUILD_VECTOR: {
6278     // Attempt to simplify BUILD_VECTOR.
6279     SDValue Ops[] = {N1, N2, N3};
6280     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6281       return V;
6282     break;
6283   }
6284   case ISD::CONCAT_VECTORS: {
6285     SDValue Ops[] = {N1, N2, N3};
6286     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6287       return V;
6288     break;
6289   }
6290   case ISD::SETCC: {
6291     assert(VT.isInteger() && "SETCC result type must be an integer!");
6292     assert(N1.getValueType() == N2.getValueType() &&
6293            "SETCC operands must have the same type!");
6294     assert(VT.isVector() == N1.getValueType().isVector() &&
6295            "SETCC type should be vector iff the operand type is vector!");
6296     assert((!VT.isVector() || VT.getVectorElementCount() ==
6297                                   N1.getValueType().getVectorElementCount()) &&
6298            "SETCC vector element counts must match!");
6299     // Use FoldSetCC to simplify SETCC's.
6300     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6301       return V;
6302     // Vector constant folding.
6303     SDValue Ops[] = {N1, N2, N3};
6304     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6305       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6306       return V;
6307     }
6308     break;
6309   }
6310   case ISD::SELECT:
6311   case ISD::VSELECT:
6312     if (SDValue V = simplifySelect(N1, N2, N3))
6313       return V;
6314     break;
6315   case ISD::VECTOR_SHUFFLE:
6316     llvm_unreachable("should use getVectorShuffle constructor!");
6317   case ISD::VECTOR_SPLICE: {
6318     if (cast<ConstantSDNode>(N3)->isNullValue())
6319       return N1;
6320     break;
6321   }
6322   case ISD::INSERT_VECTOR_ELT: {
6323     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6324     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6325     // for scalable vectors where we will generate appropriate code to
6326     // deal with out-of-bounds cases correctly.
6327     if (N3C && N1.getValueType().isFixedLengthVector() &&
6328         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6329       return getUNDEF(VT);
6330 
6331     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6332     if (N3.isUndef())
6333       return getUNDEF(VT);
6334 
6335     // If the inserted element is an UNDEF, just use the input vector.
6336     if (N2.isUndef())
6337       return N1;
6338 
6339     break;
6340   }
6341   case ISD::INSERT_SUBVECTOR: {
6342     // Inserting undef into undef is still undef.
6343     if (N1.isUndef() && N2.isUndef())
6344       return getUNDEF(VT);
6345 
6346     EVT N2VT = N2.getValueType();
6347     assert(VT == N1.getValueType() &&
6348            "Dest and insert subvector source types must match!");
6349     assert(VT.isVector() && N2VT.isVector() &&
6350            "Insert subvector VTs must be vectors!");
6351     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6352            "Cannot insert a scalable vector into a fixed length vector!");
6353     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6354             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6355            "Insert subvector must be from smaller vector to larger vector!");
6356     assert(isa<ConstantSDNode>(N3) &&
6357            "Insert subvector index must be constant");
6358     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6359             (N2VT.getVectorMinNumElements() +
6360              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6361                 VT.getVectorMinNumElements()) &&
6362            "Insert subvector overflow!");
6363     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6364                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6365            "Constant index for INSERT_SUBVECTOR has an invalid size");
6366 
6367     // Trivial insertion.
6368     if (VT == N2VT)
6369       return N2;
6370 
6371     // If this is an insert of an extracted vector into an undef vector, we
6372     // can just use the input to the extract.
6373     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6374         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6375       return N2.getOperand(0);
6376     break;
6377   }
6378   case ISD::BITCAST:
6379     // Fold bit_convert nodes from a type to themselves.
6380     if (N1.getValueType() == VT)
6381       return N1;
6382     break;
6383   }
6384 
6385   // Memoize node if it doesn't produce a flag.
6386   SDNode *N;
6387   SDVTList VTs = getVTList(VT);
6388   SDValue Ops[] = {N1, N2, N3};
6389   if (VT != MVT::Glue) {
6390     FoldingSetNodeID ID;
6391     AddNodeIDNode(ID, Opcode, VTs, Ops);
6392     void *IP = nullptr;
6393     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6394       E->intersectFlagsWith(Flags);
6395       return SDValue(E, 0);
6396     }
6397 
6398     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6399     N->setFlags(Flags);
6400     createOperands(N, Ops);
6401     CSEMap.InsertNode(N, IP);
6402   } else {
6403     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6404     createOperands(N, Ops);
6405   }
6406 
6407   InsertNode(N);
6408   SDValue V = SDValue(N, 0);
6409   NewSDValueDbgMsg(V, "Creating new node: ", this);
6410   return V;
6411 }
6412 
6413 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6414                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6415   SDValue Ops[] = { N1, N2, N3, N4 };
6416   return getNode(Opcode, DL, VT, Ops);
6417 }
6418 
6419 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6420                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6421                               SDValue N5) {
6422   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6423   return getNode(Opcode, DL, VT, Ops);
6424 }
6425 
6426 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6427 /// the incoming stack arguments to be loaded from the stack.
6428 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6429   SmallVector<SDValue, 8> ArgChains;
6430 
6431   // Include the original chain at the beginning of the list. When this is
6432   // used by target LowerCall hooks, this helps legalize find the
6433   // CALLSEQ_BEGIN node.
6434   ArgChains.push_back(Chain);
6435 
6436   // Add a chain value for each stack argument.
6437   for (SDNode *U : getEntryNode().getNode()->uses())
6438     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6439       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6440         if (FI->getIndex() < 0)
6441           ArgChains.push_back(SDValue(L, 1));
6442 
6443   // Build a tokenfactor for all the chains.
6444   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6445 }
6446 
6447 /// getMemsetValue - Vectorized representation of the memset value
6448 /// operand.
6449 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6450                               const SDLoc &dl) {
6451   assert(!Value.isUndef());
6452 
6453   unsigned NumBits = VT.getScalarSizeInBits();
6454   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6455     assert(C->getAPIntValue().getBitWidth() == 8);
6456     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6457     if (VT.isInteger()) {
6458       bool IsOpaque = VT.getSizeInBits() > 64 ||
6459           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6460       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6461     }
6462     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6463                              VT);
6464   }
6465 
6466   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6467   EVT IntVT = VT.getScalarType();
6468   if (!IntVT.isInteger())
6469     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6470 
6471   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6472   if (NumBits > 8) {
6473     // Use a multiplication with 0x010101... to extend the input to the
6474     // required length.
6475     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6476     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6477                         DAG.getConstant(Magic, dl, IntVT));
6478   }
6479 
6480   if (VT != Value.getValueType() && !VT.isInteger())
6481     Value = DAG.getBitcast(VT.getScalarType(), Value);
6482   if (VT != Value.getValueType())
6483     Value = DAG.getSplatBuildVector(VT, dl, Value);
6484 
6485   return Value;
6486 }
6487 
6488 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6489 /// used when a memcpy is turned into a memset when the source is a constant
6490 /// string ptr.
6491 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6492                                   const TargetLowering &TLI,
6493                                   const ConstantDataArraySlice &Slice) {
6494   // Handle vector with all elements zero.
6495   if (Slice.Array == nullptr) {
6496     if (VT.isInteger())
6497       return DAG.getConstant(0, dl, VT);
6498     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6499       return DAG.getConstantFP(0.0, dl, VT);
6500     if (VT.isVector()) {
6501       unsigned NumElts = VT.getVectorNumElements();
6502       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6503       return DAG.getNode(ISD::BITCAST, dl, VT,
6504                          DAG.getConstant(0, dl,
6505                                          EVT::getVectorVT(*DAG.getContext(),
6506                                                           EltVT, NumElts)));
6507     }
6508     llvm_unreachable("Expected type!");
6509   }
6510 
6511   assert(!VT.isVector() && "Can't handle vector type here!");
6512   unsigned NumVTBits = VT.getSizeInBits();
6513   unsigned NumVTBytes = NumVTBits / 8;
6514   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6515 
6516   APInt Val(NumVTBits, 0);
6517   if (DAG.getDataLayout().isLittleEndian()) {
6518     for (unsigned i = 0; i != NumBytes; ++i)
6519       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6520   } else {
6521     for (unsigned i = 0; i != NumBytes; ++i)
6522       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6523   }
6524 
6525   // If the "cost" of materializing the integer immediate is less than the cost
6526   // of a load, then it is cost effective to turn the load into the immediate.
6527   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6528   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6529     return DAG.getConstant(Val, dl, VT);
6530   return SDValue();
6531 }
6532 
6533 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6534                                            const SDLoc &DL,
6535                                            const SDNodeFlags Flags) {
6536   EVT VT = Base.getValueType();
6537   SDValue Index;
6538 
6539   if (Offset.isScalable())
6540     Index = getVScale(DL, Base.getValueType(),
6541                       APInt(Base.getValueSizeInBits().getFixedSize(),
6542                             Offset.getKnownMinSize()));
6543   else
6544     Index = getConstant(Offset.getFixedSize(), DL, VT);
6545 
6546   return getMemBasePlusOffset(Base, Index, DL, Flags);
6547 }
6548 
6549 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6550                                            const SDLoc &DL,
6551                                            const SDNodeFlags Flags) {
6552   assert(Offset.getValueType().isInteger());
6553   EVT BasePtrVT = Ptr.getValueType();
6554   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6555 }
6556 
6557 /// Returns true if memcpy source is constant data.
6558 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6559   uint64_t SrcDelta = 0;
6560   GlobalAddressSDNode *G = nullptr;
6561   if (Src.getOpcode() == ISD::GlobalAddress)
6562     G = cast<GlobalAddressSDNode>(Src);
6563   else if (Src.getOpcode() == ISD::ADD &&
6564            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6565            Src.getOperand(1).getOpcode() == ISD::Constant) {
6566     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6567     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6568   }
6569   if (!G)
6570     return false;
6571 
6572   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6573                                   SrcDelta + G->getOffset());
6574 }
6575 
6576 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6577                                       SelectionDAG &DAG) {
6578   // On Darwin, -Os means optimize for size without hurting performance, so
6579   // only really optimize for size when -Oz (MinSize) is used.
6580   if (MF.getTarget().getTargetTriple().isOSDarwin())
6581     return MF.getFunction().hasMinSize();
6582   return DAG.shouldOptForSize();
6583 }
6584 
6585 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6586                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6587                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6588                           SmallVector<SDValue, 16> &OutStoreChains) {
6589   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6590   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6591   SmallVector<SDValue, 16> GluedLoadChains;
6592   for (unsigned i = From; i < To; ++i) {
6593     OutChains.push_back(OutLoadChains[i]);
6594     GluedLoadChains.push_back(OutLoadChains[i]);
6595   }
6596 
6597   // Chain for all loads.
6598   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6599                                   GluedLoadChains);
6600 
6601   for (unsigned i = From; i < To; ++i) {
6602     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6603     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6604                                   ST->getBasePtr(), ST->getMemoryVT(),
6605                                   ST->getMemOperand());
6606     OutChains.push_back(NewStore);
6607   }
6608 }
6609 
6610 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6611                                        SDValue Chain, SDValue Dst, SDValue Src,
6612                                        uint64_t Size, Align Alignment,
6613                                        bool isVol, bool AlwaysInline,
6614                                        MachinePointerInfo DstPtrInfo,
6615                                        MachinePointerInfo SrcPtrInfo,
6616                                        const AAMDNodes &AAInfo) {
6617   // Turn a memcpy of undef to nop.
6618   // FIXME: We need to honor volatile even is Src is undef.
6619   if (Src.isUndef())
6620     return Chain;
6621 
6622   // Expand memcpy to a series of load and store ops if the size operand falls
6623   // below a certain threshold.
6624   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6625   // rather than maybe a humongous number of loads and stores.
6626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6627   const DataLayout &DL = DAG.getDataLayout();
6628   LLVMContext &C = *DAG.getContext();
6629   std::vector<EVT> MemOps;
6630   bool DstAlignCanChange = false;
6631   MachineFunction &MF = DAG.getMachineFunction();
6632   MachineFrameInfo &MFI = MF.getFrameInfo();
6633   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6634   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6635   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6636     DstAlignCanChange = true;
6637   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6638   if (!SrcAlign || Alignment > *SrcAlign)
6639     SrcAlign = Alignment;
6640   assert(SrcAlign && "SrcAlign must be set");
6641   ConstantDataArraySlice Slice;
6642   // If marked as volatile, perform a copy even when marked as constant.
6643   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6644   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6645   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6646   const MemOp Op = isZeroConstant
6647                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6648                                     /*IsZeroMemset*/ true, isVol)
6649                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6650                                      *SrcAlign, isVol, CopyFromConstant);
6651   if (!TLI.findOptimalMemOpLowering(
6652           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6653           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6654     return SDValue();
6655 
6656   if (DstAlignCanChange) {
6657     Type *Ty = MemOps[0].getTypeForEVT(C);
6658     Align NewAlign = DL.getABITypeAlign(Ty);
6659 
6660     // Don't promote to an alignment that would require dynamic stack
6661     // realignment.
6662     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6663     if (!TRI->hasStackRealignment(MF))
6664       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6665         NewAlign = NewAlign / 2;
6666 
6667     if (NewAlign > Alignment) {
6668       // Give the stack frame object a larger alignment if needed.
6669       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6670         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6671       Alignment = NewAlign;
6672     }
6673   }
6674 
6675   // Prepare AAInfo for loads/stores after lowering this memcpy.
6676   AAMDNodes NewAAInfo = AAInfo;
6677   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6678 
6679   MachineMemOperand::Flags MMOFlags =
6680       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6681   SmallVector<SDValue, 16> OutLoadChains;
6682   SmallVector<SDValue, 16> OutStoreChains;
6683   SmallVector<SDValue, 32> OutChains;
6684   unsigned NumMemOps = MemOps.size();
6685   uint64_t SrcOff = 0, DstOff = 0;
6686   for (unsigned i = 0; i != NumMemOps; ++i) {
6687     EVT VT = MemOps[i];
6688     unsigned VTSize = VT.getSizeInBits() / 8;
6689     SDValue Value, Store;
6690 
6691     if (VTSize > Size) {
6692       // Issuing an unaligned load / store pair  that overlaps with the previous
6693       // pair. Adjust the offset accordingly.
6694       assert(i == NumMemOps-1 && i != 0);
6695       SrcOff -= VTSize - Size;
6696       DstOff -= VTSize - Size;
6697     }
6698 
6699     if (CopyFromConstant &&
6700         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6701       // It's unlikely a store of a vector immediate can be done in a single
6702       // instruction. It would require a load from a constantpool first.
6703       // We only handle zero vectors here.
6704       // FIXME: Handle other cases where store of vector immediate is done in
6705       // a single instruction.
6706       ConstantDataArraySlice SubSlice;
6707       if (SrcOff < Slice.Length) {
6708         SubSlice = Slice;
6709         SubSlice.move(SrcOff);
6710       } else {
6711         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6712         SubSlice.Array = nullptr;
6713         SubSlice.Offset = 0;
6714         SubSlice.Length = VTSize;
6715       }
6716       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6717       if (Value.getNode()) {
6718         Store = DAG.getStore(
6719             Chain, dl, Value,
6720             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6721             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6722         OutChains.push_back(Store);
6723       }
6724     }
6725 
6726     if (!Store.getNode()) {
6727       // The type might not be legal for the target.  This should only happen
6728       // if the type is smaller than a legal type, as on PPC, so the right
6729       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6730       // to Load/Store if NVT==VT.
6731       // FIXME does the case above also need this?
6732       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6733       assert(NVT.bitsGE(VT));
6734 
6735       bool isDereferenceable =
6736         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6737       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6738       if (isDereferenceable)
6739         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6740 
6741       Value = DAG.getExtLoad(
6742           ISD::EXTLOAD, dl, NVT, Chain,
6743           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6744           SrcPtrInfo.getWithOffset(SrcOff), VT,
6745           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6746       OutLoadChains.push_back(Value.getValue(1));
6747 
6748       Store = DAG.getTruncStore(
6749           Chain, dl, Value,
6750           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6751           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6752       OutStoreChains.push_back(Store);
6753     }
6754     SrcOff += VTSize;
6755     DstOff += VTSize;
6756     Size -= VTSize;
6757   }
6758 
6759   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6760                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6761   unsigned NumLdStInMemcpy = OutStoreChains.size();
6762 
6763   if (NumLdStInMemcpy) {
6764     // It may be that memcpy might be converted to memset if it's memcpy
6765     // of constants. In such a case, we won't have loads and stores, but
6766     // just stores. In the absence of loads, there is nothing to gang up.
6767     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6768       // If target does not care, just leave as it.
6769       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6770         OutChains.push_back(OutLoadChains[i]);
6771         OutChains.push_back(OutStoreChains[i]);
6772       }
6773     } else {
6774       // Ld/St less than/equal limit set by target.
6775       if (NumLdStInMemcpy <= GluedLdStLimit) {
6776           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6777                                         NumLdStInMemcpy, OutLoadChains,
6778                                         OutStoreChains);
6779       } else {
6780         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6781         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6782         unsigned GlueIter = 0;
6783 
6784         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6785           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6786           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6787 
6788           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6789                                        OutLoadChains, OutStoreChains);
6790           GlueIter += GluedLdStLimit;
6791         }
6792 
6793         // Residual ld/st.
6794         if (RemainingLdStInMemcpy) {
6795           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6796                                         RemainingLdStInMemcpy, OutLoadChains,
6797                                         OutStoreChains);
6798         }
6799       }
6800     }
6801   }
6802   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6803 }
6804 
6805 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6806                                         SDValue Chain, SDValue Dst, SDValue Src,
6807                                         uint64_t Size, Align Alignment,
6808                                         bool isVol, bool AlwaysInline,
6809                                         MachinePointerInfo DstPtrInfo,
6810                                         MachinePointerInfo SrcPtrInfo,
6811                                         const AAMDNodes &AAInfo) {
6812   // Turn a memmove of undef to nop.
6813   // FIXME: We need to honor volatile even is Src is undef.
6814   if (Src.isUndef())
6815     return Chain;
6816 
6817   // Expand memmove to a series of load and store ops if the size operand falls
6818   // below a certain threshold.
6819   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6820   const DataLayout &DL = DAG.getDataLayout();
6821   LLVMContext &C = *DAG.getContext();
6822   std::vector<EVT> MemOps;
6823   bool DstAlignCanChange = false;
6824   MachineFunction &MF = DAG.getMachineFunction();
6825   MachineFrameInfo &MFI = MF.getFrameInfo();
6826   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6827   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6828   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6829     DstAlignCanChange = true;
6830   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6831   if (!SrcAlign || Alignment > *SrcAlign)
6832     SrcAlign = Alignment;
6833   assert(SrcAlign && "SrcAlign must be set");
6834   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6835   if (!TLI.findOptimalMemOpLowering(
6836           MemOps, Limit,
6837           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6838                       /*IsVolatile*/ true),
6839           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6840           MF.getFunction().getAttributes()))
6841     return SDValue();
6842 
6843   if (DstAlignCanChange) {
6844     Type *Ty = MemOps[0].getTypeForEVT(C);
6845     Align NewAlign = DL.getABITypeAlign(Ty);
6846     if (NewAlign > Alignment) {
6847       // Give the stack frame object a larger alignment if needed.
6848       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6849         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6850       Alignment = NewAlign;
6851     }
6852   }
6853 
6854   // Prepare AAInfo for loads/stores after lowering this memmove.
6855   AAMDNodes NewAAInfo = AAInfo;
6856   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6857 
6858   MachineMemOperand::Flags MMOFlags =
6859       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6860   uint64_t SrcOff = 0, DstOff = 0;
6861   SmallVector<SDValue, 8> LoadValues;
6862   SmallVector<SDValue, 8> LoadChains;
6863   SmallVector<SDValue, 8> OutChains;
6864   unsigned NumMemOps = MemOps.size();
6865   for (unsigned i = 0; i < NumMemOps; i++) {
6866     EVT VT = MemOps[i];
6867     unsigned VTSize = VT.getSizeInBits() / 8;
6868     SDValue Value;
6869 
6870     bool isDereferenceable =
6871       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6872     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6873     if (isDereferenceable)
6874       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6875 
6876     Value = DAG.getLoad(
6877         VT, dl, Chain,
6878         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6879         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6880     LoadValues.push_back(Value);
6881     LoadChains.push_back(Value.getValue(1));
6882     SrcOff += VTSize;
6883   }
6884   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6885   OutChains.clear();
6886   for (unsigned i = 0; i < NumMemOps; i++) {
6887     EVT VT = MemOps[i];
6888     unsigned VTSize = VT.getSizeInBits() / 8;
6889     SDValue Store;
6890 
6891     Store = DAG.getStore(
6892         Chain, dl, LoadValues[i],
6893         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6894         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6895     OutChains.push_back(Store);
6896     DstOff += VTSize;
6897   }
6898 
6899   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6900 }
6901 
6902 /// Lower the call to 'memset' intrinsic function into a series of store
6903 /// operations.
6904 ///
6905 /// \param DAG Selection DAG where lowered code is placed.
6906 /// \param dl Link to corresponding IR location.
6907 /// \param Chain Control flow dependency.
6908 /// \param Dst Pointer to destination memory location.
6909 /// \param Src Value of byte to write into the memory.
6910 /// \param Size Number of bytes to write.
6911 /// \param Alignment Alignment of the destination in bytes.
6912 /// \param isVol True if destination is volatile.
6913 /// \param DstPtrInfo IR information on the memory pointer.
6914 /// \returns New head in the control flow, if lowering was successful, empty
6915 /// SDValue otherwise.
6916 ///
6917 /// The function tries to replace 'llvm.memset' intrinsic with several store
6918 /// operations and value calculation code. This is usually profitable for small
6919 /// memory size.
6920 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6921                                SDValue Chain, SDValue Dst, SDValue Src,
6922                                uint64_t Size, Align Alignment, bool isVol,
6923                                MachinePointerInfo DstPtrInfo,
6924                                const AAMDNodes &AAInfo) {
6925   // Turn a memset of undef to nop.
6926   // FIXME: We need to honor volatile even is Src is undef.
6927   if (Src.isUndef())
6928     return Chain;
6929 
6930   // Expand memset to a series of load/store ops if the size operand
6931   // falls below a certain threshold.
6932   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6933   std::vector<EVT> MemOps;
6934   bool DstAlignCanChange = false;
6935   MachineFunction &MF = DAG.getMachineFunction();
6936   MachineFrameInfo &MFI = MF.getFrameInfo();
6937   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6938   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6939   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6940     DstAlignCanChange = true;
6941   bool IsZeroVal =
6942       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6943   if (!TLI.findOptimalMemOpLowering(
6944           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6945           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6946           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6947     return SDValue();
6948 
6949   if (DstAlignCanChange) {
6950     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6951     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6952     if (NewAlign > Alignment) {
6953       // Give the stack frame object a larger alignment if needed.
6954       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6955         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6956       Alignment = NewAlign;
6957     }
6958   }
6959 
6960   SmallVector<SDValue, 8> OutChains;
6961   uint64_t DstOff = 0;
6962   unsigned NumMemOps = MemOps.size();
6963 
6964   // Find the largest store and generate the bit pattern for it.
6965   EVT LargestVT = MemOps[0];
6966   for (unsigned i = 1; i < NumMemOps; i++)
6967     if (MemOps[i].bitsGT(LargestVT))
6968       LargestVT = MemOps[i];
6969   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6970 
6971   // Prepare AAInfo for loads/stores after lowering this memset.
6972   AAMDNodes NewAAInfo = AAInfo;
6973   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6974 
6975   for (unsigned i = 0; i < NumMemOps; i++) {
6976     EVT VT = MemOps[i];
6977     unsigned VTSize = VT.getSizeInBits() / 8;
6978     if (VTSize > Size) {
6979       // Issuing an unaligned load / store pair  that overlaps with the previous
6980       // pair. Adjust the offset accordingly.
6981       assert(i == NumMemOps-1 && i != 0);
6982       DstOff -= VTSize - Size;
6983     }
6984 
6985     // If this store is smaller than the largest store see whether we can get
6986     // the smaller value for free with a truncate.
6987     SDValue Value = MemSetValue;
6988     if (VT.bitsLT(LargestVT)) {
6989       if (!LargestVT.isVector() && !VT.isVector() &&
6990           TLI.isTruncateFree(LargestVT, VT))
6991         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6992       else
6993         Value = getMemsetValue(Src, VT, DAG, dl);
6994     }
6995     assert(Value.getValueType() == VT && "Value with wrong type.");
6996     SDValue Store = DAG.getStore(
6997         Chain, dl, Value,
6998         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6999         DstPtrInfo.getWithOffset(DstOff), Alignment,
7000         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7001         NewAAInfo);
7002     OutChains.push_back(Store);
7003     DstOff += VT.getSizeInBits() / 8;
7004     Size -= VTSize;
7005   }
7006 
7007   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7008 }
7009 
7010 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7011                                             unsigned AS) {
7012   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7013   // pointer operands can be losslessly bitcasted to pointers of address space 0
7014   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7015     report_fatal_error("cannot lower memory intrinsic in address space " +
7016                        Twine(AS));
7017   }
7018 }
7019 
7020 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7021                                 SDValue Src, SDValue Size, Align Alignment,
7022                                 bool isVol, bool AlwaysInline, bool isTailCall,
7023                                 MachinePointerInfo DstPtrInfo,
7024                                 MachinePointerInfo SrcPtrInfo,
7025                                 const AAMDNodes &AAInfo) {
7026   // Check to see if we should lower the memcpy to loads and stores first.
7027   // For cases within the target-specified limits, this is the best choice.
7028   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7029   if (ConstantSize) {
7030     // Memcpy with size zero? Just return the original chain.
7031     if (ConstantSize->isZero())
7032       return Chain;
7033 
7034     SDValue Result = getMemcpyLoadsAndStores(
7035         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7036         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7037     if (Result.getNode())
7038       return Result;
7039   }
7040 
7041   // Then check to see if we should lower the memcpy with target-specific
7042   // code. If the target chooses to do this, this is the next best.
7043   if (TSI) {
7044     SDValue Result = TSI->EmitTargetCodeForMemcpy(
7045         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7046         DstPtrInfo, SrcPtrInfo);
7047     if (Result.getNode())
7048       return Result;
7049   }
7050 
7051   // If we really need inline code and the target declined to provide it,
7052   // use a (potentially long) sequence of loads and stores.
7053   if (AlwaysInline) {
7054     assert(ConstantSize && "AlwaysInline requires a constant size!");
7055     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
7056                                    ConstantSize->getZExtValue(), Alignment,
7057                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
7058   }
7059 
7060   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7061   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7062 
7063   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7064   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7065   // respect volatile, so they may do things like read or write memory
7066   // beyond the given memory regions. But fixing this isn't easy, and most
7067   // people don't care.
7068 
7069   // Emit a library call.
7070   TargetLowering::ArgListTy Args;
7071   TargetLowering::ArgListEntry Entry;
7072   Entry.Ty = Type::getInt8PtrTy(*getContext());
7073   Entry.Node = Dst; Args.push_back(Entry);
7074   Entry.Node = Src; Args.push_back(Entry);
7075 
7076   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7077   Entry.Node = Size; Args.push_back(Entry);
7078   // FIXME: pass in SDLoc
7079   TargetLowering::CallLoweringInfo CLI(*this);
7080   CLI.setDebugLoc(dl)
7081       .setChain(Chain)
7082       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7083                     Dst.getValueType().getTypeForEVT(*getContext()),
7084                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7085                                       TLI->getPointerTy(getDataLayout())),
7086                     std::move(Args))
7087       .setDiscardResult()
7088       .setTailCall(isTailCall);
7089 
7090   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7091   return CallResult.second;
7092 }
7093 
7094 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7095                                       SDValue Dst, unsigned DstAlign,
7096                                       SDValue Src, unsigned SrcAlign,
7097                                       SDValue Size, Type *SizeTy,
7098                                       unsigned ElemSz, bool isTailCall,
7099                                       MachinePointerInfo DstPtrInfo,
7100                                       MachinePointerInfo SrcPtrInfo) {
7101   // Emit a library call.
7102   TargetLowering::ArgListTy Args;
7103   TargetLowering::ArgListEntry Entry;
7104   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7105   Entry.Node = Dst;
7106   Args.push_back(Entry);
7107 
7108   Entry.Node = Src;
7109   Args.push_back(Entry);
7110 
7111   Entry.Ty = SizeTy;
7112   Entry.Node = Size;
7113   Args.push_back(Entry);
7114 
7115   RTLIB::Libcall LibraryCall =
7116       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7117   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7118     report_fatal_error("Unsupported element size");
7119 
7120   TargetLowering::CallLoweringInfo CLI(*this);
7121   CLI.setDebugLoc(dl)
7122       .setChain(Chain)
7123       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7124                     Type::getVoidTy(*getContext()),
7125                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7126                                       TLI->getPointerTy(getDataLayout())),
7127                     std::move(Args))
7128       .setDiscardResult()
7129       .setTailCall(isTailCall);
7130 
7131   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7132   return CallResult.second;
7133 }
7134 
7135 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7136                                  SDValue Src, SDValue Size, Align Alignment,
7137                                  bool isVol, bool isTailCall,
7138                                  MachinePointerInfo DstPtrInfo,
7139                                  MachinePointerInfo SrcPtrInfo,
7140                                  const AAMDNodes &AAInfo) {
7141   // Check to see if we should lower the memmove to loads and stores first.
7142   // For cases within the target-specified limits, this is the best choice.
7143   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7144   if (ConstantSize) {
7145     // Memmove with size zero? Just return the original chain.
7146     if (ConstantSize->isZero())
7147       return Chain;
7148 
7149     SDValue Result = getMemmoveLoadsAndStores(
7150         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7151         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7152     if (Result.getNode())
7153       return Result;
7154   }
7155 
7156   // Then check to see if we should lower the memmove with target-specific
7157   // code. If the target chooses to do this, this is the next best.
7158   if (TSI) {
7159     SDValue Result =
7160         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7161                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7162     if (Result.getNode())
7163       return Result;
7164   }
7165 
7166   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7167   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7168 
7169   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7170   // not be safe.  See memcpy above for more details.
7171 
7172   // Emit a library call.
7173   TargetLowering::ArgListTy Args;
7174   TargetLowering::ArgListEntry Entry;
7175   Entry.Ty = Type::getInt8PtrTy(*getContext());
7176   Entry.Node = Dst; Args.push_back(Entry);
7177   Entry.Node = Src; Args.push_back(Entry);
7178 
7179   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7180   Entry.Node = Size; Args.push_back(Entry);
7181   // FIXME:  pass in SDLoc
7182   TargetLowering::CallLoweringInfo CLI(*this);
7183   CLI.setDebugLoc(dl)
7184       .setChain(Chain)
7185       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7186                     Dst.getValueType().getTypeForEVT(*getContext()),
7187                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7188                                       TLI->getPointerTy(getDataLayout())),
7189                     std::move(Args))
7190       .setDiscardResult()
7191       .setTailCall(isTailCall);
7192 
7193   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7194   return CallResult.second;
7195 }
7196 
7197 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7198                                        SDValue Dst, unsigned DstAlign,
7199                                        SDValue Src, unsigned SrcAlign,
7200                                        SDValue Size, Type *SizeTy,
7201                                        unsigned ElemSz, bool isTailCall,
7202                                        MachinePointerInfo DstPtrInfo,
7203                                        MachinePointerInfo SrcPtrInfo) {
7204   // Emit a library call.
7205   TargetLowering::ArgListTy Args;
7206   TargetLowering::ArgListEntry Entry;
7207   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7208   Entry.Node = Dst;
7209   Args.push_back(Entry);
7210 
7211   Entry.Node = Src;
7212   Args.push_back(Entry);
7213 
7214   Entry.Ty = SizeTy;
7215   Entry.Node = Size;
7216   Args.push_back(Entry);
7217 
7218   RTLIB::Libcall LibraryCall =
7219       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7220   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7221     report_fatal_error("Unsupported element size");
7222 
7223   TargetLowering::CallLoweringInfo CLI(*this);
7224   CLI.setDebugLoc(dl)
7225       .setChain(Chain)
7226       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7227                     Type::getVoidTy(*getContext()),
7228                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7229                                       TLI->getPointerTy(getDataLayout())),
7230                     std::move(Args))
7231       .setDiscardResult()
7232       .setTailCall(isTailCall);
7233 
7234   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7235   return CallResult.second;
7236 }
7237 
7238 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7239                                 SDValue Src, SDValue Size, Align Alignment,
7240                                 bool isVol, bool isTailCall,
7241                                 MachinePointerInfo DstPtrInfo,
7242                                 const AAMDNodes &AAInfo) {
7243   // Check to see if we should lower the memset to stores first.
7244   // For cases within the target-specified limits, this is the best choice.
7245   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7246   if (ConstantSize) {
7247     // Memset with size zero? Just return the original chain.
7248     if (ConstantSize->isZero())
7249       return Chain;
7250 
7251     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7252                                      ConstantSize->getZExtValue(), Alignment,
7253                                      isVol, DstPtrInfo, AAInfo);
7254 
7255     if (Result.getNode())
7256       return Result;
7257   }
7258 
7259   // Then check to see if we should lower the memset with target-specific
7260   // code. If the target chooses to do this, this is the next best.
7261   if (TSI) {
7262     SDValue Result = TSI->EmitTargetCodeForMemset(
7263         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7264     if (Result.getNode())
7265       return Result;
7266   }
7267 
7268   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7269 
7270   // Emit a library call.
7271   TargetLowering::ArgListTy Args;
7272   TargetLowering::ArgListEntry Entry;
7273   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7274   Args.push_back(Entry);
7275   Entry.Node = Src;
7276   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7277   Args.push_back(Entry);
7278   Entry.Node = Size;
7279   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7280   Args.push_back(Entry);
7281 
7282   // FIXME: pass in SDLoc
7283   TargetLowering::CallLoweringInfo CLI(*this);
7284   CLI.setDebugLoc(dl)
7285       .setChain(Chain)
7286       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7287                     Dst.getValueType().getTypeForEVT(*getContext()),
7288                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7289                                       TLI->getPointerTy(getDataLayout())),
7290                     std::move(Args))
7291       .setDiscardResult()
7292       .setTailCall(isTailCall);
7293 
7294   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7295   return CallResult.second;
7296 }
7297 
7298 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7299                                       SDValue Dst, unsigned DstAlign,
7300                                       SDValue Value, SDValue Size, Type *SizeTy,
7301                                       unsigned ElemSz, bool isTailCall,
7302                                       MachinePointerInfo DstPtrInfo) {
7303   // Emit a library call.
7304   TargetLowering::ArgListTy Args;
7305   TargetLowering::ArgListEntry Entry;
7306   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7307   Entry.Node = Dst;
7308   Args.push_back(Entry);
7309 
7310   Entry.Ty = Type::getInt8Ty(*getContext());
7311   Entry.Node = Value;
7312   Args.push_back(Entry);
7313 
7314   Entry.Ty = SizeTy;
7315   Entry.Node = Size;
7316   Args.push_back(Entry);
7317 
7318   RTLIB::Libcall LibraryCall =
7319       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7320   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7321     report_fatal_error("Unsupported element size");
7322 
7323   TargetLowering::CallLoweringInfo CLI(*this);
7324   CLI.setDebugLoc(dl)
7325       .setChain(Chain)
7326       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7327                     Type::getVoidTy(*getContext()),
7328                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7329                                       TLI->getPointerTy(getDataLayout())),
7330                     std::move(Args))
7331       .setDiscardResult()
7332       .setTailCall(isTailCall);
7333 
7334   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7335   return CallResult.second;
7336 }
7337 
7338 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7339                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7340                                 MachineMemOperand *MMO) {
7341   FoldingSetNodeID ID;
7342   ID.AddInteger(MemVT.getRawBits());
7343   AddNodeIDNode(ID, Opcode, VTList, Ops);
7344   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7345   ID.AddInteger(MMO->getFlags());
7346   void* IP = nullptr;
7347   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7348     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7349     return SDValue(E, 0);
7350   }
7351 
7352   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7353                                     VTList, MemVT, MMO);
7354   createOperands(N, Ops);
7355 
7356   CSEMap.InsertNode(N, IP);
7357   InsertNode(N);
7358   return SDValue(N, 0);
7359 }
7360 
7361 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7362                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7363                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7364                                        MachineMemOperand *MMO) {
7365   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7366          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7367   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7368 
7369   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7370   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7371 }
7372 
7373 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7374                                 SDValue Chain, SDValue Ptr, SDValue Val,
7375                                 MachineMemOperand *MMO) {
7376   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7377           Opcode == ISD::ATOMIC_LOAD_SUB ||
7378           Opcode == ISD::ATOMIC_LOAD_AND ||
7379           Opcode == ISD::ATOMIC_LOAD_CLR ||
7380           Opcode == ISD::ATOMIC_LOAD_OR ||
7381           Opcode == ISD::ATOMIC_LOAD_XOR ||
7382           Opcode == ISD::ATOMIC_LOAD_NAND ||
7383           Opcode == ISD::ATOMIC_LOAD_MIN ||
7384           Opcode == ISD::ATOMIC_LOAD_MAX ||
7385           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7386           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7387           Opcode == ISD::ATOMIC_LOAD_FADD ||
7388           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7389           Opcode == ISD::ATOMIC_SWAP ||
7390           Opcode == ISD::ATOMIC_STORE) &&
7391          "Invalid Atomic Op");
7392 
7393   EVT VT = Val.getValueType();
7394 
7395   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7396                                                getVTList(VT, MVT::Other);
7397   SDValue Ops[] = {Chain, Ptr, Val};
7398   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7399 }
7400 
7401 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7402                                 EVT VT, SDValue Chain, SDValue Ptr,
7403                                 MachineMemOperand *MMO) {
7404   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7405 
7406   SDVTList VTs = getVTList(VT, MVT::Other);
7407   SDValue Ops[] = {Chain, Ptr};
7408   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7409 }
7410 
7411 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7412 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7413   if (Ops.size() == 1)
7414     return Ops[0];
7415 
7416   SmallVector<EVT, 4> VTs;
7417   VTs.reserve(Ops.size());
7418   for (const SDValue &Op : Ops)
7419     VTs.push_back(Op.getValueType());
7420   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7421 }
7422 
7423 SDValue SelectionDAG::getMemIntrinsicNode(
7424     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7425     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7426     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7427   if (!Size && MemVT.isScalableVector())
7428     Size = MemoryLocation::UnknownSize;
7429   else if (!Size)
7430     Size = MemVT.getStoreSize();
7431 
7432   MachineFunction &MF = getMachineFunction();
7433   MachineMemOperand *MMO =
7434       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7435 
7436   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7437 }
7438 
7439 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7440                                           SDVTList VTList,
7441                                           ArrayRef<SDValue> Ops, EVT MemVT,
7442                                           MachineMemOperand *MMO) {
7443   assert((Opcode == ISD::INTRINSIC_VOID ||
7444           Opcode == ISD::INTRINSIC_W_CHAIN ||
7445           Opcode == ISD::PREFETCH ||
7446           ((int)Opcode <= std::numeric_limits<int>::max() &&
7447            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7448          "Opcode is not a memory-accessing opcode!");
7449 
7450   // Memoize the node unless it returns a flag.
7451   MemIntrinsicSDNode *N;
7452   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7453     FoldingSetNodeID ID;
7454     AddNodeIDNode(ID, Opcode, VTList, Ops);
7455     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7456         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7457     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7458     ID.AddInteger(MMO->getFlags());
7459     void *IP = nullptr;
7460     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7461       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7462       return SDValue(E, 0);
7463     }
7464 
7465     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7466                                       VTList, MemVT, MMO);
7467     createOperands(N, Ops);
7468 
7469   CSEMap.InsertNode(N, IP);
7470   } else {
7471     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7472                                       VTList, MemVT, MMO);
7473     createOperands(N, Ops);
7474   }
7475   InsertNode(N);
7476   SDValue V(N, 0);
7477   NewSDValueDbgMsg(V, "Creating new node: ", this);
7478   return V;
7479 }
7480 
7481 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7482                                       SDValue Chain, int FrameIndex,
7483                                       int64_t Size, int64_t Offset) {
7484   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7485   const auto VTs = getVTList(MVT::Other);
7486   SDValue Ops[2] = {
7487       Chain,
7488       getFrameIndex(FrameIndex,
7489                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7490                     true)};
7491 
7492   FoldingSetNodeID ID;
7493   AddNodeIDNode(ID, Opcode, VTs, Ops);
7494   ID.AddInteger(FrameIndex);
7495   ID.AddInteger(Size);
7496   ID.AddInteger(Offset);
7497   void *IP = nullptr;
7498   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7499     return SDValue(E, 0);
7500 
7501   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7502       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7503   createOperands(N, Ops);
7504   CSEMap.InsertNode(N, IP);
7505   InsertNode(N);
7506   SDValue V(N, 0);
7507   NewSDValueDbgMsg(V, "Creating new node: ", this);
7508   return V;
7509 }
7510 
7511 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7512                                          uint64_t Guid, uint64_t Index,
7513                                          uint32_t Attr) {
7514   const unsigned Opcode = ISD::PSEUDO_PROBE;
7515   const auto VTs = getVTList(MVT::Other);
7516   SDValue Ops[] = {Chain};
7517   FoldingSetNodeID ID;
7518   AddNodeIDNode(ID, Opcode, VTs, Ops);
7519   ID.AddInteger(Guid);
7520   ID.AddInteger(Index);
7521   void *IP = nullptr;
7522   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7523     return SDValue(E, 0);
7524 
7525   auto *N = newSDNode<PseudoProbeSDNode>(
7526       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7527   createOperands(N, Ops);
7528   CSEMap.InsertNode(N, IP);
7529   InsertNode(N);
7530   SDValue V(N, 0);
7531   NewSDValueDbgMsg(V, "Creating new node: ", this);
7532   return V;
7533 }
7534 
7535 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7536 /// MachinePointerInfo record from it.  This is particularly useful because the
7537 /// code generator has many cases where it doesn't bother passing in a
7538 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7539 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7540                                            SelectionDAG &DAG, SDValue Ptr,
7541                                            int64_t Offset = 0) {
7542   // If this is FI+Offset, we can model it.
7543   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7544     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7545                                              FI->getIndex(), Offset);
7546 
7547   // If this is (FI+Offset1)+Offset2, we can model it.
7548   if (Ptr.getOpcode() != ISD::ADD ||
7549       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7550       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7551     return Info;
7552 
7553   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7554   return MachinePointerInfo::getFixedStack(
7555       DAG.getMachineFunction(), FI,
7556       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7557 }
7558 
7559 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7560 /// MachinePointerInfo record from it.  This is particularly useful because the
7561 /// code generator has many cases where it doesn't bother passing in a
7562 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7563 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7564                                            SelectionDAG &DAG, SDValue Ptr,
7565                                            SDValue OffsetOp) {
7566   // If the 'Offset' value isn't a constant, we can't handle this.
7567   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7568     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7569   if (OffsetOp.isUndef())
7570     return InferPointerInfo(Info, DAG, Ptr);
7571   return Info;
7572 }
7573 
7574 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7575                               EVT VT, const SDLoc &dl, SDValue Chain,
7576                               SDValue Ptr, SDValue Offset,
7577                               MachinePointerInfo PtrInfo, EVT MemVT,
7578                               Align Alignment,
7579                               MachineMemOperand::Flags MMOFlags,
7580                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7581   assert(Chain.getValueType() == MVT::Other &&
7582         "Invalid chain type");
7583 
7584   MMOFlags |= MachineMemOperand::MOLoad;
7585   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7586   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7587   // clients.
7588   if (PtrInfo.V.isNull())
7589     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7590 
7591   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7592   MachineFunction &MF = getMachineFunction();
7593   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7594                                                    Alignment, AAInfo, Ranges);
7595   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7596 }
7597 
7598 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7599                               EVT VT, const SDLoc &dl, SDValue Chain,
7600                               SDValue Ptr, SDValue Offset, EVT MemVT,
7601                               MachineMemOperand *MMO) {
7602   if (VT == MemVT) {
7603     ExtType = ISD::NON_EXTLOAD;
7604   } else if (ExtType == ISD::NON_EXTLOAD) {
7605     assert(VT == MemVT && "Non-extending load from different memory type!");
7606   } else {
7607     // Extending load.
7608     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7609            "Should only be an extending load, not truncating!");
7610     assert(VT.isInteger() == MemVT.isInteger() &&
7611            "Cannot convert from FP to Int or Int -> FP!");
7612     assert(VT.isVector() == MemVT.isVector() &&
7613            "Cannot use an ext load to convert to or from a vector!");
7614     assert((!VT.isVector() ||
7615             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7616            "Cannot use an ext load to change the number of vector elements!");
7617   }
7618 
7619   bool Indexed = AM != ISD::UNINDEXED;
7620   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7621 
7622   SDVTList VTs = Indexed ?
7623     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7624   SDValue Ops[] = { Chain, Ptr, Offset };
7625   FoldingSetNodeID ID;
7626   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7627   ID.AddInteger(MemVT.getRawBits());
7628   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7629       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7630   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7631   ID.AddInteger(MMO->getFlags());
7632   void *IP = nullptr;
7633   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7634     cast<LoadSDNode>(E)->refineAlignment(MMO);
7635     return SDValue(E, 0);
7636   }
7637   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7638                                   ExtType, MemVT, MMO);
7639   createOperands(N, Ops);
7640 
7641   CSEMap.InsertNode(N, IP);
7642   InsertNode(N);
7643   SDValue V(N, 0);
7644   NewSDValueDbgMsg(V, "Creating new node: ", this);
7645   return V;
7646 }
7647 
7648 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7649                               SDValue Ptr, MachinePointerInfo PtrInfo,
7650                               MaybeAlign Alignment,
7651                               MachineMemOperand::Flags MMOFlags,
7652                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7653   SDValue Undef = getUNDEF(Ptr.getValueType());
7654   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7655                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7656 }
7657 
7658 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7659                               SDValue Ptr, MachineMemOperand *MMO) {
7660   SDValue Undef = getUNDEF(Ptr.getValueType());
7661   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7662                  VT, MMO);
7663 }
7664 
7665 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7666                                  EVT VT, SDValue Chain, SDValue Ptr,
7667                                  MachinePointerInfo PtrInfo, EVT MemVT,
7668                                  MaybeAlign Alignment,
7669                                  MachineMemOperand::Flags MMOFlags,
7670                                  const AAMDNodes &AAInfo) {
7671   SDValue Undef = getUNDEF(Ptr.getValueType());
7672   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7673                  MemVT, Alignment, MMOFlags, AAInfo);
7674 }
7675 
7676 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7677                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7678                                  MachineMemOperand *MMO) {
7679   SDValue Undef = getUNDEF(Ptr.getValueType());
7680   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7681                  MemVT, MMO);
7682 }
7683 
7684 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7685                                      SDValue Base, SDValue Offset,
7686                                      ISD::MemIndexedMode AM) {
7687   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7688   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7689   // Don't propagate the invariant or dereferenceable flags.
7690   auto MMOFlags =
7691       LD->getMemOperand()->getFlags() &
7692       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7693   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7694                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7695                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7696 }
7697 
7698 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7699                                SDValue Ptr, MachinePointerInfo PtrInfo,
7700                                Align Alignment,
7701                                MachineMemOperand::Flags MMOFlags,
7702                                const AAMDNodes &AAInfo) {
7703   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7704 
7705   MMOFlags |= MachineMemOperand::MOStore;
7706   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7707 
7708   if (PtrInfo.V.isNull())
7709     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7710 
7711   MachineFunction &MF = getMachineFunction();
7712   uint64_t Size =
7713       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7714   MachineMemOperand *MMO =
7715       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7716   return getStore(Chain, dl, Val, Ptr, MMO);
7717 }
7718 
7719 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7720                                SDValue Ptr, MachineMemOperand *MMO) {
7721   assert(Chain.getValueType() == MVT::Other &&
7722         "Invalid chain type");
7723   EVT VT = Val.getValueType();
7724   SDVTList VTs = getVTList(MVT::Other);
7725   SDValue Undef = getUNDEF(Ptr.getValueType());
7726   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7727   FoldingSetNodeID ID;
7728   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7729   ID.AddInteger(VT.getRawBits());
7730   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7731       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7732   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7733   ID.AddInteger(MMO->getFlags());
7734   void *IP = nullptr;
7735   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7736     cast<StoreSDNode>(E)->refineAlignment(MMO);
7737     return SDValue(E, 0);
7738   }
7739   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7740                                    ISD::UNINDEXED, false, VT, MMO);
7741   createOperands(N, Ops);
7742 
7743   CSEMap.InsertNode(N, IP);
7744   InsertNode(N);
7745   SDValue V(N, 0);
7746   NewSDValueDbgMsg(V, "Creating new node: ", this);
7747   return V;
7748 }
7749 
7750 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7751                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7752                                     EVT SVT, Align Alignment,
7753                                     MachineMemOperand::Flags MMOFlags,
7754                                     const AAMDNodes &AAInfo) {
7755   assert(Chain.getValueType() == MVT::Other &&
7756         "Invalid chain type");
7757 
7758   MMOFlags |= MachineMemOperand::MOStore;
7759   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7760 
7761   if (PtrInfo.V.isNull())
7762     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7763 
7764   MachineFunction &MF = getMachineFunction();
7765   MachineMemOperand *MMO = MF.getMachineMemOperand(
7766       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7767       Alignment, AAInfo);
7768   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7769 }
7770 
7771 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7772                                     SDValue Ptr, EVT SVT,
7773                                     MachineMemOperand *MMO) {
7774   EVT VT = Val.getValueType();
7775 
7776   assert(Chain.getValueType() == MVT::Other &&
7777         "Invalid chain type");
7778   if (VT == SVT)
7779     return getStore(Chain, dl, Val, Ptr, MMO);
7780 
7781   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7782          "Should only be a truncating store, not extending!");
7783   assert(VT.isInteger() == SVT.isInteger() &&
7784          "Can't do FP-INT conversion!");
7785   assert(VT.isVector() == SVT.isVector() &&
7786          "Cannot use trunc store to convert to or from a vector!");
7787   assert((!VT.isVector() ||
7788           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7789          "Cannot use trunc store to change the number of vector elements!");
7790 
7791   SDVTList VTs = getVTList(MVT::Other);
7792   SDValue Undef = getUNDEF(Ptr.getValueType());
7793   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7794   FoldingSetNodeID ID;
7795   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7796   ID.AddInteger(SVT.getRawBits());
7797   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7798       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7799   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7800   ID.AddInteger(MMO->getFlags());
7801   void *IP = nullptr;
7802   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7803     cast<StoreSDNode>(E)->refineAlignment(MMO);
7804     return SDValue(E, 0);
7805   }
7806   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7807                                    ISD::UNINDEXED, true, SVT, MMO);
7808   createOperands(N, Ops);
7809 
7810   CSEMap.InsertNode(N, IP);
7811   InsertNode(N);
7812   SDValue V(N, 0);
7813   NewSDValueDbgMsg(V, "Creating new node: ", this);
7814   return V;
7815 }
7816 
7817 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7818                                       SDValue Base, SDValue Offset,
7819                                       ISD::MemIndexedMode AM) {
7820   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7821   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7822   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7823   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7824   FoldingSetNodeID ID;
7825   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7826   ID.AddInteger(ST->getMemoryVT().getRawBits());
7827   ID.AddInteger(ST->getRawSubclassData());
7828   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7829   ID.AddInteger(ST->getMemOperand()->getFlags());
7830   void *IP = nullptr;
7831   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7832     return SDValue(E, 0);
7833 
7834   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7835                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7836                                    ST->getMemOperand());
7837   createOperands(N, Ops);
7838 
7839   CSEMap.InsertNode(N, IP);
7840   InsertNode(N);
7841   SDValue V(N, 0);
7842   NewSDValueDbgMsg(V, "Creating new node: ", this);
7843   return V;
7844 }
7845 
7846 SDValue SelectionDAG::getLoadVP(
7847     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7848     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7849     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7850     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7851     const MDNode *Ranges, bool IsExpanding) {
7852   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7853 
7854   MMOFlags |= MachineMemOperand::MOLoad;
7855   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7856   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7857   // clients.
7858   if (PtrInfo.V.isNull())
7859     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7860 
7861   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7862   MachineFunction &MF = getMachineFunction();
7863   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7864                                                    Alignment, AAInfo, Ranges);
7865   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7866                    MMO, IsExpanding);
7867 }
7868 
7869 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7870                                 ISD::LoadExtType ExtType, EVT VT,
7871                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7872                                 SDValue Offset, SDValue Mask, SDValue EVL,
7873                                 EVT MemVT, MachineMemOperand *MMO,
7874                                 bool IsExpanding) {
7875   bool Indexed = AM != ISD::UNINDEXED;
7876   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7877 
7878   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7879                          : getVTList(VT, MVT::Other);
7880   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7881   FoldingSetNodeID ID;
7882   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7883   ID.AddInteger(VT.getRawBits());
7884   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7885       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7886   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7887   ID.AddInteger(MMO->getFlags());
7888   void *IP = nullptr;
7889   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7890     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7891     return SDValue(E, 0);
7892   }
7893   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7894                                     ExtType, IsExpanding, MemVT, MMO);
7895   createOperands(N, Ops);
7896 
7897   CSEMap.InsertNode(N, IP);
7898   InsertNode(N);
7899   SDValue V(N, 0);
7900   NewSDValueDbgMsg(V, "Creating new node: ", this);
7901   return V;
7902 }
7903 
7904 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7905                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7906                                 MachinePointerInfo PtrInfo,
7907                                 MaybeAlign Alignment,
7908                                 MachineMemOperand::Flags MMOFlags,
7909                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7910                                 bool IsExpanding) {
7911   SDValue Undef = getUNDEF(Ptr.getValueType());
7912   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7913                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7914                    IsExpanding);
7915 }
7916 
7917 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7918                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7919                                 MachineMemOperand *MMO, bool IsExpanding) {
7920   SDValue Undef = getUNDEF(Ptr.getValueType());
7921   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7922                    Mask, EVL, VT, MMO, IsExpanding);
7923 }
7924 
7925 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7926                                    EVT VT, SDValue Chain, SDValue Ptr,
7927                                    SDValue Mask, SDValue EVL,
7928                                    MachinePointerInfo PtrInfo, EVT MemVT,
7929                                    MaybeAlign Alignment,
7930                                    MachineMemOperand::Flags MMOFlags,
7931                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7932   SDValue Undef = getUNDEF(Ptr.getValueType());
7933   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7934                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7935                    IsExpanding);
7936 }
7937 
7938 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7939                                    EVT VT, SDValue Chain, SDValue Ptr,
7940                                    SDValue Mask, SDValue EVL, EVT MemVT,
7941                                    MachineMemOperand *MMO, bool IsExpanding) {
7942   SDValue Undef = getUNDEF(Ptr.getValueType());
7943   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7944                    EVL, MemVT, MMO, IsExpanding);
7945 }
7946 
7947 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7948                                        SDValue Base, SDValue Offset,
7949                                        ISD::MemIndexedMode AM) {
7950   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7951   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7952   // Don't propagate the invariant or dereferenceable flags.
7953   auto MMOFlags =
7954       LD->getMemOperand()->getFlags() &
7955       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7956   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7957                    LD->getChain(), Base, Offset, LD->getMask(),
7958                    LD->getVectorLength(), LD->getPointerInfo(),
7959                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7960                    nullptr, LD->isExpandingLoad());
7961 }
7962 
7963 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7964                                  SDValue Ptr, SDValue Offset, SDValue Mask,
7965                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
7966                                  ISD::MemIndexedMode AM, bool IsTruncating,
7967                                  bool IsCompressing) {
7968   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7969   bool Indexed = AM != ISD::UNINDEXED;
7970   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
7971   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
7972                          : getVTList(MVT::Other);
7973   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
7974   FoldingSetNodeID ID;
7975   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7976   ID.AddInteger(MemVT.getRawBits());
7977   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7978       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7979   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7980   ID.AddInteger(MMO->getFlags());
7981   void *IP = nullptr;
7982   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7983     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7984     return SDValue(E, 0);
7985   }
7986   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7987                                      IsTruncating, IsCompressing, MemVT, MMO);
7988   createOperands(N, Ops);
7989 
7990   CSEMap.InsertNode(N, IP);
7991   InsertNode(N);
7992   SDValue V(N, 0);
7993   NewSDValueDbgMsg(V, "Creating new node: ", this);
7994   return V;
7995 }
7996 
7997 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7998                                       SDValue Val, SDValue Ptr, SDValue Mask,
7999                                       SDValue EVL, MachinePointerInfo PtrInfo,
8000                                       EVT SVT, Align Alignment,
8001                                       MachineMemOperand::Flags MMOFlags,
8002                                       const AAMDNodes &AAInfo,
8003                                       bool IsCompressing) {
8004   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8005 
8006   MMOFlags |= MachineMemOperand::MOStore;
8007   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8008 
8009   if (PtrInfo.V.isNull())
8010     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8011 
8012   MachineFunction &MF = getMachineFunction();
8013   MachineMemOperand *MMO = MF.getMachineMemOperand(
8014       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8015       Alignment, AAInfo);
8016   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8017                          IsCompressing);
8018 }
8019 
8020 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8021                                       SDValue Val, SDValue Ptr, SDValue Mask,
8022                                       SDValue EVL, EVT SVT,
8023                                       MachineMemOperand *MMO,
8024                                       bool IsCompressing) {
8025   EVT VT = Val.getValueType();
8026 
8027   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8028   if (VT == SVT)
8029     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8030                       EVL, VT, MMO, ISD::UNINDEXED,
8031                       /*IsTruncating*/ false, IsCompressing);
8032 
8033   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8034          "Should only be a truncating store, not extending!");
8035   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8036   assert(VT.isVector() == SVT.isVector() &&
8037          "Cannot use trunc store to convert to or from a vector!");
8038   assert((!VT.isVector() ||
8039           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8040          "Cannot use trunc store to change the number of vector elements!");
8041 
8042   SDVTList VTs = getVTList(MVT::Other);
8043   SDValue Undef = getUNDEF(Ptr.getValueType());
8044   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8045   FoldingSetNodeID ID;
8046   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8047   ID.AddInteger(SVT.getRawBits());
8048   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8049       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8050   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8051   ID.AddInteger(MMO->getFlags());
8052   void *IP = nullptr;
8053   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8054     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8055     return SDValue(E, 0);
8056   }
8057   auto *N =
8058       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8059                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8060   createOperands(N, Ops);
8061 
8062   CSEMap.InsertNode(N, IP);
8063   InsertNode(N);
8064   SDValue V(N, 0);
8065   NewSDValueDbgMsg(V, "Creating new node: ", this);
8066   return V;
8067 }
8068 
8069 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8070                                         SDValue Base, SDValue Offset,
8071                                         ISD::MemIndexedMode AM) {
8072   auto *ST = cast<VPStoreSDNode>(OrigStore);
8073   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8074   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8075   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8076                    Offset,         ST->getMask(),  ST->getVectorLength()};
8077   FoldingSetNodeID ID;
8078   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8079   ID.AddInteger(ST->getMemoryVT().getRawBits());
8080   ID.AddInteger(ST->getRawSubclassData());
8081   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8082   ID.AddInteger(ST->getMemOperand()->getFlags());
8083   void *IP = nullptr;
8084   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8085     return SDValue(E, 0);
8086 
8087   auto *N = newSDNode<VPStoreSDNode>(
8088       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8089       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8090   createOperands(N, Ops);
8091 
8092   CSEMap.InsertNode(N, IP);
8093   InsertNode(N);
8094   SDValue V(N, 0);
8095   NewSDValueDbgMsg(V, "Creating new node: ", this);
8096   return V;
8097 }
8098 
8099 SDValue SelectionDAG::getStridedLoadVP(
8100     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8101     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8102     SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8103     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8104     const MDNode *Ranges, bool IsExpanding) {
8105   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8106 
8107   MMOFlags |= MachineMemOperand::MOLoad;
8108   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8109   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8110   // clients.
8111   if (PtrInfo.V.isNull())
8112     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8113 
8114   uint64_t Size = MemoryLocation::UnknownSize;
8115   MachineFunction &MF = getMachineFunction();
8116   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8117                                                    Alignment, AAInfo, Ranges);
8118   return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
8119                           EVL, MemVT, MMO, IsExpanding);
8120 }
8121 
8122 SDValue SelectionDAG::getStridedLoadVP(
8123     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8124     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8125     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
8126   bool Indexed = AM != ISD::UNINDEXED;
8127   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8128 
8129   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
8130   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8131                          : getVTList(VT, MVT::Other);
8132   FoldingSetNodeID ID;
8133   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
8134   ID.AddInteger(VT.getRawBits());
8135   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
8136       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8137   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8138 
8139   void *IP = nullptr;
8140   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8141     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
8142     return SDValue(E, 0);
8143   }
8144 
8145   auto *N =
8146       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
8147                                      ExtType, IsExpanding, MemVT, MMO);
8148   createOperands(N, Ops);
8149   CSEMap.InsertNode(N, IP);
8150   InsertNode(N);
8151   SDValue V(N, 0);
8152   NewSDValueDbgMsg(V, "Creating new node: ", this);
8153   return V;
8154 }
8155 
8156 SDValue SelectionDAG::getStridedLoadVP(
8157     EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
8158     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
8159     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8160     const MDNode *Ranges, bool IsExpanding) {
8161   SDValue Undef = getUNDEF(Ptr.getValueType());
8162   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8163                           Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
8164                           MMOFlags, AAInfo, Ranges, IsExpanding);
8165 }
8166 
8167 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
8168                                        SDValue Ptr, SDValue Stride,
8169                                        SDValue Mask, SDValue EVL,
8170                                        MachineMemOperand *MMO,
8171                                        bool IsExpanding) {
8172   SDValue Undef = getUNDEF(Ptr.getValueType());
8173   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8174                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
8175 }
8176 
8177 SDValue SelectionDAG::getExtStridedLoadVP(
8178     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8179     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
8180     MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
8181     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8182     bool IsExpanding) {
8183   SDValue Undef = getUNDEF(Ptr.getValueType());
8184   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8185                           Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
8186                           MMOFlags, AAInfo, nullptr, IsExpanding);
8187 }
8188 
8189 SDValue SelectionDAG::getExtStridedLoadVP(
8190     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8191     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
8192     MachineMemOperand *MMO, bool IsExpanding) {
8193   SDValue Undef = getUNDEF(Ptr.getValueType());
8194   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8195                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
8196 }
8197 
8198 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
8199                                               SDValue Base, SDValue Offset,
8200                                               ISD::MemIndexedMode AM) {
8201   auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
8202   assert(SLD->getOffset().isUndef() &&
8203          "Strided load is already a indexed load!");
8204   // Don't propagate the invariant or dereferenceable flags.
8205   auto MMOFlags =
8206       SLD->getMemOperand()->getFlags() &
8207       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8208   return getStridedLoadVP(
8209       AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
8210       Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
8211       SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
8212       SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
8213 }
8214 
8215 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
8216                                         SDValue Val, SDValue Ptr,
8217                                         SDValue Offset, SDValue Stride,
8218                                         SDValue Mask, SDValue EVL, EVT MemVT,
8219                                         MachineMemOperand *MMO,
8220                                         ISD::MemIndexedMode AM,
8221                                         bool IsTruncating, bool IsCompressing) {
8222   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8223   bool Indexed = AM != ISD::UNINDEXED;
8224   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8225   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8226                          : getVTList(MVT::Other);
8227   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
8228   FoldingSetNodeID ID;
8229   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8230   ID.AddInteger(MemVT.getRawBits());
8231   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8232       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8233   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8234   void *IP = nullptr;
8235   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8236     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8237     return SDValue(E, 0);
8238   }
8239   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8240                                             VTs, AM, IsTruncating,
8241                                             IsCompressing, MemVT, MMO);
8242   createOperands(N, Ops);
8243 
8244   CSEMap.InsertNode(N, IP);
8245   InsertNode(N);
8246   SDValue V(N, 0);
8247   NewSDValueDbgMsg(V, "Creating new node: ", this);
8248   return V;
8249 }
8250 
8251 SDValue SelectionDAG::getTruncStridedStoreVP(
8252     SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
8253     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
8254     Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8255     bool IsCompressing) {
8256   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8257 
8258   MMOFlags |= MachineMemOperand::MOStore;
8259   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8260 
8261   if (PtrInfo.V.isNull())
8262     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8263 
8264   MachineFunction &MF = getMachineFunction();
8265   MachineMemOperand *MMO = MF.getMachineMemOperand(
8266       PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
8267   return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
8268                                 MMO, IsCompressing);
8269 }
8270 
8271 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
8272                                              SDValue Val, SDValue Ptr,
8273                                              SDValue Stride, SDValue Mask,
8274                                              SDValue EVL, EVT SVT,
8275                                              MachineMemOperand *MMO,
8276                                              bool IsCompressing) {
8277   EVT VT = Val.getValueType();
8278 
8279   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8280   if (VT == SVT)
8281     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
8282                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
8283                              /*IsTruncating*/ false, IsCompressing);
8284 
8285   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8286          "Should only be a truncating store, not extending!");
8287   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8288   assert(VT.isVector() == SVT.isVector() &&
8289          "Cannot use trunc store to convert to or from a vector!");
8290   assert((!VT.isVector() ||
8291           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8292          "Cannot use trunc store to change the number of vector elements!");
8293 
8294   SDVTList VTs = getVTList(MVT::Other);
8295   SDValue Undef = getUNDEF(Ptr.getValueType());
8296   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
8297   FoldingSetNodeID ID;
8298   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8299   ID.AddInteger(SVT.getRawBits());
8300   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8301       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8302   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8303   void *IP = nullptr;
8304   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8305     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8306     return SDValue(E, 0);
8307   }
8308   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8309                                             VTs, ISD::UNINDEXED, true,
8310                                             IsCompressing, SVT, MMO);
8311   createOperands(N, Ops);
8312 
8313   CSEMap.InsertNode(N, IP);
8314   InsertNode(N);
8315   SDValue V(N, 0);
8316   NewSDValueDbgMsg(V, "Creating new node: ", this);
8317   return V;
8318 }
8319 
8320 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
8321                                                const SDLoc &DL, SDValue Base,
8322                                                SDValue Offset,
8323                                                ISD::MemIndexedMode AM) {
8324   auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
8325   assert(SST->getOffset().isUndef() &&
8326          "Strided store is already an indexed store!");
8327   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8328   SDValue Ops[] = {
8329       SST->getChain(), SST->getValue(),       Base, Offset, SST->getStride(),
8330       SST->getMask(),  SST->getVectorLength()};
8331   FoldingSetNodeID ID;
8332   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8333   ID.AddInteger(SST->getMemoryVT().getRawBits());
8334   ID.AddInteger(SST->getRawSubclassData());
8335   ID.AddInteger(SST->getPointerInfo().getAddrSpace());
8336   void *IP = nullptr;
8337   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8338     return SDValue(E, 0);
8339 
8340   auto *N = newSDNode<VPStridedStoreSDNode>(
8341       DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
8342       SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
8343   createOperands(N, Ops);
8344 
8345   CSEMap.InsertNode(N, IP);
8346   InsertNode(N);
8347   SDValue V(N, 0);
8348   NewSDValueDbgMsg(V, "Creating new node: ", this);
8349   return V;
8350 }
8351 
8352 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8353                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
8354                                   ISD::MemIndexType IndexType) {
8355   assert(Ops.size() == 6 && "Incompatible number of operands");
8356 
8357   FoldingSetNodeID ID;
8358   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
8359   ID.AddInteger(VT.getRawBits());
8360   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
8361       dl.getIROrder(), VTs, VT, MMO, IndexType));
8362   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8363   ID.AddInteger(MMO->getFlags());
8364   void *IP = nullptr;
8365   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8366     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
8367     return SDValue(E, 0);
8368   }
8369 
8370   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8371                                       VT, MMO, IndexType);
8372   createOperands(N, Ops);
8373 
8374   assert(N->getMask().getValueType().getVectorElementCount() ==
8375              N->getValueType(0).getVectorElementCount() &&
8376          "Vector width mismatch between mask and data");
8377   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8378              N->getValueType(0).getVectorElementCount().isScalable() &&
8379          "Scalable flags of index and data do not match");
8380   assert(ElementCount::isKnownGE(
8381              N->getIndex().getValueType().getVectorElementCount(),
8382              N->getValueType(0).getVectorElementCount()) &&
8383          "Vector width mismatch between index and data");
8384   assert(isa<ConstantSDNode>(N->getScale()) &&
8385          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8386          "Scale should be a constant power of 2");
8387 
8388   CSEMap.InsertNode(N, IP);
8389   InsertNode(N);
8390   SDValue V(N, 0);
8391   NewSDValueDbgMsg(V, "Creating new node: ", this);
8392   return V;
8393 }
8394 
8395 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8396                                    ArrayRef<SDValue> Ops,
8397                                    MachineMemOperand *MMO,
8398                                    ISD::MemIndexType IndexType) {
8399   assert(Ops.size() == 7 && "Incompatible number of operands");
8400 
8401   FoldingSetNodeID ID;
8402   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8403   ID.AddInteger(VT.getRawBits());
8404   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8405       dl.getIROrder(), VTs, VT, MMO, IndexType));
8406   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8407   ID.AddInteger(MMO->getFlags());
8408   void *IP = nullptr;
8409   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8410     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8411     return SDValue(E, 0);
8412   }
8413   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8414                                        VT, MMO, IndexType);
8415   createOperands(N, Ops);
8416 
8417   assert(N->getMask().getValueType().getVectorElementCount() ==
8418              N->getValue().getValueType().getVectorElementCount() &&
8419          "Vector width mismatch between mask and data");
8420   assert(
8421       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8422           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8423       "Scalable flags of index and data do not match");
8424   assert(ElementCount::isKnownGE(
8425              N->getIndex().getValueType().getVectorElementCount(),
8426              N->getValue().getValueType().getVectorElementCount()) &&
8427          "Vector width mismatch between index and data");
8428   assert(isa<ConstantSDNode>(N->getScale()) &&
8429          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8430          "Scale should be a constant power of 2");
8431 
8432   CSEMap.InsertNode(N, IP);
8433   InsertNode(N);
8434   SDValue V(N, 0);
8435   NewSDValueDbgMsg(V, "Creating new node: ", this);
8436   return V;
8437 }
8438 
8439 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8440                                     SDValue Base, SDValue Offset, SDValue Mask,
8441                                     SDValue PassThru, EVT MemVT,
8442                                     MachineMemOperand *MMO,
8443                                     ISD::MemIndexedMode AM,
8444                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8445   bool Indexed = AM != ISD::UNINDEXED;
8446   assert((Indexed || Offset.isUndef()) &&
8447          "Unindexed masked load with an offset!");
8448   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8449                          : getVTList(VT, MVT::Other);
8450   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8451   FoldingSetNodeID ID;
8452   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8453   ID.AddInteger(MemVT.getRawBits());
8454   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8455       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8456   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8457   ID.AddInteger(MMO->getFlags());
8458   void *IP = nullptr;
8459   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8460     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8461     return SDValue(E, 0);
8462   }
8463   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8464                                         AM, ExtTy, isExpanding, MemVT, MMO);
8465   createOperands(N, Ops);
8466 
8467   CSEMap.InsertNode(N, IP);
8468   InsertNode(N);
8469   SDValue V(N, 0);
8470   NewSDValueDbgMsg(V, "Creating new node: ", this);
8471   return V;
8472 }
8473 
8474 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8475                                            SDValue Base, SDValue Offset,
8476                                            ISD::MemIndexedMode AM) {
8477   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8478   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8479   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8480                        Offset, LD->getMask(), LD->getPassThru(),
8481                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8482                        LD->getExtensionType(), LD->isExpandingLoad());
8483 }
8484 
8485 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8486                                      SDValue Val, SDValue Base, SDValue Offset,
8487                                      SDValue Mask, EVT MemVT,
8488                                      MachineMemOperand *MMO,
8489                                      ISD::MemIndexedMode AM, bool IsTruncating,
8490                                      bool IsCompressing) {
8491   assert(Chain.getValueType() == MVT::Other &&
8492         "Invalid chain type");
8493   bool Indexed = AM != ISD::UNINDEXED;
8494   assert((Indexed || Offset.isUndef()) &&
8495          "Unindexed masked store with an offset!");
8496   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8497                          : getVTList(MVT::Other);
8498   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8499   FoldingSetNodeID ID;
8500   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8501   ID.AddInteger(MemVT.getRawBits());
8502   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8503       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8504   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8505   ID.AddInteger(MMO->getFlags());
8506   void *IP = nullptr;
8507   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8508     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8509     return SDValue(E, 0);
8510   }
8511   auto *N =
8512       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8513                                    IsTruncating, IsCompressing, MemVT, MMO);
8514   createOperands(N, Ops);
8515 
8516   CSEMap.InsertNode(N, IP);
8517   InsertNode(N);
8518   SDValue V(N, 0);
8519   NewSDValueDbgMsg(V, "Creating new node: ", this);
8520   return V;
8521 }
8522 
8523 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8524                                             SDValue Base, SDValue Offset,
8525                                             ISD::MemIndexedMode AM) {
8526   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8527   assert(ST->getOffset().isUndef() &&
8528          "Masked store is already a indexed store!");
8529   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8530                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8531                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8532 }
8533 
8534 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8535                                       ArrayRef<SDValue> Ops,
8536                                       MachineMemOperand *MMO,
8537                                       ISD::MemIndexType IndexType,
8538                                       ISD::LoadExtType ExtTy) {
8539   assert(Ops.size() == 6 && "Incompatible number of operands");
8540 
8541   FoldingSetNodeID ID;
8542   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8543   ID.AddInteger(MemVT.getRawBits());
8544   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8545       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8546   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8547   ID.AddInteger(MMO->getFlags());
8548   void *IP = nullptr;
8549   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8550     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8551     return SDValue(E, 0);
8552   }
8553 
8554   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8555   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8556                                           VTs, MemVT, MMO, IndexType, ExtTy);
8557   createOperands(N, Ops);
8558 
8559   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8560          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8561   assert(N->getMask().getValueType().getVectorElementCount() ==
8562              N->getValueType(0).getVectorElementCount() &&
8563          "Vector width mismatch between mask and data");
8564   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8565              N->getValueType(0).getVectorElementCount().isScalable() &&
8566          "Scalable flags of index and data do not match");
8567   assert(ElementCount::isKnownGE(
8568              N->getIndex().getValueType().getVectorElementCount(),
8569              N->getValueType(0).getVectorElementCount()) &&
8570          "Vector width mismatch between index and data");
8571   assert(isa<ConstantSDNode>(N->getScale()) &&
8572          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8573          "Scale should be a constant power of 2");
8574 
8575   CSEMap.InsertNode(N, IP);
8576   InsertNode(N);
8577   SDValue V(N, 0);
8578   NewSDValueDbgMsg(V, "Creating new node: ", this);
8579   return V;
8580 }
8581 
8582 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8583                                        ArrayRef<SDValue> Ops,
8584                                        MachineMemOperand *MMO,
8585                                        ISD::MemIndexType IndexType,
8586                                        bool IsTrunc) {
8587   assert(Ops.size() == 6 && "Incompatible number of operands");
8588 
8589   FoldingSetNodeID ID;
8590   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8591   ID.AddInteger(MemVT.getRawBits());
8592   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8593       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8594   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8595   ID.AddInteger(MMO->getFlags());
8596   void *IP = nullptr;
8597   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8598     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8599     return SDValue(E, 0);
8600   }
8601 
8602   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8603   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8604                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8605   createOperands(N, Ops);
8606 
8607   assert(N->getMask().getValueType().getVectorElementCount() ==
8608              N->getValue().getValueType().getVectorElementCount() &&
8609          "Vector width mismatch between mask and data");
8610   assert(
8611       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8612           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8613       "Scalable flags of index and data do not match");
8614   assert(ElementCount::isKnownGE(
8615              N->getIndex().getValueType().getVectorElementCount(),
8616              N->getValue().getValueType().getVectorElementCount()) &&
8617          "Vector width mismatch between index and data");
8618   assert(isa<ConstantSDNode>(N->getScale()) &&
8619          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8620          "Scale should be a constant power of 2");
8621 
8622   CSEMap.InsertNode(N, IP);
8623   InsertNode(N);
8624   SDValue V(N, 0);
8625   NewSDValueDbgMsg(V, "Creating new node: ", this);
8626   return V;
8627 }
8628 
8629 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8630   // select undef, T, F --> T (if T is a constant), otherwise F
8631   // select, ?, undef, F --> F
8632   // select, ?, T, undef --> T
8633   if (Cond.isUndef())
8634     return isConstantValueOfAnyType(T) ? T : F;
8635   if (T.isUndef())
8636     return F;
8637   if (F.isUndef())
8638     return T;
8639 
8640   // select true, T, F --> T
8641   // select false, T, F --> F
8642   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8643     return CondC->isZero() ? F : T;
8644 
8645   // TODO: This should simplify VSELECT with constant condition using something
8646   // like this (but check boolean contents to be complete?):
8647   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8648   //    return T;
8649   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8650   //    return F;
8651 
8652   // select ?, T, T --> T
8653   if (T == F)
8654     return T;
8655 
8656   return SDValue();
8657 }
8658 
8659 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8660   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8661   if (X.isUndef())
8662     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8663   // shift X, undef --> undef (because it may shift by the bitwidth)
8664   if (Y.isUndef())
8665     return getUNDEF(X.getValueType());
8666 
8667   // shift 0, Y --> 0
8668   // shift X, 0 --> X
8669   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8670     return X;
8671 
8672   // shift X, C >= bitwidth(X) --> undef
8673   // All vector elements must be too big (or undef) to avoid partial undefs.
8674   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8675     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8676   };
8677   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8678     return getUNDEF(X.getValueType());
8679 
8680   return SDValue();
8681 }
8682 
8683 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8684                                       SDNodeFlags Flags) {
8685   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8686   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8687   // operation is poison. That result can be relaxed to undef.
8688   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8689   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8690   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8691                 (YC && YC->getValueAPF().isNaN());
8692   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8693                 (YC && YC->getValueAPF().isInfinity());
8694 
8695   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8696     return getUNDEF(X.getValueType());
8697 
8698   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8699     return getUNDEF(X.getValueType());
8700 
8701   if (!YC)
8702     return SDValue();
8703 
8704   // X + -0.0 --> X
8705   if (Opcode == ISD::FADD)
8706     if (YC->getValueAPF().isNegZero())
8707       return X;
8708 
8709   // X - +0.0 --> X
8710   if (Opcode == ISD::FSUB)
8711     if (YC->getValueAPF().isPosZero())
8712       return X;
8713 
8714   // X * 1.0 --> X
8715   // X / 1.0 --> X
8716   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8717     if (YC->getValueAPF().isExactlyValue(1.0))
8718       return X;
8719 
8720   // X * 0.0 --> 0.0
8721   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8722     if (YC->getValueAPF().isZero())
8723       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8724 
8725   return SDValue();
8726 }
8727 
8728 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8729                                SDValue Ptr, SDValue SV, unsigned Align) {
8730   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8731   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8732 }
8733 
8734 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8735                               ArrayRef<SDUse> Ops) {
8736   switch (Ops.size()) {
8737   case 0: return getNode(Opcode, DL, VT);
8738   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8739   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8740   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8741   default: break;
8742   }
8743 
8744   // Copy from an SDUse array into an SDValue array for use with
8745   // the regular getNode logic.
8746   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8747   return getNode(Opcode, DL, VT, NewOps);
8748 }
8749 
8750 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8751                               ArrayRef<SDValue> Ops) {
8752   SDNodeFlags Flags;
8753   if (Inserter)
8754     Flags = Inserter->getFlags();
8755   return getNode(Opcode, DL, VT, Ops, Flags);
8756 }
8757 
8758 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8759                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8760   unsigned NumOps = Ops.size();
8761   switch (NumOps) {
8762   case 0: return getNode(Opcode, DL, VT);
8763   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8764   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8765   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8766   default: break;
8767   }
8768 
8769 #ifndef NDEBUG
8770   for (auto &Op : Ops)
8771     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8772            "Operand is DELETED_NODE!");
8773 #endif
8774 
8775   switch (Opcode) {
8776   default: break;
8777   case ISD::BUILD_VECTOR:
8778     // Attempt to simplify BUILD_VECTOR.
8779     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8780       return V;
8781     break;
8782   case ISD::CONCAT_VECTORS:
8783     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8784       return V;
8785     break;
8786   case ISD::SELECT_CC:
8787     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8788     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8789            "LHS and RHS of condition must have same type!");
8790     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8791            "True and False arms of SelectCC must have same type!");
8792     assert(Ops[2].getValueType() == VT &&
8793            "select_cc node must be of same type as true and false value!");
8794     break;
8795   case ISD::BR_CC:
8796     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8797     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8798            "LHS/RHS of comparison should match types!");
8799     break;
8800   }
8801 
8802   // Memoize nodes.
8803   SDNode *N;
8804   SDVTList VTs = getVTList(VT);
8805 
8806   if (VT != MVT::Glue) {
8807     FoldingSetNodeID ID;
8808     AddNodeIDNode(ID, Opcode, VTs, Ops);
8809     void *IP = nullptr;
8810 
8811     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8812       return SDValue(E, 0);
8813 
8814     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8815     createOperands(N, Ops);
8816 
8817     CSEMap.InsertNode(N, IP);
8818   } else {
8819     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8820     createOperands(N, Ops);
8821   }
8822 
8823   N->setFlags(Flags);
8824   InsertNode(N);
8825   SDValue V(N, 0);
8826   NewSDValueDbgMsg(V, "Creating new node: ", this);
8827   return V;
8828 }
8829 
8830 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8831                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8832   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8833 }
8834 
8835 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8836                               ArrayRef<SDValue> Ops) {
8837   SDNodeFlags Flags;
8838   if (Inserter)
8839     Flags = Inserter->getFlags();
8840   return getNode(Opcode, DL, VTList, Ops, Flags);
8841 }
8842 
8843 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8844                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8845   if (VTList.NumVTs == 1)
8846     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8847 
8848 #ifndef NDEBUG
8849   for (auto &Op : Ops)
8850     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8851            "Operand is DELETED_NODE!");
8852 #endif
8853 
8854   switch (Opcode) {
8855   case ISD::STRICT_FP_EXTEND:
8856     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8857            "Invalid STRICT_FP_EXTEND!");
8858     assert(VTList.VTs[0].isFloatingPoint() &&
8859            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8860     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8861            "STRICT_FP_EXTEND result type should be vector iff the operand "
8862            "type is vector!");
8863     assert((!VTList.VTs[0].isVector() ||
8864             VTList.VTs[0].getVectorNumElements() ==
8865             Ops[1].getValueType().getVectorNumElements()) &&
8866            "Vector element count mismatch!");
8867     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8868            "Invalid fpext node, dst <= src!");
8869     break;
8870   case ISD::STRICT_FP_ROUND:
8871     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8872     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8873            "STRICT_FP_ROUND result type should be vector iff the operand "
8874            "type is vector!");
8875     assert((!VTList.VTs[0].isVector() ||
8876             VTList.VTs[0].getVectorNumElements() ==
8877             Ops[1].getValueType().getVectorNumElements()) &&
8878            "Vector element count mismatch!");
8879     assert(VTList.VTs[0].isFloatingPoint() &&
8880            Ops[1].getValueType().isFloatingPoint() &&
8881            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8882            isa<ConstantSDNode>(Ops[2]) &&
8883            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8884             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8885            "Invalid STRICT_FP_ROUND!");
8886     break;
8887 #if 0
8888   // FIXME: figure out how to safely handle things like
8889   // int foo(int x) { return 1 << (x & 255); }
8890   // int bar() { return foo(256); }
8891   case ISD::SRA_PARTS:
8892   case ISD::SRL_PARTS:
8893   case ISD::SHL_PARTS:
8894     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8895         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8896       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8897     else if (N3.getOpcode() == ISD::AND)
8898       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8899         // If the and is only masking out bits that cannot effect the shift,
8900         // eliminate the and.
8901         unsigned NumBits = VT.getScalarSizeInBits()*2;
8902         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8903           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8904       }
8905     break;
8906 #endif
8907   }
8908 
8909   // Memoize the node unless it returns a flag.
8910   SDNode *N;
8911   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8912     FoldingSetNodeID ID;
8913     AddNodeIDNode(ID, Opcode, VTList, Ops);
8914     void *IP = nullptr;
8915     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8916       return SDValue(E, 0);
8917 
8918     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8919     createOperands(N, Ops);
8920     CSEMap.InsertNode(N, IP);
8921   } else {
8922     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8923     createOperands(N, Ops);
8924   }
8925 
8926   N->setFlags(Flags);
8927   InsertNode(N);
8928   SDValue V(N, 0);
8929   NewSDValueDbgMsg(V, "Creating new node: ", this);
8930   return V;
8931 }
8932 
8933 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8934                               SDVTList VTList) {
8935   return getNode(Opcode, DL, VTList, None);
8936 }
8937 
8938 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8939                               SDValue N1) {
8940   SDValue Ops[] = { N1 };
8941   return getNode(Opcode, DL, VTList, Ops);
8942 }
8943 
8944 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8945                               SDValue N1, SDValue N2) {
8946   SDValue Ops[] = { N1, N2 };
8947   return getNode(Opcode, DL, VTList, Ops);
8948 }
8949 
8950 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8951                               SDValue N1, SDValue N2, SDValue N3) {
8952   SDValue Ops[] = { N1, N2, N3 };
8953   return getNode(Opcode, DL, VTList, Ops);
8954 }
8955 
8956 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8957                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8958   SDValue Ops[] = { N1, N2, N3, N4 };
8959   return getNode(Opcode, DL, VTList, Ops);
8960 }
8961 
8962 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8963                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8964                               SDValue N5) {
8965   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8966   return getNode(Opcode, DL, VTList, Ops);
8967 }
8968 
8969 SDVTList SelectionDAG::getVTList(EVT VT) {
8970   return makeVTList(SDNode::getValueTypeList(VT), 1);
8971 }
8972 
8973 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8974   FoldingSetNodeID ID;
8975   ID.AddInteger(2U);
8976   ID.AddInteger(VT1.getRawBits());
8977   ID.AddInteger(VT2.getRawBits());
8978 
8979   void *IP = nullptr;
8980   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8981   if (!Result) {
8982     EVT *Array = Allocator.Allocate<EVT>(2);
8983     Array[0] = VT1;
8984     Array[1] = VT2;
8985     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8986     VTListMap.InsertNode(Result, IP);
8987   }
8988   return Result->getSDVTList();
8989 }
8990 
8991 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8992   FoldingSetNodeID ID;
8993   ID.AddInteger(3U);
8994   ID.AddInteger(VT1.getRawBits());
8995   ID.AddInteger(VT2.getRawBits());
8996   ID.AddInteger(VT3.getRawBits());
8997 
8998   void *IP = nullptr;
8999   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9000   if (!Result) {
9001     EVT *Array = Allocator.Allocate<EVT>(3);
9002     Array[0] = VT1;
9003     Array[1] = VT2;
9004     Array[2] = VT3;
9005     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
9006     VTListMap.InsertNode(Result, IP);
9007   }
9008   return Result->getSDVTList();
9009 }
9010 
9011 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
9012   FoldingSetNodeID ID;
9013   ID.AddInteger(4U);
9014   ID.AddInteger(VT1.getRawBits());
9015   ID.AddInteger(VT2.getRawBits());
9016   ID.AddInteger(VT3.getRawBits());
9017   ID.AddInteger(VT4.getRawBits());
9018 
9019   void *IP = nullptr;
9020   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9021   if (!Result) {
9022     EVT *Array = Allocator.Allocate<EVT>(4);
9023     Array[0] = VT1;
9024     Array[1] = VT2;
9025     Array[2] = VT3;
9026     Array[3] = VT4;
9027     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
9028     VTListMap.InsertNode(Result, IP);
9029   }
9030   return Result->getSDVTList();
9031 }
9032 
9033 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
9034   unsigned NumVTs = VTs.size();
9035   FoldingSetNodeID ID;
9036   ID.AddInteger(NumVTs);
9037   for (unsigned index = 0; index < NumVTs; index++) {
9038     ID.AddInteger(VTs[index].getRawBits());
9039   }
9040 
9041   void *IP = nullptr;
9042   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9043   if (!Result) {
9044     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
9045     llvm::copy(VTs, Array);
9046     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
9047     VTListMap.InsertNode(Result, IP);
9048   }
9049   return Result->getSDVTList();
9050 }
9051 
9052 
9053 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
9054 /// specified operands.  If the resultant node already exists in the DAG,
9055 /// this does not modify the specified node, instead it returns the node that
9056 /// already exists.  If the resultant node does not exist in the DAG, the
9057 /// input node is returned.  As a degenerate case, if you specify the same
9058 /// input operands as the node already has, the input node is returned.
9059 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
9060   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
9061 
9062   // Check to see if there is no change.
9063   if (Op == N->getOperand(0)) return N;
9064 
9065   // See if the modified node already exists.
9066   void *InsertPos = nullptr;
9067   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
9068     return Existing;
9069 
9070   // Nope it doesn't.  Remove the node from its current place in the maps.
9071   if (InsertPos)
9072     if (!RemoveNodeFromCSEMaps(N))
9073       InsertPos = nullptr;
9074 
9075   // Now we update the operands.
9076   N->OperandList[0].set(Op);
9077 
9078   updateDivergence(N);
9079   // If this gets put into a CSE map, add it.
9080   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9081   return N;
9082 }
9083 
9084 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
9085   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
9086 
9087   // Check to see if there is no change.
9088   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
9089     return N;   // No operands changed, just return the input node.
9090 
9091   // See if the modified node already exists.
9092   void *InsertPos = nullptr;
9093   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
9094     return Existing;
9095 
9096   // Nope it doesn't.  Remove the node from its current place in the maps.
9097   if (InsertPos)
9098     if (!RemoveNodeFromCSEMaps(N))
9099       InsertPos = nullptr;
9100 
9101   // Now we update the operands.
9102   if (N->OperandList[0] != Op1)
9103     N->OperandList[0].set(Op1);
9104   if (N->OperandList[1] != Op2)
9105     N->OperandList[1].set(Op2);
9106 
9107   updateDivergence(N);
9108   // If this gets put into a CSE map, add it.
9109   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9110   return N;
9111 }
9112 
9113 SDNode *SelectionDAG::
9114 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
9115   SDValue Ops[] = { Op1, Op2, Op3 };
9116   return UpdateNodeOperands(N, Ops);
9117 }
9118 
9119 SDNode *SelectionDAG::
9120 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9121                    SDValue Op3, SDValue Op4) {
9122   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
9123   return UpdateNodeOperands(N, Ops);
9124 }
9125 
9126 SDNode *SelectionDAG::
9127 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9128                    SDValue Op3, SDValue Op4, SDValue Op5) {
9129   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
9130   return UpdateNodeOperands(N, Ops);
9131 }
9132 
9133 SDNode *SelectionDAG::
9134 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
9135   unsigned NumOps = Ops.size();
9136   assert(N->getNumOperands() == NumOps &&
9137          "Update with wrong number of operands");
9138 
9139   // If no operands changed just return the input node.
9140   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
9141     return N;
9142 
9143   // See if the modified node already exists.
9144   void *InsertPos = nullptr;
9145   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
9146     return Existing;
9147 
9148   // Nope it doesn't.  Remove the node from its current place in the maps.
9149   if (InsertPos)
9150     if (!RemoveNodeFromCSEMaps(N))
9151       InsertPos = nullptr;
9152 
9153   // Now we update the operands.
9154   for (unsigned i = 0; i != NumOps; ++i)
9155     if (N->OperandList[i] != Ops[i])
9156       N->OperandList[i].set(Ops[i]);
9157 
9158   updateDivergence(N);
9159   // If this gets put into a CSE map, add it.
9160   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9161   return N;
9162 }
9163 
9164 /// DropOperands - Release the operands and set this node to have
9165 /// zero operands.
9166 void SDNode::DropOperands() {
9167   // Unlike the code in MorphNodeTo that does this, we don't need to
9168   // watch for dead nodes here.
9169   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
9170     SDUse &Use = *I++;
9171     Use.set(SDValue());
9172   }
9173 }
9174 
9175 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
9176                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
9177   if (NewMemRefs.empty()) {
9178     N->clearMemRefs();
9179     return;
9180   }
9181 
9182   // Check if we can avoid allocating by storing a single reference directly.
9183   if (NewMemRefs.size() == 1) {
9184     N->MemRefs = NewMemRefs[0];
9185     N->NumMemRefs = 1;
9186     return;
9187   }
9188 
9189   MachineMemOperand **MemRefsBuffer =
9190       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
9191   llvm::copy(NewMemRefs, MemRefsBuffer);
9192   N->MemRefs = MemRefsBuffer;
9193   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
9194 }
9195 
9196 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
9197 /// machine opcode.
9198 ///
9199 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9200                                    EVT VT) {
9201   SDVTList VTs = getVTList(VT);
9202   return SelectNodeTo(N, MachineOpc, VTs, None);
9203 }
9204 
9205 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9206                                    EVT VT, SDValue Op1) {
9207   SDVTList VTs = getVTList(VT);
9208   SDValue Ops[] = { Op1 };
9209   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9210 }
9211 
9212 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9213                                    EVT VT, SDValue Op1,
9214                                    SDValue Op2) {
9215   SDVTList VTs = getVTList(VT);
9216   SDValue Ops[] = { Op1, Op2 };
9217   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9218 }
9219 
9220 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9221                                    EVT VT, SDValue Op1,
9222                                    SDValue Op2, SDValue Op3) {
9223   SDVTList VTs = getVTList(VT);
9224   SDValue Ops[] = { Op1, Op2, Op3 };
9225   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9226 }
9227 
9228 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9229                                    EVT VT, ArrayRef<SDValue> Ops) {
9230   SDVTList VTs = getVTList(VT);
9231   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9232 }
9233 
9234 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9235                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
9236   SDVTList VTs = getVTList(VT1, VT2);
9237   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9238 }
9239 
9240 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9241                                    EVT VT1, EVT VT2) {
9242   SDVTList VTs = getVTList(VT1, VT2);
9243   return SelectNodeTo(N, MachineOpc, VTs, None);
9244 }
9245 
9246 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9247                                    EVT VT1, EVT VT2, EVT VT3,
9248                                    ArrayRef<SDValue> Ops) {
9249   SDVTList VTs = getVTList(VT1, VT2, VT3);
9250   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9251 }
9252 
9253 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9254                                    EVT VT1, EVT VT2,
9255                                    SDValue Op1, SDValue Op2) {
9256   SDVTList VTs = getVTList(VT1, VT2);
9257   SDValue Ops[] = { Op1, Op2 };
9258   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9259 }
9260 
9261 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9262                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
9263   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
9264   // Reset the NodeID to -1.
9265   New->setNodeId(-1);
9266   if (New != N) {
9267     ReplaceAllUsesWith(N, New);
9268     RemoveDeadNode(N);
9269   }
9270   return New;
9271 }
9272 
9273 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
9274 /// the line number information on the merged node since it is not possible to
9275 /// preserve the information that operation is associated with multiple lines.
9276 /// This will make the debugger working better at -O0, were there is a higher
9277 /// probability having other instructions associated with that line.
9278 ///
9279 /// For IROrder, we keep the smaller of the two
9280 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
9281   DebugLoc NLoc = N->getDebugLoc();
9282   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
9283     N->setDebugLoc(DebugLoc());
9284   }
9285   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
9286   N->setIROrder(Order);
9287   return N;
9288 }
9289 
9290 /// MorphNodeTo - This *mutates* the specified node to have the specified
9291 /// return type, opcode, and operands.
9292 ///
9293 /// Note that MorphNodeTo returns the resultant node.  If there is already a
9294 /// node of the specified opcode and operands, it returns that node instead of
9295 /// the current one.  Note that the SDLoc need not be the same.
9296 ///
9297 /// Using MorphNodeTo is faster than creating a new node and swapping it in
9298 /// with ReplaceAllUsesWith both because it often avoids allocating a new
9299 /// node, and because it doesn't require CSE recalculation for any of
9300 /// the node's users.
9301 ///
9302 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
9303 /// As a consequence it isn't appropriate to use from within the DAG combiner or
9304 /// the legalizer which maintain worklists that would need to be updated when
9305 /// deleting things.
9306 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
9307                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
9308   // If an identical node already exists, use it.
9309   void *IP = nullptr;
9310   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
9311     FoldingSetNodeID ID;
9312     AddNodeIDNode(ID, Opc, VTs, Ops);
9313     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
9314       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
9315   }
9316 
9317   if (!RemoveNodeFromCSEMaps(N))
9318     IP = nullptr;
9319 
9320   // Start the morphing.
9321   N->NodeType = Opc;
9322   N->ValueList = VTs.VTs;
9323   N->NumValues = VTs.NumVTs;
9324 
9325   // Clear the operands list, updating used nodes to remove this from their
9326   // use list.  Keep track of any operands that become dead as a result.
9327   SmallPtrSet<SDNode*, 16> DeadNodeSet;
9328   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
9329     SDUse &Use = *I++;
9330     SDNode *Used = Use.getNode();
9331     Use.set(SDValue());
9332     if (Used->use_empty())
9333       DeadNodeSet.insert(Used);
9334   }
9335 
9336   // For MachineNode, initialize the memory references information.
9337   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
9338     MN->clearMemRefs();
9339 
9340   // Swap for an appropriately sized array from the recycler.
9341   removeOperands(N);
9342   createOperands(N, Ops);
9343 
9344   // Delete any nodes that are still dead after adding the uses for the
9345   // new operands.
9346   if (!DeadNodeSet.empty()) {
9347     SmallVector<SDNode *, 16> DeadNodes;
9348     for (SDNode *N : DeadNodeSet)
9349       if (N->use_empty())
9350         DeadNodes.push_back(N);
9351     RemoveDeadNodes(DeadNodes);
9352   }
9353 
9354   if (IP)
9355     CSEMap.InsertNode(N, IP);   // Memoize the new node.
9356   return N;
9357 }
9358 
9359 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
9360   unsigned OrigOpc = Node->getOpcode();
9361   unsigned NewOpc;
9362   switch (OrigOpc) {
9363   default:
9364     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
9365 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9366   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
9367 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9368   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
9369 #include "llvm/IR/ConstrainedOps.def"
9370   }
9371 
9372   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
9373 
9374   // We're taking this node out of the chain, so we need to re-link things.
9375   SDValue InputChain = Node->getOperand(0);
9376   SDValue OutputChain = SDValue(Node, 1);
9377   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
9378 
9379   SmallVector<SDValue, 3> Ops;
9380   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
9381     Ops.push_back(Node->getOperand(i));
9382 
9383   SDVTList VTs = getVTList(Node->getValueType(0));
9384   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9385 
9386   // MorphNodeTo can operate in two ways: if an existing node with the
9387   // specified operands exists, it can just return it.  Otherwise, it
9388   // updates the node in place to have the requested operands.
9389   if (Res == Node) {
9390     // If we updated the node in place, reset the node ID.  To the isel,
9391     // this should be just like a newly allocated machine node.
9392     Res->setNodeId(-1);
9393   } else {
9394     ReplaceAllUsesWith(Node, Res);
9395     RemoveDeadNode(Node);
9396   }
9397 
9398   return Res;
9399 }
9400 
9401 /// getMachineNode - These are used for target selectors to create a new node
9402 /// with specified return type(s), MachineInstr opcode, and operands.
9403 ///
9404 /// Note that getMachineNode returns the resultant node.  If there is already a
9405 /// node of the specified opcode and operands, it returns that node instead of
9406 /// the current one.
9407 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9408                                             EVT VT) {
9409   SDVTList VTs = getVTList(VT);
9410   return getMachineNode(Opcode, dl, VTs, None);
9411 }
9412 
9413 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9414                                             EVT VT, SDValue Op1) {
9415   SDVTList VTs = getVTList(VT);
9416   SDValue Ops[] = { Op1 };
9417   return getMachineNode(Opcode, dl, VTs, Ops);
9418 }
9419 
9420 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9421                                             EVT VT, SDValue Op1, SDValue Op2) {
9422   SDVTList VTs = getVTList(VT);
9423   SDValue Ops[] = { Op1, Op2 };
9424   return getMachineNode(Opcode, dl, VTs, Ops);
9425 }
9426 
9427 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9428                                             EVT VT, SDValue Op1, SDValue Op2,
9429                                             SDValue Op3) {
9430   SDVTList VTs = getVTList(VT);
9431   SDValue Ops[] = { Op1, Op2, Op3 };
9432   return getMachineNode(Opcode, dl, VTs, Ops);
9433 }
9434 
9435 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9436                                             EVT VT, ArrayRef<SDValue> Ops) {
9437   SDVTList VTs = getVTList(VT);
9438   return getMachineNode(Opcode, dl, VTs, Ops);
9439 }
9440 
9441 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9442                                             EVT VT1, EVT VT2, SDValue Op1,
9443                                             SDValue Op2) {
9444   SDVTList VTs = getVTList(VT1, VT2);
9445   SDValue Ops[] = { Op1, Op2 };
9446   return getMachineNode(Opcode, dl, VTs, Ops);
9447 }
9448 
9449 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9450                                             EVT VT1, EVT VT2, SDValue Op1,
9451                                             SDValue Op2, SDValue Op3) {
9452   SDVTList VTs = getVTList(VT1, VT2);
9453   SDValue Ops[] = { Op1, Op2, Op3 };
9454   return getMachineNode(Opcode, dl, VTs, Ops);
9455 }
9456 
9457 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9458                                             EVT VT1, EVT VT2,
9459                                             ArrayRef<SDValue> Ops) {
9460   SDVTList VTs = getVTList(VT1, VT2);
9461   return getMachineNode(Opcode, dl, VTs, Ops);
9462 }
9463 
9464 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9465                                             EVT VT1, EVT VT2, EVT VT3,
9466                                             SDValue Op1, SDValue Op2) {
9467   SDVTList VTs = getVTList(VT1, VT2, VT3);
9468   SDValue Ops[] = { Op1, Op2 };
9469   return getMachineNode(Opcode, dl, VTs, Ops);
9470 }
9471 
9472 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9473                                             EVT VT1, EVT VT2, EVT VT3,
9474                                             SDValue Op1, SDValue Op2,
9475                                             SDValue Op3) {
9476   SDVTList VTs = getVTList(VT1, VT2, VT3);
9477   SDValue Ops[] = { Op1, Op2, Op3 };
9478   return getMachineNode(Opcode, dl, VTs, Ops);
9479 }
9480 
9481 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9482                                             EVT VT1, EVT VT2, EVT VT3,
9483                                             ArrayRef<SDValue> Ops) {
9484   SDVTList VTs = getVTList(VT1, VT2, VT3);
9485   return getMachineNode(Opcode, dl, VTs, Ops);
9486 }
9487 
9488 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9489                                             ArrayRef<EVT> ResultTys,
9490                                             ArrayRef<SDValue> Ops) {
9491   SDVTList VTs = getVTList(ResultTys);
9492   return getMachineNode(Opcode, dl, VTs, Ops);
9493 }
9494 
9495 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9496                                             SDVTList VTs,
9497                                             ArrayRef<SDValue> Ops) {
9498   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9499   MachineSDNode *N;
9500   void *IP = nullptr;
9501 
9502   if (DoCSE) {
9503     FoldingSetNodeID ID;
9504     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9505     IP = nullptr;
9506     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9507       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9508     }
9509   }
9510 
9511   // Allocate a new MachineSDNode.
9512   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9513   createOperands(N, Ops);
9514 
9515   if (DoCSE)
9516     CSEMap.InsertNode(N, IP);
9517 
9518   InsertNode(N);
9519   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9520   return N;
9521 }
9522 
9523 /// getTargetExtractSubreg - A convenience function for creating
9524 /// TargetOpcode::EXTRACT_SUBREG nodes.
9525 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9526                                              SDValue Operand) {
9527   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9528   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9529                                   VT, Operand, SRIdxVal);
9530   return SDValue(Subreg, 0);
9531 }
9532 
9533 /// getTargetInsertSubreg - A convenience function for creating
9534 /// TargetOpcode::INSERT_SUBREG nodes.
9535 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9536                                             SDValue Operand, SDValue Subreg) {
9537   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9538   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9539                                   VT, Operand, Subreg, SRIdxVal);
9540   return SDValue(Result, 0);
9541 }
9542 
9543 /// getNodeIfExists - Get the specified node if it's already available, or
9544 /// else return NULL.
9545 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9546                                       ArrayRef<SDValue> Ops) {
9547   SDNodeFlags Flags;
9548   if (Inserter)
9549     Flags = Inserter->getFlags();
9550   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9551 }
9552 
9553 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9554                                       ArrayRef<SDValue> Ops,
9555                                       const SDNodeFlags Flags) {
9556   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9557     FoldingSetNodeID ID;
9558     AddNodeIDNode(ID, Opcode, VTList, Ops);
9559     void *IP = nullptr;
9560     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9561       E->intersectFlagsWith(Flags);
9562       return E;
9563     }
9564   }
9565   return nullptr;
9566 }
9567 
9568 /// doesNodeExist - Check if a node exists without modifying its flags.
9569 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9570                                  ArrayRef<SDValue> Ops) {
9571   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9572     FoldingSetNodeID ID;
9573     AddNodeIDNode(ID, Opcode, VTList, Ops);
9574     void *IP = nullptr;
9575     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9576       return true;
9577   }
9578   return false;
9579 }
9580 
9581 /// getDbgValue - Creates a SDDbgValue node.
9582 ///
9583 /// SDNode
9584 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9585                                       SDNode *N, unsigned R, bool IsIndirect,
9586                                       const DebugLoc &DL, unsigned O) {
9587   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9588          "Expected inlined-at fields to agree");
9589   return new (DbgInfo->getAlloc())
9590       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9591                  {}, IsIndirect, DL, O,
9592                  /*IsVariadic=*/false);
9593 }
9594 
9595 /// Constant
9596 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9597                                               DIExpression *Expr,
9598                                               const Value *C,
9599                                               const DebugLoc &DL, unsigned O) {
9600   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9601          "Expected inlined-at fields to agree");
9602   return new (DbgInfo->getAlloc())
9603       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9604                  /*IsIndirect=*/false, DL, O,
9605                  /*IsVariadic=*/false);
9606 }
9607 
9608 /// FrameIndex
9609 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9610                                                 DIExpression *Expr, unsigned FI,
9611                                                 bool IsIndirect,
9612                                                 const DebugLoc &DL,
9613                                                 unsigned O) {
9614   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9615          "Expected inlined-at fields to agree");
9616   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9617 }
9618 
9619 /// FrameIndex with dependencies
9620 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9621                                                 DIExpression *Expr, unsigned FI,
9622                                                 ArrayRef<SDNode *> Dependencies,
9623                                                 bool IsIndirect,
9624                                                 const DebugLoc &DL,
9625                                                 unsigned O) {
9626   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9627          "Expected inlined-at fields to agree");
9628   return new (DbgInfo->getAlloc())
9629       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9630                  Dependencies, IsIndirect, DL, O,
9631                  /*IsVariadic=*/false);
9632 }
9633 
9634 /// VReg
9635 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9636                                           unsigned VReg, bool IsIndirect,
9637                                           const DebugLoc &DL, unsigned O) {
9638   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9639          "Expected inlined-at fields to agree");
9640   return new (DbgInfo->getAlloc())
9641       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9642                  {}, IsIndirect, DL, O,
9643                  /*IsVariadic=*/false);
9644 }
9645 
9646 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9647                                           ArrayRef<SDDbgOperand> Locs,
9648                                           ArrayRef<SDNode *> Dependencies,
9649                                           bool IsIndirect, const DebugLoc &DL,
9650                                           unsigned O, bool IsVariadic) {
9651   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9652          "Expected inlined-at fields to agree");
9653   return new (DbgInfo->getAlloc())
9654       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9655                  DL, O, IsVariadic);
9656 }
9657 
9658 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9659                                      unsigned OffsetInBits, unsigned SizeInBits,
9660                                      bool InvalidateDbg) {
9661   SDNode *FromNode = From.getNode();
9662   SDNode *ToNode = To.getNode();
9663   assert(FromNode && ToNode && "Can't modify dbg values");
9664 
9665   // PR35338
9666   // TODO: assert(From != To && "Redundant dbg value transfer");
9667   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9668   if (From == To || FromNode == ToNode)
9669     return;
9670 
9671   if (!FromNode->getHasDebugValue())
9672     return;
9673 
9674   SDDbgOperand FromLocOp =
9675       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9676   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9677 
9678   SmallVector<SDDbgValue *, 2> ClonedDVs;
9679   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9680     if (Dbg->isInvalidated())
9681       continue;
9682 
9683     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9684 
9685     // Create a new location ops vector that is equal to the old vector, but
9686     // with each instance of FromLocOp replaced with ToLocOp.
9687     bool Changed = false;
9688     auto NewLocOps = Dbg->copyLocationOps();
9689     std::replace_if(
9690         NewLocOps.begin(), NewLocOps.end(),
9691         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9692           bool Match = Op == FromLocOp;
9693           Changed |= Match;
9694           return Match;
9695         },
9696         ToLocOp);
9697     // Ignore this SDDbgValue if we didn't find a matching location.
9698     if (!Changed)
9699       continue;
9700 
9701     DIVariable *Var = Dbg->getVariable();
9702     auto *Expr = Dbg->getExpression();
9703     // If a fragment is requested, update the expression.
9704     if (SizeInBits) {
9705       // When splitting a larger (e.g., sign-extended) value whose
9706       // lower bits are described with an SDDbgValue, do not attempt
9707       // to transfer the SDDbgValue to the upper bits.
9708       if (auto FI = Expr->getFragmentInfo())
9709         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9710           continue;
9711       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9712                                                              SizeInBits);
9713       if (!Fragment)
9714         continue;
9715       Expr = *Fragment;
9716     }
9717 
9718     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9719     // Clone the SDDbgValue and move it to To.
9720     SDDbgValue *Clone = getDbgValueList(
9721         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9722         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9723         Dbg->isVariadic());
9724     ClonedDVs.push_back(Clone);
9725 
9726     if (InvalidateDbg) {
9727       // Invalidate value and indicate the SDDbgValue should not be emitted.
9728       Dbg->setIsInvalidated();
9729       Dbg->setIsEmitted();
9730     }
9731   }
9732 
9733   for (SDDbgValue *Dbg : ClonedDVs) {
9734     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9735            "Transferred DbgValues should depend on the new SDNode");
9736     AddDbgValue(Dbg, false);
9737   }
9738 }
9739 
9740 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9741   if (!N.getHasDebugValue())
9742     return;
9743 
9744   SmallVector<SDDbgValue *, 2> ClonedDVs;
9745   for (auto DV : GetDbgValues(&N)) {
9746     if (DV->isInvalidated())
9747       continue;
9748     switch (N.getOpcode()) {
9749     default:
9750       break;
9751     case ISD::ADD:
9752       SDValue N0 = N.getOperand(0);
9753       SDValue N1 = N.getOperand(1);
9754       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9755           isConstantIntBuildVectorOrConstantInt(N1)) {
9756         uint64_t Offset = N.getConstantOperandVal(1);
9757 
9758         // Rewrite an ADD constant node into a DIExpression. Since we are
9759         // performing arithmetic to compute the variable's *value* in the
9760         // DIExpression, we need to mark the expression with a
9761         // DW_OP_stack_value.
9762         auto *DIExpr = DV->getExpression();
9763         auto NewLocOps = DV->copyLocationOps();
9764         bool Changed = false;
9765         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9766           // We're not given a ResNo to compare against because the whole
9767           // node is going away. We know that any ISD::ADD only has one
9768           // result, so we can assume any node match is using the result.
9769           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9770               NewLocOps[i].getSDNode() != &N)
9771             continue;
9772           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9773           SmallVector<uint64_t, 3> ExprOps;
9774           DIExpression::appendOffset(ExprOps, Offset);
9775           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9776           Changed = true;
9777         }
9778         (void)Changed;
9779         assert(Changed && "Salvage target doesn't use N");
9780 
9781         auto AdditionalDependencies = DV->getAdditionalDependencies();
9782         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9783                                             NewLocOps, AdditionalDependencies,
9784                                             DV->isIndirect(), DV->getDebugLoc(),
9785                                             DV->getOrder(), DV->isVariadic());
9786         ClonedDVs.push_back(Clone);
9787         DV->setIsInvalidated();
9788         DV->setIsEmitted();
9789         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9790                    N0.getNode()->dumprFull(this);
9791                    dbgs() << " into " << *DIExpr << '\n');
9792       }
9793     }
9794   }
9795 
9796   for (SDDbgValue *Dbg : ClonedDVs) {
9797     assert(!Dbg->getSDNodes().empty() &&
9798            "Salvaged DbgValue should depend on a new SDNode");
9799     AddDbgValue(Dbg, false);
9800   }
9801 }
9802 
9803 /// Creates a SDDbgLabel node.
9804 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9805                                       const DebugLoc &DL, unsigned O) {
9806   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9807          "Expected inlined-at fields to agree");
9808   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9809 }
9810 
9811 namespace {
9812 
9813 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9814 /// pointed to by a use iterator is deleted, increment the use iterator
9815 /// so that it doesn't dangle.
9816 ///
9817 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9818   SDNode::use_iterator &UI;
9819   SDNode::use_iterator &UE;
9820 
9821   void NodeDeleted(SDNode *N, SDNode *E) override {
9822     // Increment the iterator as needed.
9823     while (UI != UE && N == *UI)
9824       ++UI;
9825   }
9826 
9827 public:
9828   RAUWUpdateListener(SelectionDAG &d,
9829                      SDNode::use_iterator &ui,
9830                      SDNode::use_iterator &ue)
9831     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9832 };
9833 
9834 } // end anonymous namespace
9835 
9836 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9837 /// This can cause recursive merging of nodes in the DAG.
9838 ///
9839 /// This version assumes From has a single result value.
9840 ///
9841 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9842   SDNode *From = FromN.getNode();
9843   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9844          "Cannot replace with this method!");
9845   assert(From != To.getNode() && "Cannot replace uses of with self");
9846 
9847   // Preserve Debug Values
9848   transferDbgValues(FromN, To);
9849 
9850   // Iterate over all the existing uses of From. New uses will be added
9851   // to the beginning of the use list, which we avoid visiting.
9852   // This specifically avoids visiting uses of From that arise while the
9853   // replacement is happening, because any such uses would be the result
9854   // of CSE: If an existing node looks like From after one of its operands
9855   // is replaced by To, we don't want to replace of all its users with To
9856   // too. See PR3018 for more info.
9857   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9858   RAUWUpdateListener Listener(*this, UI, UE);
9859   while (UI != UE) {
9860     SDNode *User = *UI;
9861 
9862     // This node is about to morph, remove its old self from the CSE maps.
9863     RemoveNodeFromCSEMaps(User);
9864 
9865     // A user can appear in a use list multiple times, and when this
9866     // happens the uses are usually next to each other in the list.
9867     // To help reduce the number of CSE recomputations, process all
9868     // the uses of this user that we can find this way.
9869     do {
9870       SDUse &Use = UI.getUse();
9871       ++UI;
9872       Use.set(To);
9873       if (To->isDivergent() != From->isDivergent())
9874         updateDivergence(User);
9875     } while (UI != UE && *UI == User);
9876     // Now that we have modified User, add it back to the CSE maps.  If it
9877     // already exists there, recursively merge the results together.
9878     AddModifiedNodeToCSEMaps(User);
9879   }
9880 
9881   // If we just RAUW'd the root, take note.
9882   if (FromN == getRoot())
9883     setRoot(To);
9884 }
9885 
9886 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9887 /// This can cause recursive merging of nodes in the DAG.
9888 ///
9889 /// This version assumes that for each value of From, there is a
9890 /// corresponding value in To in the same position with the same type.
9891 ///
9892 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9893 #ifndef NDEBUG
9894   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9895     assert((!From->hasAnyUseOfValue(i) ||
9896             From->getValueType(i) == To->getValueType(i)) &&
9897            "Cannot use this version of ReplaceAllUsesWith!");
9898 #endif
9899 
9900   // Handle the trivial case.
9901   if (From == To)
9902     return;
9903 
9904   // Preserve Debug Info. Only do this if there's a use.
9905   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9906     if (From->hasAnyUseOfValue(i)) {
9907       assert((i < To->getNumValues()) && "Invalid To location");
9908       transferDbgValues(SDValue(From, i), SDValue(To, i));
9909     }
9910 
9911   // Iterate over just the existing users of From. See the comments in
9912   // the ReplaceAllUsesWith above.
9913   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9914   RAUWUpdateListener Listener(*this, UI, UE);
9915   while (UI != UE) {
9916     SDNode *User = *UI;
9917 
9918     // This node is about to morph, remove its old self from the CSE maps.
9919     RemoveNodeFromCSEMaps(User);
9920 
9921     // A user can appear in a use list multiple times, and when this
9922     // happens the uses are usually next to each other in the list.
9923     // To help reduce the number of CSE recomputations, process all
9924     // the uses of this user that we can find this way.
9925     do {
9926       SDUse &Use = UI.getUse();
9927       ++UI;
9928       Use.setNode(To);
9929       if (To->isDivergent() != From->isDivergent())
9930         updateDivergence(User);
9931     } while (UI != UE && *UI == User);
9932 
9933     // Now that we have modified User, add it back to the CSE maps.  If it
9934     // already exists there, recursively merge the results together.
9935     AddModifiedNodeToCSEMaps(User);
9936   }
9937 
9938   // If we just RAUW'd the root, take note.
9939   if (From == getRoot().getNode())
9940     setRoot(SDValue(To, getRoot().getResNo()));
9941 }
9942 
9943 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9944 /// This can cause recursive merging of nodes in the DAG.
9945 ///
9946 /// This version can replace From with any result values.  To must match the
9947 /// number and types of values returned by From.
9948 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9949   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9950     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9951 
9952   // Preserve Debug Info.
9953   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9954     transferDbgValues(SDValue(From, i), To[i]);
9955 
9956   // Iterate over just the existing users of From. See the comments in
9957   // the ReplaceAllUsesWith above.
9958   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9959   RAUWUpdateListener Listener(*this, UI, UE);
9960   while (UI != UE) {
9961     SDNode *User = *UI;
9962 
9963     // This node is about to morph, remove its old self from the CSE maps.
9964     RemoveNodeFromCSEMaps(User);
9965 
9966     // A user can appear in a use list multiple times, and when this happens the
9967     // uses are usually next to each other in the list.  To help reduce the
9968     // number of CSE and divergence recomputations, process all the uses of this
9969     // user that we can find this way.
9970     bool To_IsDivergent = false;
9971     do {
9972       SDUse &Use = UI.getUse();
9973       const SDValue &ToOp = To[Use.getResNo()];
9974       ++UI;
9975       Use.set(ToOp);
9976       To_IsDivergent |= ToOp->isDivergent();
9977     } while (UI != UE && *UI == User);
9978 
9979     if (To_IsDivergent != From->isDivergent())
9980       updateDivergence(User);
9981 
9982     // Now that we have modified User, add it back to the CSE maps.  If it
9983     // already exists there, recursively merge the results together.
9984     AddModifiedNodeToCSEMaps(User);
9985   }
9986 
9987   // If we just RAUW'd the root, take note.
9988   if (From == getRoot().getNode())
9989     setRoot(SDValue(To[getRoot().getResNo()]));
9990 }
9991 
9992 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9993 /// uses of other values produced by From.getNode() alone.  The Deleted
9994 /// vector is handled the same way as for ReplaceAllUsesWith.
9995 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9996   // Handle the really simple, really trivial case efficiently.
9997   if (From == To) return;
9998 
9999   // Handle the simple, trivial, case efficiently.
10000   if (From.getNode()->getNumValues() == 1) {
10001     ReplaceAllUsesWith(From, To);
10002     return;
10003   }
10004 
10005   // Preserve Debug Info.
10006   transferDbgValues(From, To);
10007 
10008   // Iterate over just the existing users of From. See the comments in
10009   // the ReplaceAllUsesWith above.
10010   SDNode::use_iterator UI = From.getNode()->use_begin(),
10011                        UE = From.getNode()->use_end();
10012   RAUWUpdateListener Listener(*this, UI, UE);
10013   while (UI != UE) {
10014     SDNode *User = *UI;
10015     bool UserRemovedFromCSEMaps = false;
10016 
10017     // A user can appear in a use list multiple times, and when this
10018     // happens the uses are usually next to each other in the list.
10019     // To help reduce the number of CSE recomputations, process all
10020     // the uses of this user that we can find this way.
10021     do {
10022       SDUse &Use = UI.getUse();
10023 
10024       // Skip uses of different values from the same node.
10025       if (Use.getResNo() != From.getResNo()) {
10026         ++UI;
10027         continue;
10028       }
10029 
10030       // If this node hasn't been modified yet, it's still in the CSE maps,
10031       // so remove its old self from the CSE maps.
10032       if (!UserRemovedFromCSEMaps) {
10033         RemoveNodeFromCSEMaps(User);
10034         UserRemovedFromCSEMaps = true;
10035       }
10036 
10037       ++UI;
10038       Use.set(To);
10039       if (To->isDivergent() != From->isDivergent())
10040         updateDivergence(User);
10041     } while (UI != UE && *UI == User);
10042     // We are iterating over all uses of the From node, so if a use
10043     // doesn't use the specific value, no changes are made.
10044     if (!UserRemovedFromCSEMaps)
10045       continue;
10046 
10047     // Now that we have modified User, add it back to the CSE maps.  If it
10048     // already exists there, recursively merge the results together.
10049     AddModifiedNodeToCSEMaps(User);
10050   }
10051 
10052   // If we just RAUW'd the root, take note.
10053   if (From == getRoot())
10054     setRoot(To);
10055 }
10056 
10057 namespace {
10058 
10059 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
10060 /// to record information about a use.
10061 struct UseMemo {
10062   SDNode *User;
10063   unsigned Index;
10064   SDUse *Use;
10065 };
10066 
10067 /// operator< - Sort Memos by User.
10068 bool operator<(const UseMemo &L, const UseMemo &R) {
10069   return (intptr_t)L.User < (intptr_t)R.User;
10070 }
10071 
10072 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
10073 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
10074 /// the node already has been taken care of recursively.
10075 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
10076   SmallVector<UseMemo, 4> &Uses;
10077 
10078   void NodeDeleted(SDNode *N, SDNode *E) override {
10079     for (UseMemo &Memo : Uses)
10080       if (Memo.User == N)
10081         Memo.User = nullptr;
10082   }
10083 
10084 public:
10085   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
10086       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
10087 };
10088 
10089 } // end anonymous namespace
10090 
10091 bool SelectionDAG::calculateDivergence(SDNode *N) {
10092   if (TLI->isSDNodeAlwaysUniform(N)) {
10093     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
10094            "Conflicting divergence information!");
10095     return false;
10096   }
10097   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
10098     return true;
10099   for (auto &Op : N->ops()) {
10100     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
10101       return true;
10102   }
10103   return false;
10104 }
10105 
10106 void SelectionDAG::updateDivergence(SDNode *N) {
10107   SmallVector<SDNode *, 16> Worklist(1, N);
10108   do {
10109     N = Worklist.pop_back_val();
10110     bool IsDivergent = calculateDivergence(N);
10111     if (N->SDNodeBits.IsDivergent != IsDivergent) {
10112       N->SDNodeBits.IsDivergent = IsDivergent;
10113       llvm::append_range(Worklist, N->uses());
10114     }
10115   } while (!Worklist.empty());
10116 }
10117 
10118 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
10119   DenseMap<SDNode *, unsigned> Degree;
10120   Order.reserve(AllNodes.size());
10121   for (auto &N : allnodes()) {
10122     unsigned NOps = N.getNumOperands();
10123     Degree[&N] = NOps;
10124     if (0 == NOps)
10125       Order.push_back(&N);
10126   }
10127   for (size_t I = 0; I != Order.size(); ++I) {
10128     SDNode *N = Order[I];
10129     for (auto U : N->uses()) {
10130       unsigned &UnsortedOps = Degree[U];
10131       if (0 == --UnsortedOps)
10132         Order.push_back(U);
10133     }
10134   }
10135 }
10136 
10137 #ifndef NDEBUG
10138 void SelectionDAG::VerifyDAGDivergence() {
10139   std::vector<SDNode *> TopoOrder;
10140   CreateTopologicalOrder(TopoOrder);
10141   for (auto *N : TopoOrder) {
10142     assert(calculateDivergence(N) == N->isDivergent() &&
10143            "Divergence bit inconsistency detected");
10144   }
10145 }
10146 #endif
10147 
10148 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
10149 /// uses of other values produced by From.getNode() alone.  The same value
10150 /// may appear in both the From and To list.  The Deleted vector is
10151 /// handled the same way as for ReplaceAllUsesWith.
10152 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
10153                                               const SDValue *To,
10154                                               unsigned Num){
10155   // Handle the simple, trivial case efficiently.
10156   if (Num == 1)
10157     return ReplaceAllUsesOfValueWith(*From, *To);
10158 
10159   transferDbgValues(*From, *To);
10160 
10161   // Read up all the uses and make records of them. This helps
10162   // processing new uses that are introduced during the
10163   // replacement process.
10164   SmallVector<UseMemo, 4> Uses;
10165   for (unsigned i = 0; i != Num; ++i) {
10166     unsigned FromResNo = From[i].getResNo();
10167     SDNode *FromNode = From[i].getNode();
10168     for (SDNode::use_iterator UI = FromNode->use_begin(),
10169          E = FromNode->use_end(); UI != E; ++UI) {
10170       SDUse &Use = UI.getUse();
10171       if (Use.getResNo() == FromResNo) {
10172         UseMemo Memo = { *UI, i, &Use };
10173         Uses.push_back(Memo);
10174       }
10175     }
10176   }
10177 
10178   // Sort the uses, so that all the uses from a given User are together.
10179   llvm::sort(Uses);
10180   RAUOVWUpdateListener Listener(*this, Uses);
10181 
10182   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
10183        UseIndex != UseIndexEnd; ) {
10184     // We know that this user uses some value of From.  If it is the right
10185     // value, update it.
10186     SDNode *User = Uses[UseIndex].User;
10187     // If the node has been deleted by recursive CSE updates when updating
10188     // another node, then just skip this entry.
10189     if (User == nullptr) {
10190       ++UseIndex;
10191       continue;
10192     }
10193 
10194     // This node is about to morph, remove its old self from the CSE maps.
10195     RemoveNodeFromCSEMaps(User);
10196 
10197     // The Uses array is sorted, so all the uses for a given User
10198     // are next to each other in the list.
10199     // To help reduce the number of CSE recomputations, process all
10200     // the uses of this user that we can find this way.
10201     do {
10202       unsigned i = Uses[UseIndex].Index;
10203       SDUse &Use = *Uses[UseIndex].Use;
10204       ++UseIndex;
10205 
10206       Use.set(To[i]);
10207     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
10208 
10209     // Now that we have modified User, add it back to the CSE maps.  If it
10210     // already exists there, recursively merge the results together.
10211     AddModifiedNodeToCSEMaps(User);
10212   }
10213 }
10214 
10215 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
10216 /// based on their topological order. It returns the maximum id and a vector
10217 /// of the SDNodes* in assigned order by reference.
10218 unsigned SelectionDAG::AssignTopologicalOrder() {
10219   unsigned DAGSize = 0;
10220 
10221   // SortedPos tracks the progress of the algorithm. Nodes before it are
10222   // sorted, nodes after it are unsorted. When the algorithm completes
10223   // it is at the end of the list.
10224   allnodes_iterator SortedPos = allnodes_begin();
10225 
10226   // Visit all the nodes. Move nodes with no operands to the front of
10227   // the list immediately. Annotate nodes that do have operands with their
10228   // operand count. Before we do this, the Node Id fields of the nodes
10229   // may contain arbitrary values. After, the Node Id fields for nodes
10230   // before SortedPos will contain the topological sort index, and the
10231   // Node Id fields for nodes At SortedPos and after will contain the
10232   // count of outstanding operands.
10233   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
10234     checkForCycles(&N, this);
10235     unsigned Degree = N.getNumOperands();
10236     if (Degree == 0) {
10237       // A node with no uses, add it to the result array immediately.
10238       N.setNodeId(DAGSize++);
10239       allnodes_iterator Q(&N);
10240       if (Q != SortedPos)
10241         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
10242       assert(SortedPos != AllNodes.end() && "Overran node list");
10243       ++SortedPos;
10244     } else {
10245       // Temporarily use the Node Id as scratch space for the degree count.
10246       N.setNodeId(Degree);
10247     }
10248   }
10249 
10250   // Visit all the nodes. As we iterate, move nodes into sorted order,
10251   // such that by the time the end is reached all nodes will be sorted.
10252   for (SDNode &Node : allnodes()) {
10253     SDNode *N = &Node;
10254     checkForCycles(N, this);
10255     // N is in sorted position, so all its uses have one less operand
10256     // that needs to be sorted.
10257     for (SDNode *P : N->uses()) {
10258       unsigned Degree = P->getNodeId();
10259       assert(Degree != 0 && "Invalid node degree");
10260       --Degree;
10261       if (Degree == 0) {
10262         // All of P's operands are sorted, so P may sorted now.
10263         P->setNodeId(DAGSize++);
10264         if (P->getIterator() != SortedPos)
10265           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
10266         assert(SortedPos != AllNodes.end() && "Overran node list");
10267         ++SortedPos;
10268       } else {
10269         // Update P's outstanding operand count.
10270         P->setNodeId(Degree);
10271       }
10272     }
10273     if (Node.getIterator() == SortedPos) {
10274 #ifndef NDEBUG
10275       allnodes_iterator I(N);
10276       SDNode *S = &*++I;
10277       dbgs() << "Overran sorted position:\n";
10278       S->dumprFull(this); dbgs() << "\n";
10279       dbgs() << "Checking if this is due to cycles\n";
10280       checkForCycles(this, true);
10281 #endif
10282       llvm_unreachable(nullptr);
10283     }
10284   }
10285 
10286   assert(SortedPos == AllNodes.end() &&
10287          "Topological sort incomplete!");
10288   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
10289          "First node in topological sort is not the entry token!");
10290   assert(AllNodes.front().getNodeId() == 0 &&
10291          "First node in topological sort has non-zero id!");
10292   assert(AllNodes.front().getNumOperands() == 0 &&
10293          "First node in topological sort has operands!");
10294   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
10295          "Last node in topologic sort has unexpected id!");
10296   assert(AllNodes.back().use_empty() &&
10297          "Last node in topologic sort has users!");
10298   assert(DAGSize == allnodes_size() && "Node count mismatch!");
10299   return DAGSize;
10300 }
10301 
10302 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
10303 /// value is produced by SD.
10304 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
10305   for (SDNode *SD : DB->getSDNodes()) {
10306     if (!SD)
10307       continue;
10308     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
10309     SD->setHasDebugValue(true);
10310   }
10311   DbgInfo->add(DB, isParameter);
10312 }
10313 
10314 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
10315 
10316 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
10317                                                    SDValue NewMemOpChain) {
10318   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
10319   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
10320   // The new memory operation must have the same position as the old load in
10321   // terms of memory dependency. Create a TokenFactor for the old load and new
10322   // memory operation and update uses of the old load's output chain to use that
10323   // TokenFactor.
10324   if (OldChain == NewMemOpChain || OldChain.use_empty())
10325     return NewMemOpChain;
10326 
10327   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
10328                                 OldChain, NewMemOpChain);
10329   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
10330   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
10331   return TokenFactor;
10332 }
10333 
10334 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
10335                                                    SDValue NewMemOp) {
10336   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
10337   SDValue OldChain = SDValue(OldLoad, 1);
10338   SDValue NewMemOpChain = NewMemOp.getValue(1);
10339   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
10340 }
10341 
10342 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
10343                                                      Function **OutFunction) {
10344   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
10345 
10346   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10347   auto *Module = MF->getFunction().getParent();
10348   auto *Function = Module->getFunction(Symbol);
10349 
10350   if (OutFunction != nullptr)
10351       *OutFunction = Function;
10352 
10353   if (Function != nullptr) {
10354     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
10355     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
10356   }
10357 
10358   std::string ErrorStr;
10359   raw_string_ostream ErrorFormatter(ErrorStr);
10360   ErrorFormatter << "Undefined external symbol ";
10361   ErrorFormatter << '"' << Symbol << '"';
10362   report_fatal_error(Twine(ErrorFormatter.str()));
10363 }
10364 
10365 //===----------------------------------------------------------------------===//
10366 //                              SDNode Class
10367 //===----------------------------------------------------------------------===//
10368 
10369 bool llvm::isNullConstant(SDValue V) {
10370   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10371   return Const != nullptr && Const->isZero();
10372 }
10373 
10374 bool llvm::isNullFPConstant(SDValue V) {
10375   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
10376   return Const != nullptr && Const->isZero() && !Const->isNegative();
10377 }
10378 
10379 bool llvm::isAllOnesConstant(SDValue V) {
10380   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10381   return Const != nullptr && Const->isAllOnes();
10382 }
10383 
10384 bool llvm::isOneConstant(SDValue V) {
10385   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10386   return Const != nullptr && Const->isOne();
10387 }
10388 
10389 SDValue llvm::peekThroughBitcasts(SDValue V) {
10390   while (V.getOpcode() == ISD::BITCAST)
10391     V = V.getOperand(0);
10392   return V;
10393 }
10394 
10395 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
10396   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
10397     V = V.getOperand(0);
10398   return V;
10399 }
10400 
10401 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
10402   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
10403     V = V.getOperand(0);
10404   return V;
10405 }
10406 
10407 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10408   if (V.getOpcode() != ISD::XOR)
10409     return false;
10410   V = peekThroughBitcasts(V.getOperand(1));
10411   unsigned NumBits = V.getScalarValueSizeInBits();
10412   ConstantSDNode *C =
10413       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10414   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10415 }
10416 
10417 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10418                                           bool AllowTruncation) {
10419   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10420     return CN;
10421 
10422   // SplatVectors can truncate their operands. Ignore that case here unless
10423   // AllowTruncation is set.
10424   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10425     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10426     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10427       EVT CVT = CN->getValueType(0);
10428       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10429       if (AllowTruncation || CVT == VecEltVT)
10430         return CN;
10431     }
10432   }
10433 
10434   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10435     BitVector UndefElements;
10436     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10437 
10438     // BuildVectors can truncate their operands. Ignore that case here unless
10439     // AllowTruncation is set.
10440     if (CN && (UndefElements.none() || AllowUndefs)) {
10441       EVT CVT = CN->getValueType(0);
10442       EVT NSVT = N.getValueType().getScalarType();
10443       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10444       if (AllowTruncation || (CVT == NSVT))
10445         return CN;
10446     }
10447   }
10448 
10449   return nullptr;
10450 }
10451 
10452 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10453                                           bool AllowUndefs,
10454                                           bool AllowTruncation) {
10455   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10456     return CN;
10457 
10458   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10459     BitVector UndefElements;
10460     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10461 
10462     // BuildVectors can truncate their operands. Ignore that case here unless
10463     // AllowTruncation is set.
10464     if (CN && (UndefElements.none() || AllowUndefs)) {
10465       EVT CVT = CN->getValueType(0);
10466       EVT NSVT = N.getValueType().getScalarType();
10467       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10468       if (AllowTruncation || (CVT == NSVT))
10469         return CN;
10470     }
10471   }
10472 
10473   return nullptr;
10474 }
10475 
10476 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10477   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10478     return CN;
10479 
10480   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10481     BitVector UndefElements;
10482     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10483     if (CN && (UndefElements.none() || AllowUndefs))
10484       return CN;
10485   }
10486 
10487   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10488     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10489       return CN;
10490 
10491   return nullptr;
10492 }
10493 
10494 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10495                                               const APInt &DemandedElts,
10496                                               bool AllowUndefs) {
10497   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10498     return CN;
10499 
10500   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10501     BitVector UndefElements;
10502     ConstantFPSDNode *CN =
10503         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10504     if (CN && (UndefElements.none() || AllowUndefs))
10505       return CN;
10506   }
10507 
10508   return nullptr;
10509 }
10510 
10511 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10512   // TODO: may want to use peekThroughBitcast() here.
10513   ConstantSDNode *C =
10514       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10515   return C && C->isZero();
10516 }
10517 
10518 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10519   // TODO: may want to use peekThroughBitcast() here.
10520   unsigned BitWidth = N.getScalarValueSizeInBits();
10521   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10522   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10523 }
10524 
10525 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10526   N = peekThroughBitcasts(N);
10527   unsigned BitWidth = N.getScalarValueSizeInBits();
10528   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10529   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10530 }
10531 
10532 HandleSDNode::~HandleSDNode() {
10533   DropOperands();
10534 }
10535 
10536 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10537                                          const DebugLoc &DL,
10538                                          const GlobalValue *GA, EVT VT,
10539                                          int64_t o, unsigned TF)
10540     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10541   TheGlobal = GA;
10542 }
10543 
10544 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10545                                          EVT VT, unsigned SrcAS,
10546                                          unsigned DestAS)
10547     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10548       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10549 
10550 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10551                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10552     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10553   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10554   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10555   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10556   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10557 
10558   // We check here that the size of the memory operand fits within the size of
10559   // the MMO. This is because the MMO might indicate only a possible address
10560   // range instead of specifying the affected memory addresses precisely.
10561   // TODO: Make MachineMemOperands aware of scalable vectors.
10562   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10563          "Size mismatch!");
10564 }
10565 
10566 /// Profile - Gather unique data for the node.
10567 ///
10568 void SDNode::Profile(FoldingSetNodeID &ID) const {
10569   AddNodeIDNode(ID, this);
10570 }
10571 
10572 namespace {
10573 
10574   struct EVTArray {
10575     std::vector<EVT> VTs;
10576 
10577     EVTArray() {
10578       VTs.reserve(MVT::VALUETYPE_SIZE);
10579       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10580         VTs.push_back(MVT((MVT::SimpleValueType)i));
10581     }
10582   };
10583 
10584 } // end anonymous namespace
10585 
10586 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10587 static ManagedStatic<EVTArray> SimpleVTArray;
10588 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10589 
10590 /// getValueTypeList - Return a pointer to the specified value type.
10591 ///
10592 const EVT *SDNode::getValueTypeList(EVT VT) {
10593   if (VT.isExtended()) {
10594     sys::SmartScopedLock<true> Lock(*VTMutex);
10595     return &(*EVTs->insert(VT).first);
10596   }
10597   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10598   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10599 }
10600 
10601 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10602 /// indicated value.  This method ignores uses of other values defined by this
10603 /// operation.
10604 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10605   assert(Value < getNumValues() && "Bad value!");
10606 
10607   // TODO: Only iterate over uses of a given value of the node
10608   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10609     if (UI.getUse().getResNo() == Value) {
10610       if (NUses == 0)
10611         return false;
10612       --NUses;
10613     }
10614   }
10615 
10616   // Found exactly the right number of uses?
10617   return NUses == 0;
10618 }
10619 
10620 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10621 /// value. This method ignores uses of other values defined by this operation.
10622 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10623   assert(Value < getNumValues() && "Bad value!");
10624 
10625   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10626     if (UI.getUse().getResNo() == Value)
10627       return true;
10628 
10629   return false;
10630 }
10631 
10632 /// isOnlyUserOf - Return true if this node is the only use of N.
10633 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10634   bool Seen = false;
10635   for (const SDNode *User : N->uses()) {
10636     if (User == this)
10637       Seen = true;
10638     else
10639       return false;
10640   }
10641 
10642   return Seen;
10643 }
10644 
10645 /// Return true if the only users of N are contained in Nodes.
10646 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10647   bool Seen = false;
10648   for (const SDNode *User : N->uses()) {
10649     if (llvm::is_contained(Nodes, User))
10650       Seen = true;
10651     else
10652       return false;
10653   }
10654 
10655   return Seen;
10656 }
10657 
10658 /// isOperand - Return true if this node is an operand of N.
10659 bool SDValue::isOperandOf(const SDNode *N) const {
10660   return is_contained(N->op_values(), *this);
10661 }
10662 
10663 bool SDNode::isOperandOf(const SDNode *N) const {
10664   return any_of(N->op_values(),
10665                 [this](SDValue Op) { return this == Op.getNode(); });
10666 }
10667 
10668 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10669 /// be a chain) reaches the specified operand without crossing any
10670 /// side-effecting instructions on any chain path.  In practice, this looks
10671 /// through token factors and non-volatile loads.  In order to remain efficient,
10672 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10673 ///
10674 /// Note that we only need to examine chains when we're searching for
10675 /// side-effects; SelectionDAG requires that all side-effects are represented
10676 /// by chains, even if another operand would force a specific ordering. This
10677 /// constraint is necessary to allow transformations like splitting loads.
10678 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10679                                              unsigned Depth) const {
10680   if (*this == Dest) return true;
10681 
10682   // Don't search too deeply, we just want to be able to see through
10683   // TokenFactor's etc.
10684   if (Depth == 0) return false;
10685 
10686   // If this is a token factor, all inputs to the TF happen in parallel.
10687   if (getOpcode() == ISD::TokenFactor) {
10688     // First, try a shallow search.
10689     if (is_contained((*this)->ops(), Dest)) {
10690       // We found the chain we want as an operand of this TokenFactor.
10691       // Essentially, we reach the chain without side-effects if we could
10692       // serialize the TokenFactor into a simple chain of operations with
10693       // Dest as the last operation. This is automatically true if the
10694       // chain has one use: there are no other ordering constraints.
10695       // If the chain has more than one use, we give up: some other
10696       // use of Dest might force a side-effect between Dest and the current
10697       // node.
10698       if (Dest.hasOneUse())
10699         return true;
10700     }
10701     // Next, try a deep search: check whether every operand of the TokenFactor
10702     // reaches Dest.
10703     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10704       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10705     });
10706   }
10707 
10708   // Loads don't have side effects, look through them.
10709   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10710     if (Ld->isUnordered())
10711       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10712   }
10713   return false;
10714 }
10715 
10716 bool SDNode::hasPredecessor(const SDNode *N) const {
10717   SmallPtrSet<const SDNode *, 32> Visited;
10718   SmallVector<const SDNode *, 16> Worklist;
10719   Worklist.push_back(this);
10720   return hasPredecessorHelper(N, Visited, Worklist);
10721 }
10722 
10723 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10724   this->Flags.intersectWith(Flags);
10725 }
10726 
10727 SDValue
10728 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10729                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10730                                   bool AllowPartials) {
10731   // The pattern must end in an extract from index 0.
10732   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10733       !isNullConstant(Extract->getOperand(1)))
10734     return SDValue();
10735 
10736   // Match against one of the candidate binary ops.
10737   SDValue Op = Extract->getOperand(0);
10738   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10739         return Op.getOpcode() == unsigned(BinOp);
10740       }))
10741     return SDValue();
10742 
10743   // Floating-point reductions may require relaxed constraints on the final step
10744   // of the reduction because they may reorder intermediate operations.
10745   unsigned CandidateBinOp = Op.getOpcode();
10746   if (Op.getValueType().isFloatingPoint()) {
10747     SDNodeFlags Flags = Op->getFlags();
10748     switch (CandidateBinOp) {
10749     case ISD::FADD:
10750       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10751         return SDValue();
10752       break;
10753     default:
10754       llvm_unreachable("Unhandled FP opcode for binop reduction");
10755     }
10756   }
10757 
10758   // Matching failed - attempt to see if we did enough stages that a partial
10759   // reduction from a subvector is possible.
10760   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10761     if (!AllowPartials || !Op)
10762       return SDValue();
10763     EVT OpVT = Op.getValueType();
10764     EVT OpSVT = OpVT.getScalarType();
10765     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10766     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10767       return SDValue();
10768     BinOp = (ISD::NodeType)CandidateBinOp;
10769     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10770                    getVectorIdxConstant(0, SDLoc(Op)));
10771   };
10772 
10773   // At each stage, we're looking for something that looks like:
10774   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10775   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10776   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10777   // %a = binop <8 x i32> %op, %s
10778   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10779   // we expect something like:
10780   // <4,5,6,7,u,u,u,u>
10781   // <2,3,u,u,u,u,u,u>
10782   // <1,u,u,u,u,u,u,u>
10783   // While a partial reduction match would be:
10784   // <2,3,u,u,u,u,u,u>
10785   // <1,u,u,u,u,u,u,u>
10786   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10787   SDValue PrevOp;
10788   for (unsigned i = 0; i < Stages; ++i) {
10789     unsigned MaskEnd = (1 << i);
10790 
10791     if (Op.getOpcode() != CandidateBinOp)
10792       return PartialReduction(PrevOp, MaskEnd);
10793 
10794     SDValue Op0 = Op.getOperand(0);
10795     SDValue Op1 = Op.getOperand(1);
10796 
10797     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10798     if (Shuffle) {
10799       Op = Op1;
10800     } else {
10801       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10802       Op = Op0;
10803     }
10804 
10805     // The first operand of the shuffle should be the same as the other operand
10806     // of the binop.
10807     if (!Shuffle || Shuffle->getOperand(0) != Op)
10808       return PartialReduction(PrevOp, MaskEnd);
10809 
10810     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10811     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10812       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10813         return PartialReduction(PrevOp, MaskEnd);
10814 
10815     PrevOp = Op;
10816   }
10817 
10818   // Handle subvector reductions, which tend to appear after the shuffle
10819   // reduction stages.
10820   while (Op.getOpcode() == CandidateBinOp) {
10821     unsigned NumElts = Op.getValueType().getVectorNumElements();
10822     SDValue Op0 = Op.getOperand(0);
10823     SDValue Op1 = Op.getOperand(1);
10824     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10825         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10826         Op0.getOperand(0) != Op1.getOperand(0))
10827       break;
10828     SDValue Src = Op0.getOperand(0);
10829     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10830     if (NumSrcElts != (2 * NumElts))
10831       break;
10832     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10833           Op1.getConstantOperandAPInt(1) == NumElts) &&
10834         !(Op1.getConstantOperandAPInt(1) == 0 &&
10835           Op0.getConstantOperandAPInt(1) == NumElts))
10836       break;
10837     Op = Src;
10838   }
10839 
10840   BinOp = (ISD::NodeType)CandidateBinOp;
10841   return Op;
10842 }
10843 
10844 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10845   assert(N->getNumValues() == 1 &&
10846          "Can't unroll a vector with multiple results!");
10847 
10848   EVT VT = N->getValueType(0);
10849   unsigned NE = VT.getVectorNumElements();
10850   EVT EltVT = VT.getVectorElementType();
10851   SDLoc dl(N);
10852 
10853   SmallVector<SDValue, 8> Scalars;
10854   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10855 
10856   // If ResNE is 0, fully unroll the vector op.
10857   if (ResNE == 0)
10858     ResNE = NE;
10859   else if (NE > ResNE)
10860     NE = ResNE;
10861 
10862   unsigned i;
10863   for (i= 0; i != NE; ++i) {
10864     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10865       SDValue Operand = N->getOperand(j);
10866       EVT OperandVT = Operand.getValueType();
10867       if (OperandVT.isVector()) {
10868         // A vector operand; extract a single element.
10869         EVT OperandEltVT = OperandVT.getVectorElementType();
10870         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10871                               Operand, getVectorIdxConstant(i, dl));
10872       } else {
10873         // A scalar operand; just use it as is.
10874         Operands[j] = Operand;
10875       }
10876     }
10877 
10878     switch (N->getOpcode()) {
10879     default: {
10880       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10881                                 N->getFlags()));
10882       break;
10883     }
10884     case ISD::VSELECT:
10885       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10886       break;
10887     case ISD::SHL:
10888     case ISD::SRA:
10889     case ISD::SRL:
10890     case ISD::ROTL:
10891     case ISD::ROTR:
10892       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10893                                getShiftAmountOperand(Operands[0].getValueType(),
10894                                                      Operands[1])));
10895       break;
10896     case ISD::SIGN_EXTEND_INREG: {
10897       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10898       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10899                                 Operands[0],
10900                                 getValueType(ExtVT)));
10901     }
10902     }
10903   }
10904 
10905   for (; i < ResNE; ++i)
10906     Scalars.push_back(getUNDEF(EltVT));
10907 
10908   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10909   return getBuildVector(VecVT, dl, Scalars);
10910 }
10911 
10912 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10913     SDNode *N, unsigned ResNE) {
10914   unsigned Opcode = N->getOpcode();
10915   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10916           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10917           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10918          "Expected an overflow opcode");
10919 
10920   EVT ResVT = N->getValueType(0);
10921   EVT OvVT = N->getValueType(1);
10922   EVT ResEltVT = ResVT.getVectorElementType();
10923   EVT OvEltVT = OvVT.getVectorElementType();
10924   SDLoc dl(N);
10925 
10926   // If ResNE is 0, fully unroll the vector op.
10927   unsigned NE = ResVT.getVectorNumElements();
10928   if (ResNE == 0)
10929     ResNE = NE;
10930   else if (NE > ResNE)
10931     NE = ResNE;
10932 
10933   SmallVector<SDValue, 8> LHSScalars;
10934   SmallVector<SDValue, 8> RHSScalars;
10935   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10936   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10937 
10938   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10939   SDVTList VTs = getVTList(ResEltVT, SVT);
10940   SmallVector<SDValue, 8> ResScalars;
10941   SmallVector<SDValue, 8> OvScalars;
10942   for (unsigned i = 0; i < NE; ++i) {
10943     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10944     SDValue Ov =
10945         getSelect(dl, OvEltVT, Res.getValue(1),
10946                   getBoolConstant(true, dl, OvEltVT, ResVT),
10947                   getConstant(0, dl, OvEltVT));
10948 
10949     ResScalars.push_back(Res);
10950     OvScalars.push_back(Ov);
10951   }
10952 
10953   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10954   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10955 
10956   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10957   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10958   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10959                         getBuildVector(NewOvVT, dl, OvScalars));
10960 }
10961 
10962 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10963                                                   LoadSDNode *Base,
10964                                                   unsigned Bytes,
10965                                                   int Dist) const {
10966   if (LD->isVolatile() || Base->isVolatile())
10967     return false;
10968   // TODO: probably too restrictive for atomics, revisit
10969   if (!LD->isSimple())
10970     return false;
10971   if (LD->isIndexed() || Base->isIndexed())
10972     return false;
10973   if (LD->getChain() != Base->getChain())
10974     return false;
10975   EVT VT = LD->getValueType(0);
10976   if (VT.getSizeInBits() / 8 != Bytes)
10977     return false;
10978 
10979   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10980   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10981 
10982   int64_t Offset = 0;
10983   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10984     return (Dist * Bytes == Offset);
10985   return false;
10986 }
10987 
10988 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10989 /// if it cannot be inferred.
10990 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10991   // If this is a GlobalAddress + cst, return the alignment.
10992   const GlobalValue *GV = nullptr;
10993   int64_t GVOffset = 0;
10994   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10995     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10996     KnownBits Known(PtrWidth);
10997     llvm::computeKnownBits(GV, Known, getDataLayout());
10998     unsigned AlignBits = Known.countMinTrailingZeros();
10999     if (AlignBits)
11000       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
11001   }
11002 
11003   // If this is a direct reference to a stack slot, use information about the
11004   // stack slot's alignment.
11005   int FrameIdx = INT_MIN;
11006   int64_t FrameOffset = 0;
11007   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
11008     FrameIdx = FI->getIndex();
11009   } else if (isBaseWithConstantOffset(Ptr) &&
11010              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
11011     // Handle FI+Cst
11012     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
11013     FrameOffset = Ptr.getConstantOperandVal(1);
11014   }
11015 
11016   if (FrameIdx != INT_MIN) {
11017     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
11018     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
11019   }
11020 
11021   return None;
11022 }
11023 
11024 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
11025 /// which is split (or expanded) into two not necessarily identical pieces.
11026 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
11027   // Currently all types are split in half.
11028   EVT LoVT, HiVT;
11029   if (!VT.isVector())
11030     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
11031   else
11032     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
11033 
11034   return std::make_pair(LoVT, HiVT);
11035 }
11036 
11037 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
11038 /// type, dependent on an enveloping VT that has been split into two identical
11039 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
11040 std::pair<EVT, EVT>
11041 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
11042                                        bool *HiIsEmpty) const {
11043   EVT EltTp = VT.getVectorElementType();
11044   // Examples:
11045   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
11046   //   custom VL=9  with enveloping VL=8/8 yields 8/1
11047   //   custom VL=10 with enveloping VL=8/8 yields 8/2
11048   //   etc.
11049   ElementCount VTNumElts = VT.getVectorElementCount();
11050   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
11051   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
11052          "Mixing fixed width and scalable vectors when enveloping a type");
11053   EVT LoVT, HiVT;
11054   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
11055     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11056     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
11057     *HiIsEmpty = false;
11058   } else {
11059     // Flag that hi type has zero storage size, but return split envelop type
11060     // (this would be easier if vector types with zero elements were allowed).
11061     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
11062     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11063     *HiIsEmpty = true;
11064   }
11065   return std::make_pair(LoVT, HiVT);
11066 }
11067 
11068 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
11069 /// low/high part.
11070 std::pair<SDValue, SDValue>
11071 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
11072                           const EVT &HiVT) {
11073   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
11074          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
11075          "Splitting vector with an invalid mixture of fixed and scalable "
11076          "vector types");
11077   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
11078              N.getValueType().getVectorMinNumElements() &&
11079          "More vector elements requested than available!");
11080   SDValue Lo, Hi;
11081   Lo =
11082       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
11083   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
11084   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
11085   // IDX with the runtime scaling factor of the result vector type. For
11086   // fixed-width result vectors, that runtime scaling factor is 1.
11087   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
11088                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
11089   return std::make_pair(Lo, Hi);
11090 }
11091 
11092 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
11093                                                    const SDLoc &DL) {
11094   // Split the vector length parameter.
11095   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
11096   EVT VT = N.getValueType();
11097   assert(VecVT.getVectorElementCount().isKnownEven() &&
11098          "Expecting the mask to be an evenly-sized vector");
11099   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
11100   SDValue HalfNumElts =
11101       VecVT.isFixedLengthVector()
11102           ? getConstant(HalfMinNumElts, DL, VT)
11103           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
11104   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
11105   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
11106   return std::make_pair(Lo, Hi);
11107 }
11108 
11109 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
11110 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
11111   EVT VT = N.getValueType();
11112   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
11113                                 NextPowerOf2(VT.getVectorNumElements()));
11114   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
11115                  getVectorIdxConstant(0, DL));
11116 }
11117 
11118 void SelectionDAG::ExtractVectorElements(SDValue Op,
11119                                          SmallVectorImpl<SDValue> &Args,
11120                                          unsigned Start, unsigned Count,
11121                                          EVT EltVT) {
11122   EVT VT = Op.getValueType();
11123   if (Count == 0)
11124     Count = VT.getVectorNumElements();
11125   if (EltVT == EVT())
11126     EltVT = VT.getVectorElementType();
11127   SDLoc SL(Op);
11128   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
11129     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
11130                            getVectorIdxConstant(i, SL)));
11131   }
11132 }
11133 
11134 // getAddressSpace - Return the address space this GlobalAddress belongs to.
11135 unsigned GlobalAddressSDNode::getAddressSpace() const {
11136   return getGlobal()->getType()->getAddressSpace();
11137 }
11138 
11139 Type *ConstantPoolSDNode::getType() const {
11140   if (isMachineConstantPoolEntry())
11141     return Val.MachineCPVal->getType();
11142   return Val.ConstVal->getType();
11143 }
11144 
11145 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
11146                                         unsigned &SplatBitSize,
11147                                         bool &HasAnyUndefs,
11148                                         unsigned MinSplatBits,
11149                                         bool IsBigEndian) const {
11150   EVT VT = getValueType(0);
11151   assert(VT.isVector() && "Expected a vector type");
11152   unsigned VecWidth = VT.getSizeInBits();
11153   if (MinSplatBits > VecWidth)
11154     return false;
11155 
11156   // FIXME: The widths are based on this node's type, but build vectors can
11157   // truncate their operands.
11158   SplatValue = APInt(VecWidth, 0);
11159   SplatUndef = APInt(VecWidth, 0);
11160 
11161   // Get the bits. Bits with undefined values (when the corresponding element
11162   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
11163   // in SplatValue. If any of the values are not constant, give up and return
11164   // false.
11165   unsigned int NumOps = getNumOperands();
11166   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
11167   unsigned EltWidth = VT.getScalarSizeInBits();
11168 
11169   for (unsigned j = 0; j < NumOps; ++j) {
11170     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
11171     SDValue OpVal = getOperand(i);
11172     unsigned BitPos = j * EltWidth;
11173 
11174     if (OpVal.isUndef())
11175       SplatUndef.setBits(BitPos, BitPos + EltWidth);
11176     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
11177       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
11178     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
11179       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
11180     else
11181       return false;
11182   }
11183 
11184   // The build_vector is all constants or undefs. Find the smallest element
11185   // size that splats the vector.
11186   HasAnyUndefs = (SplatUndef != 0);
11187 
11188   // FIXME: This does not work for vectors with elements less than 8 bits.
11189   while (VecWidth > 8) {
11190     unsigned HalfSize = VecWidth / 2;
11191     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
11192     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
11193     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
11194     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
11195 
11196     // If the two halves do not match (ignoring undef bits), stop here.
11197     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
11198         MinSplatBits > HalfSize)
11199       break;
11200 
11201     SplatValue = HighValue | LowValue;
11202     SplatUndef = HighUndef & LowUndef;
11203 
11204     VecWidth = HalfSize;
11205   }
11206 
11207   SplatBitSize = VecWidth;
11208   return true;
11209 }
11210 
11211 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
11212                                          BitVector *UndefElements) const {
11213   unsigned NumOps = getNumOperands();
11214   if (UndefElements) {
11215     UndefElements->clear();
11216     UndefElements->resize(NumOps);
11217   }
11218   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11219   if (!DemandedElts)
11220     return SDValue();
11221   SDValue Splatted;
11222   for (unsigned i = 0; i != NumOps; ++i) {
11223     if (!DemandedElts[i])
11224       continue;
11225     SDValue Op = getOperand(i);
11226     if (Op.isUndef()) {
11227       if (UndefElements)
11228         (*UndefElements)[i] = true;
11229     } else if (!Splatted) {
11230       Splatted = Op;
11231     } else if (Splatted != Op) {
11232       return SDValue();
11233     }
11234   }
11235 
11236   if (!Splatted) {
11237     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
11238     assert(getOperand(FirstDemandedIdx).isUndef() &&
11239            "Can only have a splat without a constant for all undefs.");
11240     return getOperand(FirstDemandedIdx);
11241   }
11242 
11243   return Splatted;
11244 }
11245 
11246 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
11247   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11248   return getSplatValue(DemandedElts, UndefElements);
11249 }
11250 
11251 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
11252                                             SmallVectorImpl<SDValue> &Sequence,
11253                                             BitVector *UndefElements) const {
11254   unsigned NumOps = getNumOperands();
11255   Sequence.clear();
11256   if (UndefElements) {
11257     UndefElements->clear();
11258     UndefElements->resize(NumOps);
11259   }
11260   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11261   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
11262     return false;
11263 
11264   // Set the undefs even if we don't find a sequence (like getSplatValue).
11265   if (UndefElements)
11266     for (unsigned I = 0; I != NumOps; ++I)
11267       if (DemandedElts[I] && getOperand(I).isUndef())
11268         (*UndefElements)[I] = true;
11269 
11270   // Iteratively widen the sequence length looking for repetitions.
11271   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
11272     Sequence.append(SeqLen, SDValue());
11273     for (unsigned I = 0; I != NumOps; ++I) {
11274       if (!DemandedElts[I])
11275         continue;
11276       SDValue &SeqOp = Sequence[I % SeqLen];
11277       SDValue Op = getOperand(I);
11278       if (Op.isUndef()) {
11279         if (!SeqOp)
11280           SeqOp = Op;
11281         continue;
11282       }
11283       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
11284         Sequence.clear();
11285         break;
11286       }
11287       SeqOp = Op;
11288     }
11289     if (!Sequence.empty())
11290       return true;
11291   }
11292 
11293   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
11294   return false;
11295 }
11296 
11297 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
11298                                             BitVector *UndefElements) const {
11299   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11300   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
11301 }
11302 
11303 ConstantSDNode *
11304 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
11305                                         BitVector *UndefElements) const {
11306   return dyn_cast_or_null<ConstantSDNode>(
11307       getSplatValue(DemandedElts, UndefElements));
11308 }
11309 
11310 ConstantSDNode *
11311 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
11312   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
11313 }
11314 
11315 ConstantFPSDNode *
11316 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
11317                                           BitVector *UndefElements) const {
11318   return dyn_cast_or_null<ConstantFPSDNode>(
11319       getSplatValue(DemandedElts, UndefElements));
11320 }
11321 
11322 ConstantFPSDNode *
11323 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
11324   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
11325 }
11326 
11327 int32_t
11328 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
11329                                                    uint32_t BitWidth) const {
11330   if (ConstantFPSDNode *CN =
11331           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
11332     bool IsExact;
11333     APSInt IntVal(BitWidth);
11334     const APFloat &APF = CN->getValueAPF();
11335     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
11336             APFloat::opOK ||
11337         !IsExact)
11338       return -1;
11339 
11340     return IntVal.exactLogBase2();
11341   }
11342   return -1;
11343 }
11344 
11345 bool BuildVectorSDNode::getConstantRawBits(
11346     bool IsLittleEndian, unsigned DstEltSizeInBits,
11347     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
11348   // Early-out if this contains anything but Undef/Constant/ConstantFP.
11349   if (!isConstant())
11350     return false;
11351 
11352   unsigned NumSrcOps = getNumOperands();
11353   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
11354   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11355          "Invalid bitcast scale");
11356 
11357   // Extract raw src bits.
11358   SmallVector<APInt> SrcBitElements(NumSrcOps,
11359                                     APInt::getNullValue(SrcEltSizeInBits));
11360   BitVector SrcUndeElements(NumSrcOps, false);
11361 
11362   for (unsigned I = 0; I != NumSrcOps; ++I) {
11363     SDValue Op = getOperand(I);
11364     if (Op.isUndef()) {
11365       SrcUndeElements.set(I);
11366       continue;
11367     }
11368     auto *CInt = dyn_cast<ConstantSDNode>(Op);
11369     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
11370     assert((CInt || CFP) && "Unknown constant");
11371     SrcBitElements[I] =
11372         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
11373              : CFP->getValueAPF().bitcastToAPInt();
11374   }
11375 
11376   // Recast to dst width.
11377   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
11378                 SrcBitElements, UndefElements, SrcUndeElements);
11379   return true;
11380 }
11381 
11382 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
11383                                       unsigned DstEltSizeInBits,
11384                                       SmallVectorImpl<APInt> &DstBitElements,
11385                                       ArrayRef<APInt> SrcBitElements,
11386                                       BitVector &DstUndefElements,
11387                                       const BitVector &SrcUndefElements) {
11388   unsigned NumSrcOps = SrcBitElements.size();
11389   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
11390   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11391          "Invalid bitcast scale");
11392   assert(NumSrcOps == SrcUndefElements.size() &&
11393          "Vector size mismatch");
11394 
11395   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
11396   DstUndefElements.clear();
11397   DstUndefElements.resize(NumDstOps, false);
11398   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
11399 
11400   // Concatenate src elements constant bits together into dst element.
11401   if (SrcEltSizeInBits <= DstEltSizeInBits) {
11402     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
11403     for (unsigned I = 0; I != NumDstOps; ++I) {
11404       DstUndefElements.set(I);
11405       APInt &DstBits = DstBitElements[I];
11406       for (unsigned J = 0; J != Scale; ++J) {
11407         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11408         if (SrcUndefElements[Idx])
11409           continue;
11410         DstUndefElements.reset(I);
11411         const APInt &SrcBits = SrcBitElements[Idx];
11412         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11413                "Illegal constant bitwidths");
11414         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11415       }
11416     }
11417     return;
11418   }
11419 
11420   // Split src element constant bits into dst elements.
11421   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11422   for (unsigned I = 0; I != NumSrcOps; ++I) {
11423     if (SrcUndefElements[I]) {
11424       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11425       continue;
11426     }
11427     const APInt &SrcBits = SrcBitElements[I];
11428     for (unsigned J = 0; J != Scale; ++J) {
11429       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11430       APInt &DstBits = DstBitElements[Idx];
11431       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11432     }
11433   }
11434 }
11435 
11436 bool BuildVectorSDNode::isConstant() const {
11437   for (const SDValue &Op : op_values()) {
11438     unsigned Opc = Op.getOpcode();
11439     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11440       return false;
11441   }
11442   return true;
11443 }
11444 
11445 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11446   // Find the first non-undef value in the shuffle mask.
11447   unsigned i, e;
11448   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11449     /* search */;
11450 
11451   // If all elements are undefined, this shuffle can be considered a splat
11452   // (although it should eventually get simplified away completely).
11453   if (i == e)
11454     return true;
11455 
11456   // Make sure all remaining elements are either undef or the same as the first
11457   // non-undef value.
11458   for (int Idx = Mask[i]; i != e; ++i)
11459     if (Mask[i] >= 0 && Mask[i] != Idx)
11460       return false;
11461   return true;
11462 }
11463 
11464 // Returns the SDNode if it is a constant integer BuildVector
11465 // or constant integer.
11466 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11467   if (isa<ConstantSDNode>(N))
11468     return N.getNode();
11469   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11470     return N.getNode();
11471   // Treat a GlobalAddress supporting constant offset folding as a
11472   // constant integer.
11473   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11474     if (GA->getOpcode() == ISD::GlobalAddress &&
11475         TLI->isOffsetFoldingLegal(GA))
11476       return GA;
11477   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11478       isa<ConstantSDNode>(N.getOperand(0)))
11479     return N.getNode();
11480   return nullptr;
11481 }
11482 
11483 // Returns the SDNode if it is a constant float BuildVector
11484 // or constant float.
11485 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11486   if (isa<ConstantFPSDNode>(N))
11487     return N.getNode();
11488 
11489   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11490     return N.getNode();
11491 
11492   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11493       isa<ConstantFPSDNode>(N.getOperand(0)))
11494     return N.getNode();
11495 
11496   return nullptr;
11497 }
11498 
11499 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11500   assert(!Node->OperandList && "Node already has operands");
11501   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11502          "too many operands to fit into SDNode");
11503   SDUse *Ops = OperandRecycler.allocate(
11504       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11505 
11506   bool IsDivergent = false;
11507   for (unsigned I = 0; I != Vals.size(); ++I) {
11508     Ops[I].setUser(Node);
11509     Ops[I].setInitial(Vals[I]);
11510     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11511       IsDivergent |= Ops[I].getNode()->isDivergent();
11512   }
11513   Node->NumOperands = Vals.size();
11514   Node->OperandList = Ops;
11515   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11516     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11517     Node->SDNodeBits.IsDivergent = IsDivergent;
11518   }
11519   checkForCycles(Node);
11520 }
11521 
11522 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11523                                      SmallVectorImpl<SDValue> &Vals) {
11524   size_t Limit = SDNode::getMaxNumOperands();
11525   while (Vals.size() > Limit) {
11526     unsigned SliceIdx = Vals.size() - Limit;
11527     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11528     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11529     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11530     Vals.emplace_back(NewTF);
11531   }
11532   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11533 }
11534 
11535 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11536                                         EVT VT, SDNodeFlags Flags) {
11537   switch (Opcode) {
11538   default:
11539     return SDValue();
11540   case ISD::ADD:
11541   case ISD::OR:
11542   case ISD::XOR:
11543   case ISD::UMAX:
11544     return getConstant(0, DL, VT);
11545   case ISD::MUL:
11546     return getConstant(1, DL, VT);
11547   case ISD::AND:
11548   case ISD::UMIN:
11549     return getAllOnesConstant(DL, VT);
11550   case ISD::SMAX:
11551     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11552   case ISD::SMIN:
11553     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11554   case ISD::FADD:
11555     return getConstantFP(-0.0, DL, VT);
11556   case ISD::FMUL:
11557     return getConstantFP(1.0, DL, VT);
11558   case ISD::FMINNUM:
11559   case ISD::FMAXNUM: {
11560     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11561     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11562     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11563                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11564                         APFloat::getLargest(Semantics);
11565     if (Opcode == ISD::FMAXNUM)
11566       NeutralAF.changeSign();
11567 
11568     return getConstantFP(NeutralAF, DL, VT);
11569   }
11570   }
11571 }
11572 
11573 #ifndef NDEBUG
11574 static void checkForCyclesHelper(const SDNode *N,
11575                                  SmallPtrSetImpl<const SDNode*> &Visited,
11576                                  SmallPtrSetImpl<const SDNode*> &Checked,
11577                                  const llvm::SelectionDAG *DAG) {
11578   // If this node has already been checked, don't check it again.
11579   if (Checked.count(N))
11580     return;
11581 
11582   // If a node has already been visited on this depth-first walk, reject it as
11583   // a cycle.
11584   if (!Visited.insert(N).second) {
11585     errs() << "Detected cycle in SelectionDAG\n";
11586     dbgs() << "Offending node:\n";
11587     N->dumprFull(DAG); dbgs() << "\n";
11588     abort();
11589   }
11590 
11591   for (const SDValue &Op : N->op_values())
11592     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11593 
11594   Checked.insert(N);
11595   Visited.erase(N);
11596 }
11597 #endif
11598 
11599 void llvm::checkForCycles(const llvm::SDNode *N,
11600                           const llvm::SelectionDAG *DAG,
11601                           bool force) {
11602 #ifndef NDEBUG
11603   bool check = force;
11604 #ifdef EXPENSIVE_CHECKS
11605   check = true;
11606 #endif  // EXPENSIVE_CHECKS
11607   if (check) {
11608     assert(N && "Checking nonexistent SDNode");
11609     SmallPtrSet<const SDNode*, 32> visited;
11610     SmallPtrSet<const SDNode*, 32> checked;
11611     checkForCyclesHelper(N, visited, checked, DAG);
11612   }
11613 #endif  // !NDEBUG
11614 }
11615 
11616 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11617   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11618 }
11619