1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/ManagedStatic.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Mutex.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetIntrinsicInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Target/TargetRegisterInfo.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 #include <cmath>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
57 /// specified members.
58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59   SDVTList Res = {VTs, NumVTs};
60   return Res;
61 }
62 
63 // Default null implementations of the callbacks.
64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
66 
67 //===----------------------------------------------------------------------===//
68 //                              ConstantFPSDNode Class
69 //===----------------------------------------------------------------------===//
70 
71 /// isExactlyValue - We don't rely on operator== working on double values, as
72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73 /// As such, this method can be used to do an exact bit-for-bit comparison of
74 /// two floating point values.
75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76   return getValueAPF().bitwiseIsEqual(V);
77 }
78 
79 bool ConstantFPSDNode::isValueValidForType(EVT VT,
80                                            const APFloat& Val) {
81   assert(VT.isFloatingPoint() && "Can only convert between FP types");
82 
83   // convert modifies in place, so make a copy.
84   APFloat Val2 = APFloat(Val);
85   bool losesInfo;
86   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
87                       APFloat::rmNearestTiesToEven,
88                       &losesInfo);
89   return !losesInfo;
90 }
91 
92 //===----------------------------------------------------------------------===//
93 //                              ISD Namespace
94 //===----------------------------------------------------------------------===//
95 
96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
97   auto *BV = dyn_cast<BuildVectorSDNode>(N);
98   if (!BV)
99     return false;
100 
101   APInt SplatUndef;
102   unsigned SplatBitSize;
103   bool HasUndefs;
104   EVT EltVT = N->getValueType(0).getVectorElementType();
105   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) &&
106          EltVT.getSizeInBits() >= SplatBitSize;
107 }
108 
109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
110 // specializations of the more general isConstantSplatVector()?
111 
112 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113   // Look through a bit convert.
114   while (N->getOpcode() == ISD::BITCAST)
115     N = N->getOperand(0).getNode();
116 
117   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118 
119   unsigned i = 0, e = N->getNumOperands();
120 
121   // Skip over all of the undef values.
122   while (i != e && N->getOperand(i).isUndef())
123     ++i;
124 
125   // Do not accept an all-undef vector.
126   if (i == e) return false;
127 
128   // Do not accept build_vectors that aren't all constants or which have non-~0
129   // elements. We have to be a bit careful here, as the type of the constant
130   // may not be the same as the type of the vector elements due to type
131   // legalization (the elements are promoted to a legal type for the target and
132   // a vector of a type may be legal when the base element type is not).
133   // We only want to check enough bits to cover the vector elements, because
134   // we care if the resultant vector is all ones, not whether the individual
135   // constants are.
136   SDValue NotZero = N->getOperand(i);
137   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
138   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
139     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
140       return false;
141   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
142     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
143       return false;
144   } else
145     return false;
146 
147   // Okay, we have at least one ~0 value, check to see if the rest match or are
148   // undefs. Even with the above element type twiddling, this should be OK, as
149   // the same type legalization should have applied to all the elements.
150   for (++i; i != e; ++i)
151     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
152       return false;
153   return true;
154 }
155 
156 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   bool IsAllUndef = true;
164   for (const SDValue &Op : N->op_values()) {
165     if (Op.isUndef())
166       continue;
167     IsAllUndef = false;
168     // Do not accept build_vectors that aren't all constants or which have non-0
169     // elements. We have to be a bit careful here, as the type of the constant
170     // may not be the same as the type of the vector elements due to type
171     // legalization (the elements are promoted to a legal type for the target
172     // and a vector of a type may be legal when the base element type is not).
173     // We only want to check enough bits to cover the vector elements, because
174     // we care if the resultant vector is all zeros, not whether the individual
175     // constants are.
176     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
177     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
178       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
179         return false;
180     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
181       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
182         return false;
183     } else
184       return false;
185   }
186 
187   // Do not accept an all-undef vector.
188   if (IsAllUndef)
189     return false;
190   return true;
191 }
192 
193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
194   if (N->getOpcode() != ISD::BUILD_VECTOR)
195     return false;
196 
197   for (const SDValue &Op : N->op_values()) {
198     if (Op.isUndef())
199       continue;
200     if (!isa<ConstantSDNode>(Op))
201       return false;
202   }
203   return true;
204 }
205 
206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
207   if (N->getOpcode() != ISD::BUILD_VECTOR)
208     return false;
209 
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     if (!isa<ConstantFPSDNode>(Op))
214       return false;
215   }
216   return true;
217 }
218 
219 bool ISD::allOperandsUndef(const SDNode *N) {
220   // Return false if the node has no operands.
221   // This is "logically inconsistent" with the definition of "all" but
222   // is probably the desired behavior.
223   if (N->getNumOperands() == 0)
224     return false;
225 
226   for (const SDValue &Op : N->op_values())
227     if (!Op.isUndef())
228       return false;
229 
230   return true;
231 }
232 
233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
234   switch (ExtType) {
235   case ISD::EXTLOAD:
236     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
237   case ISD::SEXTLOAD:
238     return ISD::SIGN_EXTEND;
239   case ISD::ZEXTLOAD:
240     return ISD::ZERO_EXTEND;
241   default:
242     break;
243   }
244 
245   llvm_unreachable("Invalid LoadExtType");
246 }
247 
248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
249   // To perform this operation, we just need to swap the L and G bits of the
250   // operation.
251   unsigned OldL = (Operation >> 2) & 1;
252   unsigned OldG = (Operation >> 1) & 1;
253   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
254                        (OldL << 1) |       // New G bit
255                        (OldG << 2));       // New L bit.
256 }
257 
258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
259   unsigned Operation = Op;
260   if (isInteger)
261     Operation ^= 7;   // Flip L, G, E bits, but not U.
262   else
263     Operation ^= 15;  // Flip all of the condition bits.
264 
265   if (Operation > ISD::SETTRUE2)
266     Operation &= ~8;  // Don't let N and U bits get set.
267 
268   return ISD::CondCode(Operation);
269 }
270 
271 
272 /// For an integer comparison, return 1 if the comparison is a signed operation
273 /// and 2 if the result is an unsigned comparison. Return zero if the operation
274 /// does not depend on the sign of the input (setne and seteq).
275 static int isSignedOp(ISD::CondCode Opcode) {
276   switch (Opcode) {
277   default: llvm_unreachable("Illegal integer setcc operation!");
278   case ISD::SETEQ:
279   case ISD::SETNE: return 0;
280   case ISD::SETLT:
281   case ISD::SETLE:
282   case ISD::SETGT:
283   case ISD::SETGE: return 1;
284   case ISD::SETULT:
285   case ISD::SETULE:
286   case ISD::SETUGT:
287   case ISD::SETUGE: return 2;
288   }
289 }
290 
291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
292                                        bool isInteger) {
293   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
294     // Cannot fold a signed integer setcc with an unsigned integer setcc.
295     return ISD::SETCC_INVALID;
296 
297   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
298 
299   // If the N and U bits get set then the resultant comparison DOES suddenly
300   // care about orderedness, and is true when ordered.
301   if (Op > ISD::SETTRUE2)
302     Op &= ~16;     // Clear the U bit if the N bit is set.
303 
304   // Canonicalize illegal integer setcc's.
305   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
306     Op = ISD::SETNE;
307 
308   return ISD::CondCode(Op);
309 }
310 
311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
312                                         bool isInteger) {
313   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
314     // Cannot fold a signed setcc with an unsigned setcc.
315     return ISD::SETCC_INVALID;
316 
317   // Combine all of the condition bits.
318   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
319 
320   // Canonicalize illegal integer setcc's.
321   if (isInteger) {
322     switch (Result) {
323     default: break;
324     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
325     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
326     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
327     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
328     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
329     }
330   }
331 
332   return Result;
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                           SDNode Profile Support
337 //===----------------------------------------------------------------------===//
338 
339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
340 ///
341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
342   ID.AddInteger(OpC);
343 }
344 
345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
346 /// solely with their pointer.
347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
348   ID.AddPointer(VTList.VTs);
349 }
350 
351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
352 ///
353 static void AddNodeIDOperands(FoldingSetNodeID &ID,
354                               ArrayRef<SDValue> Ops) {
355   for (auto& Op : Ops) {
356     ID.AddPointer(Op.getNode());
357     ID.AddInteger(Op.getResNo());
358   }
359 }
360 
361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
362 ///
363 static void AddNodeIDOperands(FoldingSetNodeID &ID,
364                               ArrayRef<SDUse> Ops) {
365   for (auto& Op : Ops) {
366     ID.AddPointer(Op.getNode());
367     ID.AddInteger(Op.getResNo());
368   }
369 }
370 
371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
372                           SDVTList VTList, ArrayRef<SDValue> OpList) {
373   AddNodeIDOpcode(ID, OpC);
374   AddNodeIDValueTypes(ID, VTList);
375   AddNodeIDOperands(ID, OpList);
376 }
377 
378 /// If this is an SDNode with special info, add this info to the NodeID data.
379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
380   switch (N->getOpcode()) {
381   case ISD::TargetExternalSymbol:
382   case ISD::ExternalSymbol:
383   case ISD::MCSymbol:
384     llvm_unreachable("Should only be used on nodes with operands");
385   default: break;  // Normal nodes don't need extra info.
386   case ISD::TargetConstant:
387   case ISD::Constant: {
388     const ConstantSDNode *C = cast<ConstantSDNode>(N);
389     ID.AddPointer(C->getConstantIntValue());
390     ID.AddBoolean(C->isOpaque());
391     break;
392   }
393   case ISD::TargetConstantFP:
394   case ISD::ConstantFP: {
395     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
396     break;
397   }
398   case ISD::TargetGlobalAddress:
399   case ISD::GlobalAddress:
400   case ISD::TargetGlobalTLSAddress:
401   case ISD::GlobalTLSAddress: {
402     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
403     ID.AddPointer(GA->getGlobal());
404     ID.AddInteger(GA->getOffset());
405     ID.AddInteger(GA->getTargetFlags());
406     break;
407   }
408   case ISD::BasicBlock:
409     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
410     break;
411   case ISD::Register:
412     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
413     break;
414   case ISD::RegisterMask:
415     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
416     break;
417   case ISD::SRCVALUE:
418     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
419     break;
420   case ISD::FrameIndex:
421   case ISD::TargetFrameIndex:
422     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
423     break;
424   case ISD::JumpTable:
425   case ISD::TargetJumpTable:
426     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
427     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
428     break;
429   case ISD::ConstantPool:
430   case ISD::TargetConstantPool: {
431     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
432     ID.AddInteger(CP->getAlignment());
433     ID.AddInteger(CP->getOffset());
434     if (CP->isMachineConstantPoolEntry())
435       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
436     else
437       ID.AddPointer(CP->getConstVal());
438     ID.AddInteger(CP->getTargetFlags());
439     break;
440   }
441   case ISD::TargetIndex: {
442     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
443     ID.AddInteger(TI->getIndex());
444     ID.AddInteger(TI->getOffset());
445     ID.AddInteger(TI->getTargetFlags());
446     break;
447   }
448   case ISD::LOAD: {
449     const LoadSDNode *LD = cast<LoadSDNode>(N);
450     ID.AddInteger(LD->getMemoryVT().getRawBits());
451     ID.AddInteger(LD->getRawSubclassData());
452     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
453     break;
454   }
455   case ISD::STORE: {
456     const StoreSDNode *ST = cast<StoreSDNode>(N);
457     ID.AddInteger(ST->getMemoryVT().getRawBits());
458     ID.AddInteger(ST->getRawSubclassData());
459     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
460     break;
461   }
462   case ISD::ATOMIC_CMP_SWAP:
463   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
464   case ISD::ATOMIC_SWAP:
465   case ISD::ATOMIC_LOAD_ADD:
466   case ISD::ATOMIC_LOAD_SUB:
467   case ISD::ATOMIC_LOAD_AND:
468   case ISD::ATOMIC_LOAD_OR:
469   case ISD::ATOMIC_LOAD_XOR:
470   case ISD::ATOMIC_LOAD_NAND:
471   case ISD::ATOMIC_LOAD_MIN:
472   case ISD::ATOMIC_LOAD_MAX:
473   case ISD::ATOMIC_LOAD_UMIN:
474   case ISD::ATOMIC_LOAD_UMAX:
475   case ISD::ATOMIC_LOAD:
476   case ISD::ATOMIC_STORE: {
477     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
478     ID.AddInteger(AT->getMemoryVT().getRawBits());
479     ID.AddInteger(AT->getRawSubclassData());
480     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
481     break;
482   }
483   case ISD::PREFETCH: {
484     const MemSDNode *PF = cast<MemSDNode>(N);
485     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
486     break;
487   }
488   case ISD::VECTOR_SHUFFLE: {
489     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
490     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
491          i != e; ++i)
492       ID.AddInteger(SVN->getMaskElt(i));
493     break;
494   }
495   case ISD::TargetBlockAddress:
496   case ISD::BlockAddress: {
497     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
498     ID.AddPointer(BA->getBlockAddress());
499     ID.AddInteger(BA->getOffset());
500     ID.AddInteger(BA->getTargetFlags());
501     break;
502   }
503   } // end switch (N->getOpcode())
504 
505   // Target specific memory nodes could also have address spaces to check.
506   if (N->isTargetMemoryOpcode())
507     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
508 }
509 
510 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
511 /// data.
512 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
513   AddNodeIDOpcode(ID, N->getOpcode());
514   // Add the return value info.
515   AddNodeIDValueTypes(ID, N->getVTList());
516   // Add the operand info.
517   AddNodeIDOperands(ID, N->ops());
518 
519   // Handle SDNode leafs with special info.
520   AddNodeIDCustom(ID, N);
521 }
522 
523 //===----------------------------------------------------------------------===//
524 //                              SelectionDAG Class
525 //===----------------------------------------------------------------------===//
526 
527 /// doNotCSE - Return true if CSE should not be performed for this node.
528 static bool doNotCSE(SDNode *N) {
529   if (N->getValueType(0) == MVT::Glue)
530     return true; // Never CSE anything that produces a flag.
531 
532   switch (N->getOpcode()) {
533   default: break;
534   case ISD::HANDLENODE:
535   case ISD::EH_LABEL:
536     return true;   // Never CSE these nodes.
537   }
538 
539   // Check that remaining values produced are not flags.
540   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
541     if (N->getValueType(i) == MVT::Glue)
542       return true; // Never CSE anything that produces a flag.
543 
544   return false;
545 }
546 
547 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
548 /// SelectionDAG.
549 void SelectionDAG::RemoveDeadNodes() {
550   // Create a dummy node (which is not added to allnodes), that adds a reference
551   // to the root node, preventing it from being deleted.
552   HandleSDNode Dummy(getRoot());
553 
554   SmallVector<SDNode*, 128> DeadNodes;
555 
556   // Add all obviously-dead nodes to the DeadNodes worklist.
557   for (SDNode &Node : allnodes())
558     if (Node.use_empty())
559       DeadNodes.push_back(&Node);
560 
561   RemoveDeadNodes(DeadNodes);
562 
563   // If the root changed (e.g. it was a dead load, update the root).
564   setRoot(Dummy.getValue());
565 }
566 
567 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
568 /// given list, and any nodes that become unreachable as a result.
569 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
570 
571   // Process the worklist, deleting the nodes and adding their uses to the
572   // worklist.
573   while (!DeadNodes.empty()) {
574     SDNode *N = DeadNodes.pop_back_val();
575 
576     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
577       DUL->NodeDeleted(N, nullptr);
578 
579     // Take the node out of the appropriate CSE map.
580     RemoveNodeFromCSEMaps(N);
581 
582     // Next, brutally remove the operand list.  This is safe to do, as there are
583     // no cycles in the graph.
584     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
585       SDUse &Use = *I++;
586       SDNode *Operand = Use.getNode();
587       Use.set(SDValue());
588 
589       // Now that we removed this operand, see if there are no uses of it left.
590       if (Operand->use_empty())
591         DeadNodes.push_back(Operand);
592     }
593 
594     DeallocateNode(N);
595   }
596 }
597 
598 void SelectionDAG::RemoveDeadNode(SDNode *N){
599   SmallVector<SDNode*, 16> DeadNodes(1, N);
600 
601   // Create a dummy node that adds a reference to the root node, preventing
602   // it from being deleted.  (This matters if the root is an operand of the
603   // dead node.)
604   HandleSDNode Dummy(getRoot());
605 
606   RemoveDeadNodes(DeadNodes);
607 }
608 
609 void SelectionDAG::DeleteNode(SDNode *N) {
610   // First take this out of the appropriate CSE map.
611   RemoveNodeFromCSEMaps(N);
612 
613   // Finally, remove uses due to operands of this node, remove from the
614   // AllNodes list, and delete the node.
615   DeleteNodeNotInCSEMaps(N);
616 }
617 
618 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
619   assert(N->getIterator() != AllNodes.begin() &&
620          "Cannot delete the entry node!");
621   assert(N->use_empty() && "Cannot delete a node that is not dead!");
622 
623   // Drop all of the operands and decrement used node's use counts.
624   N->DropOperands();
625 
626   DeallocateNode(N);
627 }
628 
629 void SDDbgInfo::erase(const SDNode *Node) {
630   DbgValMapType::iterator I = DbgValMap.find(Node);
631   if (I == DbgValMap.end())
632     return;
633   for (auto &Val: I->second)
634     Val->setIsInvalidated();
635   DbgValMap.erase(I);
636 }
637 
638 void SelectionDAG::DeallocateNode(SDNode *N) {
639   // If we have operands, deallocate them.
640   removeOperands(N);
641 
642   // Set the opcode to DELETED_NODE to help catch bugs when node
643   // memory is reallocated.
644   N->NodeType = ISD::DELETED_NODE;
645 
646   NodeAllocator.Deallocate(AllNodes.remove(N));
647 
648   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
649   // them and forget about that node.
650   DbgInfo->erase(N);
651 }
652 
653 #ifndef NDEBUG
654 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
655 static void VerifySDNode(SDNode *N) {
656   switch (N->getOpcode()) {
657   default:
658     break;
659   case ISD::BUILD_PAIR: {
660     EVT VT = N->getValueType(0);
661     assert(N->getNumValues() == 1 && "Too many results!");
662     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
663            "Wrong return type!");
664     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
665     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
666            "Mismatched operand types!");
667     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
668            "Wrong operand type!");
669     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
670            "Wrong return type size");
671     break;
672   }
673   case ISD::BUILD_VECTOR: {
674     assert(N->getNumValues() == 1 && "Too many results!");
675     assert(N->getValueType(0).isVector() && "Wrong return type!");
676     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
677            "Wrong number of operands!");
678     EVT EltVT = N->getValueType(0).getVectorElementType();
679     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
680       assert((I->getValueType() == EltVT ||
681              (EltVT.isInteger() && I->getValueType().isInteger() &&
682               EltVT.bitsLE(I->getValueType()))) &&
683             "Wrong operand type!");
684       assert(I->getValueType() == N->getOperand(0).getValueType() &&
685              "Operands must all have the same type");
686     }
687     break;
688   }
689   }
690 }
691 #endif // NDEBUG
692 
693 /// \brief Insert a newly allocated node into the DAG.
694 ///
695 /// Handles insertion into the all nodes list and CSE map, as well as
696 /// verification and other common operations when a new node is allocated.
697 void SelectionDAG::InsertNode(SDNode *N) {
698   AllNodes.push_back(N);
699 #ifndef NDEBUG
700   N->PersistentId = NextPersistentId++;
701   VerifySDNode(N);
702 #endif
703 }
704 
705 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
706 /// correspond to it.  This is useful when we're about to delete or repurpose
707 /// the node.  We don't want future request for structurally identical nodes
708 /// to return N anymore.
709 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
710   bool Erased = false;
711   switch (N->getOpcode()) {
712   case ISD::HANDLENODE: return false;  // noop.
713   case ISD::CONDCODE:
714     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
715            "Cond code doesn't exist!");
716     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
717     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
718     break;
719   case ISD::ExternalSymbol:
720     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
721     break;
722   case ISD::TargetExternalSymbol: {
723     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
724     Erased = TargetExternalSymbols.erase(
725                std::pair<std::string,unsigned char>(ESN->getSymbol(),
726                                                     ESN->getTargetFlags()));
727     break;
728   }
729   case ISD::MCSymbol: {
730     auto *MCSN = cast<MCSymbolSDNode>(N);
731     Erased = MCSymbols.erase(MCSN->getMCSymbol());
732     break;
733   }
734   case ISD::VALUETYPE: {
735     EVT VT = cast<VTSDNode>(N)->getVT();
736     if (VT.isExtended()) {
737       Erased = ExtendedValueTypeNodes.erase(VT);
738     } else {
739       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
740       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
741     }
742     break;
743   }
744   default:
745     // Remove it from the CSE Map.
746     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
747     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
748     Erased = CSEMap.RemoveNode(N);
749     break;
750   }
751 #ifndef NDEBUG
752   // Verify that the node was actually in one of the CSE maps, unless it has a
753   // flag result (which cannot be CSE'd) or is one of the special cases that are
754   // not subject to CSE.
755   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
756       !N->isMachineOpcode() && !doNotCSE(N)) {
757     N->dump(this);
758     dbgs() << "\n";
759     llvm_unreachable("Node is not in map!");
760   }
761 #endif
762   return Erased;
763 }
764 
765 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
766 /// maps and modified in place. Add it back to the CSE maps, unless an identical
767 /// node already exists, in which case transfer all its users to the existing
768 /// node. This transfer can potentially trigger recursive merging.
769 ///
770 void
771 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
772   // For node types that aren't CSE'd, just act as if no identical node
773   // already exists.
774   if (!doNotCSE(N)) {
775     SDNode *Existing = CSEMap.GetOrInsertNode(N);
776     if (Existing != N) {
777       // If there was already an existing matching node, use ReplaceAllUsesWith
778       // to replace the dead one with the existing one.  This can cause
779       // recursive merging of other unrelated nodes down the line.
780       ReplaceAllUsesWith(N, Existing);
781 
782       // N is now dead. Inform the listeners and delete it.
783       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
784         DUL->NodeDeleted(N, Existing);
785       DeleteNodeNotInCSEMaps(N);
786       return;
787     }
788   }
789 
790   // If the node doesn't already exist, we updated it.  Inform listeners.
791   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
792     DUL->NodeUpdated(N);
793 }
794 
795 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
796 /// were replaced with those specified.  If this node is never memoized,
797 /// return null, otherwise return a pointer to the slot it would take.  If a
798 /// node already exists with these operands, the slot will be non-null.
799 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
800                                            void *&InsertPos) {
801   if (doNotCSE(N))
802     return nullptr;
803 
804   SDValue Ops[] = { Op };
805   FoldingSetNodeID ID;
806   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
807   AddNodeIDCustom(ID, N);
808   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
809   if (Node)
810     if (const SDNodeFlags *Flags = N->getFlags())
811       Node->intersectFlagsWith(Flags);
812   return Node;
813 }
814 
815 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
816 /// were replaced with those specified.  If this node is never memoized,
817 /// return null, otherwise return a pointer to the slot it would take.  If a
818 /// node already exists with these operands, the slot will be non-null.
819 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
820                                            SDValue Op1, SDValue Op2,
821                                            void *&InsertPos) {
822   if (doNotCSE(N))
823     return nullptr;
824 
825   SDValue Ops[] = { Op1, Op2 };
826   FoldingSetNodeID ID;
827   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
828   AddNodeIDCustom(ID, N);
829   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
830   if (Node)
831     if (const SDNodeFlags *Flags = N->getFlags())
832       Node->intersectFlagsWith(Flags);
833   return Node;
834 }
835 
836 
837 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
838 /// were replaced with those specified.  If this node is never memoized,
839 /// return null, otherwise return a pointer to the slot it would take.  If a
840 /// node already exists with these operands, the slot will be non-null.
841 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
842                                            void *&InsertPos) {
843   if (doNotCSE(N))
844     return nullptr;
845 
846   FoldingSetNodeID ID;
847   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
848   AddNodeIDCustom(ID, N);
849   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
850   if (Node)
851     if (const SDNodeFlags *Flags = N->getFlags())
852       Node->intersectFlagsWith(Flags);
853   return Node;
854 }
855 
856 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
857   Type *Ty = VT == MVT::iPTR ?
858                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
859                    VT.getTypeForEVT(*getContext());
860 
861   return getDataLayout().getABITypeAlignment(Ty);
862 }
863 
864 // EntryNode could meaningfully have debug info if we can find it...
865 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
866     : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
867       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
868       Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
869       UpdateListeners(nullptr) {
870   InsertNode(&EntryNode);
871   DbgInfo = new SDDbgInfo();
872 }
873 
874 void SelectionDAG::init(MachineFunction &mf) {
875   MF = &mf;
876   TLI = getSubtarget().getTargetLowering();
877   TSI = getSubtarget().getSelectionDAGInfo();
878   Context = &mf.getFunction()->getContext();
879 }
880 
881 SelectionDAG::~SelectionDAG() {
882   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
883   allnodes_clear();
884   OperandRecycler.clear(OperandAllocator);
885   delete DbgInfo;
886 }
887 
888 void SelectionDAG::allnodes_clear() {
889   assert(&*AllNodes.begin() == &EntryNode);
890   AllNodes.remove(AllNodes.begin());
891   while (!AllNodes.empty())
892     DeallocateNode(&AllNodes.front());
893 #ifndef NDEBUG
894   NextPersistentId = 0;
895 #endif
896 }
897 
898 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL,
899                                       SDVTList VTs, SDValue N1, SDValue N2,
900                                       const SDNodeFlags *Flags) {
901   SDValue Ops[] = {N1, N2};
902 
903   if (isBinOpWithFlags(Opcode)) {
904     // If no flags were passed in, use a default flags object.
905     SDNodeFlags F;
906     if (Flags == nullptr)
907       Flags = &F;
908 
909     auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(),
910                                                 DL.getDebugLoc(), VTs, *Flags);
911     createOperands(FN, Ops);
912 
913     return FN;
914   }
915 
916   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
917   createOperands(N, Ops);
918   return N;
919 }
920 
921 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
922                                           void *&InsertPos) {
923   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
924   if (N) {
925     switch (N->getOpcode()) {
926     default: break;
927     case ISD::Constant:
928     case ISD::ConstantFP:
929       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
930                        "debug location.  Use another overload.");
931     }
932   }
933   return N;
934 }
935 
936 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
937                                           const SDLoc &DL, void *&InsertPos) {
938   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
939   if (N) {
940     switch (N->getOpcode()) {
941     case ISD::Constant:
942     case ISD::ConstantFP:
943       // Erase debug location from the node if the node is used at several
944       // different places. Do not propagate one location to all uses as it
945       // will cause a worse single stepping debugging experience.
946       if (N->getDebugLoc() != DL.getDebugLoc())
947         N->setDebugLoc(DebugLoc());
948       break;
949     default:
950       // When the node's point of use is located earlier in the instruction
951       // sequence than its prior point of use, update its debug info to the
952       // earlier location.
953       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
954         N->setDebugLoc(DL.getDebugLoc());
955       break;
956     }
957   }
958   return N;
959 }
960 
961 void SelectionDAG::clear() {
962   allnodes_clear();
963   OperandRecycler.clear(OperandAllocator);
964   OperandAllocator.Reset();
965   CSEMap.clear();
966 
967   ExtendedValueTypeNodes.clear();
968   ExternalSymbols.clear();
969   TargetExternalSymbols.clear();
970   MCSymbols.clear();
971   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
972             static_cast<CondCodeSDNode*>(nullptr));
973   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
974             static_cast<SDNode*>(nullptr));
975 
976   EntryNode.UseList = nullptr;
977   InsertNode(&EntryNode);
978   Root = getEntryNode();
979   DbgInfo->clear();
980 }
981 
982 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
983   return VT.bitsGT(Op.getValueType()) ?
984     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
985     getNode(ISD::TRUNCATE, DL, VT, Op);
986 }
987 
988 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
989   return VT.bitsGT(Op.getValueType()) ?
990     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
991     getNode(ISD::TRUNCATE, DL, VT, Op);
992 }
993 
994 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
995   return VT.bitsGT(Op.getValueType()) ?
996     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
997     getNode(ISD::TRUNCATE, DL, VT, Op);
998 }
999 
1000 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1001                                         EVT OpVT) {
1002   if (VT.bitsLE(Op.getValueType()))
1003     return getNode(ISD::TRUNCATE, SL, VT, Op);
1004 
1005   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1006   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1007 }
1008 
1009 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1010   assert(!VT.isVector() &&
1011          "getZeroExtendInReg should use the vector element type instead of "
1012          "the vector type!");
1013   if (Op.getValueType() == VT) return Op;
1014   unsigned BitWidth = Op.getScalarValueSizeInBits();
1015   APInt Imm = APInt::getLowBitsSet(BitWidth,
1016                                    VT.getSizeInBits());
1017   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1018                  getConstant(Imm, DL, Op.getValueType()));
1019 }
1020 
1021 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1022                                               EVT VT) {
1023   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1024   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1025          "The sizes of the input and result must match in order to perform the "
1026          "extend in-register.");
1027   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1028          "The destination vector type must have fewer lanes than the input.");
1029   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1030 }
1031 
1032 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1033                                                EVT VT) {
1034   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1035   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1036          "The sizes of the input and result must match in order to perform the "
1037          "extend in-register.");
1038   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1039          "The destination vector type must have fewer lanes than the input.");
1040   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1041 }
1042 
1043 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1044                                                EVT VT) {
1045   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1046   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
1047          "The sizes of the input and result must match in order to perform the "
1048          "extend in-register.");
1049   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1050          "The destination vector type must have fewer lanes than the input.");
1051   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1052 }
1053 
1054 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1055 ///
1056 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1057   EVT EltVT = VT.getScalarType();
1058   SDValue NegOne =
1059     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1060   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1061 }
1062 
1063 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1064   EVT EltVT = VT.getScalarType();
1065   SDValue TrueValue;
1066   switch (TLI->getBooleanContents(VT)) {
1067     case TargetLowering::ZeroOrOneBooleanContent:
1068     case TargetLowering::UndefinedBooleanContent:
1069       TrueValue = getConstant(1, DL, VT);
1070       break;
1071     case TargetLowering::ZeroOrNegativeOneBooleanContent:
1072       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
1073                               VT);
1074       break;
1075   }
1076   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1077 }
1078 
1079 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1080                                   bool isT, bool isO) {
1081   EVT EltVT = VT.getScalarType();
1082   assert((EltVT.getSizeInBits() >= 64 ||
1083          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1084          "getConstant with a uint64_t value that doesn't fit in the type!");
1085   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1086 }
1087 
1088 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1089                                   bool isT, bool isO) {
1090   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1091 }
1092 
1093 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1094                                   EVT VT, bool isT, bool isO) {
1095   assert(VT.isInteger() && "Cannot create FP integer constant!");
1096 
1097   EVT EltVT = VT.getScalarType();
1098   const ConstantInt *Elt = &Val;
1099 
1100   // In some cases the vector type is legal but the element type is illegal and
1101   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1102   // inserted value (the type does not need to match the vector element type).
1103   // Any extra bits introduced will be truncated away.
1104   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1105       TargetLowering::TypePromoteInteger) {
1106    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1107    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1108    Elt = ConstantInt::get(*getContext(), NewVal);
1109   }
1110   // In other cases the element type is illegal and needs to be expanded, for
1111   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1112   // the value into n parts and use a vector type with n-times the elements.
1113   // Then bitcast to the type requested.
1114   // Legalizing constants too early makes the DAGCombiner's job harder so we
1115   // only legalize if the DAG tells us we must produce legal types.
1116   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1117            TLI->getTypeAction(*getContext(), EltVT) ==
1118            TargetLowering::TypeExpandInteger) {
1119     const APInt &NewVal = Elt->getValue();
1120     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1121     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1122     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1123     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1124 
1125     // Check the temporary vector is the correct size. If this fails then
1126     // getTypeToTransformTo() probably returned a type whose size (in bits)
1127     // isn't a power-of-2 factor of the requested type size.
1128     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1129 
1130     SmallVector<SDValue, 2> EltParts;
1131     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1132       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1133                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1134                                      ViaEltVT, isT, isO));
1135     }
1136 
1137     // EltParts is currently in little endian order. If we actually want
1138     // big-endian order then reverse it now.
1139     if (getDataLayout().isBigEndian())
1140       std::reverse(EltParts.begin(), EltParts.end());
1141 
1142     // The elements must be reversed when the element order is different
1143     // to the endianness of the elements (because the BITCAST is itself a
1144     // vector shuffle in this situation). However, we do not need any code to
1145     // perform this reversal because getConstant() is producing a vector
1146     // splat.
1147     // This situation occurs in MIPS MSA.
1148 
1149     SmallVector<SDValue, 8> Ops;
1150     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1151       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1152     return getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1153   }
1154 
1155   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1156          "APInt size does not match type size!");
1157   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1158   FoldingSetNodeID ID;
1159   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1160   ID.AddPointer(Elt);
1161   ID.AddBoolean(isO);
1162   void *IP = nullptr;
1163   SDNode *N = nullptr;
1164   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1165     if (!VT.isVector())
1166       return SDValue(N, 0);
1167 
1168   if (!N) {
1169     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1170     CSEMap.InsertNode(N, IP);
1171     InsertNode(N);
1172   }
1173 
1174   SDValue Result(N, 0);
1175   if (VT.isVector())
1176     Result = getSplatBuildVector(VT, DL, Result);
1177   return Result;
1178 }
1179 
1180 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1181                                         bool isTarget) {
1182   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1183 }
1184 
1185 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1186                                     bool isTarget) {
1187   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1188 }
1189 
1190 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1191                                     EVT VT, bool isTarget) {
1192   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1193 
1194   EVT EltVT = VT.getScalarType();
1195 
1196   // Do the map lookup using the actual bit pattern for the floating point
1197   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1198   // we don't have issues with SNANs.
1199   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1200   FoldingSetNodeID ID;
1201   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1202   ID.AddPointer(&V);
1203   void *IP = nullptr;
1204   SDNode *N = nullptr;
1205   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1206     if (!VT.isVector())
1207       return SDValue(N, 0);
1208 
1209   if (!N) {
1210     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1211     CSEMap.InsertNode(N, IP);
1212     InsertNode(N);
1213   }
1214 
1215   SDValue Result(N, 0);
1216   if (VT.isVector())
1217     Result = getSplatBuildVector(VT, DL, Result);
1218   return Result;
1219 }
1220 
1221 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1222                                     bool isTarget) {
1223   EVT EltVT = VT.getScalarType();
1224   if (EltVT == MVT::f32)
1225     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1226   else if (EltVT == MVT::f64)
1227     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1228   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1229            EltVT == MVT::f16) {
1230     bool Ignored;
1231     APFloat APF = APFloat(Val);
1232     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1233                 &Ignored);
1234     return getConstantFP(APF, DL, VT, isTarget);
1235   } else
1236     llvm_unreachable("Unsupported type in getConstantFP");
1237 }
1238 
1239 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1240                                        EVT VT, int64_t Offset, bool isTargetGA,
1241                                        unsigned char TargetFlags) {
1242   assert((TargetFlags == 0 || isTargetGA) &&
1243          "Cannot set target flags on target-independent globals");
1244 
1245   // Truncate (with sign-extension) the offset value to the pointer size.
1246   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1247   if (BitWidth < 64)
1248     Offset = SignExtend64(Offset, BitWidth);
1249 
1250   unsigned Opc;
1251   if (GV->isThreadLocal())
1252     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1253   else
1254     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1255 
1256   FoldingSetNodeID ID;
1257   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1258   ID.AddPointer(GV);
1259   ID.AddInteger(Offset);
1260   ID.AddInteger(TargetFlags);
1261   void *IP = nullptr;
1262   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1263     return SDValue(E, 0);
1264 
1265   auto *N = newSDNode<GlobalAddressSDNode>(
1266       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1267   CSEMap.InsertNode(N, IP);
1268     InsertNode(N);
1269   return SDValue(N, 0);
1270 }
1271 
1272 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1273   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1274   FoldingSetNodeID ID;
1275   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1276   ID.AddInteger(FI);
1277   void *IP = nullptr;
1278   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1279     return SDValue(E, 0);
1280 
1281   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1282   CSEMap.InsertNode(N, IP);
1283   InsertNode(N);
1284   return SDValue(N, 0);
1285 }
1286 
1287 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1288                                    unsigned char TargetFlags) {
1289   assert((TargetFlags == 0 || isTarget) &&
1290          "Cannot set target flags on target-independent jump tables");
1291   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1292   FoldingSetNodeID ID;
1293   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1294   ID.AddInteger(JTI);
1295   ID.AddInteger(TargetFlags);
1296   void *IP = nullptr;
1297   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1298     return SDValue(E, 0);
1299 
1300   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1301   CSEMap.InsertNode(N, IP);
1302   InsertNode(N);
1303   return SDValue(N, 0);
1304 }
1305 
1306 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1307                                       unsigned Alignment, int Offset,
1308                                       bool isTarget,
1309                                       unsigned char TargetFlags) {
1310   assert((TargetFlags == 0 || isTarget) &&
1311          "Cannot set target flags on target-independent globals");
1312   if (Alignment == 0)
1313     Alignment = MF->getFunction()->optForSize()
1314                     ? getDataLayout().getABITypeAlignment(C->getType())
1315                     : getDataLayout().getPrefTypeAlignment(C->getType());
1316   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1317   FoldingSetNodeID ID;
1318   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1319   ID.AddInteger(Alignment);
1320   ID.AddInteger(Offset);
1321   ID.AddPointer(C);
1322   ID.AddInteger(TargetFlags);
1323   void *IP = nullptr;
1324   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1325     return SDValue(E, 0);
1326 
1327   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1328                                           TargetFlags);
1329   CSEMap.InsertNode(N, IP);
1330   InsertNode(N);
1331   return SDValue(N, 0);
1332 }
1333 
1334 
1335 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1336                                       unsigned Alignment, int Offset,
1337                                       bool isTarget,
1338                                       unsigned char TargetFlags) {
1339   assert((TargetFlags == 0 || isTarget) &&
1340          "Cannot set target flags on target-independent globals");
1341   if (Alignment == 0)
1342     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1343   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1344   FoldingSetNodeID ID;
1345   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1346   ID.AddInteger(Alignment);
1347   ID.AddInteger(Offset);
1348   C->addSelectionDAGCSEId(ID);
1349   ID.AddInteger(TargetFlags);
1350   void *IP = nullptr;
1351   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1352     return SDValue(E, 0);
1353 
1354   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1355                                           TargetFlags);
1356   CSEMap.InsertNode(N, IP);
1357   InsertNode(N);
1358   return SDValue(N, 0);
1359 }
1360 
1361 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1362                                      unsigned char TargetFlags) {
1363   FoldingSetNodeID ID;
1364   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1365   ID.AddInteger(Index);
1366   ID.AddInteger(Offset);
1367   ID.AddInteger(TargetFlags);
1368   void *IP = nullptr;
1369   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1370     return SDValue(E, 0);
1371 
1372   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1373   CSEMap.InsertNode(N, IP);
1374   InsertNode(N);
1375   return SDValue(N, 0);
1376 }
1377 
1378 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1379   FoldingSetNodeID ID;
1380   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1381   ID.AddPointer(MBB);
1382   void *IP = nullptr;
1383   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1384     return SDValue(E, 0);
1385 
1386   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1387   CSEMap.InsertNode(N, IP);
1388   InsertNode(N);
1389   return SDValue(N, 0);
1390 }
1391 
1392 SDValue SelectionDAG::getValueType(EVT VT) {
1393   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1394       ValueTypeNodes.size())
1395     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1396 
1397   SDNode *&N = VT.isExtended() ?
1398     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1399 
1400   if (N) return SDValue(N, 0);
1401   N = newSDNode<VTSDNode>(VT);
1402   InsertNode(N);
1403   return SDValue(N, 0);
1404 }
1405 
1406 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1407   SDNode *&N = ExternalSymbols[Sym];
1408   if (N) return SDValue(N, 0);
1409   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1410   InsertNode(N);
1411   return SDValue(N, 0);
1412 }
1413 
1414 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1415   SDNode *&N = MCSymbols[Sym];
1416   if (N)
1417     return SDValue(N, 0);
1418   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1419   InsertNode(N);
1420   return SDValue(N, 0);
1421 }
1422 
1423 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1424                                               unsigned char TargetFlags) {
1425   SDNode *&N =
1426     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1427                                                                TargetFlags)];
1428   if (N) return SDValue(N, 0);
1429   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1430   InsertNode(N);
1431   return SDValue(N, 0);
1432 }
1433 
1434 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1435   if ((unsigned)Cond >= CondCodeNodes.size())
1436     CondCodeNodes.resize(Cond+1);
1437 
1438   if (!CondCodeNodes[Cond]) {
1439     auto *N = newSDNode<CondCodeSDNode>(Cond);
1440     CondCodeNodes[Cond] = N;
1441     InsertNode(N);
1442   }
1443 
1444   return SDValue(CondCodeNodes[Cond], 0);
1445 }
1446 
1447 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1448 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1449 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1450   std::swap(N1, N2);
1451   ShuffleVectorSDNode::commuteMask(M);
1452 }
1453 
1454 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1455                                        SDValue N2, ArrayRef<int> Mask) {
1456   assert(VT.getVectorNumElements() == Mask.size() &&
1457            "Must have the same number of vector elements as mask elements!");
1458   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1459          "Invalid VECTOR_SHUFFLE");
1460 
1461   // Canonicalize shuffle undef, undef -> undef
1462   if (N1.isUndef() && N2.isUndef())
1463     return getUNDEF(VT);
1464 
1465   // Validate that all indices in Mask are within the range of the elements
1466   // input to the shuffle.
1467   int NElts = Mask.size();
1468   assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) &&
1469          "Index out of range");
1470 
1471   // Copy the mask so we can do any needed cleanup.
1472   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1473 
1474   // Canonicalize shuffle v, v -> v, undef
1475   if (N1 == N2) {
1476     N2 = getUNDEF(VT);
1477     for (int i = 0; i != NElts; ++i)
1478       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1479   }
1480 
1481   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1482   if (N1.isUndef())
1483     commuteShuffle(N1, N2, MaskVec);
1484 
1485   // If shuffling a splat, try to blend the splat instead. We do this here so
1486   // that even when this arises during lowering we don't have to re-handle it.
1487   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1488     BitVector UndefElements;
1489     SDValue Splat = BV->getSplatValue(&UndefElements);
1490     if (!Splat)
1491       return;
1492 
1493     for (int i = 0; i < NElts; ++i) {
1494       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1495         continue;
1496 
1497       // If this input comes from undef, mark it as such.
1498       if (UndefElements[MaskVec[i] - Offset]) {
1499         MaskVec[i] = -1;
1500         continue;
1501       }
1502 
1503       // If we can blend a non-undef lane, use that instead.
1504       if (!UndefElements[i])
1505         MaskVec[i] = i + Offset;
1506     }
1507   };
1508   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1509     BlendSplat(N1BV, 0);
1510   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1511     BlendSplat(N2BV, NElts);
1512 
1513   // Canonicalize all index into lhs, -> shuffle lhs, undef
1514   // Canonicalize all index into rhs, -> shuffle rhs, undef
1515   bool AllLHS = true, AllRHS = true;
1516   bool N2Undef = N2.isUndef();
1517   for (int i = 0; i != NElts; ++i) {
1518     if (MaskVec[i] >= NElts) {
1519       if (N2Undef)
1520         MaskVec[i] = -1;
1521       else
1522         AllLHS = false;
1523     } else if (MaskVec[i] >= 0) {
1524       AllRHS = false;
1525     }
1526   }
1527   if (AllLHS && AllRHS)
1528     return getUNDEF(VT);
1529   if (AllLHS && !N2Undef)
1530     N2 = getUNDEF(VT);
1531   if (AllRHS) {
1532     N1 = getUNDEF(VT);
1533     commuteShuffle(N1, N2, MaskVec);
1534   }
1535   // Reset our undef status after accounting for the mask.
1536   N2Undef = N2.isUndef();
1537   // Re-check whether both sides ended up undef.
1538   if (N1.isUndef() && N2Undef)
1539     return getUNDEF(VT);
1540 
1541   // If Identity shuffle return that node.
1542   bool Identity = true, AllSame = true;
1543   for (int i = 0; i != NElts; ++i) {
1544     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1545     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1546   }
1547   if (Identity && NElts)
1548     return N1;
1549 
1550   // Shuffling a constant splat doesn't change the result.
1551   if (N2Undef) {
1552     SDValue V = N1;
1553 
1554     // Look through any bitcasts. We check that these don't change the number
1555     // (and size) of elements and just changes their types.
1556     while (V.getOpcode() == ISD::BITCAST)
1557       V = V->getOperand(0);
1558 
1559     // A splat should always show up as a build vector node.
1560     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1561       BitVector UndefElements;
1562       SDValue Splat = BV->getSplatValue(&UndefElements);
1563       // If this is a splat of an undef, shuffling it is also undef.
1564       if (Splat && Splat.isUndef())
1565         return getUNDEF(VT);
1566 
1567       bool SameNumElts =
1568           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1569 
1570       // We only have a splat which can skip shuffles if there is a splatted
1571       // value and no undef lanes rearranged by the shuffle.
1572       if (Splat && UndefElements.none()) {
1573         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1574         // number of elements match or the value splatted is a zero constant.
1575         if (SameNumElts)
1576           return N1;
1577         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1578           if (C->isNullValue())
1579             return N1;
1580       }
1581 
1582       // If the shuffle itself creates a splat, build the vector directly.
1583       if (AllSame && SameNumElts) {
1584         EVT BuildVT = BV->getValueType(0);
1585         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1586         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1587 
1588         // We may have jumped through bitcasts, so the type of the
1589         // BUILD_VECTOR may not match the type of the shuffle.
1590         if (BuildVT != VT)
1591           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1592         return NewBV;
1593       }
1594     }
1595   }
1596 
1597   FoldingSetNodeID ID;
1598   SDValue Ops[2] = { N1, N2 };
1599   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1600   for (int i = 0; i != NElts; ++i)
1601     ID.AddInteger(MaskVec[i]);
1602 
1603   void* IP = nullptr;
1604   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1605     return SDValue(E, 0);
1606 
1607   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1608   // SDNode doesn't have access to it.  This memory will be "leaked" when
1609   // the node is deallocated, but recovered when the NodeAllocator is released.
1610   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1611   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1612 
1613   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1614                                            dl.getDebugLoc(), MaskAlloc);
1615   createOperands(N, Ops);
1616 
1617   CSEMap.InsertNode(N, IP);
1618   InsertNode(N);
1619   return SDValue(N, 0);
1620 }
1621 
1622 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1623   MVT VT = SV.getSimpleValueType(0);
1624   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1625   ShuffleVectorSDNode::commuteMask(MaskVec);
1626 
1627   SDValue Op0 = SV.getOperand(0);
1628   SDValue Op1 = SV.getOperand(1);
1629   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1630 }
1631 
1632 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1633   FoldingSetNodeID ID;
1634   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1635   ID.AddInteger(RegNo);
1636   void *IP = nullptr;
1637   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1638     return SDValue(E, 0);
1639 
1640   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1641   CSEMap.InsertNode(N, IP);
1642   InsertNode(N);
1643   return SDValue(N, 0);
1644 }
1645 
1646 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1647   FoldingSetNodeID ID;
1648   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1649   ID.AddPointer(RegMask);
1650   void *IP = nullptr;
1651   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1652     return SDValue(E, 0);
1653 
1654   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1655   CSEMap.InsertNode(N, IP);
1656   InsertNode(N);
1657   return SDValue(N, 0);
1658 }
1659 
1660 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1661                                  MCSymbol *Label) {
1662   FoldingSetNodeID ID;
1663   SDValue Ops[] = { Root };
1664   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
1665   ID.AddPointer(Label);
1666   void *IP = nullptr;
1667   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1668     return SDValue(E, 0);
1669 
1670   auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1671   createOperands(N, Ops);
1672 
1673   CSEMap.InsertNode(N, IP);
1674   InsertNode(N);
1675   return SDValue(N, 0);
1676 }
1677 
1678 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1679                                       int64_t Offset,
1680                                       bool isTarget,
1681                                       unsigned char TargetFlags) {
1682   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1683 
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1686   ID.AddPointer(BA);
1687   ID.AddInteger(Offset);
1688   ID.AddInteger(TargetFlags);
1689   void *IP = nullptr;
1690   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1691     return SDValue(E, 0);
1692 
1693   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1694   CSEMap.InsertNode(N, IP);
1695   InsertNode(N);
1696   return SDValue(N, 0);
1697 }
1698 
1699 SDValue SelectionDAG::getSrcValue(const Value *V) {
1700   assert((!V || V->getType()->isPointerTy()) &&
1701          "SrcValue is not a pointer?");
1702 
1703   FoldingSetNodeID ID;
1704   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1705   ID.AddPointer(V);
1706 
1707   void *IP = nullptr;
1708   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1709     return SDValue(E, 0);
1710 
1711   auto *N = newSDNode<SrcValueSDNode>(V);
1712   CSEMap.InsertNode(N, IP);
1713   InsertNode(N);
1714   return SDValue(N, 0);
1715 }
1716 
1717 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1718   FoldingSetNodeID ID;
1719   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1720   ID.AddPointer(MD);
1721 
1722   void *IP = nullptr;
1723   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1724     return SDValue(E, 0);
1725 
1726   auto *N = newSDNode<MDNodeSDNode>(MD);
1727   CSEMap.InsertNode(N, IP);
1728   InsertNode(N);
1729   return SDValue(N, 0);
1730 }
1731 
1732 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1733   if (VT == V.getValueType())
1734     return V;
1735 
1736   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1737 }
1738 
1739 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1740                                        unsigned SrcAS, unsigned DestAS) {
1741   SDValue Ops[] = {Ptr};
1742   FoldingSetNodeID ID;
1743   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1744   ID.AddInteger(SrcAS);
1745   ID.AddInteger(DestAS);
1746 
1747   void *IP = nullptr;
1748   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1749     return SDValue(E, 0);
1750 
1751   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1752                                            VT, SrcAS, DestAS);
1753   createOperands(N, Ops);
1754 
1755   CSEMap.InsertNode(N, IP);
1756   InsertNode(N);
1757   return SDValue(N, 0);
1758 }
1759 
1760 /// getShiftAmountOperand - Return the specified value casted to
1761 /// the target's desired shift amount type.
1762 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1763   EVT OpTy = Op.getValueType();
1764   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1765   if (OpTy == ShTy || OpTy.isVector()) return Op;
1766 
1767   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1768 }
1769 
1770 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1771   SDLoc dl(Node);
1772   const TargetLowering &TLI = getTargetLoweringInfo();
1773   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1774   EVT VT = Node->getValueType(0);
1775   SDValue Tmp1 = Node->getOperand(0);
1776   SDValue Tmp2 = Node->getOperand(1);
1777   unsigned Align = Node->getConstantOperandVal(3);
1778 
1779   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1780                                Tmp2, MachinePointerInfo(V));
1781   SDValue VAList = VAListLoad;
1782 
1783   if (Align > TLI.getMinStackArgumentAlignment()) {
1784     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1785 
1786     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1787                      getConstant(Align - 1, dl, VAList.getValueType()));
1788 
1789     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1790                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1791   }
1792 
1793   // Increment the pointer, VAList, to the next vaarg
1794   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1795                  getConstant(getDataLayout().getTypeAllocSize(
1796                                                VT.getTypeForEVT(*getContext())),
1797                              dl, VAList.getValueType()));
1798   // Store the incremented VAList to the legalized pointer
1799   Tmp1 =
1800       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1801   // Load the actual argument out of the pointer VAList
1802   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1803 }
1804 
1805 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1806   SDLoc dl(Node);
1807   const TargetLowering &TLI = getTargetLoweringInfo();
1808   // This defaults to loading a pointer from the input and storing it to the
1809   // output, returning the chain.
1810   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1811   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1812   SDValue Tmp1 =
1813       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1814               Node->getOperand(2), MachinePointerInfo(VS));
1815   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1816                   MachinePointerInfo(VD));
1817 }
1818 
1819 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1820   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1821   unsigned ByteSize = VT.getStoreSize();
1822   Type *Ty = VT.getTypeForEVT(*getContext());
1823   unsigned StackAlign =
1824       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1825 
1826   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1827   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1828 }
1829 
1830 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1831   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1832   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1833   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1834   const DataLayout &DL = getDataLayout();
1835   unsigned Align =
1836       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1837 
1838   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1839   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1840   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1841 }
1842 
1843 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1844                                 ISD::CondCode Cond, const SDLoc &dl) {
1845   // These setcc operations always fold.
1846   switch (Cond) {
1847   default: break;
1848   case ISD::SETFALSE:
1849   case ISD::SETFALSE2: return getConstant(0, dl, VT);
1850   case ISD::SETTRUE:
1851   case ISD::SETTRUE2: {
1852     TargetLowering::BooleanContent Cnt =
1853         TLI->getBooleanContents(N1->getValueType(0));
1854     return getConstant(
1855         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1856         VT);
1857   }
1858 
1859   case ISD::SETOEQ:
1860   case ISD::SETOGT:
1861   case ISD::SETOGE:
1862   case ISD::SETOLT:
1863   case ISD::SETOLE:
1864   case ISD::SETONE:
1865   case ISD::SETO:
1866   case ISD::SETUO:
1867   case ISD::SETUEQ:
1868   case ISD::SETUNE:
1869     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1870     break;
1871   }
1872 
1873   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1874     const APInt &C2 = N2C->getAPIntValue();
1875     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1876       const APInt &C1 = N1C->getAPIntValue();
1877 
1878       switch (Cond) {
1879       default: llvm_unreachable("Unknown integer setcc!");
1880       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
1881       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
1882       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
1883       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
1884       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
1885       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
1886       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
1887       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
1888       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
1889       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
1890       }
1891     }
1892   }
1893   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1894     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1895       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1896       switch (Cond) {
1897       default: break;
1898       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1899                           return getUNDEF(VT);
1900                         LLVM_FALLTHROUGH;
1901       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
1902       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1903                           return getUNDEF(VT);
1904                         LLVM_FALLTHROUGH;
1905       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1906                                            R==APFloat::cmpLessThan, dl, VT);
1907       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1908                           return getUNDEF(VT);
1909                         LLVM_FALLTHROUGH;
1910       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
1911       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1912                           return getUNDEF(VT);
1913                         LLVM_FALLTHROUGH;
1914       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
1915       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1916                           return getUNDEF(VT);
1917                         LLVM_FALLTHROUGH;
1918       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1919                                            R==APFloat::cmpEqual, dl, VT);
1920       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1921                           return getUNDEF(VT);
1922                         LLVM_FALLTHROUGH;
1923       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1924                                            R==APFloat::cmpEqual, dl, VT);
1925       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
1926       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
1927       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1928                                            R==APFloat::cmpEqual, dl, VT);
1929       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
1930       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1931                                            R==APFloat::cmpLessThan, dl, VT);
1932       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1933                                            R==APFloat::cmpUnordered, dl, VT);
1934       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
1935       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
1936       }
1937     } else {
1938       // Ensure that the constant occurs on the RHS.
1939       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1940       MVT CompVT = N1.getValueType().getSimpleVT();
1941       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
1942         return SDValue();
1943 
1944       return getSetCC(dl, VT, N2, N1, SwappedCond);
1945     }
1946   }
1947 
1948   // Could not fold it.
1949   return SDValue();
1950 }
1951 
1952 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1953 /// use this predicate to simplify operations downstream.
1954 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1955   unsigned BitWidth = Op.getScalarValueSizeInBits();
1956   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1957 }
1958 
1959 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1960 /// this predicate to simplify operations downstream.  Mask is known to be zero
1961 /// for bits that V cannot have.
1962 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1963                                      unsigned Depth) const {
1964   APInt KnownZero, KnownOne;
1965   computeKnownBits(Op, KnownZero, KnownOne, Depth);
1966   return (KnownZero & Mask) == Mask;
1967 }
1968 
1969 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
1970 /// is less than the element bit-width of the shift node, return it.
1971 static const APInt *getValidShiftAmountConstant(SDValue V) {
1972   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
1973     // Shifting more than the bitwidth is not valid.
1974     const APInt &ShAmt = SA->getAPIntValue();
1975     if (ShAmt.ult(V.getScalarValueSizeInBits()))
1976       return &ShAmt;
1977   }
1978   return nullptr;
1979 }
1980 
1981 /// Determine which bits of Op are known to be either zero or one and return
1982 /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are
1983 /// those that are shared by every vector element.
1984 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
1985                                     APInt &KnownOne, unsigned Depth) const {
1986   EVT VT = Op.getValueType();
1987   APInt DemandedElts = VT.isVector()
1988                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
1989                            : APInt(1, 1);
1990   computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth);
1991 }
1992 
1993 /// Determine which bits of Op are known to be either zero or one and return
1994 /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows
1995 /// us to only collect the known bits that are shared by the requested vector
1996 /// elements.
1997 /// TODO: We only support DemandedElts on a few opcodes so far, the remainder
1998 /// should be added when they become necessary.
1999 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
2000                                     APInt &KnownOne, const APInt &DemandedElts,
2001                                     unsigned Depth) const {
2002   unsigned BitWidth = Op.getScalarValueSizeInBits();
2003 
2004   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
2005   if (Depth == 6)
2006     return;  // Limit search depth.
2007 
2008   APInt KnownZero2, KnownOne2;
2009   unsigned NumElts = DemandedElts.getBitWidth();
2010 
2011   if (!DemandedElts)
2012     return;  // No demanded elts, better to assume we don't know anything.
2013 
2014   unsigned Opcode = Op.getOpcode();
2015   switch (Opcode) {
2016   case ISD::Constant:
2017     // We know all of the bits for a constant!
2018     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
2019     KnownZero = ~KnownOne;
2020     break;
2021   case ISD::BUILD_VECTOR:
2022     // Collect the known bits that are shared by every demanded vector element.
2023     assert(NumElts == Op.getValueType().getVectorNumElements() &&
2024            "Unexpected vector size");
2025     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2026     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2027       if (!DemandedElts[i])
2028         continue;
2029 
2030       SDValue SrcOp = Op.getOperand(i);
2031       computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1);
2032 
2033       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2034       if (SrcOp.getValueSizeInBits() != BitWidth) {
2035         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2036                "Expected BUILD_VECTOR implicit truncation");
2037         KnownOne2 = KnownOne2.trunc(BitWidth);
2038         KnownZero2 = KnownZero2.trunc(BitWidth);
2039       }
2040 
2041       // Known bits are the values that are shared by every demanded element.
2042       KnownOne &= KnownOne2;
2043       KnownZero &= KnownZero2;
2044 
2045       // If we don't know any bits, early out.
2046       if (!KnownOne && !KnownZero)
2047         break;
2048     }
2049     break;
2050   case ISD::VECTOR_SHUFFLE: {
2051     // Collect the known bits that are shared by every vector element referenced
2052     // by the shuffle.
2053     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2054     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2055     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2056     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2057     for (unsigned i = 0; i != NumElts; ++i) {
2058       if (!DemandedElts[i])
2059         continue;
2060 
2061       int M = SVN->getMaskElt(i);
2062       if (M < 0) {
2063         // For UNDEF elements, we don't know anything about the common state of
2064         // the shuffle result.
2065         KnownOne.clearAllBits();
2066         KnownZero.clearAllBits();
2067         DemandedLHS.clearAllBits();
2068         DemandedRHS.clearAllBits();
2069         break;
2070       }
2071 
2072       if ((unsigned)M < NumElts)
2073         DemandedLHS.setBit((unsigned)M % NumElts);
2074       else
2075         DemandedRHS.setBit((unsigned)M % NumElts);
2076     }
2077     // Known bits are the values that are shared by every demanded element.
2078     if (!!DemandedLHS) {
2079       SDValue LHS = Op.getOperand(0);
2080       computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1);
2081       KnownOne &= KnownOne2;
2082       KnownZero &= KnownZero2;
2083     }
2084     // If we don't know any bits, early out.
2085     if (!KnownOne && !KnownZero)
2086       break;
2087     if (!!DemandedRHS) {
2088       SDValue RHS = Op.getOperand(1);
2089       computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1);
2090       KnownOne &= KnownOne2;
2091       KnownZero &= KnownZero2;
2092     }
2093     break;
2094   }
2095   case ISD::CONCAT_VECTORS: {
2096     // Split DemandedElts and test each of the demanded subvectors.
2097     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2098     EVT SubVectorVT = Op.getOperand(0).getValueType();
2099     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2100     unsigned NumSubVectors = Op.getNumOperands();
2101     for (unsigned i = 0; i != NumSubVectors; ++i) {
2102       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2103       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2104       if (!!DemandedSub) {
2105         SDValue Sub = Op.getOperand(i);
2106         computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1);
2107         KnownOne &= KnownOne2;
2108         KnownZero &= KnownZero2;
2109       }
2110       // If we don't know any bits, early out.
2111       if (!KnownOne && !KnownZero)
2112         break;
2113     }
2114     break;
2115   }
2116   case ISD::EXTRACT_SUBVECTOR: {
2117     // If we know the element index, just demand that subvector elements,
2118     // otherwise demand them all.
2119     SDValue Src = Op.getOperand(0);
2120     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2121     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2122     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2123       // Offset the demanded elts by the subvector index.
2124       uint64_t Idx = SubIdx->getZExtValue();
2125       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
2126       computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1);
2127     } else {
2128       computeKnownBits(Src, KnownZero, KnownOne, Depth + 1);
2129     }
2130     break;
2131   }
2132   case ISD::BITCAST: {
2133     SDValue N0 = Op.getOperand(0);
2134     unsigned SubBitWidth = N0.getScalarValueSizeInBits();
2135 
2136     // Ignore bitcasts from floating point.
2137     if (!N0.getValueType().isInteger())
2138       break;
2139 
2140     // Fast handling of 'identity' bitcasts.
2141     if (BitWidth == SubBitWidth) {
2142       computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1);
2143       break;
2144     }
2145 
2146     // Support big-endian targets when it becomes useful.
2147     bool IsLE = getDataLayout().isLittleEndian();
2148     if (!IsLE)
2149       break;
2150 
2151     // Bitcast 'small element' vector to 'large element' scalar/vector.
2152     if ((BitWidth % SubBitWidth) == 0) {
2153       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2154 
2155       // Collect known bits for the (larger) output by collecting the known
2156       // bits from each set of sub elements and shift these into place.
2157       // We need to separately call computeKnownBits for each set of
2158       // sub elements as the knownbits for each is likely to be different.
2159       unsigned SubScale = BitWidth / SubBitWidth;
2160       APInt SubDemandedElts(NumElts * SubScale, 0);
2161       for (unsigned i = 0; i != NumElts; ++i)
2162         if (DemandedElts[i])
2163           SubDemandedElts.setBit(i * SubScale);
2164 
2165       for (unsigned i = 0; i != SubScale; ++i) {
2166         computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i),
2167                          Depth + 1);
2168         KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i);
2169         KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i);
2170       }
2171     }
2172 
2173     // Bitcast 'large element' scalar/vector to 'small element' vector.
2174     if ((SubBitWidth % BitWidth) == 0) {
2175       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2176 
2177       // Collect known bits for the (smaller) output by collecting the known
2178       // bits from the overlapping larger input elements and extracting the
2179       // sub sections we actually care about.
2180       unsigned SubScale = SubBitWidth / BitWidth;
2181       APInt SubDemandedElts(NumElts / SubScale, 0);
2182       for (unsigned i = 0; i != NumElts; ++i)
2183         if (DemandedElts[i])
2184           SubDemandedElts.setBit(i / SubScale);
2185 
2186       computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1);
2187 
2188       KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2189       for (unsigned i = 0; i != NumElts; ++i)
2190         if (DemandedElts[i]) {
2191           unsigned Offset = (i % SubScale) * BitWidth;
2192           KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth);
2193           KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth);
2194           // If we don't know any bits, early out.
2195           if (!KnownOne && !KnownZero)
2196             break;
2197         }
2198     }
2199     break;
2200   }
2201   case ISD::AND:
2202     // If either the LHS or the RHS are Zero, the result is zero.
2203     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2204                      Depth + 1);
2205     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2206                      Depth + 1);
2207 
2208     // Output known-1 bits are only known if set in both the LHS & RHS.
2209     KnownOne &= KnownOne2;
2210     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2211     KnownZero |= KnownZero2;
2212     break;
2213   case ISD::OR:
2214     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2215                      Depth + 1);
2216     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2217                      Depth + 1);
2218 
2219     // Output known-0 bits are only known if clear in both the LHS & RHS.
2220     KnownZero &= KnownZero2;
2221     // Output known-1 are known to be set if set in either the LHS | RHS.
2222     KnownOne |= KnownOne2;
2223     break;
2224   case ISD::XOR: {
2225     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2226                      Depth + 1);
2227     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2228                      Depth + 1);
2229 
2230     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2231     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
2232     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2233     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
2234     KnownZero = KnownZeroOut;
2235     break;
2236   }
2237   case ISD::MUL: {
2238     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
2239                      Depth + 1);
2240     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2241                      Depth + 1);
2242 
2243     // If low bits are zero in either operand, output low known-0 bits.
2244     // Also compute a conservative estimate for high known-0 bits.
2245     // More trickiness is possible, but this is sufficient for the
2246     // interesting case of alignment computation.
2247     KnownOne.clearAllBits();
2248     unsigned TrailZ = KnownZero.countTrailingOnes() +
2249                       KnownZero2.countTrailingOnes();
2250     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
2251                                KnownZero2.countLeadingOnes(),
2252                                BitWidth) - BitWidth;
2253 
2254     TrailZ = std::min(TrailZ, BitWidth);
2255     LeadZ = std::min(LeadZ, BitWidth);
2256     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
2257                 APInt::getHighBitsSet(BitWidth, LeadZ);
2258     break;
2259   }
2260   case ISD::UDIV: {
2261     // For the purposes of computing leading zeros we can conservatively
2262     // treat a udiv as a logical right shift by the power of 2 known to
2263     // be less than the denominator.
2264     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2265                      Depth + 1);
2266     unsigned LeadZ = KnownZero2.countLeadingOnes();
2267 
2268     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2269                      Depth + 1);
2270     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
2271     if (RHSUnknownLeadingOnes != BitWidth)
2272       LeadZ = std::min(BitWidth,
2273                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
2274 
2275     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
2276     break;
2277   }
2278   case ISD::SELECT:
2279     computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
2280     // If we don't know any bits, early out.
2281     if (!KnownOne && !KnownZero)
2282       break;
2283     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2284 
2285     // Only known if known in both the LHS and RHS.
2286     KnownOne &= KnownOne2;
2287     KnownZero &= KnownZero2;
2288     break;
2289   case ISD::SELECT_CC:
2290     computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
2291     // If we don't know any bits, early out.
2292     if (!KnownOne && !KnownZero)
2293       break;
2294     computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
2295 
2296     // Only known if known in both the LHS and RHS.
2297     KnownOne &= KnownOne2;
2298     KnownZero &= KnownZero2;
2299     break;
2300   case ISD::SADDO:
2301   case ISD::UADDO:
2302   case ISD::SSUBO:
2303   case ISD::USUBO:
2304   case ISD::SMULO:
2305   case ISD::UMULO:
2306     if (Op.getResNo() != 1)
2307       break;
2308     // The boolean result conforms to getBooleanContents.
2309     // If we know the result of a setcc has the top bits zero, use this info.
2310     // We know that we have an integer-based boolean since these operations
2311     // are only available for integer.
2312     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2313             TargetLowering::ZeroOrOneBooleanContent &&
2314         BitWidth > 1)
2315       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2316     break;
2317   case ISD::SETCC:
2318     // If we know the result of a setcc has the top bits zero, use this info.
2319     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2320             TargetLowering::ZeroOrOneBooleanContent &&
2321         BitWidth > 1)
2322       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2323     break;
2324   case ISD::SHL:
2325     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2326       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2327                        Depth + 1);
2328       KnownZero = KnownZero << *ShAmt;
2329       KnownOne = KnownOne << *ShAmt;
2330       // Low bits are known zero.
2331       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt->getZExtValue());
2332     }
2333     break;
2334   case ISD::SRL:
2335     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2336       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2337                        Depth + 1);
2338       KnownZero = KnownZero.lshr(*ShAmt);
2339       KnownOne  = KnownOne.lshr(*ShAmt);
2340       // High bits are known zero.
2341       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue());
2342       KnownZero |= HighBits;
2343     }
2344     break;
2345   case ISD::SRA:
2346     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2347       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2348                        Depth + 1);
2349       KnownZero = KnownZero.lshr(*ShAmt);
2350       KnownOne  = KnownOne.lshr(*ShAmt);
2351       // If we know the value of the sign bit, then we know it is copied across
2352       // the high bits by the shift amount.
2353       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt->getZExtValue());
2354       APInt SignBit = APInt::getSignBit(BitWidth);
2355       SignBit = SignBit.lshr(*ShAmt);  // Adjust to where it is now in the mask.
2356       if (KnownZero.intersects(SignBit)) {
2357         KnownZero |= HighBits;  // New bits are known zero.
2358       } else if (KnownOne.intersects(SignBit)) {
2359         KnownOne  |= HighBits;  // New bits are known one.
2360       }
2361     }
2362     break;
2363   case ISD::SIGN_EXTEND_INREG: {
2364     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2365     unsigned EBits = EVT.getScalarSizeInBits();
2366 
2367     // Sign extension.  Compute the demanded bits in the result that are not
2368     // present in the input.
2369     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2370 
2371     APInt InSignBit = APInt::getSignBit(EBits);
2372     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2373 
2374     // If the sign extended bits are demanded, we know that the sign
2375     // bit is demanded.
2376     InSignBit = InSignBit.zext(BitWidth);
2377     if (NewBits.getBoolValue())
2378       InputDemandedBits |= InSignBit;
2379 
2380     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2381                      Depth + 1);
2382     KnownOne &= InputDemandedBits;
2383     KnownZero &= InputDemandedBits;
2384 
2385     // If the sign bit of the input is known set or clear, then we know the
2386     // top bits of the result.
2387     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
2388       KnownZero |= NewBits;
2389       KnownOne  &= ~NewBits;
2390     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
2391       KnownOne  |= NewBits;
2392       KnownZero &= ~NewBits;
2393     } else {                              // Input sign bit unknown
2394       KnownZero &= ~NewBits;
2395       KnownOne  &= ~NewBits;
2396     }
2397     break;
2398   }
2399   case ISD::CTTZ:
2400   case ISD::CTTZ_ZERO_UNDEF:
2401   case ISD::CTLZ:
2402   case ISD::CTLZ_ZERO_UNDEF:
2403   case ISD::CTPOP: {
2404     unsigned LowBits = Log2_32(BitWidth)+1;
2405     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
2406     KnownOne.clearAllBits();
2407     break;
2408   }
2409   case ISD::LOAD: {
2410     LoadSDNode *LD = cast<LoadSDNode>(Op);
2411     // If this is a ZEXTLoad and we are looking at the loaded value.
2412     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2413       EVT VT = LD->getMemoryVT();
2414       unsigned MemBits = VT.getScalarSizeInBits();
2415       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
2416     } else if (const MDNode *Ranges = LD->getRanges()) {
2417       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2418         computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne);
2419     }
2420     break;
2421   }
2422   case ISD::ZERO_EXTEND: {
2423     EVT InVT = Op.getOperand(0).getValueType();
2424     unsigned InBits = InVT.getScalarSizeInBits();
2425     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2426     KnownZero = KnownZero.trunc(InBits);
2427     KnownOne = KnownOne.trunc(InBits);
2428     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2429                      Depth + 1);
2430     KnownZero = KnownZero.zext(BitWidth);
2431     KnownOne = KnownOne.zext(BitWidth);
2432     KnownZero |= NewBits;
2433     break;
2434   }
2435   case ISD::SIGN_EXTEND: {
2436     EVT InVT = Op.getOperand(0).getValueType();
2437     unsigned InBits = InVT.getScalarSizeInBits();
2438 
2439     KnownZero = KnownZero.trunc(InBits);
2440     KnownOne = KnownOne.trunc(InBits);
2441     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2442                      Depth + 1);
2443 
2444     // If the sign bit is known to be zero or one, then sext will extend
2445     // it to the top bits, else it will just zext.
2446     KnownZero = KnownZero.sext(BitWidth);
2447     KnownOne = KnownOne.sext(BitWidth);
2448     break;
2449   }
2450   case ISD::ANY_EXTEND: {
2451     EVT InVT = Op.getOperand(0).getValueType();
2452     unsigned InBits = InVT.getScalarSizeInBits();
2453     KnownZero = KnownZero.trunc(InBits);
2454     KnownOne = KnownOne.trunc(InBits);
2455     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2456     KnownZero = KnownZero.zext(BitWidth);
2457     KnownOne = KnownOne.zext(BitWidth);
2458     break;
2459   }
2460   case ISD::TRUNCATE: {
2461     EVT InVT = Op.getOperand(0).getValueType();
2462     unsigned InBits = InVT.getScalarSizeInBits();
2463     KnownZero = KnownZero.zext(InBits);
2464     KnownOne = KnownOne.zext(InBits);
2465     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2466                      Depth + 1);
2467     KnownZero = KnownZero.trunc(BitWidth);
2468     KnownOne = KnownOne.trunc(BitWidth);
2469     break;
2470   }
2471   case ISD::AssertZext: {
2472     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2473     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2474     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2475     KnownZero |= (~InMask);
2476     KnownOne  &= (~KnownZero);
2477     break;
2478   }
2479   case ISD::FGETSIGN:
2480     // All bits are zero except the low bit.
2481     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2482     break;
2483 
2484   case ISD::SUB: {
2485     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
2486       // We know that the top bits of C-X are clear if X contains less bits
2487       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2488       // positive if we can prove that X is >= 0 and < 16.
2489       if (CLHS->getAPIntValue().isNonNegative()) {
2490         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2491         // NLZ can't be BitWidth with no sign bit
2492         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2493         computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2494                          Depth + 1);
2495 
2496         // If all of the MaskV bits are known to be zero, then we know the
2497         // output top bits are zero, because we now know that the output is
2498         // from [0-C].
2499         if ((KnownZero2 & MaskV) == MaskV) {
2500           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2501           // Top bits known zero.
2502           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2503         }
2504       }
2505     }
2506     LLVM_FALLTHROUGH;
2507   }
2508   case ISD::ADD:
2509   case ISD::ADDC:
2510   case ISD::ADDE: {
2511     // Output known-0 bits are known if clear or set in both the low clear bits
2512     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2513     // low 3 bits clear.
2514     // Output known-0 bits are also known if the top bits of each input are
2515     // known to be clear. For example, if one input has the top 10 bits clear
2516     // and the other has the top 8 bits clear, we know the top 7 bits of the
2517     // output must be clear.
2518     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2519                      Depth + 1);
2520     unsigned KnownZeroHigh = KnownZero2.countLeadingOnes();
2521     unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
2522 
2523     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2524                      Depth + 1);
2525     KnownZeroHigh = std::min(KnownZeroHigh,
2526                              KnownZero2.countLeadingOnes());
2527     KnownZeroLow = std::min(KnownZeroLow,
2528                             KnownZero2.countTrailingOnes());
2529 
2530     if (Opcode == ISD::ADD || Opcode == ISD::ADDC) {
2531       KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow);
2532       if (KnownZeroHigh > 1)
2533         KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1);
2534       break;
2535     }
2536 
2537     // With ADDE, a carry bit may be added in, so we can only use this
2538     // information if we know (at least) that the low two bits are clear.  We
2539     // then return to the caller that the low bit is unknown but that other bits
2540     // are known zero.
2541     if (KnownZeroLow >= 2) // ADDE
2542       KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow);
2543     break;
2544   }
2545   case ISD::SREM:
2546     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2547       const APInt &RA = Rem->getAPIntValue().abs();
2548       if (RA.isPowerOf2()) {
2549         APInt LowBits = RA - 1;
2550         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2551                          Depth + 1);
2552 
2553         // The low bits of the first operand are unchanged by the srem.
2554         KnownZero = KnownZero2 & LowBits;
2555         KnownOne = KnownOne2 & LowBits;
2556 
2557         // If the first operand is non-negative or has all low bits zero, then
2558         // the upper bits are all zero.
2559         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2560           KnownZero |= ~LowBits;
2561 
2562         // If the first operand is negative and not all low bits are zero, then
2563         // the upper bits are all one.
2564         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2565           KnownOne |= ~LowBits;
2566         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2567       }
2568     }
2569     break;
2570   case ISD::UREM: {
2571     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
2572       const APInt &RA = Rem->getAPIntValue();
2573       if (RA.isPowerOf2()) {
2574         APInt LowBits = (RA - 1);
2575         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2576                          Depth + 1);
2577 
2578         // The upper bits are all zero, the lower ones are unchanged.
2579         KnownZero = KnownZero2 | ~LowBits;
2580         KnownOne = KnownOne2 & LowBits;
2581         break;
2582       }
2583     }
2584 
2585     // Since the result is less than or equal to either operand, any leading
2586     // zero bits in either operand must also exist in the result.
2587     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2588                      Depth + 1);
2589     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2590                      Depth + 1);
2591 
2592     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2593                                 KnownZero2.countLeadingOnes());
2594     KnownOne.clearAllBits();
2595     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2596     break;
2597   }
2598   case ISD::EXTRACT_ELEMENT: {
2599     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2600     const unsigned Index = Op.getConstantOperandVal(1);
2601     const unsigned BitWidth = Op.getValueSizeInBits();
2602 
2603     // Remove low part of known bits mask
2604     KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
2605     KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);
2606 
2607     // Remove high part of known bit mask
2608     KnownZero = KnownZero.trunc(BitWidth);
2609     KnownOne = KnownOne.trunc(BitWidth);
2610     break;
2611   }
2612   case ISD::EXTRACT_VECTOR_ELT: {
2613     SDValue InVec = Op.getOperand(0);
2614     SDValue EltNo = Op.getOperand(1);
2615     EVT VecVT = InVec.getValueType();
2616     const unsigned BitWidth = Op.getValueSizeInBits();
2617     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
2618     const unsigned NumSrcElts = VecVT.getVectorNumElements();
2619     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2620     // anything about the extended bits.
2621     if (BitWidth > EltBitWidth) {
2622       KnownZero = KnownZero.trunc(EltBitWidth);
2623       KnownOne = KnownOne.trunc(EltBitWidth);
2624     }
2625     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
2626     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
2627       // If we know the element index, just demand that vector element.
2628       unsigned Idx = ConstEltNo->getZExtValue();
2629       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
2630       computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1);
2631     } else {
2632       // Unknown element index, so ignore DemandedElts and demand them all.
2633       computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
2634     }
2635     if (BitWidth > EltBitWidth) {
2636       KnownZero = KnownZero.zext(BitWidth);
2637       KnownOne = KnownOne.zext(BitWidth);
2638     }
2639     break;
2640   }
2641   case ISD::INSERT_VECTOR_ELT: {
2642     SDValue InVec = Op.getOperand(0);
2643     SDValue InVal = Op.getOperand(1);
2644     SDValue EltNo = Op.getOperand(2);
2645 
2646     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
2647     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
2648       // If we know the element index, split the demand between the
2649       // source vector and the inserted element.
2650       KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
2651       unsigned EltIdx = CEltNo->getZExtValue();
2652 
2653       // If we demand the inserted element then add its common known bits.
2654       if (DemandedElts[EltIdx]) {
2655         computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
2656         KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
2657         KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
2658       }
2659 
2660       // If we demand the source vector then add its common known bits, ensuring
2661       // that we don't demand the inserted element.
2662       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
2663       if (!!VectorElts) {
2664         computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1);
2665         KnownOne &= KnownOne2;
2666         KnownZero &= KnownZero2;
2667       }
2668     } else {
2669       // Unknown element index, so ignore DemandedElts and demand them all.
2670       computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
2671       computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
2672       KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
2673       KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
2674     }
2675     break;
2676   }
2677   case ISD::BITREVERSE: {
2678     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2679                      Depth + 1);
2680     KnownZero = KnownZero2.reverseBits();
2681     KnownOne = KnownOne2.reverseBits();
2682     break;
2683   }
2684   case ISD::BSWAP: {
2685     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
2686                      Depth + 1);
2687     KnownZero = KnownZero2.byteSwap();
2688     KnownOne = KnownOne2.byteSwap();
2689     break;
2690   }
2691   case ISD::UMIN: {
2692     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2693                      Depth + 1);
2694     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2695                      Depth + 1);
2696 
2697     // UMIN - we know that the result will have the maximum of the
2698     // known zero leading bits of the inputs.
2699     unsigned LeadZero = KnownZero.countLeadingOnes();
2700     LeadZero = std::max(LeadZero, KnownZero2.countLeadingOnes());
2701 
2702     KnownZero &= KnownZero2;
2703     KnownOne &= KnownOne2;
2704     KnownZero |= APInt::getHighBitsSet(BitWidth, LeadZero);
2705     break;
2706   }
2707   case ISD::UMAX: {
2708     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2709                      Depth + 1);
2710     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2711                      Depth + 1);
2712 
2713     // UMAX - we know that the result will have the maximum of the
2714     // known one leading bits of the inputs.
2715     unsigned LeadOne = KnownOne.countLeadingOnes();
2716     LeadOne = std::max(LeadOne, KnownOne2.countLeadingOnes());
2717 
2718     KnownZero &= KnownZero2;
2719     KnownOne &= KnownOne2;
2720     KnownOne |= APInt::getHighBitsSet(BitWidth, LeadOne);
2721     break;
2722   }
2723   case ISD::SMIN:
2724   case ISD::SMAX: {
2725     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
2726                      Depth + 1);
2727     // If we don't know any bits, early out.
2728     if (!KnownOne && !KnownZero)
2729       break;
2730     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
2731                      Depth + 1);
2732     KnownZero &= KnownZero2;
2733     KnownOne &= KnownOne2;
2734     break;
2735   }
2736   case ISD::FrameIndex:
2737   case ISD::TargetFrameIndex:
2738     if (unsigned Align = InferPtrAlignment(Op)) {
2739       // The low bits are known zero if the pointer is aligned.
2740       KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2741       break;
2742     }
2743     break;
2744 
2745   default:
2746     if (Opcode < ISD::BUILTIN_OP_END)
2747       break;
2748     LLVM_FALLTHROUGH;
2749   case ISD::INTRINSIC_WO_CHAIN:
2750   case ISD::INTRINSIC_W_CHAIN:
2751   case ISD::INTRINSIC_VOID:
2752     // Allow the target to implement this method for its nodes.
2753     TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2754     break;
2755   }
2756 
2757   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
2758 }
2759 
2760 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
2761                                                              SDValue N1) const {
2762   // X + 0 never overflow
2763   if (isNullConstant(N1))
2764     return OFK_Never;
2765 
2766   APInt N1Zero, N1One;
2767   computeKnownBits(N1, N1Zero, N1One);
2768   if (N1Zero.getBoolValue()) {
2769     APInt N0Zero, N0One;
2770     computeKnownBits(N0, N0Zero, N0One);
2771 
2772     bool overflow;
2773     (~N0Zero).uadd_ov(~N1Zero, overflow);
2774     if (!overflow)
2775       return OFK_Never;
2776   }
2777 
2778   return OFK_Sometime;
2779 }
2780 
2781 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
2782   EVT OpVT = Val.getValueType();
2783   unsigned BitWidth = OpVT.getScalarSizeInBits();
2784 
2785   // Is the constant a known power of 2?
2786   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
2787     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2788 
2789   // A left-shift of a constant one will have exactly one bit set because
2790   // shifting the bit off the end is undefined.
2791   if (Val.getOpcode() == ISD::SHL) {
2792     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2793     if (C && C->getAPIntValue() == 1)
2794       return true;
2795   }
2796 
2797   // Similarly, a logical right-shift of a constant sign-bit will have exactly
2798   // one bit set.
2799   if (Val.getOpcode() == ISD::SRL) {
2800     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2801     if (C && C->getAPIntValue().isSignBit())
2802       return true;
2803   }
2804 
2805   // Are all operands of a build vector constant powers of two?
2806   if (Val.getOpcode() == ISD::BUILD_VECTOR)
2807     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
2808           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
2809             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
2810           return false;
2811         }))
2812       return true;
2813 
2814   // More could be done here, though the above checks are enough
2815   // to handle some common cases.
2816 
2817   // Fall back to computeKnownBits to catch other known cases.
2818   APInt KnownZero, KnownOne;
2819   computeKnownBits(Val, KnownZero, KnownOne);
2820   return (KnownZero.countPopulation() == BitWidth - 1) &&
2821          (KnownOne.countPopulation() == 1);
2822 }
2823 
2824 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
2825   EVT VT = Op.getValueType();
2826   assert(VT.isInteger() && "Invalid VT!");
2827   unsigned VTBits = VT.getScalarSizeInBits();
2828   unsigned Tmp, Tmp2;
2829   unsigned FirstAnswer = 1;
2830 
2831   if (Depth == 6)
2832     return 1;  // Limit search depth.
2833 
2834   switch (Op.getOpcode()) {
2835   default: break;
2836   case ISD::AssertSext:
2837     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2838     return VTBits-Tmp+1;
2839   case ISD::AssertZext:
2840     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2841     return VTBits-Tmp;
2842 
2843   case ISD::Constant: {
2844     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2845     return Val.getNumSignBits();
2846   }
2847 
2848   case ISD::SIGN_EXTEND:
2849     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
2850     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2851 
2852   case ISD::SIGN_EXTEND_INREG:
2853     // Max of the input and what this extends.
2854     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
2855     Tmp = VTBits-Tmp+1;
2856 
2857     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2858     return std::max(Tmp, Tmp2);
2859 
2860   case ISD::SRA:
2861     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2862     // SRA X, C   -> adds C sign bits.
2863     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
2864       APInt ShiftVal = C->getAPIntValue();
2865       ShiftVal += Tmp;
2866       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
2867     }
2868     return Tmp;
2869   case ISD::SHL:
2870     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
2871       // shl destroys sign bits.
2872       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2873       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
2874           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
2875       return Tmp - C->getZExtValue();
2876     }
2877     break;
2878   case ISD::AND:
2879   case ISD::OR:
2880   case ISD::XOR:    // NOT is handled here.
2881     // Logical binary ops preserve the number of sign bits at the worst.
2882     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2883     if (Tmp != 1) {
2884       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2885       FirstAnswer = std::min(Tmp, Tmp2);
2886       // We computed what we know about the sign bits as our first
2887       // answer. Now proceed to the generic code that uses
2888       // computeKnownBits, and pick whichever answer is better.
2889     }
2890     break;
2891 
2892   case ISD::SELECT:
2893     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2894     if (Tmp == 1) return 1;  // Early out.
2895     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2896     return std::min(Tmp, Tmp2);
2897   case ISD::SELECT_CC:
2898     Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2899     if (Tmp == 1) return 1;  // Early out.
2900     Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1);
2901     return std::min(Tmp, Tmp2);
2902   case ISD::SMIN:
2903   case ISD::SMAX:
2904   case ISD::UMIN:
2905   case ISD::UMAX:
2906     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2907     if (Tmp == 1)
2908       return 1;  // Early out.
2909     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
2910     return std::min(Tmp, Tmp2);
2911   case ISD::SADDO:
2912   case ISD::UADDO:
2913   case ISD::SSUBO:
2914   case ISD::USUBO:
2915   case ISD::SMULO:
2916   case ISD::UMULO:
2917     if (Op.getResNo() != 1)
2918       break;
2919     // The boolean result conforms to getBooleanContents.  Fall through.
2920     // If setcc returns 0/-1, all bits are sign bits.
2921     // We know that we have an integer-based boolean since these operations
2922     // are only available for integer.
2923     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2924         TargetLowering::ZeroOrNegativeOneBooleanContent)
2925       return VTBits;
2926     break;
2927   case ISD::SETCC:
2928     // If setcc returns 0/-1, all bits are sign bits.
2929     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2930         TargetLowering::ZeroOrNegativeOneBooleanContent)
2931       return VTBits;
2932     break;
2933   case ISD::ROTL:
2934   case ISD::ROTR:
2935     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2936       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2937 
2938       // Handle rotate right by N like a rotate left by 32-N.
2939       if (Op.getOpcode() == ISD::ROTR)
2940         RotAmt = (VTBits-RotAmt) & (VTBits-1);
2941 
2942       // If we aren't rotating out all of the known-in sign bits, return the
2943       // number that are left.  This handles rotl(sext(x), 1) for example.
2944       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2945       if (Tmp > RotAmt+1) return Tmp-RotAmt;
2946     }
2947     break;
2948   case ISD::ADD:
2949   case ISD::ADDC:
2950     // Add can have at most one carry bit.  Thus we know that the output
2951     // is, at worst, one more bit than the inputs.
2952     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2953     if (Tmp == 1) return 1;  // Early out.
2954 
2955     // Special case decrementing a value (ADD X, -1):
2956     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2957       if (CRHS->isAllOnesValue()) {
2958         APInt KnownZero, KnownOne;
2959         computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2960 
2961         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2962         // sign bits set.
2963         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2964           return VTBits;
2965 
2966         // If we are subtracting one from a positive number, there is no carry
2967         // out of the result.
2968         if (KnownZero.isNegative())
2969           return Tmp;
2970       }
2971 
2972     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2973     if (Tmp2 == 1) return 1;
2974     return std::min(Tmp, Tmp2)-1;
2975 
2976   case ISD::SUB:
2977     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2978     if (Tmp2 == 1) return 1;
2979 
2980     // Handle NEG.
2981     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
2982       if (CLHS->isNullValue()) {
2983         APInt KnownZero, KnownOne;
2984         computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2985         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2986         // sign bits set.
2987         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2988           return VTBits;
2989 
2990         // If the input is known to be positive (the sign bit is known clear),
2991         // the output of the NEG has the same number of sign bits as the input.
2992         if (KnownZero.isNegative())
2993           return Tmp2;
2994 
2995         // Otherwise, we treat this like a SUB.
2996       }
2997 
2998     // Sub can have at most one carry bit.  Thus we know that the output
2999     // is, at worst, one more bit than the inputs.
3000     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3001     if (Tmp == 1) return 1;  // Early out.
3002     return std::min(Tmp, Tmp2)-1;
3003   case ISD::TRUNCATE: {
3004     // Check if the sign bits of source go down as far as the truncated value.
3005     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3006     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3007     if (NumSrcSignBits > (NumSrcBits - VTBits))
3008       return NumSrcSignBits - (NumSrcBits - VTBits);
3009     break;
3010   }
3011   case ISD::EXTRACT_ELEMENT: {
3012     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3013     const int BitWidth = Op.getValueSizeInBits();
3014     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3015 
3016     // Get reverse index (starting from 1), Op1 value indexes elements from
3017     // little end. Sign starts at big end.
3018     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3019 
3020     // If the sign portion ends in our element the subtraction gives correct
3021     // result. Otherwise it gives either negative or > bitwidth result
3022     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3023   }
3024   case ISD::EXTRACT_VECTOR_ELT: {
3025     // At the moment we keep this simple and skip tracking the specific
3026     // element. This way we get the lowest common denominator for all elements
3027     // of the vector.
3028     // TODO: get information for given vector element
3029     const unsigned BitWidth = Op.getValueSizeInBits();
3030     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3031     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3032     // anything about sign bits. But if the sizes match we can derive knowledge
3033     // about sign bits from the vector operand.
3034     if (BitWidth == EltBitWidth)
3035       return ComputeNumSignBits(Op.getOperand(0), Depth+1);
3036     break;
3037   }
3038   case ISD::EXTRACT_SUBVECTOR:
3039     return ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3040   case ISD::CONCAT_VECTORS:
3041     // Determine the minimum number of sign bits across all input vectors.
3042     // Early out if the result is already 1.
3043     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3044     for (unsigned i = 1, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i)
3045       Tmp = std::min(Tmp, ComputeNumSignBits(Op.getOperand(i), Depth + 1));
3046     return Tmp;
3047   }
3048 
3049   // If we are looking at the loaded value of the SDNode.
3050   if (Op.getResNo() == 0) {
3051     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3052     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3053       unsigned ExtType = LD->getExtensionType();
3054       switch (ExtType) {
3055         default: break;
3056         case ISD::SEXTLOAD:    // '17' bits known
3057           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3058           return VTBits-Tmp+1;
3059         case ISD::ZEXTLOAD:    // '16' bits known
3060           Tmp = LD->getMemoryVT().getScalarSizeInBits();
3061           return VTBits-Tmp;
3062       }
3063     }
3064   }
3065 
3066   // Allow the target to implement this method for its nodes.
3067   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3068       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3069       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3070       Op.getOpcode() == ISD::INTRINSIC_VOID) {
3071     unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth);
3072     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
3073   }
3074 
3075   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3076   // use this information.
3077   APInt KnownZero, KnownOne;
3078   computeKnownBits(Op, KnownZero, KnownOne, Depth);
3079 
3080   APInt Mask;
3081   if (KnownZero.isNegative()) {        // sign bit is 0
3082     Mask = KnownZero;
3083   } else if (KnownOne.isNegative()) {  // sign bit is 1;
3084     Mask = KnownOne;
3085   } else {
3086     // Nothing known.
3087     return FirstAnswer;
3088   }
3089 
3090   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3091   // the number of identical bits in the top of the input value.
3092   Mask = ~Mask;
3093   Mask <<= Mask.getBitWidth()-VTBits;
3094   // Return # leading zeros.  We use 'min' here in case Val was zero before
3095   // shifting.  We don't want to return '64' as for an i32 "0".
3096   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3097 }
3098 
3099 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3100   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3101       !isa<ConstantSDNode>(Op.getOperand(1)))
3102     return false;
3103 
3104   if (Op.getOpcode() == ISD::OR &&
3105       !MaskedValueIsZero(Op.getOperand(0),
3106                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
3107     return false;
3108 
3109   return true;
3110 }
3111 
3112 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
3113   // If we're told that NaNs won't happen, assume they won't.
3114   if (getTarget().Options.NoNaNsFPMath)
3115     return true;
3116 
3117   if (const BinaryWithFlagsSDNode *BF = dyn_cast<BinaryWithFlagsSDNode>(Op))
3118     return BF->Flags.hasNoNaNs();
3119 
3120   // If the value is a constant, we can obviously see if it is a NaN or not.
3121   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3122     return !C->getValueAPF().isNaN();
3123 
3124   // TODO: Recognize more cases here.
3125 
3126   return false;
3127 }
3128 
3129 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
3130   // If the value is a constant, we can obviously see if it is a zero or not.
3131   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
3132     return !C->isZero();
3133 
3134   // TODO: Recognize more cases here.
3135   switch (Op.getOpcode()) {
3136   default: break;
3137   case ISD::OR:
3138     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3139       return !C->isNullValue();
3140     break;
3141   }
3142 
3143   return false;
3144 }
3145 
3146 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
3147   // Check the obvious case.
3148   if (A == B) return true;
3149 
3150   // For for negative and positive zero.
3151   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
3152     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
3153       if (CA->isZero() && CB->isZero()) return true;
3154 
3155   // Otherwise they may not be equal.
3156   return false;
3157 }
3158 
3159 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
3160   assert(A.getValueType() == B.getValueType() &&
3161          "Values must have the same type");
3162   APInt AZero, AOne;
3163   APInt BZero, BOne;
3164   computeKnownBits(A, AZero, AOne);
3165   computeKnownBits(B, BZero, BOne);
3166   return (AZero | BZero).isAllOnesValue();
3167 }
3168 
3169 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
3170                                   ArrayRef<SDValue> Ops,
3171                                   llvm::SelectionDAG &DAG) {
3172   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
3173   assert(llvm::all_of(Ops,
3174                       [Ops](SDValue Op) {
3175                         return Ops[0].getValueType() == Op.getValueType();
3176                       }) &&
3177          "Concatenation of vectors with inconsistent value types!");
3178   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
3179              VT.getVectorNumElements() &&
3180          "Incorrect element count in vector concatenation!");
3181 
3182   if (Ops.size() == 1)
3183     return Ops[0];
3184 
3185   // Concat of UNDEFs is UNDEF.
3186   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
3187     return DAG.getUNDEF(VT);
3188 
3189   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
3190   // simplified to one big BUILD_VECTOR.
3191   // FIXME: Add support for SCALAR_TO_VECTOR as well.
3192   EVT SVT = VT.getScalarType();
3193   SmallVector<SDValue, 16> Elts;
3194   for (SDValue Op : Ops) {
3195     EVT OpVT = Op.getValueType();
3196     if (Op.isUndef())
3197       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
3198     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
3199       Elts.append(Op->op_begin(), Op->op_end());
3200     else
3201       return SDValue();
3202   }
3203 
3204   // BUILD_VECTOR requires all inputs to be of the same type, find the
3205   // maximum type and extend them all.
3206   for (SDValue Op : Elts)
3207     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
3208 
3209   if (SVT.bitsGT(VT.getScalarType()))
3210     for (SDValue &Op : Elts)
3211       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
3212                ? DAG.getZExtOrTrunc(Op, DL, SVT)
3213                : DAG.getSExtOrTrunc(Op, DL, SVT);
3214 
3215   return DAG.getBuildVector(VT, DL, Elts);
3216 }
3217 
3218 /// Gets or creates the specified node.
3219 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
3220   FoldingSetNodeID ID;
3221   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
3222   void *IP = nullptr;
3223   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3224     return SDValue(E, 0);
3225 
3226   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
3227                               getVTList(VT));
3228   CSEMap.InsertNode(N, IP);
3229 
3230   InsertNode(N);
3231   return SDValue(N, 0);
3232 }
3233 
3234 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3235                               SDValue Operand) {
3236   // Constant fold unary operations with an integer constant operand. Even
3237   // opaque constant will be folded, because the folding of unary operations
3238   // doesn't create new constants with different values. Nevertheless, the
3239   // opaque flag is preserved during folding to prevent future folding with
3240   // other constants.
3241   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
3242     const APInt &Val = C->getAPIntValue();
3243     switch (Opcode) {
3244     default: break;
3245     case ISD::SIGN_EXTEND:
3246       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
3247                          C->isTargetOpcode(), C->isOpaque());
3248     case ISD::ANY_EXTEND:
3249     case ISD::ZERO_EXTEND:
3250     case ISD::TRUNCATE:
3251       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
3252                          C->isTargetOpcode(), C->isOpaque());
3253     case ISD::UINT_TO_FP:
3254     case ISD::SINT_TO_FP: {
3255       APFloat apf(EVTToAPFloatSemantics(VT),
3256                   APInt::getNullValue(VT.getSizeInBits()));
3257       (void)apf.convertFromAPInt(Val,
3258                                  Opcode==ISD::SINT_TO_FP,
3259                                  APFloat::rmNearestTiesToEven);
3260       return getConstantFP(apf, DL, VT);
3261     }
3262     case ISD::BITCAST:
3263       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
3264         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
3265       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
3266         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
3267       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
3268         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
3269       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
3270         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
3271       break;
3272     case ISD::BITREVERSE:
3273       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
3274                          C->isOpaque());
3275     case ISD::BSWAP:
3276       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
3277                          C->isOpaque());
3278     case ISD::CTPOP:
3279       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
3280                          C->isOpaque());
3281     case ISD::CTLZ:
3282     case ISD::CTLZ_ZERO_UNDEF:
3283       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
3284                          C->isOpaque());
3285     case ISD::CTTZ:
3286     case ISD::CTTZ_ZERO_UNDEF:
3287       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
3288                          C->isOpaque());
3289     case ISD::FP16_TO_FP: {
3290       bool Ignored;
3291       APFloat FPV(APFloat::IEEEhalf(),
3292                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
3293 
3294       // This can return overflow, underflow, or inexact; we don't care.
3295       // FIXME need to be more flexible about rounding mode.
3296       (void)FPV.convert(EVTToAPFloatSemantics(VT),
3297                         APFloat::rmNearestTiesToEven, &Ignored);
3298       return getConstantFP(FPV, DL, VT);
3299     }
3300     }
3301   }
3302 
3303   // Constant fold unary operations with a floating point constant operand.
3304   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
3305     APFloat V = C->getValueAPF();    // make copy
3306     switch (Opcode) {
3307     case ISD::FNEG:
3308       V.changeSign();
3309       return getConstantFP(V, DL, VT);
3310     case ISD::FABS:
3311       V.clearSign();
3312       return getConstantFP(V, DL, VT);
3313     case ISD::FCEIL: {
3314       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
3315       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3316         return getConstantFP(V, DL, VT);
3317       break;
3318     }
3319     case ISD::FTRUNC: {
3320       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
3321       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3322         return getConstantFP(V, DL, VT);
3323       break;
3324     }
3325     case ISD::FFLOOR: {
3326       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
3327       if (fs == APFloat::opOK || fs == APFloat::opInexact)
3328         return getConstantFP(V, DL, VT);
3329       break;
3330     }
3331     case ISD::FP_EXTEND: {
3332       bool ignored;
3333       // This can return overflow, underflow, or inexact; we don't care.
3334       // FIXME need to be more flexible about rounding mode.
3335       (void)V.convert(EVTToAPFloatSemantics(VT),
3336                       APFloat::rmNearestTiesToEven, &ignored);
3337       return getConstantFP(V, DL, VT);
3338     }
3339     case ISD::FP_TO_SINT:
3340     case ISD::FP_TO_UINT: {
3341       integerPart x[2];
3342       bool ignored;
3343       static_assert(integerPartWidth >= 64, "APFloat parts too small!");
3344       // FIXME need to be more flexible about rounding mode.
3345       APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
3346                             Opcode==ISD::FP_TO_SINT,
3347                             APFloat::rmTowardZero, &ignored);
3348       if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
3349         break;
3350       APInt api(VT.getSizeInBits(), x);
3351       return getConstant(api, DL, VT);
3352     }
3353     case ISD::BITCAST:
3354       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3355         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3356       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3357         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3358       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3359         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3360       break;
3361     case ISD::FP_TO_FP16: {
3362       bool Ignored;
3363       // This can return overflow, underflow, or inexact; we don't care.
3364       // FIXME need to be more flexible about rounding mode.
3365       (void)V.convert(APFloat::IEEEhalf(),
3366                       APFloat::rmNearestTiesToEven, &Ignored);
3367       return getConstant(V.bitcastToAPInt(), DL, VT);
3368     }
3369     }
3370   }
3371 
3372   // Constant fold unary operations with a vector integer or float operand.
3373   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3374     if (BV->isConstant()) {
3375       switch (Opcode) {
3376       default:
3377         // FIXME: Entirely reasonable to perform folding of other unary
3378         // operations here as the need arises.
3379         break;
3380       case ISD::FNEG:
3381       case ISD::FABS:
3382       case ISD::FCEIL:
3383       case ISD::FTRUNC:
3384       case ISD::FFLOOR:
3385       case ISD::FP_EXTEND:
3386       case ISD::FP_TO_SINT:
3387       case ISD::FP_TO_UINT:
3388       case ISD::TRUNCATE:
3389       case ISD::UINT_TO_FP:
3390       case ISD::SINT_TO_FP:
3391       case ISD::BITREVERSE:
3392       case ISD::BSWAP:
3393       case ISD::CTLZ:
3394       case ISD::CTLZ_ZERO_UNDEF:
3395       case ISD::CTTZ:
3396       case ISD::CTTZ_ZERO_UNDEF:
3397       case ISD::CTPOP: {
3398         SDValue Ops = { Operand };
3399         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3400           return Fold;
3401       }
3402       }
3403     }
3404   }
3405 
3406   unsigned OpOpcode = Operand.getNode()->getOpcode();
3407   switch (Opcode) {
3408   case ISD::TokenFactor:
3409   case ISD::MERGE_VALUES:
3410   case ISD::CONCAT_VECTORS:
3411     return Operand;         // Factor, merge or concat of one node?  No need.
3412   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3413   case ISD::FP_EXTEND:
3414     assert(VT.isFloatingPoint() &&
3415            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3416     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3417     assert((!VT.isVector() ||
3418             VT.getVectorNumElements() ==
3419             Operand.getValueType().getVectorNumElements()) &&
3420            "Vector element count mismatch!");
3421     assert(Operand.getValueType().bitsLT(VT) &&
3422            "Invalid fpext node, dst < src!");
3423     if (Operand.isUndef())
3424       return getUNDEF(VT);
3425     break;
3426   case ISD::SIGN_EXTEND:
3427     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3428            "Invalid SIGN_EXTEND!");
3429     if (Operand.getValueType() == VT) return Operand;   // noop extension
3430     assert((!VT.isVector() ||
3431             VT.getVectorNumElements() ==
3432             Operand.getValueType().getVectorNumElements()) &&
3433            "Vector element count mismatch!");
3434     assert(Operand.getValueType().bitsLT(VT) &&
3435            "Invalid sext node, dst < src!");
3436     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3437       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3438     else if (OpOpcode == ISD::UNDEF)
3439       // sext(undef) = 0, because the top bits will all be the same.
3440       return getConstant(0, DL, VT);
3441     break;
3442   case ISD::ZERO_EXTEND:
3443     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3444            "Invalid ZERO_EXTEND!");
3445     if (Operand.getValueType() == VT) return Operand;   // noop extension
3446     assert((!VT.isVector() ||
3447             VT.getVectorNumElements() ==
3448             Operand.getValueType().getVectorNumElements()) &&
3449            "Vector element count mismatch!");
3450     assert(Operand.getValueType().bitsLT(VT) &&
3451            "Invalid zext node, dst < src!");
3452     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3453       return getNode(ISD::ZERO_EXTEND, DL, VT,
3454                      Operand.getNode()->getOperand(0));
3455     else if (OpOpcode == ISD::UNDEF)
3456       // zext(undef) = 0, because the top bits will be zero.
3457       return getConstant(0, DL, VT);
3458     break;
3459   case ISD::ANY_EXTEND:
3460     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3461            "Invalid ANY_EXTEND!");
3462     if (Operand.getValueType() == VT) return Operand;   // noop extension
3463     assert((!VT.isVector() ||
3464             VT.getVectorNumElements() ==
3465             Operand.getValueType().getVectorNumElements()) &&
3466            "Vector element count mismatch!");
3467     assert(Operand.getValueType().bitsLT(VT) &&
3468            "Invalid anyext node, dst < src!");
3469 
3470     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3471         OpOpcode == ISD::ANY_EXTEND)
3472       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3473       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3474     else if (OpOpcode == ISD::UNDEF)
3475       return getUNDEF(VT);
3476 
3477     // (ext (trunx x)) -> x
3478     if (OpOpcode == ISD::TRUNCATE) {
3479       SDValue OpOp = Operand.getNode()->getOperand(0);
3480       if (OpOp.getValueType() == VT)
3481         return OpOp;
3482     }
3483     break;
3484   case ISD::TRUNCATE:
3485     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3486            "Invalid TRUNCATE!");
3487     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3488     assert((!VT.isVector() ||
3489             VT.getVectorNumElements() ==
3490             Operand.getValueType().getVectorNumElements()) &&
3491            "Vector element count mismatch!");
3492     assert(Operand.getValueType().bitsGT(VT) &&
3493            "Invalid truncate node, src < dst!");
3494     if (OpOpcode == ISD::TRUNCATE)
3495       return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3496     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3497         OpOpcode == ISD::ANY_EXTEND) {
3498       // If the source is smaller than the dest, we still need an extend.
3499       if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
3500             .bitsLT(VT.getScalarType()))
3501         return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3502       if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
3503         return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3504       return Operand.getNode()->getOperand(0);
3505     }
3506     if (OpOpcode == ISD::UNDEF)
3507       return getUNDEF(VT);
3508     break;
3509   case ISD::BSWAP:
3510     assert(VT.isInteger() && VT == Operand.getValueType() &&
3511            "Invalid BSWAP!");
3512     assert((VT.getScalarSizeInBits() % 16 == 0) &&
3513            "BSWAP types must be a multiple of 16 bits!");
3514     if (OpOpcode == ISD::UNDEF)
3515       return getUNDEF(VT);
3516     break;
3517   case ISD::BITREVERSE:
3518     assert(VT.isInteger() && VT == Operand.getValueType() &&
3519            "Invalid BITREVERSE!");
3520     if (OpOpcode == ISD::UNDEF)
3521       return getUNDEF(VT);
3522     break;
3523   case ISD::BITCAST:
3524     // Basic sanity checking.
3525     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
3526            "Cannot BITCAST between types of different sizes!");
3527     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
3528     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
3529       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
3530     if (OpOpcode == ISD::UNDEF)
3531       return getUNDEF(VT);
3532     break;
3533   case ISD::SCALAR_TO_VECTOR:
3534     assert(VT.isVector() && !Operand.getValueType().isVector() &&
3535            (VT.getVectorElementType() == Operand.getValueType() ||
3536             (VT.getVectorElementType().isInteger() &&
3537              Operand.getValueType().isInteger() &&
3538              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
3539            "Illegal SCALAR_TO_VECTOR node!");
3540     if (OpOpcode == ISD::UNDEF)
3541       return getUNDEF(VT);
3542     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
3543     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
3544         isa<ConstantSDNode>(Operand.getOperand(1)) &&
3545         Operand.getConstantOperandVal(1) == 0 &&
3546         Operand.getOperand(0).getValueType() == VT)
3547       return Operand.getOperand(0);
3548     break;
3549   case ISD::FNEG:
3550     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
3551     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
3552       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
3553       return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
3554                        Operand.getNode()->getOperand(0),
3555                        &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags);
3556     if (OpOpcode == ISD::FNEG)  // --X -> X
3557       return Operand.getNode()->getOperand(0);
3558     break;
3559   case ISD::FABS:
3560     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
3561       return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
3562     break;
3563   }
3564 
3565   SDNode *N;
3566   SDVTList VTs = getVTList(VT);
3567   SDValue Ops[] = {Operand};
3568   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
3569     FoldingSetNodeID ID;
3570     AddNodeIDNode(ID, Opcode, VTs, Ops);
3571     void *IP = nullptr;
3572     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3573       return SDValue(E, 0);
3574 
3575     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3576     createOperands(N, Ops);
3577     CSEMap.InsertNode(N, IP);
3578   } else {
3579     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3580     createOperands(N, Ops);
3581   }
3582 
3583   InsertNode(N);
3584   return SDValue(N, 0);
3585 }
3586 
3587 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
3588                                         const APInt &C2) {
3589   switch (Opcode) {
3590   case ISD::ADD:  return std::make_pair(C1 + C2, true);
3591   case ISD::SUB:  return std::make_pair(C1 - C2, true);
3592   case ISD::MUL:  return std::make_pair(C1 * C2, true);
3593   case ISD::AND:  return std::make_pair(C1 & C2, true);
3594   case ISD::OR:   return std::make_pair(C1 | C2, true);
3595   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
3596   case ISD::SHL:  return std::make_pair(C1 << C2, true);
3597   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
3598   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
3599   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
3600   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
3601   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
3602   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
3603   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
3604   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
3605   case ISD::UDIV:
3606     if (!C2.getBoolValue())
3607       break;
3608     return std::make_pair(C1.udiv(C2), true);
3609   case ISD::UREM:
3610     if (!C2.getBoolValue())
3611       break;
3612     return std::make_pair(C1.urem(C2), true);
3613   case ISD::SDIV:
3614     if (!C2.getBoolValue())
3615       break;
3616     return std::make_pair(C1.sdiv(C2), true);
3617   case ISD::SREM:
3618     if (!C2.getBoolValue())
3619       break;
3620     return std::make_pair(C1.srem(C2), true);
3621   }
3622   return std::make_pair(APInt(1, 0), false);
3623 }
3624 
3625 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3626                                              EVT VT, const ConstantSDNode *Cst1,
3627                                              const ConstantSDNode *Cst2) {
3628   if (Cst1->isOpaque() || Cst2->isOpaque())
3629     return SDValue();
3630 
3631   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
3632                                             Cst2->getAPIntValue());
3633   if (!Folded.second)
3634     return SDValue();
3635   return getConstant(Folded.first, DL, VT);
3636 }
3637 
3638 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
3639                                        const GlobalAddressSDNode *GA,
3640                                        const SDNode *N2) {
3641   if (GA->getOpcode() != ISD::GlobalAddress)
3642     return SDValue();
3643   if (!TLI->isOffsetFoldingLegal(GA))
3644     return SDValue();
3645   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
3646   if (!Cst2)
3647     return SDValue();
3648   int64_t Offset = Cst2->getSExtValue();
3649   switch (Opcode) {
3650   case ISD::ADD: break;
3651   case ISD::SUB: Offset = -uint64_t(Offset); break;
3652   default: return SDValue();
3653   }
3654   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
3655                           GA->getOffset() + uint64_t(Offset));
3656 }
3657 
3658 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3659                                              EVT VT, SDNode *Cst1,
3660                                              SDNode *Cst2) {
3661   // If the opcode is a target-specific ISD node, there's nothing we can
3662   // do here and the operand rules may not line up with the below, so
3663   // bail early.
3664   if (Opcode >= ISD::BUILTIN_OP_END)
3665     return SDValue();
3666 
3667   // Handle the case of two scalars.
3668   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
3669     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
3670       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
3671       assert((!Folded || !VT.isVector()) &&
3672              "Can't fold vectors ops with scalar operands");
3673       return Folded;
3674     }
3675   }
3676 
3677   // fold (add Sym, c) -> Sym+c
3678   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
3679     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
3680   if (isCommutativeBinOp(Opcode))
3681     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
3682       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
3683 
3684   // For vectors extract each constant element into Inputs so we can constant
3685   // fold them individually.
3686   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
3687   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
3688   if (!BV1 || !BV2)
3689     return SDValue();
3690 
3691   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
3692 
3693   EVT SVT = VT.getScalarType();
3694   SmallVector<SDValue, 4> Outputs;
3695   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
3696     SDValue V1 = BV1->getOperand(I);
3697     SDValue V2 = BV2->getOperand(I);
3698 
3699     // Avoid BUILD_VECTOR nodes that perform implicit truncation.
3700     // FIXME: This is valid and could be handled by truncation.
3701     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
3702       return SDValue();
3703 
3704     // Fold one vector element.
3705     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
3706 
3707     // Scalar folding only succeeded if the result is a constant or UNDEF.
3708     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3709         ScalarResult.getOpcode() != ISD::ConstantFP)
3710       return SDValue();
3711     Outputs.push_back(ScalarResult);
3712   }
3713 
3714   assert(VT.getVectorNumElements() == Outputs.size() &&
3715          "Vector size mismatch!");
3716 
3717   // We may have a vector type but a scalar result. Create a splat.
3718   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
3719 
3720   // Build a big vector out of the scalar elements we generated.
3721   return getBuildVector(VT, SDLoc(), Outputs);
3722 }
3723 
3724 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
3725                                                    const SDLoc &DL, EVT VT,
3726                                                    ArrayRef<SDValue> Ops,
3727                                                    const SDNodeFlags *Flags) {
3728   // If the opcode is a target-specific ISD node, there's nothing we can
3729   // do here and the operand rules may not line up with the below, so
3730   // bail early.
3731   if (Opcode >= ISD::BUILTIN_OP_END)
3732     return SDValue();
3733 
3734   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
3735   if (!VT.isVector())
3736     return SDValue();
3737 
3738   unsigned NumElts = VT.getVectorNumElements();
3739 
3740   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
3741     return !Op.getValueType().isVector() ||
3742            Op.getValueType().getVectorNumElements() == NumElts;
3743   };
3744 
3745   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
3746     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
3747     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
3748            (BV && BV->isConstant());
3749   };
3750 
3751   // All operands must be vector types with the same number of elements as
3752   // the result type and must be either UNDEF or a build vector of constant
3753   // or UNDEF scalars.
3754   if (!all_of(Ops, IsConstantBuildVectorOrUndef) ||
3755       !all_of(Ops, IsScalarOrSameVectorSize))
3756     return SDValue();
3757 
3758   // If we are comparing vectors, then the result needs to be a i1 boolean
3759   // that is then sign-extended back to the legal result type.
3760   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
3761 
3762   // Find legal integer scalar type for constant promotion and
3763   // ensure that its scalar size is at least as large as source.
3764   EVT LegalSVT = VT.getScalarType();
3765   if (LegalSVT.isInteger()) {
3766     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3767     if (LegalSVT.bitsLT(VT.getScalarType()))
3768       return SDValue();
3769   }
3770 
3771   // Constant fold each scalar lane separately.
3772   SmallVector<SDValue, 4> ScalarResults;
3773   for (unsigned i = 0; i != NumElts; i++) {
3774     SmallVector<SDValue, 4> ScalarOps;
3775     for (SDValue Op : Ops) {
3776       EVT InSVT = Op.getValueType().getScalarType();
3777       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
3778       if (!InBV) {
3779         // We've checked that this is UNDEF or a constant of some kind.
3780         if (Op.isUndef())
3781           ScalarOps.push_back(getUNDEF(InSVT));
3782         else
3783           ScalarOps.push_back(Op);
3784         continue;
3785       }
3786 
3787       SDValue ScalarOp = InBV->getOperand(i);
3788       EVT ScalarVT = ScalarOp.getValueType();
3789 
3790       // Build vector (integer) scalar operands may need implicit
3791       // truncation - do this before constant folding.
3792       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
3793         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
3794 
3795       ScalarOps.push_back(ScalarOp);
3796     }
3797 
3798     // Constant fold the scalar operands.
3799     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
3800 
3801     // Legalize the (integer) scalar constant if necessary.
3802     if (LegalSVT != SVT)
3803       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
3804 
3805     // Scalar folding only succeeded if the result is a constant or UNDEF.
3806     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3807         ScalarResult.getOpcode() != ISD::ConstantFP)
3808       return SDValue();
3809     ScalarResults.push_back(ScalarResult);
3810   }
3811 
3812   return getBuildVector(VT, DL, ScalarResults);
3813 }
3814 
3815 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3816                               SDValue N1, SDValue N2,
3817                               const SDNodeFlags *Flags) {
3818   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3819   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
3820   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3821   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
3822 
3823   // Canonicalize constant to RHS if commutative.
3824   if (isCommutativeBinOp(Opcode)) {
3825     if (N1C && !N2C) {
3826       std::swap(N1C, N2C);
3827       std::swap(N1, N2);
3828     } else if (N1CFP && !N2CFP) {
3829       std::swap(N1CFP, N2CFP);
3830       std::swap(N1, N2);
3831     }
3832   }
3833 
3834   switch (Opcode) {
3835   default: break;
3836   case ISD::TokenFactor:
3837     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
3838            N2.getValueType() == MVT::Other && "Invalid token factor!");
3839     // Fold trivial token factors.
3840     if (N1.getOpcode() == ISD::EntryToken) return N2;
3841     if (N2.getOpcode() == ISD::EntryToken) return N1;
3842     if (N1 == N2) return N1;
3843     break;
3844   case ISD::CONCAT_VECTORS: {
3845     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
3846     SDValue Ops[] = {N1, N2};
3847     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
3848       return V;
3849     break;
3850   }
3851   case ISD::AND:
3852     assert(VT.isInteger() && "This operator does not apply to FP types!");
3853     assert(N1.getValueType() == N2.getValueType() &&
3854            N1.getValueType() == VT && "Binary operator types must match!");
3855     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
3856     // worth handling here.
3857     if (N2C && N2C->isNullValue())
3858       return N2;
3859     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
3860       return N1;
3861     break;
3862   case ISD::OR:
3863   case ISD::XOR:
3864   case ISD::ADD:
3865   case ISD::SUB:
3866     assert(VT.isInteger() && "This operator does not apply to FP types!");
3867     assert(N1.getValueType() == N2.getValueType() &&
3868            N1.getValueType() == VT && "Binary operator types must match!");
3869     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
3870     // it's worth handling here.
3871     if (N2C && N2C->isNullValue())
3872       return N1;
3873     break;
3874   case ISD::UDIV:
3875   case ISD::UREM:
3876   case ISD::MULHU:
3877   case ISD::MULHS:
3878   case ISD::MUL:
3879   case ISD::SDIV:
3880   case ISD::SREM:
3881   case ISD::SMIN:
3882   case ISD::SMAX:
3883   case ISD::UMIN:
3884   case ISD::UMAX:
3885     assert(VT.isInteger() && "This operator does not apply to FP types!");
3886     assert(N1.getValueType() == N2.getValueType() &&
3887            N1.getValueType() == VT && "Binary operator types must match!");
3888     break;
3889   case ISD::FADD:
3890   case ISD::FSUB:
3891   case ISD::FMUL:
3892   case ISD::FDIV:
3893   case ISD::FREM:
3894     if (getTarget().Options.UnsafeFPMath) {
3895       if (Opcode == ISD::FADD) {
3896         // x+0 --> x
3897         if (N2CFP && N2CFP->getValueAPF().isZero())
3898           return N1;
3899       } else if (Opcode == ISD::FSUB) {
3900         // x-0 --> x
3901         if (N2CFP && N2CFP->getValueAPF().isZero())
3902           return N1;
3903       } else if (Opcode == ISD::FMUL) {
3904         // x*0 --> 0
3905         if (N2CFP && N2CFP->isZero())
3906           return N2;
3907         // x*1 --> x
3908         if (N2CFP && N2CFP->isExactlyValue(1.0))
3909           return N1;
3910       }
3911     }
3912     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
3913     assert(N1.getValueType() == N2.getValueType() &&
3914            N1.getValueType() == VT && "Binary operator types must match!");
3915     break;
3916   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
3917     assert(N1.getValueType() == VT &&
3918            N1.getValueType().isFloatingPoint() &&
3919            N2.getValueType().isFloatingPoint() &&
3920            "Invalid FCOPYSIGN!");
3921     break;
3922   case ISD::SHL:
3923   case ISD::SRA:
3924   case ISD::SRL:
3925   case ISD::ROTL:
3926   case ISD::ROTR:
3927     assert(VT == N1.getValueType() &&
3928            "Shift operators return type must be the same as their first arg");
3929     assert(VT.isInteger() && N2.getValueType().isInteger() &&
3930            "Shifts only work on integers");
3931     assert((!VT.isVector() || VT == N2.getValueType()) &&
3932            "Vector shift amounts must be in the same as their first arg");
3933     // Verify that the shift amount VT is bit enough to hold valid shift
3934     // amounts.  This catches things like trying to shift an i1024 value by an
3935     // i8, which is easy to fall into in generic code that uses
3936     // TLI.getShiftAmount().
3937     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
3938            "Invalid use of small shift amount with oversized value!");
3939 
3940     // Always fold shifts of i1 values so the code generator doesn't need to
3941     // handle them.  Since we know the size of the shift has to be less than the
3942     // size of the value, the shift/rotate count is guaranteed to be zero.
3943     if (VT == MVT::i1)
3944       return N1;
3945     if (N2C && N2C->isNullValue())
3946       return N1;
3947     break;
3948   case ISD::FP_ROUND_INREG: {
3949     EVT EVT = cast<VTSDNode>(N2)->getVT();
3950     assert(VT == N1.getValueType() && "Not an inreg round!");
3951     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
3952            "Cannot FP_ROUND_INREG integer types");
3953     assert(EVT.isVector() == VT.isVector() &&
3954            "FP_ROUND_INREG type should be vector iff the operand "
3955            "type is vector!");
3956     assert((!EVT.isVector() ||
3957             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3958            "Vector element counts must match in FP_ROUND_INREG");
3959     assert(EVT.bitsLE(VT) && "Not rounding down!");
3960     (void)EVT;
3961     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
3962     break;
3963   }
3964   case ISD::FP_ROUND:
3965     assert(VT.isFloatingPoint() &&
3966            N1.getValueType().isFloatingPoint() &&
3967            VT.bitsLE(N1.getValueType()) &&
3968            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
3969            "Invalid FP_ROUND!");
3970     if (N1.getValueType() == VT) return N1;  // noop conversion.
3971     break;
3972   case ISD::AssertSext:
3973   case ISD::AssertZext: {
3974     EVT EVT = cast<VTSDNode>(N2)->getVT();
3975     assert(VT == N1.getValueType() && "Not an inreg extend!");
3976     assert(VT.isInteger() && EVT.isInteger() &&
3977            "Cannot *_EXTEND_INREG FP types");
3978     assert(!EVT.isVector() &&
3979            "AssertSExt/AssertZExt type should be the vector element type "
3980            "rather than the vector type!");
3981     assert(EVT.bitsLE(VT) && "Not extending!");
3982     if (VT == EVT) return N1; // noop assertion.
3983     break;
3984   }
3985   case ISD::SIGN_EXTEND_INREG: {
3986     EVT EVT = cast<VTSDNode>(N2)->getVT();
3987     assert(VT == N1.getValueType() && "Not an inreg extend!");
3988     assert(VT.isInteger() && EVT.isInteger() &&
3989            "Cannot *_EXTEND_INREG FP types");
3990     assert(EVT.isVector() == VT.isVector() &&
3991            "SIGN_EXTEND_INREG type should be vector iff the operand "
3992            "type is vector!");
3993     assert((!EVT.isVector() ||
3994             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3995            "Vector element counts must match in SIGN_EXTEND_INREG");
3996     assert(EVT.bitsLE(VT) && "Not extending!");
3997     if (EVT == VT) return N1;  // Not actually extending
3998 
3999     auto SignExtendInReg = [&](APInt Val) {
4000       unsigned FromBits = EVT.getScalarSizeInBits();
4001       Val <<= Val.getBitWidth() - FromBits;
4002       Val = Val.ashr(Val.getBitWidth() - FromBits);
4003       return getConstant(Val, DL, VT.getScalarType());
4004     };
4005 
4006     if (N1C) {
4007       const APInt &Val = N1C->getAPIntValue();
4008       return SignExtendInReg(Val);
4009     }
4010     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
4011       SmallVector<SDValue, 8> Ops;
4012       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4013         SDValue Op = N1.getOperand(i);
4014         if (Op.isUndef()) {
4015           Ops.push_back(getUNDEF(VT.getScalarType()));
4016           continue;
4017         }
4018         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4019           APInt Val = C->getAPIntValue();
4020           Val = Val.zextOrTrunc(VT.getScalarSizeInBits());
4021           Ops.push_back(SignExtendInReg(Val));
4022           continue;
4023         }
4024         break;
4025       }
4026       if (Ops.size() == VT.getVectorNumElements())
4027         return getBuildVector(VT, DL, Ops);
4028     }
4029     break;
4030   }
4031   case ISD::EXTRACT_VECTOR_ELT:
4032     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4033     if (N1.isUndef())
4034       return getUNDEF(VT);
4035 
4036     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4037     if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4038       return getUNDEF(VT);
4039 
4040     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4041     // expanding copies of large vectors from registers.
4042     if (N2C &&
4043         N1.getOpcode() == ISD::CONCAT_VECTORS &&
4044         N1.getNumOperands() > 0) {
4045       unsigned Factor =
4046         N1.getOperand(0).getValueType().getVectorNumElements();
4047       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
4048                      N1.getOperand(N2C->getZExtValue() / Factor),
4049                      getConstant(N2C->getZExtValue() % Factor, DL,
4050                                  N2.getValueType()));
4051     }
4052 
4053     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4054     // expanding large vector constants.
4055     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
4056       SDValue Elt = N1.getOperand(N2C->getZExtValue());
4057 
4058       if (VT != Elt.getValueType())
4059         // If the vector element type is not legal, the BUILD_VECTOR operands
4060         // are promoted and implicitly truncated, and the result implicitly
4061         // extended. Make that explicit here.
4062         Elt = getAnyExtOrTrunc(Elt, DL, VT);
4063 
4064       return Elt;
4065     }
4066 
4067     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
4068     // operations are lowered to scalars.
4069     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
4070       // If the indices are the same, return the inserted element else
4071       // if the indices are known different, extract the element from
4072       // the original vector.
4073       SDValue N1Op2 = N1.getOperand(2);
4074       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
4075 
4076       if (N1Op2C && N2C) {
4077         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
4078           if (VT == N1.getOperand(1).getValueType())
4079             return N1.getOperand(1);
4080           else
4081             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
4082         }
4083 
4084         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
4085       }
4086     }
4087     break;
4088   case ISD::EXTRACT_ELEMENT:
4089     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
4090     assert(!N1.getValueType().isVector() && !VT.isVector() &&
4091            (N1.getValueType().isInteger() == VT.isInteger()) &&
4092            N1.getValueType() != VT &&
4093            "Wrong types for EXTRACT_ELEMENT!");
4094 
4095     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
4096     // 64-bit integers into 32-bit parts.  Instead of building the extract of
4097     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
4098     if (N1.getOpcode() == ISD::BUILD_PAIR)
4099       return N1.getOperand(N2C->getZExtValue());
4100 
4101     // EXTRACT_ELEMENT of a constant int is also very common.
4102     if (N1C) {
4103       unsigned ElementSize = VT.getSizeInBits();
4104       unsigned Shift = ElementSize * N2C->getZExtValue();
4105       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
4106       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
4107     }
4108     break;
4109   case ISD::EXTRACT_SUBVECTOR:
4110     if (VT.isSimple() && N1.getValueType().isSimple()) {
4111       assert(VT.isVector() && N1.getValueType().isVector() &&
4112              "Extract subvector VTs must be a vectors!");
4113       assert(VT.getVectorElementType() ==
4114              N1.getValueType().getVectorElementType() &&
4115              "Extract subvector VTs must have the same element type!");
4116       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
4117              "Extract subvector must be from larger vector to smaller vector!");
4118 
4119       if (N2C) {
4120         assert((VT.getVectorNumElements() + N2C->getZExtValue()
4121                 <= N1.getValueType().getVectorNumElements())
4122                && "Extract subvector overflow!");
4123       }
4124 
4125       // Trivial extraction.
4126       if (VT.getSimpleVT() == N1.getSimpleValueType())
4127         return N1;
4128 
4129       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
4130       if (N1.isUndef())
4131         return getUNDEF(VT);
4132 
4133       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
4134       // the concat have the same type as the extract.
4135       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
4136           N1.getNumOperands() > 0 &&
4137           VT == N1.getOperand(0).getValueType()) {
4138         unsigned Factor = VT.getVectorNumElements();
4139         return N1.getOperand(N2C->getZExtValue() / Factor);
4140       }
4141 
4142       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
4143       // during shuffle legalization.
4144       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
4145           VT == N1.getOperand(1).getValueType())
4146         return N1.getOperand(1);
4147     }
4148     break;
4149   }
4150 
4151   // Perform trivial constant folding.
4152   if (SDValue SV =
4153           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
4154     return SV;
4155 
4156   // Constant fold FP operations.
4157   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
4158   if (N1CFP) {
4159     if (N2CFP) {
4160       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
4161       APFloat::opStatus s;
4162       switch (Opcode) {
4163       case ISD::FADD:
4164         s = V1.add(V2, APFloat::rmNearestTiesToEven);
4165         if (!HasFPExceptions || s != APFloat::opInvalidOp)
4166           return getConstantFP(V1, DL, VT);
4167         break;
4168       case ISD::FSUB:
4169         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
4170         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4171           return getConstantFP(V1, DL, VT);
4172         break;
4173       case ISD::FMUL:
4174         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
4175         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
4176           return getConstantFP(V1, DL, VT);
4177         break;
4178       case ISD::FDIV:
4179         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
4180         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4181                                  s!=APFloat::opDivByZero)) {
4182           return getConstantFP(V1, DL, VT);
4183         }
4184         break;
4185       case ISD::FREM :
4186         s = V1.mod(V2);
4187         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
4188                                  s!=APFloat::opDivByZero)) {
4189           return getConstantFP(V1, DL, VT);
4190         }
4191         break;
4192       case ISD::FCOPYSIGN:
4193         V1.copySign(V2);
4194         return getConstantFP(V1, DL, VT);
4195       default: break;
4196       }
4197     }
4198 
4199     if (Opcode == ISD::FP_ROUND) {
4200       APFloat V = N1CFP->getValueAPF();    // make copy
4201       bool ignored;
4202       // This can return overflow, underflow, or inexact; we don't care.
4203       // FIXME need to be more flexible about rounding mode.
4204       (void)V.convert(EVTToAPFloatSemantics(VT),
4205                       APFloat::rmNearestTiesToEven, &ignored);
4206       return getConstantFP(V, DL, VT);
4207     }
4208   }
4209 
4210   // Canonicalize an UNDEF to the RHS, even over a constant.
4211   if (N1.isUndef()) {
4212     if (isCommutativeBinOp(Opcode)) {
4213       std::swap(N1, N2);
4214     } else {
4215       switch (Opcode) {
4216       case ISD::FP_ROUND_INREG:
4217       case ISD::SIGN_EXTEND_INREG:
4218       case ISD::SUB:
4219       case ISD::FSUB:
4220       case ISD::FDIV:
4221       case ISD::FREM:
4222       case ISD::SRA:
4223         return N1;     // fold op(undef, arg2) -> undef
4224       case ISD::UDIV:
4225       case ISD::SDIV:
4226       case ISD::UREM:
4227       case ISD::SREM:
4228       case ISD::SRL:
4229       case ISD::SHL:
4230         if (!VT.isVector())
4231           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
4232         // For vectors, we can't easily build an all zero vector, just return
4233         // the LHS.
4234         return N2;
4235       }
4236     }
4237   }
4238 
4239   // Fold a bunch of operators when the RHS is undef.
4240   if (N2.isUndef()) {
4241     switch (Opcode) {
4242     case ISD::XOR:
4243       if (N1.isUndef())
4244         // Handle undef ^ undef -> 0 special case. This is a common
4245         // idiom (misuse).
4246         return getConstant(0, DL, VT);
4247       LLVM_FALLTHROUGH;
4248     case ISD::ADD:
4249     case ISD::ADDC:
4250     case ISD::ADDE:
4251     case ISD::SUB:
4252     case ISD::UDIV:
4253     case ISD::SDIV:
4254     case ISD::UREM:
4255     case ISD::SREM:
4256       return N2;       // fold op(arg1, undef) -> undef
4257     case ISD::FADD:
4258     case ISD::FSUB:
4259     case ISD::FMUL:
4260     case ISD::FDIV:
4261     case ISD::FREM:
4262       if (getTarget().Options.UnsafeFPMath)
4263         return N2;
4264       break;
4265     case ISD::MUL:
4266     case ISD::AND:
4267     case ISD::SRL:
4268     case ISD::SHL:
4269       if (!VT.isVector())
4270         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
4271       // For vectors, we can't easily build an all zero vector, just return
4272       // the LHS.
4273       return N1;
4274     case ISD::OR:
4275       if (!VT.isVector())
4276         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
4277       // For vectors, we can't easily build an all one vector, just return
4278       // the LHS.
4279       return N1;
4280     case ISD::SRA:
4281       return N1;
4282     }
4283   }
4284 
4285   // Memoize this node if possible.
4286   SDNode *N;
4287   SDVTList VTs = getVTList(VT);
4288   if (VT != MVT::Glue) {
4289     SDValue Ops[] = {N1, N2};
4290     FoldingSetNodeID ID;
4291     AddNodeIDNode(ID, Opcode, VTs, Ops);
4292     void *IP = nullptr;
4293     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4294       if (Flags)
4295         E->intersectFlagsWith(Flags);
4296       return SDValue(E, 0);
4297     }
4298 
4299     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
4300     CSEMap.InsertNode(N, IP);
4301   } else {
4302     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
4303   }
4304 
4305   InsertNode(N);
4306   return SDValue(N, 0);
4307 }
4308 
4309 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4310                               SDValue N1, SDValue N2, SDValue N3) {
4311   // Perform various simplifications.
4312   switch (Opcode) {
4313   case ISD::FMA: {
4314     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4315     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
4316     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
4317     if (N1CFP && N2CFP && N3CFP) {
4318       APFloat  V1 = N1CFP->getValueAPF();
4319       const APFloat &V2 = N2CFP->getValueAPF();
4320       const APFloat &V3 = N3CFP->getValueAPF();
4321       APFloat::opStatus s =
4322         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
4323       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
4324         return getConstantFP(V1, DL, VT);
4325     }
4326     break;
4327   }
4328   case ISD::CONCAT_VECTORS: {
4329     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4330     SDValue Ops[] = {N1, N2, N3};
4331     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
4332       return V;
4333     break;
4334   }
4335   case ISD::SETCC: {
4336     // Use FoldSetCC to simplify SETCC's.
4337     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
4338       return V;
4339     // Vector constant folding.
4340     SDValue Ops[] = {N1, N2, N3};
4341     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4342       return V;
4343     break;
4344   }
4345   case ISD::SELECT:
4346     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
4347      if (N1C->getZExtValue())
4348        return N2;             // select true, X, Y -> X
4349      return N3;             // select false, X, Y -> Y
4350     }
4351 
4352     if (N2 == N3) return N2;   // select C, X, X -> X
4353     break;
4354   case ISD::VECTOR_SHUFFLE:
4355     llvm_unreachable("should use getVectorShuffle constructor!");
4356   case ISD::INSERT_VECTOR_ELT: {
4357     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
4358     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
4359     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
4360       return getUNDEF(VT);
4361     break;
4362   }
4363   case ISD::INSERT_SUBVECTOR: {
4364     SDValue Index = N3;
4365     if (VT.isSimple() && N1.getValueType().isSimple()
4366         && N2.getValueType().isSimple()) {
4367       assert(VT.isVector() && N1.getValueType().isVector() &&
4368              N2.getValueType().isVector() &&
4369              "Insert subvector VTs must be a vectors");
4370       assert(VT == N1.getValueType() &&
4371              "Dest and insert subvector source types must match!");
4372       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
4373              "Insert subvector must be from smaller vector to larger vector!");
4374       if (isa<ConstantSDNode>(Index)) {
4375         assert((N2.getValueType().getVectorNumElements() +
4376                 cast<ConstantSDNode>(Index)->getZExtValue()
4377                 <= VT.getVectorNumElements())
4378                && "Insert subvector overflow!");
4379       }
4380 
4381       // Trivial insertion.
4382       if (VT.getSimpleVT() == N2.getSimpleValueType())
4383         return N2;
4384     }
4385     break;
4386   }
4387   case ISD::BITCAST:
4388     // Fold bit_convert nodes from a type to themselves.
4389     if (N1.getValueType() == VT)
4390       return N1;
4391     break;
4392   }
4393 
4394   // Memoize node if it doesn't produce a flag.
4395   SDNode *N;
4396   SDVTList VTs = getVTList(VT);
4397   SDValue Ops[] = {N1, N2, N3};
4398   if (VT != MVT::Glue) {
4399     FoldingSetNodeID ID;
4400     AddNodeIDNode(ID, Opcode, VTs, Ops);
4401     void *IP = nullptr;
4402     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4403       return SDValue(E, 0);
4404 
4405     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4406     createOperands(N, Ops);
4407     CSEMap.InsertNode(N, IP);
4408   } else {
4409     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4410     createOperands(N, Ops);
4411   }
4412 
4413   InsertNode(N);
4414   return SDValue(N, 0);
4415 }
4416 
4417 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4418                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4419   SDValue Ops[] = { N1, N2, N3, N4 };
4420   return getNode(Opcode, DL, VT, Ops);
4421 }
4422 
4423 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4424                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4425                               SDValue N5) {
4426   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4427   return getNode(Opcode, DL, VT, Ops);
4428 }
4429 
4430 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4431 /// the incoming stack arguments to be loaded from the stack.
4432 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4433   SmallVector<SDValue, 8> ArgChains;
4434 
4435   // Include the original chain at the beginning of the list. When this is
4436   // used by target LowerCall hooks, this helps legalize find the
4437   // CALLSEQ_BEGIN node.
4438   ArgChains.push_back(Chain);
4439 
4440   // Add a chain value for each stack argument.
4441   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4442        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4443     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
4444       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
4445         if (FI->getIndex() < 0)
4446           ArgChains.push_back(SDValue(L, 1));
4447 
4448   // Build a tokenfactor for all the chains.
4449   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
4450 }
4451 
4452 /// getMemsetValue - Vectorized representation of the memset value
4453 /// operand.
4454 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
4455                               const SDLoc &dl) {
4456   assert(!Value.isUndef());
4457 
4458   unsigned NumBits = VT.getScalarSizeInBits();
4459   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4460     assert(C->getAPIntValue().getBitWidth() == 8);
4461     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
4462     if (VT.isInteger())
4463       return DAG.getConstant(Val, dl, VT);
4464     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
4465                              VT);
4466   }
4467 
4468   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
4469   EVT IntVT = VT.getScalarType();
4470   if (!IntVT.isInteger())
4471     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
4472 
4473   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
4474   if (NumBits > 8) {
4475     // Use a multiplication with 0x010101... to extend the input to the
4476     // required length.
4477     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
4478     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
4479                         DAG.getConstant(Magic, dl, IntVT));
4480   }
4481 
4482   if (VT != Value.getValueType() && !VT.isInteger())
4483     Value = DAG.getBitcast(VT.getScalarType(), Value);
4484   if (VT != Value.getValueType())
4485     Value = DAG.getSplatBuildVector(VT, dl, Value);
4486 
4487   return Value;
4488 }
4489 
4490 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4491 /// used when a memcpy is turned into a memset when the source is a constant
4492 /// string ptr.
4493 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
4494                                   const TargetLowering &TLI, StringRef Str) {
4495   // Handle vector with all elements zero.
4496   if (Str.empty()) {
4497     if (VT.isInteger())
4498       return DAG.getConstant(0, dl, VT);
4499     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
4500       return DAG.getConstantFP(0.0, dl, VT);
4501     else if (VT.isVector()) {
4502       unsigned NumElts = VT.getVectorNumElements();
4503       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
4504       return DAG.getNode(ISD::BITCAST, dl, VT,
4505                          DAG.getConstant(0, dl,
4506                                          EVT::getVectorVT(*DAG.getContext(),
4507                                                           EltVT, NumElts)));
4508     } else
4509       llvm_unreachable("Expected type!");
4510   }
4511 
4512   assert(!VT.isVector() && "Can't handle vector type here!");
4513   unsigned NumVTBits = VT.getSizeInBits();
4514   unsigned NumVTBytes = NumVTBits / 8;
4515   unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
4516 
4517   APInt Val(NumVTBits, 0);
4518   if (DAG.getDataLayout().isLittleEndian()) {
4519     for (unsigned i = 0; i != NumBytes; ++i)
4520       Val |= (uint64_t)(unsigned char)Str[i] << i*8;
4521   } else {
4522     for (unsigned i = 0; i != NumBytes; ++i)
4523       Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
4524   }
4525 
4526   // If the "cost" of materializing the integer immediate is less than the cost
4527   // of a load, then it is cost effective to turn the load into the immediate.
4528   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
4529   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
4530     return DAG.getConstant(Val, dl, VT);
4531   return SDValue(nullptr, 0);
4532 }
4533 
4534 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
4535                                            const SDLoc &DL) {
4536   EVT VT = Base.getValueType();
4537   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
4538 }
4539 
4540 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
4541 ///
4542 static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
4543   uint64_t SrcDelta = 0;
4544   GlobalAddressSDNode *G = nullptr;
4545   if (Src.getOpcode() == ISD::GlobalAddress)
4546     G = cast<GlobalAddressSDNode>(Src);
4547   else if (Src.getOpcode() == ISD::ADD &&
4548            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4549            Src.getOperand(1).getOpcode() == ISD::Constant) {
4550     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
4551     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
4552   }
4553   if (!G)
4554     return false;
4555 
4556   return getConstantStringInfo(G->getGlobal(), Str,
4557                                SrcDelta + G->getOffset(), false);
4558 }
4559 
4560 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4561 /// Return true if the number of memory ops is below the threshold (Limit).
4562 /// It returns the types of the sequence of memory ops to perform
4563 /// memset / memcpy by reference.
4564 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
4565                                      unsigned Limit, uint64_t Size,
4566                                      unsigned DstAlign, unsigned SrcAlign,
4567                                      bool IsMemset,
4568                                      bool ZeroMemset,
4569                                      bool MemcpyStrSrc,
4570                                      bool AllowOverlap,
4571                                      unsigned DstAS, unsigned SrcAS,
4572                                      SelectionDAG &DAG,
4573                                      const TargetLowering &TLI) {
4574   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
4575          "Expecting memcpy / memset source to meet alignment requirement!");
4576   // If 'SrcAlign' is zero, that means the memory operation does not need to
4577   // load the value, i.e. memset or memcpy from constant string. Otherwise,
4578   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
4579   // is the specified alignment of the memory operation. If it is zero, that
4580   // means it's possible to change the alignment of the destination.
4581   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
4582   // not need to be loaded.
4583   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
4584                                    IsMemset, ZeroMemset, MemcpyStrSrc,
4585                                    DAG.getMachineFunction());
4586 
4587   if (VT == MVT::Other) {
4588     if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) ||
4589         TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) {
4590       VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS);
4591     } else {
4592       switch (DstAlign & 7) {
4593       case 0:  VT = MVT::i64; break;
4594       case 4:  VT = MVT::i32; break;
4595       case 2:  VT = MVT::i16; break;
4596       default: VT = MVT::i8;  break;
4597       }
4598     }
4599 
4600     MVT LVT = MVT::i64;
4601     while (!TLI.isTypeLegal(LVT))
4602       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
4603     assert(LVT.isInteger());
4604 
4605     if (VT.bitsGT(LVT))
4606       VT = LVT;
4607   }
4608 
4609   unsigned NumMemOps = 0;
4610   while (Size != 0) {
4611     unsigned VTSize = VT.getSizeInBits() / 8;
4612     while (VTSize > Size) {
4613       // For now, only use non-vector load / store's for the left-over pieces.
4614       EVT NewVT = VT;
4615       unsigned NewVTSize;
4616 
4617       bool Found = false;
4618       if (VT.isVector() || VT.isFloatingPoint()) {
4619         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
4620         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
4621             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
4622           Found = true;
4623         else if (NewVT == MVT::i64 &&
4624                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
4625                  TLI.isSafeMemOpType(MVT::f64)) {
4626           // i64 is usually not legal on 32-bit targets, but f64 may be.
4627           NewVT = MVT::f64;
4628           Found = true;
4629         }
4630       }
4631 
4632       if (!Found) {
4633         do {
4634           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
4635           if (NewVT == MVT::i8)
4636             break;
4637         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
4638       }
4639       NewVTSize = NewVT.getSizeInBits() / 8;
4640 
4641       // If the new VT cannot cover all of the remaining bits, then consider
4642       // issuing a (or a pair of) unaligned and overlapping load / store.
4643       // FIXME: Only does this for 64-bit or more since we don't have proper
4644       // cost model for unaligned load / store.
4645       bool Fast;
4646       if (NumMemOps && AllowOverlap &&
4647           VTSize >= 8 && NewVTSize < Size &&
4648           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
4649         VTSize = Size;
4650       else {
4651         VT = NewVT;
4652         VTSize = NewVTSize;
4653       }
4654     }
4655 
4656     if (++NumMemOps > Limit)
4657       return false;
4658 
4659     MemOps.push_back(VT);
4660     Size -= VTSize;
4661   }
4662 
4663   return true;
4664 }
4665 
4666 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
4667   // On Darwin, -Os means optimize for size without hurting performance, so
4668   // only really optimize for size when -Oz (MinSize) is used.
4669   if (MF.getTarget().getTargetTriple().isOSDarwin())
4670     return MF.getFunction()->optForMinSize();
4671   return MF.getFunction()->optForSize();
4672 }
4673 
4674 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4675                                        SDValue Chain, SDValue Dst, SDValue Src,
4676                                        uint64_t Size, unsigned Align,
4677                                        bool isVol, bool AlwaysInline,
4678                                        MachinePointerInfo DstPtrInfo,
4679                                        MachinePointerInfo SrcPtrInfo) {
4680   // Turn a memcpy of undef to nop.
4681   if (Src.isUndef())
4682     return Chain;
4683 
4684   // Expand memcpy to a series of load and store ops if the size operand falls
4685   // below a certain threshold.
4686   // TODO: In the AlwaysInline case, if the size is big then generate a loop
4687   // rather than maybe a humongous number of loads and stores.
4688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4689   std::vector<EVT> MemOps;
4690   bool DstAlignCanChange = false;
4691   MachineFunction &MF = DAG.getMachineFunction();
4692   MachineFrameInfo &MFI = MF.getFrameInfo();
4693   bool OptSize = shouldLowerMemFuncForSize(MF);
4694   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4695   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4696     DstAlignCanChange = true;
4697   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4698   if (Align > SrcAlign)
4699     SrcAlign = Align;
4700   StringRef Str;
4701   bool CopyFromStr = isMemSrcFromString(Src, Str);
4702   bool isZeroStr = CopyFromStr && Str.empty();
4703   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
4704 
4705   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4706                                 (DstAlignCanChange ? 0 : Align),
4707                                 (isZeroStr ? 0 : SrcAlign),
4708                                 false, false, CopyFromStr, true,
4709                                 DstPtrInfo.getAddrSpace(),
4710                                 SrcPtrInfo.getAddrSpace(),
4711                                 DAG, TLI))
4712     return SDValue();
4713 
4714   if (DstAlignCanChange) {
4715     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4716     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4717 
4718     // Don't promote to an alignment that would require dynamic stack
4719     // realignment.
4720     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
4721     if (!TRI->needsStackRealignment(MF))
4722       while (NewAlign > Align &&
4723              DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign))
4724           NewAlign /= 2;
4725 
4726     if (NewAlign > Align) {
4727       // Give the stack frame object a larger alignment if needed.
4728       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4729         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4730       Align = NewAlign;
4731     }
4732   }
4733 
4734   MachineMemOperand::Flags MMOFlags =
4735       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4736   SmallVector<SDValue, 8> OutChains;
4737   unsigned NumMemOps = MemOps.size();
4738   uint64_t SrcOff = 0, DstOff = 0;
4739   for (unsigned i = 0; i != NumMemOps; ++i) {
4740     EVT VT = MemOps[i];
4741     unsigned VTSize = VT.getSizeInBits() / 8;
4742     SDValue Value, Store;
4743 
4744     if (VTSize > Size) {
4745       // Issuing an unaligned load / store pair  that overlaps with the previous
4746       // pair. Adjust the offset accordingly.
4747       assert(i == NumMemOps-1 && i != 0);
4748       SrcOff -= VTSize - Size;
4749       DstOff -= VTSize - Size;
4750     }
4751 
4752     if (CopyFromStr &&
4753         (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
4754       // It's unlikely a store of a vector immediate can be done in a single
4755       // instruction. It would require a load from a constantpool first.
4756       // We only handle zero vectors here.
4757       // FIXME: Handle other cases where store of vector immediate is done in
4758       // a single instruction.
4759       Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
4760       if (Value.getNode())
4761         Store = DAG.getStore(Chain, dl, Value,
4762                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4763                              DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4764     }
4765 
4766     if (!Store.getNode()) {
4767       // The type might not be legal for the target.  This should only happen
4768       // if the type is smaller than a legal type, as on PPC, so the right
4769       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
4770       // to Load/Store if NVT==VT.
4771       // FIXME does the case above also need this?
4772       EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
4773       assert(NVT.bitsGE(VT));
4774       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
4775                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4776                              SrcPtrInfo.getWithOffset(SrcOff), VT,
4777                              MinAlign(SrcAlign, SrcOff), MMOFlags);
4778       OutChains.push_back(Value.getValue(1));
4779       Store = DAG.getTruncStore(
4780           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4781           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
4782     }
4783     OutChains.push_back(Store);
4784     SrcOff += VTSize;
4785     DstOff += VTSize;
4786     Size -= VTSize;
4787   }
4788 
4789   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4790 }
4791 
4792 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4793                                         SDValue Chain, SDValue Dst, SDValue Src,
4794                                         uint64_t Size, unsigned Align,
4795                                         bool isVol, bool AlwaysInline,
4796                                         MachinePointerInfo DstPtrInfo,
4797                                         MachinePointerInfo SrcPtrInfo) {
4798   // Turn a memmove of undef to nop.
4799   if (Src.isUndef())
4800     return Chain;
4801 
4802   // Expand memmove to a series of load and store ops if the size operand falls
4803   // below a certain threshold.
4804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4805   std::vector<EVT> MemOps;
4806   bool DstAlignCanChange = false;
4807   MachineFunction &MF = DAG.getMachineFunction();
4808   MachineFrameInfo &MFI = MF.getFrameInfo();
4809   bool OptSize = shouldLowerMemFuncForSize(MF);
4810   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4811   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4812     DstAlignCanChange = true;
4813   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4814   if (Align > SrcAlign)
4815     SrcAlign = Align;
4816   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
4817 
4818   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4819                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
4820                                 false, false, false, false,
4821                                 DstPtrInfo.getAddrSpace(),
4822                                 SrcPtrInfo.getAddrSpace(),
4823                                 DAG, TLI))
4824     return SDValue();
4825 
4826   if (DstAlignCanChange) {
4827     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4828     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4829     if (NewAlign > Align) {
4830       // Give the stack frame object a larger alignment if needed.
4831       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4832         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4833       Align = NewAlign;
4834     }
4835   }
4836 
4837   MachineMemOperand::Flags MMOFlags =
4838       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
4839   uint64_t SrcOff = 0, DstOff = 0;
4840   SmallVector<SDValue, 8> LoadValues;
4841   SmallVector<SDValue, 8> LoadChains;
4842   SmallVector<SDValue, 8> OutChains;
4843   unsigned NumMemOps = MemOps.size();
4844   for (unsigned i = 0; i < NumMemOps; i++) {
4845     EVT VT = MemOps[i];
4846     unsigned VTSize = VT.getSizeInBits() / 8;
4847     SDValue Value;
4848 
4849     Value =
4850         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4851                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags);
4852     LoadValues.push_back(Value);
4853     LoadChains.push_back(Value.getValue(1));
4854     SrcOff += VTSize;
4855   }
4856   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
4857   OutChains.clear();
4858   for (unsigned i = 0; i < NumMemOps; i++) {
4859     EVT VT = MemOps[i];
4860     unsigned VTSize = VT.getSizeInBits() / 8;
4861     SDValue Store;
4862 
4863     Store = DAG.getStore(Chain, dl, LoadValues[i],
4864                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4865                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
4866     OutChains.push_back(Store);
4867     DstOff += VTSize;
4868   }
4869 
4870   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4871 }
4872 
4873 /// \brief Lower the call to 'memset' intrinsic function into a series of store
4874 /// operations.
4875 ///
4876 /// \param DAG Selection DAG where lowered code is placed.
4877 /// \param dl Link to corresponding IR location.
4878 /// \param Chain Control flow dependency.
4879 /// \param Dst Pointer to destination memory location.
4880 /// \param Src Value of byte to write into the memory.
4881 /// \param Size Number of bytes to write.
4882 /// \param Align Alignment of the destination in bytes.
4883 /// \param isVol True if destination is volatile.
4884 /// \param DstPtrInfo IR information on the memory pointer.
4885 /// \returns New head in the control flow, if lowering was successful, empty
4886 /// SDValue otherwise.
4887 ///
4888 /// The function tries to replace 'llvm.memset' intrinsic with several store
4889 /// operations and value calculation code. This is usually profitable for small
4890 /// memory size.
4891 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
4892                                SDValue Chain, SDValue Dst, SDValue Src,
4893                                uint64_t Size, unsigned Align, bool isVol,
4894                                MachinePointerInfo DstPtrInfo) {
4895   // Turn a memset of undef to nop.
4896   if (Src.isUndef())
4897     return Chain;
4898 
4899   // Expand memset to a series of load/store ops if the size operand
4900   // falls below a certain threshold.
4901   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4902   std::vector<EVT> MemOps;
4903   bool DstAlignCanChange = false;
4904   MachineFunction &MF = DAG.getMachineFunction();
4905   MachineFrameInfo &MFI = MF.getFrameInfo();
4906   bool OptSize = shouldLowerMemFuncForSize(MF);
4907   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4908   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
4909     DstAlignCanChange = true;
4910   bool IsZeroVal =
4911     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
4912   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
4913                                 Size, (DstAlignCanChange ? 0 : Align), 0,
4914                                 true, IsZeroVal, false, true,
4915                                 DstPtrInfo.getAddrSpace(), ~0u,
4916                                 DAG, TLI))
4917     return SDValue();
4918 
4919   if (DstAlignCanChange) {
4920     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4921     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4922     if (NewAlign > Align) {
4923       // Give the stack frame object a larger alignment if needed.
4924       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
4925         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
4926       Align = NewAlign;
4927     }
4928   }
4929 
4930   SmallVector<SDValue, 8> OutChains;
4931   uint64_t DstOff = 0;
4932   unsigned NumMemOps = MemOps.size();
4933 
4934   // Find the largest store and generate the bit pattern for it.
4935   EVT LargestVT = MemOps[0];
4936   for (unsigned i = 1; i < NumMemOps; i++)
4937     if (MemOps[i].bitsGT(LargestVT))
4938       LargestVT = MemOps[i];
4939   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
4940 
4941   for (unsigned i = 0; i < NumMemOps; i++) {
4942     EVT VT = MemOps[i];
4943     unsigned VTSize = VT.getSizeInBits() / 8;
4944     if (VTSize > Size) {
4945       // Issuing an unaligned load / store pair  that overlaps with the previous
4946       // pair. Adjust the offset accordingly.
4947       assert(i == NumMemOps-1 && i != 0);
4948       DstOff -= VTSize - Size;
4949     }
4950 
4951     // If this store is smaller than the largest store see whether we can get
4952     // the smaller value for free with a truncate.
4953     SDValue Value = MemSetValue;
4954     if (VT.bitsLT(LargestVT)) {
4955       if (!LargestVT.isVector() && !VT.isVector() &&
4956           TLI.isTruncateFree(LargestVT, VT))
4957         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
4958       else
4959         Value = getMemsetValue(Src, VT, DAG, dl);
4960     }
4961     assert(Value.getValueType() == VT && "Value with wrong type.");
4962     SDValue Store = DAG.getStore(
4963         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4964         DstPtrInfo.getWithOffset(DstOff), Align,
4965         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
4966     OutChains.push_back(Store);
4967     DstOff += VT.getSizeInBits() / 8;
4968     Size -= VTSize;
4969   }
4970 
4971   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4972 }
4973 
4974 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
4975                                             unsigned AS) {
4976   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
4977   // pointer operands can be losslessly bitcasted to pointers of address space 0
4978   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
4979     report_fatal_error("cannot lower memory intrinsic in address space " +
4980                        Twine(AS));
4981   }
4982 }
4983 
4984 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
4985                                 SDValue Src, SDValue Size, unsigned Align,
4986                                 bool isVol, bool AlwaysInline, bool isTailCall,
4987                                 MachinePointerInfo DstPtrInfo,
4988                                 MachinePointerInfo SrcPtrInfo) {
4989   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4990 
4991   // Check to see if we should lower the memcpy to loads and stores first.
4992   // For cases within the target-specified limits, this is the best choice.
4993   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4994   if (ConstantSize) {
4995     // Memcpy with size zero? Just return the original chain.
4996     if (ConstantSize->isNullValue())
4997       return Chain;
4998 
4999     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5000                                              ConstantSize->getZExtValue(),Align,
5001                                 isVol, false, DstPtrInfo, SrcPtrInfo);
5002     if (Result.getNode())
5003       return Result;
5004   }
5005 
5006   // Then check to see if we should lower the memcpy with target-specific
5007   // code. If the target chooses to do this, this is the next best.
5008   if (TSI) {
5009     SDValue Result = TSI->EmitTargetCodeForMemcpy(
5010         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
5011         DstPtrInfo, SrcPtrInfo);
5012     if (Result.getNode())
5013       return Result;
5014   }
5015 
5016   // If we really need inline code and the target declined to provide it,
5017   // use a (potentially long) sequence of loads and stores.
5018   if (AlwaysInline) {
5019     assert(ConstantSize && "AlwaysInline requires a constant size!");
5020     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
5021                                    ConstantSize->getZExtValue(), Align, isVol,
5022                                    true, DstPtrInfo, SrcPtrInfo);
5023   }
5024 
5025   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5026   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5027 
5028   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
5029   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
5030   // respect volatile, so they may do things like read or write memory
5031   // beyond the given memory regions. But fixing this isn't easy, and most
5032   // people don't care.
5033 
5034   // Emit a library call.
5035   TargetLowering::ArgListTy Args;
5036   TargetLowering::ArgListEntry Entry;
5037   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5038   Entry.Node = Dst; Args.push_back(Entry);
5039   Entry.Node = Src; Args.push_back(Entry);
5040   Entry.Node = Size; Args.push_back(Entry);
5041   // FIXME: pass in SDLoc
5042   TargetLowering::CallLoweringInfo CLI(*this);
5043   CLI.setDebugLoc(dl)
5044       .setChain(Chain)
5045       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
5046                  Dst.getValueType().getTypeForEVT(*getContext()),
5047                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
5048                                    TLI->getPointerTy(getDataLayout())),
5049                  std::move(Args))
5050       .setDiscardResult()
5051       .setTailCall(isTailCall);
5052 
5053   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5054   return CallResult.second;
5055 }
5056 
5057 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
5058                                  SDValue Src, SDValue Size, unsigned Align,
5059                                  bool isVol, bool isTailCall,
5060                                  MachinePointerInfo DstPtrInfo,
5061                                  MachinePointerInfo SrcPtrInfo) {
5062   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5063 
5064   // Check to see if we should lower the memmove to loads and stores first.
5065   // For cases within the target-specified limits, this is the best choice.
5066   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5067   if (ConstantSize) {
5068     // Memmove with size zero? Just return the original chain.
5069     if (ConstantSize->isNullValue())
5070       return Chain;
5071 
5072     SDValue Result =
5073       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
5074                                ConstantSize->getZExtValue(), Align, isVol,
5075                                false, DstPtrInfo, SrcPtrInfo);
5076     if (Result.getNode())
5077       return Result;
5078   }
5079 
5080   // Then check to see if we should lower the memmove with target-specific
5081   // code. If the target chooses to do this, this is the next best.
5082   if (TSI) {
5083     SDValue Result = TSI->EmitTargetCodeForMemmove(
5084         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
5085     if (Result.getNode())
5086       return Result;
5087   }
5088 
5089   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5090   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
5091 
5092   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
5093   // not be safe.  See memcpy above for more details.
5094 
5095   // Emit a library call.
5096   TargetLowering::ArgListTy Args;
5097   TargetLowering::ArgListEntry Entry;
5098   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
5099   Entry.Node = Dst; Args.push_back(Entry);
5100   Entry.Node = Src; Args.push_back(Entry);
5101   Entry.Node = Size; Args.push_back(Entry);
5102   // FIXME:  pass in SDLoc
5103   TargetLowering::CallLoweringInfo CLI(*this);
5104   CLI.setDebugLoc(dl)
5105       .setChain(Chain)
5106       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
5107                  Dst.getValueType().getTypeForEVT(*getContext()),
5108                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
5109                                    TLI->getPointerTy(getDataLayout())),
5110                  std::move(Args))
5111       .setDiscardResult()
5112       .setTailCall(isTailCall);
5113 
5114   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5115   return CallResult.second;
5116 }
5117 
5118 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
5119                                 SDValue Src, SDValue Size, unsigned Align,
5120                                 bool isVol, bool isTailCall,
5121                                 MachinePointerInfo DstPtrInfo) {
5122   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
5123 
5124   // Check to see if we should lower the memset to stores first.
5125   // For cases within the target-specified limits, this is the best choice.
5126   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5127   if (ConstantSize) {
5128     // Memset with size zero? Just return the original chain.
5129     if (ConstantSize->isNullValue())
5130       return Chain;
5131 
5132     SDValue Result =
5133       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
5134                       Align, isVol, DstPtrInfo);
5135 
5136     if (Result.getNode())
5137       return Result;
5138   }
5139 
5140   // Then check to see if we should lower the memset with target-specific
5141   // code. If the target chooses to do this, this is the next best.
5142   if (TSI) {
5143     SDValue Result = TSI->EmitTargetCodeForMemset(
5144         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
5145     if (Result.getNode())
5146       return Result;
5147   }
5148 
5149   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
5150 
5151   // Emit a library call.
5152   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
5153   TargetLowering::ArgListTy Args;
5154   TargetLowering::ArgListEntry Entry;
5155   Entry.Node = Dst; Entry.Ty = IntPtrTy;
5156   Args.push_back(Entry);
5157   Entry.Node = Src;
5158   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
5159   Args.push_back(Entry);
5160   Entry.Node = Size;
5161   Entry.Ty = IntPtrTy;
5162   Args.push_back(Entry);
5163 
5164   // FIXME: pass in SDLoc
5165   TargetLowering::CallLoweringInfo CLI(*this);
5166   CLI.setDebugLoc(dl)
5167       .setChain(Chain)
5168       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
5169                  Dst.getValueType().getTypeForEVT(*getContext()),
5170                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
5171                                    TLI->getPointerTy(getDataLayout())),
5172                  std::move(Args))
5173       .setDiscardResult()
5174       .setTailCall(isTailCall);
5175 
5176   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
5177   return CallResult.second;
5178 }
5179 
5180 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5181                                 SDVTList VTList, ArrayRef<SDValue> Ops,
5182                                 MachineMemOperand *MMO) {
5183   FoldingSetNodeID ID;
5184   ID.AddInteger(MemVT.getRawBits());
5185   AddNodeIDNode(ID, Opcode, VTList, Ops);
5186   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5187   void* IP = nullptr;
5188   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5189     cast<AtomicSDNode>(E)->refineAlignment(MMO);
5190     return SDValue(E, 0);
5191   }
5192 
5193   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5194                                     VTList, MemVT, MMO);
5195   createOperands(N, Ops);
5196 
5197   CSEMap.InsertNode(N, IP);
5198   InsertNode(N);
5199   return SDValue(N, 0);
5200 }
5201 
5202 SDValue SelectionDAG::getAtomicCmpSwap(
5203     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
5204     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
5205     unsigned Alignment, AtomicOrdering SuccessOrdering,
5206     AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) {
5207   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5208          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5209   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5210 
5211   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5212     Alignment = getEVTAlignment(MemVT);
5213 
5214   MachineFunction &MF = getMachineFunction();
5215 
5216   // FIXME: Volatile isn't really correct; we should keep track of atomic
5217   // orderings in the memoperand.
5218   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
5219                MachineMemOperand::MOStore;
5220   MachineMemOperand *MMO =
5221     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
5222                             AAMDNodes(), nullptr, SynchScope, SuccessOrdering,
5223                             FailureOrdering);
5224 
5225   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
5226 }
5227 
5228 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
5229                                        EVT MemVT, SDVTList VTs, SDValue Chain,
5230                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
5231                                        MachineMemOperand *MMO) {
5232   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
5233          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
5234   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
5235 
5236   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
5237   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5238 }
5239 
5240 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5241                                 SDValue Chain, SDValue Ptr, SDValue Val,
5242                                 const Value *PtrVal, unsigned Alignment,
5243                                 AtomicOrdering Ordering,
5244                                 SynchronizationScope SynchScope) {
5245   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5246     Alignment = getEVTAlignment(MemVT);
5247 
5248   MachineFunction &MF = getMachineFunction();
5249   // An atomic store does not load. An atomic load does not store.
5250   // (An atomicrmw obviously both loads and stores.)
5251   // For now, atomics are considered to be volatile always, and they are
5252   // chained as such.
5253   // FIXME: Volatile isn't really correct; we should keep track of atomic
5254   // orderings in the memoperand.
5255   auto Flags = MachineMemOperand::MOVolatile;
5256   if (Opcode != ISD::ATOMIC_STORE)
5257     Flags |= MachineMemOperand::MOLoad;
5258   if (Opcode != ISD::ATOMIC_LOAD)
5259     Flags |= MachineMemOperand::MOStore;
5260 
5261   MachineMemOperand *MMO =
5262     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
5263                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
5264                             nullptr, SynchScope, Ordering);
5265 
5266   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
5267 }
5268 
5269 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5270                                 SDValue Chain, SDValue Ptr, SDValue Val,
5271                                 MachineMemOperand *MMO) {
5272   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
5273           Opcode == ISD::ATOMIC_LOAD_SUB ||
5274           Opcode == ISD::ATOMIC_LOAD_AND ||
5275           Opcode == ISD::ATOMIC_LOAD_OR ||
5276           Opcode == ISD::ATOMIC_LOAD_XOR ||
5277           Opcode == ISD::ATOMIC_LOAD_NAND ||
5278           Opcode == ISD::ATOMIC_LOAD_MIN ||
5279           Opcode == ISD::ATOMIC_LOAD_MAX ||
5280           Opcode == ISD::ATOMIC_LOAD_UMIN ||
5281           Opcode == ISD::ATOMIC_LOAD_UMAX ||
5282           Opcode == ISD::ATOMIC_SWAP ||
5283           Opcode == ISD::ATOMIC_STORE) &&
5284          "Invalid Atomic Op");
5285 
5286   EVT VT = Val.getValueType();
5287 
5288   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
5289                                                getVTList(VT, MVT::Other);
5290   SDValue Ops[] = {Chain, Ptr, Val};
5291   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5292 }
5293 
5294 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
5295                                 EVT VT, SDValue Chain, SDValue Ptr,
5296                                 MachineMemOperand *MMO) {
5297   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
5298 
5299   SDVTList VTs = getVTList(VT, MVT::Other);
5300   SDValue Ops[] = {Chain, Ptr};
5301   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
5302 }
5303 
5304 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
5305 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
5306   if (Ops.size() == 1)
5307     return Ops[0];
5308 
5309   SmallVector<EVT, 4> VTs;
5310   VTs.reserve(Ops.size());
5311   for (unsigned i = 0; i < Ops.size(); ++i)
5312     VTs.push_back(Ops[i].getValueType());
5313   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
5314 }
5315 
5316 SDValue SelectionDAG::getMemIntrinsicNode(
5317     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
5318     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol,
5319     bool ReadMem, bool WriteMem, unsigned Size) {
5320   if (Align == 0)  // Ensure that codegen never sees alignment 0
5321     Align = getEVTAlignment(MemVT);
5322 
5323   MachineFunction &MF = getMachineFunction();
5324   auto Flags = MachineMemOperand::MONone;
5325   if (WriteMem)
5326     Flags |= MachineMemOperand::MOStore;
5327   if (ReadMem)
5328     Flags |= MachineMemOperand::MOLoad;
5329   if (Vol)
5330     Flags |= MachineMemOperand::MOVolatile;
5331   if (!Size)
5332     Size = MemVT.getStoreSize();
5333   MachineMemOperand *MMO =
5334     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
5335 
5336   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
5337 }
5338 
5339 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
5340                                           SDVTList VTList,
5341                                           ArrayRef<SDValue> Ops, EVT MemVT,
5342                                           MachineMemOperand *MMO) {
5343   assert((Opcode == ISD::INTRINSIC_VOID ||
5344           Opcode == ISD::INTRINSIC_W_CHAIN ||
5345           Opcode == ISD::PREFETCH ||
5346           Opcode == ISD::LIFETIME_START ||
5347           Opcode == ISD::LIFETIME_END ||
5348           (Opcode <= INT_MAX &&
5349            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
5350          "Opcode is not a memory-accessing opcode!");
5351 
5352   // Memoize the node unless it returns a flag.
5353   MemIntrinsicSDNode *N;
5354   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5355     FoldingSetNodeID ID;
5356     AddNodeIDNode(ID, Opcode, VTList, Ops);
5357     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5358     void *IP = nullptr;
5359     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5360       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
5361       return SDValue(E, 0);
5362     }
5363 
5364     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5365                                       VTList, MemVT, MMO);
5366     createOperands(N, Ops);
5367 
5368   CSEMap.InsertNode(N, IP);
5369   } else {
5370     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5371                                       VTList, MemVT, MMO);
5372     createOperands(N, Ops);
5373   }
5374   InsertNode(N);
5375   return SDValue(N, 0);
5376 }
5377 
5378 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5379 /// MachinePointerInfo record from it.  This is particularly useful because the
5380 /// code generator has many cases where it doesn't bother passing in a
5381 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5382 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5383                                            int64_t Offset = 0) {
5384   // If this is FI+Offset, we can model it.
5385   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
5386     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5387                                              FI->getIndex(), Offset);
5388 
5389   // If this is (FI+Offset1)+Offset2, we can model it.
5390   if (Ptr.getOpcode() != ISD::ADD ||
5391       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
5392       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
5393     return MachinePointerInfo();
5394 
5395   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5396   return MachinePointerInfo::getFixedStack(
5397       DAG.getMachineFunction(), FI,
5398       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
5399 }
5400 
5401 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5402 /// MachinePointerInfo record from it.  This is particularly useful because the
5403 /// code generator has many cases where it doesn't bother passing in a
5404 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
5405 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5406                                            SDValue OffsetOp) {
5407   // If the 'Offset' value isn't a constant, we can't handle this.
5408   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
5409     return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue());
5410   if (OffsetOp.isUndef())
5411     return InferPointerInfo(DAG, Ptr);
5412   return MachinePointerInfo();
5413 }
5414 
5415 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5416                               EVT VT, const SDLoc &dl, SDValue Chain,
5417                               SDValue Ptr, SDValue Offset,
5418                               MachinePointerInfo PtrInfo, EVT MemVT,
5419                               unsigned Alignment,
5420                               MachineMemOperand::Flags MMOFlags,
5421                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5422   assert(Chain.getValueType() == MVT::Other &&
5423         "Invalid chain type");
5424   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5425     Alignment = getEVTAlignment(MemVT);
5426 
5427   MMOFlags |= MachineMemOperand::MOLoad;
5428   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
5429   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
5430   // clients.
5431   if (PtrInfo.V.isNull())
5432     PtrInfo = InferPointerInfo(*this, Ptr, Offset);
5433 
5434   MachineFunction &MF = getMachineFunction();
5435   MachineMemOperand *MMO = MF.getMachineMemOperand(
5436       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
5437   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
5438 }
5439 
5440 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5441                               EVT VT, const SDLoc &dl, SDValue Chain,
5442                               SDValue Ptr, SDValue Offset, EVT MemVT,
5443                               MachineMemOperand *MMO) {
5444   if (VT == MemVT) {
5445     ExtType = ISD::NON_EXTLOAD;
5446   } else if (ExtType == ISD::NON_EXTLOAD) {
5447     assert(VT == MemVT && "Non-extending load from different memory type!");
5448   } else {
5449     // Extending load.
5450     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
5451            "Should only be an extending load, not truncating!");
5452     assert(VT.isInteger() == MemVT.isInteger() &&
5453            "Cannot convert from FP to Int or Int -> FP!");
5454     assert(VT.isVector() == MemVT.isVector() &&
5455            "Cannot use an ext load to convert to or from a vector!");
5456     assert((!VT.isVector() ||
5457             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
5458            "Cannot use an ext load to change the number of vector elements!");
5459   }
5460 
5461   bool Indexed = AM != ISD::UNINDEXED;
5462   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
5463 
5464   SDVTList VTs = Indexed ?
5465     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
5466   SDValue Ops[] = { Chain, Ptr, Offset };
5467   FoldingSetNodeID ID;
5468   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
5469   ID.AddInteger(MemVT.getRawBits());
5470   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
5471       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
5472   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5473   void *IP = nullptr;
5474   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5475     cast<LoadSDNode>(E)->refineAlignment(MMO);
5476     return SDValue(E, 0);
5477   }
5478   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5479                                   ExtType, MemVT, MMO);
5480   createOperands(N, Ops);
5481 
5482   CSEMap.InsertNode(N, IP);
5483   InsertNode(N);
5484   return SDValue(N, 0);
5485 }
5486 
5487 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5488                               SDValue Ptr, MachinePointerInfo PtrInfo,
5489                               unsigned Alignment,
5490                               MachineMemOperand::Flags MMOFlags,
5491                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5492   SDValue Undef = getUNDEF(Ptr.getValueType());
5493   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5494                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
5495 }
5496 
5497 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5498                               SDValue Ptr, MachineMemOperand *MMO) {
5499   SDValue Undef = getUNDEF(Ptr.getValueType());
5500   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5501                  VT, MMO);
5502 }
5503 
5504 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5505                                  EVT VT, SDValue Chain, SDValue Ptr,
5506                                  MachinePointerInfo PtrInfo, EVT MemVT,
5507                                  unsigned Alignment,
5508                                  MachineMemOperand::Flags MMOFlags,
5509                                  const AAMDNodes &AAInfo) {
5510   SDValue Undef = getUNDEF(Ptr.getValueType());
5511   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
5512                  MemVT, Alignment, MMOFlags, AAInfo);
5513 }
5514 
5515 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5516                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
5517                                  MachineMemOperand *MMO) {
5518   SDValue Undef = getUNDEF(Ptr.getValueType());
5519   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5520                  MemVT, MMO);
5521 }
5522 
5523 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
5524                                      SDValue Base, SDValue Offset,
5525                                      ISD::MemIndexedMode AM) {
5526   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
5527   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
5528   // Don't propagate the invariant or dereferenceable flags.
5529   auto MMOFlags =
5530       LD->getMemOperand()->getFlags() &
5531       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
5532   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
5533                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
5534                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
5535                  LD->getAAInfo());
5536 }
5537 
5538 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5539                                SDValue Ptr, MachinePointerInfo PtrInfo,
5540                                unsigned Alignment,
5541                                MachineMemOperand::Flags MMOFlags,
5542                                const AAMDNodes &AAInfo) {
5543   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
5544   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5545     Alignment = getEVTAlignment(Val.getValueType());
5546 
5547   MMOFlags |= MachineMemOperand::MOStore;
5548   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5549 
5550   if (PtrInfo.V.isNull())
5551     PtrInfo = InferPointerInfo(*this, Ptr);
5552 
5553   MachineFunction &MF = getMachineFunction();
5554   MachineMemOperand *MMO = MF.getMachineMemOperand(
5555       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
5556   return getStore(Chain, dl, Val, Ptr, MMO);
5557 }
5558 
5559 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5560                                SDValue Ptr, MachineMemOperand *MMO) {
5561   assert(Chain.getValueType() == MVT::Other &&
5562         "Invalid chain type");
5563   EVT VT = Val.getValueType();
5564   SDVTList VTs = getVTList(MVT::Other);
5565   SDValue Undef = getUNDEF(Ptr.getValueType());
5566   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5567   FoldingSetNodeID ID;
5568   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5569   ID.AddInteger(VT.getRawBits());
5570   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5571       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
5572   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5573   void *IP = nullptr;
5574   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5575     cast<StoreSDNode>(E)->refineAlignment(MMO);
5576     return SDValue(E, 0);
5577   }
5578   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5579                                    ISD::UNINDEXED, false, VT, MMO);
5580   createOperands(N, Ops);
5581 
5582   CSEMap.InsertNode(N, IP);
5583   InsertNode(N);
5584   return SDValue(N, 0);
5585 }
5586 
5587 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5588                                     SDValue Ptr, MachinePointerInfo PtrInfo,
5589                                     EVT SVT, unsigned Alignment,
5590                                     MachineMemOperand::Flags MMOFlags,
5591                                     const AAMDNodes &AAInfo) {
5592   assert(Chain.getValueType() == MVT::Other &&
5593         "Invalid chain type");
5594   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5595     Alignment = getEVTAlignment(SVT);
5596 
5597   MMOFlags |= MachineMemOperand::MOStore;
5598   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
5599 
5600   if (PtrInfo.V.isNull())
5601     PtrInfo = InferPointerInfo(*this, Ptr);
5602 
5603   MachineFunction &MF = getMachineFunction();
5604   MachineMemOperand *MMO = MF.getMachineMemOperand(
5605       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
5606   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
5607 }
5608 
5609 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5610                                     SDValue Ptr, EVT SVT,
5611                                     MachineMemOperand *MMO) {
5612   EVT VT = Val.getValueType();
5613 
5614   assert(Chain.getValueType() == MVT::Other &&
5615         "Invalid chain type");
5616   if (VT == SVT)
5617     return getStore(Chain, dl, Val, Ptr, MMO);
5618 
5619   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
5620          "Should only be a truncating store, not extending!");
5621   assert(VT.isInteger() == SVT.isInteger() &&
5622          "Can't do FP-INT conversion!");
5623   assert(VT.isVector() == SVT.isVector() &&
5624          "Cannot use trunc store to convert to or from a vector!");
5625   assert((!VT.isVector() ||
5626           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
5627          "Cannot use trunc store to change the number of vector elements!");
5628 
5629   SDVTList VTs = getVTList(MVT::Other);
5630   SDValue Undef = getUNDEF(Ptr.getValueType());
5631   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5632   FoldingSetNodeID ID;
5633   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5634   ID.AddInteger(SVT.getRawBits());
5635   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
5636       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
5637   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5638   void *IP = nullptr;
5639   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5640     cast<StoreSDNode>(E)->refineAlignment(MMO);
5641     return SDValue(E, 0);
5642   }
5643   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5644                                    ISD::UNINDEXED, true, SVT, MMO);
5645   createOperands(N, Ops);
5646 
5647   CSEMap.InsertNode(N, IP);
5648   InsertNode(N);
5649   return SDValue(N, 0);
5650 }
5651 
5652 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
5653                                       SDValue Base, SDValue Offset,
5654                                       ISD::MemIndexedMode AM) {
5655   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
5656   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
5657   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
5658   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
5659   FoldingSetNodeID ID;
5660   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5661   ID.AddInteger(ST->getMemoryVT().getRawBits());
5662   ID.AddInteger(ST->getRawSubclassData());
5663   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
5664   void *IP = nullptr;
5665   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
5666     return SDValue(E, 0);
5667 
5668   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5669                                    ST->isTruncatingStore(), ST->getMemoryVT(),
5670                                    ST->getMemOperand());
5671   createOperands(N, Ops);
5672 
5673   CSEMap.InsertNode(N, IP);
5674   InsertNode(N);
5675   return SDValue(N, 0);
5676 }
5677 
5678 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5679                                     SDValue Ptr, SDValue Mask, SDValue Src0,
5680                                     EVT MemVT, MachineMemOperand *MMO,
5681                                     ISD::LoadExtType ExtTy, bool isExpanding) {
5682 
5683   SDVTList VTs = getVTList(VT, MVT::Other);
5684   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
5685   FoldingSetNodeID ID;
5686   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
5687   ID.AddInteger(VT.getRawBits());
5688   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
5689       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
5690   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5691   void *IP = nullptr;
5692   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5693     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
5694     return SDValue(E, 0);
5695   }
5696   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5697                                         ExtTy, isExpanding, MemVT, MMO);
5698   createOperands(N, Ops);
5699 
5700   CSEMap.InsertNode(N, IP);
5701   InsertNode(N);
5702   return SDValue(N, 0);
5703 }
5704 
5705 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
5706                                      SDValue Val, SDValue Ptr, SDValue Mask,
5707                                      EVT MemVT, MachineMemOperand *MMO,
5708                                      bool IsTruncating, bool IsCompressing) {
5709   assert(Chain.getValueType() == MVT::Other &&
5710         "Invalid chain type");
5711   EVT VT = Val.getValueType();
5712   SDVTList VTs = getVTList(MVT::Other);
5713   SDValue Ops[] = { Chain, Ptr, Mask, Val };
5714   FoldingSetNodeID ID;
5715   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
5716   ID.AddInteger(VT.getRawBits());
5717   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
5718       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
5719   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5720   void *IP = nullptr;
5721   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5722     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
5723     return SDValue(E, 0);
5724   }
5725   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5726                                          IsTruncating, IsCompressing, MemVT, MMO);
5727   createOperands(N, Ops);
5728 
5729   CSEMap.InsertNode(N, IP);
5730   InsertNode(N);
5731   return SDValue(N, 0);
5732 }
5733 
5734 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
5735                                       ArrayRef<SDValue> Ops,
5736                                       MachineMemOperand *MMO) {
5737   assert(Ops.size() == 5 && "Incompatible number of operands");
5738 
5739   FoldingSetNodeID ID;
5740   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
5741   ID.AddInteger(VT.getRawBits());
5742   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
5743       dl.getIROrder(), VTs, VT, MMO));
5744   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5745   void *IP = nullptr;
5746   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5747     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
5748     return SDValue(E, 0);
5749   }
5750 
5751   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5752                                           VTs, VT, MMO);
5753   createOperands(N, Ops);
5754 
5755   assert(N->getValue().getValueType() == N->getValueType(0) &&
5756          "Incompatible type of the PassThru value in MaskedGatherSDNode");
5757   assert(N->getMask().getValueType().getVectorNumElements() ==
5758              N->getValueType(0).getVectorNumElements() &&
5759          "Vector width mismatch between mask and data");
5760   assert(N->getIndex().getValueType().getVectorNumElements() ==
5761              N->getValueType(0).getVectorNumElements() &&
5762          "Vector width mismatch between index and data");
5763 
5764   CSEMap.InsertNode(N, IP);
5765   InsertNode(N);
5766   return SDValue(N, 0);
5767 }
5768 
5769 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
5770                                        ArrayRef<SDValue> Ops,
5771                                        MachineMemOperand *MMO) {
5772   assert(Ops.size() == 5 && "Incompatible number of operands");
5773 
5774   FoldingSetNodeID ID;
5775   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
5776   ID.AddInteger(VT.getRawBits());
5777   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
5778       dl.getIROrder(), VTs, VT, MMO));
5779   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5780   void *IP = nullptr;
5781   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5782     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
5783     return SDValue(E, 0);
5784   }
5785   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5786                                            VTs, VT, MMO);
5787   createOperands(N, Ops);
5788 
5789   assert(N->getMask().getValueType().getVectorNumElements() ==
5790              N->getValue().getValueType().getVectorNumElements() &&
5791          "Vector width mismatch between mask and data");
5792   assert(N->getIndex().getValueType().getVectorNumElements() ==
5793              N->getValue().getValueType().getVectorNumElements() &&
5794          "Vector width mismatch between index and data");
5795 
5796   CSEMap.InsertNode(N, IP);
5797   InsertNode(N);
5798   return SDValue(N, 0);
5799 }
5800 
5801 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
5802                                SDValue Ptr, SDValue SV, unsigned Align) {
5803   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
5804   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
5805 }
5806 
5807 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5808                               ArrayRef<SDUse> Ops) {
5809   switch (Ops.size()) {
5810   case 0: return getNode(Opcode, DL, VT);
5811   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
5812   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
5813   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5814   default: break;
5815   }
5816 
5817   // Copy from an SDUse array into an SDValue array for use with
5818   // the regular getNode logic.
5819   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
5820   return getNode(Opcode, DL, VT, NewOps);
5821 }
5822 
5823 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5824                               ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) {
5825   unsigned NumOps = Ops.size();
5826   switch (NumOps) {
5827   case 0: return getNode(Opcode, DL, VT);
5828   case 1: return getNode(Opcode, DL, VT, Ops[0]);
5829   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
5830   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5831   default: break;
5832   }
5833 
5834   switch (Opcode) {
5835   default: break;
5836   case ISD::CONCAT_VECTORS: {
5837     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5838     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5839       return V;
5840     break;
5841   }
5842   case ISD::SELECT_CC: {
5843     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
5844     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
5845            "LHS and RHS of condition must have same type!");
5846     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5847            "True and False arms of SelectCC must have same type!");
5848     assert(Ops[2].getValueType() == VT &&
5849            "select_cc node must be of same type as true and false value!");
5850     break;
5851   }
5852   case ISD::BR_CC: {
5853     assert(NumOps == 5 && "BR_CC takes 5 operands!");
5854     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5855            "LHS/RHS of comparison should match types!");
5856     break;
5857   }
5858   }
5859 
5860   // Memoize nodes.
5861   SDNode *N;
5862   SDVTList VTs = getVTList(VT);
5863 
5864   if (VT != MVT::Glue) {
5865     FoldingSetNodeID ID;
5866     AddNodeIDNode(ID, Opcode, VTs, Ops);
5867     void *IP = nullptr;
5868 
5869     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5870       return SDValue(E, 0);
5871 
5872     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5873     createOperands(N, Ops);
5874 
5875     CSEMap.InsertNode(N, IP);
5876   } else {
5877     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5878     createOperands(N, Ops);
5879   }
5880 
5881   InsertNode(N);
5882   return SDValue(N, 0);
5883 }
5884 
5885 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5886                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
5887   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
5888 }
5889 
5890 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5891                               ArrayRef<SDValue> Ops) {
5892   if (VTList.NumVTs == 1)
5893     return getNode(Opcode, DL, VTList.VTs[0], Ops);
5894 
5895 #if 0
5896   switch (Opcode) {
5897   // FIXME: figure out how to safely handle things like
5898   // int foo(int x) { return 1 << (x & 255); }
5899   // int bar() { return foo(256); }
5900   case ISD::SRA_PARTS:
5901   case ISD::SRL_PARTS:
5902   case ISD::SHL_PARTS:
5903     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5904         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
5905       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5906     else if (N3.getOpcode() == ISD::AND)
5907       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
5908         // If the and is only masking out bits that cannot effect the shift,
5909         // eliminate the and.
5910         unsigned NumBits = VT.getScalarSizeInBits()*2;
5911         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
5912           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5913       }
5914     break;
5915   }
5916 #endif
5917 
5918   // Memoize the node unless it returns a flag.
5919   SDNode *N;
5920   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5921     FoldingSetNodeID ID;
5922     AddNodeIDNode(ID, Opcode, VTList, Ops);
5923     void *IP = nullptr;
5924     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5925       return SDValue(E, 0);
5926 
5927     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5928     createOperands(N, Ops);
5929     CSEMap.InsertNode(N, IP);
5930   } else {
5931     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5932     createOperands(N, Ops);
5933   }
5934   InsertNode(N);
5935   return SDValue(N, 0);
5936 }
5937 
5938 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5939                               SDVTList VTList) {
5940   return getNode(Opcode, DL, VTList, None);
5941 }
5942 
5943 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5944                               SDValue N1) {
5945   SDValue Ops[] = { N1 };
5946   return getNode(Opcode, DL, VTList, Ops);
5947 }
5948 
5949 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5950                               SDValue N1, SDValue N2) {
5951   SDValue Ops[] = { N1, N2 };
5952   return getNode(Opcode, DL, VTList, Ops);
5953 }
5954 
5955 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5956                               SDValue N1, SDValue N2, SDValue N3) {
5957   SDValue Ops[] = { N1, N2, N3 };
5958   return getNode(Opcode, DL, VTList, Ops);
5959 }
5960 
5961 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5962                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5963   SDValue Ops[] = { N1, N2, N3, N4 };
5964   return getNode(Opcode, DL, VTList, Ops);
5965 }
5966 
5967 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5968                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5969                               SDValue N5) {
5970   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5971   return getNode(Opcode, DL, VTList, Ops);
5972 }
5973 
5974 SDVTList SelectionDAG::getVTList(EVT VT) {
5975   return makeVTList(SDNode::getValueTypeList(VT), 1);
5976 }
5977 
5978 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
5979   FoldingSetNodeID ID;
5980   ID.AddInteger(2U);
5981   ID.AddInteger(VT1.getRawBits());
5982   ID.AddInteger(VT2.getRawBits());
5983 
5984   void *IP = nullptr;
5985   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5986   if (!Result) {
5987     EVT *Array = Allocator.Allocate<EVT>(2);
5988     Array[0] = VT1;
5989     Array[1] = VT2;
5990     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
5991     VTListMap.InsertNode(Result, IP);
5992   }
5993   return Result->getSDVTList();
5994 }
5995 
5996 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
5997   FoldingSetNodeID ID;
5998   ID.AddInteger(3U);
5999   ID.AddInteger(VT1.getRawBits());
6000   ID.AddInteger(VT2.getRawBits());
6001   ID.AddInteger(VT3.getRawBits());
6002 
6003   void *IP = nullptr;
6004   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6005   if (!Result) {
6006     EVT *Array = Allocator.Allocate<EVT>(3);
6007     Array[0] = VT1;
6008     Array[1] = VT2;
6009     Array[2] = VT3;
6010     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
6011     VTListMap.InsertNode(Result, IP);
6012   }
6013   return Result->getSDVTList();
6014 }
6015 
6016 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
6017   FoldingSetNodeID ID;
6018   ID.AddInteger(4U);
6019   ID.AddInteger(VT1.getRawBits());
6020   ID.AddInteger(VT2.getRawBits());
6021   ID.AddInteger(VT3.getRawBits());
6022   ID.AddInteger(VT4.getRawBits());
6023 
6024   void *IP = nullptr;
6025   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6026   if (!Result) {
6027     EVT *Array = Allocator.Allocate<EVT>(4);
6028     Array[0] = VT1;
6029     Array[1] = VT2;
6030     Array[2] = VT3;
6031     Array[3] = VT4;
6032     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
6033     VTListMap.InsertNode(Result, IP);
6034   }
6035   return Result->getSDVTList();
6036 }
6037 
6038 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
6039   unsigned NumVTs = VTs.size();
6040   FoldingSetNodeID ID;
6041   ID.AddInteger(NumVTs);
6042   for (unsigned index = 0; index < NumVTs; index++) {
6043     ID.AddInteger(VTs[index].getRawBits());
6044   }
6045 
6046   void *IP = nullptr;
6047   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
6048   if (!Result) {
6049     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
6050     std::copy(VTs.begin(), VTs.end(), Array);
6051     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
6052     VTListMap.InsertNode(Result, IP);
6053   }
6054   return Result->getSDVTList();
6055 }
6056 
6057 
6058 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
6059 /// specified operands.  If the resultant node already exists in the DAG,
6060 /// this does not modify the specified node, instead it returns the node that
6061 /// already exists.  If the resultant node does not exist in the DAG, the
6062 /// input node is returned.  As a degenerate case, if you specify the same
6063 /// input operands as the node already has, the input node is returned.
6064 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
6065   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
6066 
6067   // Check to see if there is no change.
6068   if (Op == N->getOperand(0)) return N;
6069 
6070   // See if the modified node already exists.
6071   void *InsertPos = nullptr;
6072   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
6073     return Existing;
6074 
6075   // Nope it doesn't.  Remove the node from its current place in the maps.
6076   if (InsertPos)
6077     if (!RemoveNodeFromCSEMaps(N))
6078       InsertPos = nullptr;
6079 
6080   // Now we update the operands.
6081   N->OperandList[0].set(Op);
6082 
6083   // If this gets put into a CSE map, add it.
6084   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6085   return N;
6086 }
6087 
6088 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
6089   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
6090 
6091   // Check to see if there is no change.
6092   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
6093     return N;   // No operands changed, just return the input node.
6094 
6095   // See if the modified node already exists.
6096   void *InsertPos = nullptr;
6097   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
6098     return Existing;
6099 
6100   // Nope it doesn't.  Remove the node from its current place in the maps.
6101   if (InsertPos)
6102     if (!RemoveNodeFromCSEMaps(N))
6103       InsertPos = nullptr;
6104 
6105   // Now we update the operands.
6106   if (N->OperandList[0] != Op1)
6107     N->OperandList[0].set(Op1);
6108   if (N->OperandList[1] != Op2)
6109     N->OperandList[1].set(Op2);
6110 
6111   // If this gets put into a CSE map, add it.
6112   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6113   return N;
6114 }
6115 
6116 SDNode *SelectionDAG::
6117 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
6118   SDValue Ops[] = { Op1, Op2, Op3 };
6119   return UpdateNodeOperands(N, Ops);
6120 }
6121 
6122 SDNode *SelectionDAG::
6123 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6124                    SDValue Op3, SDValue Op4) {
6125   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
6126   return UpdateNodeOperands(N, Ops);
6127 }
6128 
6129 SDNode *SelectionDAG::
6130 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
6131                    SDValue Op3, SDValue Op4, SDValue Op5) {
6132   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
6133   return UpdateNodeOperands(N, Ops);
6134 }
6135 
6136 SDNode *SelectionDAG::
6137 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
6138   unsigned NumOps = Ops.size();
6139   assert(N->getNumOperands() == NumOps &&
6140          "Update with wrong number of operands");
6141 
6142   // If no operands changed just return the input node.
6143   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
6144     return N;
6145 
6146   // See if the modified node already exists.
6147   void *InsertPos = nullptr;
6148   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
6149     return Existing;
6150 
6151   // Nope it doesn't.  Remove the node from its current place in the maps.
6152   if (InsertPos)
6153     if (!RemoveNodeFromCSEMaps(N))
6154       InsertPos = nullptr;
6155 
6156   // Now we update the operands.
6157   for (unsigned i = 0; i != NumOps; ++i)
6158     if (N->OperandList[i] != Ops[i])
6159       N->OperandList[i].set(Ops[i]);
6160 
6161   // If this gets put into a CSE map, add it.
6162   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
6163   return N;
6164 }
6165 
6166 /// DropOperands - Release the operands and set this node to have
6167 /// zero operands.
6168 void SDNode::DropOperands() {
6169   // Unlike the code in MorphNodeTo that does this, we don't need to
6170   // watch for dead nodes here.
6171   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
6172     SDUse &Use = *I++;
6173     Use.set(SDValue());
6174   }
6175 }
6176 
6177 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
6178 /// machine opcode.
6179 ///
6180 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6181                                    EVT VT) {
6182   SDVTList VTs = getVTList(VT);
6183   return SelectNodeTo(N, MachineOpc, VTs, None);
6184 }
6185 
6186 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6187                                    EVT VT, SDValue Op1) {
6188   SDVTList VTs = getVTList(VT);
6189   SDValue Ops[] = { Op1 };
6190   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6191 }
6192 
6193 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6194                                    EVT VT, SDValue Op1,
6195                                    SDValue Op2) {
6196   SDVTList VTs = getVTList(VT);
6197   SDValue Ops[] = { Op1, Op2 };
6198   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6199 }
6200 
6201 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6202                                    EVT VT, SDValue Op1,
6203                                    SDValue Op2, SDValue Op3) {
6204   SDVTList VTs = getVTList(VT);
6205   SDValue Ops[] = { Op1, Op2, Op3 };
6206   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6207 }
6208 
6209 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6210                                    EVT VT, ArrayRef<SDValue> Ops) {
6211   SDVTList VTs = getVTList(VT);
6212   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6213 }
6214 
6215 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6216                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
6217   SDVTList VTs = getVTList(VT1, VT2);
6218   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6219 }
6220 
6221 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6222                                    EVT VT1, EVT VT2) {
6223   SDVTList VTs = getVTList(VT1, VT2);
6224   return SelectNodeTo(N, MachineOpc, VTs, None);
6225 }
6226 
6227 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6228                                    EVT VT1, EVT VT2, EVT VT3,
6229                                    ArrayRef<SDValue> Ops) {
6230   SDVTList VTs = getVTList(VT1, VT2, VT3);
6231   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6232 }
6233 
6234 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6235                                    EVT VT1, EVT VT2,
6236                                    SDValue Op1, SDValue Op2) {
6237   SDVTList VTs = getVTList(VT1, VT2);
6238   SDValue Ops[] = { Op1, Op2 };
6239   return SelectNodeTo(N, MachineOpc, VTs, Ops);
6240 }
6241 
6242 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
6243                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
6244   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
6245   // Reset the NodeID to -1.
6246   New->setNodeId(-1);
6247   if (New != N) {
6248     ReplaceAllUsesWith(N, New);
6249     RemoveDeadNode(N);
6250   }
6251   return New;
6252 }
6253 
6254 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
6255 /// the line number information on the merged node since it is not possible to
6256 /// preserve the information that operation is associated with multiple lines.
6257 /// This will make the debugger working better at -O0, were there is a higher
6258 /// probability having other instructions associated with that line.
6259 ///
6260 /// For IROrder, we keep the smaller of the two
6261 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
6262   DebugLoc NLoc = N->getDebugLoc();
6263   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
6264     N->setDebugLoc(DebugLoc());
6265   }
6266   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
6267   N->setIROrder(Order);
6268   return N;
6269 }
6270 
6271 /// MorphNodeTo - This *mutates* the specified node to have the specified
6272 /// return type, opcode, and operands.
6273 ///
6274 /// Note that MorphNodeTo returns the resultant node.  If there is already a
6275 /// node of the specified opcode and operands, it returns that node instead of
6276 /// the current one.  Note that the SDLoc need not be the same.
6277 ///
6278 /// Using MorphNodeTo is faster than creating a new node and swapping it in
6279 /// with ReplaceAllUsesWith both because it often avoids allocating a new
6280 /// node, and because it doesn't require CSE recalculation for any of
6281 /// the node's users.
6282 ///
6283 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
6284 /// As a consequence it isn't appropriate to use from within the DAG combiner or
6285 /// the legalizer which maintain worklists that would need to be updated when
6286 /// deleting things.
6287 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
6288                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
6289   // If an identical node already exists, use it.
6290   void *IP = nullptr;
6291   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
6292     FoldingSetNodeID ID;
6293     AddNodeIDNode(ID, Opc, VTs, Ops);
6294     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
6295       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
6296   }
6297 
6298   if (!RemoveNodeFromCSEMaps(N))
6299     IP = nullptr;
6300 
6301   // Start the morphing.
6302   N->NodeType = Opc;
6303   N->ValueList = VTs.VTs;
6304   N->NumValues = VTs.NumVTs;
6305 
6306   // Clear the operands list, updating used nodes to remove this from their
6307   // use list.  Keep track of any operands that become dead as a result.
6308   SmallPtrSet<SDNode*, 16> DeadNodeSet;
6309   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
6310     SDUse &Use = *I++;
6311     SDNode *Used = Use.getNode();
6312     Use.set(SDValue());
6313     if (Used->use_empty())
6314       DeadNodeSet.insert(Used);
6315   }
6316 
6317   // For MachineNode, initialize the memory references information.
6318   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
6319     MN->setMemRefs(nullptr, nullptr);
6320 
6321   // Swap for an appropriately sized array from the recycler.
6322   removeOperands(N);
6323   createOperands(N, Ops);
6324 
6325   // Delete any nodes that are still dead after adding the uses for the
6326   // new operands.
6327   if (!DeadNodeSet.empty()) {
6328     SmallVector<SDNode *, 16> DeadNodes;
6329     for (SDNode *N : DeadNodeSet)
6330       if (N->use_empty())
6331         DeadNodes.push_back(N);
6332     RemoveDeadNodes(DeadNodes);
6333   }
6334 
6335   if (IP)
6336     CSEMap.InsertNode(N, IP);   // Memoize the new node.
6337   return N;
6338 }
6339 
6340 
6341 /// getMachineNode - These are used for target selectors to create a new node
6342 /// with specified return type(s), MachineInstr opcode, and operands.
6343 ///
6344 /// Note that getMachineNode returns the resultant node.  If there is already a
6345 /// node of the specified opcode and operands, it returns that node instead of
6346 /// the current one.
6347 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6348                                             EVT VT) {
6349   SDVTList VTs = getVTList(VT);
6350   return getMachineNode(Opcode, dl, VTs, None);
6351 }
6352 
6353 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6354                                             EVT VT, SDValue Op1) {
6355   SDVTList VTs = getVTList(VT);
6356   SDValue Ops[] = { Op1 };
6357   return getMachineNode(Opcode, dl, VTs, Ops);
6358 }
6359 
6360 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6361                                             EVT VT, SDValue Op1, SDValue Op2) {
6362   SDVTList VTs = getVTList(VT);
6363   SDValue Ops[] = { Op1, Op2 };
6364   return getMachineNode(Opcode, dl, VTs, Ops);
6365 }
6366 
6367 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6368                                             EVT VT, SDValue Op1, SDValue Op2,
6369                                             SDValue Op3) {
6370   SDVTList VTs = getVTList(VT);
6371   SDValue Ops[] = { Op1, Op2, Op3 };
6372   return getMachineNode(Opcode, dl, VTs, Ops);
6373 }
6374 
6375 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6376                                             EVT VT, ArrayRef<SDValue> Ops) {
6377   SDVTList VTs = getVTList(VT);
6378   return getMachineNode(Opcode, dl, VTs, Ops);
6379 }
6380 
6381 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6382                                             EVT VT1, EVT VT2, SDValue Op1,
6383                                             SDValue Op2) {
6384   SDVTList VTs = getVTList(VT1, VT2);
6385   SDValue Ops[] = { Op1, Op2 };
6386   return getMachineNode(Opcode, dl, VTs, Ops);
6387 }
6388 
6389 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6390                                             EVT VT1, EVT VT2, SDValue Op1,
6391                                             SDValue Op2, SDValue Op3) {
6392   SDVTList VTs = getVTList(VT1, VT2);
6393   SDValue Ops[] = { Op1, Op2, Op3 };
6394   return getMachineNode(Opcode, dl, VTs, Ops);
6395 }
6396 
6397 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6398                                             EVT VT1, EVT VT2,
6399                                             ArrayRef<SDValue> Ops) {
6400   SDVTList VTs = getVTList(VT1, VT2);
6401   return getMachineNode(Opcode, dl, VTs, Ops);
6402 }
6403 
6404 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6405                                             EVT VT1, EVT VT2, EVT VT3,
6406                                             SDValue Op1, SDValue Op2) {
6407   SDVTList VTs = getVTList(VT1, VT2, VT3);
6408   SDValue Ops[] = { Op1, Op2 };
6409   return getMachineNode(Opcode, dl, VTs, Ops);
6410 }
6411 
6412 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6413                                             EVT VT1, EVT VT2, EVT VT3,
6414                                             SDValue Op1, SDValue Op2,
6415                                             SDValue Op3) {
6416   SDVTList VTs = getVTList(VT1, VT2, VT3);
6417   SDValue Ops[] = { Op1, Op2, Op3 };
6418   return getMachineNode(Opcode, dl, VTs, Ops);
6419 }
6420 
6421 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6422                                             EVT VT1, EVT VT2, EVT VT3,
6423                                             ArrayRef<SDValue> Ops) {
6424   SDVTList VTs = getVTList(VT1, VT2, VT3);
6425   return getMachineNode(Opcode, dl, VTs, Ops);
6426 }
6427 
6428 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6429                                             ArrayRef<EVT> ResultTys,
6430                                             ArrayRef<SDValue> Ops) {
6431   SDVTList VTs = getVTList(ResultTys);
6432   return getMachineNode(Opcode, dl, VTs, Ops);
6433 }
6434 
6435 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
6436                                             SDVTList VTs,
6437                                             ArrayRef<SDValue> Ops) {
6438   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
6439   MachineSDNode *N;
6440   void *IP = nullptr;
6441 
6442   if (DoCSE) {
6443     FoldingSetNodeID ID;
6444     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
6445     IP = nullptr;
6446     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6447       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
6448     }
6449   }
6450 
6451   // Allocate a new MachineSDNode.
6452   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6453   createOperands(N, Ops);
6454 
6455   if (DoCSE)
6456     CSEMap.InsertNode(N, IP);
6457 
6458   InsertNode(N);
6459   return N;
6460 }
6461 
6462 /// getTargetExtractSubreg - A convenience function for creating
6463 /// TargetOpcode::EXTRACT_SUBREG nodes.
6464 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6465                                              SDValue Operand) {
6466   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6467   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
6468                                   VT, Operand, SRIdxVal);
6469   return SDValue(Subreg, 0);
6470 }
6471 
6472 /// getTargetInsertSubreg - A convenience function for creating
6473 /// TargetOpcode::INSERT_SUBREG nodes.
6474 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6475                                             SDValue Operand, SDValue Subreg) {
6476   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6477   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
6478                                   VT, Operand, Subreg, SRIdxVal);
6479   return SDValue(Result, 0);
6480 }
6481 
6482 /// getNodeIfExists - Get the specified node if it's already available, or
6483 /// else return NULL.
6484 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
6485                                       ArrayRef<SDValue> Ops,
6486                                       const SDNodeFlags *Flags) {
6487   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
6488     FoldingSetNodeID ID;
6489     AddNodeIDNode(ID, Opcode, VTList, Ops);
6490     void *IP = nullptr;
6491     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
6492       if (Flags)
6493         E->intersectFlagsWith(Flags);
6494       return E;
6495     }
6496   }
6497   return nullptr;
6498 }
6499 
6500 /// getDbgValue - Creates a SDDbgValue node.
6501 ///
6502 /// SDNode
6503 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
6504                                       unsigned R, bool IsIndirect, uint64_t Off,
6505                                       const DebugLoc &DL, unsigned O) {
6506   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6507          "Expected inlined-at fields to agree");
6508   return new (DbgInfo->getAlloc())
6509       SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
6510 }
6511 
6512 /// Constant
6513 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
6514                                               const Value *C, uint64_t Off,
6515                                               const DebugLoc &DL, unsigned O) {
6516   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6517          "Expected inlined-at fields to agree");
6518   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O);
6519 }
6520 
6521 /// FrameIndex
6522 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
6523                                                 unsigned FI, uint64_t Off,
6524                                                 const DebugLoc &DL,
6525                                                 unsigned O) {
6526   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6527          "Expected inlined-at fields to agree");
6528   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O);
6529 }
6530 
6531 namespace {
6532 
6533 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
6534 /// pointed to by a use iterator is deleted, increment the use iterator
6535 /// so that it doesn't dangle.
6536 ///
6537 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
6538   SDNode::use_iterator &UI;
6539   SDNode::use_iterator &UE;
6540 
6541   void NodeDeleted(SDNode *N, SDNode *E) override {
6542     // Increment the iterator as needed.
6543     while (UI != UE && N == *UI)
6544       ++UI;
6545   }
6546 
6547 public:
6548   RAUWUpdateListener(SelectionDAG &d,
6549                      SDNode::use_iterator &ui,
6550                      SDNode::use_iterator &ue)
6551     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
6552 };
6553 
6554 }
6555 
6556 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6557 /// This can cause recursive merging of nodes in the DAG.
6558 ///
6559 /// This version assumes From has a single result value.
6560 ///
6561 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
6562   SDNode *From = FromN.getNode();
6563   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
6564          "Cannot replace with this method!");
6565   assert(From != To.getNode() && "Cannot replace uses of with self");
6566 
6567   // Preserve Debug Values
6568   TransferDbgValues(FromN, To);
6569 
6570   // Iterate over all the existing uses of From. New uses will be added
6571   // to the beginning of the use list, which we avoid visiting.
6572   // This specifically avoids visiting uses of From that arise while the
6573   // replacement is happening, because any such uses would be the result
6574   // of CSE: If an existing node looks like From after one of its operands
6575   // is replaced by To, we don't want to replace of all its users with To
6576   // too. See PR3018 for more info.
6577   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6578   RAUWUpdateListener Listener(*this, UI, UE);
6579   while (UI != UE) {
6580     SDNode *User = *UI;
6581 
6582     // This node is about to morph, remove its old self from the CSE maps.
6583     RemoveNodeFromCSEMaps(User);
6584 
6585     // A user can appear in a use list multiple times, and when this
6586     // happens the uses are usually next to each other in the list.
6587     // To help reduce the number of CSE recomputations, process all
6588     // the uses of this user that we can find this way.
6589     do {
6590       SDUse &Use = UI.getUse();
6591       ++UI;
6592       Use.set(To);
6593     } while (UI != UE && *UI == User);
6594 
6595     // Now that we have modified User, add it back to the CSE maps.  If it
6596     // already exists there, recursively merge the results together.
6597     AddModifiedNodeToCSEMaps(User);
6598   }
6599 
6600 
6601   // If we just RAUW'd the root, take note.
6602   if (FromN == getRoot())
6603     setRoot(To);
6604 }
6605 
6606 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6607 /// This can cause recursive merging of nodes in the DAG.
6608 ///
6609 /// This version assumes that for each value of From, there is a
6610 /// corresponding value in To in the same position with the same type.
6611 ///
6612 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
6613 #ifndef NDEBUG
6614   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6615     assert((!From->hasAnyUseOfValue(i) ||
6616             From->getValueType(i) == To->getValueType(i)) &&
6617            "Cannot use this version of ReplaceAllUsesWith!");
6618 #endif
6619 
6620   // Handle the trivial case.
6621   if (From == To)
6622     return;
6623 
6624   // Preserve Debug Info. Only do this if there's a use.
6625   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6626     if (From->hasAnyUseOfValue(i)) {
6627       assert((i < To->getNumValues()) && "Invalid To location");
6628       TransferDbgValues(SDValue(From, i), SDValue(To, i));
6629     }
6630 
6631   // Iterate over just the existing users of From. See the comments in
6632   // the ReplaceAllUsesWith above.
6633   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6634   RAUWUpdateListener Listener(*this, UI, UE);
6635   while (UI != UE) {
6636     SDNode *User = *UI;
6637 
6638     // This node is about to morph, remove its old self from the CSE maps.
6639     RemoveNodeFromCSEMaps(User);
6640 
6641     // A user can appear in a use list multiple times, and when this
6642     // happens the uses are usually next to each other in the list.
6643     // To help reduce the number of CSE recomputations, process all
6644     // the uses of this user that we can find this way.
6645     do {
6646       SDUse &Use = UI.getUse();
6647       ++UI;
6648       Use.setNode(To);
6649     } while (UI != UE && *UI == User);
6650 
6651     // Now that we have modified User, add it back to the CSE maps.  If it
6652     // already exists there, recursively merge the results together.
6653     AddModifiedNodeToCSEMaps(User);
6654   }
6655 
6656   // If we just RAUW'd the root, take note.
6657   if (From == getRoot().getNode())
6658     setRoot(SDValue(To, getRoot().getResNo()));
6659 }
6660 
6661 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6662 /// This can cause recursive merging of nodes in the DAG.
6663 ///
6664 /// This version can replace From with any result values.  To must match the
6665 /// number and types of values returned by From.
6666 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
6667   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
6668     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
6669 
6670   // Preserve Debug Info.
6671   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6672     TransferDbgValues(SDValue(From, i), *To);
6673 
6674   // Iterate over just the existing users of From. See the comments in
6675   // the ReplaceAllUsesWith above.
6676   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6677   RAUWUpdateListener Listener(*this, UI, UE);
6678   while (UI != UE) {
6679     SDNode *User = *UI;
6680 
6681     // This node is about to morph, remove its old self from the CSE maps.
6682     RemoveNodeFromCSEMaps(User);
6683 
6684     // A user can appear in a use list multiple times, and when this
6685     // happens the uses are usually next to each other in the list.
6686     // To help reduce the number of CSE recomputations, process all
6687     // the uses of this user that we can find this way.
6688     do {
6689       SDUse &Use = UI.getUse();
6690       const SDValue &ToOp = To[Use.getResNo()];
6691       ++UI;
6692       Use.set(ToOp);
6693     } while (UI != UE && *UI == User);
6694 
6695     // Now that we have modified User, add it back to the CSE maps.  If it
6696     // already exists there, recursively merge the results together.
6697     AddModifiedNodeToCSEMaps(User);
6698   }
6699 
6700   // If we just RAUW'd the root, take note.
6701   if (From == getRoot().getNode())
6702     setRoot(SDValue(To[getRoot().getResNo()]));
6703 }
6704 
6705 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
6706 /// uses of other values produced by From.getNode() alone.  The Deleted
6707 /// vector is handled the same way as for ReplaceAllUsesWith.
6708 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
6709   // Handle the really simple, really trivial case efficiently.
6710   if (From == To) return;
6711 
6712   // Handle the simple, trivial, case efficiently.
6713   if (From.getNode()->getNumValues() == 1) {
6714     ReplaceAllUsesWith(From, To);
6715     return;
6716   }
6717 
6718   // Preserve Debug Info.
6719   TransferDbgValues(From, To);
6720 
6721   // Iterate over just the existing users of From. See the comments in
6722   // the ReplaceAllUsesWith above.
6723   SDNode::use_iterator UI = From.getNode()->use_begin(),
6724                        UE = From.getNode()->use_end();
6725   RAUWUpdateListener Listener(*this, UI, UE);
6726   while (UI != UE) {
6727     SDNode *User = *UI;
6728     bool UserRemovedFromCSEMaps = false;
6729 
6730     // A user can appear in a use list multiple times, and when this
6731     // happens the uses are usually next to each other in the list.
6732     // To help reduce the number of CSE recomputations, process all
6733     // the uses of this user that we can find this way.
6734     do {
6735       SDUse &Use = UI.getUse();
6736 
6737       // Skip uses of different values from the same node.
6738       if (Use.getResNo() != From.getResNo()) {
6739         ++UI;
6740         continue;
6741       }
6742 
6743       // If this node hasn't been modified yet, it's still in the CSE maps,
6744       // so remove its old self from the CSE maps.
6745       if (!UserRemovedFromCSEMaps) {
6746         RemoveNodeFromCSEMaps(User);
6747         UserRemovedFromCSEMaps = true;
6748       }
6749 
6750       ++UI;
6751       Use.set(To);
6752     } while (UI != UE && *UI == User);
6753 
6754     // We are iterating over all uses of the From node, so if a use
6755     // doesn't use the specific value, no changes are made.
6756     if (!UserRemovedFromCSEMaps)
6757       continue;
6758 
6759     // Now that we have modified User, add it back to the CSE maps.  If it
6760     // already exists there, recursively merge the results together.
6761     AddModifiedNodeToCSEMaps(User);
6762   }
6763 
6764   // If we just RAUW'd the root, take note.
6765   if (From == getRoot())
6766     setRoot(To);
6767 }
6768 
6769 namespace {
6770   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
6771   /// to record information about a use.
6772   struct UseMemo {
6773     SDNode *User;
6774     unsigned Index;
6775     SDUse *Use;
6776   };
6777 
6778   /// operator< - Sort Memos by User.
6779   bool operator<(const UseMemo &L, const UseMemo &R) {
6780     return (intptr_t)L.User < (intptr_t)R.User;
6781   }
6782 }
6783 
6784 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
6785 /// uses of other values produced by From.getNode() alone.  The same value
6786 /// may appear in both the From and To list.  The Deleted vector is
6787 /// handled the same way as for ReplaceAllUsesWith.
6788 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
6789                                               const SDValue *To,
6790                                               unsigned Num){
6791   // Handle the simple, trivial case efficiently.
6792   if (Num == 1)
6793     return ReplaceAllUsesOfValueWith(*From, *To);
6794 
6795   TransferDbgValues(*From, *To);
6796 
6797   // Read up all the uses and make records of them. This helps
6798   // processing new uses that are introduced during the
6799   // replacement process.
6800   SmallVector<UseMemo, 4> Uses;
6801   for (unsigned i = 0; i != Num; ++i) {
6802     unsigned FromResNo = From[i].getResNo();
6803     SDNode *FromNode = From[i].getNode();
6804     for (SDNode::use_iterator UI = FromNode->use_begin(),
6805          E = FromNode->use_end(); UI != E; ++UI) {
6806       SDUse &Use = UI.getUse();
6807       if (Use.getResNo() == FromResNo) {
6808         UseMemo Memo = { *UI, i, &Use };
6809         Uses.push_back(Memo);
6810       }
6811     }
6812   }
6813 
6814   // Sort the uses, so that all the uses from a given User are together.
6815   std::sort(Uses.begin(), Uses.end());
6816 
6817   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
6818        UseIndex != UseIndexEnd; ) {
6819     // We know that this user uses some value of From.  If it is the right
6820     // value, update it.
6821     SDNode *User = Uses[UseIndex].User;
6822 
6823     // This node is about to morph, remove its old self from the CSE maps.
6824     RemoveNodeFromCSEMaps(User);
6825 
6826     // The Uses array is sorted, so all the uses for a given User
6827     // are next to each other in the list.
6828     // To help reduce the number of CSE recomputations, process all
6829     // the uses of this user that we can find this way.
6830     do {
6831       unsigned i = Uses[UseIndex].Index;
6832       SDUse &Use = *Uses[UseIndex].Use;
6833       ++UseIndex;
6834 
6835       Use.set(To[i]);
6836     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
6837 
6838     // Now that we have modified User, add it back to the CSE maps.  If it
6839     // already exists there, recursively merge the results together.
6840     AddModifiedNodeToCSEMaps(User);
6841   }
6842 }
6843 
6844 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
6845 /// based on their topological order. It returns the maximum id and a vector
6846 /// of the SDNodes* in assigned order by reference.
6847 unsigned SelectionDAG::AssignTopologicalOrder() {
6848 
6849   unsigned DAGSize = 0;
6850 
6851   // SortedPos tracks the progress of the algorithm. Nodes before it are
6852   // sorted, nodes after it are unsorted. When the algorithm completes
6853   // it is at the end of the list.
6854   allnodes_iterator SortedPos = allnodes_begin();
6855 
6856   // Visit all the nodes. Move nodes with no operands to the front of
6857   // the list immediately. Annotate nodes that do have operands with their
6858   // operand count. Before we do this, the Node Id fields of the nodes
6859   // may contain arbitrary values. After, the Node Id fields for nodes
6860   // before SortedPos will contain the topological sort index, and the
6861   // Node Id fields for nodes At SortedPos and after will contain the
6862   // count of outstanding operands.
6863   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
6864     SDNode *N = &*I++;
6865     checkForCycles(N, this);
6866     unsigned Degree = N->getNumOperands();
6867     if (Degree == 0) {
6868       // A node with no uses, add it to the result array immediately.
6869       N->setNodeId(DAGSize++);
6870       allnodes_iterator Q(N);
6871       if (Q != SortedPos)
6872         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
6873       assert(SortedPos != AllNodes.end() && "Overran node list");
6874       ++SortedPos;
6875     } else {
6876       // Temporarily use the Node Id as scratch space for the degree count.
6877       N->setNodeId(Degree);
6878     }
6879   }
6880 
6881   // Visit all the nodes. As we iterate, move nodes into sorted order,
6882   // such that by the time the end is reached all nodes will be sorted.
6883   for (SDNode &Node : allnodes()) {
6884     SDNode *N = &Node;
6885     checkForCycles(N, this);
6886     // N is in sorted position, so all its uses have one less operand
6887     // that needs to be sorted.
6888     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6889          UI != UE; ++UI) {
6890       SDNode *P = *UI;
6891       unsigned Degree = P->getNodeId();
6892       assert(Degree != 0 && "Invalid node degree");
6893       --Degree;
6894       if (Degree == 0) {
6895         // All of P's operands are sorted, so P may sorted now.
6896         P->setNodeId(DAGSize++);
6897         if (P->getIterator() != SortedPos)
6898           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
6899         assert(SortedPos != AllNodes.end() && "Overran node list");
6900         ++SortedPos;
6901       } else {
6902         // Update P's outstanding operand count.
6903         P->setNodeId(Degree);
6904       }
6905     }
6906     if (Node.getIterator() == SortedPos) {
6907 #ifndef NDEBUG
6908       allnodes_iterator I(N);
6909       SDNode *S = &*++I;
6910       dbgs() << "Overran sorted position:\n";
6911       S->dumprFull(this); dbgs() << "\n";
6912       dbgs() << "Checking if this is due to cycles\n";
6913       checkForCycles(this, true);
6914 #endif
6915       llvm_unreachable(nullptr);
6916     }
6917   }
6918 
6919   assert(SortedPos == AllNodes.end() &&
6920          "Topological sort incomplete!");
6921   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
6922          "First node in topological sort is not the entry token!");
6923   assert(AllNodes.front().getNodeId() == 0 &&
6924          "First node in topological sort has non-zero id!");
6925   assert(AllNodes.front().getNumOperands() == 0 &&
6926          "First node in topological sort has operands!");
6927   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
6928          "Last node in topologic sort has unexpected id!");
6929   assert(AllNodes.back().use_empty() &&
6930          "Last node in topologic sort has users!");
6931   assert(DAGSize == allnodes_size() && "Node count mismatch!");
6932   return DAGSize;
6933 }
6934 
6935 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
6936 /// value is produced by SD.
6937 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
6938   if (SD) {
6939     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
6940     SD->setHasDebugValue(true);
6941   }
6942   DbgInfo->add(DB, SD, isParameter);
6943 }
6944 
6945 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes.
6946 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
6947   if (From == To || !From.getNode()->getHasDebugValue())
6948     return;
6949   SDNode *FromNode = From.getNode();
6950   SDNode *ToNode = To.getNode();
6951   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
6952   SmallVector<SDDbgValue *, 2> ClonedDVs;
6953   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
6954        I != E; ++I) {
6955     SDDbgValue *Dbg = *I;
6956     // Only add Dbgvalues attached to same ResNo.
6957     if (Dbg->getKind() == SDDbgValue::SDNODE &&
6958         Dbg->getSDNode() == From.getNode() &&
6959         Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) {
6960       assert(FromNode != ToNode &&
6961              "Should not transfer Debug Values intranode");
6962       SDDbgValue *Clone =
6963           getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
6964                       To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
6965                       Dbg->getDebugLoc(), Dbg->getOrder());
6966       ClonedDVs.push_back(Clone);
6967       Dbg->setIsInvalidated();
6968     }
6969   }
6970   for (SDDbgValue *I : ClonedDVs)
6971     AddDbgValue(I, ToNode, false);
6972 }
6973 
6974 //===----------------------------------------------------------------------===//
6975 //                              SDNode Class
6976 //===----------------------------------------------------------------------===//
6977 
6978 bool llvm::isNullConstant(SDValue V) {
6979   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6980   return Const != nullptr && Const->isNullValue();
6981 }
6982 
6983 bool llvm::isNullFPConstant(SDValue V) {
6984   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
6985   return Const != nullptr && Const->isZero() && !Const->isNegative();
6986 }
6987 
6988 bool llvm::isAllOnesConstant(SDValue V) {
6989   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6990   return Const != nullptr && Const->isAllOnesValue();
6991 }
6992 
6993 bool llvm::isOneConstant(SDValue V) {
6994   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6995   return Const != nullptr && Const->isOne();
6996 }
6997 
6998 bool llvm::isBitwiseNot(SDValue V) {
6999   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
7000 }
7001 
7002 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
7003   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
7004     return CN;
7005 
7006   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7007     BitVector UndefElements;
7008     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
7009 
7010     // BuildVectors can truncate their operands. Ignore that case here.
7011     // FIXME: We blindly ignore splats which include undef which is overly
7012     // pessimistic.
7013     if (CN && UndefElements.none() &&
7014         CN->getValueType(0) == N.getValueType().getScalarType())
7015       return CN;
7016   }
7017 
7018   return nullptr;
7019 }
7020 
7021 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
7022   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
7023     return CN;
7024 
7025   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
7026     BitVector UndefElements;
7027     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
7028 
7029     if (CN && UndefElements.none())
7030       return CN;
7031   }
7032 
7033   return nullptr;
7034 }
7035 
7036 HandleSDNode::~HandleSDNode() {
7037   DropOperands();
7038 }
7039 
7040 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
7041                                          const DebugLoc &DL,
7042                                          const GlobalValue *GA, EVT VT,
7043                                          int64_t o, unsigned char TF)
7044     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
7045   TheGlobal = GA;
7046 }
7047 
7048 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
7049                                          EVT VT, unsigned SrcAS,
7050                                          unsigned DestAS)
7051     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
7052       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
7053 
7054 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
7055                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
7056     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
7057   MemSDNodeBits.IsVolatile = MMO->isVolatile();
7058   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
7059   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
7060   MemSDNodeBits.IsInvariant = MMO->isInvariant();
7061 
7062   // We check here that the size of the memory operand fits within the size of
7063   // the MMO. This is because the MMO might indicate only a possible address
7064   // range instead of specifying the affected memory addresses precisely.
7065   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
7066 }
7067 
7068 /// Profile - Gather unique data for the node.
7069 ///
7070 void SDNode::Profile(FoldingSetNodeID &ID) const {
7071   AddNodeIDNode(ID, this);
7072 }
7073 
7074 namespace {
7075   struct EVTArray {
7076     std::vector<EVT> VTs;
7077 
7078     EVTArray() {
7079       VTs.reserve(MVT::LAST_VALUETYPE);
7080       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
7081         VTs.push_back(MVT((MVT::SimpleValueType)i));
7082     }
7083   };
7084 }
7085 
7086 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
7087 static ManagedStatic<EVTArray> SimpleVTArray;
7088 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
7089 
7090 /// getValueTypeList - Return a pointer to the specified value type.
7091 ///
7092 const EVT *SDNode::getValueTypeList(EVT VT) {
7093   if (VT.isExtended()) {
7094     sys::SmartScopedLock<true> Lock(*VTMutex);
7095     return &(*EVTs->insert(VT).first);
7096   } else {
7097     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
7098            "Value type out of range!");
7099     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
7100   }
7101 }
7102 
7103 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
7104 /// indicated value.  This method ignores uses of other values defined by this
7105 /// operation.
7106 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
7107   assert(Value < getNumValues() && "Bad value!");
7108 
7109   // TODO: Only iterate over uses of a given value of the node
7110   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
7111     if (UI.getUse().getResNo() == Value) {
7112       if (NUses == 0)
7113         return false;
7114       --NUses;
7115     }
7116   }
7117 
7118   // Found exactly the right number of uses?
7119   return NUses == 0;
7120 }
7121 
7122 
7123 /// hasAnyUseOfValue - Return true if there are any use of the indicated
7124 /// value. This method ignores uses of other values defined by this operation.
7125 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
7126   assert(Value < getNumValues() && "Bad value!");
7127 
7128   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
7129     if (UI.getUse().getResNo() == Value)
7130       return true;
7131 
7132   return false;
7133 }
7134 
7135 
7136 /// isOnlyUserOf - Return true if this node is the only use of N.
7137 ///
7138 bool SDNode::isOnlyUserOf(const SDNode *N) const {
7139   bool Seen = false;
7140   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7141     SDNode *User = *I;
7142     if (User == this)
7143       Seen = true;
7144     else
7145       return false;
7146   }
7147 
7148   return Seen;
7149 }
7150 
7151 /// Return true if the only users of N are contained in Nodes.
7152 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
7153   bool Seen = false;
7154   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
7155     SDNode *User = *I;
7156     if (llvm::any_of(Nodes,
7157                      [&User](const SDNode *Node) { return User == Node; }))
7158       Seen = true;
7159     else
7160       return false;
7161   }
7162 
7163   return Seen;
7164 }
7165 
7166 /// isOperand - Return true if this node is an operand of N.
7167 ///
7168 bool SDValue::isOperandOf(const SDNode *N) const {
7169   for (const SDValue &Op : N->op_values())
7170     if (*this == Op)
7171       return true;
7172   return false;
7173 }
7174 
7175 bool SDNode::isOperandOf(const SDNode *N) const {
7176   for (const SDValue &Op : N->op_values())
7177     if (this == Op.getNode())
7178       return true;
7179   return false;
7180 }
7181 
7182 /// reachesChainWithoutSideEffects - Return true if this operand (which must
7183 /// be a chain) reaches the specified operand without crossing any
7184 /// side-effecting instructions on any chain path.  In practice, this looks
7185 /// through token factors and non-volatile loads.  In order to remain efficient,
7186 /// this only looks a couple of nodes in, it does not do an exhaustive search.
7187 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
7188                                                unsigned Depth) const {
7189   if (*this == Dest) return true;
7190 
7191   // Don't search too deeply, we just want to be able to see through
7192   // TokenFactor's etc.
7193   if (Depth == 0) return false;
7194 
7195   // If this is a token factor, all inputs to the TF happen in parallel.  If any
7196   // of the operands of the TF does not reach dest, then we cannot do the xform.
7197   if (getOpcode() == ISD::TokenFactor) {
7198     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7199       if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
7200         return false;
7201     return true;
7202   }
7203 
7204   // Loads don't have side effects, look through them.
7205   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
7206     if (!Ld->isVolatile())
7207       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
7208   }
7209   return false;
7210 }
7211 
7212 bool SDNode::hasPredecessor(const SDNode *N) const {
7213   SmallPtrSet<const SDNode *, 32> Visited;
7214   SmallVector<const SDNode *, 16> Worklist;
7215   Worklist.push_back(this);
7216   return hasPredecessorHelper(N, Visited, Worklist);
7217 }
7218 
7219 const SDNodeFlags *SDNode::getFlags() const {
7220   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
7221     return &FlagsNode->Flags;
7222   return nullptr;
7223 }
7224 
7225 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) {
7226   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
7227     FlagsNode->Flags.intersectWith(Flags);
7228 }
7229 
7230 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
7231   assert(N->getNumValues() == 1 &&
7232          "Can't unroll a vector with multiple results!");
7233 
7234   EVT VT = N->getValueType(0);
7235   unsigned NE = VT.getVectorNumElements();
7236   EVT EltVT = VT.getVectorElementType();
7237   SDLoc dl(N);
7238 
7239   SmallVector<SDValue, 8> Scalars;
7240   SmallVector<SDValue, 4> Operands(N->getNumOperands());
7241 
7242   // If ResNE is 0, fully unroll the vector op.
7243   if (ResNE == 0)
7244     ResNE = NE;
7245   else if (NE > ResNE)
7246     NE = ResNE;
7247 
7248   unsigned i;
7249   for (i= 0; i != NE; ++i) {
7250     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
7251       SDValue Operand = N->getOperand(j);
7252       EVT OperandVT = Operand.getValueType();
7253       if (OperandVT.isVector()) {
7254         // A vector operand; extract a single element.
7255         EVT OperandEltVT = OperandVT.getVectorElementType();
7256         Operands[j] =
7257             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
7258                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
7259       } else {
7260         // A scalar operand; just use it as is.
7261         Operands[j] = Operand;
7262       }
7263     }
7264 
7265     switch (N->getOpcode()) {
7266     default: {
7267       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
7268                                 N->getFlags()));
7269       break;
7270     }
7271     case ISD::VSELECT:
7272       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
7273       break;
7274     case ISD::SHL:
7275     case ISD::SRA:
7276     case ISD::SRL:
7277     case ISD::ROTL:
7278     case ISD::ROTR:
7279       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
7280                                getShiftAmountOperand(Operands[0].getValueType(),
7281                                                      Operands[1])));
7282       break;
7283     case ISD::SIGN_EXTEND_INREG:
7284     case ISD::FP_ROUND_INREG: {
7285       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
7286       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
7287                                 Operands[0],
7288                                 getValueType(ExtVT)));
7289     }
7290     }
7291   }
7292 
7293   for (; i < ResNE; ++i)
7294     Scalars.push_back(getUNDEF(EltVT));
7295 
7296   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
7297   return getBuildVector(VecVT, dl, Scalars);
7298 }
7299 
7300 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
7301                                                   LoadSDNode *Base,
7302                                                   unsigned Bytes,
7303                                                   int Dist) const {
7304   if (LD->isVolatile() || Base->isVolatile())
7305     return false;
7306   if (LD->isIndexed() || Base->isIndexed())
7307     return false;
7308   if (LD->getChain() != Base->getChain())
7309     return false;
7310   EVT VT = LD->getValueType(0);
7311   if (VT.getSizeInBits() / 8 != Bytes)
7312     return false;
7313 
7314   SDValue Loc = LD->getOperand(1);
7315   SDValue BaseLoc = Base->getOperand(1);
7316   if (Loc.getOpcode() == ISD::FrameIndex) {
7317     if (BaseLoc.getOpcode() != ISD::FrameIndex)
7318       return false;
7319     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7320     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
7321     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
7322     int FS  = MFI.getObjectSize(FI);
7323     int BFS = MFI.getObjectSize(BFI);
7324     if (FS != BFS || FS != (int)Bytes) return false;
7325     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
7326   }
7327 
7328   // Handle X + C.
7329   if (isBaseWithConstantOffset(Loc)) {
7330     int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
7331     if (Loc.getOperand(0) == BaseLoc) {
7332       // If the base location is a simple address with no offset itself, then
7333       // the second load's first add operand should be the base address.
7334       if (LocOffset == Dist * (int)Bytes)
7335         return true;
7336     } else if (isBaseWithConstantOffset(BaseLoc)) {
7337       // The base location itself has an offset, so subtract that value from the
7338       // second load's offset before comparing to distance * size.
7339       int64_t BOffset =
7340         cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
7341       if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
7342         if ((LocOffset - BOffset) == Dist * (int)Bytes)
7343           return true;
7344       }
7345     }
7346   }
7347   const GlobalValue *GV1 = nullptr;
7348   const GlobalValue *GV2 = nullptr;
7349   int64_t Offset1 = 0;
7350   int64_t Offset2 = 0;
7351   bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
7352   bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
7353   if (isGA1 && isGA2 && GV1 == GV2)
7354     return Offset1 == (Offset2 + Dist*Bytes);
7355   return false;
7356 }
7357 
7358 
7359 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
7360 /// it cannot be inferred.
7361 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
7362   // If this is a GlobalAddress + cst, return the alignment.
7363   const GlobalValue *GV;
7364   int64_t GVOffset = 0;
7365   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
7366     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
7367     APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
7368     llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne,
7369                            getDataLayout());
7370     unsigned AlignBits = KnownZero.countTrailingOnes();
7371     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
7372     if (Align)
7373       return MinAlign(Align, GVOffset);
7374   }
7375 
7376   // If this is a direct reference to a stack slot, use information about the
7377   // stack slot's alignment.
7378   int FrameIdx = 1 << 31;
7379   int64_t FrameOffset = 0;
7380   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
7381     FrameIdx = FI->getIndex();
7382   } else if (isBaseWithConstantOffset(Ptr) &&
7383              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7384     // Handle FI+Cst
7385     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7386     FrameOffset = Ptr.getConstantOperandVal(1);
7387   }
7388 
7389   if (FrameIdx != (1 << 31)) {
7390     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
7391     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
7392                                     FrameOffset);
7393     return FIInfoAlign;
7394   }
7395 
7396   return 0;
7397 }
7398 
7399 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
7400 /// which is split (or expanded) into two not necessarily identical pieces.
7401 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
7402   // Currently all types are split in half.
7403   EVT LoVT, HiVT;
7404   if (!VT.isVector()) {
7405     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
7406   } else {
7407     unsigned NumElements = VT.getVectorNumElements();
7408     assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7409     LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
7410                                    NumElements/2);
7411   }
7412   return std::make_pair(LoVT, HiVT);
7413 }
7414 
7415 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
7416 /// low/high part.
7417 std::pair<SDValue, SDValue>
7418 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
7419                           const EVT &HiVT) {
7420   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
7421          N.getValueType().getVectorNumElements() &&
7422          "More vector elements requested than available!");
7423   SDValue Lo, Hi;
7424   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
7425                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
7426   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
7427                getConstant(LoVT.getVectorNumElements(), DL,
7428                            TLI->getVectorIdxTy(getDataLayout())));
7429   return std::make_pair(Lo, Hi);
7430 }
7431 
7432 void SelectionDAG::ExtractVectorElements(SDValue Op,
7433                                          SmallVectorImpl<SDValue> &Args,
7434                                          unsigned Start, unsigned Count) {
7435   EVT VT = Op.getValueType();
7436   if (Count == 0)
7437     Count = VT.getVectorNumElements();
7438 
7439   EVT EltVT = VT.getVectorElementType();
7440   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
7441   SDLoc SL(Op);
7442   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
7443     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7444                            Op, getConstant(i, SL, IdxTy)));
7445   }
7446 }
7447 
7448 // getAddressSpace - Return the address space this GlobalAddress belongs to.
7449 unsigned GlobalAddressSDNode::getAddressSpace() const {
7450   return getGlobal()->getType()->getAddressSpace();
7451 }
7452 
7453 
7454 Type *ConstantPoolSDNode::getType() const {
7455   if (isMachineConstantPoolEntry())
7456     return Val.MachineCPVal->getType();
7457   return Val.ConstVal->getType();
7458 }
7459 
7460 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
7461                                         APInt &SplatUndef,
7462                                         unsigned &SplatBitSize,
7463                                         bool &HasAnyUndefs,
7464                                         unsigned MinSplatBits,
7465                                         bool isBigEndian) const {
7466   EVT VT = getValueType(0);
7467   assert(VT.isVector() && "Expected a vector type");
7468   unsigned sz = VT.getSizeInBits();
7469   if (MinSplatBits > sz)
7470     return false;
7471 
7472   SplatValue = APInt(sz, 0);
7473   SplatUndef = APInt(sz, 0);
7474 
7475   // Get the bits.  Bits with undefined values (when the corresponding element
7476   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
7477   // in SplatValue.  If any of the values are not constant, give up and return
7478   // false.
7479   unsigned int nOps = getNumOperands();
7480   assert(nOps > 0 && "isConstantSplat has 0-size build vector");
7481   unsigned EltBitSize = VT.getScalarSizeInBits();
7482 
7483   for (unsigned j = 0; j < nOps; ++j) {
7484     unsigned i = isBigEndian ? nOps-1-j : j;
7485     SDValue OpVal = getOperand(i);
7486     unsigned BitPos = j * EltBitSize;
7487 
7488     if (OpVal.isUndef())
7489       SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
7490     else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
7491       SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
7492                     zextOrTrunc(sz) << BitPos;
7493     else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
7494       SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
7495      else
7496       return false;
7497   }
7498 
7499   // The build_vector is all constants or undefs.  Find the smallest element
7500   // size that splats the vector.
7501 
7502   HasAnyUndefs = (SplatUndef != 0);
7503   while (sz > 8) {
7504 
7505     unsigned HalfSize = sz / 2;
7506     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
7507     APInt LowValue = SplatValue.trunc(HalfSize);
7508     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
7509     APInt LowUndef = SplatUndef.trunc(HalfSize);
7510 
7511     // If the two halves do not match (ignoring undef bits), stop here.
7512     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
7513         MinSplatBits > HalfSize)
7514       break;
7515 
7516     SplatValue = HighValue | LowValue;
7517     SplatUndef = HighUndef & LowUndef;
7518 
7519     sz = HalfSize;
7520   }
7521 
7522   SplatBitSize = sz;
7523   return true;
7524 }
7525 
7526 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
7527   if (UndefElements) {
7528     UndefElements->clear();
7529     UndefElements->resize(getNumOperands());
7530   }
7531   SDValue Splatted;
7532   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
7533     SDValue Op = getOperand(i);
7534     if (Op.isUndef()) {
7535       if (UndefElements)
7536         (*UndefElements)[i] = true;
7537     } else if (!Splatted) {
7538       Splatted = Op;
7539     } else if (Splatted != Op) {
7540       return SDValue();
7541     }
7542   }
7543 
7544   if (!Splatted) {
7545     assert(getOperand(0).isUndef() &&
7546            "Can only have a splat without a constant for all undefs.");
7547     return getOperand(0);
7548   }
7549 
7550   return Splatted;
7551 }
7552 
7553 ConstantSDNode *
7554 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
7555   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
7556 }
7557 
7558 ConstantFPSDNode *
7559 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
7560   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
7561 }
7562 
7563 int32_t
7564 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
7565                                                    uint32_t BitWidth) const {
7566   if (ConstantFPSDNode *CN =
7567           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
7568     bool IsExact;
7569     APSInt IntVal(BitWidth);
7570     const APFloat &APF = CN->getValueAPF();
7571     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
7572             APFloat::opOK ||
7573         !IsExact)
7574       return -1;
7575 
7576     return IntVal.exactLogBase2();
7577   }
7578   return -1;
7579 }
7580 
7581 bool BuildVectorSDNode::isConstant() const {
7582   for (const SDValue &Op : op_values()) {
7583     unsigned Opc = Op.getOpcode();
7584     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
7585       return false;
7586   }
7587   return true;
7588 }
7589 
7590 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
7591   // Find the first non-undef value in the shuffle mask.
7592   unsigned i, e;
7593   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
7594     /* search */;
7595 
7596   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
7597 
7598   // Make sure all remaining elements are either undef or the same as the first
7599   // non-undef value.
7600   for (int Idx = Mask[i]; i != e; ++i)
7601     if (Mask[i] >= 0 && Mask[i] != Idx)
7602       return false;
7603   return true;
7604 }
7605 
7606 // \brief Returns the SDNode if it is a constant integer BuildVector
7607 // or constant integer.
7608 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
7609   if (isa<ConstantSDNode>(N))
7610     return N.getNode();
7611   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
7612     return N.getNode();
7613   // Treat a GlobalAddress supporting constant offset folding as a
7614   // constant integer.
7615   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
7616     if (GA->getOpcode() == ISD::GlobalAddress &&
7617         TLI->isOffsetFoldingLegal(GA))
7618       return GA;
7619   return nullptr;
7620 }
7621 
7622 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
7623   if (isa<ConstantFPSDNode>(N))
7624     return N.getNode();
7625 
7626   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
7627     return N.getNode();
7628 
7629   return nullptr;
7630 }
7631 
7632 #ifndef NDEBUG
7633 static void checkForCyclesHelper(const SDNode *N,
7634                                  SmallPtrSetImpl<const SDNode*> &Visited,
7635                                  SmallPtrSetImpl<const SDNode*> &Checked,
7636                                  const llvm::SelectionDAG *DAG) {
7637   // If this node has already been checked, don't check it again.
7638   if (Checked.count(N))
7639     return;
7640 
7641   // If a node has already been visited on this depth-first walk, reject it as
7642   // a cycle.
7643   if (!Visited.insert(N).second) {
7644     errs() << "Detected cycle in SelectionDAG\n";
7645     dbgs() << "Offending node:\n";
7646     N->dumprFull(DAG); dbgs() << "\n";
7647     abort();
7648   }
7649 
7650   for (const SDValue &Op : N->op_values())
7651     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
7652 
7653   Checked.insert(N);
7654   Visited.erase(N);
7655 }
7656 #endif
7657 
7658 void llvm::checkForCycles(const llvm::SDNode *N,
7659                           const llvm::SelectionDAG *DAG,
7660                           bool force) {
7661 #ifndef NDEBUG
7662   bool check = force;
7663 #ifdef EXPENSIVE_CHECKS
7664   check = true;
7665 #endif  // EXPENSIVE_CHECKS
7666   if (check) {
7667     assert(N && "Checking nonexistent SDNode");
7668     SmallPtrSet<const SDNode*, 32> visited;
7669     SmallPtrSet<const SDNode*, 32> checked;
7670     checkForCyclesHelper(N, visited, checked, DAG);
7671   }
7672 #endif  // !NDEBUG
7673 }
7674 
7675 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
7676   checkForCycles(DAG->getRoot().getNode(), DAG, force);
7677 }
7678