1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAG class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/ManagedStatic.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Mutex.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetIntrinsicInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include "llvm/Target/TargetRegisterInfo.h" 49 #include "llvm/Target/TargetSubtargetInfo.h" 50 #include <algorithm> 51 #include <cmath> 52 #include <utility> 53 54 using namespace llvm; 55 56 /// makeVTList - Return an instance of the SDVTList struct initialized with the 57 /// specified members. 58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 59 SDVTList Res = {VTs, NumVTs}; 60 return Res; 61 } 62 63 // Default null implementations of the callbacks. 64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 66 67 //===----------------------------------------------------------------------===// 68 // ConstantFPSDNode Class 69 //===----------------------------------------------------------------------===// 70 71 /// isExactlyValue - We don't rely on operator== working on double values, as 72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 73 /// As such, this method can be used to do an exact bit-for-bit comparison of 74 /// two floating point values. 75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 76 return getValueAPF().bitwiseIsEqual(V); 77 } 78 79 bool ConstantFPSDNode::isValueValidForType(EVT VT, 80 const APFloat& Val) { 81 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 82 83 // convert modifies in place, so make a copy. 84 APFloat Val2 = APFloat(Val); 85 bool losesInfo; 86 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 87 APFloat::rmNearestTiesToEven, 88 &losesInfo); 89 return !losesInfo; 90 } 91 92 //===----------------------------------------------------------------------===// 93 // ISD Namespace 94 //===----------------------------------------------------------------------===// 95 96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 97 auto *BV = dyn_cast<BuildVectorSDNode>(N); 98 if (!BV) 99 return false; 100 101 APInt SplatUndef; 102 unsigned SplatBitSize; 103 bool HasUndefs; 104 EVT EltVT = N->getValueType(0).getVectorElementType(); 105 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) && 106 EltVT.getSizeInBits() >= SplatBitSize; 107 } 108 109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 110 // specializations of the more general isConstantSplatVector()? 111 112 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 113 // Look through a bit convert. 114 while (N->getOpcode() == ISD::BITCAST) 115 N = N->getOperand(0).getNode(); 116 117 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 118 119 unsigned i = 0, e = N->getNumOperands(); 120 121 // Skip over all of the undef values. 122 while (i != e && N->getOperand(i).isUndef()) 123 ++i; 124 125 // Do not accept an all-undef vector. 126 if (i == e) return false; 127 128 // Do not accept build_vectors that aren't all constants or which have non-~0 129 // elements. We have to be a bit careful here, as the type of the constant 130 // may not be the same as the type of the vector elements due to type 131 // legalization (the elements are promoted to a legal type for the target and 132 // a vector of a type may be legal when the base element type is not). 133 // We only want to check enough bits to cover the vector elements, because 134 // we care if the resultant vector is all ones, not whether the individual 135 // constants are. 136 SDValue NotZero = N->getOperand(i); 137 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 138 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 139 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 140 return false; 141 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 142 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 143 return false; 144 } else 145 return false; 146 147 // Okay, we have at least one ~0 value, check to see if the rest match or are 148 // undefs. Even with the above element type twiddling, this should be OK, as 149 // the same type legalization should have applied to all the elements. 150 for (++i; i != e; ++i) 151 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 152 return false; 153 return true; 154 } 155 156 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 bool IsAllUndef = true; 164 for (const SDValue &Op : N->op_values()) { 165 if (Op.isUndef()) 166 continue; 167 IsAllUndef = false; 168 // Do not accept build_vectors that aren't all constants or which have non-0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target 172 // and a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all zeros, not whether the individual 175 // constants are. 176 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 177 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 178 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 179 return false; 180 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 181 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 182 return false; 183 } else 184 return false; 185 } 186 187 // Do not accept an all-undef vector. 188 if (IsAllUndef) 189 return false; 190 return true; 191 } 192 193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 194 if (N->getOpcode() != ISD::BUILD_VECTOR) 195 return false; 196 197 for (const SDValue &Op : N->op_values()) { 198 if (Op.isUndef()) 199 continue; 200 if (!isa<ConstantSDNode>(Op)) 201 return false; 202 } 203 return true; 204 } 205 206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 207 if (N->getOpcode() != ISD::BUILD_VECTOR) 208 return false; 209 210 for (const SDValue &Op : N->op_values()) { 211 if (Op.isUndef()) 212 continue; 213 if (!isa<ConstantFPSDNode>(Op)) 214 return false; 215 } 216 return true; 217 } 218 219 bool ISD::allOperandsUndef(const SDNode *N) { 220 // Return false if the node has no operands. 221 // This is "logically inconsistent" with the definition of "all" but 222 // is probably the desired behavior. 223 if (N->getNumOperands() == 0) 224 return false; 225 226 for (const SDValue &Op : N->op_values()) 227 if (!Op.isUndef()) 228 return false; 229 230 return true; 231 } 232 233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 234 switch (ExtType) { 235 case ISD::EXTLOAD: 236 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 237 case ISD::SEXTLOAD: 238 return ISD::SIGN_EXTEND; 239 case ISD::ZEXTLOAD: 240 return ISD::ZERO_EXTEND; 241 default: 242 break; 243 } 244 245 llvm_unreachable("Invalid LoadExtType"); 246 } 247 248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 249 // To perform this operation, we just need to swap the L and G bits of the 250 // operation. 251 unsigned OldL = (Operation >> 2) & 1; 252 unsigned OldG = (Operation >> 1) & 1; 253 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 254 (OldL << 1) | // New G bit 255 (OldG << 2)); // New L bit. 256 } 257 258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 259 unsigned Operation = Op; 260 if (isInteger) 261 Operation ^= 7; // Flip L, G, E bits, but not U. 262 else 263 Operation ^= 15; // Flip all of the condition bits. 264 265 if (Operation > ISD::SETTRUE2) 266 Operation &= ~8; // Don't let N and U bits get set. 267 268 return ISD::CondCode(Operation); 269 } 270 271 272 /// For an integer comparison, return 1 if the comparison is a signed operation 273 /// and 2 if the result is an unsigned comparison. Return zero if the operation 274 /// does not depend on the sign of the input (setne and seteq). 275 static int isSignedOp(ISD::CondCode Opcode) { 276 switch (Opcode) { 277 default: llvm_unreachable("Illegal integer setcc operation!"); 278 case ISD::SETEQ: 279 case ISD::SETNE: return 0; 280 case ISD::SETLT: 281 case ISD::SETLE: 282 case ISD::SETGT: 283 case ISD::SETGE: return 1; 284 case ISD::SETULT: 285 case ISD::SETULE: 286 case ISD::SETUGT: 287 case ISD::SETUGE: return 2; 288 } 289 } 290 291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 292 bool isInteger) { 293 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 294 // Cannot fold a signed integer setcc with an unsigned integer setcc. 295 return ISD::SETCC_INVALID; 296 297 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 298 299 // If the N and U bits get set then the resultant comparison DOES suddenly 300 // care about orderedness, and is true when ordered. 301 if (Op > ISD::SETTRUE2) 302 Op &= ~16; // Clear the U bit if the N bit is set. 303 304 // Canonicalize illegal integer setcc's. 305 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 306 Op = ISD::SETNE; 307 308 return ISD::CondCode(Op); 309 } 310 311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 312 bool isInteger) { 313 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 314 // Cannot fold a signed setcc with an unsigned setcc. 315 return ISD::SETCC_INVALID; 316 317 // Combine all of the condition bits. 318 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 319 320 // Canonicalize illegal integer setcc's. 321 if (isInteger) { 322 switch (Result) { 323 default: break; 324 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 325 case ISD::SETOEQ: // SETEQ & SETU[LG]E 326 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 327 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 328 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 329 } 330 } 331 332 return Result; 333 } 334 335 //===----------------------------------------------------------------------===// 336 // SDNode Profile Support 337 //===----------------------------------------------------------------------===// 338 339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 340 /// 341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 342 ID.AddInteger(OpC); 343 } 344 345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 346 /// solely with their pointer. 347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 348 ID.AddPointer(VTList.VTs); 349 } 350 351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 352 /// 353 static void AddNodeIDOperands(FoldingSetNodeID &ID, 354 ArrayRef<SDValue> Ops) { 355 for (auto& Op : Ops) { 356 ID.AddPointer(Op.getNode()); 357 ID.AddInteger(Op.getResNo()); 358 } 359 } 360 361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 362 /// 363 static void AddNodeIDOperands(FoldingSetNodeID &ID, 364 ArrayRef<SDUse> Ops) { 365 for (auto& Op : Ops) { 366 ID.AddPointer(Op.getNode()); 367 ID.AddInteger(Op.getResNo()); 368 } 369 } 370 371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 372 SDVTList VTList, ArrayRef<SDValue> OpList) { 373 AddNodeIDOpcode(ID, OpC); 374 AddNodeIDValueTypes(ID, VTList); 375 AddNodeIDOperands(ID, OpList); 376 } 377 378 /// If this is an SDNode with special info, add this info to the NodeID data. 379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 380 switch (N->getOpcode()) { 381 case ISD::TargetExternalSymbol: 382 case ISD::ExternalSymbol: 383 case ISD::MCSymbol: 384 llvm_unreachable("Should only be used on nodes with operands"); 385 default: break; // Normal nodes don't need extra info. 386 case ISD::TargetConstant: 387 case ISD::Constant: { 388 const ConstantSDNode *C = cast<ConstantSDNode>(N); 389 ID.AddPointer(C->getConstantIntValue()); 390 ID.AddBoolean(C->isOpaque()); 391 break; 392 } 393 case ISD::TargetConstantFP: 394 case ISD::ConstantFP: { 395 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 396 break; 397 } 398 case ISD::TargetGlobalAddress: 399 case ISD::GlobalAddress: 400 case ISD::TargetGlobalTLSAddress: 401 case ISD::GlobalTLSAddress: { 402 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 403 ID.AddPointer(GA->getGlobal()); 404 ID.AddInteger(GA->getOffset()); 405 ID.AddInteger(GA->getTargetFlags()); 406 ID.AddInteger(GA->getAddressSpace()); 407 break; 408 } 409 case ISD::BasicBlock: 410 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 411 break; 412 case ISD::Register: 413 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 414 break; 415 case ISD::RegisterMask: 416 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 417 break; 418 case ISD::SRCVALUE: 419 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 420 break; 421 case ISD::FrameIndex: 422 case ISD::TargetFrameIndex: 423 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 424 break; 425 case ISD::JumpTable: 426 case ISD::TargetJumpTable: 427 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 428 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 429 break; 430 case ISD::ConstantPool: 431 case ISD::TargetConstantPool: { 432 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 433 ID.AddInteger(CP->getAlignment()); 434 ID.AddInteger(CP->getOffset()); 435 if (CP->isMachineConstantPoolEntry()) 436 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 437 else 438 ID.AddPointer(CP->getConstVal()); 439 ID.AddInteger(CP->getTargetFlags()); 440 break; 441 } 442 case ISD::TargetIndex: { 443 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 444 ID.AddInteger(TI->getIndex()); 445 ID.AddInteger(TI->getOffset()); 446 ID.AddInteger(TI->getTargetFlags()); 447 break; 448 } 449 case ISD::LOAD: { 450 const LoadSDNode *LD = cast<LoadSDNode>(N); 451 ID.AddInteger(LD->getMemoryVT().getRawBits()); 452 ID.AddInteger(LD->getRawSubclassData()); 453 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 454 break; 455 } 456 case ISD::STORE: { 457 const StoreSDNode *ST = cast<StoreSDNode>(N); 458 ID.AddInteger(ST->getMemoryVT().getRawBits()); 459 ID.AddInteger(ST->getRawSubclassData()); 460 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 461 break; 462 } 463 case ISD::ATOMIC_CMP_SWAP: 464 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 465 case ISD::ATOMIC_SWAP: 466 case ISD::ATOMIC_LOAD_ADD: 467 case ISD::ATOMIC_LOAD_SUB: 468 case ISD::ATOMIC_LOAD_AND: 469 case ISD::ATOMIC_LOAD_OR: 470 case ISD::ATOMIC_LOAD_XOR: 471 case ISD::ATOMIC_LOAD_NAND: 472 case ISD::ATOMIC_LOAD_MIN: 473 case ISD::ATOMIC_LOAD_MAX: 474 case ISD::ATOMIC_LOAD_UMIN: 475 case ISD::ATOMIC_LOAD_UMAX: 476 case ISD::ATOMIC_LOAD: 477 case ISD::ATOMIC_STORE: { 478 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 479 ID.AddInteger(AT->getMemoryVT().getRawBits()); 480 ID.AddInteger(AT->getRawSubclassData()); 481 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 482 break; 483 } 484 case ISD::PREFETCH: { 485 const MemSDNode *PF = cast<MemSDNode>(N); 486 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 487 break; 488 } 489 case ISD::VECTOR_SHUFFLE: { 490 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 491 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 492 i != e; ++i) 493 ID.AddInteger(SVN->getMaskElt(i)); 494 break; 495 } 496 case ISD::TargetBlockAddress: 497 case ISD::BlockAddress: { 498 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 499 ID.AddPointer(BA->getBlockAddress()); 500 ID.AddInteger(BA->getOffset()); 501 ID.AddInteger(BA->getTargetFlags()); 502 break; 503 } 504 } // end switch (N->getOpcode()) 505 506 // Target specific memory nodes could also have address spaces to check. 507 if (N->isTargetMemoryOpcode()) 508 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 509 } 510 511 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 512 /// data. 513 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 514 AddNodeIDOpcode(ID, N->getOpcode()); 515 // Add the return value info. 516 AddNodeIDValueTypes(ID, N->getVTList()); 517 // Add the operand info. 518 AddNodeIDOperands(ID, N->ops()); 519 520 // Handle SDNode leafs with special info. 521 AddNodeIDCustom(ID, N); 522 } 523 524 //===----------------------------------------------------------------------===// 525 // SelectionDAG Class 526 //===----------------------------------------------------------------------===// 527 528 /// doNotCSE - Return true if CSE should not be performed for this node. 529 static bool doNotCSE(SDNode *N) { 530 if (N->getValueType(0) == MVT::Glue) 531 return true; // Never CSE anything that produces a flag. 532 533 switch (N->getOpcode()) { 534 default: break; 535 case ISD::HANDLENODE: 536 case ISD::EH_LABEL: 537 return true; // Never CSE these nodes. 538 } 539 540 // Check that remaining values produced are not flags. 541 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 542 if (N->getValueType(i) == MVT::Glue) 543 return true; // Never CSE anything that produces a flag. 544 545 return false; 546 } 547 548 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 549 /// SelectionDAG. 550 void SelectionDAG::RemoveDeadNodes() { 551 // Create a dummy node (which is not added to allnodes), that adds a reference 552 // to the root node, preventing it from being deleted. 553 HandleSDNode Dummy(getRoot()); 554 555 SmallVector<SDNode*, 128> DeadNodes; 556 557 // Add all obviously-dead nodes to the DeadNodes worklist. 558 for (SDNode &Node : allnodes()) 559 if (Node.use_empty()) 560 DeadNodes.push_back(&Node); 561 562 RemoveDeadNodes(DeadNodes); 563 564 // If the root changed (e.g. it was a dead load, update the root). 565 setRoot(Dummy.getValue()); 566 } 567 568 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 569 /// given list, and any nodes that become unreachable as a result. 570 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 571 572 // Process the worklist, deleting the nodes and adding their uses to the 573 // worklist. 574 while (!DeadNodes.empty()) { 575 SDNode *N = DeadNodes.pop_back_val(); 576 577 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 578 DUL->NodeDeleted(N, nullptr); 579 580 // Take the node out of the appropriate CSE map. 581 RemoveNodeFromCSEMaps(N); 582 583 // Next, brutally remove the operand list. This is safe to do, as there are 584 // no cycles in the graph. 585 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 586 SDUse &Use = *I++; 587 SDNode *Operand = Use.getNode(); 588 Use.set(SDValue()); 589 590 // Now that we removed this operand, see if there are no uses of it left. 591 if (Operand->use_empty()) 592 DeadNodes.push_back(Operand); 593 } 594 595 DeallocateNode(N); 596 } 597 } 598 599 void SelectionDAG::RemoveDeadNode(SDNode *N){ 600 SmallVector<SDNode*, 16> DeadNodes(1, N); 601 602 // Create a dummy node that adds a reference to the root node, preventing 603 // it from being deleted. (This matters if the root is an operand of the 604 // dead node.) 605 HandleSDNode Dummy(getRoot()); 606 607 RemoveDeadNodes(DeadNodes); 608 } 609 610 void SelectionDAG::DeleteNode(SDNode *N) { 611 // First take this out of the appropriate CSE map. 612 RemoveNodeFromCSEMaps(N); 613 614 // Finally, remove uses due to operands of this node, remove from the 615 // AllNodes list, and delete the node. 616 DeleteNodeNotInCSEMaps(N); 617 } 618 619 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 620 assert(N->getIterator() != AllNodes.begin() && 621 "Cannot delete the entry node!"); 622 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 623 624 // Drop all of the operands and decrement used node's use counts. 625 N->DropOperands(); 626 627 DeallocateNode(N); 628 } 629 630 void SDDbgInfo::erase(const SDNode *Node) { 631 DbgValMapType::iterator I = DbgValMap.find(Node); 632 if (I == DbgValMap.end()) 633 return; 634 for (auto &Val: I->second) 635 Val->setIsInvalidated(); 636 DbgValMap.erase(I); 637 } 638 639 void SelectionDAG::DeallocateNode(SDNode *N) { 640 // If we have operands, deallocate them. 641 removeOperands(N); 642 643 // Set the opcode to DELETED_NODE to help catch bugs when node 644 // memory is reallocated. 645 N->NodeType = ISD::DELETED_NODE; 646 647 NodeAllocator.Deallocate(AllNodes.remove(N)); 648 649 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 650 // them and forget about that node. 651 DbgInfo->erase(N); 652 } 653 654 #ifndef NDEBUG 655 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 656 static void VerifySDNode(SDNode *N) { 657 switch (N->getOpcode()) { 658 default: 659 break; 660 case ISD::BUILD_PAIR: { 661 EVT VT = N->getValueType(0); 662 assert(N->getNumValues() == 1 && "Too many results!"); 663 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 664 "Wrong return type!"); 665 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 666 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 667 "Mismatched operand types!"); 668 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 669 "Wrong operand type!"); 670 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 671 "Wrong return type size"); 672 break; 673 } 674 case ISD::BUILD_VECTOR: { 675 assert(N->getNumValues() == 1 && "Too many results!"); 676 assert(N->getValueType(0).isVector() && "Wrong return type!"); 677 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 678 "Wrong number of operands!"); 679 EVT EltVT = N->getValueType(0).getVectorElementType(); 680 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 681 assert((I->getValueType() == EltVT || 682 (EltVT.isInteger() && I->getValueType().isInteger() && 683 EltVT.bitsLE(I->getValueType()))) && 684 "Wrong operand type!"); 685 assert(I->getValueType() == N->getOperand(0).getValueType() && 686 "Operands must all have the same type"); 687 } 688 break; 689 } 690 } 691 } 692 #endif // NDEBUG 693 694 /// \brief Insert a newly allocated node into the DAG. 695 /// 696 /// Handles insertion into the all nodes list and CSE map, as well as 697 /// verification and other common operations when a new node is allocated. 698 void SelectionDAG::InsertNode(SDNode *N) { 699 AllNodes.push_back(N); 700 #ifndef NDEBUG 701 N->PersistentId = NextPersistentId++; 702 VerifySDNode(N); 703 #endif 704 } 705 706 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 707 /// correspond to it. This is useful when we're about to delete or repurpose 708 /// the node. We don't want future request for structurally identical nodes 709 /// to return N anymore. 710 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 711 bool Erased = false; 712 switch (N->getOpcode()) { 713 case ISD::HANDLENODE: return false; // noop. 714 case ISD::CONDCODE: 715 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 716 "Cond code doesn't exist!"); 717 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 718 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 719 break; 720 case ISD::ExternalSymbol: 721 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 722 break; 723 case ISD::TargetExternalSymbol: { 724 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 725 Erased = TargetExternalSymbols.erase( 726 std::pair<std::string,unsigned char>(ESN->getSymbol(), 727 ESN->getTargetFlags())); 728 break; 729 } 730 case ISD::MCSymbol: { 731 auto *MCSN = cast<MCSymbolSDNode>(N); 732 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 733 break; 734 } 735 case ISD::VALUETYPE: { 736 EVT VT = cast<VTSDNode>(N)->getVT(); 737 if (VT.isExtended()) { 738 Erased = ExtendedValueTypeNodes.erase(VT); 739 } else { 740 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 741 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 742 } 743 break; 744 } 745 default: 746 // Remove it from the CSE Map. 747 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 748 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 749 Erased = CSEMap.RemoveNode(N); 750 break; 751 } 752 #ifndef NDEBUG 753 // Verify that the node was actually in one of the CSE maps, unless it has a 754 // flag result (which cannot be CSE'd) or is one of the special cases that are 755 // not subject to CSE. 756 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 757 !N->isMachineOpcode() && !doNotCSE(N)) { 758 N->dump(this); 759 dbgs() << "\n"; 760 llvm_unreachable("Node is not in map!"); 761 } 762 #endif 763 return Erased; 764 } 765 766 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 767 /// maps and modified in place. Add it back to the CSE maps, unless an identical 768 /// node already exists, in which case transfer all its users to the existing 769 /// node. This transfer can potentially trigger recursive merging. 770 /// 771 void 772 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 773 // For node types that aren't CSE'd, just act as if no identical node 774 // already exists. 775 if (!doNotCSE(N)) { 776 SDNode *Existing = CSEMap.GetOrInsertNode(N); 777 if (Existing != N) { 778 // If there was already an existing matching node, use ReplaceAllUsesWith 779 // to replace the dead one with the existing one. This can cause 780 // recursive merging of other unrelated nodes down the line. 781 ReplaceAllUsesWith(N, Existing); 782 783 // N is now dead. Inform the listeners and delete it. 784 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 785 DUL->NodeDeleted(N, Existing); 786 DeleteNodeNotInCSEMaps(N); 787 return; 788 } 789 } 790 791 // If the node doesn't already exist, we updated it. Inform listeners. 792 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 793 DUL->NodeUpdated(N); 794 } 795 796 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 797 /// were replaced with those specified. If this node is never memoized, 798 /// return null, otherwise return a pointer to the slot it would take. If a 799 /// node already exists with these operands, the slot will be non-null. 800 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 801 void *&InsertPos) { 802 if (doNotCSE(N)) 803 return nullptr; 804 805 SDValue Ops[] = { Op }; 806 FoldingSetNodeID ID; 807 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 808 AddNodeIDCustom(ID, N); 809 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 810 if (Node) 811 if (const SDNodeFlags *Flags = N->getFlags()) 812 Node->intersectFlagsWith(Flags); 813 return Node; 814 } 815 816 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 817 /// were replaced with those specified. If this node is never memoized, 818 /// return null, otherwise return a pointer to the slot it would take. If a 819 /// node already exists with these operands, the slot will be non-null. 820 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 821 SDValue Op1, SDValue Op2, 822 void *&InsertPos) { 823 if (doNotCSE(N)) 824 return nullptr; 825 826 SDValue Ops[] = { Op1, Op2 }; 827 FoldingSetNodeID ID; 828 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 829 AddNodeIDCustom(ID, N); 830 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 831 if (Node) 832 if (const SDNodeFlags *Flags = N->getFlags()) 833 Node->intersectFlagsWith(Flags); 834 return Node; 835 } 836 837 838 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 839 /// were replaced with those specified. If this node is never memoized, 840 /// return null, otherwise return a pointer to the slot it would take. If a 841 /// node already exists with these operands, the slot will be non-null. 842 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 843 void *&InsertPos) { 844 if (doNotCSE(N)) 845 return nullptr; 846 847 FoldingSetNodeID ID; 848 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 849 AddNodeIDCustom(ID, N); 850 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 851 if (Node) 852 if (const SDNodeFlags *Flags = N->getFlags()) 853 Node->intersectFlagsWith(Flags); 854 return Node; 855 } 856 857 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 858 Type *Ty = VT == MVT::iPTR ? 859 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 860 VT.getTypeForEVT(*getContext()); 861 862 return getDataLayout().getABITypeAlignment(Ty); 863 } 864 865 // EntryNode could meaningfully have debug info if we can find it... 866 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 867 : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), 868 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 869 Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), 870 UpdateListeners(nullptr) { 871 InsertNode(&EntryNode); 872 DbgInfo = new SDDbgInfo(); 873 } 874 875 void SelectionDAG::init(MachineFunction &mf) { 876 MF = &mf; 877 TLI = getSubtarget().getTargetLowering(); 878 TSI = getSubtarget().getSelectionDAGInfo(); 879 Context = &mf.getFunction()->getContext(); 880 } 881 882 SelectionDAG::~SelectionDAG() { 883 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 884 allnodes_clear(); 885 OperandRecycler.clear(OperandAllocator); 886 delete DbgInfo; 887 } 888 889 void SelectionDAG::allnodes_clear() { 890 assert(&*AllNodes.begin() == &EntryNode); 891 AllNodes.remove(AllNodes.begin()); 892 while (!AllNodes.empty()) 893 DeallocateNode(&AllNodes.front()); 894 #ifndef NDEBUG 895 NextPersistentId = 0; 896 #endif 897 } 898 899 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL, 900 SDVTList VTs, SDValue N1, SDValue N2, 901 const SDNodeFlags *Flags) { 902 SDValue Ops[] = {N1, N2}; 903 904 if (isBinOpWithFlags(Opcode)) { 905 // If no flags were passed in, use a default flags object. 906 SDNodeFlags F; 907 if (Flags == nullptr) 908 Flags = &F; 909 910 auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(), 911 DL.getDebugLoc(), VTs, *Flags); 912 createOperands(FN, Ops); 913 914 return FN; 915 } 916 917 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 918 createOperands(N, Ops); 919 return N; 920 } 921 922 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 923 void *&InsertPos) { 924 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 925 if (N) { 926 switch (N->getOpcode()) { 927 default: break; 928 case ISD::Constant: 929 case ISD::ConstantFP: 930 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 931 "debug location. Use another overload."); 932 } 933 } 934 return N; 935 } 936 937 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 938 const SDLoc &DL, void *&InsertPos) { 939 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 940 if (N) { 941 switch (N->getOpcode()) { 942 case ISD::Constant: 943 case ISD::ConstantFP: 944 // Erase debug location from the node if the node is used at several 945 // different places. Do not propagate one location to all uses as it 946 // will cause a worse single stepping debugging experience. 947 if (N->getDebugLoc() != DL.getDebugLoc()) 948 N->setDebugLoc(DebugLoc()); 949 break; 950 default: 951 // When the node's point of use is located earlier in the instruction 952 // sequence than its prior point of use, update its debug info to the 953 // earlier location. 954 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 955 N->setDebugLoc(DL.getDebugLoc()); 956 break; 957 } 958 } 959 return N; 960 } 961 962 void SelectionDAG::clear() { 963 allnodes_clear(); 964 OperandRecycler.clear(OperandAllocator); 965 OperandAllocator.Reset(); 966 CSEMap.clear(); 967 968 ExtendedValueTypeNodes.clear(); 969 ExternalSymbols.clear(); 970 TargetExternalSymbols.clear(); 971 MCSymbols.clear(); 972 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 973 static_cast<CondCodeSDNode*>(nullptr)); 974 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 975 static_cast<SDNode*>(nullptr)); 976 977 EntryNode.UseList = nullptr; 978 InsertNode(&EntryNode); 979 Root = getEntryNode(); 980 DbgInfo->clear(); 981 } 982 983 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 984 return VT.bitsGT(Op.getValueType()) ? 985 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 986 getNode(ISD::TRUNCATE, DL, VT, Op); 987 } 988 989 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 990 return VT.bitsGT(Op.getValueType()) ? 991 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 992 getNode(ISD::TRUNCATE, DL, VT, Op); 993 } 994 995 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 996 return VT.bitsGT(Op.getValueType()) ? 997 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 998 getNode(ISD::TRUNCATE, DL, VT, Op); 999 } 1000 1001 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1002 EVT OpVT) { 1003 if (VT.bitsLE(Op.getValueType())) 1004 return getNode(ISD::TRUNCATE, SL, VT, Op); 1005 1006 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1007 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1008 } 1009 1010 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1011 assert(!VT.isVector() && 1012 "getZeroExtendInReg should use the vector element type instead of " 1013 "the vector type!"); 1014 if (Op.getValueType() == VT) return Op; 1015 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1016 APInt Imm = APInt::getLowBitsSet(BitWidth, 1017 VT.getSizeInBits()); 1018 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1019 getConstant(Imm, DL, Op.getValueType())); 1020 } 1021 1022 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, 1023 EVT VT) { 1024 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1025 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1026 "The sizes of the input and result must match in order to perform the " 1027 "extend in-register."); 1028 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1029 "The destination vector type must have fewer lanes than the input."); 1030 return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); 1031 } 1032 1033 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, 1034 EVT VT) { 1035 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1036 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1037 "The sizes of the input and result must match in order to perform the " 1038 "extend in-register."); 1039 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1040 "The destination vector type must have fewer lanes than the input."); 1041 return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); 1042 } 1043 1044 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, 1045 EVT VT) { 1046 assert(VT.isVector() && "This DAG node is restricted to vector types."); 1047 assert(VT.getSizeInBits() == Op.getValueSizeInBits() && 1048 "The sizes of the input and result must match in order to perform the " 1049 "extend in-register."); 1050 assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && 1051 "The destination vector type must have fewer lanes than the input."); 1052 return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); 1053 } 1054 1055 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1056 /// 1057 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1058 EVT EltVT = VT.getScalarType(); 1059 SDValue NegOne = 1060 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1061 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1062 } 1063 1064 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1065 EVT EltVT = VT.getScalarType(); 1066 SDValue TrueValue; 1067 switch (TLI->getBooleanContents(VT)) { 1068 case TargetLowering::ZeroOrOneBooleanContent: 1069 case TargetLowering::UndefinedBooleanContent: 1070 TrueValue = getConstant(1, DL, VT); 1071 break; 1072 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1073 TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, 1074 VT); 1075 break; 1076 } 1077 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1078 } 1079 1080 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1081 bool isT, bool isO) { 1082 EVT EltVT = VT.getScalarType(); 1083 assert((EltVT.getSizeInBits() >= 64 || 1084 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1085 "getConstant with a uint64_t value that doesn't fit in the type!"); 1086 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1087 } 1088 1089 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1090 bool isT, bool isO) { 1091 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1092 } 1093 1094 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1095 EVT VT, bool isT, bool isO) { 1096 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1097 1098 EVT EltVT = VT.getScalarType(); 1099 const ConstantInt *Elt = &Val; 1100 1101 // In some cases the vector type is legal but the element type is illegal and 1102 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1103 // inserted value (the type does not need to match the vector element type). 1104 // Any extra bits introduced will be truncated away. 1105 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1106 TargetLowering::TypePromoteInteger) { 1107 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1108 APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits()); 1109 Elt = ConstantInt::get(*getContext(), NewVal); 1110 } 1111 // In other cases the element type is illegal and needs to be expanded, for 1112 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1113 // the value into n parts and use a vector type with n-times the elements. 1114 // Then bitcast to the type requested. 1115 // Legalizing constants too early makes the DAGCombiner's job harder so we 1116 // only legalize if the DAG tells us we must produce legal types. 1117 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1118 TLI->getTypeAction(*getContext(), EltVT) == 1119 TargetLowering::TypeExpandInteger) { 1120 const APInt &NewVal = Elt->getValue(); 1121 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1122 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1123 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1124 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1125 1126 // Check the temporary vector is the correct size. If this fails then 1127 // getTypeToTransformTo() probably returned a type whose size (in bits) 1128 // isn't a power-of-2 factor of the requested type size. 1129 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1130 1131 SmallVector<SDValue, 2> EltParts; 1132 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1133 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1134 .trunc(ViaEltSizeInBits), DL, 1135 ViaEltVT, isT, isO)); 1136 } 1137 1138 // EltParts is currently in little endian order. If we actually want 1139 // big-endian order then reverse it now. 1140 if (getDataLayout().isBigEndian()) 1141 std::reverse(EltParts.begin(), EltParts.end()); 1142 1143 // The elements must be reversed when the element order is different 1144 // to the endianness of the elements (because the BITCAST is itself a 1145 // vector shuffle in this situation). However, we do not need any code to 1146 // perform this reversal because getConstant() is producing a vector 1147 // splat. 1148 // This situation occurs in MIPS MSA. 1149 1150 SmallVector<SDValue, 8> Ops; 1151 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) 1152 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1153 1154 SDValue Result = getNode(ISD::BITCAST, DL, VT, 1155 getNode(ISD::BUILD_VECTOR, DL, ViaVecVT, Ops)); 1156 return Result; 1157 } 1158 1159 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1160 "APInt size does not match type size!"); 1161 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1162 FoldingSetNodeID ID; 1163 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1164 ID.AddPointer(Elt); 1165 ID.AddBoolean(isO); 1166 void *IP = nullptr; 1167 SDNode *N = nullptr; 1168 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1169 if (!VT.isVector()) 1170 return SDValue(N, 0); 1171 1172 if (!N) { 1173 N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT); 1174 CSEMap.InsertNode(N, IP); 1175 InsertNode(N); 1176 } 1177 1178 SDValue Result(N, 0); 1179 if (VT.isVector()) 1180 Result = getSplatBuildVector(VT, DL, Result); 1181 return Result; 1182 } 1183 1184 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1185 bool isTarget) { 1186 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1187 } 1188 1189 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1190 bool isTarget) { 1191 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1192 } 1193 1194 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1195 EVT VT, bool isTarget) { 1196 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1197 1198 EVT EltVT = VT.getScalarType(); 1199 1200 // Do the map lookup using the actual bit pattern for the floating point 1201 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1202 // we don't have issues with SNANs. 1203 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1204 FoldingSetNodeID ID; 1205 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1206 ID.AddPointer(&V); 1207 void *IP = nullptr; 1208 SDNode *N = nullptr; 1209 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1210 if (!VT.isVector()) 1211 return SDValue(N, 0); 1212 1213 if (!N) { 1214 N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT); 1215 CSEMap.InsertNode(N, IP); 1216 InsertNode(N); 1217 } 1218 1219 SDValue Result(N, 0); 1220 if (VT.isVector()) 1221 Result = getSplatBuildVector(VT, DL, Result); 1222 return Result; 1223 } 1224 1225 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1226 bool isTarget) { 1227 EVT EltVT = VT.getScalarType(); 1228 if (EltVT == MVT::f32) 1229 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1230 else if (EltVT == MVT::f64) 1231 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1232 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1233 EltVT == MVT::f16) { 1234 bool Ignored; 1235 APFloat APF = APFloat(Val); 1236 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1237 &Ignored); 1238 return getConstantFP(APF, DL, VT, isTarget); 1239 } else 1240 llvm_unreachable("Unsupported type in getConstantFP"); 1241 } 1242 1243 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1244 EVT VT, int64_t Offset, bool isTargetGA, 1245 unsigned char TargetFlags) { 1246 assert((TargetFlags == 0 || isTargetGA) && 1247 "Cannot set target flags on target-independent globals"); 1248 1249 // Truncate (with sign-extension) the offset value to the pointer size. 1250 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1251 if (BitWidth < 64) 1252 Offset = SignExtend64(Offset, BitWidth); 1253 1254 unsigned Opc; 1255 if (GV->isThreadLocal()) 1256 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1257 else 1258 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1259 1260 FoldingSetNodeID ID; 1261 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1262 ID.AddPointer(GV); 1263 ID.AddInteger(Offset); 1264 ID.AddInteger(TargetFlags); 1265 ID.AddInteger(GV->getType()->getAddressSpace()); 1266 void *IP = nullptr; 1267 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1268 return SDValue(E, 0); 1269 1270 auto *N = newSDNode<GlobalAddressSDNode>( 1271 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1272 CSEMap.InsertNode(N, IP); 1273 InsertNode(N); 1274 return SDValue(N, 0); 1275 } 1276 1277 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1278 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1279 FoldingSetNodeID ID; 1280 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1281 ID.AddInteger(FI); 1282 void *IP = nullptr; 1283 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1284 return SDValue(E, 0); 1285 1286 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1287 CSEMap.InsertNode(N, IP); 1288 InsertNode(N); 1289 return SDValue(N, 0); 1290 } 1291 1292 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1293 unsigned char TargetFlags) { 1294 assert((TargetFlags == 0 || isTarget) && 1295 "Cannot set target flags on target-independent jump tables"); 1296 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1297 FoldingSetNodeID ID; 1298 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1299 ID.AddInteger(JTI); 1300 ID.AddInteger(TargetFlags); 1301 void *IP = nullptr; 1302 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1303 return SDValue(E, 0); 1304 1305 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1306 CSEMap.InsertNode(N, IP); 1307 InsertNode(N); 1308 return SDValue(N, 0); 1309 } 1310 1311 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1312 unsigned Alignment, int Offset, 1313 bool isTarget, 1314 unsigned char TargetFlags) { 1315 assert((TargetFlags == 0 || isTarget) && 1316 "Cannot set target flags on target-independent globals"); 1317 if (Alignment == 0) 1318 Alignment = MF->getFunction()->optForSize() 1319 ? getDataLayout().getABITypeAlignment(C->getType()) 1320 : getDataLayout().getPrefTypeAlignment(C->getType()); 1321 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1322 FoldingSetNodeID ID; 1323 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1324 ID.AddInteger(Alignment); 1325 ID.AddInteger(Offset); 1326 ID.AddPointer(C); 1327 ID.AddInteger(TargetFlags); 1328 void *IP = nullptr; 1329 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1330 return SDValue(E, 0); 1331 1332 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1333 TargetFlags); 1334 CSEMap.InsertNode(N, IP); 1335 InsertNode(N); 1336 return SDValue(N, 0); 1337 } 1338 1339 1340 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1341 unsigned Alignment, int Offset, 1342 bool isTarget, 1343 unsigned char TargetFlags) { 1344 assert((TargetFlags == 0 || isTarget) && 1345 "Cannot set target flags on target-independent globals"); 1346 if (Alignment == 0) 1347 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1348 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1349 FoldingSetNodeID ID; 1350 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1351 ID.AddInteger(Alignment); 1352 ID.AddInteger(Offset); 1353 C->addSelectionDAGCSEId(ID); 1354 ID.AddInteger(TargetFlags); 1355 void *IP = nullptr; 1356 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1357 return SDValue(E, 0); 1358 1359 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1360 TargetFlags); 1361 CSEMap.InsertNode(N, IP); 1362 InsertNode(N); 1363 return SDValue(N, 0); 1364 } 1365 1366 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1367 unsigned char TargetFlags) { 1368 FoldingSetNodeID ID; 1369 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1370 ID.AddInteger(Index); 1371 ID.AddInteger(Offset); 1372 ID.AddInteger(TargetFlags); 1373 void *IP = nullptr; 1374 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1375 return SDValue(E, 0); 1376 1377 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1378 CSEMap.InsertNode(N, IP); 1379 InsertNode(N); 1380 return SDValue(N, 0); 1381 } 1382 1383 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1384 FoldingSetNodeID ID; 1385 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1386 ID.AddPointer(MBB); 1387 void *IP = nullptr; 1388 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1389 return SDValue(E, 0); 1390 1391 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1392 CSEMap.InsertNode(N, IP); 1393 InsertNode(N); 1394 return SDValue(N, 0); 1395 } 1396 1397 SDValue SelectionDAG::getValueType(EVT VT) { 1398 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1399 ValueTypeNodes.size()) 1400 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1401 1402 SDNode *&N = VT.isExtended() ? 1403 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1404 1405 if (N) return SDValue(N, 0); 1406 N = newSDNode<VTSDNode>(VT); 1407 InsertNode(N); 1408 return SDValue(N, 0); 1409 } 1410 1411 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1412 SDNode *&N = ExternalSymbols[Sym]; 1413 if (N) return SDValue(N, 0); 1414 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1415 InsertNode(N); 1416 return SDValue(N, 0); 1417 } 1418 1419 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1420 SDNode *&N = MCSymbols[Sym]; 1421 if (N) 1422 return SDValue(N, 0); 1423 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1424 InsertNode(N); 1425 return SDValue(N, 0); 1426 } 1427 1428 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1429 unsigned char TargetFlags) { 1430 SDNode *&N = 1431 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1432 TargetFlags)]; 1433 if (N) return SDValue(N, 0); 1434 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1435 InsertNode(N); 1436 return SDValue(N, 0); 1437 } 1438 1439 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1440 if ((unsigned)Cond >= CondCodeNodes.size()) 1441 CondCodeNodes.resize(Cond+1); 1442 1443 if (!CondCodeNodes[Cond]) { 1444 auto *N = newSDNode<CondCodeSDNode>(Cond); 1445 CondCodeNodes[Cond] = N; 1446 InsertNode(N); 1447 } 1448 1449 return SDValue(CondCodeNodes[Cond], 0); 1450 } 1451 1452 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1453 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1454 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1455 std::swap(N1, N2); 1456 ShuffleVectorSDNode::commuteMask(M); 1457 } 1458 1459 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1460 SDValue N2, ArrayRef<int> Mask) { 1461 assert(VT.getVectorNumElements() == Mask.size() && 1462 "Must have the same number of vector elements as mask elements!"); 1463 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1464 "Invalid VECTOR_SHUFFLE"); 1465 1466 // Canonicalize shuffle undef, undef -> undef 1467 if (N1.isUndef() && N2.isUndef()) 1468 return getUNDEF(VT); 1469 1470 // Validate that all indices in Mask are within the range of the elements 1471 // input to the shuffle. 1472 int NElts = Mask.size(); 1473 assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) && 1474 "Index out of range"); 1475 1476 // Copy the mask so we can do any needed cleanup. 1477 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1478 1479 // Canonicalize shuffle v, v -> v, undef 1480 if (N1 == N2) { 1481 N2 = getUNDEF(VT); 1482 for (int i = 0; i != NElts; ++i) 1483 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1484 } 1485 1486 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1487 if (N1.isUndef()) 1488 commuteShuffle(N1, N2, MaskVec); 1489 1490 // If shuffling a splat, try to blend the splat instead. We do this here so 1491 // that even when this arises during lowering we don't have to re-handle it. 1492 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1493 BitVector UndefElements; 1494 SDValue Splat = BV->getSplatValue(&UndefElements); 1495 if (!Splat) 1496 return; 1497 1498 for (int i = 0; i < NElts; ++i) { 1499 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1500 continue; 1501 1502 // If this input comes from undef, mark it as such. 1503 if (UndefElements[MaskVec[i] - Offset]) { 1504 MaskVec[i] = -1; 1505 continue; 1506 } 1507 1508 // If we can blend a non-undef lane, use that instead. 1509 if (!UndefElements[i]) 1510 MaskVec[i] = i + Offset; 1511 } 1512 }; 1513 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1514 BlendSplat(N1BV, 0); 1515 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1516 BlendSplat(N2BV, NElts); 1517 1518 // Canonicalize all index into lhs, -> shuffle lhs, undef 1519 // Canonicalize all index into rhs, -> shuffle rhs, undef 1520 bool AllLHS = true, AllRHS = true; 1521 bool N2Undef = N2.isUndef(); 1522 for (int i = 0; i != NElts; ++i) { 1523 if (MaskVec[i] >= NElts) { 1524 if (N2Undef) 1525 MaskVec[i] = -1; 1526 else 1527 AllLHS = false; 1528 } else if (MaskVec[i] >= 0) { 1529 AllRHS = false; 1530 } 1531 } 1532 if (AllLHS && AllRHS) 1533 return getUNDEF(VT); 1534 if (AllLHS && !N2Undef) 1535 N2 = getUNDEF(VT); 1536 if (AllRHS) { 1537 N1 = getUNDEF(VT); 1538 commuteShuffle(N1, N2, MaskVec); 1539 } 1540 // Reset our undef status after accounting for the mask. 1541 N2Undef = N2.isUndef(); 1542 // Re-check whether both sides ended up undef. 1543 if (N1.isUndef() && N2Undef) 1544 return getUNDEF(VT); 1545 1546 // If Identity shuffle return that node. 1547 bool Identity = true, AllSame = true; 1548 for (int i = 0; i != NElts; ++i) { 1549 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1550 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1551 } 1552 if (Identity && NElts) 1553 return N1; 1554 1555 // Shuffling a constant splat doesn't change the result. 1556 if (N2Undef) { 1557 SDValue V = N1; 1558 1559 // Look through any bitcasts. We check that these don't change the number 1560 // (and size) of elements and just changes their types. 1561 while (V.getOpcode() == ISD::BITCAST) 1562 V = V->getOperand(0); 1563 1564 // A splat should always show up as a build vector node. 1565 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1566 BitVector UndefElements; 1567 SDValue Splat = BV->getSplatValue(&UndefElements); 1568 // If this is a splat of an undef, shuffling it is also undef. 1569 if (Splat && Splat.isUndef()) 1570 return getUNDEF(VT); 1571 1572 bool SameNumElts = 1573 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1574 1575 // We only have a splat which can skip shuffles if there is a splatted 1576 // value and no undef lanes rearranged by the shuffle. 1577 if (Splat && UndefElements.none()) { 1578 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1579 // number of elements match or the value splatted is a zero constant. 1580 if (SameNumElts) 1581 return N1; 1582 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1583 if (C->isNullValue()) 1584 return N1; 1585 } 1586 1587 // If the shuffle itself creates a splat, build the vector directly. 1588 if (AllSame && SameNumElts) { 1589 EVT BuildVT = BV->getValueType(0); 1590 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1591 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1592 1593 // We may have jumped through bitcasts, so the type of the 1594 // BUILD_VECTOR may not match the type of the shuffle. 1595 if (BuildVT != VT) 1596 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1597 return NewBV; 1598 } 1599 } 1600 } 1601 1602 FoldingSetNodeID ID; 1603 SDValue Ops[2] = { N1, N2 }; 1604 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1605 for (int i = 0; i != NElts; ++i) 1606 ID.AddInteger(MaskVec[i]); 1607 1608 void* IP = nullptr; 1609 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1610 return SDValue(E, 0); 1611 1612 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1613 // SDNode doesn't have access to it. This memory will be "leaked" when 1614 // the node is deallocated, but recovered when the NodeAllocator is released. 1615 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1616 std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc); 1617 1618 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1619 dl.getDebugLoc(), MaskAlloc); 1620 createOperands(N, Ops); 1621 1622 CSEMap.InsertNode(N, IP); 1623 InsertNode(N); 1624 return SDValue(N, 0); 1625 } 1626 1627 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1628 MVT VT = SV.getSimpleValueType(0); 1629 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1630 ShuffleVectorSDNode::commuteMask(MaskVec); 1631 1632 SDValue Op0 = SV.getOperand(0); 1633 SDValue Op1 = SV.getOperand(1); 1634 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1635 } 1636 1637 SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val, 1638 SDValue DTy, SDValue STy, SDValue Rnd, 1639 SDValue Sat, ISD::CvtCode Code) { 1640 // If the src and dest types are the same and the conversion is between 1641 // integer types of the same sign or two floats, no conversion is necessary. 1642 if (DTy == STy && 1643 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF)) 1644 return Val; 1645 1646 FoldingSetNodeID ID; 1647 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat }; 1648 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops); 1649 void* IP = nullptr; 1650 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1651 return SDValue(E, 0); 1652 1653 auto *N = 1654 newSDNode<CvtRndSatSDNode>(VT, dl.getIROrder(), dl.getDebugLoc(), Code); 1655 createOperands(N, Ops); 1656 1657 CSEMap.InsertNode(N, IP); 1658 InsertNode(N); 1659 return SDValue(N, 0); 1660 } 1661 1662 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1665 ID.AddInteger(RegNo); 1666 void *IP = nullptr; 1667 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1668 return SDValue(E, 0); 1669 1670 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1671 CSEMap.InsertNode(N, IP); 1672 InsertNode(N); 1673 return SDValue(N, 0); 1674 } 1675 1676 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1677 FoldingSetNodeID ID; 1678 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1679 ID.AddPointer(RegMask); 1680 void *IP = nullptr; 1681 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1682 return SDValue(E, 0); 1683 1684 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1685 CSEMap.InsertNode(N, IP); 1686 InsertNode(N); 1687 return SDValue(N, 0); 1688 } 1689 1690 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1691 MCSymbol *Label) { 1692 FoldingSetNodeID ID; 1693 SDValue Ops[] = { Root }; 1694 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); 1695 ID.AddPointer(Label); 1696 void *IP = nullptr; 1697 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1698 return SDValue(E, 0); 1699 1700 auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label); 1701 createOperands(N, Ops); 1702 1703 CSEMap.InsertNode(N, IP); 1704 InsertNode(N); 1705 return SDValue(N, 0); 1706 } 1707 1708 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1709 int64_t Offset, 1710 bool isTarget, 1711 unsigned char TargetFlags) { 1712 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1713 1714 FoldingSetNodeID ID; 1715 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1716 ID.AddPointer(BA); 1717 ID.AddInteger(Offset); 1718 ID.AddInteger(TargetFlags); 1719 void *IP = nullptr; 1720 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1721 return SDValue(E, 0); 1722 1723 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1724 CSEMap.InsertNode(N, IP); 1725 InsertNode(N); 1726 return SDValue(N, 0); 1727 } 1728 1729 SDValue SelectionDAG::getSrcValue(const Value *V) { 1730 assert((!V || V->getType()->isPointerTy()) && 1731 "SrcValue is not a pointer?"); 1732 1733 FoldingSetNodeID ID; 1734 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1735 ID.AddPointer(V); 1736 1737 void *IP = nullptr; 1738 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1739 return SDValue(E, 0); 1740 1741 auto *N = newSDNode<SrcValueSDNode>(V); 1742 CSEMap.InsertNode(N, IP); 1743 InsertNode(N); 1744 return SDValue(N, 0); 1745 } 1746 1747 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1748 FoldingSetNodeID ID; 1749 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1750 ID.AddPointer(MD); 1751 1752 void *IP = nullptr; 1753 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1754 return SDValue(E, 0); 1755 1756 auto *N = newSDNode<MDNodeSDNode>(MD); 1757 CSEMap.InsertNode(N, IP); 1758 InsertNode(N); 1759 return SDValue(N, 0); 1760 } 1761 1762 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1763 if (VT == V.getValueType()) 1764 return V; 1765 1766 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1767 } 1768 1769 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1770 unsigned SrcAS, unsigned DestAS) { 1771 SDValue Ops[] = {Ptr}; 1772 FoldingSetNodeID ID; 1773 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1774 ID.AddInteger(SrcAS); 1775 ID.AddInteger(DestAS); 1776 1777 void *IP = nullptr; 1778 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1779 return SDValue(E, 0); 1780 1781 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1782 VT, SrcAS, DestAS); 1783 createOperands(N, Ops); 1784 1785 CSEMap.InsertNode(N, IP); 1786 InsertNode(N); 1787 return SDValue(N, 0); 1788 } 1789 1790 /// getShiftAmountOperand - Return the specified value casted to 1791 /// the target's desired shift amount type. 1792 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1793 EVT OpTy = Op.getValueType(); 1794 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1795 if (OpTy == ShTy || OpTy.isVector()) return Op; 1796 1797 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1798 } 1799 1800 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1801 SDLoc dl(Node); 1802 const TargetLowering &TLI = getTargetLoweringInfo(); 1803 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1804 EVT VT = Node->getValueType(0); 1805 SDValue Tmp1 = Node->getOperand(0); 1806 SDValue Tmp2 = Node->getOperand(1); 1807 unsigned Align = Node->getConstantOperandVal(3); 1808 1809 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1810 Tmp2, MachinePointerInfo(V)); 1811 SDValue VAList = VAListLoad; 1812 1813 if (Align > TLI.getMinStackArgumentAlignment()) { 1814 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1815 1816 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1817 getConstant(Align - 1, dl, VAList.getValueType())); 1818 1819 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1820 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1821 } 1822 1823 // Increment the pointer, VAList, to the next vaarg 1824 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1825 getConstant(getDataLayout().getTypeAllocSize( 1826 VT.getTypeForEVT(*getContext())), 1827 dl, VAList.getValueType())); 1828 // Store the incremented VAList to the legalized pointer 1829 Tmp1 = 1830 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1831 // Load the actual argument out of the pointer VAList 1832 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1833 } 1834 1835 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1836 SDLoc dl(Node); 1837 const TargetLowering &TLI = getTargetLoweringInfo(); 1838 // This defaults to loading a pointer from the input and storing it to the 1839 // output, returning the chain. 1840 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1841 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1842 SDValue Tmp1 = 1843 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1844 Node->getOperand(2), MachinePointerInfo(VS)); 1845 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1846 MachinePointerInfo(VD)); 1847 } 1848 1849 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1850 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1851 unsigned ByteSize = VT.getStoreSize(); 1852 Type *Ty = VT.getTypeForEVT(*getContext()); 1853 unsigned StackAlign = 1854 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1855 1856 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1857 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1858 } 1859 1860 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1861 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1862 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1863 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1864 const DataLayout &DL = getDataLayout(); 1865 unsigned Align = 1866 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1867 1868 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1869 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1870 return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout())); 1871 } 1872 1873 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1874 ISD::CondCode Cond, const SDLoc &dl) { 1875 // These setcc operations always fold. 1876 switch (Cond) { 1877 default: break; 1878 case ISD::SETFALSE: 1879 case ISD::SETFALSE2: return getConstant(0, dl, VT); 1880 case ISD::SETTRUE: 1881 case ISD::SETTRUE2: { 1882 TargetLowering::BooleanContent Cnt = 1883 TLI->getBooleanContents(N1->getValueType(0)); 1884 return getConstant( 1885 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1886 VT); 1887 } 1888 1889 case ISD::SETOEQ: 1890 case ISD::SETOGT: 1891 case ISD::SETOGE: 1892 case ISD::SETOLT: 1893 case ISD::SETOLE: 1894 case ISD::SETONE: 1895 case ISD::SETO: 1896 case ISD::SETUO: 1897 case ISD::SETUEQ: 1898 case ISD::SETUNE: 1899 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); 1900 break; 1901 } 1902 1903 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 1904 const APInt &C2 = N2C->getAPIntValue(); 1905 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 1906 const APInt &C1 = N1C->getAPIntValue(); 1907 1908 switch (Cond) { 1909 default: llvm_unreachable("Unknown integer setcc!"); 1910 case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); 1911 case ISD::SETNE: return getConstant(C1 != C2, dl, VT); 1912 case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); 1913 case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); 1914 case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); 1915 case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); 1916 case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); 1917 case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); 1918 case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); 1919 case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); 1920 } 1921 } 1922 } 1923 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) { 1924 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) { 1925 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); 1926 switch (Cond) { 1927 default: break; 1928 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 1929 return getUNDEF(VT); 1930 LLVM_FALLTHROUGH; 1931 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); 1932 case ISD::SETNE: if (R==APFloat::cmpUnordered) 1933 return getUNDEF(VT); 1934 LLVM_FALLTHROUGH; 1935 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || 1936 R==APFloat::cmpLessThan, dl, VT); 1937 case ISD::SETLT: if (R==APFloat::cmpUnordered) 1938 return getUNDEF(VT); 1939 LLVM_FALLTHROUGH; 1940 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); 1941 case ISD::SETGT: if (R==APFloat::cmpUnordered) 1942 return getUNDEF(VT); 1943 LLVM_FALLTHROUGH; 1944 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); 1945 case ISD::SETLE: if (R==APFloat::cmpUnordered) 1946 return getUNDEF(VT); 1947 LLVM_FALLTHROUGH; 1948 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || 1949 R==APFloat::cmpEqual, dl, VT); 1950 case ISD::SETGE: if (R==APFloat::cmpUnordered) 1951 return getUNDEF(VT); 1952 LLVM_FALLTHROUGH; 1953 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || 1954 R==APFloat::cmpEqual, dl, VT); 1955 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); 1956 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); 1957 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || 1958 R==APFloat::cmpEqual, dl, VT); 1959 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); 1960 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || 1961 R==APFloat::cmpLessThan, dl, VT); 1962 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || 1963 R==APFloat::cmpUnordered, dl, VT); 1964 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); 1965 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); 1966 } 1967 } else { 1968 // Ensure that the constant occurs on the RHS. 1969 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 1970 MVT CompVT = N1.getValueType().getSimpleVT(); 1971 if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) 1972 return SDValue(); 1973 1974 return getSetCC(dl, VT, N2, N1, SwappedCond); 1975 } 1976 } 1977 1978 // Could not fold it. 1979 return SDValue(); 1980 } 1981 1982 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 1983 /// use this predicate to simplify operations downstream. 1984 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 1985 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1986 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); 1987 } 1988 1989 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1990 /// this predicate to simplify operations downstream. Mask is known to be zero 1991 /// for bits that V cannot have. 1992 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 1993 unsigned Depth) const { 1994 APInt KnownZero, KnownOne; 1995 computeKnownBits(Op, KnownZero, KnownOne, Depth); 1996 return (KnownZero & Mask) == Mask; 1997 } 1998 1999 /// Determine which bits of Op are known to be either zero or one and return 2000 /// them in the KnownZero/KnownOne bitsets. 2001 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, 2002 APInt &KnownOne, unsigned Depth) const { 2003 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2004 2005 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. 2006 if (Depth == 6) 2007 return; // Limit search depth. 2008 2009 APInt KnownZero2, KnownOne2; 2010 2011 switch (Op.getOpcode()) { 2012 case ISD::Constant: 2013 // We know all of the bits for a constant! 2014 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 2015 KnownZero = ~KnownOne; 2016 break; 2017 case ISD::BUILD_VECTOR: 2018 // Collect the known bits that are shared by every vector element. 2019 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 2020 for (SDValue SrcOp : Op->ops()) { 2021 computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1); 2022 2023 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2024 if (SrcOp.getValueSizeInBits() != BitWidth) { 2025 assert(SrcOp.getValueSizeInBits() > BitWidth && 2026 "Expected BUILD_VECTOR implicit truncation"); 2027 KnownOne2 = KnownOne2.trunc(BitWidth); 2028 KnownZero2 = KnownZero2.trunc(BitWidth); 2029 } 2030 2031 // Known bits are the values that are shared by every element. 2032 // TODO: support per-element known bits. 2033 KnownOne &= KnownOne2; 2034 KnownZero &= KnownZero2; 2035 } 2036 break; 2037 case ISD::AND: 2038 // If either the LHS or the RHS are Zero, the result is zero. 2039 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2040 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2041 2042 // Output known-1 bits are only known if set in both the LHS & RHS. 2043 KnownOne &= KnownOne2; 2044 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2045 KnownZero |= KnownZero2; 2046 break; 2047 case ISD::OR: 2048 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2049 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2050 2051 // Output known-0 bits are only known if clear in both the LHS & RHS. 2052 KnownZero &= KnownZero2; 2053 // Output known-1 are known to be set if set in either the LHS | RHS. 2054 KnownOne |= KnownOne2; 2055 break; 2056 case ISD::XOR: { 2057 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2058 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2059 2060 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2061 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 2062 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2063 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 2064 KnownZero = KnownZeroOut; 2065 break; 2066 } 2067 case ISD::MUL: { 2068 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2069 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2070 2071 // If low bits are zero in either operand, output low known-0 bits. 2072 // Also compute a conserative estimate for high known-0 bits. 2073 // More trickiness is possible, but this is sufficient for the 2074 // interesting case of alignment computation. 2075 KnownOne.clearAllBits(); 2076 unsigned TrailZ = KnownZero.countTrailingOnes() + 2077 KnownZero2.countTrailingOnes(); 2078 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 2079 KnownZero2.countLeadingOnes(), 2080 BitWidth) - BitWidth; 2081 2082 TrailZ = std::min(TrailZ, BitWidth); 2083 LeadZ = std::min(LeadZ, BitWidth); 2084 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 2085 APInt::getHighBitsSet(BitWidth, LeadZ); 2086 break; 2087 } 2088 case ISD::UDIV: { 2089 // For the purposes of computing leading zeros we can conservatively 2090 // treat a udiv as a logical right shift by the power of 2 known to 2091 // be less than the denominator. 2092 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2093 unsigned LeadZ = KnownZero2.countLeadingOnes(); 2094 2095 KnownOne2.clearAllBits(); 2096 KnownZero2.clearAllBits(); 2097 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2098 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 2099 if (RHSUnknownLeadingOnes != BitWidth) 2100 LeadZ = std::min(BitWidth, 2101 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 2102 2103 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 2104 break; 2105 } 2106 case ISD::SELECT: 2107 computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); 2108 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2109 2110 // Only known if known in both the LHS and RHS. 2111 KnownOne &= KnownOne2; 2112 KnownZero &= KnownZero2; 2113 break; 2114 case ISD::SELECT_CC: 2115 computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); 2116 computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); 2117 2118 // Only known if known in both the LHS and RHS. 2119 KnownOne &= KnownOne2; 2120 KnownZero &= KnownZero2; 2121 break; 2122 case ISD::SADDO: 2123 case ISD::UADDO: 2124 case ISD::SSUBO: 2125 case ISD::USUBO: 2126 case ISD::SMULO: 2127 case ISD::UMULO: 2128 if (Op.getResNo() != 1) 2129 break; 2130 // The boolean result conforms to getBooleanContents. 2131 // If we know the result of a setcc has the top bits zero, use this info. 2132 // We know that we have an integer-based boolean since these operations 2133 // are only available for integer. 2134 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2135 TargetLowering::ZeroOrOneBooleanContent && 2136 BitWidth > 1) 2137 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2138 break; 2139 case ISD::SETCC: 2140 // If we know the result of a setcc has the top bits zero, use this info. 2141 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2142 TargetLowering::ZeroOrOneBooleanContent && 2143 BitWidth > 1) 2144 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2145 break; 2146 case ISD::SHL: 2147 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 2148 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2149 unsigned ShAmt = SA->getZExtValue(); 2150 2151 // If the shift count is an invalid immediate, don't do anything. 2152 if (ShAmt >= BitWidth) 2153 break; 2154 2155 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2156 KnownZero <<= ShAmt; 2157 KnownOne <<= ShAmt; 2158 // low bits known zero. 2159 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt); 2160 } 2161 break; 2162 case ISD::SRL: 2163 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 2164 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2165 unsigned ShAmt = SA->getZExtValue(); 2166 2167 // If the shift count is an invalid immediate, don't do anything. 2168 if (ShAmt >= BitWidth) 2169 break; 2170 2171 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2172 KnownZero = KnownZero.lshr(ShAmt); 2173 KnownOne = KnownOne.lshr(ShAmt); 2174 2175 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 2176 KnownZero |= HighBits; // High bits known zero. 2177 } 2178 break; 2179 case ISD::SRA: 2180 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2181 unsigned ShAmt = SA->getZExtValue(); 2182 2183 // If the shift count is an invalid immediate, don't do anything. 2184 if (ShAmt >= BitWidth) 2185 break; 2186 2187 // If any of the demanded bits are produced by the sign extension, we also 2188 // demand the input sign bit. 2189 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 2190 2191 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2192 KnownZero = KnownZero.lshr(ShAmt); 2193 KnownOne = KnownOne.lshr(ShAmt); 2194 2195 // Handle the sign bits. 2196 APInt SignBit = APInt::getSignBit(BitWidth); 2197 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask. 2198 2199 if (KnownZero.intersects(SignBit)) { 2200 KnownZero |= HighBits; // New bits are known zero. 2201 } else if (KnownOne.intersects(SignBit)) { 2202 KnownOne |= HighBits; // New bits are known one. 2203 } 2204 } 2205 break; 2206 case ISD::SIGN_EXTEND_INREG: { 2207 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2208 unsigned EBits = EVT.getScalarSizeInBits(); 2209 2210 // Sign extension. Compute the demanded bits in the result that are not 2211 // present in the input. 2212 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2213 2214 APInt InSignBit = APInt::getSignBit(EBits); 2215 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2216 2217 // If the sign extended bits are demanded, we know that the sign 2218 // bit is demanded. 2219 InSignBit = InSignBit.zext(BitWidth); 2220 if (NewBits.getBoolValue()) 2221 InputDemandedBits |= InSignBit; 2222 2223 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2224 KnownOne &= InputDemandedBits; 2225 KnownZero &= InputDemandedBits; 2226 2227 // If the sign bit of the input is known set or clear, then we know the 2228 // top bits of the result. 2229 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear 2230 KnownZero |= NewBits; 2231 KnownOne &= ~NewBits; 2232 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 2233 KnownOne |= NewBits; 2234 KnownZero &= ~NewBits; 2235 } else { // Input sign bit unknown 2236 KnownZero &= ~NewBits; 2237 KnownOne &= ~NewBits; 2238 } 2239 break; 2240 } 2241 case ISD::CTTZ: 2242 case ISD::CTTZ_ZERO_UNDEF: 2243 case ISD::CTLZ: 2244 case ISD::CTLZ_ZERO_UNDEF: 2245 case ISD::CTPOP: { 2246 unsigned LowBits = Log2_32(BitWidth)+1; 2247 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 2248 KnownOne.clearAllBits(); 2249 break; 2250 } 2251 case ISD::LOAD: { 2252 LoadSDNode *LD = cast<LoadSDNode>(Op); 2253 // If this is a ZEXTLoad and we are looking at the loaded value. 2254 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2255 EVT VT = LD->getMemoryVT(); 2256 unsigned MemBits = VT.getScalarSizeInBits(); 2257 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 2258 } else if (const MDNode *Ranges = LD->getRanges()) { 2259 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2260 computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); 2261 } 2262 break; 2263 } 2264 case ISD::ZERO_EXTEND: { 2265 EVT InVT = Op.getOperand(0).getValueType(); 2266 unsigned InBits = InVT.getScalarSizeInBits(); 2267 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2268 KnownZero = KnownZero.trunc(InBits); 2269 KnownOne = KnownOne.trunc(InBits); 2270 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2271 KnownZero = KnownZero.zext(BitWidth); 2272 KnownOne = KnownOne.zext(BitWidth); 2273 KnownZero |= NewBits; 2274 break; 2275 } 2276 case ISD::SIGN_EXTEND: { 2277 EVT InVT = Op.getOperand(0).getValueType(); 2278 unsigned InBits = InVT.getScalarSizeInBits(); 2279 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); 2280 2281 KnownZero = KnownZero.trunc(InBits); 2282 KnownOne = KnownOne.trunc(InBits); 2283 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2284 2285 // Note if the sign bit is known to be zero or one. 2286 bool SignBitKnownZero = KnownZero.isNegative(); 2287 bool SignBitKnownOne = KnownOne.isNegative(); 2288 2289 KnownZero = KnownZero.zext(BitWidth); 2290 KnownOne = KnownOne.zext(BitWidth); 2291 2292 // If the sign bit is known zero or one, the top bits match. 2293 if (SignBitKnownZero) 2294 KnownZero |= NewBits; 2295 else if (SignBitKnownOne) 2296 KnownOne |= NewBits; 2297 break; 2298 } 2299 case ISD::ANY_EXTEND: { 2300 EVT InVT = Op.getOperand(0).getValueType(); 2301 unsigned InBits = InVT.getScalarSizeInBits(); 2302 KnownZero = KnownZero.trunc(InBits); 2303 KnownOne = KnownOne.trunc(InBits); 2304 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2305 KnownZero = KnownZero.zext(BitWidth); 2306 KnownOne = KnownOne.zext(BitWidth); 2307 break; 2308 } 2309 case ISD::TRUNCATE: { 2310 EVT InVT = Op.getOperand(0).getValueType(); 2311 unsigned InBits = InVT.getScalarSizeInBits(); 2312 KnownZero = KnownZero.zext(InBits); 2313 KnownOne = KnownOne.zext(InBits); 2314 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2315 KnownZero = KnownZero.trunc(BitWidth); 2316 KnownOne = KnownOne.trunc(BitWidth); 2317 break; 2318 } 2319 case ISD::AssertZext: { 2320 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2321 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 2322 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2323 KnownZero |= (~InMask); 2324 KnownOne &= (~KnownZero); 2325 break; 2326 } 2327 case ISD::FGETSIGN: 2328 // All bits are zero except the low bit. 2329 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); 2330 break; 2331 2332 case ISD::SUB: { 2333 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) { 2334 // We know that the top bits of C-X are clear if X contains less bits 2335 // than C (i.e. no wrap-around can happen). For example, 20-X is 2336 // positive if we can prove that X is >= 0 and < 16. 2337 if (CLHS->getAPIntValue().isNonNegative()) { 2338 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); 2339 // NLZ can't be BitWidth with no sign bit 2340 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 2341 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2342 2343 // If all of the MaskV bits are known to be zero, then we know the 2344 // output top bits are zero, because we now know that the output is 2345 // from [0-C]. 2346 if ((KnownZero2 & MaskV) == MaskV) { 2347 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); 2348 // Top bits known zero. 2349 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 2350 } 2351 } 2352 } 2353 LLVM_FALLTHROUGH; 2354 } 2355 case ISD::ADD: 2356 case ISD::ADDE: { 2357 // Output known-0 bits are known if clear or set in both the low clear bits 2358 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the 2359 // low 3 bits clear. 2360 // Output known-0 bits are also known if the top bits of each input are 2361 // known to be clear. For example, if one input has the top 10 bits clear 2362 // and the other has the top 8 bits clear, we know the top 7 bits of the 2363 // output must be clear. 2364 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2365 unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); 2366 unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); 2367 2368 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2369 KnownZeroHigh = std::min(KnownZeroHigh, 2370 KnownZero2.countLeadingOnes()); 2371 KnownZeroLow = std::min(KnownZeroLow, 2372 KnownZero2.countTrailingOnes()); 2373 2374 if (Op.getOpcode() == ISD::ADD) { 2375 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow); 2376 if (KnownZeroHigh > 1) 2377 KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1); 2378 break; 2379 } 2380 2381 // With ADDE, a carry bit may be added in, so we can only use this 2382 // information if we know (at least) that the low two bits are clear. We 2383 // then return to the caller that the low bit is unknown but that other bits 2384 // are known zero. 2385 if (KnownZeroLow >= 2) // ADDE 2386 KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow); 2387 break; 2388 } 2389 case ISD::SREM: 2390 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2391 const APInt &RA = Rem->getAPIntValue().abs(); 2392 if (RA.isPowerOf2()) { 2393 APInt LowBits = RA - 1; 2394 computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1); 2395 2396 // The low bits of the first operand are unchanged by the srem. 2397 KnownZero = KnownZero2 & LowBits; 2398 KnownOne = KnownOne2 & LowBits; 2399 2400 // If the first operand is non-negative or has all low bits zero, then 2401 // the upper bits are all zero. 2402 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 2403 KnownZero |= ~LowBits; 2404 2405 // If the first operand is negative and not all low bits are zero, then 2406 // the upper bits are all one. 2407 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 2408 KnownOne |= ~LowBits; 2409 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 2410 } 2411 } 2412 break; 2413 case ISD::UREM: { 2414 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2415 const APInt &RA = Rem->getAPIntValue(); 2416 if (RA.isPowerOf2()) { 2417 APInt LowBits = (RA - 1); 2418 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1); 2419 2420 // The upper bits are all zero, the lower ones are unchanged. 2421 KnownZero = KnownZero2 | ~LowBits; 2422 KnownOne = KnownOne2 & LowBits; 2423 break; 2424 } 2425 } 2426 2427 // Since the result is less than or equal to either operand, any leading 2428 // zero bits in either operand must also exist in the result. 2429 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2430 computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); 2431 2432 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), 2433 KnownZero2.countLeadingOnes()); 2434 KnownOne.clearAllBits(); 2435 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 2436 break; 2437 } 2438 case ISD::EXTRACT_ELEMENT: { 2439 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2440 const unsigned Index = 2441 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2442 const unsigned BitWidth = Op.getValueSizeInBits(); 2443 2444 // Remove low part of known bits mask 2445 KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); 2446 KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); 2447 2448 // Remove high part of known bit mask 2449 KnownZero = KnownZero.trunc(BitWidth); 2450 KnownOne = KnownOne.trunc(BitWidth); 2451 break; 2452 } 2453 case ISD::EXTRACT_VECTOR_ELT: { 2454 // At the moment we keep this simple and skip tracking the specific 2455 // element. This way we get the lowest common denominator for all elements 2456 // of the vector. 2457 // TODO: get information for given vector element 2458 const unsigned BitWidth = Op.getValueSizeInBits(); 2459 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 2460 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2461 // anything about the extended bits. 2462 if (BitWidth > EltBitWidth) { 2463 KnownZero = KnownZero.trunc(EltBitWidth); 2464 KnownOne = KnownOne.trunc(EltBitWidth); 2465 } 2466 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2467 if (BitWidth > EltBitWidth) { 2468 KnownZero = KnownZero.zext(BitWidth); 2469 KnownOne = KnownOne.zext(BitWidth); 2470 } 2471 break; 2472 } 2473 case ISD::BSWAP: { 2474 computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); 2475 KnownZero = KnownZero2.byteSwap(); 2476 KnownOne = KnownOne2.byteSwap(); 2477 break; 2478 } 2479 case ISD::SMIN: 2480 case ISD::SMAX: 2481 case ISD::UMIN: 2482 case ISD::UMAX: { 2483 APInt Op0Zero, Op0One; 2484 APInt Op1Zero, Op1One; 2485 computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth); 2486 computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth); 2487 2488 KnownZero = Op0Zero & Op1Zero; 2489 KnownOne = Op0One & Op1One; 2490 break; 2491 } 2492 case ISD::FrameIndex: 2493 case ISD::TargetFrameIndex: 2494 if (unsigned Align = InferPtrAlignment(Op)) { 2495 // The low bits are known zero if the pointer is aligned. 2496 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); 2497 break; 2498 } 2499 break; 2500 2501 default: 2502 if (Op.getOpcode() < ISD::BUILTIN_OP_END) 2503 break; 2504 LLVM_FALLTHROUGH; 2505 case ISD::INTRINSIC_WO_CHAIN: 2506 case ISD::INTRINSIC_W_CHAIN: 2507 case ISD::INTRINSIC_VOID: 2508 // Allow the target to implement this method for its nodes. 2509 TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); 2510 break; 2511 } 2512 2513 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 2514 } 2515 2516 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 2517 // A left-shift of a constant one will have exactly one bit set because 2518 // shifting the bit off the end is undefined. 2519 if (Val.getOpcode() == ISD::SHL) { 2520 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2521 if (C && C->getAPIntValue() == 1) 2522 return true; 2523 } 2524 2525 // Similarly, a logical right-shift of a constant sign-bit will have exactly 2526 // one bit set. 2527 if (Val.getOpcode() == ISD::SRL) { 2528 auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0)); 2529 if (C && C->getAPIntValue().isSignBit()) 2530 return true; 2531 } 2532 2533 // More could be done here, though the above checks are enough 2534 // to handle some common cases. 2535 2536 // Fall back to computeKnownBits to catch other known cases. 2537 EVT OpVT = Val.getValueType(); 2538 unsigned BitWidth = OpVT.getScalarSizeInBits(); 2539 APInt KnownZero, KnownOne; 2540 computeKnownBits(Val, KnownZero, KnownOne); 2541 return (KnownZero.countPopulation() == BitWidth - 1) && 2542 (KnownOne.countPopulation() == 1); 2543 } 2544 2545 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 2546 EVT VT = Op.getValueType(); 2547 assert(VT.isInteger() && "Invalid VT!"); 2548 unsigned VTBits = VT.getScalarSizeInBits(); 2549 unsigned Tmp, Tmp2; 2550 unsigned FirstAnswer = 1; 2551 2552 if (Depth == 6) 2553 return 1; // Limit search depth. 2554 2555 switch (Op.getOpcode()) { 2556 default: break; 2557 case ISD::AssertSext: 2558 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2559 return VTBits-Tmp+1; 2560 case ISD::AssertZext: 2561 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 2562 return VTBits-Tmp; 2563 2564 case ISD::Constant: { 2565 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); 2566 return Val.getNumSignBits(); 2567 } 2568 2569 case ISD::SIGN_EXTEND: 2570 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 2571 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; 2572 2573 case ISD::SIGN_EXTEND_INREG: 2574 // Max of the input and what this extends. 2575 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 2576 Tmp = VTBits-Tmp+1; 2577 2578 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2579 return std::max(Tmp, Tmp2); 2580 2581 case ISD::SRA: 2582 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2583 // SRA X, C -> adds C sign bits. 2584 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2585 Tmp += C->getZExtValue(); 2586 if (Tmp > VTBits) Tmp = VTBits; 2587 } 2588 return Tmp; 2589 case ISD::SHL: 2590 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2591 // shl destroys sign bits. 2592 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2593 if (C->getZExtValue() >= VTBits || // Bad shift. 2594 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 2595 return Tmp - C->getZExtValue(); 2596 } 2597 break; 2598 case ISD::AND: 2599 case ISD::OR: 2600 case ISD::XOR: // NOT is handled here. 2601 // Logical binary ops preserve the number of sign bits at the worst. 2602 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2603 if (Tmp != 1) { 2604 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2605 FirstAnswer = std::min(Tmp, Tmp2); 2606 // We computed what we know about the sign bits as our first 2607 // answer. Now proceed to the generic code that uses 2608 // computeKnownBits, and pick whichever answer is better. 2609 } 2610 break; 2611 2612 case ISD::SELECT: 2613 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2614 if (Tmp == 1) return 1; // Early out. 2615 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2616 return std::min(Tmp, Tmp2); 2617 case ISD::SELECT_CC: 2618 Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1); 2619 if (Tmp == 1) return 1; // Early out. 2620 Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1); 2621 return std::min(Tmp, Tmp2); 2622 case ISD::SMIN: 2623 case ISD::SMAX: 2624 case ISD::UMIN: 2625 case ISD::UMAX: 2626 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2627 if (Tmp == 1) 2628 return 1; // Early out. 2629 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 2630 return std::min(Tmp, Tmp2); 2631 case ISD::SADDO: 2632 case ISD::UADDO: 2633 case ISD::SSUBO: 2634 case ISD::USUBO: 2635 case ISD::SMULO: 2636 case ISD::UMULO: 2637 if (Op.getResNo() != 1) 2638 break; 2639 // The boolean result conforms to getBooleanContents. Fall through. 2640 // If setcc returns 0/-1, all bits are sign bits. 2641 // We know that we have an integer-based boolean since these operations 2642 // are only available for integer. 2643 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2644 TargetLowering::ZeroOrNegativeOneBooleanContent) 2645 return VTBits; 2646 break; 2647 case ISD::SETCC: 2648 // If setcc returns 0/-1, all bits are sign bits. 2649 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2650 TargetLowering::ZeroOrNegativeOneBooleanContent) 2651 return VTBits; 2652 break; 2653 case ISD::ROTL: 2654 case ISD::ROTR: 2655 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2656 unsigned RotAmt = C->getZExtValue() & (VTBits-1); 2657 2658 // Handle rotate right by N like a rotate left by 32-N. 2659 if (Op.getOpcode() == ISD::ROTR) 2660 RotAmt = (VTBits-RotAmt) & (VTBits-1); 2661 2662 // If we aren't rotating out all of the known-in sign bits, return the 2663 // number that are left. This handles rotl(sext(x), 1) for example. 2664 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2665 if (Tmp > RotAmt+1) return Tmp-RotAmt; 2666 } 2667 break; 2668 case ISD::ADD: 2669 // Add can have at most one carry bit. Thus we know that the output 2670 // is, at worst, one more bit than the inputs. 2671 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2672 if (Tmp == 1) return 1; // Early out. 2673 2674 // Special case decrementing a value (ADD X, -1): 2675 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2676 if (CRHS->isAllOnesValue()) { 2677 APInt KnownZero, KnownOne; 2678 computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 2679 2680 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2681 // sign bits set. 2682 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2683 return VTBits; 2684 2685 // If we are subtracting one from a positive number, there is no carry 2686 // out of the result. 2687 if (KnownZero.isNegative()) 2688 return Tmp; 2689 } 2690 2691 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2692 if (Tmp2 == 1) return 1; 2693 return std::min(Tmp, Tmp2)-1; 2694 2695 case ISD::SUB: 2696 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 2697 if (Tmp2 == 1) return 1; 2698 2699 // Handle NEG. 2700 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 2701 if (CLHS->isNullValue()) { 2702 APInt KnownZero, KnownOne; 2703 computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); 2704 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2705 // sign bits set. 2706 if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) 2707 return VTBits; 2708 2709 // If the input is known to be positive (the sign bit is known clear), 2710 // the output of the NEG has the same number of sign bits as the input. 2711 if (KnownZero.isNegative()) 2712 return Tmp2; 2713 2714 // Otherwise, we treat this like a SUB. 2715 } 2716 2717 // Sub can have at most one carry bit. Thus we know that the output 2718 // is, at worst, one more bit than the inputs. 2719 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2720 if (Tmp == 1) return 1; // Early out. 2721 return std::min(Tmp, Tmp2)-1; 2722 case ISD::TRUNCATE: 2723 // FIXME: it's tricky to do anything useful for this, but it is an important 2724 // case for targets like X86. 2725 break; 2726 case ISD::EXTRACT_ELEMENT: { 2727 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 2728 const int BitWidth = Op.getValueSizeInBits(); 2729 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 2730 2731 // Get reverse index (starting from 1), Op1 value indexes elements from 2732 // little end. Sign starts at big end. 2733 const int rIndex = Items - 1 - 2734 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2735 2736 // If the sign portion ends in our element the subtraction gives correct 2737 // result. Otherwise it gives either negative or > bitwidth result 2738 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 2739 } 2740 case ISD::EXTRACT_VECTOR_ELT: { 2741 // At the moment we keep this simple and skip tracking the specific 2742 // element. This way we get the lowest common denominator for all elements 2743 // of the vector. 2744 // TODO: get information for given vector element 2745 const unsigned BitWidth = Op.getValueSizeInBits(); 2746 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 2747 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 2748 // anything about sign bits. But if the sizes match we can derive knowledge 2749 // about sign bits from the vector operand. 2750 if (BitWidth == EltBitWidth) 2751 return ComputeNumSignBits(Op.getOperand(0), Depth+1); 2752 break; 2753 } 2754 } 2755 2756 // If we are looking at the loaded value of the SDNode. 2757 if (Op.getResNo() == 0) { 2758 // Handle LOADX separately here. EXTLOAD case will fallthrough. 2759 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 2760 unsigned ExtType = LD->getExtensionType(); 2761 switch (ExtType) { 2762 default: break; 2763 case ISD::SEXTLOAD: // '17' bits known 2764 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 2765 return VTBits-Tmp+1; 2766 case ISD::ZEXTLOAD: // '16' bits known 2767 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 2768 return VTBits-Tmp; 2769 } 2770 } 2771 } 2772 2773 // Allow the target to implement this method for its nodes. 2774 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2775 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2776 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2777 Op.getOpcode() == ISD::INTRINSIC_VOID) { 2778 unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); 2779 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); 2780 } 2781 2782 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2783 // use this information. 2784 APInt KnownZero, KnownOne; 2785 computeKnownBits(Op, KnownZero, KnownOne, Depth); 2786 2787 APInt Mask; 2788 if (KnownZero.isNegative()) { // sign bit is 0 2789 Mask = KnownZero; 2790 } else if (KnownOne.isNegative()) { // sign bit is 1; 2791 Mask = KnownOne; 2792 } else { 2793 // Nothing known. 2794 return FirstAnswer; 2795 } 2796 2797 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2798 // the number of identical bits in the top of the input value. 2799 Mask = ~Mask; 2800 Mask <<= Mask.getBitWidth()-VTBits; 2801 // Return # leading zeros. We use 'min' here in case Val was zero before 2802 // shifting. We don't want to return '64' as for an i32 "0". 2803 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 2804 } 2805 2806 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 2807 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 2808 !isa<ConstantSDNode>(Op.getOperand(1))) 2809 return false; 2810 2811 if (Op.getOpcode() == ISD::OR && 2812 !MaskedValueIsZero(Op.getOperand(0), 2813 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) 2814 return false; 2815 2816 return true; 2817 } 2818 2819 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { 2820 // If we're told that NaNs won't happen, assume they won't. 2821 if (getTarget().Options.NoNaNsFPMath) 2822 return true; 2823 2824 // If the value is a constant, we can obviously see if it is a NaN or not. 2825 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2826 return !C->getValueAPF().isNaN(); 2827 2828 // TODO: Recognize more cases here. 2829 2830 return false; 2831 } 2832 2833 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 2834 // If the value is a constant, we can obviously see if it is a zero or not. 2835 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 2836 return !C->isZero(); 2837 2838 // TODO: Recognize more cases here. 2839 switch (Op.getOpcode()) { 2840 default: break; 2841 case ISD::OR: 2842 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2843 return !C->isNullValue(); 2844 break; 2845 } 2846 2847 return false; 2848 } 2849 2850 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 2851 // Check the obvious case. 2852 if (A == B) return true; 2853 2854 // For for negative and positive zero. 2855 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 2856 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 2857 if (CA->isZero() && CB->isZero()) return true; 2858 2859 // Otherwise they may not be equal. 2860 return false; 2861 } 2862 2863 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 2864 assert(A.getValueType() == B.getValueType() && 2865 "Values must have the same type"); 2866 APInt AZero, AOne; 2867 APInt BZero, BOne; 2868 computeKnownBits(A, AZero, AOne); 2869 computeKnownBits(B, BZero, BOne); 2870 return (AZero | BZero).isAllOnesValue(); 2871 } 2872 2873 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 2874 ArrayRef<SDValue> Ops, 2875 llvm::SelectionDAG &DAG) { 2876 if (Ops.size() == 1) 2877 return Ops[0]; 2878 2879 // Concat of UNDEFs is UNDEF. 2880 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 2881 return DAG.getUNDEF(VT); 2882 2883 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 2884 // simplified to one big BUILD_VECTOR. 2885 // FIXME: Add support for SCALAR_TO_VECTOR as well. 2886 EVT SVT = VT.getScalarType(); 2887 SmallVector<SDValue, 16> Elts; 2888 for (SDValue Op : Ops) { 2889 EVT OpVT = Op.getValueType(); 2890 if (Op.isUndef()) 2891 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 2892 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 2893 Elts.append(Op->op_begin(), Op->op_end()); 2894 else 2895 return SDValue(); 2896 } 2897 2898 // BUILD_VECTOR requires all inputs to be of the same type, find the 2899 // maximum type and extend them all. 2900 for (SDValue Op : Elts) 2901 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 2902 2903 if (SVT.bitsGT(VT.getScalarType())) 2904 for (SDValue &Op : Elts) 2905 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 2906 ? DAG.getZExtOrTrunc(Op, DL, SVT) 2907 : DAG.getSExtOrTrunc(Op, DL, SVT); 2908 2909 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts); 2910 } 2911 2912 /// Gets or creates the specified node. 2913 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 2914 FoldingSetNodeID ID; 2915 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 2916 void *IP = nullptr; 2917 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 2918 return SDValue(E, 0); 2919 2920 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 2921 getVTList(VT)); 2922 CSEMap.InsertNode(N, IP); 2923 2924 InsertNode(N); 2925 return SDValue(N, 0); 2926 } 2927 2928 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 2929 SDValue Operand) { 2930 // Constant fold unary operations with an integer constant operand. Even 2931 // opaque constant will be folded, because the folding of unary operations 2932 // doesn't create new constants with different values. Nevertheless, the 2933 // opaque flag is preserved during folding to prevent future folding with 2934 // other constants. 2935 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 2936 const APInt &Val = C->getAPIntValue(); 2937 switch (Opcode) { 2938 default: break; 2939 case ISD::SIGN_EXTEND: 2940 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 2941 C->isTargetOpcode(), C->isOpaque()); 2942 case ISD::ANY_EXTEND: 2943 case ISD::ZERO_EXTEND: 2944 case ISD::TRUNCATE: 2945 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 2946 C->isTargetOpcode(), C->isOpaque()); 2947 case ISD::UINT_TO_FP: 2948 case ISD::SINT_TO_FP: { 2949 APFloat apf(EVTToAPFloatSemantics(VT), 2950 APInt::getNullValue(VT.getSizeInBits())); 2951 (void)apf.convertFromAPInt(Val, 2952 Opcode==ISD::SINT_TO_FP, 2953 APFloat::rmNearestTiesToEven); 2954 return getConstantFP(apf, DL, VT); 2955 } 2956 case ISD::BITCAST: 2957 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 2958 return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT); 2959 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 2960 return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT); 2961 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 2962 return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT); 2963 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 2964 return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT); 2965 break; 2966 case ISD::BSWAP: 2967 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 2968 C->isOpaque()); 2969 case ISD::CTPOP: 2970 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 2971 C->isOpaque()); 2972 case ISD::CTLZ: 2973 case ISD::CTLZ_ZERO_UNDEF: 2974 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 2975 C->isOpaque()); 2976 case ISD::CTTZ: 2977 case ISD::CTTZ_ZERO_UNDEF: 2978 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 2979 C->isOpaque()); 2980 } 2981 } 2982 2983 // Constant fold unary operations with a floating point constant operand. 2984 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 2985 APFloat V = C->getValueAPF(); // make copy 2986 switch (Opcode) { 2987 case ISD::FNEG: 2988 V.changeSign(); 2989 return getConstantFP(V, DL, VT); 2990 case ISD::FABS: 2991 V.clearSign(); 2992 return getConstantFP(V, DL, VT); 2993 case ISD::FCEIL: { 2994 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 2995 if (fs == APFloat::opOK || fs == APFloat::opInexact) 2996 return getConstantFP(V, DL, VT); 2997 break; 2998 } 2999 case ISD::FTRUNC: { 3000 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 3001 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3002 return getConstantFP(V, DL, VT); 3003 break; 3004 } 3005 case ISD::FFLOOR: { 3006 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 3007 if (fs == APFloat::opOK || fs == APFloat::opInexact) 3008 return getConstantFP(V, DL, VT); 3009 break; 3010 } 3011 case ISD::FP_EXTEND: { 3012 bool ignored; 3013 // This can return overflow, underflow, or inexact; we don't care. 3014 // FIXME need to be more flexible about rounding mode. 3015 (void)V.convert(EVTToAPFloatSemantics(VT), 3016 APFloat::rmNearestTiesToEven, &ignored); 3017 return getConstantFP(V, DL, VT); 3018 } 3019 case ISD::FP_TO_SINT: 3020 case ISD::FP_TO_UINT: { 3021 integerPart x[2]; 3022 bool ignored; 3023 static_assert(integerPartWidth >= 64, "APFloat parts too small!"); 3024 // FIXME need to be more flexible about rounding mode. 3025 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), 3026 Opcode==ISD::FP_TO_SINT, 3027 APFloat::rmTowardZero, &ignored); 3028 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual 3029 break; 3030 APInt api(VT.getSizeInBits(), x); 3031 return getConstant(api, DL, VT); 3032 } 3033 case ISD::BITCAST: 3034 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 3035 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3036 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 3037 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 3038 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 3039 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 3040 break; 3041 } 3042 } 3043 3044 // Constant fold unary operations with a vector integer or float operand. 3045 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 3046 if (BV->isConstant()) { 3047 switch (Opcode) { 3048 default: 3049 // FIXME: Entirely reasonable to perform folding of other unary 3050 // operations here as the need arises. 3051 break; 3052 case ISD::FNEG: 3053 case ISD::FABS: 3054 case ISD::FCEIL: 3055 case ISD::FTRUNC: 3056 case ISD::FFLOOR: 3057 case ISD::FP_EXTEND: 3058 case ISD::FP_TO_SINT: 3059 case ISD::FP_TO_UINT: 3060 case ISD::TRUNCATE: 3061 case ISD::UINT_TO_FP: 3062 case ISD::SINT_TO_FP: 3063 case ISD::BSWAP: 3064 case ISD::CTLZ: 3065 case ISD::CTLZ_ZERO_UNDEF: 3066 case ISD::CTTZ: 3067 case ISD::CTTZ_ZERO_UNDEF: 3068 case ISD::CTPOP: { 3069 SDValue Ops = { Operand }; 3070 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 3071 return Fold; 3072 } 3073 } 3074 } 3075 } 3076 3077 unsigned OpOpcode = Operand.getNode()->getOpcode(); 3078 switch (Opcode) { 3079 case ISD::TokenFactor: 3080 case ISD::MERGE_VALUES: 3081 case ISD::CONCAT_VECTORS: 3082 return Operand; // Factor, merge or concat of one node? No need. 3083 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 3084 case ISD::FP_EXTEND: 3085 assert(VT.isFloatingPoint() && 3086 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 3087 if (Operand.getValueType() == VT) return Operand; // noop conversion. 3088 assert((!VT.isVector() || 3089 VT.getVectorNumElements() == 3090 Operand.getValueType().getVectorNumElements()) && 3091 "Vector element count mismatch!"); 3092 assert(Operand.getValueType().bitsLT(VT) && 3093 "Invalid fpext node, dst < src!"); 3094 if (Operand.isUndef()) 3095 return getUNDEF(VT); 3096 break; 3097 case ISD::SIGN_EXTEND: 3098 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3099 "Invalid SIGN_EXTEND!"); 3100 if (Operand.getValueType() == VT) return Operand; // noop extension 3101 assert((!VT.isVector() || 3102 VT.getVectorNumElements() == 3103 Operand.getValueType().getVectorNumElements()) && 3104 "Vector element count mismatch!"); 3105 assert(Operand.getValueType().bitsLT(VT) && 3106 "Invalid sext node, dst < src!"); 3107 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 3108 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3109 else if (OpOpcode == ISD::UNDEF) 3110 // sext(undef) = 0, because the top bits will all be the same. 3111 return getConstant(0, DL, VT); 3112 break; 3113 case ISD::ZERO_EXTEND: 3114 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3115 "Invalid ZERO_EXTEND!"); 3116 if (Operand.getValueType() == VT) return Operand; // noop extension 3117 assert((!VT.isVector() || 3118 VT.getVectorNumElements() == 3119 Operand.getValueType().getVectorNumElements()) && 3120 "Vector element count mismatch!"); 3121 assert(Operand.getValueType().bitsLT(VT) && 3122 "Invalid zext node, dst < src!"); 3123 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 3124 return getNode(ISD::ZERO_EXTEND, DL, VT, 3125 Operand.getNode()->getOperand(0)); 3126 else if (OpOpcode == ISD::UNDEF) 3127 // zext(undef) = 0, because the top bits will be zero. 3128 return getConstant(0, DL, VT); 3129 break; 3130 case ISD::ANY_EXTEND: 3131 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3132 "Invalid ANY_EXTEND!"); 3133 if (Operand.getValueType() == VT) return Operand; // noop extension 3134 assert((!VT.isVector() || 3135 VT.getVectorNumElements() == 3136 Operand.getValueType().getVectorNumElements()) && 3137 "Vector element count mismatch!"); 3138 assert(Operand.getValueType().bitsLT(VT) && 3139 "Invalid anyext node, dst < src!"); 3140 3141 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3142 OpOpcode == ISD::ANY_EXTEND) 3143 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 3144 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3145 else if (OpOpcode == ISD::UNDEF) 3146 return getUNDEF(VT); 3147 3148 // (ext (trunx x)) -> x 3149 if (OpOpcode == ISD::TRUNCATE) { 3150 SDValue OpOp = Operand.getNode()->getOperand(0); 3151 if (OpOp.getValueType() == VT) 3152 return OpOp; 3153 } 3154 break; 3155 case ISD::TRUNCATE: 3156 assert(VT.isInteger() && Operand.getValueType().isInteger() && 3157 "Invalid TRUNCATE!"); 3158 if (Operand.getValueType() == VT) return Operand; // noop truncate 3159 assert((!VT.isVector() || 3160 VT.getVectorNumElements() == 3161 Operand.getValueType().getVectorNumElements()) && 3162 "Vector element count mismatch!"); 3163 assert(Operand.getValueType().bitsGT(VT) && 3164 "Invalid truncate node, src < dst!"); 3165 if (OpOpcode == ISD::TRUNCATE) 3166 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3167 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 3168 OpOpcode == ISD::ANY_EXTEND) { 3169 // If the source is smaller than the dest, we still need an extend. 3170 if (Operand.getNode()->getOperand(0).getValueType().getScalarType() 3171 .bitsLT(VT.getScalarType())) 3172 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); 3173 if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) 3174 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); 3175 return Operand.getNode()->getOperand(0); 3176 } 3177 if (OpOpcode == ISD::UNDEF) 3178 return getUNDEF(VT); 3179 break; 3180 case ISD::BSWAP: 3181 assert(VT.isInteger() && VT == Operand.getValueType() && 3182 "Invalid BSWAP!"); 3183 assert((VT.getScalarSizeInBits() % 16 == 0) && 3184 "BSWAP types must be a multiple of 16 bits!"); 3185 if (OpOpcode == ISD::UNDEF) 3186 return getUNDEF(VT); 3187 break; 3188 case ISD::BITREVERSE: 3189 assert(VT.isInteger() && VT == Operand.getValueType() && 3190 "Invalid BITREVERSE!"); 3191 if (OpOpcode == ISD::UNDEF) 3192 return getUNDEF(VT); 3193 break; 3194 case ISD::BITCAST: 3195 // Basic sanity checking. 3196 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 3197 "Cannot BITCAST between types of different sizes!"); 3198 if (VT == Operand.getValueType()) return Operand; // noop conversion. 3199 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 3200 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 3201 if (OpOpcode == ISD::UNDEF) 3202 return getUNDEF(VT); 3203 break; 3204 case ISD::SCALAR_TO_VECTOR: 3205 assert(VT.isVector() && !Operand.getValueType().isVector() && 3206 (VT.getVectorElementType() == Operand.getValueType() || 3207 (VT.getVectorElementType().isInteger() && 3208 Operand.getValueType().isInteger() && 3209 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 3210 "Illegal SCALAR_TO_VECTOR node!"); 3211 if (OpOpcode == ISD::UNDEF) 3212 return getUNDEF(VT); 3213 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 3214 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 3215 isa<ConstantSDNode>(Operand.getOperand(1)) && 3216 Operand.getConstantOperandVal(1) == 0 && 3217 Operand.getOperand(0).getValueType() == VT) 3218 return Operand.getOperand(0); 3219 break; 3220 case ISD::FNEG: 3221 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 3222 if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) 3223 // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags? 3224 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), 3225 Operand.getNode()->getOperand(0), 3226 &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags); 3227 if (OpOpcode == ISD::FNEG) // --X -> X 3228 return Operand.getNode()->getOperand(0); 3229 break; 3230 case ISD::FABS: 3231 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 3232 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); 3233 break; 3234 } 3235 3236 SDNode *N; 3237 SDVTList VTs = getVTList(VT); 3238 SDValue Ops[] = {Operand}; 3239 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 3240 FoldingSetNodeID ID; 3241 AddNodeIDNode(ID, Opcode, VTs, Ops); 3242 void *IP = nullptr; 3243 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 3244 return SDValue(E, 0); 3245 3246 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3247 createOperands(N, Ops); 3248 CSEMap.InsertNode(N, IP); 3249 } else { 3250 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 3251 createOperands(N, Ops); 3252 } 3253 3254 InsertNode(N); 3255 return SDValue(N, 0); 3256 } 3257 3258 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 3259 const APInt &C2) { 3260 switch (Opcode) { 3261 case ISD::ADD: return std::make_pair(C1 + C2, true); 3262 case ISD::SUB: return std::make_pair(C1 - C2, true); 3263 case ISD::MUL: return std::make_pair(C1 * C2, true); 3264 case ISD::AND: return std::make_pair(C1 & C2, true); 3265 case ISD::OR: return std::make_pair(C1 | C2, true); 3266 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 3267 case ISD::SHL: return std::make_pair(C1 << C2, true); 3268 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 3269 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 3270 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 3271 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 3272 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 3273 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 3274 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 3275 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 3276 case ISD::UDIV: 3277 if (!C2.getBoolValue()) 3278 break; 3279 return std::make_pair(C1.udiv(C2), true); 3280 case ISD::UREM: 3281 if (!C2.getBoolValue()) 3282 break; 3283 return std::make_pair(C1.urem(C2), true); 3284 case ISD::SDIV: 3285 if (!C2.getBoolValue()) 3286 break; 3287 return std::make_pair(C1.sdiv(C2), true); 3288 case ISD::SREM: 3289 if (!C2.getBoolValue()) 3290 break; 3291 return std::make_pair(C1.srem(C2), true); 3292 } 3293 return std::make_pair(APInt(1, 0), false); 3294 } 3295 3296 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3297 EVT VT, const ConstantSDNode *Cst1, 3298 const ConstantSDNode *Cst2) { 3299 if (Cst1->isOpaque() || Cst2->isOpaque()) 3300 return SDValue(); 3301 3302 std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), 3303 Cst2->getAPIntValue()); 3304 if (!Folded.second) 3305 return SDValue(); 3306 return getConstant(Folded.first, DL, VT); 3307 } 3308 3309 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 3310 const GlobalAddressSDNode *GA, 3311 const SDNode *N2) { 3312 if (GA->getOpcode() != ISD::GlobalAddress) 3313 return SDValue(); 3314 if (!TLI->isOffsetFoldingLegal(GA)) 3315 return SDValue(); 3316 const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2); 3317 if (!Cst2) 3318 return SDValue(); 3319 int64_t Offset = Cst2->getSExtValue(); 3320 switch (Opcode) { 3321 case ISD::ADD: break; 3322 case ISD::SUB: Offset = -uint64_t(Offset); break; 3323 default: return SDValue(); 3324 } 3325 return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT, 3326 GA->getOffset() + uint64_t(Offset)); 3327 } 3328 3329 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 3330 EVT VT, SDNode *Cst1, 3331 SDNode *Cst2) { 3332 // If the opcode is a target-specific ISD node, there's nothing we can 3333 // do here and the operand rules may not line up with the below, so 3334 // bail early. 3335 if (Opcode >= ISD::BUILTIN_OP_END) 3336 return SDValue(); 3337 3338 // Handle the case of two scalars. 3339 if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { 3340 if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { 3341 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2); 3342 assert((!Folded || !VT.isVector()) && 3343 "Can't fold vectors ops with scalar operands"); 3344 return Folded; 3345 } 3346 } 3347 3348 // fold (add Sym, c) -> Sym+c 3349 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1)) 3350 return FoldSymbolOffset(Opcode, VT, GA, Cst2); 3351 if (isCommutativeBinOp(Opcode)) 3352 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2)) 3353 return FoldSymbolOffset(Opcode, VT, GA, Cst1); 3354 3355 // For vectors extract each constant element into Inputs so we can constant 3356 // fold them individually. 3357 BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); 3358 BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); 3359 if (!BV1 || !BV2) 3360 return SDValue(); 3361 3362 assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); 3363 3364 EVT SVT = VT.getScalarType(); 3365 SmallVector<SDValue, 4> Outputs; 3366 for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { 3367 ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I)); 3368 ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I)); 3369 if (!V1 || !V2) // Not a constant, bail. 3370 return SDValue(); 3371 3372 if (V1->isOpaque() || V2->isOpaque()) 3373 return SDValue(); 3374 3375 // Avoid BUILD_VECTOR nodes that perform implicit truncation. 3376 // FIXME: This is valid and could be handled by truncating the APInts. 3377 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 3378 return SDValue(); 3379 3380 // Fold one vector element. 3381 std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(), 3382 V2->getAPIntValue()); 3383 if (!Folded.second) 3384 return SDValue(); 3385 Outputs.push_back(getConstant(Folded.first, DL, SVT)); 3386 } 3387 3388 assert(VT.getVectorNumElements() == Outputs.size() && 3389 "Vector size mismatch!"); 3390 3391 // We may have a vector type but a scalar result. Create a splat. 3392 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 3393 3394 // Build a big vector out of the scalar elements we generated. 3395 return getBuildVector(VT, SDLoc(), Outputs); 3396 } 3397 3398 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 3399 const SDLoc &DL, EVT VT, 3400 ArrayRef<SDValue> Ops, 3401 const SDNodeFlags *Flags) { 3402 // If the opcode is a target-specific ISD node, there's nothing we can 3403 // do here and the operand rules may not line up with the below, so 3404 // bail early. 3405 if (Opcode >= ISD::BUILTIN_OP_END) 3406 return SDValue(); 3407 3408 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 3409 if (!VT.isVector()) 3410 return SDValue(); 3411 3412 unsigned NumElts = VT.getVectorNumElements(); 3413 3414 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 3415 return !Op.getValueType().isVector() || 3416 Op.getValueType().getVectorNumElements() == NumElts; 3417 }; 3418 3419 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 3420 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 3421 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 3422 (BV && BV->isConstant()); 3423 }; 3424 3425 // All operands must be vector types with the same number of elements as 3426 // the result type and must be either UNDEF or a build vector of constant 3427 // or UNDEF scalars. 3428 if (!all_of(Ops, IsConstantBuildVectorOrUndef) || 3429 !all_of(Ops, IsScalarOrSameVectorSize)) 3430 return SDValue(); 3431 3432 // If we are comparing vectors, then the result needs to be a i1 boolean 3433 // that is then sign-extended back to the legal result type. 3434 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 3435 3436 // Find legal integer scalar type for constant promotion and 3437 // ensure that its scalar size is at least as large as source. 3438 EVT LegalSVT = VT.getScalarType(); 3439 if (LegalSVT.isInteger()) { 3440 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 3441 if (LegalSVT.bitsLT(VT.getScalarType())) 3442 return SDValue(); 3443 } 3444 3445 // Constant fold each scalar lane separately. 3446 SmallVector<SDValue, 4> ScalarResults; 3447 for (unsigned i = 0; i != NumElts; i++) { 3448 SmallVector<SDValue, 4> ScalarOps; 3449 for (SDValue Op : Ops) { 3450 EVT InSVT = Op.getValueType().getScalarType(); 3451 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 3452 if (!InBV) { 3453 // We've checked that this is UNDEF or a constant of some kind. 3454 if (Op.isUndef()) 3455 ScalarOps.push_back(getUNDEF(InSVT)); 3456 else 3457 ScalarOps.push_back(Op); 3458 continue; 3459 } 3460 3461 SDValue ScalarOp = InBV->getOperand(i); 3462 EVT ScalarVT = ScalarOp.getValueType(); 3463 3464 // Build vector (integer) scalar operands may need implicit 3465 // truncation - do this before constant folding. 3466 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 3467 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 3468 3469 ScalarOps.push_back(ScalarOp); 3470 } 3471 3472 // Constant fold the scalar operands. 3473 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 3474 3475 // Legalize the (integer) scalar constant if necessary. 3476 if (LegalSVT != SVT) 3477 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 3478 3479 // Scalar folding only succeeded if the result is a constant or UNDEF. 3480 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 3481 ScalarResult.getOpcode() != ISD::ConstantFP) 3482 return SDValue(); 3483 ScalarResults.push_back(ScalarResult); 3484 } 3485 3486 return getBuildVector(VT, DL, ScalarResults); 3487 } 3488 3489 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3490 SDValue N1, SDValue N2, 3491 const SDNodeFlags *Flags) { 3492 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3493 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 3494 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3495 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3496 3497 // Canonicalize constant to RHS if commutative. 3498 if (isCommutativeBinOp(Opcode)) { 3499 if (N1C && !N2C) { 3500 std::swap(N1C, N2C); 3501 std::swap(N1, N2); 3502 } else if (N1CFP && !N2CFP) { 3503 std::swap(N1CFP, N2CFP); 3504 std::swap(N1, N2); 3505 } 3506 } 3507 3508 switch (Opcode) { 3509 default: break; 3510 case ISD::TokenFactor: 3511 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 3512 N2.getValueType() == MVT::Other && "Invalid token factor!"); 3513 // Fold trivial token factors. 3514 if (N1.getOpcode() == ISD::EntryToken) return N2; 3515 if (N2.getOpcode() == ISD::EntryToken) return N1; 3516 if (N1 == N2) return N1; 3517 break; 3518 case ISD::CONCAT_VECTORS: { 3519 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3520 SDValue Ops[] = {N1, N2}; 3521 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3522 return V; 3523 break; 3524 } 3525 case ISD::AND: 3526 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3527 assert(N1.getValueType() == N2.getValueType() && 3528 N1.getValueType() == VT && "Binary operator types must match!"); 3529 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 3530 // worth handling here. 3531 if (N2C && N2C->isNullValue()) 3532 return N2; 3533 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 3534 return N1; 3535 break; 3536 case ISD::OR: 3537 case ISD::XOR: 3538 case ISD::ADD: 3539 case ISD::SUB: 3540 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3541 assert(N1.getValueType() == N2.getValueType() && 3542 N1.getValueType() == VT && "Binary operator types must match!"); 3543 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 3544 // it's worth handling here. 3545 if (N2C && N2C->isNullValue()) 3546 return N1; 3547 break; 3548 case ISD::UDIV: 3549 case ISD::UREM: 3550 case ISD::MULHU: 3551 case ISD::MULHS: 3552 case ISD::MUL: 3553 case ISD::SDIV: 3554 case ISD::SREM: 3555 case ISD::SMIN: 3556 case ISD::SMAX: 3557 case ISD::UMIN: 3558 case ISD::UMAX: 3559 assert(VT.isInteger() && "This operator does not apply to FP types!"); 3560 assert(N1.getValueType() == N2.getValueType() && 3561 N1.getValueType() == VT && "Binary operator types must match!"); 3562 break; 3563 case ISD::FADD: 3564 case ISD::FSUB: 3565 case ISD::FMUL: 3566 case ISD::FDIV: 3567 case ISD::FREM: 3568 if (getTarget().Options.UnsafeFPMath) { 3569 if (Opcode == ISD::FADD) { 3570 // x+0 --> x 3571 if (N2CFP && N2CFP->getValueAPF().isZero()) 3572 return N1; 3573 } else if (Opcode == ISD::FSUB) { 3574 // x-0 --> x 3575 if (N2CFP && N2CFP->getValueAPF().isZero()) 3576 return N1; 3577 } else if (Opcode == ISD::FMUL) { 3578 // x*0 --> 0 3579 if (N2CFP && N2CFP->isZero()) 3580 return N2; 3581 // x*1 --> x 3582 if (N2CFP && N2CFP->isExactlyValue(1.0)) 3583 return N1; 3584 } 3585 } 3586 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 3587 assert(N1.getValueType() == N2.getValueType() && 3588 N1.getValueType() == VT && "Binary operator types must match!"); 3589 break; 3590 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 3591 assert(N1.getValueType() == VT && 3592 N1.getValueType().isFloatingPoint() && 3593 N2.getValueType().isFloatingPoint() && 3594 "Invalid FCOPYSIGN!"); 3595 break; 3596 case ISD::SHL: 3597 case ISD::SRA: 3598 case ISD::SRL: 3599 case ISD::ROTL: 3600 case ISD::ROTR: 3601 assert(VT == N1.getValueType() && 3602 "Shift operators return type must be the same as their first arg"); 3603 assert(VT.isInteger() && N2.getValueType().isInteger() && 3604 "Shifts only work on integers"); 3605 assert((!VT.isVector() || VT == N2.getValueType()) && 3606 "Vector shift amounts must be in the same as their first arg"); 3607 // Verify that the shift amount VT is bit enough to hold valid shift 3608 // amounts. This catches things like trying to shift an i1024 value by an 3609 // i8, which is easy to fall into in generic code that uses 3610 // TLI.getShiftAmount(). 3611 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 3612 "Invalid use of small shift amount with oversized value!"); 3613 3614 // Always fold shifts of i1 values so the code generator doesn't need to 3615 // handle them. Since we know the size of the shift has to be less than the 3616 // size of the value, the shift/rotate count is guaranteed to be zero. 3617 if (VT == MVT::i1) 3618 return N1; 3619 if (N2C && N2C->isNullValue()) 3620 return N1; 3621 break; 3622 case ISD::FP_ROUND_INREG: { 3623 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3624 assert(VT == N1.getValueType() && "Not an inreg round!"); 3625 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 3626 "Cannot FP_ROUND_INREG integer types"); 3627 assert(EVT.isVector() == VT.isVector() && 3628 "FP_ROUND_INREG type should be vector iff the operand " 3629 "type is vector!"); 3630 assert((!EVT.isVector() || 3631 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3632 "Vector element counts must match in FP_ROUND_INREG"); 3633 assert(EVT.bitsLE(VT) && "Not rounding down!"); 3634 (void)EVT; 3635 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 3636 break; 3637 } 3638 case ISD::FP_ROUND: 3639 assert(VT.isFloatingPoint() && 3640 N1.getValueType().isFloatingPoint() && 3641 VT.bitsLE(N1.getValueType()) && 3642 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 3643 "Invalid FP_ROUND!"); 3644 if (N1.getValueType() == VT) return N1; // noop conversion. 3645 break; 3646 case ISD::AssertSext: 3647 case ISD::AssertZext: { 3648 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3649 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3650 assert(VT.isInteger() && EVT.isInteger() && 3651 "Cannot *_EXTEND_INREG FP types"); 3652 assert(!EVT.isVector() && 3653 "AssertSExt/AssertZExt type should be the vector element type " 3654 "rather than the vector type!"); 3655 assert(EVT.bitsLE(VT) && "Not extending!"); 3656 if (VT == EVT) return N1; // noop assertion. 3657 break; 3658 } 3659 case ISD::SIGN_EXTEND_INREG: { 3660 EVT EVT = cast<VTSDNode>(N2)->getVT(); 3661 assert(VT == N1.getValueType() && "Not an inreg extend!"); 3662 assert(VT.isInteger() && EVT.isInteger() && 3663 "Cannot *_EXTEND_INREG FP types"); 3664 assert(EVT.isVector() == VT.isVector() && 3665 "SIGN_EXTEND_INREG type should be vector iff the operand " 3666 "type is vector!"); 3667 assert((!EVT.isVector() || 3668 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 3669 "Vector element counts must match in SIGN_EXTEND_INREG"); 3670 assert(EVT.bitsLE(VT) && "Not extending!"); 3671 if (EVT == VT) return N1; // Not actually extending 3672 3673 auto SignExtendInReg = [&](APInt Val) { 3674 unsigned FromBits = EVT.getScalarSizeInBits(); 3675 Val <<= Val.getBitWidth() - FromBits; 3676 Val = Val.ashr(Val.getBitWidth() - FromBits); 3677 return getConstant(Val, DL, VT.getScalarType()); 3678 }; 3679 3680 if (N1C) { 3681 const APInt &Val = N1C->getAPIntValue(); 3682 return SignExtendInReg(Val); 3683 } 3684 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 3685 SmallVector<SDValue, 8> Ops; 3686 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 3687 SDValue Op = N1.getOperand(i); 3688 if (Op.isUndef()) { 3689 Ops.push_back(getUNDEF(VT.getScalarType())); 3690 continue; 3691 } 3692 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3693 APInt Val = C->getAPIntValue(); 3694 Val = Val.zextOrTrunc(VT.getScalarSizeInBits()); 3695 Ops.push_back(SignExtendInReg(Val)); 3696 continue; 3697 } 3698 break; 3699 } 3700 if (Ops.size() == VT.getVectorNumElements()) 3701 return getBuildVector(VT, DL, Ops); 3702 } 3703 break; 3704 } 3705 case ISD::EXTRACT_VECTOR_ELT: 3706 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 3707 if (N1.isUndef()) 3708 return getUNDEF(VT); 3709 3710 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 3711 if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 3712 return getUNDEF(VT); 3713 3714 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 3715 // expanding copies of large vectors from registers. 3716 if (N2C && 3717 N1.getOpcode() == ISD::CONCAT_VECTORS && 3718 N1.getNumOperands() > 0) { 3719 unsigned Factor = 3720 N1.getOperand(0).getValueType().getVectorNumElements(); 3721 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 3722 N1.getOperand(N2C->getZExtValue() / Factor), 3723 getConstant(N2C->getZExtValue() % Factor, DL, 3724 N2.getValueType())); 3725 } 3726 3727 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 3728 // expanding large vector constants. 3729 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 3730 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 3731 3732 if (VT != Elt.getValueType()) 3733 // If the vector element type is not legal, the BUILD_VECTOR operands 3734 // are promoted and implicitly truncated, and the result implicitly 3735 // extended. Make that explicit here. 3736 Elt = getAnyExtOrTrunc(Elt, DL, VT); 3737 3738 return Elt; 3739 } 3740 3741 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 3742 // operations are lowered to scalars. 3743 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 3744 // If the indices are the same, return the inserted element else 3745 // if the indices are known different, extract the element from 3746 // the original vector. 3747 SDValue N1Op2 = N1.getOperand(2); 3748 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 3749 3750 if (N1Op2C && N2C) { 3751 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 3752 if (VT == N1.getOperand(1).getValueType()) 3753 return N1.getOperand(1); 3754 else 3755 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 3756 } 3757 3758 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 3759 } 3760 } 3761 break; 3762 case ISD::EXTRACT_ELEMENT: 3763 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 3764 assert(!N1.getValueType().isVector() && !VT.isVector() && 3765 (N1.getValueType().isInteger() == VT.isInteger()) && 3766 N1.getValueType() != VT && 3767 "Wrong types for EXTRACT_ELEMENT!"); 3768 3769 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 3770 // 64-bit integers into 32-bit parts. Instead of building the extract of 3771 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 3772 if (N1.getOpcode() == ISD::BUILD_PAIR) 3773 return N1.getOperand(N2C->getZExtValue()); 3774 3775 // EXTRACT_ELEMENT of a constant int is also very common. 3776 if (N1C) { 3777 unsigned ElementSize = VT.getSizeInBits(); 3778 unsigned Shift = ElementSize * N2C->getZExtValue(); 3779 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 3780 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 3781 } 3782 break; 3783 case ISD::EXTRACT_SUBVECTOR: 3784 if (VT.isSimple() && N1.getValueType().isSimple()) { 3785 assert(VT.isVector() && N1.getValueType().isVector() && 3786 "Extract subvector VTs must be a vectors!"); 3787 assert(VT.getVectorElementType() == 3788 N1.getValueType().getVectorElementType() && 3789 "Extract subvector VTs must have the same element type!"); 3790 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 3791 "Extract subvector must be from larger vector to smaller vector!"); 3792 3793 if (N2C) { 3794 assert((VT.getVectorNumElements() + N2C->getZExtValue() 3795 <= N1.getValueType().getVectorNumElements()) 3796 && "Extract subvector overflow!"); 3797 } 3798 3799 // Trivial extraction. 3800 if (VT.getSimpleVT() == N1.getSimpleValueType()) 3801 return N1; 3802 3803 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 3804 // during shuffle legalization. 3805 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 3806 VT == N1.getOperand(1).getValueType()) 3807 return N1.getOperand(1); 3808 } 3809 break; 3810 } 3811 3812 // Perform trivial constant folding. 3813 if (SDValue SV = 3814 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 3815 return SV; 3816 3817 // Constant fold FP operations. 3818 bool HasFPExceptions = TLI->hasFloatingPointExceptions(); 3819 if (N1CFP) { 3820 if (N2CFP) { 3821 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); 3822 APFloat::opStatus s; 3823 switch (Opcode) { 3824 case ISD::FADD: 3825 s = V1.add(V2, APFloat::rmNearestTiesToEven); 3826 if (!HasFPExceptions || s != APFloat::opInvalidOp) 3827 return getConstantFP(V1, DL, VT); 3828 break; 3829 case ISD::FSUB: 3830 s = V1.subtract(V2, APFloat::rmNearestTiesToEven); 3831 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3832 return getConstantFP(V1, DL, VT); 3833 break; 3834 case ISD::FMUL: 3835 s = V1.multiply(V2, APFloat::rmNearestTiesToEven); 3836 if (!HasFPExceptions || s!=APFloat::opInvalidOp) 3837 return getConstantFP(V1, DL, VT); 3838 break; 3839 case ISD::FDIV: 3840 s = V1.divide(V2, APFloat::rmNearestTiesToEven); 3841 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3842 s!=APFloat::opDivByZero)) { 3843 return getConstantFP(V1, DL, VT); 3844 } 3845 break; 3846 case ISD::FREM : 3847 s = V1.mod(V2); 3848 if (!HasFPExceptions || (s!=APFloat::opInvalidOp && 3849 s!=APFloat::opDivByZero)) { 3850 return getConstantFP(V1, DL, VT); 3851 } 3852 break; 3853 case ISD::FCOPYSIGN: 3854 V1.copySign(V2); 3855 return getConstantFP(V1, DL, VT); 3856 default: break; 3857 } 3858 } 3859 3860 if (Opcode == ISD::FP_ROUND) { 3861 APFloat V = N1CFP->getValueAPF(); // make copy 3862 bool ignored; 3863 // This can return overflow, underflow, or inexact; we don't care. 3864 // FIXME need to be more flexible about rounding mode. 3865 (void)V.convert(EVTToAPFloatSemantics(VT), 3866 APFloat::rmNearestTiesToEven, &ignored); 3867 return getConstantFP(V, DL, VT); 3868 } 3869 } 3870 3871 // Canonicalize an UNDEF to the RHS, even over a constant. 3872 if (N1.isUndef()) { 3873 if (isCommutativeBinOp(Opcode)) { 3874 std::swap(N1, N2); 3875 } else { 3876 switch (Opcode) { 3877 case ISD::FP_ROUND_INREG: 3878 case ISD::SIGN_EXTEND_INREG: 3879 case ISD::SUB: 3880 case ISD::FSUB: 3881 case ISD::FDIV: 3882 case ISD::FREM: 3883 case ISD::SRA: 3884 return N1; // fold op(undef, arg2) -> undef 3885 case ISD::UDIV: 3886 case ISD::SDIV: 3887 case ISD::UREM: 3888 case ISD::SREM: 3889 case ISD::SRL: 3890 case ISD::SHL: 3891 if (!VT.isVector()) 3892 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 3893 // For vectors, we can't easily build an all zero vector, just return 3894 // the LHS. 3895 return N2; 3896 } 3897 } 3898 } 3899 3900 // Fold a bunch of operators when the RHS is undef. 3901 if (N2.isUndef()) { 3902 switch (Opcode) { 3903 case ISD::XOR: 3904 if (N1.isUndef()) 3905 // Handle undef ^ undef -> 0 special case. This is a common 3906 // idiom (misuse). 3907 return getConstant(0, DL, VT); 3908 LLVM_FALLTHROUGH; 3909 case ISD::ADD: 3910 case ISD::ADDC: 3911 case ISD::ADDE: 3912 case ISD::SUB: 3913 case ISD::UDIV: 3914 case ISD::SDIV: 3915 case ISD::UREM: 3916 case ISD::SREM: 3917 return N2; // fold op(arg1, undef) -> undef 3918 case ISD::FADD: 3919 case ISD::FSUB: 3920 case ISD::FMUL: 3921 case ISD::FDIV: 3922 case ISD::FREM: 3923 if (getTarget().Options.UnsafeFPMath) 3924 return N2; 3925 break; 3926 case ISD::MUL: 3927 case ISD::AND: 3928 case ISD::SRL: 3929 case ISD::SHL: 3930 if (!VT.isVector()) 3931 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 3932 // For vectors, we can't easily build an all zero vector, just return 3933 // the LHS. 3934 return N1; 3935 case ISD::OR: 3936 if (!VT.isVector()) 3937 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); 3938 // For vectors, we can't easily build an all one vector, just return 3939 // the LHS. 3940 return N1; 3941 case ISD::SRA: 3942 return N1; 3943 } 3944 } 3945 3946 // Memoize this node if possible. 3947 SDNode *N; 3948 SDVTList VTs = getVTList(VT); 3949 if (VT != MVT::Glue) { 3950 SDValue Ops[] = {N1, N2}; 3951 FoldingSetNodeID ID; 3952 AddNodeIDNode(ID, Opcode, VTs, Ops); 3953 void *IP = nullptr; 3954 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 3955 if (Flags) 3956 E->intersectFlagsWith(Flags); 3957 return SDValue(E, 0); 3958 } 3959 3960 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 3961 CSEMap.InsertNode(N, IP); 3962 } else { 3963 N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); 3964 } 3965 3966 InsertNode(N); 3967 return SDValue(N, 0); 3968 } 3969 3970 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 3971 SDValue N1, SDValue N2, SDValue N3) { 3972 // Perform various simplifications. 3973 switch (Opcode) { 3974 case ISD::FMA: { 3975 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 3976 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 3977 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 3978 if (N1CFP && N2CFP && N3CFP) { 3979 APFloat V1 = N1CFP->getValueAPF(); 3980 const APFloat &V2 = N2CFP->getValueAPF(); 3981 const APFloat &V3 = N3CFP->getValueAPF(); 3982 APFloat::opStatus s = 3983 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 3984 if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) 3985 return getConstantFP(V1, DL, VT); 3986 } 3987 break; 3988 } 3989 case ISD::CONCAT_VECTORS: { 3990 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 3991 SDValue Ops[] = {N1, N2, N3}; 3992 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 3993 return V; 3994 break; 3995 } 3996 case ISD::SETCC: { 3997 // Use FoldSetCC to simplify SETCC's. 3998 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 3999 return V; 4000 // Vector constant folding. 4001 SDValue Ops[] = {N1, N2, N3}; 4002 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4003 return V; 4004 break; 4005 } 4006 case ISD::SELECT: 4007 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 4008 if (N1C->getZExtValue()) 4009 return N2; // select true, X, Y -> X 4010 return N3; // select false, X, Y -> Y 4011 } 4012 4013 if (N2 == N3) return N2; // select C, X, X -> X 4014 break; 4015 case ISD::VECTOR_SHUFFLE: 4016 llvm_unreachable("should use getVectorShuffle constructor!"); 4017 case ISD::INSERT_SUBVECTOR: { 4018 SDValue Index = N3; 4019 if (VT.isSimple() && N1.getValueType().isSimple() 4020 && N2.getValueType().isSimple()) { 4021 assert(VT.isVector() && N1.getValueType().isVector() && 4022 N2.getValueType().isVector() && 4023 "Insert subvector VTs must be a vectors"); 4024 assert(VT == N1.getValueType() && 4025 "Dest and insert subvector source types must match!"); 4026 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 4027 "Insert subvector must be from smaller vector to larger vector!"); 4028 if (isa<ConstantSDNode>(Index)) { 4029 assert((N2.getValueType().getVectorNumElements() + 4030 cast<ConstantSDNode>(Index)->getZExtValue() 4031 <= VT.getVectorNumElements()) 4032 && "Insert subvector overflow!"); 4033 } 4034 4035 // Trivial insertion. 4036 if (VT.getSimpleVT() == N2.getSimpleValueType()) 4037 return N2; 4038 } 4039 break; 4040 } 4041 case ISD::BITCAST: 4042 // Fold bit_convert nodes from a type to themselves. 4043 if (N1.getValueType() == VT) 4044 return N1; 4045 break; 4046 } 4047 4048 // Memoize node if it doesn't produce a flag. 4049 SDNode *N; 4050 SDVTList VTs = getVTList(VT); 4051 SDValue Ops[] = {N1, N2, N3}; 4052 if (VT != MVT::Glue) { 4053 FoldingSetNodeID ID; 4054 AddNodeIDNode(ID, Opcode, VTs, Ops); 4055 void *IP = nullptr; 4056 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4057 return SDValue(E, 0); 4058 4059 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4060 createOperands(N, Ops); 4061 CSEMap.InsertNode(N, IP); 4062 } else { 4063 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4064 createOperands(N, Ops); 4065 } 4066 4067 InsertNode(N); 4068 return SDValue(N, 0); 4069 } 4070 4071 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4072 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 4073 SDValue Ops[] = { N1, N2, N3, N4 }; 4074 return getNode(Opcode, DL, VT, Ops); 4075 } 4076 4077 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4078 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 4079 SDValue N5) { 4080 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 4081 return getNode(Opcode, DL, VT, Ops); 4082 } 4083 4084 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 4085 /// the incoming stack arguments to be loaded from the stack. 4086 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 4087 SmallVector<SDValue, 8> ArgChains; 4088 4089 // Include the original chain at the beginning of the list. When this is 4090 // used by target LowerCall hooks, this helps legalize find the 4091 // CALLSEQ_BEGIN node. 4092 ArgChains.push_back(Chain); 4093 4094 // Add a chain value for each stack argument. 4095 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 4096 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 4097 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4098 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4099 if (FI->getIndex() < 0) 4100 ArgChains.push_back(SDValue(L, 1)); 4101 4102 // Build a tokenfactor for all the chains. 4103 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4104 } 4105 4106 /// getMemsetValue - Vectorized representation of the memset value 4107 /// operand. 4108 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 4109 const SDLoc &dl) { 4110 assert(!Value.isUndef()); 4111 4112 unsigned NumBits = VT.getScalarSizeInBits(); 4113 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 4114 assert(C->getAPIntValue().getBitWidth() == 8); 4115 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 4116 if (VT.isInteger()) 4117 return DAG.getConstant(Val, dl, VT); 4118 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 4119 VT); 4120 } 4121 4122 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 4123 EVT IntVT = VT.getScalarType(); 4124 if (!IntVT.isInteger()) 4125 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 4126 4127 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 4128 if (NumBits > 8) { 4129 // Use a multiplication with 0x010101... to extend the input to the 4130 // required length. 4131 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 4132 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 4133 DAG.getConstant(Magic, dl, IntVT)); 4134 } 4135 4136 if (VT != Value.getValueType() && !VT.isInteger()) 4137 Value = DAG.getBitcast(VT.getScalarType(), Value); 4138 if (VT != Value.getValueType()) 4139 Value = DAG.getSplatBuildVector(VT, dl, Value); 4140 4141 return Value; 4142 } 4143 4144 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 4145 /// used when a memcpy is turned into a memset when the source is a constant 4146 /// string ptr. 4147 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 4148 const TargetLowering &TLI, StringRef Str) { 4149 // Handle vector with all elements zero. 4150 if (Str.empty()) { 4151 if (VT.isInteger()) 4152 return DAG.getConstant(0, dl, VT); 4153 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 4154 return DAG.getConstantFP(0.0, dl, VT); 4155 else if (VT.isVector()) { 4156 unsigned NumElts = VT.getVectorNumElements(); 4157 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 4158 return DAG.getNode(ISD::BITCAST, dl, VT, 4159 DAG.getConstant(0, dl, 4160 EVT::getVectorVT(*DAG.getContext(), 4161 EltVT, NumElts))); 4162 } else 4163 llvm_unreachable("Expected type!"); 4164 } 4165 4166 assert(!VT.isVector() && "Can't handle vector type here!"); 4167 unsigned NumVTBits = VT.getSizeInBits(); 4168 unsigned NumVTBytes = NumVTBits / 8; 4169 unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); 4170 4171 APInt Val(NumVTBits, 0); 4172 if (DAG.getDataLayout().isLittleEndian()) { 4173 for (unsigned i = 0; i != NumBytes; ++i) 4174 Val |= (uint64_t)(unsigned char)Str[i] << i*8; 4175 } else { 4176 for (unsigned i = 0; i != NumBytes; ++i) 4177 Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; 4178 } 4179 4180 // If the "cost" of materializing the integer immediate is less than the cost 4181 // of a load, then it is cost effective to turn the load into the immediate. 4182 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 4183 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 4184 return DAG.getConstant(Val, dl, VT); 4185 return SDValue(nullptr, 0); 4186 } 4187 4188 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 4189 const SDLoc &DL) { 4190 EVT VT = Base.getValueType(); 4191 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 4192 } 4193 4194 /// isMemSrcFromString - Returns true if memcpy source is a string constant. 4195 /// 4196 static bool isMemSrcFromString(SDValue Src, StringRef &Str) { 4197 uint64_t SrcDelta = 0; 4198 GlobalAddressSDNode *G = nullptr; 4199 if (Src.getOpcode() == ISD::GlobalAddress) 4200 G = cast<GlobalAddressSDNode>(Src); 4201 else if (Src.getOpcode() == ISD::ADD && 4202 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 4203 Src.getOperand(1).getOpcode() == ISD::Constant) { 4204 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 4205 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 4206 } 4207 if (!G) 4208 return false; 4209 4210 return getConstantStringInfo(G->getGlobal(), Str, 4211 SrcDelta + G->getOffset(), false); 4212 } 4213 4214 /// Determines the optimal series of memory ops to replace the memset / memcpy. 4215 /// Return true if the number of memory ops is below the threshold (Limit). 4216 /// It returns the types of the sequence of memory ops to perform 4217 /// memset / memcpy by reference. 4218 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, 4219 unsigned Limit, uint64_t Size, 4220 unsigned DstAlign, unsigned SrcAlign, 4221 bool IsMemset, 4222 bool ZeroMemset, 4223 bool MemcpyStrSrc, 4224 bool AllowOverlap, 4225 unsigned DstAS, unsigned SrcAS, 4226 SelectionDAG &DAG, 4227 const TargetLowering &TLI) { 4228 assert((SrcAlign == 0 || SrcAlign >= DstAlign) && 4229 "Expecting memcpy / memset source to meet alignment requirement!"); 4230 // If 'SrcAlign' is zero, that means the memory operation does not need to 4231 // load the value, i.e. memset or memcpy from constant string. Otherwise, 4232 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 4233 // is the specified alignment of the memory operation. If it is zero, that 4234 // means it's possible to change the alignment of the destination. 4235 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 4236 // not need to be loaded. 4237 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, 4238 IsMemset, ZeroMemset, MemcpyStrSrc, 4239 DAG.getMachineFunction()); 4240 4241 if (VT == MVT::Other) { 4242 if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) || 4243 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) { 4244 VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS); 4245 } else { 4246 switch (DstAlign & 7) { 4247 case 0: VT = MVT::i64; break; 4248 case 4: VT = MVT::i32; break; 4249 case 2: VT = MVT::i16; break; 4250 default: VT = MVT::i8; break; 4251 } 4252 } 4253 4254 MVT LVT = MVT::i64; 4255 while (!TLI.isTypeLegal(LVT)) 4256 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 4257 assert(LVT.isInteger()); 4258 4259 if (VT.bitsGT(LVT)) 4260 VT = LVT; 4261 } 4262 4263 unsigned NumMemOps = 0; 4264 while (Size != 0) { 4265 unsigned VTSize = VT.getSizeInBits() / 8; 4266 while (VTSize > Size) { 4267 // For now, only use non-vector load / store's for the left-over pieces. 4268 EVT NewVT = VT; 4269 unsigned NewVTSize; 4270 4271 bool Found = false; 4272 if (VT.isVector() || VT.isFloatingPoint()) { 4273 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 4274 if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && 4275 TLI.isSafeMemOpType(NewVT.getSimpleVT())) 4276 Found = true; 4277 else if (NewVT == MVT::i64 && 4278 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 4279 TLI.isSafeMemOpType(MVT::f64)) { 4280 // i64 is usually not legal on 32-bit targets, but f64 may be. 4281 NewVT = MVT::f64; 4282 Found = true; 4283 } 4284 } 4285 4286 if (!Found) { 4287 do { 4288 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 4289 if (NewVT == MVT::i8) 4290 break; 4291 } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); 4292 } 4293 NewVTSize = NewVT.getSizeInBits() / 8; 4294 4295 // If the new VT cannot cover all of the remaining bits, then consider 4296 // issuing a (or a pair of) unaligned and overlapping load / store. 4297 // FIXME: Only does this for 64-bit or more since we don't have proper 4298 // cost model for unaligned load / store. 4299 bool Fast; 4300 if (NumMemOps && AllowOverlap && 4301 VTSize >= 8 && NewVTSize < Size && 4302 TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast) 4303 VTSize = Size; 4304 else { 4305 VT = NewVT; 4306 VTSize = NewVTSize; 4307 } 4308 } 4309 4310 if (++NumMemOps > Limit) 4311 return false; 4312 4313 MemOps.push_back(VT); 4314 Size -= VTSize; 4315 } 4316 4317 return true; 4318 } 4319 4320 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 4321 // On Darwin, -Os means optimize for size without hurting performance, so 4322 // only really optimize for size when -Oz (MinSize) is used. 4323 if (MF.getTarget().getTargetTriple().isOSDarwin()) 4324 return MF.getFunction()->optForMinSize(); 4325 return MF.getFunction()->optForSize(); 4326 } 4327 4328 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4329 SDValue Chain, SDValue Dst, SDValue Src, 4330 uint64_t Size, unsigned Align, 4331 bool isVol, bool AlwaysInline, 4332 MachinePointerInfo DstPtrInfo, 4333 MachinePointerInfo SrcPtrInfo) { 4334 // Turn a memcpy of undef to nop. 4335 if (Src.isUndef()) 4336 return Chain; 4337 4338 // Expand memcpy to a series of load and store ops if the size operand falls 4339 // below a certain threshold. 4340 // TODO: In the AlwaysInline case, if the size is big then generate a loop 4341 // rather than maybe a humongous number of loads and stores. 4342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4343 std::vector<EVT> MemOps; 4344 bool DstAlignCanChange = false; 4345 MachineFunction &MF = DAG.getMachineFunction(); 4346 MachineFrameInfo &MFI = MF.getFrameInfo(); 4347 bool OptSize = shouldLowerMemFuncForSize(MF); 4348 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4349 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4350 DstAlignCanChange = true; 4351 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4352 if (Align > SrcAlign) 4353 SrcAlign = Align; 4354 StringRef Str; 4355 bool CopyFromStr = isMemSrcFromString(Src, Str); 4356 bool isZeroStr = CopyFromStr && Str.empty(); 4357 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 4358 4359 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4360 (DstAlignCanChange ? 0 : Align), 4361 (isZeroStr ? 0 : SrcAlign), 4362 false, false, CopyFromStr, true, 4363 DstPtrInfo.getAddrSpace(), 4364 SrcPtrInfo.getAddrSpace(), 4365 DAG, TLI)) 4366 return SDValue(); 4367 4368 if (DstAlignCanChange) { 4369 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4370 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4371 4372 // Don't promote to an alignment that would require dynamic stack 4373 // realignment. 4374 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 4375 if (!TRI->needsStackRealignment(MF)) 4376 while (NewAlign > Align && 4377 DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign)) 4378 NewAlign /= 2; 4379 4380 if (NewAlign > Align) { 4381 // Give the stack frame object a larger alignment if needed. 4382 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4383 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4384 Align = NewAlign; 4385 } 4386 } 4387 4388 MachineMemOperand::Flags MMOFlags = 4389 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4390 SmallVector<SDValue, 8> OutChains; 4391 unsigned NumMemOps = MemOps.size(); 4392 uint64_t SrcOff = 0, DstOff = 0; 4393 for (unsigned i = 0; i != NumMemOps; ++i) { 4394 EVT VT = MemOps[i]; 4395 unsigned VTSize = VT.getSizeInBits() / 8; 4396 SDValue Value, Store; 4397 4398 if (VTSize > Size) { 4399 // Issuing an unaligned load / store pair that overlaps with the previous 4400 // pair. Adjust the offset accordingly. 4401 assert(i == NumMemOps-1 && i != 0); 4402 SrcOff -= VTSize - Size; 4403 DstOff -= VTSize - Size; 4404 } 4405 4406 if (CopyFromStr && 4407 (isZeroStr || (VT.isInteger() && !VT.isVector()))) { 4408 // It's unlikely a store of a vector immediate can be done in a single 4409 // instruction. It would require a load from a constantpool first. 4410 // We only handle zero vectors here. 4411 // FIXME: Handle other cases where store of vector immediate is done in 4412 // a single instruction. 4413 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); 4414 if (Value.getNode()) 4415 Store = DAG.getStore(Chain, dl, Value, 4416 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4417 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4418 } 4419 4420 if (!Store.getNode()) { 4421 // The type might not be legal for the target. This should only happen 4422 // if the type is smaller than a legal type, as on PPC, so the right 4423 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 4424 // to Load/Store if NVT==VT. 4425 // FIXME does the case above also need this? 4426 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 4427 assert(NVT.bitsGE(VT)); 4428 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 4429 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4430 SrcPtrInfo.getWithOffset(SrcOff), VT, 4431 MinAlign(SrcAlign, SrcOff), MMOFlags); 4432 OutChains.push_back(Value.getValue(1)); 4433 Store = DAG.getTruncStore( 4434 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4435 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 4436 } 4437 OutChains.push_back(Store); 4438 SrcOff += VTSize; 4439 DstOff += VTSize; 4440 Size -= VTSize; 4441 } 4442 4443 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4444 } 4445 4446 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 4447 SDValue Chain, SDValue Dst, SDValue Src, 4448 uint64_t Size, unsigned Align, 4449 bool isVol, bool AlwaysInline, 4450 MachinePointerInfo DstPtrInfo, 4451 MachinePointerInfo SrcPtrInfo) { 4452 // Turn a memmove of undef to nop. 4453 if (Src.isUndef()) 4454 return Chain; 4455 4456 // Expand memmove to a series of load and store ops if the size operand falls 4457 // below a certain threshold. 4458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4459 std::vector<EVT> MemOps; 4460 bool DstAlignCanChange = false; 4461 MachineFunction &MF = DAG.getMachineFunction(); 4462 MachineFrameInfo &MFI = MF.getFrameInfo(); 4463 bool OptSize = shouldLowerMemFuncForSize(MF); 4464 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4465 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4466 DstAlignCanChange = true; 4467 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 4468 if (Align > SrcAlign) 4469 SrcAlign = Align; 4470 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 4471 4472 if (!FindOptimalMemOpLowering(MemOps, Limit, Size, 4473 (DstAlignCanChange ? 0 : Align), SrcAlign, 4474 false, false, false, false, 4475 DstPtrInfo.getAddrSpace(), 4476 SrcPtrInfo.getAddrSpace(), 4477 DAG, TLI)) 4478 return SDValue(); 4479 4480 if (DstAlignCanChange) { 4481 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4482 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4483 if (NewAlign > Align) { 4484 // Give the stack frame object a larger alignment if needed. 4485 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4486 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4487 Align = NewAlign; 4488 } 4489 } 4490 4491 MachineMemOperand::Flags MMOFlags = 4492 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 4493 uint64_t SrcOff = 0, DstOff = 0; 4494 SmallVector<SDValue, 8> LoadValues; 4495 SmallVector<SDValue, 8> LoadChains; 4496 SmallVector<SDValue, 8> OutChains; 4497 unsigned NumMemOps = MemOps.size(); 4498 for (unsigned i = 0; i < NumMemOps; i++) { 4499 EVT VT = MemOps[i]; 4500 unsigned VTSize = VT.getSizeInBits() / 8; 4501 SDValue Value; 4502 4503 Value = 4504 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 4505 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, MMOFlags); 4506 LoadValues.push_back(Value); 4507 LoadChains.push_back(Value.getValue(1)); 4508 SrcOff += VTSize; 4509 } 4510 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 4511 OutChains.clear(); 4512 for (unsigned i = 0; i < NumMemOps; i++) { 4513 EVT VT = MemOps[i]; 4514 unsigned VTSize = VT.getSizeInBits() / 8; 4515 SDValue Store; 4516 4517 Store = DAG.getStore(Chain, dl, LoadValues[i], 4518 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4519 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 4520 OutChains.push_back(Store); 4521 DstOff += VTSize; 4522 } 4523 4524 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4525 } 4526 4527 /// \brief Lower the call to 'memset' intrinsic function into a series of store 4528 /// operations. 4529 /// 4530 /// \param DAG Selection DAG where lowered code is placed. 4531 /// \param dl Link to corresponding IR location. 4532 /// \param Chain Control flow dependency. 4533 /// \param Dst Pointer to destination memory location. 4534 /// \param Src Value of byte to write into the memory. 4535 /// \param Size Number of bytes to write. 4536 /// \param Align Alignment of the destination in bytes. 4537 /// \param isVol True if destination is volatile. 4538 /// \param DstPtrInfo IR information on the memory pointer. 4539 /// \returns New head in the control flow, if lowering was successful, empty 4540 /// SDValue otherwise. 4541 /// 4542 /// The function tries to replace 'llvm.memset' intrinsic with several store 4543 /// operations and value calculation code. This is usually profitable for small 4544 /// memory size. 4545 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 4546 SDValue Chain, SDValue Dst, SDValue Src, 4547 uint64_t Size, unsigned Align, bool isVol, 4548 MachinePointerInfo DstPtrInfo) { 4549 // Turn a memset of undef to nop. 4550 if (Src.isUndef()) 4551 return Chain; 4552 4553 // Expand memset to a series of load/store ops if the size operand 4554 // falls below a certain threshold. 4555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4556 std::vector<EVT> MemOps; 4557 bool DstAlignCanChange = false; 4558 MachineFunction &MF = DAG.getMachineFunction(); 4559 MachineFrameInfo &MFI = MF.getFrameInfo(); 4560 bool OptSize = shouldLowerMemFuncForSize(MF); 4561 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 4562 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 4563 DstAlignCanChange = true; 4564 bool IsZeroVal = 4565 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 4566 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), 4567 Size, (DstAlignCanChange ? 0 : Align), 0, 4568 true, IsZeroVal, false, true, 4569 DstPtrInfo.getAddrSpace(), ~0u, 4570 DAG, TLI)) 4571 return SDValue(); 4572 4573 if (DstAlignCanChange) { 4574 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 4575 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 4576 if (NewAlign > Align) { 4577 // Give the stack frame object a larger alignment if needed. 4578 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 4579 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 4580 Align = NewAlign; 4581 } 4582 } 4583 4584 SmallVector<SDValue, 8> OutChains; 4585 uint64_t DstOff = 0; 4586 unsigned NumMemOps = MemOps.size(); 4587 4588 // Find the largest store and generate the bit pattern for it. 4589 EVT LargestVT = MemOps[0]; 4590 for (unsigned i = 1; i < NumMemOps; i++) 4591 if (MemOps[i].bitsGT(LargestVT)) 4592 LargestVT = MemOps[i]; 4593 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 4594 4595 for (unsigned i = 0; i < NumMemOps; i++) { 4596 EVT VT = MemOps[i]; 4597 unsigned VTSize = VT.getSizeInBits() / 8; 4598 if (VTSize > Size) { 4599 // Issuing an unaligned load / store pair that overlaps with the previous 4600 // pair. Adjust the offset accordingly. 4601 assert(i == NumMemOps-1 && i != 0); 4602 DstOff -= VTSize - Size; 4603 } 4604 4605 // If this store is smaller than the largest store see whether we can get 4606 // the smaller value for free with a truncate. 4607 SDValue Value = MemSetValue; 4608 if (VT.bitsLT(LargestVT)) { 4609 if (!LargestVT.isVector() && !VT.isVector() && 4610 TLI.isTruncateFree(LargestVT, VT)) 4611 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 4612 else 4613 Value = getMemsetValue(Src, VT, DAG, dl); 4614 } 4615 assert(Value.getValueType() == VT && "Value with wrong type."); 4616 SDValue Store = DAG.getStore( 4617 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 4618 DstPtrInfo.getWithOffset(DstOff), Align, 4619 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 4620 OutChains.push_back(Store); 4621 DstOff += VT.getSizeInBits() / 8; 4622 Size -= VTSize; 4623 } 4624 4625 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 4626 } 4627 4628 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 4629 unsigned AS) { 4630 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 4631 // pointer operands can be losslessly bitcasted to pointers of address space 0 4632 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 4633 report_fatal_error("cannot lower memory intrinsic in address space " + 4634 Twine(AS)); 4635 } 4636 } 4637 4638 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 4639 SDValue Src, SDValue Size, unsigned Align, 4640 bool isVol, bool AlwaysInline, bool isTailCall, 4641 MachinePointerInfo DstPtrInfo, 4642 MachinePointerInfo SrcPtrInfo) { 4643 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4644 4645 // Check to see if we should lower the memcpy to loads and stores first. 4646 // For cases within the target-specified limits, this is the best choice. 4647 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4648 if (ConstantSize) { 4649 // Memcpy with size zero? Just return the original chain. 4650 if (ConstantSize->isNullValue()) 4651 return Chain; 4652 4653 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4654 ConstantSize->getZExtValue(),Align, 4655 isVol, false, DstPtrInfo, SrcPtrInfo); 4656 if (Result.getNode()) 4657 return Result; 4658 } 4659 4660 // Then check to see if we should lower the memcpy with target-specific 4661 // code. If the target chooses to do this, this is the next best. 4662 if (TSI) { 4663 SDValue Result = TSI->EmitTargetCodeForMemcpy( 4664 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 4665 DstPtrInfo, SrcPtrInfo); 4666 if (Result.getNode()) 4667 return Result; 4668 } 4669 4670 // If we really need inline code and the target declined to provide it, 4671 // use a (potentially long) sequence of loads and stores. 4672 if (AlwaysInline) { 4673 assert(ConstantSize && "AlwaysInline requires a constant size!"); 4674 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 4675 ConstantSize->getZExtValue(), Align, isVol, 4676 true, DstPtrInfo, SrcPtrInfo); 4677 } 4678 4679 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4680 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4681 4682 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 4683 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 4684 // respect volatile, so they may do things like read or write memory 4685 // beyond the given memory regions. But fixing this isn't easy, and most 4686 // people don't care. 4687 4688 // Emit a library call. 4689 TargetLowering::ArgListTy Args; 4690 TargetLowering::ArgListEntry Entry; 4691 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4692 Entry.Node = Dst; Args.push_back(Entry); 4693 Entry.Node = Src; Args.push_back(Entry); 4694 Entry.Node = Size; Args.push_back(Entry); 4695 // FIXME: pass in SDLoc 4696 TargetLowering::CallLoweringInfo CLI(*this); 4697 CLI.setDebugLoc(dl) 4698 .setChain(Chain) 4699 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 4700 Dst.getValueType().getTypeForEVT(*getContext()), 4701 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 4702 TLI->getPointerTy(getDataLayout())), 4703 std::move(Args)) 4704 .setDiscardResult() 4705 .setTailCall(isTailCall); 4706 4707 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4708 return CallResult.second; 4709 } 4710 4711 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 4712 SDValue Src, SDValue Size, unsigned Align, 4713 bool isVol, bool isTailCall, 4714 MachinePointerInfo DstPtrInfo, 4715 MachinePointerInfo SrcPtrInfo) { 4716 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4717 4718 // Check to see if we should lower the memmove to loads and stores first. 4719 // For cases within the target-specified limits, this is the best choice. 4720 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4721 if (ConstantSize) { 4722 // Memmove with size zero? Just return the original chain. 4723 if (ConstantSize->isNullValue()) 4724 return Chain; 4725 4726 SDValue Result = 4727 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 4728 ConstantSize->getZExtValue(), Align, isVol, 4729 false, DstPtrInfo, SrcPtrInfo); 4730 if (Result.getNode()) 4731 return Result; 4732 } 4733 4734 // Then check to see if we should lower the memmove with target-specific 4735 // code. If the target chooses to do this, this is the next best. 4736 if (TSI) { 4737 SDValue Result = TSI->EmitTargetCodeForMemmove( 4738 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 4739 if (Result.getNode()) 4740 return Result; 4741 } 4742 4743 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4744 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 4745 4746 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 4747 // not be safe. See memcpy above for more details. 4748 4749 // Emit a library call. 4750 TargetLowering::ArgListTy Args; 4751 TargetLowering::ArgListEntry Entry; 4752 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 4753 Entry.Node = Dst; Args.push_back(Entry); 4754 Entry.Node = Src; Args.push_back(Entry); 4755 Entry.Node = Size; Args.push_back(Entry); 4756 // FIXME: pass in SDLoc 4757 TargetLowering::CallLoweringInfo CLI(*this); 4758 CLI.setDebugLoc(dl) 4759 .setChain(Chain) 4760 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 4761 Dst.getValueType().getTypeForEVT(*getContext()), 4762 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 4763 TLI->getPointerTy(getDataLayout())), 4764 std::move(Args)) 4765 .setDiscardResult() 4766 .setTailCall(isTailCall); 4767 4768 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4769 return CallResult.second; 4770 } 4771 4772 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 4773 SDValue Src, SDValue Size, unsigned Align, 4774 bool isVol, bool isTailCall, 4775 MachinePointerInfo DstPtrInfo) { 4776 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 4777 4778 // Check to see if we should lower the memset to stores first. 4779 // For cases within the target-specified limits, this is the best choice. 4780 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4781 if (ConstantSize) { 4782 // Memset with size zero? Just return the original chain. 4783 if (ConstantSize->isNullValue()) 4784 return Chain; 4785 4786 SDValue Result = 4787 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 4788 Align, isVol, DstPtrInfo); 4789 4790 if (Result.getNode()) 4791 return Result; 4792 } 4793 4794 // Then check to see if we should lower the memset with target-specific 4795 // code. If the target chooses to do this, this is the next best. 4796 if (TSI) { 4797 SDValue Result = TSI->EmitTargetCodeForMemset( 4798 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 4799 if (Result.getNode()) 4800 return Result; 4801 } 4802 4803 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 4804 4805 // Emit a library call. 4806 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext()); 4807 TargetLowering::ArgListTy Args; 4808 TargetLowering::ArgListEntry Entry; 4809 Entry.Node = Dst; Entry.Ty = IntPtrTy; 4810 Args.push_back(Entry); 4811 Entry.Node = Src; 4812 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 4813 Args.push_back(Entry); 4814 Entry.Node = Size; 4815 Entry.Ty = IntPtrTy; 4816 Args.push_back(Entry); 4817 4818 // FIXME: pass in SDLoc 4819 TargetLowering::CallLoweringInfo CLI(*this); 4820 CLI.setDebugLoc(dl) 4821 .setChain(Chain) 4822 .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 4823 Dst.getValueType().getTypeForEVT(*getContext()), 4824 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 4825 TLI->getPointerTy(getDataLayout())), 4826 std::move(Args)) 4827 .setDiscardResult() 4828 .setTailCall(isTailCall); 4829 4830 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 4831 return CallResult.second; 4832 } 4833 4834 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4835 SDVTList VTList, ArrayRef<SDValue> Ops, 4836 MachineMemOperand *MMO) { 4837 FoldingSetNodeID ID; 4838 ID.AddInteger(MemVT.getRawBits()); 4839 AddNodeIDNode(ID, Opcode, VTList, Ops); 4840 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 4841 void* IP = nullptr; 4842 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 4843 cast<AtomicSDNode>(E)->refineAlignment(MMO); 4844 return SDValue(E, 0); 4845 } 4846 4847 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 4848 VTList, MemVT, MMO); 4849 createOperands(N, Ops); 4850 4851 CSEMap.InsertNode(N, IP); 4852 InsertNode(N); 4853 return SDValue(N, 0); 4854 } 4855 4856 SDValue SelectionDAG::getAtomicCmpSwap( 4857 unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, 4858 SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, 4859 unsigned Alignment, AtomicOrdering SuccessOrdering, 4860 AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { 4861 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4862 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4863 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4864 4865 if (Alignment == 0) // Ensure that codegen never sees alignment 0 4866 Alignment = getEVTAlignment(MemVT); 4867 4868 MachineFunction &MF = getMachineFunction(); 4869 4870 // FIXME: Volatile isn't really correct; we should keep track of atomic 4871 // orderings in the memoperand. 4872 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 4873 MachineMemOperand::MOStore; 4874 MachineMemOperand *MMO = 4875 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, 4876 AAMDNodes(), nullptr, SynchScope, SuccessOrdering, 4877 FailureOrdering); 4878 4879 return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO); 4880 } 4881 4882 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 4883 EVT MemVT, SDVTList VTs, SDValue Chain, 4884 SDValue Ptr, SDValue Cmp, SDValue Swp, 4885 MachineMemOperand *MMO) { 4886 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 4887 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 4888 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 4889 4890 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 4891 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 4892 } 4893 4894 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4895 SDValue Chain, SDValue Ptr, SDValue Val, 4896 const Value *PtrVal, unsigned Alignment, 4897 AtomicOrdering Ordering, 4898 SynchronizationScope SynchScope) { 4899 if (Alignment == 0) // Ensure that codegen never sees alignment 0 4900 Alignment = getEVTAlignment(MemVT); 4901 4902 MachineFunction &MF = getMachineFunction(); 4903 // An atomic store does not load. An atomic load does not store. 4904 // (An atomicrmw obviously both loads and stores.) 4905 // For now, atomics are considered to be volatile always, and they are 4906 // chained as such. 4907 // FIXME: Volatile isn't really correct; we should keep track of atomic 4908 // orderings in the memoperand. 4909 auto Flags = MachineMemOperand::MOVolatile; 4910 if (Opcode != ISD::ATOMIC_STORE) 4911 Flags |= MachineMemOperand::MOLoad; 4912 if (Opcode != ISD::ATOMIC_LOAD) 4913 Flags |= MachineMemOperand::MOStore; 4914 4915 MachineMemOperand *MMO = 4916 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, 4917 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4918 nullptr, SynchScope, Ordering); 4919 4920 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO); 4921 } 4922 4923 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4924 SDValue Chain, SDValue Ptr, SDValue Val, 4925 MachineMemOperand *MMO) { 4926 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 4927 Opcode == ISD::ATOMIC_LOAD_SUB || 4928 Opcode == ISD::ATOMIC_LOAD_AND || 4929 Opcode == ISD::ATOMIC_LOAD_OR || 4930 Opcode == ISD::ATOMIC_LOAD_XOR || 4931 Opcode == ISD::ATOMIC_LOAD_NAND || 4932 Opcode == ISD::ATOMIC_LOAD_MIN || 4933 Opcode == ISD::ATOMIC_LOAD_MAX || 4934 Opcode == ISD::ATOMIC_LOAD_UMIN || 4935 Opcode == ISD::ATOMIC_LOAD_UMAX || 4936 Opcode == ISD::ATOMIC_SWAP || 4937 Opcode == ISD::ATOMIC_STORE) && 4938 "Invalid Atomic Op"); 4939 4940 EVT VT = Val.getValueType(); 4941 4942 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 4943 getVTList(VT, MVT::Other); 4944 SDValue Ops[] = {Chain, Ptr, Val}; 4945 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 4946 } 4947 4948 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 4949 EVT VT, SDValue Chain, SDValue Ptr, 4950 MachineMemOperand *MMO) { 4951 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 4952 4953 SDVTList VTs = getVTList(VT, MVT::Other); 4954 SDValue Ops[] = {Chain, Ptr}; 4955 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 4956 } 4957 4958 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 4959 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 4960 if (Ops.size() == 1) 4961 return Ops[0]; 4962 4963 SmallVector<EVT, 4> VTs; 4964 VTs.reserve(Ops.size()); 4965 for (unsigned i = 0; i < Ops.size(); ++i) 4966 VTs.push_back(Ops[i].getValueType()); 4967 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 4968 } 4969 4970 SDValue SelectionDAG::getMemIntrinsicNode( 4971 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 4972 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol, 4973 bool ReadMem, bool WriteMem, unsigned Size) { 4974 if (Align == 0) // Ensure that codegen never sees alignment 0 4975 Align = getEVTAlignment(MemVT); 4976 4977 MachineFunction &MF = getMachineFunction(); 4978 auto Flags = MachineMemOperand::MONone; 4979 if (WriteMem) 4980 Flags |= MachineMemOperand::MOStore; 4981 if (ReadMem) 4982 Flags |= MachineMemOperand::MOLoad; 4983 if (Vol) 4984 Flags |= MachineMemOperand::MOVolatile; 4985 if (!Size) 4986 Size = MemVT.getStoreSize(); 4987 MachineMemOperand *MMO = 4988 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); 4989 4990 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 4991 } 4992 4993 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 4994 SDVTList VTList, 4995 ArrayRef<SDValue> Ops, EVT MemVT, 4996 MachineMemOperand *MMO) { 4997 assert((Opcode == ISD::INTRINSIC_VOID || 4998 Opcode == ISD::INTRINSIC_W_CHAIN || 4999 Opcode == ISD::PREFETCH || 5000 Opcode == ISD::LIFETIME_START || 5001 Opcode == ISD::LIFETIME_END || 5002 (Opcode <= INT_MAX && 5003 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 5004 "Opcode is not a memory-accessing opcode!"); 5005 5006 // Memoize the node unless it returns a flag. 5007 MemIntrinsicSDNode *N; 5008 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5009 FoldingSetNodeID ID; 5010 AddNodeIDNode(ID, Opcode, VTList, Ops); 5011 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5012 void *IP = nullptr; 5013 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5014 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 5015 return SDValue(E, 0); 5016 } 5017 5018 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5019 VTList, MemVT, MMO); 5020 createOperands(N, Ops); 5021 5022 CSEMap.InsertNode(N, IP); 5023 } else { 5024 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 5025 VTList, MemVT, MMO); 5026 createOperands(N, Ops); 5027 } 5028 InsertNode(N); 5029 return SDValue(N, 0); 5030 } 5031 5032 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5033 /// MachinePointerInfo record from it. This is particularly useful because the 5034 /// code generator has many cases where it doesn't bother passing in a 5035 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5036 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5037 int64_t Offset = 0) { 5038 // If this is FI+Offset, we can model it. 5039 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 5040 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 5041 FI->getIndex(), Offset); 5042 5043 // If this is (FI+Offset1)+Offset2, we can model it. 5044 if (Ptr.getOpcode() != ISD::ADD || 5045 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 5046 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 5047 return MachinePointerInfo(); 5048 5049 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 5050 return MachinePointerInfo::getFixedStack( 5051 DAG.getMachineFunction(), FI, 5052 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 5053 } 5054 5055 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 5056 /// MachinePointerInfo record from it. This is particularly useful because the 5057 /// code generator has many cases where it doesn't bother passing in a 5058 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 5059 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr, 5060 SDValue OffsetOp) { 5061 // If the 'Offset' value isn't a constant, we can't handle this. 5062 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 5063 return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue()); 5064 if (OffsetOp.isUndef()) 5065 return InferPointerInfo(DAG, Ptr); 5066 return MachinePointerInfo(); 5067 } 5068 5069 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5070 EVT VT, const SDLoc &dl, SDValue Chain, 5071 SDValue Ptr, SDValue Offset, 5072 MachinePointerInfo PtrInfo, EVT MemVT, 5073 unsigned Alignment, 5074 MachineMemOperand::Flags MMOFlags, 5075 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5076 assert(Chain.getValueType() == MVT::Other && 5077 "Invalid chain type"); 5078 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5079 Alignment = getEVTAlignment(MemVT); 5080 5081 MMOFlags |= MachineMemOperand::MOLoad; 5082 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 5083 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 5084 // clients. 5085 if (PtrInfo.V.isNull()) 5086 PtrInfo = InferPointerInfo(*this, Ptr, Offset); 5087 5088 MachineFunction &MF = getMachineFunction(); 5089 MachineMemOperand *MMO = MF.getMachineMemOperand( 5090 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 5091 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 5092 } 5093 5094 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 5095 EVT VT, const SDLoc &dl, SDValue Chain, 5096 SDValue Ptr, SDValue Offset, EVT MemVT, 5097 MachineMemOperand *MMO) { 5098 if (VT == MemVT) { 5099 ExtType = ISD::NON_EXTLOAD; 5100 } else if (ExtType == ISD::NON_EXTLOAD) { 5101 assert(VT == MemVT && "Non-extending load from different memory type!"); 5102 } else { 5103 // Extending load. 5104 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 5105 "Should only be an extending load, not truncating!"); 5106 assert(VT.isInteger() == MemVT.isInteger() && 5107 "Cannot convert from FP to Int or Int -> FP!"); 5108 assert(VT.isVector() == MemVT.isVector() && 5109 "Cannot use an ext load to convert to or from a vector!"); 5110 assert((!VT.isVector() || 5111 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 5112 "Cannot use an ext load to change the number of vector elements!"); 5113 } 5114 5115 bool Indexed = AM != ISD::UNINDEXED; 5116 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 5117 5118 SDVTList VTs = Indexed ? 5119 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 5120 SDValue Ops[] = { Chain, Ptr, Offset }; 5121 FoldingSetNodeID ID; 5122 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 5123 ID.AddInteger(MemVT.getRawBits()); 5124 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 5125 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 5126 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5127 void *IP = nullptr; 5128 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5129 cast<LoadSDNode>(E)->refineAlignment(MMO); 5130 return SDValue(E, 0); 5131 } 5132 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5133 ExtType, MemVT, MMO); 5134 createOperands(N, Ops); 5135 5136 CSEMap.InsertNode(N, IP); 5137 InsertNode(N); 5138 return SDValue(N, 0); 5139 } 5140 5141 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5142 SDValue Ptr, MachinePointerInfo PtrInfo, 5143 unsigned Alignment, 5144 MachineMemOperand::Flags MMOFlags, 5145 const AAMDNodes &AAInfo, const MDNode *Ranges) { 5146 SDValue Undef = getUNDEF(Ptr.getValueType()); 5147 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5148 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 5149 } 5150 5151 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5152 SDValue Ptr, MachineMemOperand *MMO) { 5153 SDValue Undef = getUNDEF(Ptr.getValueType()); 5154 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 5155 VT, MMO); 5156 } 5157 5158 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5159 EVT VT, SDValue Chain, SDValue Ptr, 5160 MachinePointerInfo PtrInfo, EVT MemVT, 5161 unsigned Alignment, 5162 MachineMemOperand::Flags MMOFlags, 5163 const AAMDNodes &AAInfo) { 5164 SDValue Undef = getUNDEF(Ptr.getValueType()); 5165 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 5166 MemVT, Alignment, MMOFlags, AAInfo); 5167 } 5168 5169 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 5170 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 5171 MachineMemOperand *MMO) { 5172 SDValue Undef = getUNDEF(Ptr.getValueType()); 5173 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 5174 MemVT, MMO); 5175 } 5176 5177 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 5178 SDValue Base, SDValue Offset, 5179 ISD::MemIndexedMode AM) { 5180 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 5181 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 5182 // Don't propagate the invariant or dereferenceable flags. 5183 auto MMOFlags = 5184 LD->getMemOperand()->getFlags() & 5185 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5186 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 5187 LD->getChain(), Base, Offset, LD->getPointerInfo(), 5188 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 5189 LD->getAAInfo()); 5190 } 5191 5192 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5193 SDValue Ptr, MachinePointerInfo PtrInfo, 5194 unsigned Alignment, 5195 MachineMemOperand::Flags MMOFlags, 5196 const AAMDNodes &AAInfo) { 5197 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 5198 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5199 Alignment = getEVTAlignment(Val.getValueType()); 5200 5201 MMOFlags |= MachineMemOperand::MOStore; 5202 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5203 5204 if (PtrInfo.V.isNull()) 5205 PtrInfo = InferPointerInfo(*this, Ptr); 5206 5207 MachineFunction &MF = getMachineFunction(); 5208 MachineMemOperand *MMO = MF.getMachineMemOperand( 5209 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 5210 return getStore(Chain, dl, Val, Ptr, MMO); 5211 } 5212 5213 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5214 SDValue Ptr, MachineMemOperand *MMO) { 5215 assert(Chain.getValueType() == MVT::Other && 5216 "Invalid chain type"); 5217 EVT VT = Val.getValueType(); 5218 SDVTList VTs = getVTList(MVT::Other); 5219 SDValue Undef = getUNDEF(Ptr.getValueType()); 5220 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5221 FoldingSetNodeID ID; 5222 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5223 ID.AddInteger(VT.getRawBits()); 5224 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5225 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 5226 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5227 void *IP = nullptr; 5228 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5229 cast<StoreSDNode>(E)->refineAlignment(MMO); 5230 return SDValue(E, 0); 5231 } 5232 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5233 ISD::UNINDEXED, false, VT, MMO); 5234 createOperands(N, Ops); 5235 5236 CSEMap.InsertNode(N, IP); 5237 InsertNode(N); 5238 return SDValue(N, 0); 5239 } 5240 5241 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5242 SDValue Ptr, MachinePointerInfo PtrInfo, 5243 EVT SVT, unsigned Alignment, 5244 MachineMemOperand::Flags MMOFlags, 5245 const AAMDNodes &AAInfo) { 5246 assert(Chain.getValueType() == MVT::Other && 5247 "Invalid chain type"); 5248 if (Alignment == 0) // Ensure that codegen never sees alignment 0 5249 Alignment = getEVTAlignment(SVT); 5250 5251 MMOFlags |= MachineMemOperand::MOStore; 5252 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 5253 5254 if (PtrInfo.V.isNull()) 5255 PtrInfo = InferPointerInfo(*this, Ptr); 5256 5257 MachineFunction &MF = getMachineFunction(); 5258 MachineMemOperand *MMO = MF.getMachineMemOperand( 5259 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 5260 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 5261 } 5262 5263 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 5264 SDValue Ptr, EVT SVT, 5265 MachineMemOperand *MMO) { 5266 EVT VT = Val.getValueType(); 5267 5268 assert(Chain.getValueType() == MVT::Other && 5269 "Invalid chain type"); 5270 if (VT == SVT) 5271 return getStore(Chain, dl, Val, Ptr, MMO); 5272 5273 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 5274 "Should only be a truncating store, not extending!"); 5275 assert(VT.isInteger() == SVT.isInteger() && 5276 "Can't do FP-INT conversion!"); 5277 assert(VT.isVector() == SVT.isVector() && 5278 "Cannot use trunc store to convert to or from a vector!"); 5279 assert((!VT.isVector() || 5280 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 5281 "Cannot use trunc store to change the number of vector elements!"); 5282 5283 SDVTList VTs = getVTList(MVT::Other); 5284 SDValue Undef = getUNDEF(Ptr.getValueType()); 5285 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 5286 FoldingSetNodeID ID; 5287 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5288 ID.AddInteger(SVT.getRawBits()); 5289 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 5290 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 5291 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5292 void *IP = nullptr; 5293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5294 cast<StoreSDNode>(E)->refineAlignment(MMO); 5295 return SDValue(E, 0); 5296 } 5297 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5298 ISD::UNINDEXED, true, SVT, MMO); 5299 createOperands(N, Ops); 5300 5301 CSEMap.InsertNode(N, IP); 5302 InsertNode(N); 5303 return SDValue(N, 0); 5304 } 5305 5306 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 5307 SDValue Base, SDValue Offset, 5308 ISD::MemIndexedMode AM) { 5309 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 5310 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 5311 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 5312 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 5313 FoldingSetNodeID ID; 5314 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 5315 ID.AddInteger(ST->getMemoryVT().getRawBits()); 5316 ID.AddInteger(ST->getRawSubclassData()); 5317 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 5318 void *IP = nullptr; 5319 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 5320 return SDValue(E, 0); 5321 5322 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 5323 ST->isTruncatingStore(), ST->getMemoryVT(), 5324 ST->getMemOperand()); 5325 createOperands(N, Ops); 5326 5327 CSEMap.InsertNode(N, IP); 5328 InsertNode(N); 5329 return SDValue(N, 0); 5330 } 5331 5332 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 5333 SDValue Ptr, SDValue Mask, SDValue Src0, 5334 EVT MemVT, MachineMemOperand *MMO, 5335 ISD::LoadExtType ExtTy, bool isExpanding) { 5336 5337 SDVTList VTs = getVTList(VT, MVT::Other); 5338 SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; 5339 FoldingSetNodeID ID; 5340 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 5341 ID.AddInteger(VT.getRawBits()); 5342 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 5343 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 5344 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5345 void *IP = nullptr; 5346 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5347 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 5348 return SDValue(E, 0); 5349 } 5350 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5351 ExtTy, isExpanding, MemVT, MMO); 5352 createOperands(N, Ops); 5353 5354 CSEMap.InsertNode(N, IP); 5355 InsertNode(N); 5356 return SDValue(N, 0); 5357 } 5358 5359 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 5360 SDValue Val, SDValue Ptr, SDValue Mask, 5361 EVT MemVT, MachineMemOperand *MMO, 5362 bool IsTruncating, bool IsCompressing) { 5363 assert(Chain.getValueType() == MVT::Other && 5364 "Invalid chain type"); 5365 EVT VT = Val.getValueType(); 5366 SDVTList VTs = getVTList(MVT::Other); 5367 SDValue Ops[] = { Chain, Ptr, Mask, Val }; 5368 FoldingSetNodeID ID; 5369 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 5370 ID.AddInteger(VT.getRawBits()); 5371 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 5372 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 5373 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5374 void *IP = nullptr; 5375 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5376 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 5377 return SDValue(E, 0); 5378 } 5379 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 5380 IsTruncating, IsCompressing, MemVT, MMO); 5381 createOperands(N, Ops); 5382 5383 CSEMap.InsertNode(N, IP); 5384 InsertNode(N); 5385 return SDValue(N, 0); 5386 } 5387 5388 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 5389 ArrayRef<SDValue> Ops, 5390 MachineMemOperand *MMO) { 5391 assert(Ops.size() == 5 && "Incompatible number of operands"); 5392 5393 FoldingSetNodeID ID; 5394 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 5395 ID.AddInteger(VT.getRawBits()); 5396 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 5397 dl.getIROrder(), VTs, VT, MMO)); 5398 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5399 void *IP = nullptr; 5400 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5401 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 5402 return SDValue(E, 0); 5403 } 5404 5405 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5406 VTs, VT, MMO); 5407 createOperands(N, Ops); 5408 5409 assert(N->getValue().getValueType() == N->getValueType(0) && 5410 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 5411 assert(N->getMask().getValueType().getVectorNumElements() == 5412 N->getValueType(0).getVectorNumElements() && 5413 "Vector width mismatch between mask and data"); 5414 assert(N->getIndex().getValueType().getVectorNumElements() == 5415 N->getValueType(0).getVectorNumElements() && 5416 "Vector width mismatch between index and data"); 5417 5418 CSEMap.InsertNode(N, IP); 5419 InsertNode(N); 5420 return SDValue(N, 0); 5421 } 5422 5423 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 5424 ArrayRef<SDValue> Ops, 5425 MachineMemOperand *MMO) { 5426 assert(Ops.size() == 5 && "Incompatible number of operands"); 5427 5428 FoldingSetNodeID ID; 5429 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 5430 ID.AddInteger(VT.getRawBits()); 5431 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 5432 dl.getIROrder(), VTs, VT, MMO)); 5433 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 5434 void *IP = nullptr; 5435 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 5436 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 5437 return SDValue(E, 0); 5438 } 5439 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 5440 VTs, VT, MMO); 5441 createOperands(N, Ops); 5442 5443 assert(N->getMask().getValueType().getVectorNumElements() == 5444 N->getValue().getValueType().getVectorNumElements() && 5445 "Vector width mismatch between mask and data"); 5446 assert(N->getIndex().getValueType().getVectorNumElements() == 5447 N->getValue().getValueType().getVectorNumElements() && 5448 "Vector width mismatch between index and data"); 5449 5450 CSEMap.InsertNode(N, IP); 5451 InsertNode(N); 5452 return SDValue(N, 0); 5453 } 5454 5455 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 5456 SDValue Ptr, SDValue SV, unsigned Align) { 5457 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 5458 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 5459 } 5460 5461 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5462 ArrayRef<SDUse> Ops) { 5463 switch (Ops.size()) { 5464 case 0: return getNode(Opcode, DL, VT); 5465 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 5466 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 5467 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5468 default: break; 5469 } 5470 5471 // Copy from an SDUse array into an SDValue array for use with 5472 // the regular getNode logic. 5473 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 5474 return getNode(Opcode, DL, VT, NewOps); 5475 } 5476 5477 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5478 ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) { 5479 unsigned NumOps = Ops.size(); 5480 switch (NumOps) { 5481 case 0: return getNode(Opcode, DL, VT); 5482 case 1: return getNode(Opcode, DL, VT, Ops[0]); 5483 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 5484 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 5485 default: break; 5486 } 5487 5488 switch (Opcode) { 5489 default: break; 5490 case ISD::CONCAT_VECTORS: { 5491 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF. 5492 if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this)) 5493 return V; 5494 break; 5495 } 5496 case ISD::SELECT_CC: { 5497 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 5498 assert(Ops[0].getValueType() == Ops[1].getValueType() && 5499 "LHS and RHS of condition must have same type!"); 5500 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5501 "True and False arms of SelectCC must have same type!"); 5502 assert(Ops[2].getValueType() == VT && 5503 "select_cc node must be of same type as true and false value!"); 5504 break; 5505 } 5506 case ISD::BR_CC: { 5507 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 5508 assert(Ops[2].getValueType() == Ops[3].getValueType() && 5509 "LHS/RHS of comparison should match types!"); 5510 break; 5511 } 5512 } 5513 5514 // Memoize nodes. 5515 SDNode *N; 5516 SDVTList VTs = getVTList(VT); 5517 5518 if (VT != MVT::Glue) { 5519 FoldingSetNodeID ID; 5520 AddNodeIDNode(ID, Opcode, VTs, Ops); 5521 void *IP = nullptr; 5522 5523 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5524 return SDValue(E, 0); 5525 5526 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5527 createOperands(N, Ops); 5528 5529 CSEMap.InsertNode(N, IP); 5530 } else { 5531 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5532 createOperands(N, Ops); 5533 } 5534 5535 InsertNode(N); 5536 return SDValue(N, 0); 5537 } 5538 5539 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5540 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 5541 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 5542 } 5543 5544 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5545 ArrayRef<SDValue> Ops) { 5546 if (VTList.NumVTs == 1) 5547 return getNode(Opcode, DL, VTList.VTs[0], Ops); 5548 5549 #if 0 5550 switch (Opcode) { 5551 // FIXME: figure out how to safely handle things like 5552 // int foo(int x) { return 1 << (x & 255); } 5553 // int bar() { return foo(256); } 5554 case ISD::SRA_PARTS: 5555 case ISD::SRL_PARTS: 5556 case ISD::SHL_PARTS: 5557 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 5558 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 5559 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5560 else if (N3.getOpcode() == ISD::AND) 5561 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 5562 // If the and is only masking out bits that cannot effect the shift, 5563 // eliminate the and. 5564 unsigned NumBits = VT.getScalarSizeInBits()*2; 5565 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 5566 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 5567 } 5568 break; 5569 } 5570 #endif 5571 5572 // Memoize the node unless it returns a flag. 5573 SDNode *N; 5574 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 5575 FoldingSetNodeID ID; 5576 AddNodeIDNode(ID, Opcode, VTList, Ops); 5577 void *IP = nullptr; 5578 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5579 return SDValue(E, 0); 5580 5581 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5582 createOperands(N, Ops); 5583 CSEMap.InsertNode(N, IP); 5584 } else { 5585 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 5586 createOperands(N, Ops); 5587 } 5588 InsertNode(N); 5589 return SDValue(N, 0); 5590 } 5591 5592 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 5593 SDVTList VTList) { 5594 return getNode(Opcode, DL, VTList, None); 5595 } 5596 5597 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5598 SDValue N1) { 5599 SDValue Ops[] = { N1 }; 5600 return getNode(Opcode, DL, VTList, Ops); 5601 } 5602 5603 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5604 SDValue N1, SDValue N2) { 5605 SDValue Ops[] = { N1, N2 }; 5606 return getNode(Opcode, DL, VTList, Ops); 5607 } 5608 5609 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5610 SDValue N1, SDValue N2, SDValue N3) { 5611 SDValue Ops[] = { N1, N2, N3 }; 5612 return getNode(Opcode, DL, VTList, Ops); 5613 } 5614 5615 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5616 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5617 SDValue Ops[] = { N1, N2, N3, N4 }; 5618 return getNode(Opcode, DL, VTList, Ops); 5619 } 5620 5621 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 5622 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5623 SDValue N5) { 5624 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5625 return getNode(Opcode, DL, VTList, Ops); 5626 } 5627 5628 SDVTList SelectionDAG::getVTList(EVT VT) { 5629 return makeVTList(SDNode::getValueTypeList(VT), 1); 5630 } 5631 5632 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 5633 FoldingSetNodeID ID; 5634 ID.AddInteger(2U); 5635 ID.AddInteger(VT1.getRawBits()); 5636 ID.AddInteger(VT2.getRawBits()); 5637 5638 void *IP = nullptr; 5639 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5640 if (!Result) { 5641 EVT *Array = Allocator.Allocate<EVT>(2); 5642 Array[0] = VT1; 5643 Array[1] = VT2; 5644 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 5645 VTListMap.InsertNode(Result, IP); 5646 } 5647 return Result->getSDVTList(); 5648 } 5649 5650 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 5651 FoldingSetNodeID ID; 5652 ID.AddInteger(3U); 5653 ID.AddInteger(VT1.getRawBits()); 5654 ID.AddInteger(VT2.getRawBits()); 5655 ID.AddInteger(VT3.getRawBits()); 5656 5657 void *IP = nullptr; 5658 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5659 if (!Result) { 5660 EVT *Array = Allocator.Allocate<EVT>(3); 5661 Array[0] = VT1; 5662 Array[1] = VT2; 5663 Array[2] = VT3; 5664 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 5665 VTListMap.InsertNode(Result, IP); 5666 } 5667 return Result->getSDVTList(); 5668 } 5669 5670 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 5671 FoldingSetNodeID ID; 5672 ID.AddInteger(4U); 5673 ID.AddInteger(VT1.getRawBits()); 5674 ID.AddInteger(VT2.getRawBits()); 5675 ID.AddInteger(VT3.getRawBits()); 5676 ID.AddInteger(VT4.getRawBits()); 5677 5678 void *IP = nullptr; 5679 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5680 if (!Result) { 5681 EVT *Array = Allocator.Allocate<EVT>(4); 5682 Array[0] = VT1; 5683 Array[1] = VT2; 5684 Array[2] = VT3; 5685 Array[3] = VT4; 5686 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 5687 VTListMap.InsertNode(Result, IP); 5688 } 5689 return Result->getSDVTList(); 5690 } 5691 5692 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 5693 unsigned NumVTs = VTs.size(); 5694 FoldingSetNodeID ID; 5695 ID.AddInteger(NumVTs); 5696 for (unsigned index = 0; index < NumVTs; index++) { 5697 ID.AddInteger(VTs[index].getRawBits()); 5698 } 5699 5700 void *IP = nullptr; 5701 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 5702 if (!Result) { 5703 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 5704 std::copy(VTs.begin(), VTs.end(), Array); 5705 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 5706 VTListMap.InsertNode(Result, IP); 5707 } 5708 return Result->getSDVTList(); 5709 } 5710 5711 5712 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 5713 /// specified operands. If the resultant node already exists in the DAG, 5714 /// this does not modify the specified node, instead it returns the node that 5715 /// already exists. If the resultant node does not exist in the DAG, the 5716 /// input node is returned. As a degenerate case, if you specify the same 5717 /// input operands as the node already has, the input node is returned. 5718 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 5719 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 5720 5721 // Check to see if there is no change. 5722 if (Op == N->getOperand(0)) return N; 5723 5724 // See if the modified node already exists. 5725 void *InsertPos = nullptr; 5726 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 5727 return Existing; 5728 5729 // Nope it doesn't. Remove the node from its current place in the maps. 5730 if (InsertPos) 5731 if (!RemoveNodeFromCSEMaps(N)) 5732 InsertPos = nullptr; 5733 5734 // Now we update the operands. 5735 N->OperandList[0].set(Op); 5736 5737 // If this gets put into a CSE map, add it. 5738 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5739 return N; 5740 } 5741 5742 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 5743 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 5744 5745 // Check to see if there is no change. 5746 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 5747 return N; // No operands changed, just return the input node. 5748 5749 // See if the modified node already exists. 5750 void *InsertPos = nullptr; 5751 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 5752 return Existing; 5753 5754 // Nope it doesn't. Remove the node from its current place in the maps. 5755 if (InsertPos) 5756 if (!RemoveNodeFromCSEMaps(N)) 5757 InsertPos = nullptr; 5758 5759 // Now we update the operands. 5760 if (N->OperandList[0] != Op1) 5761 N->OperandList[0].set(Op1); 5762 if (N->OperandList[1] != Op2) 5763 N->OperandList[1].set(Op2); 5764 5765 // If this gets put into a CSE map, add it. 5766 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5767 return N; 5768 } 5769 5770 SDNode *SelectionDAG:: 5771 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 5772 SDValue Ops[] = { Op1, Op2, Op3 }; 5773 return UpdateNodeOperands(N, Ops); 5774 } 5775 5776 SDNode *SelectionDAG:: 5777 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5778 SDValue Op3, SDValue Op4) { 5779 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 5780 return UpdateNodeOperands(N, Ops); 5781 } 5782 5783 SDNode *SelectionDAG:: 5784 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 5785 SDValue Op3, SDValue Op4, SDValue Op5) { 5786 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 5787 return UpdateNodeOperands(N, Ops); 5788 } 5789 5790 SDNode *SelectionDAG:: 5791 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 5792 unsigned NumOps = Ops.size(); 5793 assert(N->getNumOperands() == NumOps && 5794 "Update with wrong number of operands"); 5795 5796 // If no operands changed just return the input node. 5797 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 5798 return N; 5799 5800 // See if the modified node already exists. 5801 void *InsertPos = nullptr; 5802 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 5803 return Existing; 5804 5805 // Nope it doesn't. Remove the node from its current place in the maps. 5806 if (InsertPos) 5807 if (!RemoveNodeFromCSEMaps(N)) 5808 InsertPos = nullptr; 5809 5810 // Now we update the operands. 5811 for (unsigned i = 0; i != NumOps; ++i) 5812 if (N->OperandList[i] != Ops[i]) 5813 N->OperandList[i].set(Ops[i]); 5814 5815 // If this gets put into a CSE map, add it. 5816 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 5817 return N; 5818 } 5819 5820 /// DropOperands - Release the operands and set this node to have 5821 /// zero operands. 5822 void SDNode::DropOperands() { 5823 // Unlike the code in MorphNodeTo that does this, we don't need to 5824 // watch for dead nodes here. 5825 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 5826 SDUse &Use = *I++; 5827 Use.set(SDValue()); 5828 } 5829 } 5830 5831 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 5832 /// machine opcode. 5833 /// 5834 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5835 EVT VT) { 5836 SDVTList VTs = getVTList(VT); 5837 return SelectNodeTo(N, MachineOpc, VTs, None); 5838 } 5839 5840 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5841 EVT VT, SDValue Op1) { 5842 SDVTList VTs = getVTList(VT); 5843 SDValue Ops[] = { Op1 }; 5844 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5845 } 5846 5847 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5848 EVT VT, SDValue Op1, 5849 SDValue Op2) { 5850 SDVTList VTs = getVTList(VT); 5851 SDValue Ops[] = { Op1, Op2 }; 5852 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5853 } 5854 5855 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5856 EVT VT, SDValue Op1, 5857 SDValue Op2, SDValue Op3) { 5858 SDVTList VTs = getVTList(VT); 5859 SDValue Ops[] = { Op1, Op2, Op3 }; 5860 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5861 } 5862 5863 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5864 EVT VT, ArrayRef<SDValue> Ops) { 5865 SDVTList VTs = getVTList(VT); 5866 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5867 } 5868 5869 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5870 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 5871 SDVTList VTs = getVTList(VT1, VT2); 5872 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5873 } 5874 5875 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5876 EVT VT1, EVT VT2) { 5877 SDVTList VTs = getVTList(VT1, VT2); 5878 return SelectNodeTo(N, MachineOpc, VTs, None); 5879 } 5880 5881 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5882 EVT VT1, EVT VT2, EVT VT3, 5883 ArrayRef<SDValue> Ops) { 5884 SDVTList VTs = getVTList(VT1, VT2, VT3); 5885 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5886 } 5887 5888 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5889 EVT VT1, EVT VT2, 5890 SDValue Op1, SDValue Op2) { 5891 SDVTList VTs = getVTList(VT1, VT2); 5892 SDValue Ops[] = { Op1, Op2 }; 5893 return SelectNodeTo(N, MachineOpc, VTs, Ops); 5894 } 5895 5896 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 5897 SDVTList VTs,ArrayRef<SDValue> Ops) { 5898 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 5899 // Reset the NodeID to -1. 5900 New->setNodeId(-1); 5901 if (New != N) { 5902 ReplaceAllUsesWith(N, New); 5903 RemoveDeadNode(N); 5904 } 5905 return New; 5906 } 5907 5908 /// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away 5909 /// the line number information on the merged node since it is not possible to 5910 /// preserve the information that operation is associated with multiple lines. 5911 /// This will make the debugger working better at -O0, were there is a higher 5912 /// probability having other instructions associated with that line. 5913 /// 5914 /// For IROrder, we keep the smaller of the two 5915 SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &OLoc) { 5916 DebugLoc NLoc = N->getDebugLoc(); 5917 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 5918 N->setDebugLoc(DebugLoc()); 5919 } 5920 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 5921 N->setIROrder(Order); 5922 return N; 5923 } 5924 5925 /// MorphNodeTo - This *mutates* the specified node to have the specified 5926 /// return type, opcode, and operands. 5927 /// 5928 /// Note that MorphNodeTo returns the resultant node. If there is already a 5929 /// node of the specified opcode and operands, it returns that node instead of 5930 /// the current one. Note that the SDLoc need not be the same. 5931 /// 5932 /// Using MorphNodeTo is faster than creating a new node and swapping it in 5933 /// with ReplaceAllUsesWith both because it often avoids allocating a new 5934 /// node, and because it doesn't require CSE recalculation for any of 5935 /// the node's users. 5936 /// 5937 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 5938 /// As a consequence it isn't appropriate to use from within the DAG combiner or 5939 /// the legalizer which maintain worklists that would need to be updated when 5940 /// deleting things. 5941 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 5942 SDVTList VTs, ArrayRef<SDValue> Ops) { 5943 // If an identical node already exists, use it. 5944 void *IP = nullptr; 5945 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 5946 FoldingSetNodeID ID; 5947 AddNodeIDNode(ID, Opc, VTs, Ops); 5948 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 5949 return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N)); 5950 } 5951 5952 if (!RemoveNodeFromCSEMaps(N)) 5953 IP = nullptr; 5954 5955 // Start the morphing. 5956 N->NodeType = Opc; 5957 N->ValueList = VTs.VTs; 5958 N->NumValues = VTs.NumVTs; 5959 5960 // Clear the operands list, updating used nodes to remove this from their 5961 // use list. Keep track of any operands that become dead as a result. 5962 SmallPtrSet<SDNode*, 16> DeadNodeSet; 5963 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 5964 SDUse &Use = *I++; 5965 SDNode *Used = Use.getNode(); 5966 Use.set(SDValue()); 5967 if (Used->use_empty()) 5968 DeadNodeSet.insert(Used); 5969 } 5970 5971 // For MachineNode, initialize the memory references information. 5972 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 5973 MN->setMemRefs(nullptr, nullptr); 5974 5975 // Swap for an appropriately sized array from the recycler. 5976 removeOperands(N); 5977 createOperands(N, Ops); 5978 5979 // Delete any nodes that are still dead after adding the uses for the 5980 // new operands. 5981 if (!DeadNodeSet.empty()) { 5982 SmallVector<SDNode *, 16> DeadNodes; 5983 for (SDNode *N : DeadNodeSet) 5984 if (N->use_empty()) 5985 DeadNodes.push_back(N); 5986 RemoveDeadNodes(DeadNodes); 5987 } 5988 5989 if (IP) 5990 CSEMap.InsertNode(N, IP); // Memoize the new node. 5991 return N; 5992 } 5993 5994 5995 /// getMachineNode - These are used for target selectors to create a new node 5996 /// with specified return type(s), MachineInstr opcode, and operands. 5997 /// 5998 /// Note that getMachineNode returns the resultant node. If there is already a 5999 /// node of the specified opcode and operands, it returns that node instead of 6000 /// the current one. 6001 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6002 EVT VT) { 6003 SDVTList VTs = getVTList(VT); 6004 return getMachineNode(Opcode, dl, VTs, None); 6005 } 6006 6007 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6008 EVT VT, SDValue Op1) { 6009 SDVTList VTs = getVTList(VT); 6010 SDValue Ops[] = { Op1 }; 6011 return getMachineNode(Opcode, dl, VTs, Ops); 6012 } 6013 6014 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6015 EVT VT, SDValue Op1, SDValue Op2) { 6016 SDVTList VTs = getVTList(VT); 6017 SDValue Ops[] = { Op1, Op2 }; 6018 return getMachineNode(Opcode, dl, VTs, Ops); 6019 } 6020 6021 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6022 EVT VT, SDValue Op1, SDValue Op2, 6023 SDValue Op3) { 6024 SDVTList VTs = getVTList(VT); 6025 SDValue Ops[] = { Op1, Op2, Op3 }; 6026 return getMachineNode(Opcode, dl, VTs, Ops); 6027 } 6028 6029 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6030 EVT VT, ArrayRef<SDValue> Ops) { 6031 SDVTList VTs = getVTList(VT); 6032 return getMachineNode(Opcode, dl, VTs, Ops); 6033 } 6034 6035 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6036 EVT VT1, EVT VT2, SDValue Op1, 6037 SDValue Op2) { 6038 SDVTList VTs = getVTList(VT1, VT2); 6039 SDValue Ops[] = { Op1, Op2 }; 6040 return getMachineNode(Opcode, dl, VTs, Ops); 6041 } 6042 6043 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6044 EVT VT1, EVT VT2, SDValue Op1, 6045 SDValue Op2, SDValue Op3) { 6046 SDVTList VTs = getVTList(VT1, VT2); 6047 SDValue Ops[] = { Op1, Op2, Op3 }; 6048 return getMachineNode(Opcode, dl, VTs, Ops); 6049 } 6050 6051 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6052 EVT VT1, EVT VT2, 6053 ArrayRef<SDValue> Ops) { 6054 SDVTList VTs = getVTList(VT1, VT2); 6055 return getMachineNode(Opcode, dl, VTs, Ops); 6056 } 6057 6058 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6059 EVT VT1, EVT VT2, EVT VT3, 6060 SDValue Op1, SDValue Op2) { 6061 SDVTList VTs = getVTList(VT1, VT2, VT3); 6062 SDValue Ops[] = { Op1, Op2 }; 6063 return getMachineNode(Opcode, dl, VTs, Ops); 6064 } 6065 6066 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6067 EVT VT1, EVT VT2, EVT VT3, 6068 SDValue Op1, SDValue Op2, 6069 SDValue Op3) { 6070 SDVTList VTs = getVTList(VT1, VT2, VT3); 6071 SDValue Ops[] = { Op1, Op2, Op3 }; 6072 return getMachineNode(Opcode, dl, VTs, Ops); 6073 } 6074 6075 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6076 EVT VT1, EVT VT2, EVT VT3, 6077 ArrayRef<SDValue> Ops) { 6078 SDVTList VTs = getVTList(VT1, VT2, VT3); 6079 return getMachineNode(Opcode, dl, VTs, Ops); 6080 } 6081 6082 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 6083 ArrayRef<EVT> ResultTys, 6084 ArrayRef<SDValue> Ops) { 6085 SDVTList VTs = getVTList(ResultTys); 6086 return getMachineNode(Opcode, dl, VTs, Ops); 6087 } 6088 6089 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 6090 SDVTList VTs, 6091 ArrayRef<SDValue> Ops) { 6092 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 6093 MachineSDNode *N; 6094 void *IP = nullptr; 6095 6096 if (DoCSE) { 6097 FoldingSetNodeID ID; 6098 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 6099 IP = nullptr; 6100 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6101 return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL)); 6102 } 6103 } 6104 6105 // Allocate a new MachineSDNode. 6106 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6107 createOperands(N, Ops); 6108 6109 if (DoCSE) 6110 CSEMap.InsertNode(N, IP); 6111 6112 InsertNode(N); 6113 return N; 6114 } 6115 6116 /// getTargetExtractSubreg - A convenience function for creating 6117 /// TargetOpcode::EXTRACT_SUBREG nodes. 6118 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6119 SDValue Operand) { 6120 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6121 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 6122 VT, Operand, SRIdxVal); 6123 return SDValue(Subreg, 0); 6124 } 6125 6126 /// getTargetInsertSubreg - A convenience function for creating 6127 /// TargetOpcode::INSERT_SUBREG nodes. 6128 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 6129 SDValue Operand, SDValue Subreg) { 6130 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 6131 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 6132 VT, Operand, Subreg, SRIdxVal); 6133 return SDValue(Result, 0); 6134 } 6135 6136 /// getNodeIfExists - Get the specified node if it's already available, or 6137 /// else return NULL. 6138 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 6139 ArrayRef<SDValue> Ops, 6140 const SDNodeFlags *Flags) { 6141 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 6142 FoldingSetNodeID ID; 6143 AddNodeIDNode(ID, Opcode, VTList, Ops); 6144 void *IP = nullptr; 6145 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 6146 if (Flags) 6147 E->intersectFlagsWith(Flags); 6148 return E; 6149 } 6150 } 6151 return nullptr; 6152 } 6153 6154 /// getDbgValue - Creates a SDDbgValue node. 6155 /// 6156 /// SDNode 6157 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, 6158 unsigned R, bool IsIndirect, uint64_t Off, 6159 const DebugLoc &DL, unsigned O) { 6160 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6161 "Expected inlined-at fields to agree"); 6162 return new (DbgInfo->getAlloc()) 6163 SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); 6164 } 6165 6166 /// Constant 6167 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, 6168 const Value *C, uint64_t Off, 6169 const DebugLoc &DL, unsigned O) { 6170 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6171 "Expected inlined-at fields to agree"); 6172 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); 6173 } 6174 6175 /// FrameIndex 6176 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, 6177 unsigned FI, uint64_t Off, 6178 const DebugLoc &DL, 6179 unsigned O) { 6180 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 6181 "Expected inlined-at fields to agree"); 6182 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); 6183 } 6184 6185 namespace { 6186 6187 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 6188 /// pointed to by a use iterator is deleted, increment the use iterator 6189 /// so that it doesn't dangle. 6190 /// 6191 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 6192 SDNode::use_iterator &UI; 6193 SDNode::use_iterator &UE; 6194 6195 void NodeDeleted(SDNode *N, SDNode *E) override { 6196 // Increment the iterator as needed. 6197 while (UI != UE && N == *UI) 6198 ++UI; 6199 } 6200 6201 public: 6202 RAUWUpdateListener(SelectionDAG &d, 6203 SDNode::use_iterator &ui, 6204 SDNode::use_iterator &ue) 6205 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 6206 }; 6207 6208 } 6209 6210 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6211 /// This can cause recursive merging of nodes in the DAG. 6212 /// 6213 /// This version assumes From has a single result value. 6214 /// 6215 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 6216 SDNode *From = FromN.getNode(); 6217 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 6218 "Cannot replace with this method!"); 6219 assert(From != To.getNode() && "Cannot replace uses of with self"); 6220 6221 // Preserve Debug Values 6222 TransferDbgValues(FromN, To); 6223 6224 // Iterate over all the existing uses of From. New uses will be added 6225 // to the beginning of the use list, which we avoid visiting. 6226 // This specifically avoids visiting uses of From that arise while the 6227 // replacement is happening, because any such uses would be the result 6228 // of CSE: If an existing node looks like From after one of its operands 6229 // is replaced by To, we don't want to replace of all its users with To 6230 // too. See PR3018 for more info. 6231 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6232 RAUWUpdateListener Listener(*this, UI, UE); 6233 while (UI != UE) { 6234 SDNode *User = *UI; 6235 6236 // This node is about to morph, remove its old self from the CSE maps. 6237 RemoveNodeFromCSEMaps(User); 6238 6239 // A user can appear in a use list multiple times, and when this 6240 // happens the uses are usually next to each other in the list. 6241 // To help reduce the number of CSE recomputations, process all 6242 // the uses of this user that we can find this way. 6243 do { 6244 SDUse &Use = UI.getUse(); 6245 ++UI; 6246 Use.set(To); 6247 } while (UI != UE && *UI == User); 6248 6249 // Now that we have modified User, add it back to the CSE maps. If it 6250 // already exists there, recursively merge the results together. 6251 AddModifiedNodeToCSEMaps(User); 6252 } 6253 6254 6255 // If we just RAUW'd the root, take note. 6256 if (FromN == getRoot()) 6257 setRoot(To); 6258 } 6259 6260 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6261 /// This can cause recursive merging of nodes in the DAG. 6262 /// 6263 /// This version assumes that for each value of From, there is a 6264 /// corresponding value in To in the same position with the same type. 6265 /// 6266 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 6267 #ifndef NDEBUG 6268 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6269 assert((!From->hasAnyUseOfValue(i) || 6270 From->getValueType(i) == To->getValueType(i)) && 6271 "Cannot use this version of ReplaceAllUsesWith!"); 6272 #endif 6273 6274 // Handle the trivial case. 6275 if (From == To) 6276 return; 6277 6278 // Preserve Debug Info. Only do this if there's a use. 6279 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6280 if (From->hasAnyUseOfValue(i)) { 6281 assert((i < To->getNumValues()) && "Invalid To location"); 6282 TransferDbgValues(SDValue(From, i), SDValue(To, i)); 6283 } 6284 6285 // Iterate over just the existing users of From. See the comments in 6286 // the ReplaceAllUsesWith above. 6287 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6288 RAUWUpdateListener Listener(*this, UI, UE); 6289 while (UI != UE) { 6290 SDNode *User = *UI; 6291 6292 // This node is about to morph, remove its old self from the CSE maps. 6293 RemoveNodeFromCSEMaps(User); 6294 6295 // A user can appear in a use list multiple times, and when this 6296 // happens the uses are usually next to each other in the list. 6297 // To help reduce the number of CSE recomputations, process all 6298 // the uses of this user that we can find this way. 6299 do { 6300 SDUse &Use = UI.getUse(); 6301 ++UI; 6302 Use.setNode(To); 6303 } while (UI != UE && *UI == User); 6304 6305 // Now that we have modified User, add it back to the CSE maps. If it 6306 // already exists there, recursively merge the results together. 6307 AddModifiedNodeToCSEMaps(User); 6308 } 6309 6310 // If we just RAUW'd the root, take note. 6311 if (From == getRoot().getNode()) 6312 setRoot(SDValue(To, getRoot().getResNo())); 6313 } 6314 6315 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 6316 /// This can cause recursive merging of nodes in the DAG. 6317 /// 6318 /// This version can replace From with any result values. To must match the 6319 /// number and types of values returned by From. 6320 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 6321 if (From->getNumValues() == 1) // Handle the simple case efficiently. 6322 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 6323 6324 // Preserve Debug Info. 6325 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 6326 TransferDbgValues(SDValue(From, i), *To); 6327 6328 // Iterate over just the existing users of From. See the comments in 6329 // the ReplaceAllUsesWith above. 6330 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 6331 RAUWUpdateListener Listener(*this, UI, UE); 6332 while (UI != UE) { 6333 SDNode *User = *UI; 6334 6335 // This node is about to morph, remove its old self from the CSE maps. 6336 RemoveNodeFromCSEMaps(User); 6337 6338 // A user can appear in a use list multiple times, and when this 6339 // happens the uses are usually next to each other in the list. 6340 // To help reduce the number of CSE recomputations, process all 6341 // the uses of this user that we can find this way. 6342 do { 6343 SDUse &Use = UI.getUse(); 6344 const SDValue &ToOp = To[Use.getResNo()]; 6345 ++UI; 6346 Use.set(ToOp); 6347 } while (UI != UE && *UI == User); 6348 6349 // Now that we have modified User, add it back to the CSE maps. If it 6350 // already exists there, recursively merge the results together. 6351 AddModifiedNodeToCSEMaps(User); 6352 } 6353 6354 // If we just RAUW'd the root, take note. 6355 if (From == getRoot().getNode()) 6356 setRoot(SDValue(To[getRoot().getResNo()])); 6357 } 6358 6359 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 6360 /// uses of other values produced by From.getNode() alone. The Deleted 6361 /// vector is handled the same way as for ReplaceAllUsesWith. 6362 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 6363 // Handle the really simple, really trivial case efficiently. 6364 if (From == To) return; 6365 6366 // Handle the simple, trivial, case efficiently. 6367 if (From.getNode()->getNumValues() == 1) { 6368 ReplaceAllUsesWith(From, To); 6369 return; 6370 } 6371 6372 // Preserve Debug Info. 6373 TransferDbgValues(From, To); 6374 6375 // Iterate over just the existing users of From. See the comments in 6376 // the ReplaceAllUsesWith above. 6377 SDNode::use_iterator UI = From.getNode()->use_begin(), 6378 UE = From.getNode()->use_end(); 6379 RAUWUpdateListener Listener(*this, UI, UE); 6380 while (UI != UE) { 6381 SDNode *User = *UI; 6382 bool UserRemovedFromCSEMaps = false; 6383 6384 // A user can appear in a use list multiple times, and when this 6385 // happens the uses are usually next to each other in the list. 6386 // To help reduce the number of CSE recomputations, process all 6387 // the uses of this user that we can find this way. 6388 do { 6389 SDUse &Use = UI.getUse(); 6390 6391 // Skip uses of different values from the same node. 6392 if (Use.getResNo() != From.getResNo()) { 6393 ++UI; 6394 continue; 6395 } 6396 6397 // If this node hasn't been modified yet, it's still in the CSE maps, 6398 // so remove its old self from the CSE maps. 6399 if (!UserRemovedFromCSEMaps) { 6400 RemoveNodeFromCSEMaps(User); 6401 UserRemovedFromCSEMaps = true; 6402 } 6403 6404 ++UI; 6405 Use.set(To); 6406 } while (UI != UE && *UI == User); 6407 6408 // We are iterating over all uses of the From node, so if a use 6409 // doesn't use the specific value, no changes are made. 6410 if (!UserRemovedFromCSEMaps) 6411 continue; 6412 6413 // Now that we have modified User, add it back to the CSE maps. If it 6414 // already exists there, recursively merge the results together. 6415 AddModifiedNodeToCSEMaps(User); 6416 } 6417 6418 // If we just RAUW'd the root, take note. 6419 if (From == getRoot()) 6420 setRoot(To); 6421 } 6422 6423 namespace { 6424 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 6425 /// to record information about a use. 6426 struct UseMemo { 6427 SDNode *User; 6428 unsigned Index; 6429 SDUse *Use; 6430 }; 6431 6432 /// operator< - Sort Memos by User. 6433 bool operator<(const UseMemo &L, const UseMemo &R) { 6434 return (intptr_t)L.User < (intptr_t)R.User; 6435 } 6436 } 6437 6438 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 6439 /// uses of other values produced by From.getNode() alone. The same value 6440 /// may appear in both the From and To list. The Deleted vector is 6441 /// handled the same way as for ReplaceAllUsesWith. 6442 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 6443 const SDValue *To, 6444 unsigned Num){ 6445 // Handle the simple, trivial case efficiently. 6446 if (Num == 1) 6447 return ReplaceAllUsesOfValueWith(*From, *To); 6448 6449 TransferDbgValues(*From, *To); 6450 6451 // Read up all the uses and make records of them. This helps 6452 // processing new uses that are introduced during the 6453 // replacement process. 6454 SmallVector<UseMemo, 4> Uses; 6455 for (unsigned i = 0; i != Num; ++i) { 6456 unsigned FromResNo = From[i].getResNo(); 6457 SDNode *FromNode = From[i].getNode(); 6458 for (SDNode::use_iterator UI = FromNode->use_begin(), 6459 E = FromNode->use_end(); UI != E; ++UI) { 6460 SDUse &Use = UI.getUse(); 6461 if (Use.getResNo() == FromResNo) { 6462 UseMemo Memo = { *UI, i, &Use }; 6463 Uses.push_back(Memo); 6464 } 6465 } 6466 } 6467 6468 // Sort the uses, so that all the uses from a given User are together. 6469 std::sort(Uses.begin(), Uses.end()); 6470 6471 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 6472 UseIndex != UseIndexEnd; ) { 6473 // We know that this user uses some value of From. If it is the right 6474 // value, update it. 6475 SDNode *User = Uses[UseIndex].User; 6476 6477 // This node is about to morph, remove its old self from the CSE maps. 6478 RemoveNodeFromCSEMaps(User); 6479 6480 // The Uses array is sorted, so all the uses for a given User 6481 // are next to each other in the list. 6482 // To help reduce the number of CSE recomputations, process all 6483 // the uses of this user that we can find this way. 6484 do { 6485 unsigned i = Uses[UseIndex].Index; 6486 SDUse &Use = *Uses[UseIndex].Use; 6487 ++UseIndex; 6488 6489 Use.set(To[i]); 6490 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 6491 6492 // Now that we have modified User, add it back to the CSE maps. If it 6493 // already exists there, recursively merge the results together. 6494 AddModifiedNodeToCSEMaps(User); 6495 } 6496 } 6497 6498 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 6499 /// based on their topological order. It returns the maximum id and a vector 6500 /// of the SDNodes* in assigned order by reference. 6501 unsigned SelectionDAG::AssignTopologicalOrder() { 6502 6503 unsigned DAGSize = 0; 6504 6505 // SortedPos tracks the progress of the algorithm. Nodes before it are 6506 // sorted, nodes after it are unsorted. When the algorithm completes 6507 // it is at the end of the list. 6508 allnodes_iterator SortedPos = allnodes_begin(); 6509 6510 // Visit all the nodes. Move nodes with no operands to the front of 6511 // the list immediately. Annotate nodes that do have operands with their 6512 // operand count. Before we do this, the Node Id fields of the nodes 6513 // may contain arbitrary values. After, the Node Id fields for nodes 6514 // before SortedPos will contain the topological sort index, and the 6515 // Node Id fields for nodes At SortedPos and after will contain the 6516 // count of outstanding operands. 6517 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 6518 SDNode *N = &*I++; 6519 checkForCycles(N, this); 6520 unsigned Degree = N->getNumOperands(); 6521 if (Degree == 0) { 6522 // A node with no uses, add it to the result array immediately. 6523 N->setNodeId(DAGSize++); 6524 allnodes_iterator Q(N); 6525 if (Q != SortedPos) 6526 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 6527 assert(SortedPos != AllNodes.end() && "Overran node list"); 6528 ++SortedPos; 6529 } else { 6530 // Temporarily use the Node Id as scratch space for the degree count. 6531 N->setNodeId(Degree); 6532 } 6533 } 6534 6535 // Visit all the nodes. As we iterate, move nodes into sorted order, 6536 // such that by the time the end is reached all nodes will be sorted. 6537 for (SDNode &Node : allnodes()) { 6538 SDNode *N = &Node; 6539 checkForCycles(N, this); 6540 // N is in sorted position, so all its uses have one less operand 6541 // that needs to be sorted. 6542 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6543 UI != UE; ++UI) { 6544 SDNode *P = *UI; 6545 unsigned Degree = P->getNodeId(); 6546 assert(Degree != 0 && "Invalid node degree"); 6547 --Degree; 6548 if (Degree == 0) { 6549 // All of P's operands are sorted, so P may sorted now. 6550 P->setNodeId(DAGSize++); 6551 if (P->getIterator() != SortedPos) 6552 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 6553 assert(SortedPos != AllNodes.end() && "Overran node list"); 6554 ++SortedPos; 6555 } else { 6556 // Update P's outstanding operand count. 6557 P->setNodeId(Degree); 6558 } 6559 } 6560 if (Node.getIterator() == SortedPos) { 6561 #ifndef NDEBUG 6562 allnodes_iterator I(N); 6563 SDNode *S = &*++I; 6564 dbgs() << "Overran sorted position:\n"; 6565 S->dumprFull(this); dbgs() << "\n"; 6566 dbgs() << "Checking if this is due to cycles\n"; 6567 checkForCycles(this, true); 6568 #endif 6569 llvm_unreachable(nullptr); 6570 } 6571 } 6572 6573 assert(SortedPos == AllNodes.end() && 6574 "Topological sort incomplete!"); 6575 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 6576 "First node in topological sort is not the entry token!"); 6577 assert(AllNodes.front().getNodeId() == 0 && 6578 "First node in topological sort has non-zero id!"); 6579 assert(AllNodes.front().getNumOperands() == 0 && 6580 "First node in topological sort has operands!"); 6581 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 6582 "Last node in topologic sort has unexpected id!"); 6583 assert(AllNodes.back().use_empty() && 6584 "Last node in topologic sort has users!"); 6585 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 6586 return DAGSize; 6587 } 6588 6589 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 6590 /// value is produced by SD. 6591 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 6592 if (SD) { 6593 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 6594 SD->setHasDebugValue(true); 6595 } 6596 DbgInfo->add(DB, SD, isParameter); 6597 } 6598 6599 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes. 6600 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { 6601 if (From == To || !From.getNode()->getHasDebugValue()) 6602 return; 6603 SDNode *FromNode = From.getNode(); 6604 SDNode *ToNode = To.getNode(); 6605 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); 6606 SmallVector<SDDbgValue *, 2> ClonedDVs; 6607 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); 6608 I != E; ++I) { 6609 SDDbgValue *Dbg = *I; 6610 // Only add Dbgvalues attached to same ResNo. 6611 if (Dbg->getKind() == SDDbgValue::SDNODE && 6612 Dbg->getSDNode() == From.getNode() && 6613 Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) { 6614 assert(FromNode != ToNode && 6615 "Should not transfer Debug Values intranode"); 6616 SDDbgValue *Clone = 6617 getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, 6618 To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), 6619 Dbg->getDebugLoc(), Dbg->getOrder()); 6620 ClonedDVs.push_back(Clone); 6621 Dbg->setIsInvalidated(); 6622 } 6623 } 6624 for (SDDbgValue *I : ClonedDVs) 6625 AddDbgValue(I, ToNode, false); 6626 } 6627 6628 //===----------------------------------------------------------------------===// 6629 // SDNode Class 6630 //===----------------------------------------------------------------------===// 6631 6632 bool llvm::isNullConstant(SDValue V) { 6633 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6634 return Const != nullptr && Const->isNullValue(); 6635 } 6636 6637 bool llvm::isNullFPConstant(SDValue V) { 6638 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 6639 return Const != nullptr && Const->isZero() && !Const->isNegative(); 6640 } 6641 6642 bool llvm::isAllOnesConstant(SDValue V) { 6643 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6644 return Const != nullptr && Const->isAllOnesValue(); 6645 } 6646 6647 bool llvm::isOneConstant(SDValue V) { 6648 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 6649 return Const != nullptr && Const->isOne(); 6650 } 6651 6652 bool llvm::isBitwiseNot(SDValue V) { 6653 return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1)); 6654 } 6655 6656 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) { 6657 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 6658 return CN; 6659 6660 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 6661 BitVector UndefElements; 6662 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 6663 6664 // BuildVectors can truncate their operands. Ignore that case here. 6665 // FIXME: We blindly ignore splats which include undef which is overly 6666 // pessimistic. 6667 if (CN && UndefElements.none() && 6668 CN->getValueType(0) == N.getValueType().getScalarType()) 6669 return CN; 6670 } 6671 6672 return nullptr; 6673 } 6674 6675 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) { 6676 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 6677 return CN; 6678 6679 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 6680 BitVector UndefElements; 6681 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 6682 6683 if (CN && UndefElements.none()) 6684 return CN; 6685 } 6686 6687 return nullptr; 6688 } 6689 6690 HandleSDNode::~HandleSDNode() { 6691 DropOperands(); 6692 } 6693 6694 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 6695 const DebugLoc &DL, 6696 const GlobalValue *GA, EVT VT, 6697 int64_t o, unsigned char TF) 6698 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 6699 TheGlobal = GA; 6700 } 6701 6702 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 6703 EVT VT, unsigned SrcAS, 6704 unsigned DestAS) 6705 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 6706 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 6707 6708 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 6709 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 6710 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 6711 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 6712 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 6713 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 6714 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 6715 6716 // We check here that the size of the memory operand fits within the size of 6717 // the MMO. This is because the MMO might indicate only a possible address 6718 // range instead of specifying the affected memory addresses precisely. 6719 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 6720 } 6721 6722 /// Profile - Gather unique data for the node. 6723 /// 6724 void SDNode::Profile(FoldingSetNodeID &ID) const { 6725 AddNodeIDNode(ID, this); 6726 } 6727 6728 namespace { 6729 struct EVTArray { 6730 std::vector<EVT> VTs; 6731 6732 EVTArray() { 6733 VTs.reserve(MVT::LAST_VALUETYPE); 6734 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 6735 VTs.push_back(MVT((MVT::SimpleValueType)i)); 6736 } 6737 }; 6738 } 6739 6740 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; 6741 static ManagedStatic<EVTArray> SimpleVTArray; 6742 static ManagedStatic<sys::SmartMutex<true> > VTMutex; 6743 6744 /// getValueTypeList - Return a pointer to the specified value type. 6745 /// 6746 const EVT *SDNode::getValueTypeList(EVT VT) { 6747 if (VT.isExtended()) { 6748 sys::SmartScopedLock<true> Lock(*VTMutex); 6749 return &(*EVTs->insert(VT).first); 6750 } else { 6751 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 6752 "Value type out of range!"); 6753 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 6754 } 6755 } 6756 6757 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 6758 /// indicated value. This method ignores uses of other values defined by this 6759 /// operation. 6760 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 6761 assert(Value < getNumValues() && "Bad value!"); 6762 6763 // TODO: Only iterate over uses of a given value of the node 6764 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 6765 if (UI.getUse().getResNo() == Value) { 6766 if (NUses == 0) 6767 return false; 6768 --NUses; 6769 } 6770 } 6771 6772 // Found exactly the right number of uses? 6773 return NUses == 0; 6774 } 6775 6776 6777 /// hasAnyUseOfValue - Return true if there are any use of the indicated 6778 /// value. This method ignores uses of other values defined by this operation. 6779 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 6780 assert(Value < getNumValues() && "Bad value!"); 6781 6782 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 6783 if (UI.getUse().getResNo() == Value) 6784 return true; 6785 6786 return false; 6787 } 6788 6789 6790 /// isOnlyUserOf - Return true if this node is the only use of N. 6791 /// 6792 bool SDNode::isOnlyUserOf(const SDNode *N) const { 6793 bool Seen = false; 6794 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 6795 SDNode *User = *I; 6796 if (User == this) 6797 Seen = true; 6798 else 6799 return false; 6800 } 6801 6802 return Seen; 6803 } 6804 6805 /// isOperand - Return true if this node is an operand of N. 6806 /// 6807 bool SDValue::isOperandOf(const SDNode *N) const { 6808 for (const SDValue &Op : N->op_values()) 6809 if (*this == Op) 6810 return true; 6811 return false; 6812 } 6813 6814 bool SDNode::isOperandOf(const SDNode *N) const { 6815 for (const SDValue &Op : N->op_values()) 6816 if (this == Op.getNode()) 6817 return true; 6818 return false; 6819 } 6820 6821 /// reachesChainWithoutSideEffects - Return true if this operand (which must 6822 /// be a chain) reaches the specified operand without crossing any 6823 /// side-effecting instructions on any chain path. In practice, this looks 6824 /// through token factors and non-volatile loads. In order to remain efficient, 6825 /// this only looks a couple of nodes in, it does not do an exhaustive search. 6826 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 6827 unsigned Depth) const { 6828 if (*this == Dest) return true; 6829 6830 // Don't search too deeply, we just want to be able to see through 6831 // TokenFactor's etc. 6832 if (Depth == 0) return false; 6833 6834 // If this is a token factor, all inputs to the TF happen in parallel. If any 6835 // of the operands of the TF does not reach dest, then we cannot do the xform. 6836 if (getOpcode() == ISD::TokenFactor) { 6837 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6838 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) 6839 return false; 6840 return true; 6841 } 6842 6843 // Loads don't have side effects, look through them. 6844 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 6845 if (!Ld->isVolatile()) 6846 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 6847 } 6848 return false; 6849 } 6850 6851 bool SDNode::hasPredecessor(const SDNode *N) const { 6852 SmallPtrSet<const SDNode *, 32> Visited; 6853 SmallVector<const SDNode *, 16> Worklist; 6854 Worklist.push_back(this); 6855 return hasPredecessorHelper(N, Visited, Worklist); 6856 } 6857 6858 uint64_t SDNode::getConstantOperandVal(unsigned Num) const { 6859 assert(Num < NumOperands && "Invalid child # of SDNode!"); 6860 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue(); 6861 } 6862 6863 const SDNodeFlags *SDNode::getFlags() const { 6864 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6865 return &FlagsNode->Flags; 6866 return nullptr; 6867 } 6868 6869 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) { 6870 if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this)) 6871 FlagsNode->Flags.intersectWith(Flags); 6872 } 6873 6874 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 6875 assert(N->getNumValues() == 1 && 6876 "Can't unroll a vector with multiple results!"); 6877 6878 EVT VT = N->getValueType(0); 6879 unsigned NE = VT.getVectorNumElements(); 6880 EVT EltVT = VT.getVectorElementType(); 6881 SDLoc dl(N); 6882 6883 SmallVector<SDValue, 8> Scalars; 6884 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 6885 6886 // If ResNE is 0, fully unroll the vector op. 6887 if (ResNE == 0) 6888 ResNE = NE; 6889 else if (NE > ResNE) 6890 NE = ResNE; 6891 6892 unsigned i; 6893 for (i= 0; i != NE; ++i) { 6894 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 6895 SDValue Operand = N->getOperand(j); 6896 EVT OperandVT = Operand.getValueType(); 6897 if (OperandVT.isVector()) { 6898 // A vector operand; extract a single element. 6899 EVT OperandEltVT = OperandVT.getVectorElementType(); 6900 Operands[j] = 6901 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 6902 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 6903 } else { 6904 // A scalar operand; just use it as is. 6905 Operands[j] = Operand; 6906 } 6907 } 6908 6909 switch (N->getOpcode()) { 6910 default: { 6911 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 6912 N->getFlags())); 6913 break; 6914 } 6915 case ISD::VSELECT: 6916 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 6917 break; 6918 case ISD::SHL: 6919 case ISD::SRA: 6920 case ISD::SRL: 6921 case ISD::ROTL: 6922 case ISD::ROTR: 6923 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 6924 getShiftAmountOperand(Operands[0].getValueType(), 6925 Operands[1]))); 6926 break; 6927 case ISD::SIGN_EXTEND_INREG: 6928 case ISD::FP_ROUND_INREG: { 6929 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 6930 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 6931 Operands[0], 6932 getValueType(ExtVT))); 6933 } 6934 } 6935 } 6936 6937 for (; i < ResNE; ++i) 6938 Scalars.push_back(getUNDEF(EltVT)); 6939 6940 return getNode(ISD::BUILD_VECTOR, dl, 6941 EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars); 6942 } 6943 6944 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 6945 LoadSDNode *Base, 6946 unsigned Bytes, 6947 int Dist) const { 6948 if (LD->isVolatile() || Base->isVolatile()) 6949 return false; 6950 if (LD->isIndexed() || Base->isIndexed()) 6951 return false; 6952 if (LD->getChain() != Base->getChain()) 6953 return false; 6954 EVT VT = LD->getValueType(0); 6955 if (VT.getSizeInBits() / 8 != Bytes) 6956 return false; 6957 6958 SDValue Loc = LD->getOperand(1); 6959 SDValue BaseLoc = Base->getOperand(1); 6960 if (Loc.getOpcode() == ISD::FrameIndex) { 6961 if (BaseLoc.getOpcode() != ISD::FrameIndex) 6962 return false; 6963 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 6964 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 6965 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 6966 int FS = MFI.getObjectSize(FI); 6967 int BFS = MFI.getObjectSize(BFI); 6968 if (FS != BFS || FS != (int)Bytes) return false; 6969 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 6970 } 6971 6972 // Handle X + C. 6973 if (isBaseWithConstantOffset(Loc)) { 6974 int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 6975 if (Loc.getOperand(0) == BaseLoc) { 6976 // If the base location is a simple address with no offset itself, then 6977 // the second load's first add operand should be the base address. 6978 if (LocOffset == Dist * (int)Bytes) 6979 return true; 6980 } else if (isBaseWithConstantOffset(BaseLoc)) { 6981 // The base location itself has an offset, so subtract that value from the 6982 // second load's offset before comparing to distance * size. 6983 int64_t BOffset = 6984 cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); 6985 if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { 6986 if ((LocOffset - BOffset) == Dist * (int)Bytes) 6987 return true; 6988 } 6989 } 6990 } 6991 const GlobalValue *GV1 = nullptr; 6992 const GlobalValue *GV2 = nullptr; 6993 int64_t Offset1 = 0; 6994 int64_t Offset2 = 0; 6995 bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); 6996 bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 6997 if (isGA1 && isGA2 && GV1 == GV2) 6998 return Offset1 == (Offset2 + Dist*Bytes); 6999 return false; 7000 } 7001 7002 7003 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 7004 /// it cannot be inferred. 7005 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 7006 // If this is a GlobalAddress + cst, return the alignment. 7007 const GlobalValue *GV; 7008 int64_t GVOffset = 0; 7009 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 7010 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 7011 APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); 7012 llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, 7013 getDataLayout()); 7014 unsigned AlignBits = KnownZero.countTrailingOnes(); 7015 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 7016 if (Align) 7017 return MinAlign(Align, GVOffset); 7018 } 7019 7020 // If this is a direct reference to a stack slot, use information about the 7021 // stack slot's alignment. 7022 int FrameIdx = 1 << 31; 7023 int64_t FrameOffset = 0; 7024 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 7025 FrameIdx = FI->getIndex(); 7026 } else if (isBaseWithConstantOffset(Ptr) && 7027 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 7028 // Handle FI+Cst 7029 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7030 FrameOffset = Ptr.getConstantOperandVal(1); 7031 } 7032 7033 if (FrameIdx != (1 << 31)) { 7034 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 7035 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 7036 FrameOffset); 7037 return FIInfoAlign; 7038 } 7039 7040 return 0; 7041 } 7042 7043 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 7044 /// which is split (or expanded) into two not necessarily identical pieces. 7045 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 7046 // Currently all types are split in half. 7047 EVT LoVT, HiVT; 7048 if (!VT.isVector()) { 7049 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 7050 } else { 7051 unsigned NumElements = VT.getVectorNumElements(); 7052 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 7053 LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 7054 NumElements/2); 7055 } 7056 return std::make_pair(LoVT, HiVT); 7057 } 7058 7059 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 7060 /// low/high part. 7061 std::pair<SDValue, SDValue> 7062 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 7063 const EVT &HiVT) { 7064 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 7065 N.getValueType().getVectorNumElements() && 7066 "More vector elements requested than available!"); 7067 SDValue Lo, Hi; 7068 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 7069 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 7070 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 7071 getConstant(LoVT.getVectorNumElements(), DL, 7072 TLI->getVectorIdxTy(getDataLayout()))); 7073 return std::make_pair(Lo, Hi); 7074 } 7075 7076 void SelectionDAG::ExtractVectorElements(SDValue Op, 7077 SmallVectorImpl<SDValue> &Args, 7078 unsigned Start, unsigned Count) { 7079 EVT VT = Op.getValueType(); 7080 if (Count == 0) 7081 Count = VT.getVectorNumElements(); 7082 7083 EVT EltVT = VT.getVectorElementType(); 7084 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 7085 SDLoc SL(Op); 7086 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 7087 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 7088 Op, getConstant(i, SL, IdxTy))); 7089 } 7090 } 7091 7092 // getAddressSpace - Return the address space this GlobalAddress belongs to. 7093 unsigned GlobalAddressSDNode::getAddressSpace() const { 7094 return getGlobal()->getType()->getAddressSpace(); 7095 } 7096 7097 7098 Type *ConstantPoolSDNode::getType() const { 7099 if (isMachineConstantPoolEntry()) 7100 return Val.MachineCPVal->getType(); 7101 return Val.ConstVal->getType(); 7102 } 7103 7104 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, 7105 APInt &SplatUndef, 7106 unsigned &SplatBitSize, 7107 bool &HasAnyUndefs, 7108 unsigned MinSplatBits, 7109 bool isBigEndian) const { 7110 EVT VT = getValueType(0); 7111 assert(VT.isVector() && "Expected a vector type"); 7112 unsigned sz = VT.getSizeInBits(); 7113 if (MinSplatBits > sz) 7114 return false; 7115 7116 SplatValue = APInt(sz, 0); 7117 SplatUndef = APInt(sz, 0); 7118 7119 // Get the bits. Bits with undefined values (when the corresponding element 7120 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 7121 // in SplatValue. If any of the values are not constant, give up and return 7122 // false. 7123 unsigned int nOps = getNumOperands(); 7124 assert(nOps > 0 && "isConstantSplat has 0-size build vector"); 7125 unsigned EltBitSize = VT.getScalarSizeInBits(); 7126 7127 for (unsigned j = 0; j < nOps; ++j) { 7128 unsigned i = isBigEndian ? nOps-1-j : j; 7129 SDValue OpVal = getOperand(i); 7130 unsigned BitPos = j * EltBitSize; 7131 7132 if (OpVal.isUndef()) 7133 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize); 7134 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) 7135 SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize). 7136 zextOrTrunc(sz) << BitPos; 7137 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 7138 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; 7139 else 7140 return false; 7141 } 7142 7143 // The build_vector is all constants or undefs. Find the smallest element 7144 // size that splats the vector. 7145 7146 HasAnyUndefs = (SplatUndef != 0); 7147 while (sz > 8) { 7148 7149 unsigned HalfSize = sz / 2; 7150 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 7151 APInt LowValue = SplatValue.trunc(HalfSize); 7152 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 7153 APInt LowUndef = SplatUndef.trunc(HalfSize); 7154 7155 // If the two halves do not match (ignoring undef bits), stop here. 7156 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 7157 MinSplatBits > HalfSize) 7158 break; 7159 7160 SplatValue = HighValue | LowValue; 7161 SplatUndef = HighUndef & LowUndef; 7162 7163 sz = HalfSize; 7164 } 7165 7166 SplatBitSize = sz; 7167 return true; 7168 } 7169 7170 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 7171 if (UndefElements) { 7172 UndefElements->clear(); 7173 UndefElements->resize(getNumOperands()); 7174 } 7175 SDValue Splatted; 7176 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 7177 SDValue Op = getOperand(i); 7178 if (Op.isUndef()) { 7179 if (UndefElements) 7180 (*UndefElements)[i] = true; 7181 } else if (!Splatted) { 7182 Splatted = Op; 7183 } else if (Splatted != Op) { 7184 return SDValue(); 7185 } 7186 } 7187 7188 if (!Splatted) { 7189 assert(getOperand(0).isUndef() && 7190 "Can only have a splat without a constant for all undefs."); 7191 return getOperand(0); 7192 } 7193 7194 return Splatted; 7195 } 7196 7197 ConstantSDNode * 7198 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 7199 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 7200 } 7201 7202 ConstantFPSDNode * 7203 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 7204 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 7205 } 7206 7207 int32_t 7208 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 7209 uint32_t BitWidth) const { 7210 if (ConstantFPSDNode *CN = 7211 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 7212 bool IsExact; 7213 APSInt IntVal(BitWidth); 7214 const APFloat &APF = CN->getValueAPF(); 7215 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 7216 APFloat::opOK || 7217 !IsExact) 7218 return -1; 7219 7220 return IntVal.exactLogBase2(); 7221 } 7222 return -1; 7223 } 7224 7225 bool BuildVectorSDNode::isConstant() const { 7226 for (const SDValue &Op : op_values()) { 7227 unsigned Opc = Op.getOpcode(); 7228 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 7229 return false; 7230 } 7231 return true; 7232 } 7233 7234 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 7235 // Find the first non-undef value in the shuffle mask. 7236 unsigned i, e; 7237 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 7238 /* search */; 7239 7240 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); 7241 7242 // Make sure all remaining elements are either undef or the same as the first 7243 // non-undef value. 7244 for (int Idx = Mask[i]; i != e; ++i) 7245 if (Mask[i] >= 0 && Mask[i] != Idx) 7246 return false; 7247 return true; 7248 } 7249 7250 // \brief Returns the SDNode if it is a constant integer BuildVector 7251 // or constant integer. 7252 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 7253 if (isa<ConstantSDNode>(N)) 7254 return N.getNode(); 7255 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 7256 return N.getNode(); 7257 // Treat a GlobalAddress supporting constant offset folding as a 7258 // constant integer. 7259 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 7260 if (GA->getOpcode() == ISD::GlobalAddress && 7261 TLI->isOffsetFoldingLegal(GA)) 7262 return GA; 7263 return nullptr; 7264 } 7265 7266 #ifndef NDEBUG 7267 static void checkForCyclesHelper(const SDNode *N, 7268 SmallPtrSetImpl<const SDNode*> &Visited, 7269 SmallPtrSetImpl<const SDNode*> &Checked, 7270 const llvm::SelectionDAG *DAG) { 7271 // If this node has already been checked, don't check it again. 7272 if (Checked.count(N)) 7273 return; 7274 7275 // If a node has already been visited on this depth-first walk, reject it as 7276 // a cycle. 7277 if (!Visited.insert(N).second) { 7278 errs() << "Detected cycle in SelectionDAG\n"; 7279 dbgs() << "Offending node:\n"; 7280 N->dumprFull(DAG); dbgs() << "\n"; 7281 abort(); 7282 } 7283 7284 for (const SDValue &Op : N->op_values()) 7285 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 7286 7287 Checked.insert(N); 7288 Visited.erase(N); 7289 } 7290 #endif 7291 7292 void llvm::checkForCycles(const llvm::SDNode *N, 7293 const llvm::SelectionDAG *DAG, 7294 bool force) { 7295 #ifndef NDEBUG 7296 bool check = force; 7297 #ifdef EXPENSIVE_CHECKS 7298 check = true; 7299 #endif // EXPENSIVE_CHECKS 7300 if (check) { 7301 assert(N && "Checking nonexistent SDNode"); 7302 SmallPtrSet<const SDNode*, 32> visited; 7303 SmallPtrSet<const SDNode*, 32> checked; 7304 checkForCyclesHelper(N, visited, checked, DAG); 7305 } 7306 #endif // !NDEBUG 7307 } 7308 7309 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 7310 checkForCycles(DAG->getRoot().getNode(), DAG, force); 7311 } 7312